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ABSTRACT 
 

Amyotrophic lateral sclerosis (ALS) is an incurable and fatal neurodegenerative 

disease characterized by motor neuron loss. Although pathological mutations exist 

in >15 genes, the mechanism(s) underlying ALS are unknown. FUS is one such 

gene and encodes the nuclear RNA-binding protein (RBP), fused in sarcoma 

(FUS), which actively shuttles between the nucleus and cytoplasm. Intriguingly, 

nearly half of the ALS mutations identified in FUS cause this protein to mislocalize, 

suggesting that FUS localization is relevant to disease. 	

Here, we found that excitotoxicity, a neuronal stress caused by aberrant 

glutamate signaling, induces the rapid redistribution of FUS and additional 

disease-linked RBPs from the nucleus to the cytoplasm. As excitotoxicity is 

pathologically associated with ALS, it was notable that the nuclear egress of FUS 

was particularly robust. Further, ALS-FUS variants that predominantly localize to 

the nucleus also undergo redistribution. Thus, we sought to understand the 

purpose underlying FUS translocation and the potential relevance of this response 

to disease. As calcium dysregulation is strongly associated with 

neurodegenerative disorders, we examined the contribution of calcium to FUS 

egress. In addition to global changes to nucleocytoplasmic transport following 

excitotoxic insult, we found that FUS translocation caused by excitotoxicity is 

calcium mediated. Moreover, we found that dendritic expression of Gria2, a 

transcript encoding an AMPA receptor subunit responsible for regulating calcium 

permeability, is FUS-dependent under conditions of stress. Together, these 



 vii 

observations support the premise that FUS has a normal function during 

excitotoxic stress and that glutamatergic signaling may be dysregulated in FUS-

mediated ALS.	
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CHAPTER I: INTRODUCTION 

Central Nervous System (CNS) and Neuron Biology  

The central nervous system (CNS) is composed of the brain and spinal cord and 

functions to transmit sensory information throughout the body. Within the CNS 

there are two primary cell types: neurons and glia (Fig. I-1). glia (Fig. I-1B; purple) 

While glia function broadly to maintain the CNS environment and support neuron 

function, neurons are responsible for the flow of information within a neuronal 

network. Due to the need to differentially receive and transmit information, neurons 

undergo polarization, resulting in the formation of axons and dendrites (Yogev & 

Shen 2017) (Fig. I-1C). Each are functionally distinct compartments that differ in 

their membrane, protein and cytoskeletal composition (Yogev & Shen 2017). 

Information is received in dendrites while axons electrically propagate and 

chemically transmit integrated signals. Depending on the function of a given 

neuron, dendritic and axonal morphology can vary widely. While the in vivo 

environment does heavily influence neuron structure, cell polarity is observed in 

dissociated neuron cultures, demonstrating that polarization is an intrinsic 

neuronal feature (Yogev & Shen 2017).  

Neuronal communication is achieved though the release of 

neurotransmitters (acetylcholine, amino acids, biogenic amines and/or peptides) 

from presynaptic axon terminals that bind and activate postsynaptic dendritic 

receptors (Fig. I-1D). Such transmission results in the influx of ions and 

subsequent depolarization of the resting membrane potential (-70mV), thereby 
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Figure I-1. Overview of the CNS. (A) The CNS is composed of the brain and spinal cord 
and serves to transmit sensory information. (B) Neurons (orange) and glia (purple) are the 
primary cell types found within the CNS. (C) Neurons are highly polarized, resulting in the 
formation of specialized compartments called dendrites or axons that are connected to 
the neuronal cell body, or soma. (D) Neurons transmit chemical information though the 
release of neurotransmitters at specialized junctions called synapses. Receptors that bind 
neurotransmitters modulate intracellular ion concentrations in response to activity, thus 
altering the electrochemical gradient that spans the cellular membrane (referred to as 
membrane potential; resting membrane potential is -70mV).  
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promoting or inhibiting the overall formation of an action potential initiated at the 

axon hillock (achieved at +40mV). The frequency and strength of signaling can 

induce change in the number and composition of synapses, thereby iteratively 

tuning the neuronal response to stimuli (Koleske 2013). This physical alteration to 

stimuli is referred to as plasticity and relies heavily on cytoskeletal dynamics, 

translation machinery as well as Golgi, endoplasmic reticulum (ER) and 

mitochondrial organelles for the rapid and local production of proteins, lipid and 

energy (Koleske 2013). Although individual synapses may fluctuate, the intricate 

and physical network of neurons within the CNS endures over a lifetime, in part 

due to the post-mitotic nature of neuronal cells (Bezprozvanny & Hiesinger 2013).  

 

Neuronal Stress and Neurodegenerative Disease 

Neuronal Vulnerabilities to Altered Homeostasis, Stress and Disease 

The previously described neuronal properties are critical to overall cell 

function and thus, must be carefully maintained. As with any cell, physiological 

processes are maintained through homeostasis, a mechanism by which essential 

cellular variables are regulated through measurable processes (Chovatiya & 

Medzhitov 2014; Kotas & Medzhitov 2015). The resting membrane potential of a 

neuron is one such example and maintenance of this variable relies on the 

controlled gene, mRNA and protein expression as well as activity and turnover of 

protein ion channels and pumps (Davis 2013). In addition to processes that 

dynamically regulate cellular variables (e.g. through feedback loops), physical 



 4 

compartmentalization also contributes to homeostatic regulation. In neurons there 

are notable differences in the localization and expression of transcripts (Cajigas et 

al. 2012, Zappulo et al. 2017) that allows for the subcellular specialization and 

regulation of cellular processes. Not necessarily unique to neurons, the nuclear 

envelope also serves as a barrier that dampens transcriptional ‘noise’ (mRNA 

expression), thereby maintaining order within the larger cellular environment 

(Stoeger et al. 2016). As described, biological systems employ multiple levels of 

regulation that allow for the dynamic “buffering” of a given variable as well as 

existence of compensatory mechanisms, should one fail (Kotas & Medzhitov 

2015). Thus, the overall status of a variable results from the net effect of these 

nested and layered homeostatic processes.  

Unlike maintaining a system at a constant level (known as homostasis), 

homeostasis refers to the ability of a system to operate within a limited range of 

variability, thus allowing for cells and cellular processes to adapt to change (Kotas 

& Medzhitov 2015). For instance, neuronal communication may be tuned through 

synaptic plasticity, the process of which is regulated by intrinsic neuronal 

excitability as well as neurotransmitter receptor expression and presynaptic 

neurotransmitter release (Davis 2013). Despite this functional understanding 

however, the expression of genes required to ‘sense’ and maintain synaptic 

connections varies widely between individual cells and thus, complicates our 

research and understanding of the specific players that regulate synaptic 

homeostasis (Davis 2013, Schulz et al. 2007). While the ability for self-modification 
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and regulation can be beneficial, such highly adaptive processes are also 

vulnerable to dysregulation (Kotas & Medzhitov 2015).  

Environmental stress is one means by which homeostatic processes may 

be pushed outside of their normal operating range, allowing for dysregulation to 

occur. More specifically, environmental stress represents those forces perceived 

by the cell as capable of causing damage to biological macromolecules (e.g. 

membrane lipids, proteins, and/or DNA). Despite the myriad of ways in which a 

cell can be stressed, cell stress-response pathways are commonly organized 

around primary forms of cellular damage (e.g. ER stress, oxidative stress etc.) and 

function to minimize cellular harm (Chovatiya & Medzhitov 2014). As such, 

inherent neuron morphology and biology can create particular vulnerabilities to 

stress. Given the high energy demands of neurons met through oxidative 

metabolism, neurons are predisposed to oxidative stress (Gandhi & Abramov 

2012) and the dysregulation of protein quality control. Neuronal size and complex 

structure also increases the susceptibility of these cells to damage; synapses in 

particular are considered among most vulnerable neuronal structures (Mattson & 

Magnus 2006). Unlike other cell types in which a spatial existence is essential to 

function, once neurons degenerate or die, they are infrequently replaced and can 

cause added network vulnerability (Bezprozvanny & Hiesinger 2013).  

Apart from events encountered by a cell, homeostatic dysregulation and 

stress may also result from spontaneous or inherited mutations that trigger the 

failure essential variables or processes. For instance, as a result of aging as well 
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as post-mitotic nature, neurons accumulate genomic aberrations (McConnell et al. 

2013) as well as DNA damage (Lu et al., Madabhushi et al. 2014). Albeit limited in 

the number of samples, a study by McConnell and colleagues (2013) indicates that 

neurons exhibit increased genomic variation relative to dividing cell types due to 

the accumulation of mutations and alterations over time (McConnell et al. 2013). 

While certain mutations may be capable of directly triggering cell stress, others 

may not until compounded by secondary factors (e.g. accumulation of DNA, 

structural or other damage) and is known as the two/multiple-hit hypothesis 

(Dormann & Haass 2011, Dormann et al. 2010). Regardless of activation 

mechanism (i.e. environmental event or mutation), cell stress pathways function to 

temporarily mitigate any real or perceived damage. In parallel, stress also triggers 

an interconnected shift in homeostasis through the expression of adaptive genes, 

in an attempt to adjust the cellular equilibrium to reflect the new environmental 

state (Kültz 2005). If such processes are disrupted and homeostasis is lost or 

cannot be maintained or restored, such a situation may lead to cell death (Kotas & 

Medzhitov 2015). 

 

Neurodegenerative Disease 

In 2018, the Global Burden of Disease Project reported that in terms of 

years lost due to death or illness from a disease, neurological disorders have the 

largest effect on the global population (Feigin et al. 2017). In step with prolonged 

human longevity and vulnerabilities of neurons, age-linked neurodegenerative 
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diseases are an important component of this group. Although other cell types may 

be affected, neurodegeneration typically refers to disorders resulting in the loss of 

neuronal structure and/or function. In disease, neurodegeneration is typically 

observed within specific neuronal subtypes and/or populations (Bertram & Tanzi 

2005, Palop et al. 2006), although spreading may occur as the disease progresses. 

For example, Alzheimer’s primarily affects the hippocampus, amyotrophic lateral 

sclerosis (ALS) the motor cortex and spinal cord and frontotemporal dementia 

(FTD) the frontal and temporal cortices (Mattson & Magnus 2006). As a result, the 

observed clinical manifestations have traditionally driven the differential 

classification of these disorders (Armstrong 2012, Bertram & Tanzi 2005).  

In light of such observations, it might be assumed that the corresponding 

molecular pathology for each disease is equally distinct. Indeed, select 

components found within protein deposits (a hallmark of neurodegeneration) do 

appear to correlate with different diseases (Ross & Poirier 2004). Interestingly 

however, there is growing evidence that multiple molecular phenotypes are shared 

amongst varying diseases as well as ‘non-diseased’ aged persons (80+ years) 

(Elobeid et al. 2016, Wyss-Coray 2016). For example, a study conducted by 

Elobeid and colleagues (2016) found that protein hallmarks of neurodegeneration 

including hyperphosphorylated-tau, b-amyloid and hyperphosphorylated TAR 

DNA-binding protein 43 (TDP-43) were observed in 98, 47 and 36% of cognitively 

unimpaired brains, respectively (Elobeid et al. 2016). In addition to protein 

deposits, abnormal accumulations of carbohydrates and lipids, DNA damage and 
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inflammation can also be observed in both diseased and ‘normal’ aged brains 

(Wyss-Coray 2016). Thus, while the presence of molecular pathology may 

correlate with specific diseases, the mechanisms underlying their presence must 

be carefully considered. Regardless, while it is currently unclear if such 

macromolecular deposits are protective, harmful or causative in relation to 

disease, their presence implies that the cellular mechanisms normally mitigating 

their accumulation are impaired. 

Given the heterogeneity of molecular phenotypes, what drives the 

development of neurodegenerative disease? While a portion of disease may be 

explained through genetic inheritance, many cases occur sporadically (i.e. with no 

familial history); for example only 10% of ALS cases are familial (Brown & Al-

Chalabi 2017). Environmental factors (e.g. lifestyle, diet, toxins) (Wyss-Coray 

2016) and sleep patterns (Musiek & Holtzman 2016) may also contribute to 

neurodegeneration. It has similarly been hypothesized that for proteins associated 

with multiple diseases, disease-specific pathology may result from select forms of 

environmental stress that cause the degeneration of a select brain regions 

(Saxena & Caroni 2011).  

 

Amyotrophic lateral sclerosis (ALS) 

Clinical Presentation 

ALS is the most common adult motor neuron disorder and is characterized by both 

upper and lower motor neuron death. ALS is currently fatal and incurable. The 



 9 

overall prevalence of this disease is estimated at 5/100,000 individuals (Mehta et 

al. 2018). However in comparing age groups <49 and >50 years, prevalence 

increases from 0.5-3.8/100,00 cases to 7.9-20/100,00 (Mehta et al. 2018). For this 

reason, ALS is considered a late-onset disorder.  

Clinically, ALS patients present with progressive muscle weakening and 

wasting, followed by muscle cramps, fasciculations, paralysis and ultimately 

respiratory failure (Mehta et al. 2018).  Following the appearance of symptoms, the 

median survival of ALS patients is 30 months (Salameh et al. 2015). The onset of 

ALS is typically mild and painless, initiating from a focal point of origin that spreads 

outwards as the disease progresses. For the majority of patients, onset occurs in 

the limbs and manifests as a clumsy hand or foot drop (Salameh et al. 2015). 

However, approximately one third of cases exhibit bulbar onset and present with 

a difficulty in swallowing or speech (Salameh et al. 2015). While ALS primarily 

affects motor function, mild cognitive impairment occurs for ~40% of patients and 

FTD within 5-14% (Salameh et al. 2015).  

Currently, a diagnosis of ALS relies heavily on a patient’s clinical 

presentation of symptoms. Further diagnostic support can be provided by the 

analysis of blood and cerebrospinal fluid, electrophysiology studies as well as 

magnetic resonance or neuroimaging; however many of these tests serve to 

exclude other possible diagnoses rather than to positively identify ALS (Salameh 

et al. 2015). Due to the subtle onset of symptoms, current lack of disease-specific 

biomarkers and potential development of atypical features, patient diagnoses are 



 10 

often delayed and run the risk of an initial misdiagnosis and/or improper treatment 

prior to the final diagnosis (Kiernan et al. 2011, Salameh et al. 2015). 

 

ALS Genetics and Molecular Pathology  

The vast majority of patients with ALS develop the disease sporadically 

(SALS), although familial inheritance (FALS) represents approximately 10% of all 

cases (Brown & Al-Chalabi 2017). The first pathogenic mutations were identified 

within the SOD1 gene in 1993 (Rosen et al. 1993) and were found to account for 

20% and 2% of FALS and SALS cases, respectively (Taylor et al. 2016). Over next 

~25 years, mutations in additional genes including FUS (Kwiatkowski et al. 2009, 

Vance et al. 2009), TARDBP (Kabashi et al. 2008, Sreedharan et al. 2008), OPTN 

(Maruyama et al. 2010) and VCP, (Johnson et al. 2014) were identified. However, 

the combined contribution of these genes ALS accounted for about that of 

superoxide dismutase 1 (SOD1) alone (Taylor et al. 2016). In 2011 however, an 

expanded hexanucleotide repeat within C9ORF72 (DeJesus-Hernandez et al. 

2011, Renton et al. 2011) was found not only to cause ALS, but to account for 25-

40% and 6-10% of FALS and SALS, respectively (Renton et al. 2014, Taylor et al. 

2016). Although additional genes have been found since then (Brown & Al-Chalabi 

2017), the identification of mutations in (Chromosome 9 Open Reading Frame 72) 

C9orf72 represents a landmark discovery within the ALS field. Unlike most ALS 

genes or mutations, C9orf72 pathogenicity arises from an intronic gene repeat 

expansion. Further, mutations in C9orf72 as well as TDP43 and FUS have 
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genetically linked ALS and FTD (Couratier et al. 2017), two diseases previously 

considered separate disorders but are now recognized as related and potentially 

existing on a spectrum. While genetics clearly plays an important role in ALS 

pathogenesis, epidemiological studies also indicate that environmental factors 

(e.g. heavy metals, lifestyle, socioeconomic factors and trauma) (Riancho et al. 

2018) and head injury (Chen et al. 2007) may contribute to disease development, 

however their involvement is not yet definitive.   

Intriguingly, despite the diverse set of causing or contributing factors, both 

FALS and SALS share clinical manifestations that suggest the existence of 

common underlying pathways and/or mechanisms. ALS results in the atrophy of 

muscle, spinal cord and to a lesser extent, brain tissue. There is also neuronal loss 

and decreased axonal myelination (Saberi et al. 2015). Notably, degeneration 

across motor neuron types is not equal; ocular motor neurons are spared 

altogether in ALS as well as other forms of motor neuron disease (Nijssen et al. 

2017). Neuroinflammation as a result of glial proliferation and activation in patient 

spinal cord tissue represents another key pathological feature (Saberi et al. 2015) 

and is supported by models demonstrating a non-autonomous role of glia in 

mediating neuronal degeneration in ALS (Di Giorgio et al. 2007, Nagai et al. 2007). 

Intracellularly, ALS phenotypes include nuclear fragmentation and condensation, 

vacuolization (Saberi et al. 2015) as well as mitochondrial and Golgi fragmentation 

(Rowland & Shneider 2001). Protein inclusions and/or skein-like aggregates are 

widely observed in the cytoplasm and (to a lesser extent) the nuclei of neurons 
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and glia in end-stage CNS tissue (Blokhuis et al. 2013, Peters et al. 2015, Rowland 

& Shneider 2001). In contrast to other neurodegenerative diseases, ALS 

cytoplasmic inclusions are often devoid of other common neurodegenerative 

disease associated proteins (e.g. tau and alpha synuclein) (Saberi et al. 2015).  

 

Current Mechanisms of ALS 

Although there is some degree of overlap between groups, the vast majority 

of ALS-causing genes fall broadly into three functional categories: protein 

degradation, RNA processing and cytoskeletal dynamics (Brown & Al-Chalabi 

2017) (Fig. I-2). Thus, in evaluating possible ALS pathomechanisms, the 

implications of these pathways are closely considered. Relevant to the theme of 

protein homeostasis, ubiquitin-, p62- and TDP-43-postive protein aggregates are 

commonly observed in end stage, patient tissue (Saberi et al. 2015). Ubiquitin and 

p62 are both linked to the Ubiquitin-proteasome system and autophagic protein 

degradation processes and thus, their common presence in pathological 

aggregates suggest that ALS-mutations may induce such pathology, but how?  

Given that many ALS-linked genes are involved in protein homeostasis (Fig. I-2), 

their malfunction could contribute to disease. Furthermore, one recent study found 

proteins FUS, TDP-43 and SOD1 are supersaturated in spinal motor neurons and, 

as suggested by the authors, may be predisposed or prone to aggregation (Ciryam 

et al. 2017). This idea is intriguing as specifically these proteins are known to form  
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Figure I-2. Proposed ALS mechanisms. (A) Major genes associated with ALS 
can be grouped in the functional categories of RNA metabolism, protein 
homeostasis/trafficking and cytoskeleton (Brown & Al-Chalabi 2017, Eykens et al. 
2015). (B) Genetic and model studies have uncovered evidence for cellular 
characteristics that may potentially contribute to disease.    
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aggregates in patients possessing mutations in these proteins themselves (e.g. 

patients with FUS mutations exhibit FUS-positive aggregates). Moreover, as 

previously mentioned, wildtype TDP-43, is a common aggregate component in 

both FALS and SALS. Interestingly, while SOD1-postive aggregates are not 

observed outside of SOD1-medaited ALS, there are reports (although 

contradictory to other studies) of FUS-positive aggregates in non-FUS familial and 

sporadic ALS cases (Blokhuis et al. 2013, Deng et al. 2010, Keller et al. 2012).   

In addition to supersaturation, multiple ALS-linked proteins also possess the 

ability to undergo liquid-liquid phase separation (LLPS). Phase separation involves 

the reversible, bio-physical concentration and condensation of proteins from a 

mixed and dispersed state (St George-Hyslop et al. 2018). In regards to ALS, 

recent studies have demonstrated the ability of ALS-causing mutations to impair 

phase separation and/or cause aggregation in vitro (Conicella et al. 2016, 

Murakami et al. 2015, Patel et al. 2015), thus suggesting a possible mechanism 

by which aggregation occurs in disease. Currently, ALS-linked proteins shown to 

phase separate in vitro include: FUS (Patel et al. 2015), TDP-43 (Conicella et al. 

2016), Ubiquilin 2 (Dao et al. 2018) and heterogeneous nuclear ribonucleoprotein 

A1 (hnRNPA1) (Molliex et al. 2015).  

Although an active area of current research, it this though that the ability of 

‘client’ proteins to undergo LLPS form a scaffold capable of sequestering 

associated ‘cargo’ thereby promoting the formation of membraneless organelles 

(stress granules, nucleoli etc.) (St George-Hyslop et al. 2018, Uversky 2016). 
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Profilin-1 (PFN1) (Posey et al. 2018) as well as the RNA or dipeptides produced 

from the C9ORF72 repeat expansion (Fay et al. 2017, Lee et al. 2016) have been 

observed to alter aspects of phase separation biology. Notably, FUS, TDP43 and 

hnRNPA1 are strongly associated with stress granules, transient and 

membraneless mRNA-protein complexes thought to form via phase separation (St 

George-Hyslop et al. 2018, Uversky 2016) in response to stress (Kedersha & 

Anderson 2007). This connection has promoted the hypothesis that stress 

granules may promote or be linked to the formation of pathological aggregates 

(Molliex et al. 2015). Beyond stress granules, the inability for such LLPS to occur 

is also implicated in the aging process (Alberti & Hyman 2016). Although an active 

area of current research, the contribution of LLPS biology to disease pathogenesis 

is intriguing, but currently unclear.  

Disruptions in the exchange of materials (e.g. mRNA, protein) between the 

nucleus and cytoplasm has recently emerged as yet another potential disease 

mechanism (Kim & Taylor 2017) and is strongly linked to the theme of RNA 

processing (Fig. I-2). In reprise of LLPS, the altered ability of proteins to phase 

separate might contribute to impaired nucleocytoplasmic transport (Guo et al. 

2018, Yoshizawa et al. 2018). Furthermore, RNA-binding proteins including FUS 

(Kwiatkowski et al. 2009, Vance et al. 2009) and TDP43 as well as nuclear 

transport factors (Chou et al. 2018, Keller et al. 2012, Kinoshita et al. 2009, Zhang 

et al. 2015) are mislocalized to the cytosol in patient tissue. In light of such 

observations, it has been hypothesized that pathological alterations in 
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nucleocytoplasmic partitioning could alter RNA localization, as observed in models 

of C9orf72 (Freibaum et al. 2015), and thereby promote disease. Mutations 

cytoskeletal genes (Fig. I-2) may also have relevance to altered RNA processing 

and disease. The transport of mRNA to distal neuronal processes relies upon 

microtubule and actin dynamics (Hirokawa 2006, Koleske 2013) and, if disrupted, 

may impair neuronal function. In terms of structure alone, disruptions in 

cytoskeletal dynamics are especially relevant to motor neurons, whose axons are 

especially long and vulnerable to damage and aging (Mattson & Magnus 2006).  

The extrapolation of ALS gene mutations to disease mechanism has 

revealed several processes that may contribute to ALS. However, how such 

implicated cellular processes induce the ALS pathology is essential in 

understanding their relevance, let alone contribution, to disease. Of significance to 

this work, phenotypes observed in patient and animal disease models include 

alterations in neuron excitability and neurotransmission. Motor neurons intrinsically 

express low levels of inhibitory type-A γ-aminobutyric acid (GABAA) receptors and 

calcium buffering proteins to allow for rapid calcium transients (Nijssen et al. 2017, 

Saxena et al. 2013). However, such intrinsic biology can predispose motor neurons 

to hyperexcitability, an increased propensity for excitation in regards to a given 

stimulus. To this end, hyperexcitability has been observed in cases of familial and 

sporadic ALS as well as pre-symptomatic SOD1 carriers (Bae et al. 2013, 

Geevasinga et al. 2015, Vucic et al. 2008) and is correlated with patient survival 

(Kanai et al. 2012). The contribution of altered excitability to disease is widely 
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supported by observations in animal (Saba et al. 2015, Sharma et al. 2016, van 

Zundert et al. 2012) as well as induced pluripotent stem cell (iPSC)-derived motor 

neurons (Wainger et al. 2014). Although hyperexcitability is widely observed, there 

are also reports of hypoexcitability in ALS-models, giving rise to the notions of 

potential neuronal progression from hyper to hypoexcitability (de Lourdes 

Martínez-Silva et al. 2018, Devlin et al. 2015). Together, altered patterns of neuron 

excitability are widely observed in ALS patients and disease models.  

Motor neurons are excited by glutamate and increased levels of this 

neurotransmitter are observed in patient cerebrospinal fluid (Fiszman et al. 2010, 

Spreux-Varoquaux et al. 2002). Further, altered processing of α-amino-3-hydroxy-

5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits that control sodium 

and calcium influx have been observed at both the transcript and protein level in 

patient tissue and disease models (Hideyama et al. 2012, Kawahara et al. 2004, 

Selvaraj et al. 2018, Van Damme et al. 2007). Further, ALS-causing mutations 

have been  identified in DAO, a gene encoding an enzyme involved in the 

degradation of the N-methyl-D-aspartate (NMDA) co-agonist, D-serine (Mitchell et 

al. 2010). Together, these observations suggest a contribution of glutamate 

receptors to disease. Prolonged or aberrant glutamate signaling, known as 

excitotoxicity, can lead to a state of cellular dysfunction through the influx of 

calcium ions and ultimate neuron death (Van Den Bosch et al. 2006). Downstream 

cellular effects of excitotoxicity include oxidative damage, mitochondrial 

dysfunction and protein misfolding, all of which are associated with ALS (Dong et 
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al. 2009, Szydlowska & Tymianski 2010, Van Den Bosch et al. 2006). Additionally, 

excitotoxicity has relevance in an emerging model of non-cell autonomous motor 

neuron death in ALS (Kia et al. 2018, Van Damme et al. 2007). In these models, 

astrocytes secrete molecule(s) that selectively alter AMPA-mediated signaling in a 

manner that is toxic to motor neurons (Kia et al. 2018, Van Damme et al. 2007). 

Whether such perturbations are the cause of or result from neuronal compensatory 

mechanisms, excitotoxicity represents one possible mechanism for motor neuron 

death in ALS. 

Through further exploration a more complete understanding of disease 

mechanisms will hopefully lead to improved therapeutic treatments. Currently 

there are two FDA approved treatments for ALS: Riluzole and Edaravone. Riluzole 

was approved in 1995 and increases the longevity of ALS patients by 2-3 months 

(Bensimon et al. 1994, Miller et al. 2012). Although the exact mechanism is 

unknown, Riluzole is thought to reduce glutamate signaling and exert anti-

excitotoxic properties (Cheah et al. 2010). Edaravone reduces free radicals and 

thereby could reduce the effects of oxidative stress (Writing Group et al. 2017). 

Although both drugs provide only modest relief, their effects implicate the 

relevance of their associated pathways (e.g. glutamate signaling and oxidative 

stress) to disease. Current directions for therapeutic development currently include 

stem cell therapies, aimed to support and modulate the nervous system 

environment during disease (Ciervo et al. 2017), as well as nucleic acid-based 

therapies (e.g. siRNA, antisense oligonucleotides) to modulate the expression of 
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disease-linked transcripts (Mathis & Le Masson 2018). Together, these efforts may 

soon offer a means for improved and prolonged patient survival.  

 

Fused in sarcoma (FUS) 

FUS Structure 

Fused in sarcoma (FUS, also known as translocated in liposarcoma, hnRNP P2 

and hPOMp75) is a 526-amino acid (Fig. I-3), RNA/DNA binding protein that is 

primarily localized to the cell nucleus. First discovered as part of a C/EBP 

homologous protein (CHOP)-fusion protein in myxoid liposarcoma (Crozat et al. 

1993), FUS has since been shown to bind RNA, undergo nucleocytoplasmic 

shuttling (Zinszner et al. 1997). Moreover, FUS is an established hnRNP protein 

(Calvio et al. 1995) as well as member of the FET protein family (Tan & Manley 

2009). Other members of this family include Ewing sarcoma (EWS), TATA-Box 

Binding Protein Associated Factor 15 (TAF15) and the fly homolog of FUS, 

cabeza/ sarcoma-associated RNA-binding fly homolog (CAZ/SARFH), all of which 

are united by their conserved structural domains and involvement in mRNA 

processing (Tan & Manley 2009).  

The N-terminus of FUS is comprised of a low-complexity, prion-like domain 

composed of a glutamine-glycine-serine-tyrosine rich region (QGSY) and glycine-

rich region (GLY) that was initially shown to promote aberrant transcription when  

 

 



 20 

 

Figure I-3. FUS structure and posttranslational modifications. (A) FUS is a 
multi-domain protein involved in RNA/DNA binding activities (Sama et al. 2014). 
The N-terminus of FUS contains a glutamine-glycine-serine-tyrosine rich region 
(QGSY) and glycine-rich region (GLY). Following GLY is a short linker, RNA 
recognition motif (RRM) and two domains rich in arginine-glycine-glycine (RGG) 
rich repeats separated by a zinc-binding domain (ZF), all domains of which are 
involved in nucleic acid binding.  The C-terminus of FUS is comprised of a non-
classical nuclear localization sequence (NLS) that contributes to the nuclear 
localization of FUS. (B) FUS is heavily modified by post translational modifications, 
primarily phosphorylation and methylation (Rhoads et al. 2018b). Although not 
shown, T19 is also reported to be phosphorylated, K357 acetylated and K365 
methylated (Rhoads et al. 2018b). 
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fused with CHOP in myxoid Liposarcoma (Crozat et al. 1993). FUS binds RNA 

cooperatively via the C-terminal domain and self-associates via the QGSY domain 

(Kato et al. 2012, Kwon et al. 2013, Schwartz et al. 2013, Yang et al. 2014). This  

ability to self-assemble is implicated in driving the association of FUS and (C-

terminal repeat domain) C-terminal repeat domain of RNA Polymerase II, 

influencing C-terminal repeat domain phosphorylation and thus, transcription 

(Burke et al. 2015, Kwon et al. 2013, Schwartz et al. 2012, 2014). This QGSY 

domain has recently gained renewed attention for facilitating FUS LLPS, an 

observation that has further contributed to mechanistic understanding of how FUS 

might participate in various cellular functions. For instance, regulation of FUS LLPS 

appears linked to the phosphorylation and methylation of the FUS QGSY and 

arginine-glycine-glycine-rich repeats (RGG) regions, respectively (Han et al. 2012, 

Hofweber et al. 2018, Qamar et al. 2018) (Fig. I-3). As the N-terminal domain is 

highly subject to phosphorylation and self-association, it has been further attributed 

to the exclusion of FUS from LLPS phase-separated nucleoli (Deng, Holler, et al. 

2014; Kino et al. 2011) and thus appears important in the subcellular distribution 

of this protein. Further in vitro research has also shown that such modifications 

alter the association of FUS with nuclear import proteins and RNA interactions that 

are currently believed to ‘solubilize’ FUS (i.e. lower self-association) in the 

cytoplasm and nucleus (Guo et al. 2018, Hofweber et al. 2018, Maharana et al. 

2018, Yoshizawa et al. 2018).  
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Proximal to the N-terminal domain of FUS is a flexible linker followed by an 

RNA recognition motif (RRM) and two arginine-glycine-glycine (RGG) rich repeat 

regions that flank a zinc finger domain (Fig. I-3). Together these domains are 

important for DNA/RNA binding interactions (Bentmann et al. 2012, Iko et al. 2004, 

Liu et al. 2013). The RRM also contains a predicted nuclear export sequence 

(NES). However there is conflicting evidence as to if this NES is functional (Kino 

et al. 2015). Recent reports suggest that FUS may instead diffuse from the nucleus 

to the cytoplasm instead of being actively transported (Ederle et al. 2018). At the 

extreme C-terminus of FUS is a non-classical PY-NLS (Lee et al. 2006). The 

methylation status of residues flanking the NLS are known to influence the 

association of this protein with Transportin-1 (also known as Karyopherin b2) for 

active nuclear import (Dormann et al. 2012). Further, it is reported that the FUS 

NLS is subject to phosphorylation that can influence FUS compartmentalization 

(Darovic et al. 2015). Together, the FUS protein is comprised of modular domains 

that give rise to the functional versatility of this protein. Further, the high subjectivity 

of FUS to posttranslational modifications (Fig. I-3) allows for this protein to serve 

as an effector of signaling cascades in response to stimuli (Rhoads et al. 2018b, 

Svetoni et al. 2017). 

 

FUS Function 

FUS expression is near ubiquitous (Andersson et al. 2008) and FUS 

knockout mouse models show either perinatal death or sterility as well as 
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chromosomal instability, thus demonstrating the importance of this protein to 

survival (Hicks et al. 2000, Kuroda et al. 2000, Zahirovic & Sendscheid 2016). As 

previously mentioned, FUS is involved transcriptional processes and binds the 

promoter regions of >1000 genes, resulting in their altered expression upon FUS 

deletion (Tan et al. 2012). Further, FUS is involved in DNA damage repair and 

associates with telomeres (Sama et al. 2014), consistent with the genomic 

instability observed in certain murine models lacking FUS (Hicks et al. 2000).  

The cellular roles of FUS extend beyond an association with DNA to also 

include interactions with various classes of RNA. Despite various efforts, no clear 

or consistent RNA-binding consensus sequence and/or FUS secondary structure 

has been identified (Sama et al. 2014). Although FUS appears to bind nucleotide 

sequences non-specifically (Wang et al. 2015), the association of FUS with RNA 

is influenced by nucleotide length (Wang et al. 2015; Lagier-Tourenne et al. 2012). 

FUS exhibits a strong preference for binding introns and, when normalized for 

transcript length, the 3’ untranslated region (UTR) (Ishigaki et al. 2012, Lagier-

Tourenne et al. 2012). The strong association of FUS with introns indicates the 

involvement of FUS in pre-mRNA splicing. Indeed, FUS associates with 

spliceosome components (Reber et al. 2016) and FUS knockdown or knockout 

results in widespread changes in splicing in addition to gene expression (Ishigaki 

et al. 2012, Lagier-Tourenne et al. 2012, Nakaya et al. 2013, Rogelj et al. 2012).  

As a nucleocytoplasmic shuttling protein, FUS also participates in 

cytoplasmic RNA processing activities (Zinszner et al. 1997). FUS has been 
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implicated in mRNA transport as well as translation (Mili et al. 2008). Although 

extensive research has focused on the relationship of FUS and mRNA, there is 

new evidence that FUS is involved in the processing of microRNA (Zhang et al. 

2018b). Specific to neurons, there is evidence that FUS localizes to neuronal 

dendrites (Fujii et al. 2005) as well as presynaptic axonal terminals (Schoen et al. 

2015). Although there may be other mechanisms of FUS transport, kinesin family 

member 5 alpha (KIF5a) has been shown to transport FUS within RNA granules 

to dendrites (Kanai et al. 2004). Within dendrites, there are reports that FUS 

protein particles appear stationary until metabotropic glutamate receptor 5 

(mGluR5) activation triggers the movement of FUS into spines (Fujii et al. 2005, 

Sephton et al. 2014). Moreover, myosin-Va has been shown to transport FUS and 

Nd1-L, a transcript encoding an actin-stabilizing protein, from the dendritic shaft 

into spines, presumably for translation (Fujii & Takumi 2005, Yoshimura et al. 

2006). Reports further demonstrate that the association of FUS with actin motors 

myosin-Va and-VI are calcium-dependent (Takarada et al. 2009, Yoshimura et al. 

2006). Thus, it is possible that FUS may be released in dendritic spines as part of 

a functional response to calcium.  

Apart from Nd1-L, FUS has been shown to synaptically regulate SynGAPa2 

mRNA to promote spine maturation, stabilization and function (Yokoi et al. 2017) 

as well as bind and stabilize Gria1 (Udagawa et al. 2015), a transcript encoding an 

AMPA receptor subunit. Furthermore, FUS knock out models show a decrease in 

spine number and altered neurite branching (Fujii et al. 2005). Together, these 



 25 

data demonstrate the relevance of FUS to dendritic development. Furthermore, 

they indicate that the FUS function within neurons is critical to normal neuron 

development and function.  

 

FUS and the Cellular Stress Response 

As observed for other RNA-binding proteins (Dewey et al. 2011, van Oordt et al. 

2000), FUS can translocate from the nucleus to the cytoplasm in response to 

cellular stress. However, FUS does not undergo cellular redistribution in response 

to all types of stress. For example, endogenous FUS does not translocate in 

response to heat shock, ER or oxidative stress (Sama et al. 2013).  While there is 

one report showing a response of green fluorescent protein (GFP)-FUS to heat 

shock (Patel et al. 2015), this has not been observed for the endogenous protein 

(Sama et al. 2013). To date, the only environmental stressors shown to induce 

endogenous FUS translocation is sorbitol-induced, hyperosmotic stress (HOS) 

(Sama et al. 2013) and excitotoxity, the latter being the focus of this thesis. Thus, 

it appears there is selectivity with respect to the redistribution of FUS in response 

to environmental stress. HOS results from an increase in extracellular osmolytes, 

causing a rapid efflux of water from the cell to correct the osmotic imbalance (Burg 

et al. 2007). Further, HOS reduces global protein translation, selectively 

upregulates expression of stress-response genes (including heat shock proteins) 

(Burg et al. 2007) and induces macromolecular crowding (Bounedjah et al. 2012). 

Although not an environmental stress per se, in response to transcriptional, (but 
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not translational) inhibitors, FUS egress is also observed along with hnRNPA1 and 

heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) (Zinszner et al. 

1994). Intriguingly, unlike HOS where FUS associates with stress granules (Sama 

et al. 2013), cytoplasmic FUS following transcriptional inhibition appears diffuse. 

Similarly, reports of DNA damage (Deng et al. 2014b) and fibroblast growth factor 

receptor 1 stimulation (Klint et al. 2004) also cause FUS egress, although the 

response of FUS to DNA damage is conflicting (Rhoads et al. 2018a).  

Although the response of FUS to stress and stimuli appear selective, the 

purpose and mechanism for the redistribution of FUS is currently unclear. The 

responses of FUS to HOS is reversible and HeLa cells exhibit a decreased viability 

following hyperosmotic stress and FUS knockdown (Sama et al. 2013). These data 

imply a functional response of FUS to HOS stress. Further, RNA-binding proteins 

including hnRNPA1 (van Oordt et al. 2000)  and TDP-43 (Dewey et al. 2011) as 

well as components of nuclear transport (e.g. RAN and importin b) likewise 

undergo a subcellular redistribution following HOS (Kelley & Paschal 2007). Thus, 

suggesting nuclear FUS egress is part of the global cellular response to HOS. 

Given the noted stress-linked changes in protein and gene expression, one 

possibility is that FUS might be involved cytoplasmic mRNA processing at this 

time. In immortalized cells, FUS is found within stress granules (Sama et al. 2013) 

following HOS treatment. The association of ALS-mutant FUS with stress granules 

(Baron et al. 2013) and the redistribution of FUS following transcriptional inhibition 

(Zinszner et al. 1994) is linked to the nucleotide-binding, C-terminal domains of 
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FUS. Thus, RNA binding may functionally contribute in the response of FUS to 

stress. 

 

FUS and Disease 

FUS mutations and disease-linked pathology are primarly neuropathological or 

cancerous in nature (Table I-1). Although investigated, no FUS mutations have 

been identified in Parkinson’s or Alzheimer’s to date (Svetoni et al. 2016; Lagier-

Tourenne et al. 2010). Further, while FTD-causing mutations in FUS are rare, their 

presence has helped conceptualize of the existence of the ALS/FTD spectrum 

(Ling et al. 2013). However, unlike ALS, where a large number of FUS mutations 

(Fig. I-4) can induce cytoplasmic FUS pathology, cytoplasmic inclusions of 

wildtype FUS are observed in approximately 10% of FTD cases (Ling et al. 2013-

b). The mislocalization of other FET members (TAF15 and EWS) as well as the 

import protein Transportin-1 are also observed in FUS-positive FTLD inclusions 

(FTD pathology is defined as frontotemporal lobar degeneration, FTLD) (Neumann 

et al. 2011). Based on such presentation in FTD, instances of FTLD with FUS 

pathology are classified as a disease subtype and referred to as FTLD-FUS. 

Within the context of ALS, FUS mutations account for ~5% of FALS and are 

rarely observed de novo in SALS (Renton et al. 2014). Essentially all ALS-FUS 

mutations are present within the exonic regions of FUS (Fig. I-4), although at least 

one known mutation lies in the 3’UTR (Sabatelli et al. 2013). More specifically, FUS  
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Table I-1. FUS mutations and pathology linked to human disease. Mutations 
in FUS and FUS pathology are associated with multiple disorders. 
 

Disease Classification Mutations 

amyotrophic lateral 
sclerosis (ALS)  

(Kwiatkowski et al. 2009, 
Vance et al. 2009) 

Motor Neuron Disease (affects 
both upper and lower motor 

neurons) 

Yes; 5% of familial ALS; 
<1% sporadic. (Fig. I-4) 

 
 

Frontotemporal dementia 
(FTD)  

(Neumann et al. 2009a) (Van 
Langenhove et al. 2010) 

Dementia (degeneration of the 
frontal and temporal lobes) 

Yes; rare <1%.  
 
 

Polyglutamine diseases 
(Sca I, II, III and dentatorubral-

pallidoluysian atrophy) 
(Doi et al. 2010) 

 

Repeat expansion 
neurodegenerative diseases 

No. However FUS-positive 
aggregates have been 

observed in patient 
samples 

Essential Tremor 
(Merner et al. 2012, Schmouth 

et al. 2014) 

Neurological movement 
disorder 

Yes, although 
pathogenicity is 

unclear/controversial 
Myxoid Liposarcoma 

(Crozat et al. 1993) 
Form of cancer occurring in fat 

cells 
Yes; chromosomal 

translocation. Resultant 
fusion protein with CHOP 

accounts for >90% of 
Myxoid Liposarcoma 

cases (Antonescu et al. 
2000) 

Acute Myeloid Leukemia 
(Ichikawa et al. 1994) 

Cancer of the blood and bone 
marrow 

Formation of a fusion 
protein between FUS and 

the transcription factor, 
ERG 

Angiomatoid Fibrous 
Histiocytoma (Raddaoui et al. 

2002, Waters et al. 2000) 
 

Soft tissue neoplasm  Formation of a fusion 
protein between FUS and 

ATF1  

Low-grade Fibromyxoid 
sarcoma 

(Storlazzi 2003) 

Soft tissue sarcoma that 
typically occurs in the legs, 

trunk and abdomen 

Formation of a fusion 
protein between FUS and 

BBF2H7 
Ewing’s tumors 

(Shing et al. 2003) 
Pediatric bone and soft tissue 

tumor 
Formation of a fusion 

protein between FUS and 
the transcription factor, 

ERG 
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Figure I-4. Distribution of ALS-FUS mutations in the FUS protein sequence. 
ALS-causing mutations are found throughout FUS, however, the NLS contains the 
highest number of individual mutations (Kapeli et al. 2017). FUS domains: 
glutamine-glycine-serine-tyrosine rich region (QGSY), glycine-rich (GLY), RNA 
recognition motif (RRM) arginine-glycine-glycine- rich (RGG), zinc-binding domain 
(ZF) and nuclear localization sequence (NLS).  
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mutations are typically found within the N or C termini, the NLS being considered 

a ‘hot spot’ in terms of mutation number and frequency of occurrence (Deng et al. 

2014a, Lattante et al. 2013). Intriguingly, ALS mutations are rarely observed in the 

RRM, RGG1 and zinc finger binding domains (Fig. I-4). In vitro studies have shown 

that multiple mutations proximal to the NLS induce FUS mislocalization to the 

cytoplasm, albeit to varying degrees (Bosco et al. 2010, Dormann et al. 2010). 

Further, there is a noted inverse correlation between the increased cytoplasmic 

localization of FUS and decreased age of disease onset (Dormann et al. 2010), 

suggesting that FUS mislocalization contributes to disease. In patient tissue, FUS 

is present in cytoplasmic inclusions that also include Ubiquitin, p62 and stress 

granule proteins including poly(A)-binding protein 1 (PABP-1) and eukaryotic 

translation initiation factor 4G (EIF4G) (Dormann & Haass 2013). While it is 

generally thought that FUS-positive inclusions do not overlap and contain TDP-43 

or SOD1, several contradictory reports do show their co-existence in aggregates 

(Blokhuis et al. 2013, Deng et al. 2010, Keller et al. 2012).  

 

FUS Gain of Function vs. Loss of Function in ALS 

Despite the identification of mutations in FUS, the exact mechanism of FUS in ALS 

is unclear. With the exception of H517Q, the only recessive ALS-FUS 

mutation(Kwiatkowski et al. 2009), the autosomal dominant inheritance of FUS 

mutations raises the possibility that FUS may operate through a gain of function 

mechanism. Multiple models have addressed this question (Lanson & Pandey 
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2012) and, although overexpression of wildtype FUS expression produces 

disease-linked phenotypes (Mitchell et al. 2013), FUS overexpression is not 

observed in disease and the presence of endogenous FUS often served as 

confounder in these studies. As FUS mouse and fly knockout models frequently 

cause lethality (Hicks et al. 2000, Wang et al. 2011, Zahirovic & Sendscheid 2016), 

efforts to determine if ALS phenotypes resulted from gain and/or loss of function 

was stymied until two reports of FUS knockout and knockin mouse models in 2016. 

One study found that knockin murine models expressing the pathogenic mutations 

R521C and P525L (the latter a severely localized variant of mutant FUS) caused 

motor neuron loss and denervation as well as altered neuromuscular synapse 

function (Sharma et al. 2016). Interestingly, upon generation of conditional FUS 

knockout models, it was observed that such mice did not develop motor neuron 

loss. Moreover, no change to denervation was observed in mutant-FUS 

phenotypes when assessed in a FUS knockout background (Sharma et al. 2016). 

Similarly, a second group reported a knockin model of delta-NLS FUS, which 

results in the cytoplasmic localization of wildtype FUS (Zahirovic & Sendscheid 

2016). When compared to a knockout FUS model, motor neuron loss was 

specifically observed in the delta-NLS mice (Zahirovic & Sendscheid 2016). The 

delta-NLS model also indicated the presence of nuclear FUS loss-of-function 

changes in splicing patterns when compared to FUS knockout mice (Zahirovic & 

Sendscheid 2016). Given the relevance motor neuron degeneration to ALS, these 
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findings support the notion that cytoplasmic FUS contributes to disease in a gain-

of-function manner.  

If cytoplasmic FUS is linked to disease and there is evidence for a gain of 

function mechanism, what might FUS be doing in the cytoplasm? ALS-mutant FUS 

has been shown to incorporate into stress granules, presumably translationally 

repressed RNA-protein complexes, caused by oxidative stress and to alter rates 

of stress granule assembly and disassembly (Baron et al. 2013, Bosco et al. 2010). 

The association of FUS and stress granules has also been observed in models of 

iPSC-derived neurons (Lenzi et al. 2015, Lim et al. 2016). Further, expression of 

mutant FUS in Xenopus retinal ganglion neurons reduced levels of protein 

translation (Murakami et al. 2015) and conditional expression of FUS knock-in 

mutations increase eukaryotic initiation factor 2 alpha (EIF2a) phosphorylation 

(Zahirovic & Sendscheid 2016). Together these data suggest cytoplasmic FUS is 

capable of directly or indirectly affecting RNA regulation and translation. While the 

exact mechanism by which FUS contributes to disease is an area of active 

research, the development of increasingly sophisticated and disease-relevant 

models increases the possibility of increased mechanistic insight.  

 

Summary 

Neurons are highly specialized cells that allow for the transfer of information in the 

body. As with any cell, essential physiological processes are maintained through 

homeostasis, yet such processes are often subject to dysregulation during stress 
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and disease. ALS is a neurodegenerative disease that results in motor neuron 

degeneration and ~5% of familial cases result from mutations in the RNA/DNA 

binding protein, FUS. Strikingly, near half of the ALS mutations identified result in 

cytoplasmic mislocalization of this protein. Moreover, the degree of mislocalization 

inversely correlates with age of disease onset. Supported by findings from cellular 

and animal disease models, these data indicate a role for cytoplasmic FUS in the 

progression of FUS-mediated ALS, although the exact mechanism is unknown.  

FUS is one of multiple RBPs that shuttles between the nucleus and 

cytoplasm and accumulates in the cytoplasm following cellular stimuli and stress. 

Specifically, FUS egress has been observed in response to HOS stress and 

excitotoxicity, the discovery of the latter described herein. Excitotoxicity is a 

neuronal stress caused by prolonged glutamate signaling and is associated with 

ALS. While the redistribution of multiple disease linked RBPs was observed 

following excitotoxic stress, the nuclear egress of FUS was particularly robust. 

Moreover, predominately nuclear ALS-FUS variants were found to similarly exhibit 

excitotoxic egress, thus representing a possible mechanism by which FUS 

accumulates in the cytoplasm during disease. Apart from the distribution of RBPs, 

excitotoxity alters nuclear transport and induces translational repression, all of 

which are features consistent with cell stress. Together, these findings support the 

growing relevance of cell stress to the pathomechanism(s) of ALS. 

 Investigation into the specific response of FUS revealed the FUS egress 

as calcium dependent. Moreover, in response to stress, FUS was found to regulate 
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the dendritic expression of Gria2, a transcript encoding the calcium-regulating 

subunit of the AMPA glutamate receptor. Together, this work demonstrates a novel 

role of FUS in calcium and glutamate signaling pathways. As glutamate-mediated, 

calcium entry in motor neurons occurs primarily through AMPA receptors, these 

observations further support the premise that FUS has a normal function during 

excitotoxic stress and that glutamatergic signaling may be dysregulated in FUS-

mediated ALS.  
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PREFACE TO CHAPTER II: 

Parts of this chapter will appear in:  

Tischbein, M., Baron, D.M., Lin, Y.C., Gall, K., Landers, J.E., Fallini, C., and D.A. 

Bosco. FUS/TLS undergoes calcium-mediated nuclear egress during excitotoxic 

stress and is required for Gria2 mRNA processing. (2018)     

The work and analysis presented in this chapter was performed by Maeve 

Tischbein with the following exceptions:  

Murine primary motor neuron experiments were performed and analyzed by Dr. 

Claudia Fallini. NLS-tdTomato-NES construct preparation and KPT-330 

optimization were performed by Yen-Chen Lin. Puromycin experiments without 

FUS knockdown and fluorescence in situ hybridization studies were performed and 

analyzed by Dr. Desiree Baron. Human induced pluripotent stem cell (iPSC)-

derived motor neurons were differentiated and cultured by Yen-Chen Lin and Dr. 

Jeanne McKeon. Assistance with Western blotting, cloning, lentiviral production as 

well as primary cortical neuron harvesting and culture by Katherine Gall. Mass 

spectrometry samples were run by Dr. John Leszyk (Mass Spectrometry Facility, 

UMMS).  
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CHAPTER II: INVESTIGATING THE RESPONSE OF FUS TO 

EXCITOTOXIC INSULT 

Introduction 

Glutamate is the major excitatory neurotransmitter in the central nervous system. 

Upon release from pre-synaptic terminals, relatively low levels of glutamate 

activate metabotropic glutamate receptors as well as the ionotropic receptors: α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-

aspartate and kainite, for normal neurotransmission. However, excessive 

glutamate exposure overstimulates neurons. This causes a massive influx of 

calcium, which triggers an excitotoxic cascade involving oxidative damage as well 

as mitochondrial and ER dysfunction (Van Den Bosch et al. 2006). Excitotoxicity 

has been implicated in neuronal death and degeneration for various neurological 

conditions, including the fatal neurodegenerative disease amyotrophic lateral 

sclerosis (ALS) (Fogarty 2018, Starr & Sattler 2018, Van Den Bosch et al. 2006). 

Pathological evidence for excitotoxity includes elevated levels of glutamate in 

patient cerebrospinal fluid (Fiszman et al. 2010, Spreux-Varoquaux et al. 2002) as 

well as aberrant processing of the AMPA subunit that controls calcium influx at 

both the transcript (Gria2) and protein (Glutamate Receptor 2; GluR2) level in 

patient tissue and disease models(Hideyama et al. 2012, Kawahara et al. 2004, 

Van Damme et al. 2007). Further, ALS-causing mutations are present in D-amino 

acid oxidase, an enzyme that regulates the degradation of the N-methyl-D-

aspartate co-agonist, D-serine (Mitchell et al. 2010). Riluzole, the first FDA 
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approved treatment for ALS, is thought to reduce glutamate signaling through anti-

excitotoxic effects (Cheah et al. 2010). Despite this wealth of knowledge and 

profound disease relevance, the biological mechanisms underlying the cellular 

response to excitotoxicity have not been fully elucidated. 

RNA-binding proteins (RBPs) have emerged as relevant factors in 

neurodegenerative disease pathogenesis, particularly in the context of ALS and 

the related disorder, frontotemporal dementia (FTD) (Brown & Al-Chalabi 2017). 

RBPs belong to a unique class of biomolecules that undergo nucleocytoplasmic 

shuttling in response to various stimuli, including stress. For instance, the disease-

linked RBPs fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS), 

TAR DNA-binding protein 43 (TPD-43) and heterogeneous nuclear 

ribonucleoprotein A1 (hnRNPA1) all exhibit nuclear egress during hyperosmotic 

stress (Dewey et al. 2011, Sama et al. 2013, van Oordt et al. 2000). The purpose 

of this translocation is unclear, and may represent a functional response to cellular 

stress (Sama et al. 2013, 2014). In support of this notion, cell viability under 

hyperosmotic stress is compromised when FUS expression is reduced (Sama et 

al. 2013). However, cell stress also represents a non-genetic factor that likely 

contributes to neurodegenerative disease pathogenesis (Sama et al. 2014). 

Indeed, chronic stress may contribute to the pathological cytoplasmic 

accumulation of TDP-43 and FUS, prevalent features of ALS and FTD (Deng et al. 

2010, Keller et al. 2012, Kwiatkowski et al. 2009, Neumann et al. 2009a, Vance et 

al. 2009). For example, TDP-43 partitions into the insoluble fraction of cultured 
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cells following oxidative stress or heat shock (Boyd et al. 2014, Xu et al. 2012) and 

disease-linked RBPs have been found to aggregate in vivo following cerebral 

ischemia (Kahl et al. 2018). Intriguingly, the effects of stress on RBP translocation 

appear selective. While ER stress, oxidative stress and heat shock induce the 

cytoplasmic accumulation of TDP-43 and other RBPs (Colombrita et al. 2009, 

McDonald et al. 2011), these stressors fail to elicit a response of FUS (Bosco et 

al. 2010, Sama et al. 2013). Given the physiological relevance of excitotoxicity to 

neurodegenerative disease, an important but unanswered question is whether 

excitotoxic stress elicits a functional and/or pathological response from disease-

associated RBPs.  

Here, we demonstrate that excitotoxic levels of glutamate induce the 

nuclear egress of several ALS- and FTD-linked RBPs, including FUS, TDP-43 and 

hnRNPA1 into the cytoplasm of neurons. The nucleocytoplasmic equilibrium of 

FUS was especially sensitive to excitotoxic stress, as FUS was found to rapidly 

and robustly accumulate within soma and dendrites of cortical and motor neurons 

under stress. Further, a glutamate-induced increase in dendritic Gria2 was 

dependent on FUS, consistent with a role for FUS in glutamatergic signaling during 

the cellular response to excitotoxic stress. Our results also revealed potentially 

adverse consequences of excitotoxicity, including the translocation of ALS-linked 

FUS variants and early signs of nucleocytoplasmic transport dysregulation. This 

study therefore demonstrates that excitotoxicity can trigger neurodegenerative 
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disease-associated pathologies including cytoplasmic RBP accumulation and 

nucleocytoplasmic transport decline.  

 

Results 

Developing a Cellular Model of Excitotoxicity 

To investigate a potential relationship between excitotoxicity and 

neurodegenerative disease-linked RBPs, I first established a tractable, in vitro 

model of excitotoxicity.  Day in vitro (DIV) 14-16 primary cortical neurons were bath 

treated with 10µM glutamate, an excitotoxic (Schubert & Piasecki 2001) and 

physiological amount of the neurotransmitter (Fiszman et al. 2010), for 10 minutes 

followed by a 30-minute washout period (Fig. II-1A). Unless indicated, ‘neuron’ 

hereon refers to primary cortical neurons and Gluexcito to 10µM glutamate. Neurons 

and dendrites were identified using the marker, microtubule-associated protein 2 

(MAP2). Following treatment with Gluexcito, cytoskeletal arrangements were 

observed using this marker; MAP2 staining was increased in neuronal soma as 

well as highlighted dendritic fragmentation (Fig. II-1B). That neuron morphology is 

altered at 30 minutes (Fig. II-1A) is potentially indicative of a stressed cell state 

(Chen et al. 2011, Murphy et al. 2008), consistent with excitotoxity. 

Given the toxicity of Gluexcito on neurons (Schubert & Piasecki 2001), cell 

death at 30 minutes was assessed using the Lactate Dehydrogenase (LDH) 

cytotoxicity assay. This assay detects the activity of cytoplasmic LDH released into 

the media from dead or dying cells. In contrast to cells treated with lysis buffer,  
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Figure II-1. Glutamate induces excitotoxicity in primary cortical neurons. (A) 
Day in vitro (DIV) 14-16 primary cortical neurons were bath treated with 10µM 
glutamate (Gluexcito) for 10 minutes, after which the glutamate-containing media 
was washed out and replaced with cultured neuronal media for an additional 30 
minutes. (B) Following excitotoxic insult, cytoskeletal rearrangements were 
detected by confocal analysis of immunofluorescence staining with the neuronal 
marker, MAP2. Scale bar = 10µm. (C) Cytotoxicity induced by Gluexcito was 
assessed after the wash-out period with the LDH assay. In contrast to the positive 
control (neurons treated with lysis buffer; lysed neurons), membrane 
permeabilization was not detected for neurons exposed to Gluexcito. Neurons 
cultured in the absence of Gluexcito (Glu–) served as a negative control. Wells 
containing only primary conditioned media (PCM) served as a background control. 
Results reflect three biological replicates analyzed with a one-way ANOVA and 
Tukey’s post-hoc test (****p<0.0001, n.s. = non-significant). (D,E) Quantification of 
MAP2-postive neurons shows no change in relative neuron number at 30’. (F) 
However, quantification at 24h relative to 30’ shows a significant reduction in 
neuron number relative to Glu– following treatment with 10 but not 1µM glutamate 
(One-way ANOVA and Tukey’s post-hoc test, ***p<0.001, n.s. = non-significant, n 
= 3 biological replicates). Error bars = SEM. 
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there was no cell death for neuron cultures treated with Gluexcito (Fig. II-1C). 

Similarly, there was no difference in neuron number following exposure to 

excitotoxic stimuli at 30 minutes (Fig. II-1D,E). However, Gluexcito-treated neurons 

do undergo eventual cell death (Fig. II-1D,F), as expected (Schubert & Piasecki 

2001). This effect was not observed for 1µM glutamate, a sub-toxic concentration 

of glutamate (Fig. II-1D-F). Together these data provide evidence for the 

inducement of excitotoxicity in cortical neurons by Gluexcito (Fig. II-1). The response 

of neurons to glutamate is further characterized and supported herein. 

 
Response of RNA Binding Proteins to Excitotoxicity 

Upon establishing a model of excitotoxicity, we next examined whether the 

cytoplasmic:nuclear (C:N) equilibrium of RBPs were affected by excitotoxic stress. 

We examined a panel of RBPs including FUS, TDP-43, hnRNPA1 and TAF15, all 

of which have been linked to ALS (Brown & Al-Chalabi 2017). In addition, FUS, 

TDP-43 and TAF15 are associated with the related disorder, FTD (Ito et al. 2017). 

Immunofluorescence microscopy was used to assess the effect of Gluexcito on the 

C:N ratio of the endogenous RBPs (Fig. II-2A-H). Strikingly, the C:N of FUS was 

significantly increased ~15 fold from 0.04±0.05 to 0.6±0.3 in response to Gluexcito 

(Fig. II-2A,E). This increase is likely due to a rapid egress of FUS from the nucleus 

into the cytoplasm as opposed to changes in FUS expression levels, as a western 

analysis revealed similar levels of FUS protein in the presence and absence of 

stress (Fig. II-2I,J). Gluexcito likewise induced a significant increase in the C:N ratio  
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Figure II-2. Nuclear RBPs translocate to the cytoplasm following excitotoxic 
stress. (A) DIV 14-16 primary cortical neurons were bath treated with 10µM 
glutamate (Gluexcito) for 10 minutes, after which the glutamate-containing media 
was ‘washed out’ and replaced with cultured neuronal media for an additional 30 
minutes. (B-E) Immunofluorescence and confocal microscopy revealed the 
subcellular localization of FUS, TDP-43, hnRNPA1 and TAF15 (green) with or 
without Gluexcito. A 16-color intensity map (Int) of endogenous RBP staining (green) 
further demonstrates RBP localization. Neurons and dendrites were identified with 
anti-MAP2 staining (red), and nuclei with DAPI (blue). Scale bars = 10µm. (F-I) A 
significant egress in the cytoplasmic to nuclear ratio (C:N) of FUS (F), TDP-43 (G) 
and hnRNPA1 (H), but not TAF15 (I) was observed following Gluexcito treatment 
(Student’s T-test; **p<0.01, *p<0.05, n.s. = non-significant; n = 3-4 biological 
replicates). Experimental means were calculated from the average C:N ratio 
across the individual biological replicates. Black squares represent the C:N ratio 
of individual cells. Error bars correspond to SEM.  
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Figure II-2 continued. (I) Western analysis of cortical neurons demonstrates that 
FUS, TAF15, hnRNPA1 and TDP-43 protein levels do not change in response to 
Gluexcito. (J-M) Observations from (I) were confirmed by densitometry. For 
quantification, RBP levels were first normalized to the loading standard, GAPDH, 
and then to the control condition, Glu– (Student’s t-test, n.s. = non-significant, n=3 
biological replicates). Error bars represent SEM.  
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of TDP-43 (Fig. II-2B,F) and hnRNPA1 (Fig. II-2C,G), also without accompanying 

changes in total proteins levels (Fig. II-2I,K,L). Conversely, this stress did not 

significantly alter the C:N ratio (Fig. II-2D,H) or total protein levels (Fig. II-2I,M) of 

TAF15.  

In light of the robust response of FUS to Gluexcito, we focused our attention 

on the properties of FUS translocation in more detail. First, the translocation of 

endogenous FUS to Gluexcito was assessed using a panel of different anti-FUS 

antibodies, all of which confirmed FUS translocation under excitotoxic stress (Fig. 

II-3A,B). Moreover, FUS egress was not observed in astrocytes (a non-neuronal 

cell type present in the CNS; Fig. I-1), which suggests that glutamate-induced FUS 

translocation is specific to neurons (Fig. II-3C). We then examined the relationship 

between FUS redistribution and glutamate concentration. With 10µM glutamate, 

the vast majority (91.3±11.5%) of neurons exhibited FUS translocation (Fig. II-

3D,E) whereas with £1µM, egress was observed for <5% of neurons and reveals 

a dependence of FUS translocation on glutamate concentration (Fig. II-3E). Within 

the time course of our experiment (Fig. II-1A) a significant accumulation of 

endogenous FUS was also detected throughout MAP2-positive dendrites (Fig. II-

3F,G). Increased FUS staining was also detected in ankyrin-G-positive axon initial 

segments following excitotoxic insult (Fig II-3H, not quantified). Together these 

data demonstrate the rapid redistribution of FUS throughout the cell in response 

to Gluexcito. 
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Figure II-3. Endogenous FUS exhibits a rapid and robust response to 

excitotoxicity. (A) Anti-FUS antibody epitopes mapped to the domain structure of 
human FUS (QGSY = glycine-serine-tyrosine rich region, GLY = glycine-rich 
region, RRM = RNA recognition motif, RGG = arginine-glycine-glycine-rich region, 
ZF = zinc-finger domain and NLS = nuclear localization sequence). (B) 
Immunofluorescence staining of endogenous FUS (green) using antibodies with 
epitopes described in (A) consistently demonstrates FUS translocation following 
treatment with Gluexcito. (C) FUS translocation (green) was not observed in glial 
fibrillary acidic protein (GFAP)-positive astrocytes (red), n=3 biological replicates. 
Nuclei stained with DAPI (blue). Scale bars = 20µm.  
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Figure II-3 continued. (D,E) Excitotoxic FUS was detected by anti-FUS (green) in 
>90% MAP2-postive PCNs (red). Nuclei stained with DAPI (blue). Scale bar = 
40µm. Quantification of (D) revealed a dependence of FUS translocation on 
glutamate dose in MAP2-positive neurons (One-way ANOVA and Tukey’s post-
hoc test; ***p<0.001, *p<0.05; n=3 biological replicates). Error bars represent 
SEM.  (F) Increased dendritic FUS staining (green) was observed by confocal 
microscopy following excitotoxic stress. Dendrites were indicated by MAP2 (red). 
Scale bar = 10µm.  (G) Quantification of (E). Black squares represent the relative 
intensity of dendritic FUS staining per cell. Means represent the average of four 
biological replicates normalized to the control (Glu–) (Student’s T-test; * = p<0.05). 
Error bars represent SEM. (H) Excitotoxic insult increased FUS staining intensity 
(white) within initial axon segments as detected using the maker, ankyrin-G (ANK-
G, red; n=2 biological replicates). White lines denote the start of the axon initial 
segment. Scale bar = 10µm.   
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Excitotoxic Stress Disrupts Nucleocytoplasmic Transport 

To understand the redistribution of RBPs to excitotoxity, I investigated the 

mechanism(s) underlying endogenous FUS egress in response to Gluexcito. I began 

by assessing general nuclear envelope integrity. Immunofluorescence of anti-

Lamin A/C staining revealed an intact nuclear envelope in neurons exposed to 

Gluexcito (Fig. II-4A). Although the nuclear lamina appeared thickened and the size 

of nuclei smaller in stressed neurons, no gross disruptions to the nuclear 

membrane were observed (Fig. II-4A). Further, nucleocytoplasmic partitioning 

also appears intact as the localization of nuclear TAF15 (Fig. II-2D,H) and 

cytoplasmic fragile X mental retardation protein (FMRP; Fig. II-4B) were 

respectively maintained under conditions of Gluexcito. As neurons are viable (Fig. 

II-1C-F) and apparent nuclear envelope integrity preserved at 30 minutes (Fig. II-

4A,B), these data suggest that excitotoxic FUS egress could be a biologically 

relevant response that warrants further investigation. 

We next examined the contribution of nucleocytoplasmic transport factors 

to FUS egress. FUS contains two predicted chromosome region maintenance 1 

(CRM1)-dependent nuclear export sequences (NES) within the RNA-recognition 

motif (RRM) (Ederle et al. 2018). CRM1, also known as exportin-1 (XPOI), is a 

major nuclear protein export factor, although whether this receptor controls nuclear 

export of FUS is controversial (Ederle et al. 2018, Kino et al. 2011). To determine 

if Gluexcito–induced FUS egress is CRM1-dependent, we pre-treated neurons with 

the CRM-1 inhibitor, KPT-330, 48 hours prior to exposure to Gluexcito (Grima et al. 
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2017). The CRM-1 dependent NLS-tdTomato-NES shuttling reporter was used as 

a positive control (Hatch et al. 2013). As expected, NLS-tdTomato-NES was 

observed in both the nucleus and cytoplasm under basal conditions, whereas the 

localization of NLS-tdTomato-NES was significantly restricted to the nucleus in the 

presence of KPT-330 (Fig. II-4C,D). In contrast, KPT-330 had no effect on the 

nuclear egress of FUS in response to Gluexcito (Fig. II-4C,E). Surprisingly, KPT-330 

also failed to fully restrict NLS-tdTomato-NES to the nucleus under conditions of 

Gluexcito (Fig. II-4C,D). Although there was a significant decrease in the percentage 

of cells with cytoplasmic NLS-tdTomato-NES in the presence of both KPT-330 and 

Gluexcito (60.1±8.0%) compared to Gluexcito alone (98.3±2.6, p=<0.0001), these 

results demonstrate that inhibition of CRM1-mediated export is compromised 

following excitotoxic insult (Fig. II-4D). KPT exerted a partial effect over the 

localization of our shuttling reporter (Fig. II-4D), indicating there might be a modest 

rescue of nucleocytoplasmic transport and possible downstream effects of 

excitotoxicity, such as cell death. To test if KPT-330 could improve neuron survival, 

I applied propidium iodide (PI), a chromatin stain that is impermeant to live cells, 

and monitored cell viability following treatment with Gluexcito. The addition of KPT 

to neurons did not improve cell survival following acute excitotoxic treatment (Fig. 

II-4G). Of note, this assay further confirmed that excitotoxic stress has no effect on 

neuron survival at 30 minutes (Fig II-4G) relative to unstressed cells and is 

consistent with previous results (Fig II-1C-F). 
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To gain further insight into this nuclear transport phenomenon, we assessed 

the localization of endogenous CRM1 by immunofluorescence. While CRM1 

predominately localized to the nucleus under basal conditions, we observed a 

striking and significant increase in cytoplasmic CRM1 following Gluexcito treatment 

(Fig. II-4H,I). This finding prompted us to examine another critical 

nucleocytoplasmic transport factor, Ras-related nuclear protein (Ran). Ran is a 

GTPase that shuttles between the nucleus and cytoplasm and facilitates both 

nuclear import and export (Kim & Taylor 2017). Indeed, Gluexcito also induced a 

significant change in Ran localization from the nucleus to the cytoplasm (Fig. 

4J,K). The dramatic redistribution of critical transport factors under Gluexcito implies 

a dysregulation of nucleocytoplasmic transport under stress and may explain the 

attenuated effects of KPT-330 on CRM1 export and survival under excitotoxic 

conditions. That KPT-330 had no effect on FUS localization (Fig. 4C) suggests 

that the nuclear egress of FUS caused by excitotoxic stress occurs through a 

CRM1-independent pathway.  
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Figure II-4. Nucleocytoplasmic transport is disrupted by Gluexcito. (A) 
Immunofluorescence staining and confocal microscopy of Lamin A/C (red), 
revealed a thickened yet morphologically intact nuclear envelope in neurons 
exhibiting FUS translocation (green) after Gluexcito exposure at 30’ (n=3 biological 
replicates). Scale bar = 25µm. (B) Confocal analysis demonstrates that the 
cytoplasmic localization of FMRP (green) is retained following excitotoxic insult in 
neurons (red; n=2 biological replicates). (C-E) Neurons expressing the shuttling 
reporter, NLS-tdTomato-NES, were treated with or without 500 nM of the CRM1 
inhibitor, KPT-330 (KPT), prior to Gluexcito exposure. The percentage of MAP2-
positive neurons (C; red) expressing cytoplasmic NLS-tdTomato-NES (C; white) 
or FUS (C; green) was quantified for three biological experiments (D and E, 
respectively). KPT effectively prevents NLS-tdTomato-NES from localizing to the 
cytoplasm in the absence of stress (Glu–; two-way ANOVA and Tukey’s post-hoc 
test; ****p<0.0001), as expected. Conversely, KPT fails to restrict NLS-tdTomato-
NES and FUS localization to the nucleus upon excitotoxic insult (in D and E, 
compare Glu– to Gluexcito in the presence of KPT, two-way ANOVA and Tukey’s 
post-hoc test; ****p<0.0001, n.s. = non-significant). Error bars represent SEM. 
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Figure II-4 continued. (F,G) Neuron cultures treated with 500nM KPT were 
assessed for viability by propidium iodide staining (PI) at 0’, 30’, 2h and 4 hours 
(h) following excitotoxic insult. The fraction of FUS-positive cells exhibiting PI 
staining indicates that KPT does not improve neuron survival (no statistical 
analysis; n=1 biological replicate). (H-K) The localization of nuclear transport 
factors CRM1 (H, I) and RAN (J, K) were significantly altered under conditions of 
Gluexcito in MAP2-positive neurons (red). (H) CRM1 and (J) RAN (green) were 
depleted from the nucleus (DAPI; blue) and exhibited a perinuclear accumulation. 
The percentage of neurons with CRM1 or RAN mislocalization were quantified in I 
and K, respectively (Student’s T-test; ****p<0.0001, **p<0.01; n = 3 biological 
replicates). Error bars represent SEM. Scale bars for all images = 10µm. 
 

 

 

 

 

 

 



 52 

Excitotoxicity Induces Translation Repression Independent of FUS and EIF2a-

Phosphorylation 

Translational repression and stress granule formation are common cellular 

responses to stress (Holcik & Sonenberg 2005, Kedersha et al. 2013). Given that 

expression of endogenous FUS is required for cellular homeostasis under basal 

and stress conditions, and that cytoplasmic forms of FUS have been linked to both 

translational regulation (Murakami et al. 2015, Yasuda et al. 2013) and stress 

granule formation (Bosco et al. 2010, Dormann et al. 2010, Gal et al. 2011, Sama 

et al. 2013), we investigated whether FUS egress during Gluexcito affected one or 

both of these processes. Protein translation was assessed by pulse labeling 

neurons with puromycin, a small molecule that incorporates into elongating 

peptides (Schmidt et al. 2009) (Fig. II-5A). Immunofluorescence detection of 

puromycin revealed a near-perfect correlation between neurons exhibiting FUS 

translocation and translational repression; all neurons with translocated FUS were 

puromycin-negative, and vice versa (Fig. II-5B). This correlation strengthens the 

notion that neurons with translocated FUS are under a stressed state (Sama et al. 

2013). Further, the degree of translational repression induced by Gluexcito was 

comparable to treatment with the translational inhibitor cycloheximide (Fig. II-5A), 

as assessed by both immunofluorescence (Fig. II-5B) and western blot (Fig. II-

5C,D) analyses. We note that translational inhibition with cycloheximide is not 

sufficient to cause FUS translocation (Fig. II-5B) (Zinszner et al. 1994). 

Surprisingly, Gluexcito-induced translational repression occurred independently of 
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eukaryotic translation initiation factor 2 alpha (EIF2a)-phosphorylation, a key event 

that initiates translational repression as part of the integrated stress response 

pathway, which is generally induced by various types of cellular stress including 

sodium arsenite (Fig. II-5E,F) (Holcik & Sonenberg 2005). Gluexcito was also 

dissimilar to sodium arsenite-induced stress in that Ras GTPase-activating 

protein-binding protein 1 (G3BP1)-positive stress granules formed in response to 

arsenite stress, whereas these granules failed to assemble in response to Gluexcito 

(Fig. II-5G).  
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Figure II-5. Translational repression in neurons exposed to Gluexcito occurs 
independent EIF2α-phosphorylation. (A) Cellular translation in neurons was 
monitored by pulse-treatment and incorporation of the small molecule, puromycin, 
into nascent peptides during excitotoxic and/or cycloheximide treatment (CHX; 
inhibitor of protein translation). (B) The localization of FUS (green) and 
incorporated puromycin (magenta) in MAP2-postive neurons (red) was assessed 
by immunofluorescence. Relative to Glu–, protein translation was reduced upon 
application of CHX or Gluexcito, however CHX did not induce FUS egress from 
nuclei (DAPI; blue). White arrowhead marks a neuron with predominately nuclear 
FUS expression and high puromycin staining under Gluexcito, whereas most 
neurons under this condition have cytoplasmic FUS expression and reduced 
puromycin staining. White boxes denote higher magnification details (right) to 
highlight neurons with representative levels of translation, as observed by anti-
puromycin staining. Scale bars = 10µm. 
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Figure II-5 continued. (C, D) Western and densitometry analysis of puromycin 
incorporation confirms a significant reduction in translation following CHX or 
Gluexcito treatment relative to Glu– (One-Way ANOVA and Tukey’s post-hoc test, 
****p<0.0001, n = 3 biological replicates). Puromycin signal was normalized to total 
protein levels. (E,F) Western and densitometry analysis demonstrate a significant 
increase in EIF2a phosphorylation (EIF2a-P) following sodium arsenite treatment 
(NaAsO2) relative to Glu– but no significant change was observed for Gluexcito. 
Levels of EIF2a-P were normalized to total EIF2a protein and the loading control, 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH; one-way ANOVA and 
Tukey’s post-hoc test, **p<0.01, n = 3 biological replicates). Scale bars = 10µm. 
Error bars represent SEM. (G) Immunofluorescence staining of the stress granule 
marker, G3BP1 (red), shows neurons treated sodium arsenite (NaAsO2) form 
stress granules, unlike Gluexcito or Glu– conditions where G3BP1 signal remains 
diffuse (n=3 biological replicates). Scale bar = 20µm. 
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Given the strong correlation between FUS egress and translational 

repression (Fig. II-5A and (Murakami et al. 2015, Yasuda et al. 2013), I examined 

if FUS contributes to the attenuation of global translation.  Lentivirus expressing 

shRNA against mouse FUS (shFUS1, shFUS2) as well as GFP reporter were 

expressed in PCNs to reduce FUS levels (Fig. II-6A-C). A scrambled control 

(shSC) shRNA was used as a negative control (Fig. II-6A-C).  Puromycin levels 

either in the presence or absence of Gluexcito were unaffected by knockdown of 

endogenous FUS relative to shSC (Fig. II-6D-G). Thus, while FUS translocation 

strongly correlates with EIF2a-independent translational repression, FUS 

expression is not required for translational repression. 
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Figure II-6. Reduced protein translation following excitotoxic stress is 
independent of stress granule formation and FUS levels. (A) Neurons were 
transduced with shRNAs against mouse FUS (shFUS1, shFUS1) to induce FUS 
knockdown or a scrambled control (shSC). Transduced cells were identified by 
expression of a GFP reporter (white). Immunofluorescence staining of FUS (green) 
reveals FUS knockdown in transduced PCNs. Neurons were identified using a 
MAP2 antibody (red) and nuclei with DAPI (blue). Scale bar = 50µm. (B, C) 
Western and densitometry analysis confirms FUS knockdown relative to non-
transduced (NT) and shSC conditions. A modest increase in FUS levels was 
observed upon expression of shSC relative the loading standard, GAPDH (GAP; 
n=3; one-Way ANOVA and Tukey’s Post Hoc test, ****p<0.0001, **p<0.01; n=3 
biological replicates).  (D, E) Neurons were pulse-chase labelled with puromycin 
(Puro; magenta) to assess nascent protein translation in transduced cells (as in 
Fig. II-5B-D). Puromycin intensity normalized to non-transduced (NT) control. 
Scale bar = 10µm. (F, G) Quantification of puromycin (Puro) staining from (D,E) 
reveals no statistical difference in the somatic levels of translation following FUS 
knockdown (shFUS1, shFUS2) relative to shSC (One-way ANOVA and Dunnett’s 
post-hoc test, n.s. = not significant, n = 3 biological replicates). Error bars = SEM. 
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Excitotoxic FUS Egress is Calcium Mediated  

Knowing that calcium is a critical component of excitotoxicity (Bano et al. 2010, 

Dong et al. 2009, Vaarmann et al. 2013), we sought to determine whether this 

signaling molecule is necessary and/or sufficient for the response of FUS to 

Gluexcito. The calcium chelator, ethylene glycol tetraacetic acid (EGTA), was added 

to the cortical neuron media during both the addition of Gluexcito and the washout 

period (Fig. II-1A). Remarkably, the presence of EGTA completely prevented 

excitotoxic FUS egress (Fig. II-7A,B). Further, EGTA prevented excitotoxic neuron 

death, thus confirming the importance of calcium in mediating excitotoxic stress 

(Fig. II-7C).  

To test if calcium is sufficient to induce FUS egress I added Ionomycin, an 

ionophore that increases intracellular calcium, to the neuronal media for one hour. 

Following treatment, FUS translocation was observed in the vast majority of 

neurons (89.0±5.6%; Fig. II-7D,E). In the context of glutamate-induced 

excitotoxity, we next investigated upstream mechanisms capable of inducing 

calcium influx. Depolarizing stimuli, such as potassium, is capable of activating 

both voltage and ligand gated ion channels. Treatment of neuronal cultures with 

potassium chloride (KCl) for 10 minutes followed by a 30-minute washout period 

also induced FUS egress in 76.1±6.1% of cells (Fig. II-7F,G). As the glutamate 

receptors, NMDA and AMPA, are among the primary receptors by which calcium 

enters the cell following glutamate stimulation, we next tested their involvement in 
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FUS egress. Strikingly, while the AMPA-inhibitor (NBQX) had no effect on FUS 

egress, NMDA-inhibition (APV) prevented translocation (Fig. II-7H,I). 

In addition to excitotoxicity, we previously identified hyperosmolar stress as 

a trigger of nuclear FUS egress (Sama et al. 2013) and wondered whether calcium 

also mediates this response. In contrast to Gluexcito, there was no effect of EGTA 

on FUS egress in neurons treated with hyperosmotic levels of sorbitol (Fig. II-

7J,K). To further assess this distinct relationship between FUS egress caused by 

Gluexcito and hyperosmolar stress, we measured the osmolality of media containing 

glutamate or sorbitol using an osmometer. Media containing 0.4M sorbitol (a dose 

capable of inducing FUS egress; Fig. II-7J,K) increased media osmolarity by 

~130%, while 0.2mM Glutamate (a concentration 20x higher than Gluexcito) caused 

only a 2.5% increase in osmolarity relative to the base media alone. Together 

these data imply that the mechanisms triggering FUS during excitotoxic and 

hyperosmotic stress are distinct.  
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Figure II-7. Calcium is necessary and sufficient for FUS egress in primary 

cortical neurons. (A) Reducing levels of extracellular calcium with 2mM EGTA 
attenuates excitotoxic FUS egress (green) in MAP2-postive neurons (red) 
following excitotoxic insult. Nuclei stained with DAPI (blue). (B) Quantification of 
confocal microscopy in (A) confirms the effect of EGTA treatment (Two-way 
ANOVA and Tukey’s post-hoc test; ****p<0.0001; n=4 biological replicates). (C) 
EGTA applied as in (A,B) further prevents neuron death. (D) Application of 10µM 
Ionomycin for one hour is sufficient to induce FUS egress relative to the DMSO 
control. (E) Quantification of (D); Ionomycin significantly increases the number of 
neurons exhibiting FUS translocation (Student’s T-test; ****p<0.0001; n=3 
biological replicates). 
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Figure II-7 continued. (F,G) Depolarization of neuronal membranes with 100mM 
KCl for 10 minutes followed by a 30-minute washout also induces FUS egress 
(Student’s T-test; ****p<0.0001; n=3 biological replicates). (G,H) PCNs were 
treated with NMDA (APV) and AMPA (NBQX) inhibitors 20 minutes prior to as well 
as during Gluexcito treatment and the washout period. Relative to Gluexcito alone (No 
Drug), FUS egress is unaltered by NBQX. APV however significantly reduced the 
number of PCNs exhibiting egress to levels comparable to Glu– (One-way ANOVA 
and Tukey’s post-hoc test; ****p<0.0001, n.s. = non-significant; n=3 biological 
replicates). (J,K) FUS translocation induced by hyperosmolar stress (HOS) was 
not significantly reduced by EGTA treatment (two-way ANOVA and Tukey’s post-
hoc test; ****p<0.0001, n.s. = non-significant; n=3 biological replicates). For all 
panels, error bars represent SEM and scale bars = 10µm. 
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Assessment of Protein Modifications and Domains in FUS Egress  

Calcium-signaling pathways often involve phosphorylation events to rapidly 

transmit signals throughout the cell (Berridge et al. 2003). Moreover, multiple 

studies demonstrate that FUS localization is influenced by posttranslational 

modifications, including phosphorylation (Darovic et al. 2015, Deng et al. 2014b, 

Klint et al. 2004, Rhoads et al. 2018b). To determine if excitotoxic FUS egress 

involved phosphorylation, we evaluated endogenous FUS from neurons using 

liquid chromatography tandem mass spectrometry (LC-MS/MS). Following the 

washout period (Fig II-1A), lysates were collected from stressed and unstressed 

neurons for the immunoprecipitation of FUS (Fig. II-8A). Immunoprecipitated FUS 

protein was visualized by silver stain (Fig. II-8B) and isolated for downstream 

analysis by LC-MS/MS. Within a biological replicate, the intensity of FUS peptides 

detected (MS1) prior to fragmentation (MS2) appeared similar in intensity (Fig. II-

8C). Although the sequence of individual peptides is not revealed by MS1, these 

data indicate that FUS is detected to a similar degree in the presence and absence 

of stress by this analysis. Upon normalizing the intensity of FUS phosphopeptides 

to total FUS peptides, there was no significant change between Glu– and Gluexcito  

(Fig. II-8D), suggesting no difference in the total amount of FUS phosphorylation 

at this experimental timepoint. This observation is supported by western and silver 

stain analyses in which no molecular weight shift for FUS was detected following 

Gluexcito (Fig. II8A,B).  
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Figure II-8. Differential phosphorylation of FUS was not detected following 
Gluexcito. (A) Western blotting confirms the immunoprecipitation of endogenous 
FUS from cortical neurons (FT = flow-though) using the Genscript antibody (Fig. 
II-3). (B) Eluates from (A) were visualized by silver stain; FUS bands were removed 
and digested with chymotrypsin for analysis by LC-MS/MS. For (A,B), black 
triangles indicate FUS protein bands and white triangles denote heavy and light 
chain antibody bands (AB = antibody bands). (C) Intensity of phospho-modified 
and unmodified FUS precursor ions detected by the MS1 scan for each condition 
and replicate. (D) Normalization of the intensity of FUS phosphopeptides to total 
FUS peptides from (C) revealed no change in relative intensity (Student’s T-test, 
n.s. = non-significant, n=2 biological replicates). Error bars = SEM. (E) 
Visualization of the murine FUS sequence and coverage by LC-MS/MS 
(yellow/orange residues) from n=2 biological replicates (Glu–: n=1 56%, n=2 59% 
coverage and Gluexcito: n=1 77, n=2 78% coverage). A subset of FUS peptides 
(orange) contained a phosphorylated residue. Although modifications could not be 
assigned to an exact AA, all but one identified peptide contained 1 or more 
previously reported phosphorylation event(s) (blue) (Rhoads et al. 2018b). 
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Although we did not detect differences in the total level of phosphorylation, 

to determine if individual FUS residues are differentially modified by stress we next 

assessed the amino acid (AA) sequences of both modified and unmodified FUS 

peptides generated by MS2 (Table II-1). Because of the intrinsically high number 

of potential phosphorylatable residues in FUS, each identified peptide contained 

>1 residue able to undergo phosphorylation (Table II-1) and thus, the exact AA 

modified could not be assigned at this time.  

In all but one of the phosphopeptides detected (AA 391-419) we noted the 

presence of residues previously identified as sites of FUS phosphorylation 

(Rhoads et al. 2018b) (Fig. II-8E, blue residues). Thus, our observations are 

consistent with previous reports of FUS phosphorylation. Interestingly, no 

previously reported phosphorylation events were found within AA 391-419 

(Rhoads et al. 2018). Thus, our data suggest the presence of a murine specific or 

potentially novel modification (Fig. II-8E, Table II-1). Of note, AA 26-38 contained 

a phosphorylation event only detected upon Gluexcito. However, this peptide was 

only present in one of two Gluexcito biological replicates and was therefore not a 

reproducible event (Table II-1).  

Although AA 26-38 may represent a potential possibility, based upon a 

binary presence alone (i.e., present versus not present), we were unable to detect 

the existence of unique FUS phosphorylation events following Gluexcito for any of 

the peptides in this analysis (Table II-1). Differences in the relative intensity of 

individual peptide species between stress and no stress conditions  
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Table II-1. FUS peptides identified by LC-MS/MS. Peptides obtained from the 
MS2 scan and their corresponding amino acid (AA) sequence within mouse FUS. 
The fraction of phospho-modified over total FUS peptides are detailed for each 
biological replicate as well as combined (sum). N/A represents peptides not 
observed within the given mass spectrometry experiment. While not quantitative, 
these data indicate that no single phosphopeptide was consistently differential 
between Glu– and Gluexcito conditions. 
 

  

Fraction of phospho-modified/unmodified 

FUS peptides  

  Glu– Gluexcito 

FUS AA 

sequence  FUS Peptide Sequence from MS2 N=1 N=2 Sum  N=1  N=2   Sum   

2-14 (M)ASNDYTQQATQSY(G) N/A 2/6 2/6 N/A 1/3 1/3 

26-38 (Y)SQQSSQPYGQQSY(S) N/A 0/2 0/2 1/1 0/1 1/2 

38-55 (Y)SGYGQSADTSGYGQSSY(G) 1/6 0/7 1/14 3/13 0/8 3/21 

93-114 (Y)GQQSSYPGYGQQPAPSSTSGSY(G) 0/5 1/6 1/11 1/7 1/7 2/14 

145-157 (Y)GQQQSSYNPPQGY(G) 2/11 1/8 3/19 1/11 0/6 1/17 

259-281 (F)GGPRDQGSRHDSEQDNSDNNtIF(V) 1/3 7/82 8/85 0/3 5/29 5/34 

282-298 (F)VQGLGENVTIESVADYF(K) 3/6 1/27 4/33 1/1 2/24 3/25 

391-419 (Y)GGGGSGGGGRGGFPSGGGGGGGQQRAGDW(K) 4/11 0/34 4/45 3/13 0/19 3/32 
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may still exist. However, to draw confident conclusions, phosphorylation events 

would need to be reproducibly detected in multiple replicates and was thus not 

quantified. Finally, our coverage FUS coverage was not complete (Fig. II-8E) and 

it is possible that an undetected and/or differential phosphorylation event may exist 

in these unanalyzed regions, such as the NLS (Darovic et al. 2015). 

The previous mass spectrometry experiment revealed the experimental 

complexity behind identifying a single type of potential translation modification in a 

protein as large as FUS. Thus, to refine our knowledge as to which regions of FUS 

might ‘sense’ excitotoxic stress, we next evaluated the contribution of individual 

domains to FUS egress. FLAG-HA-tagged FUS domain deletion constructs were 

generated and their basal localization under unstressed conditions validated HEK 

cells (Fig. II-9A,B). In the absence of stress, ∆RGG2-FUS and ∆RGG1/∆RGG2-

FUS localized to the cytoplasm (Fig. II-9B), possibly as RGG2 methylation can 

influence the function of the FUS NLS (Dormann et al. 2012). Moreover, pan-FUS 

staining (capturing both endogenous as well as exogenous FUS) suggests that 

∆RGG2-FUS and ∆RGG1/∆RGG2-FUS also disrupt the localization of 

endogenous FUS (Fig. II-9B). For this reason, ∆RGG2-FUS and ∆RGG1/∆RGG2-

FUS were not used for further analysis.  

The remaining constructs, (full-length, ∆QGSY/partial GLY, ∆GLY, ∆RRM 

and ∆RRM-FUS) were transiently transfected into cortical neurons to evaluate FUS 

localization following excitotoxic insult. Under unstressed conditions, all  



 67 

  

Figure II-9. Contribution of FUS domains to excitotoxic FUS egress. (A) 
FLAG-HA-FUS domain deletion constructs (FHA = FLAG-HA, QGSY = glycine-
serine-tyrosine rich region, GLY = glycine-rich region, RRM = RNA recognition 
motif, RGG = arginine-glycine-glycine-rich region, ZF = zinc-finger domain and 
NLS = nuclear localization sequence). (B) Constructs were expressed in HEK cells 
and anti-HA staining (red) demonstrates all FLAG-HA-tagged constructs (except 
∆RGG2 and ∆RGG1 & ∆RGG2) exhibited a nuclear localized. Pan-FUS staining 
(green) indirectly indicates that ∆RGG2 and ∆RGG1/∆RGG2 further alter the 
localization of endogenous FUS (n=1 biological replicate).  
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Figure II-9 continued. (C) Nuclear-localizing FLAG-HA-FUS constructs from (B) 
were expressed in cortical neurons and exposed to Gluexcito (n=2 biological 
replicates for all constructs except ∆RRM which was n=1). Following treatment 
with Gluexcito, HA staining (green) revealed that FUS egress is not inhibited by the 
deletion of any of the domains tested. To capture the variability of HA-FUS egress 
following excitotoxic egress, four representative neurons for each construct are 
shown here. Scale bars = 10µm. 
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constructs localized to the nucleus under unstressed conditions, as expected (Fig. 

II-9B,C). In the presence of Gluexcito however, no single deletion construct 

appeared to prohibit or impede FUS egress relative to full-length FUS (not 

quantified; Fig. II-9C). These data suggest that as individual domains, these 

regions of FUS do not contribute to FUS egress although it is possible that multiple 

domains may be required for FUS translocation (e.g. as FUS contains two RGG1 

domains important for RNA interactions, removal of only one domain may not be 

sufficient to prevent egress).  Further, only a subset of FUS domains were tested 

here. We were unable able to evaluate ∆RGG2-FUS and ∆RGG1/∆RGG2-FUS 

due to their intrinsic cytoplasmic localization (Fig. II-9B). Further, we did not 

evaluate the zinc finger domain (Fig. II-9A) or NLS, the latter based on the 

rationale that it would also have resulted in the cytoplasmic localization of FUS 

under unstressed conditions.   

 

Regulation of Gria2 by FUS Following Excitotoxic Insult  

Based upon our puromycin studies, FUS expression does not affect global 

translation in neurons (Fig. II-6). This analysis however may not detect subtle 

differences in the translation of specific transcripts, especially those targeted to 

dendrites for local translation (Holt & Schuman 2013).  RBPs, such as FUS, play 

crucial roles in mRNA handling, including splicing, transport, stability and local 

translation (Sama et al. 2014). With this in mind, I investigated whether an mRNA 

processing role for FUS is relevant under conditions of Gluexcito. To evaluate select 
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mRNA processing events, I focused on transcripts that directly interact with FUS 

and are implicated in calcium and/or synapse homeostasis (Lagier-Tourenne et al. 

2012). Fluorescence in situ hybridization (FISH) was used to investigate the 

localization and abundance of our candidates (Table II-2) in response to stress. If 

a change in the localization or abundance of candidate were observed, it would 

suggest a potential functional response of this gene product to stress that could be 

subject to regulation by FUS.   

During this process, we observed that addition of Cytosine β-D-

arabinofuranoside (AraC; routinely used to prevent the proliferation of non-

neuronal cells by inhibiting DNA replication) diminished the magnitude of probe 

response to stress in our FISH experiments compared to untreated cells (not 

shown). For this reason, we did not pursue FISH experiments in AraC-treated 

neuronal cultures. Upon completing a pilot screen of our selected candidates, we 

observed an appreciable change in the somatic density of several candidates 

relative to the unstressed condition: Nd1-L, Ubqln2, Camk2a, BDNF and Gria2 

(Table II-2). Moreover, of these candidates, a further alteration in dendritic density 

was only observed for Camk2a and Gria2 (Table II-2). Given that we observed a 

robust increase in FUS levels in dendrites (Fig. II-3F,G), FUS is implicated in 

dendritic gene expression and maintenance of synapses (Ling 2018) structures 

particularly vulnerable to stress and age-linked defects (Bezprozvanny & Hiesinger 

2013, Mattson & Magnus 2006) and thus, we selected these  
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Table II-2. Candidate mRNAs evaluated by FISH. Based upon a literature search 
comparing transcripts bound by FUS with transcripts whose expression is altered 
by neuronal stimulation, we identified seven transcripts for further analysis. 
Candidate transcripts were analyzed by FISH to assess their distribution and 
density following excitotoxic insult. Results from non-AraC treated FISH 
experiments are summarized below.  
 

   
Response of Candidate Probe to 

Excitotoxicity 
Candidate 

Gene 
Protein Function Biological Replicates* Soma Dendrites 

Nd1-L 
Actin stabilizing 

protein 
n=1 

++ 
Decrease in 

density 
No change 

Ubqln2 

Regulates protein 
degradation; 

genetically linked to 
ALS 

n=1 
+ 

Increase in 
density 

No change 

Camk2a 

Prominent kinase in 
CNS; regulates 

synaptic function 

Consistent increase in probe density 
following excitotoxic insult (n=2). 

 
Stress-induced phenotype was not 

reproduced upon concurrent expression 
of shSC (n=1) 

++ 
Increase in 

density 

+ 
Increase in 

density 

BDNF 

CNS growth factor; 
regulates synaptic 

function 
n=1 

+ 
Increase in 

density 
No change 

Homer 1 
Post-synaptic 

scaffolding protein 
n=1 

~/+ 
Possible modest 

increase in 
number† 

No change 

Gria1 

AMPA subunit; 
associated with ALS 

pathogenesis 
n=1 

~/+ 
Possible modest 

increase in 
number† 

No change 

Gria2 

AMPA subunit; 
regulates AMPA 

calcium permeability; 
associated with ALS 

pathogenesis 

Consistent increase in probe density 
following excitotoxic insult (n=2). 

 

Increase dendritic density is sensitive to 
FUS knockdown (n=3, Fig. II-10) 

++ 
Increase in 

density 

++ 
Increase in 

density 

 
* = Following n=1 screen of candidates, only Camk2a and Gria2 were pursued for FUS knockdown studies. 
 
† = A change in puncta was only observed when area was not accounted for. Upon normalization to area (e.g. density), any 
potential differences previously observed in the non-normalized data were nullified. 
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two candidates for further analysis to see if the alterations in their density following 

and contribution to dendritic and synapse biology. To determine if the response of 

these candidates to stress (Table II-2) were FUS dependent. Prior to excitotoxic 

treatment, endogenous FUS was knocked down using two shRNAs targeting 

distinct sequences within FUS (Ward et al. 2014); results were compared to 

neurons expressing a scrambled control shRNA (shSC) (Fig. II-6A-C). 

Unexpectedly, upon expression of the shSC construct, Camk2a no longer 

exhibited a response to excitotoxicity as previously observed in naïve cells and 

was thus, not further pursued (Table II-2B). Unlike Camk2a, a significant increase 

in Gria2 transcript density was detected in both the soma and dendrites of cortical 

neurons expressing shSC (Fig. II-10A-E). 

Gria2 encodes the GluR2 protein subunit of the AMPA receptor, which plays 

an important role in synaptic signaling, and is translated following forms of 

neuronal excitation, including depolarization by KCl (Ju et al. 2004, Wright & Vissel 

2012). Consistent with previous findings, reduced expression of FUS did not have 

a significant effect on the total levels of Gria2 under basal conditions (Lagier-

Tourenne et al. 2012) (Fig. II-10A-E). In contrast, excitotoxicity-induced changes 

to Gria2 were significantly attenuated upon FUS knockdown. Dendritic expression 

of Gria2 was particularly sensitive to FUS levels under Gluexcito, as knockdown of 

FUS restored dendritic Gria2 levels to baseline (Fig. II-10A-E). These data are 

further supported by confirmation that the Gria2 FISH signal quantified 

corresponds to RNA and is specific to the Gria2 probe (Fig. II-10F).  Within the 
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time course of the analysis, we were unable to detect significant changes in GluR2 

protein levels by Western blot analysis of whole cell lysates (Fig. S4D,E). Taken 

together, these data show that FUS expression is required for excitotoxicity-

induced changes to Gria2 processing in neurons. 
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Figure II-10. Elevation of Gria2 mRNA in dendrites following Gluexcito requires 
FUS expression. (A) To evaluate Gria2 mRNA in soma and dendrites, FUS levels 
were reduced using lentivirus expressing a scrambled control shRNA (shSC) or 
shRNA against FUS (shFUS1, shFUS2) (B, C) Gria2 increased in both (B) soma 
and (C) dendrites of shSC transduced neurons following Gluexcito. Upon FUS 
knockdown, dendritic Gria2 did not increase with Gluexcito treatment (two-way 
ANOVA and Dunnett’s post-hoc test, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05, 
n = 3 biological replicates). Error bars = SEM and black squares indicate single cell 
measurements, (D) Visual representation of (B,C); Gria2 mRNA was detected by 
FISH (white) in PCNs outlined in green. Scale bars = 10µm. 
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Figure II-10 continued. (E) To generate the images used in (D), Gria2 puncta 
(green) were digitally dilated and converted to white. Images of MAP2 staining 
used to denote neurons and dendrites (red) were converted to binary and used to 
make a MAP2 mask subsequently outlined in green. White boxes exemplify 
approximate somatic (*) and dendritic (**) regions used for analysis. Scale bars = 
25µm. (F) Detection of the Gria2 transcript by FISH (green) was confirmed by the 
absence of signal in ‘no probe’ and ‘RNAse’ controls in MAP2-postive neurons 
(red). (G, H) Western and densitometry analysis of steady-state GluR2 protein 
levels reveal no statistical difference following Gluexcito relative to Glu– at 30’. For 
quantification, GluR2 protein levels were normalized to the loading standard, 
GAPDH (Student’s T-test, n.s. = not significant, n = 5 biological replicates). Error 
bars = SEM. 
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Upon identifying a functional consequence of FUS egress, I sought to 

assess the effect of FUS on neuron survival following excitotoxic insult. To this 

end, endogenous FUS was reduced by lentiviral transduction of the shFUS1 

construct previously described (Fig II-6, II-11A) and the number of GFP-positive 

neurons were quantified 0-4 hours following excitotoxic insult. From this analysis, 

a modest susceptibility of neurons to FUS knockdown (shFUS1) was observed 

relative to the control (shSC) in absence of stress (Fig. II-11B). Following 

excitotoxic insult however, both constructs exhibited a sharp decrease in the 

number of GFP-positive neurons at 1.5 hours, after which the neuron number did 

not appreciably decline further. (Fig. II-11B). Although it was expected that PCNs 

would be more susceptible to Gluexcito following FUS knockdown given the vital 

roles FUS is known to play in maintaining cellular homeostasis (Sama et al. 2014), 

this preliminary experiment suggests there is no difference in neuronal 

susceptibility following FUS knockdown. While we cannot exclude the possibility 

that the acute effect of excitotoxic stress on cultured primary neurons masked a 

potential contribution of FUS, it is also possible that FUS does not play an essential 

role in the cellular response to excitotoxicity (i.e. if there are compensatory 

mechanisms at play) or even that neurons fare better without FUS (suggesting that 

FUS may function to promote pro-death pathways).  
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Figure II-11. No apparent effect of FUS knockdown on neuron survival 

following acute excitotoxic insult. (A) Endogenous FUS was reduced using a 
lentivirus expressing shRNA against FUS (shFUS1) and a GFP reporter as 
described in Fig. II-6. A scrambled control shRNA (shSC) was used for a negative 
control. (B) The number of GFP-positive neurons was quantified at different 
timepoints during the washout period following treatment with Gluexcito. Following 
treatment, neuron number rapidly declined by 1.5h for both constructs; no 
difference between shFUS and shSC was observed (n =1 biological replicate).  
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Calcium Mediated FUS Egress Occurs in Motor Neurons  

Primary motor neurons represent the neuronal cell type that is predominately 

affected in ALS. Given the effect of calcium on FUS localization in cortical neurons, 

we sought to extend this finding to motor neuron systems that are more relevant 

to the study of ALS. Consistent with previous observations in cortical neurons (Fig 

II-7D,E), treatment of DIV 6-8 primary murine motor neurons with Ionomycin was 

sufficient to shift the C:N ratio of FUS to the cytoplasm (Fig. II-12A,B). Further, 

application of the glutamatergic agonist, kainic acid, to motor neurons also induced 

an increase in the C:N ratio of FUS. (Fig. II-12C,D). Kainic acid is known to induce 

motor neuron excitotoxicity (Fryer et al. 1999), and was used here to avoid 

confounding effects of glutamate uptake by astroglia present in the mixed MN 

cultures (Rose et al. 2017). We noted a relatively wide range in the C:N ratio of 

FUS in kainic acid treated neurons; a sub-population of cells exhibited near 

complete egress of nuclear FUS (Fig. II-12C,D), which was not observed in cortical 

neurons treated with glutamate.  

 We additionally sought to examine the response of FUS in human induced 

pluripotent stem cell (iPSC)-derived motor neurons in control (i.e. ‘non-diseased’) 

lines (see Methods and Materials). Treatment of DIV15 iPSC motor neurons with 

5-10µM Ionomycin for 1 hour induced FUS egress as well as altered staining 

patterns of the neuron marker Tubulin b 3 and motor neuron marker Islet 1/2 (Fig 

II-12E). While the change in staining for the cytoskeletal marker, Tubulin b 3, may 

be similar to previous observations in cortical neurons (Fig II-7D,E and Fig II-
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12A,B), the significance of the reduced and/or redistribution of Islet 1/2, a 

transcription factor, is less clear. Following oxidative stress, the transcription factor, 

Pancreatic and Duodenal Homeobox 1, also redistributes to the cytoplasm 

(Kawamori et al. 2003). Thus, cell stress may additionally induce the egress of 

transcription factors as well as RBPs and transport machinery.  

DIV 40-45 iPSC-derived motor neuron survival has been previously 

reported following the application of 30-100 glutamate when applied for 2-8 hours 

(Donnelly et al. 2013). However, treatment of iPSC neurons with excitatory 

agonists such glutamate (£200µM for up to 8h at DIV15 or 55) and kainic acid 

(300µM for 3h at DIV15) failed to induce FUS egress or alter neuronal morphology 

(as in Fig II-12E, untreated). One possibility is that relative to murine neurons, the 

hiPSC-derived motor neurons may not be comparatively ‘mature’, and thus unable 

to undergo glutamatergic excitation. Although we attempted to overcome this by 

treating iPSC motor neurons with excessive amounts of glutamate (£ 200µM) at 

DIV55, we still did not observe a response of FUS or morphological alterations. 

For future studies it will be important to verify if iPSC neurons are 

electrophysiologically active in order to assess the response of FUS to excitotoxic 

stress in this model. Together these data demonstrate that calcium-mediated FUS 

egress is conserved across multiple neuronal models, implying the existence of a 

shared cellular phenomenon. That the response of neurons to glutamatergic 

agonists varied however, likely indicates differences in cellular biology not further 

explored by this work. 
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Fig II-12. Calcium-induced FUS egress is observed in primary motor 
neurons. (A, B) DIV 6-8 murine primary motor neurons treated with Ionomycin 
(Iono) as in (Fig. II-7). Following treatment, primary motor neurons also exhibit FUS 
egress as indicated by immunofluorescence and a significant increase in the FUS 
C:N ratio (Student’s T-test, **p<0.01, n=3 biological replicates). Motor neurons 
were identified using the motor neuron marker, neurofilament H non-
phosphorylated (SMI-32; red) and nuclei were stained with DAPI (blue). (C) A 10 
min treatment of 300µM Kainic acid followed by a 1-hour recovery induced FUS 
egress in motor neurons. A near depletion of FUS from the nucleus was observed 
for a subset of cells (Kainic acid, left). (D) Kainic acid (KA)-induced FUS egress 
was statistically significant relative to the washout control (Student’s T-test, 
**p<0.01, n=3 biological replicates). (B, D) Black squares indicate individual cell 
measurements normalized to the average of the replicate control. Accordingly, 
means represent the normalized average of n = 3 biological replicates. Error bars 
represent SEM. Scale bars = 10µm. (E) Detection of FUS egress (green) in DIV15 
hiPSC-derived motor neurons were treated with 5-10µM Ionomycin (n=2 biological 
replicates). hiPSC-derived motor neurons were identified using the neuronal 
marker, Tubulin b 3 (white), and the motor neuron marker, Islet 1/2 (red). Nuclei 
are stained with DAPI (blue). Scale bar = 10µm. 
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Response of ALS-Mutant FUS to Excitotoxicity  

We show a response of endogenous FUS in neuronal models using stressors 

relevant to ALS (Fig. II-2,12). As mutations in FUS cause ALS (Kwiatkowski et al. 

2009, Vance et al. 2009), we next sought to examine the response of ALS-mutant 

FUS to excitotoxicity. The majority of ALS-linked mutations are present within the 

nuclear localization sequence (NLS) and, as such, these variants exhibit varying 

degrees of cytoplasmic mislocalization and accumulation (Bosco et al. 2010). 

Given that both ALS-mutations and Gluexcito influence the subcellular localization 

of FUS, we investigated the relationship between these two factors. A series of 

FLAG-HA-tagged FUS variants were transiently expressed in primary cortical 

neurons and the C:N ratio of exogenous FUS was determined in the absence and 

presence of Gluexcito (Fig. II-13A,B). In addition to wildtype (WT) FUS, we 

examined: H517Q, the only autosomal recessive FUS mutation associated with 

ALS(Kwiatkowski et al. 2009); R521G, representing a mutational ‘hot spot’ for ALS-

FUS (Lattante et al. 2013); and R495X, a particularly aggressive ALS-linked 

mutation(Sama et al. 2014). The degree of FUS mislocalization has been reported 

as H517Q≤R521G<<R495X under basal conditions (Bosco et al. 2010), consistent 

with what was observed here (Fig. II-13A,B). As expected, WT FUS exhibited 

significant nuclear egress in response to Gluexcito. Similarly, the C:N ratio for the 

H517Q and R521G variants also significantly increased following excitotoxic insult 

(Fig. II-13A,B) (Bosco et al. 2010, Kwiatkowski et al. 2009). These data suggest 

that ALS-linked point mutations within the NLS do not interfere with the response 
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of FUS to Gluexcito. Interestingly, the C:N ratio of R495X, exhibiting a high degree 

of cytoplasmic expression under basal conditions (Bosco et al. 2010), did not 

change in response to stress (Fig. II-13A,B). We note that following excitotoxic 

insult, the distribution of all constructs (regardless of their localization under basal 

conditions) did not significantly differ (Fig. II-13A,B). Although we cannot exclude 

the possibility that truncation of the entire NLS interferes with FUS egress, these 

data are consistent with an NLS ‘celling effect’, in that the normal 

nucleocytoplasmic distribution of R495X-FUS is equivalent to that of ‘maximally’ 

redistributed endogenous FUS following excitotoxic insult. The behavior of these 

variants in our assay has important implications for ALS pathogenesis, in that 

disease-relevant stressors such as Gluexcito could trigger an initial nuclear egress 

of mutant FUS that ultimately leads to pathological aggregation.  

Given the severe cytoplasmic localization of R4595X, we next sought to 

assess if R495X expression might alter the density of Gria2 under non-stress 

conditions and/or enhance the stress- and FUS-linked dendritic increase earlier 

observed (Fig. II-10). Analysis of Gria2 in the soma and dendrites of neurons 

transfected with WT or R495X FUS revealed no appreciable change to transcript 

density in the presence or absence of stress (Fig. II-14C,D). This result was 

unexpected given that we previously observed a significant increase in the 

dendritic density of Gria2 in both neuronal soma and dendrites in untransfected 

cells (Fig. II-10). That there was no difference in Gria2 density following expression 

of WT FUS suggests that the expression of human, WT FUS in a murine system 
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may exert a dominant negative effect with respect to Gria2 processing. Further, as 

a mock transfection condition was not included, we cannot exclude the possibility 

that the act of transfection somehow confounds the previously observed response 

of Gria2 to excitotoxic insult (Fig. II-10).  

 

 

 

 

 

 

 

 



 84 

 
   

Figure II-13. Excitotoxic stress induces egress of predominately nuclear 
ALS-linked FUS variants. (A) Neurons transfected with FLAGHA-tagged FUS 
variants were exposed to Gluexcito. Nuclear egress of exogenous FUS was 
assessed by HA staining (green) in MAP2-positive neurons (red). Nuclei were 
stained with DAPI (blue). Scale bar = 10µm. (B) Quantification variant egress 
revealed a significant stress-induced increase in the C:N ratio of FUS WT, H517Q 
and R521G, but not R495X (Student’s T-test; ***p<0.001, *p<0.05, n.s. = not 
significant, n=3-5 biological experiments). Black lines denote individual statistical 
comparisons made between Gluexcito and Glu– for each construct. Following 
excitotoxic insult, there was no significant difference in the average of C:N ratios 
of all constructs (one-way ANOVA; n.s. = not significant; blue line). Black squares 
represent individual, cellular C:N measurements. (C,D) The density of Gria2 was 
evaluated in both (C) soma and (D) dendrites of neurons transfected with FLAG-
HA WT or R495X FUS. Gria2 density did not change following treatment with 
Gluexcito for either construct (n = 1 biological replicates). Error bars represent SEM. 
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Discussion 

This study uncovered an association between disease-linked RBPs and 

excitotoxicity, a stress that has particularly profound effects on the 

nucleocytoplasmic distribution of FUS in both cortical (Fig. II-2B,F) and motor 

neurons (Fig. II-12A-D). There is a compelling body of evidence linking glutamate-

induced excitotoxicity to neurodegenerative diseases, including ALS (Fogarty 

2018, Starr & Sattler 2018, Van Den Bosch et al. 2006). For instance, elevated 

levels of glutamate were detected in biological samples from ALS patients(Plaitakis 

& Constantakakis 1993, Rothstein et al. 1990, Spreux-Varoquaux et al. 2002). Cell 

death caused by glutamate and calcium dysregulation has also been documented 

in multiple animal and cellular models (Hideyama et al. 2012, Kawahara et al. 

2004, Kia et al. 2018, Spreux-Varoquaux et al. 2002, Starr & Sattler 2018, Van 

Den Bosch et al. 2006). The outcomes of this study shed new light on the 

excitotoxicity cascade and implicate, for the first time, a role for the ALS/FTD-linked 

protein FUS in this process. 

Our results are consistent with a functional role for FUS in response to 

glutamatergic signaling (Fujii et al. 2005) rather than a non-specific effect of cell 

death. First, FUS egress precedes cell death (Fig. II-1).  Second, there is 

selectivity with respect to proteins that undergo a change in cellular localization; 

the response of FUS is particularly robust compared to the other proteins assessed 

in this study (Fig. II-2, II-4B, II-5G). Third, the effects of excitotoxicity on Gria2 

depend on FUS expression (Fig. II-10). FUS binds Gria2 mRNA within introns and 
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the 3’ untranslated region, and Gria2 splicing is effected by FUS expression under 

basal conditons (Lagier-Tourenne et al. 2012). Under Gluexcito, Gria2 density was 

enhanced in neuronal dendrites in a FUS-dependent manner (Fig. II-10). Gria2 

encodes the GluR2 protein subunit of the AMPA receptor. Normally, GluR2 is post-

transcriptionally edited and GluR2-containing AMPA receptors are calcium 

impermeable. As such, the calcium permeability of AMPA receptors and the 

susceptibility of neurons to excitotoxicity is dependent on GluR2 (Van Damme et 

al. 2007, Van Den Bosch et al. 2006). We speculate that the enhanced dendritic 

density of Gria2 may serve to increase the number of calcium impermeable 

(GluR2-containing) AMPA receptors and thereby offset calcium influx caused by 

existing calcium permeable (GluR2-lacking) receptors. In ALS, this process could 

be compromised as a result of dysregulated Gria2 editing and/or GluR2 expression 

(Takuma et al. 1999, Van Damme et al. 2007), particularly in motor neurons that 

rely heavily on AMPA receptor signaling(Starr & Sattler 2018, Van Den Bosch et 

al. 2006). The effect of FUS on dendritic Gria2 density following Gluexcito (Fig. II-

10) is novel and consistent with a role of FUS in modulating Gria2 processing. The 

exact nature of this role however remains to be fully elucidated, and could involve 

a function of FUS in Gria2 splicing (Lagier-Tourenne et al. 2012), transport (Ling 

2018), and/or or stabilization (Udagawa et al. 2015, Yokoi et al. 2017).  

While investigating the mechanism(s) underlying excitotoxic FUS egress, 

we uncovered striking changes to the CRM1 nuclear export pathway (Fig. II-4). 

Inhibition of CRM1-mediated export by KPT-330 failed to restrict both NLS-
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tdTomato-NES and FUS within the nucleus under Gluexcito (Fig II-4). Further, CRM1 

localization was significantly shifted towards the cytoplasm (Fig. II-H,I). Despite 

these changes, nucleocytoplasmic transport was not completely dysregulated, as 

a partial inhibitory effect of KPT-330 on the shuttling reporter was observed (Fig. 

II-4). Our KPT-330 studies suggest that Gluexcito-induced FUS egress occurs 

through a mechanism other than active CRM1 export, and could entail passive 

diffusion (Ederle et al. 2018) or alternative transport factors (Archbold et al. 2018). 

Selectivity of RBP egress following Gluexcito may stem from differences in 

nucleocytoplasmic shuttling dynamics, which are influenced by multiple factors 

including binding interactions and post-translational modifications (Rhoads et al. 

2018b). An interesting area of future study could be to elucidate these factors and 

determine whether they are modulated by stress. 

Alterations to CRM1 and Ran (Fig. II-4) under Gluexcito may represent early 

signs of nucleocytoplasmic transport decline. Indeed, previous studies show that 

various forms of stress (e.g., excessive calcium influx, oxidative, and hyperosmotic 

stress) cause damage to nuclear pores and impair nucleocytoplasmic transport 

(Bano et al. 2010, Kelley & Paschal 2007, Kodiha et al. 2004, Yasuda et al. 2006, 

Zhang et al. 2018a). Mice deficient in key astroglial glutamate transporters 

exhibited both nuclear pore degradation and motor neuron degeneration 

(Sugiyama et al. 2017). Moreover, the nucleocytoplasmic transport pathway has 

been implicated in age-related neurodegeneration, particularly in the context of 

ALS and FTD (Li & Lagier-Tourenne 2018). While most ALS/FTD-associated 
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studies have focused on the role of mutant proteins in dysregulating 

nucleocytoplasmic transport (Kim & Taylor 2017, Li & Lagier-Tourenne 2018), 

ALS/FTD-associated forms of cellular stress (e.g., excitotoxicity) may also 

contribute to nucleocytoplasmic transport defects in both inherited and sporadic 

forms of disease. In fact, nucleocytoplasmic transport is an emerging area of 

therapeutic development and the CRM1 inhibitor KPT-350 is advancing towards 

ALS clinical trials. Partial inhibition of CRM1 is expected to offset defects in nuclear 

import. CRM1 inhibitors have had a therapeutic effect in some (Haines et al. 2015, 

Li & Lagier-Tourenne 2018), but not all (Archbold et al. 2018, Sugiyama et al. 

2017), models of neurodegeneration. Collectively, the available data, including our 

own (Fig. II-4), support CRM1-mediated nucleocytoplasmic transport as a viable 

therapeutic target for neurodegenerative disorders. However, a combination 

therapy addressing additional effects of stress-induced nuclear pore degradation 

(i.e., calpain inhibitors (Sugiyama et al. 2017) may be required for a significant 

therapeutic outcome. 

The calcium-mediated response of FUS to Gluexcito has additional 

implications for neurodegeneration, including cases of FUS-mediated ALS. For 

instance, motor neurons derived from human ALS-FUS induced pluripotent stem 

cells are intrinsically hyperexcitable (Wainger et al. 2014). Further, the effects of 

ALS-linked FUS on calcium-mediated motor neuron toxicity is exacerbated by 

expression of the mutant protein in astrocytes (Kia et al. 2018, Van Damme et al. 

2007). Most ALS-linked FUS mutations are located within the NLS (Lattante et al. 



 89 

2013) and induce a shift in the nucleocytoplasmic equilibrium of the protein toward 

the cytoplasm, where it is believed to exert a gain of toxic function (Bosco et al. 

2010, Sama et al. 2017) (Fig. II-13). As ALS-linked variants R521G and H517Q 

translocate further into the cytoplasm under Gluexcito (Fig. II-13), we predict these 

and other variants with impaired binding to nuclear import factors will accumulate 

in the cytoplasm under conditions of chronic stress in vivo (Dormann et al. 2010, 

Kodiha et al. 2004). Moreover, chronic stress may result in nuclear depletion and 

cytoplasmic aggregation of wild-type FUS and TDP-43 in sporadic cases as well 

(Deng et al. 2010, Keller et al. 2012). We propose a model whereby FUS and 

related RBPs play a functional role in response to normal stimulation and moderate 

degrees of stress, but that excessive or chronic stress severely disrupts their 

nucleocytoplasmic equilibrium and contributes to disease pathology.  
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Methods and Materials 

Cell Culture 

HEK293-T cells were cultured as described(Sama et al. 2013) in Dulbecco’s 

minimal essential medium (DMEM, Invitrogen 11965118) supplemented with 10% 

fetal bovine serum (FBS; MilliporeSigma F4135) and 1% penicillin and 

streptomycin (P/S; Invitrogen 15140122) under standard culture conditions (37°C, 

5% CO2/95% air).  

Dissociated primary cortical neuron cultures were prepared using cortices 

from C57BL/6 embryonic day (E)14-15 mice. Embryos were isolated in ice-cold 

Hanks Buffered Saline Solution (HBSS; MediaTech, 21-023-CV)s and the 

meninges removed. Cells were dissociated for 12 minutes in 0.05% Trypsin 

(Invitrogen 25300-054) at 37˚C, diluted in DMEM (Invitrogen 11965118) containing 

10% FBS (MilliporeSigma F4135) and strained with a cell strainer before gently 

pelleting. Cells were then resuspended in Neurobasal media (Invitrogen, 

21103049), supplemented with 1% Glutamax (Invitrogen cat#35050-061), 1% P/S 

(Invitrogen 15140122) and 2% B27 (Invitrogen 0080085-SA), and plated at 1.8-

2x105 cells/mL on poly-ornithine (final concentration of 1.5 µg/mL; MilliporeSigma, 

P4957) coated plates or coverslips. Neuronal cultures were grown under standard 

culture conditions fed every 3-4 days by adding half volumes of supplemented 

neurobasal media to each well/dish, with additional half changes of media 

occurring every other feeding. Unless indicated, during the first feeding (DIV 2 or 

3) neuron cultures were also treated with a final concentration of 0.5-1µM Cytosine 
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β-D-arabinofuranoside hydrochloride (AraC; MilliporeSigma C6645) to inhibit non-

neuronal cell growth. Experiments were performed on DIV 14-16.  

Primary murine astrocytes were isolated from embryonic cortices as 

described for primary cortical neurons. Following trypsinization (as above), cells 

were plated ~7-8 x105 cells/mL in flasks and cultured under standard culture 

conditions. Media was changed every 3 days. When confluent, cells were 

resuspended by scraping and re-plated on coverslips at ~6 x104 cells/mL. Cells 

were grown for ~2 weeks prior to harvesting for downstream analyses.  

Primary motor neurons were isolated from E12.5 embryonic spinal cords as 

described (Sama et al. 2017). Briefly, after dissociation in 0.1% trypsin 

(Worthington LS003707) at 37°C for 12 minutes, primary motor neurons were 

purified using a 6% Optiprep (MilliporeSigma D1556) density gradient and plated 

on glass coverslips coated with 0.5g/L poly-ornithine (MilliporeSigma, P4957) and 

natural mouse laminin (Thermo Fisher 23017015). Cells were grown in glia-

conditioned Neurobasal medium (Invitrogen, 21103049) and supplemented with 

2% B27 (Invitrogen 0080085-SA), 2% horse serum (MilliporeSigma H1270), and 

10ng/ml BDNF (PeproTech 450-02), GDNF (PeproTech 450-44), and CNTF 

(PeproTech 450-50). Primary motor neurons were treated on DIV 6-8 with 

Ionomycin (MilliporeSigma I9657) or dimethyl sulfoxide (DMSO; Corning, 25-950-

CQC) and DIV 8 with kainic acid (Abcam ab144490).  

Induced pluripotent stem cells (iPSC) (Table II-3) were cultured in Matrigel 

(Corning CB-40230) coated, 6-well plates in complete mTeSR1 media (StemCell 
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Technologies 85850) with daily media changes. Lines were clump passaged every 

4-6 days following gentle dissociation with Accutase (Corning MT25058CI). To 

generate motor neurons from iPSCs, an embryoid body (EB) based protocol that 

mimics embryonic motor neuron development using small molecules and growth 

factors was adapted from (Ng et al. 2015). Briefly, confluent iPSCs were 

dissociated to single cells following incubation with 0.5mM (Ethylene diamine 

tetraacetic acid) EDTA (Millpore Sigma E9884) and transferred to suspension 

flasks at 150,000 cells/cm2 in basal differentiation medium in the presence of Y-

27632 ROCK inhibitor (10 µM; BD Biosciences, BDB562822) and the dual Smad 

inhibitors: SB431542 (10 µM; Tocris, 1614), CHIR99021 (3 µM; MilliporeSigma, 

SML1046), and LDN193189 (100 nM; MilliporeSigma, SML0559). The basal 

differentiation medium consisted of a 1:1 combination of Neurobasal medium 

(Invitrogen, 21103049) and DMEM/F12 medium (Corning, MT-15-090-CV) 

supplemented with N2 (Invitrogen, 17502-048), B27 (Invitrogen, 17504044), 

Glutamax (Invitrogen, 35050-061) and ascorbic acid (20 µM; MilliporeSigma, 

A4403). At day 2, EBs were transferred to basal differentiation medium containing 

dual Smad inhibitors and retinoic acid (RA) (1 µM; MilliporeSigma, R2625). At day 

4, the media was changed to the same media as day 2 except that it also included 

Smoothened agonist (SAG) (1 µM; MilliporeSigma, 566661). At day 7, dual Smad 

inhibition was discontinued, and media was switched to basal differentiation media 

supplemented only with RA and SAG (patterning media). At day 9, patterning 

media was changed to also include DAPT (10 µM; Tocris, 2634). Brain derived 
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neurotrophic factor (BDNF) (10 ng/mL; Peprotech, 450-02) was included with 

DAPT with the day 11 media change. At day 13, glial derived neurotrophic factor 

(GDNF) (10 ng/mL; Peprotech, 450-10) was also included along with DAPT and 

BDNF. 

On day 15, EBs were dissociated with activated papain (5 u/mL; 

Worthington, LS003126) and DNase I (10 µg/mL; Worthington, LS006355) in 

papain activation buffer (1.1 mM EDTA, 0.067 mM mercaptoethanol, and 5.5mM 

cysteine-HCl in EBSS). Cells were resuspended in plating media consisting of 

Neurobasal media supplemented with B27, Glutamax, 10 ng/mL each BDNF, 

GDNF, ciliary neurotrophic factor (CNTF; Peprotech, 450-13), insulin-like growth 

factor 1 (IGF-I; Peprotech, 100-11), and laminin (1 µg/mL; Invitrogen, 23017-015). 

Neurons were plated at 150,000/cm2 onto culture dishes or cover slips pre-treated 

with 25 µg/mL poly-D-Lysine (MilliporeSigma, P7405), 25 µg/mL poly-ornithine 

(MilliporeSigma, P3655), 3-5 µg/mL laminin and 5 µg/mL fibronectin 

(MilliporeSigma, F1141). Cells were fed by half-media changes every 2-3 days and 

harvested for use DIV15-55. Cultures comprised of ~40-50% motor neurons, as 

indicated by staining with the motor neuron marker, Islet 1/2. 
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Table II-3. ‘Non-diseased’ Control iPSC Lines. iPSC line information in regards 
to those used for those differentiated and analyzed in this work.  
 

Line Name Genotype Donor Sex Age at Biopsy Reference 

18a Control F 48 (Boulting et al. 2011) 

FTD35#11 Control M 45 (Freibaum et al. 2015) 

TALSCTRL15.12 Control F 49 
Purchased from Target 
ALS (Target ALS ID: 

TALSCTRL15.12) 
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Drug and Stress Application 

For glutamate experiments, 100mM glutamate (MilliporeSigma G5889) was freshly 

prepared in Neurobasal media and diluted using primary conditioned media (PCM) 

to achieve the desired solution concentration. To apply stress, neuronal media was 

replaced with glutamate-containing PCM or PCM alone (glutamate-free control) for 

10 minutes. After 10 minutes, treatment media was replaced with PCM for 30 

minutes or longer depending on the experiment, prior to fixation or lysate 

collection. Kainic acid (Abcam ab144490) was diluted from 10 mM/ml to 300µM/ml 

in PCM and added to motor neurons for 10 minutes followed by a replacement with 

PCM for one hour. Stock solutions of 5mM Ionomycin (MilliporeSigma I9657) 

prepared in DMSO (Corning, 25-950-CQC) or 1M or sodium arsenite 

(MilliporeSigma 71287) prepared in water were diluted to 10µM or 1 mM in PCM, 

respectively, and added to neurons for 1 hour. Sorbitol (MilliporeSigma S6021) 

was directly dissolved in PCM to obtain a final concentration of 0.4M and applied 

to cells for 1 hour. For excitotoxicity experiments in which EGTA (MilliporeSigma 

E3889) was added, a 100mM stock was prepared in water, diluted to 2mM in PCM, 

and allowed to incubate for 30 minutes prior to use during the experimental time 

course. To inhibit CRM1, neurons were treated with 500nm KPT-330 (KPT; 

Cayman Chemical, 18127) dissolved in water on DIV13 for 48 hours prior to 

treatment with Gluexcito as well as during the experimental time course. Stock 

solutions of 100mM APV (Ascent Scientific) or 50mM NBQX (Ascent Scientific) 

were prepared in water and diluted in PCM to a final concentration of 50 or 3µM, 
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respectively. APV and NBQX were added to the neuronal media 20 minutes prior 

to glutamate exposure as well as during the Gluexcito treatment and washout period. 

A 5M a stock solution of KCl (MilliporeSigma P9541) prepared water and diluted 

to 100mM in PCM. Neurons were treated with KCl for 10 minutes followed by a 30-

minute washout period in PCM alone. Translation was inhibited with 2µM 

cycloheximide (MilliporeSigma C7698). To stain nuclei of dead and dying cells, 

fresh propidium iodide (Invitrogen P1304MP) were prepared at a concertation of 

2mg/mL (3mM) in Dulbecco's Phosphate-Buffered Salt Solution (DPBS; Corning 

21031CV) and added to neurons at a final concentration of 10µM for 15 minutes. 

Cells were washed twice with DPBS prior to fixation and downstream analysis.  

 

Plasmids and Cloning 

Human cDNA for FLAG-HA-tagged WT, H517Q, R521G or R495X FUS were 

cloned into the lentiviral vector, pLenti-CMV-TO-Puro-DEST (Addgene 670-1) 

using the In-Fusion HD Cloning Plus kit (Clontech (EMD) 638909). FLAG-HA-FUS 

domain deletion constructs were generated and cloned into the pLenti-CMV-TO-

Puro-DEST backbone by site directed mutagenesis and Gateway LR Clonase 

reactions (11791020), respectively. To achieve FUS knockdown, shRNA 

sequences(Ward et al. 2014) were packaged using In-Fusion HD cloning into the 

lentiviral backbone, CSCGW2 (a generous gift courtesy of Miguel Esteves), which 

contains a GFP-reporter expressed under a separate CMV promoter. The shRNA 

targeting sequences were: 5’-GCAACAAAGCTACGGACAA-3’ (shFUS1) and 5’-
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GAGTGGAGGTTATGGTCAA-3’ (shFUS2) as well as the scrambled control 

sequence, 5’-AATTCTCCGAACGTGTCACGT-3’ (shSC). The shuttling reporter, 

NLS-tdTomato-NES (a generous gift courtesy of Martin Hetzer(Hatch et al. 2013)) 

was cloned into the pLenti-CMV-TO-Puro-DEST vector backbone (Addgene 670-

1) using Gateway BP and LR Clonase reactions (Invitrogen 11789020 and 

11791020, respectively). The shuttling reporter contained an NLS sequence 

(PPKKKRKVQ) and NES sequence (LQLPPLERLTL) attached to tdTomato by a 

GGGG linker at the N and C termini, respectively.   

 

Transient Expression of ALS-mutant FUS 

For transient transfection experiments, neurons were fed DIV6 and transfected 

with FLAG-HA-FUS constructs on DIV7 using NeuroMag (Oz Biosciences, 

NM51000) transfection reagents. 1.0µg DNA and 1.75µL NeuroMag (for one 24-

well well; 500uL volume) were combined in an eppendorf tube and brought up to 

a 50µL volume using Neurobasal media. The DNA mixture was allowed to incubate 

for 20 minutes before addition to neurons. Upon addition, neuron cultures were 

placed on a NeuroMag magnet plate (Oz Biosciences MF10096) within the tissue 

culture incubator for 15 minutes to complete transfection. Transfected neurons 

were collected for experimental analyses on DIV14-16. For transient transfection 

of FLAG-HA-FUS into HEK cells, the same protocol was followed except that 

transfection reagents were diluted in and cell media was changed to Opti-MEM 

(Invitrogen, 31985070).  
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Lentiviral Production and Application 

High titer lentivirus was prepared as described (Sena-Esteves et al. 2004).Briefly, 

HEK-293T cells were individually transfected using calcium phosphate with the 

shRNA or NLS-tdTomato-NES constructs described along with the packing 

plasmids: CMVdR8.91 plasmid and VSV-G. DNA constructs were prepared using 

by EndoFree Maxi Prep (Qiagen, 12362). Three hours after transfection, cell media 

was replaced with Opti-MEM (Invitrogen, 31985070) and virus was collected in 

open-top Beckman tubes (Beckman Coulter, 344058) by ultracentrifugation at 

28,000 rpm in SW32Ti rotor 72 hours following transfection. Lentivirus titer was 

obtained by the transduction of HEK cells with serially diluted lentivirus. Upon titer 

determination, virus was added to DIV6 non-AraC treated neurons at an 

approximate titer of 1.2-1.810 tu/ml. For all transduction experiments except 

fluorescence in situ hybridization, PCNs were AraC treated on DIV7. Transduced 

neurons were collected 9 days post-transduction (DIV15) for analysis.  

 

Immunofluorescence Analysis  

Primary cortical and motor neurons were fixed with 4% paraformaldehyde (PFA;  

Fisher Scientific AAA1131336) at room temperature for 15 minutes and 

permeabilized with 0.1-0.2% Triton X-100. Immunofluorescence experiments for 

conducted as described (Bosco et al. 2010, Sama et al. 2013) with the exception 

of primary motor neuron samples which were processed according (Sama et al. 

2017). Primary antibodies used for all experiments are listed in Table II-4.  
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Table II-4. Primary Antibodies Used for Immunofluorescence and Western 

Analyses.  

Antibody Species* Company Dilution/Incubation** 

FUS R Bethyl Laboratories A300-293A IF: 1/1000 1h or 1/500 O/N 

FUS M Santa Cruz (4H11) sc-47711  IF: 1/200 1h; WB: 1/1000 4˚C O/N 

FUS R Genscript (in-house) IF: 1/200; WB: 1/1000 4˚C O/N 

FUS M Santa Cruz (H-6) sc-373698  IF: 1/200 1h; WB: 1/1000 4˚C O/N 

FUS R Bethyl Laboratories A300-302A IF: 1/1000 1h or 1/500 O/N 

MAP2 M MilliporeSigma M9942 (clone HM-2) IF: 1/1000 1h 

MAP2-CY3 M EMD Millipore MAB3418C3 IF: 1/1000 1h 
NeuN M EMD Millipore MAB377 IF: 1/200 1h 

SMI-32 M Thermo Fisher IF: 1/500 O/N 

GAPDH R MilliporeSigma G9545 WB: 1/20,000 4˚C O/N 

GAPDH M MilliporeSigma G8795 WB: 1/2,000 4˚C O/N 

TAF15 R Abcam ab134916 IF: 1/250 1h, WB: 1/1000 4˚C O/N 

hnRNPA1 M MilliporeSigma R4528 IF: 1/1000 1h, WB: 1/2000 4˚C O/N 

TDP-43 M EnCor Biotechnology Inc. MCA-3H8 IF: 1/250 1h, WB: 1/500 4˚C O/N 

Lamin A/C M MilliporeSigma SAB4200236 IF: 1/500 1h 

HA R Cell Signaling C29F4 IF: 1/500 1h 
Eif2a R Cell Signaling 9722S WB: 1/2000 4˚C O/N 

Eif2a-P R Cell Signaling 9721S WB: 1/200 4˚C O/N 
RAN R Bethyl Laboratories A304-297A IF: 1/250 1h 

CRM1 R Bethyl Laboratories A300-469A IF: 1/250 1h 
Puromycin R Fisher Scientific, MABE343MI (clone 12D10) IF: 1/250 1h, WB: 1/1000 4˚C O/N 

G3BP1 R Proteintech 13057-2-AP IF: 1/2000 1h 

GFP R Invitrogen A-21311 IF: 1/1000 1h 

ANK-G M Santa Cruz (463) sc-12719  IF: 1/100 1h 

GluR2 M MilliporeSigma MAB397 WB: 1/1000 4˚C O/N 
GFAP M MilliporeSigma G3893 IF: 1/200 1h 

*R = rabbit host; M = mouse host 
**IF = immunofluorescence; WB = western blot; O/N = overnight  
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Image Acquisition, Processing and Quantification 

Primary motor neuron images were imaged using a widefield fluorescence 

microscope (Nikon TiE) equipped with a cooled CMOS camera (Andor Zyla). 

Images were acquired as Z-stacks (0.2µm step size) using a 60x lens. As 

indicated, primary cortical neurons were imaged using a Lecia TCS SP5 II laser 

scanning confocal (Leica Microsystems) or Leica DMI6000B microscope as 

described(Sama et al. 2013). For confocal images of whole cells, 12-bit stacks (∆z 

= 0.25µM steps, zoom = 3x, n = 23-30 planes) were acquired at 40x with a pixel 

size of 126nm (1024x1024 pixels; 1000Hz). For dendrites, 12-bit stacks (∆z = 

0.08µM steps, zoom = 3x, n = 40-50 planes) were acquired at 63x using a pixel 

size of 80nm (1024x1024 pixels; 1000Hz). For FISH, mFUS and somatic 

puromycin analyses, widefield stacks of the entire cell were acquired (z=0.2-

.25μm) and deconvolved using the LAS AF One Software Blind algorithm (10 

iterations). All neuron images were analyzed using MetaMorph software 

(Molecular Devices Inc.) or Image J. The background and shading of stacks were 

corrected as described(Bosco et al. 2010). Sum or maximum projections were 

created from corrected stacks for downstream analyses. 

For the quantification of C:N ratios, a 20x20 pixel region was applied to the 

nucleus and perinuclear area in the soma for each cell (visualized by DAPI and 

MAP2, NeuN or SMI-32 respectively) as well as an area within each image that 

contained no cells (representing background fluorescence). The integrated 

intensity for the signal of interest was obtained for each region and a ratio of the 
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cytoplasmic:nuclear (C:N) signal was then generated following subtraction of 

background signal. For each experiment, statistical comparisons of C:N ratios with 

or without excitotoxic stress were completed using average C:N ratios collected 

from ³three independent biological experiments. For the analysis of dendritic FUS 

levels, MAP2 was used visualize dendrites and create a mask with MetaMorph. 

Using the MAP2-defined mask, the integrated intensity of FUS staining was 

obtained and used to quantify the relative amount of FUS staining in dendrites.  

For the quantification of neuron number and neurons exhibiting FUS 

translocation, ³10 fields of view were imaged at 40x for each condition tested. As 

indicated by MAP2 or NeuN staining, neurons were quantified from images with 

computer assistance from the ‘Cell Count’ feature in MetaMorph. To assess the 

percent neurons with protein translocation (FUS, tdTomato, CRM1, RAN), cells 

were scored for the presence of translocation and divided by the total PCN number 

to generate the percent population exhibiting a response. Neurons were similarly 

quantified for cell survival. For KPT-330 experiments, cells were scored for the 

presence of FUS and/or nuclear PI staining at each time point indicated. To assess 

neuron survival following FUS knockdown, the number of GFP-positive cells were 

scored at the indicated timepoint for shSC and shFUS1 conditions.   

 

Puromycin Analysis  

Based on previously described experiments (Murakami et al. 2015), 4mM stocks 

of puromycin (Invitrogen A11138-03) were prepared in water. Neurons were 
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treated with glutamate as described, except that a final concentration of 2µM 

puromycin was added to the PCM media during the last 15 minutes of the ‘washout’ 

period. As a positive control of translational inhibition, 100 μg/ml cycloheximide 

(MilliporeSigma C7698) throughout the experimental time course. Neurons were 

then analyzed by Western or immunofluorescence using an anti-puromycin 

antibody (Table II-4). For the analysis of puromycin immunostaining upon FUS 

knockdown, a 20x20 pixel region was placed in the soma of GFP-positive cells. 

Using MetaMorph, the integrated intensity of this region was obtained and used to 

quantify relative puromycin levels as described above.  

 

Fluorescence in situ Hybridization (FISH) analysis 

Non-AraC treated neurons were plated on coverslips and transduced with shFUS 

or shSC-expressing lentivirus on DIV6 and harvested on DIV15. Following stress 

application, neurons were fixed with fresh 4% paraformaldehyde (Fisher Scientific, 

F79-500) diluted in RNAse free water (Corning, 46-000-CM) for 30 min at ambient 

temperature.  FISH labeling was completed using a QuantiGene ViewRNA ISH 

Cell Assay Kit (Affymetrix, QVC0001) according to the manufacturer’s instructions. 

One exception to the protocol was that samples were dehydrated after fixation with 

two min incubations in 50%, 70%, and 100% ethanol at ambient temperature 

followed by a second addition of 100% ethanol and stored at -20°C for five days 

before processing. Probes were designed and tested by Affymetrix. For post-FISH 

immunofluorescence, after probe labeling coverslips were washed in PBS for five 
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minutes and then blocked and processed for immunofluorescence as described 

(Baron et al. 2013). Coverslips were probed with MAP2 and GFP to visualize 

neurons and transduced cells, respectively. For analysis, neurons with at least two 

dendrites of 50+ µm lengths that did not excessively overlap with other cells were 

selected. Max projections of the imaged z-stacks were analyzed using MetaMorph 

software. For each neuron analyzed, 2-3 dendrites and the soma were assessed 

for their area and the number of FISH puncta present.  Average dendrite data were 

reported for each cell and 10 cells were analyzed per construct and condition. 

Images were prepared for visualization as described (Cajigas et al. 2012).  Gria2 

puncta were digitally dilated. Neuron outlines were created by converting MAP2-

images to binary and subsequently outline in green, in MetaMorph. 

 

LDH Analysis 

Neuron toxicity to glutamate was analyzed by the LDH assay using the CytoToxx 

96 Non-Radioactive Cytotoxicity Assay kit (Promega, G1782).  

 

Western Analysis 

Neurons were treated, washed twice with PBS and lysed using RIPA buffer 

(Boston BioProducts, BP-115-500) supplemented with protease (Roche, 

11836170001) and phosphotase inhibitors (Roche, 4906837001). Lysates were 

centrifuged at 13,500 rpm for 15 minutes, after which the supernatant was 

collected and its protein concentration determined using a BCA (Thermo Scientific 
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Pierce, 23227). Lysates were subsequently used for western and densitometry 

analysis as described(Ward et al. 2014). Protein gels for sodium dodecyl sulphate-

polyacrylamide gel electrophoresis were loaded with 8-20µg lysate and GAPDH 

was used as a loading standard to determine relative protein levels. Primary 

antibodies used for analysis are described in Table II-4; LI-COR secondary 

antibodies were used as described(Ward et al. 2014).  

 

Osmolarity Measurements 

Measurements of media osmolarity (mOsm) were obtained using a Precision 

Systems Osmette II according to the manufacturer’s instructions. 

 

FUS Immunoprecipitation and Analysis by Liquid chromatography–tandem Mass 

Spectrometry 

Neuron cultures from two 10-cm plates (each containing a coverslip to confirm FUS 

localization by immunofluorescence) were used for LC-MS/MS experiments.  

Neurons were treated with or without Gluexcito, washed twice with DPBS (Corning 

21031CV) and resuspended in 750 µL immunoprecipitation (IP) lysis buffer (1% 

Triton-X 100, 50mM Tris-HCl, 150mM NaCl, 5mM EDTA, 10% glycerol; filter 

sterilized) containing protease (Roche, 11836170001) and phosphotase inhibitors 

(Roche, 4906837001). Lysates were incubated at 4˚C for 30 minutes and spun at 

13,500 rpm. The concentration of the supernatant was saved and protein 

concentration measured by bicinchoninic acid assay (BCA; Thermo Scientific 
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Pierce, 23227); ~2500µg protein lysate was used for the following IP. A 1:4 volume 

of Protein G Dynabeads beads (Invitrogen 10003D): µg neuron lysate was 

acquired. Beads were washed with IP lysis buffer, mixed with the Genscript FUS 

antibody (Fig. II-3) in a 1:5 antibody:bead volume ratio in 1 mL of IP lysis buffer 

and incubated on a tube rotator for 2 hours at 4˚C. After 2 hours, lysis 

buffer/unbound antibody was removed and beads were mixed with the neuronal 

lysate overnight on a tube rotator at 4˚C. Beads were washed 3x with 1 mL IP lysis 

buffer before resuspending in 80µL Laemmli (SDS-Sample) Buffer (Westnet BP-

111R) and boiling for 5 minutes to elute FUS protein. Western analysis of a 0.5% 

IP volume was run to confirm FUS immunoprecipitation. The remainder of the IP 

volume was run on a 12% SDS-PAGE gel (prepared in a sterile tissue culture hood 

to minimize contaminants) and gels were stained with a mass spec compatible 

silver stain (Pierce #24600) according to the manufacture’s instructions. FUS bands 

were cut out using a razor into ~1mM size (~6-8 pieces/band). 

 Reduction and alkylation of gel bands was completed as described 

(Shevchenko et al. 2007). Briefly, samples were mixed with 500uL acetonitrile 

(Fisher Scientific A998-1) with vortexing until white and shrunken in size (~5-10 

minutes). Liquid was removed and replaced with freshly prepared ~30-50µL 10 

mM dithiothreitol (DTT; MilliporeSigma D0632) in 100 mM ammonium bicarbonate 

(MilliporeSigma A6141). Samples were incubated for 30 minutes at 56˚C and then 

cooled to room temperature before removing liquid and washing samples with 

acetonitrile as described above. Acetonitrile was removed and replaced with ~30-
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50µL of freshly prepared 55 mM Iodoacetamide in 100 mM ammonium 

bicarbonate. Samples were incubated in the dark at room temperature for one 

hour. Iodoacetamide solution was removed and samples were washed twice with 

autoclaved water and once with acetonitrile. Acetonitrile was removed and 

samples were stored at -20˚C until digestion with chymotrypisin (Promega V1062). 

 To digest samples, chymotrypisin was resolubulized in 50uL 1mM HCl for 

500ng/uL to make a working digestion buffer of 10ng/uL chymotrypisin (digestion 

buffer: 30uL 100mM Ammonium Bicarbonate, 30uL Acetonitrile, 240uL autoclaved 

water and 6uL of 500ng/uL chymotrypsin). ~50µL digestion buffer was added to 

samples on ice. After 90 minutes of incubation, 10-20uL of 100mM ammonium 

bicarbonate buffer was added to cover gel pieces and samples were incubated 

overnight at 25˚C in a convection incubator to prevent condensation. Peptides 

were extracted in 1:2 (vol/vol) digestion buffer:extraction buffer (5% formic acid 

(MilliporeSigma 06473)/acetonitrile) for 15 minutes at 37˚C with gentle shaking 

(350 rpm). Supernatant was removed and stored at -80˚C prior to analysis by LC-

MS/MS. Extracted peptides were run on a Thermo Scientific Q-Exactive with 

assistance from the UMass Spectrometry Core. A semi-chymotryptic search 

including phosphorylation was performed on the data. Data were viewed for 

downstream analysis using Scaffold Viewer.  
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CHAPTER III: DISCUSSION AND CONCLUSIONS 

Excitotoxicity as a Model of Neuronal Stress and Disease 

Glutamate is the major neurotransmitter in the central nervous system. With 

respect to neurons, glutamate causes hormesis, a biphasic phenomenon wherein 

low glutamate exposure is favorable, but high doses can overstimulate neurons 

and induce excitotoxicity (Marini et al. 2008, Olney 1989). Thus, the amount of 

glutamate to which neurons are exposed must be carefully regulated.  

Defects in glutamate signaling may arise from the abnormal release or 

uptake of glutamate from the extracellular space and/or function of postsynaptic 

glutamate receptors, as observed in trauma or ischemia (Olney 1989, Szydlowska 

& Tymianski 2010, Van Den Bosch et al. 2006). In regards to neurodegenerative 

disorders, glutamate-linked dysregulation has likewise been observed in patients 

with ALS (Gascon et al. 2014, Hideyama et al. 2012, Kawahara et al. 2004, Mitchell 

et al. 2010, Plaitakis & Constantakakis 1993, Rothstein et al. 1995, Selvaraj et al. 

2018), leading to the hypothesis that excitotoxicity contributes to neuronal death 

(Rothstein 1996). The downstream effects of excitotoxicity include oxidative 

damage, mitochondrial and ER dysfunction (Fricker et al. 2018) and are all 

characteristics of cell stress. Intriguingly, multiple ALS-linked proteins, including 

FUS, participate in the cellular response to stress and/or alter this process when 

mutated (Sama et al. 2014). Although the mechanisms of glutamate regulation are 

fairly established, the immediate consequences of dysregulation and potential 

contribution of cellular mechanisms to disease pathogenicity are less understood.  
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Here we establish a cellular model (Fig. II-1A) to investigate 

neurodegenerative disease-linked proteins and pathways following excitotoxic 

insult and their relevance to disease (Fig. III-1). Extracellular levels of glutamate 

are elevated in ALS patients (Fiszman et al. 2010, Spreux-Varoquaux et al. 2002), 

however, the recorded upper limits of physiological glutamate concentrations vary 

and are somewhat controversial, in part a reflection of evolving techniques and 

assay sensitivity (Chiu & Jahr 2017, Le Verche et al. 2011, Moussawi et al. 2011). 

We selected 10µM glutamate (Gluexcito) for our excitotoxic model as this 

concentration is consistent with relatively recent in vivo observations from ALS 

patients (Fiszman et al. 2010) and is known to cause excitotoxicity in cultured 

neurons (Schubert & Piasecki 2001). Intriguingly, apart from observations of 

calcium influx causing ultimate neuronal cell death, there are few reliable markers 

or assays with which to differentiate excitotoxicity and resultant downstream 

processes (e.g. apoptosis, autophagy, production of radical oxygen species etc.) 

(Fricker et al. 2018)3 from alternative cellular insults. Thus, several lines of 

supporting evidence are presented to verify our induction of excitotoxic stress in 

primary cortical neurons by 10µM glutamate.  

As the term excitotoxicity implies, neurons treated with 10µM glutamate 

ultimately die (Fig. II-1D-E, II-4G, II-11B) (Schubert & Piasecki 2001). Further, 

FUS egress, previously observed to promote cell viability following hyperosmotic  
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Figure III-1. A model depicting the impact of excitotoxic stress on neuronal 
homeostasis and disease pathogenesis. Under homeostatic conditions, 
shuttling RBPs such as FUS are predominately localized within the nucleus (top). 
Excitotoxic levels of glutamate (bottom) induce a massive influx of calcium and 
induce nuclear egress of FUS into neuronal soma and dendrites. Excitotoxic stress 
also leads to translational repression, a re-distribution of nucleocytoplasmic 
transport factors, and increased levels of Gria2 transcript within dendrites. The 
expression of FUS is required for enhanced levels of dendritic Gria2 in response 
to excitotoxic stress, implicating an RNA-processing role for FUS under these 
conditions. Enhanced levels of edited Gria2 transcript may represent a mechanism 
to offset the toxic effects of calcium influx. Prolonged or severe stress could 
manifest in the pathological aggregation of RBPs, including FUS, in 
neurodegenerative diseases such as ALS and FTD. Aberrant processing of Gria2 
and/or GluR2 can occur through several mechanisms (e.g., expression of mutant 
FUS in astrocytes, loss of FUS function due to aggregation, and other means as 
described in the text), and contributes to calcium dyshomeostasis during disease. 
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stress in mammalian cells (Sama et al. 2013), correlates with the glutamate dose 

applied (Fig. II-3E) and suggests neuronal stress has been induced by 

physiologically elevated glutamate levels (Fiszman et al. 2010, Spreux-Varoquaux 

et al. 2002). Other phenotypes observed that are consistent with cell stress 

include: changes to neuronal structure (such as dendritic fragmentation; Fig. II-

1B), attenuated global translation (Fig. II-5) and altered nuclear transport (Fig. II-

4) (Holcik & Sonenberg 2005, Kelley & Paschal 2007, Yasuda et al. 2006). Thus, 

these observations further support excitotoxic FUS egress as stress-mediated and 

are relevant to our understanding of cellular stress and ALS.  

As our current understanding of the factors that define the neuronal 

transition between favorable and unfavorable glutamate exposure are unclear. Our 

findings, in light of previous reports (Sama et al. 2013), indicate that FUS egress 

could potentially serve as a sensor of ‘stress-induced’ stimulation. In line with this 

hypothesis, FUS egress was not observed in Gluexcito-treated primary astrocytes 

(Fig. II-3C), a non-neuronal cell type that is not expected to experience 

excitotoxity. Moreover, Gluexcito-induced FUS egress is attenuated by NMDA 

inhibition (Fig. II-7G) as well as a reduction in extracellular calcium levels (Fig. II-

7A-C). NMDA is strongly implicated in cortical neuron excitotoxicity and the influx 

of calcium a primary and ultimately fatal event in this process. (Schubert & Piasecki 

2001, Stanika et al. 2009, 2012). Similarly, FUS translocation was observed 

following treatment with KCl (Fig. II-7F). Potassium application is a well-studied 

means with which to induce neuron depolarization and ion influx (Stanika et al. 
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2012), thus our results with KCl are consistent with the notion that FUS egress 

following glutamate-induced stimulation is a neuron specific process. Together, 

these data confirm that Gluexcito specifically induces excitotoxic stress in primary 

cortical neurons. 

Although 10µM glutamate induces neuronal excitotoxicity and ultimate cell 

death, the time point at which we observe FUS egress has biological relevance 

(Fig. III-1). FUS egress precedes cell death (Fig. II-1D-E, II-4G, II-11B) and we 

observed stress-specific changes to the compartmental density of multiple 

transcripts (Table II-2) as well as FUS-dependent expression of Gria2 (Fig. II-10C-

E). In further support of a response of FUS to glutamate (vs. a non-specific 

consequence of cell death), nuclear membrane integrity appears intact (Fig. II4A). 

Moreover, we observed a varied and selective redistribution of multiple proteins 

(FUS, TDP-43, hnRNPA1, CMR1 and RAN; Fig. II-2, II-4H-K), while other proteins 

associated with RNA and DNA activities were unaffected (TAF15, FMRP and 

G3BP; Fig. II-2D,H, II-4B, II-5G).  

That we observe a rapid decline in neuron viability following acute 

excitotoxic insult may have precluded our ability to assess the effect of factors such 

as KPT-330 (Fig. II-4G) or FUS (Fig. II-11B), on cell survival, especially if the 

effects are subtle. Such acute neuronal demise is a shortcoming of this study and, 

to this end, chronic and/or in vivo models may yield further or more nuanced 

insight. Nevertheless, this model provides a tractable system with which to probe 

neuron-specific effects of glutamate stress. We demonstrate a novel nexus of 
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features widely associated with both stress and disease (Fig. I-2, III-1) that is 

relevant to studies currently ongoing in the neurodegenerative field. Furthermore, 

our model aids in defining the cellular effects of excitotoxicity and neuronal demise 

associated with neurodegenerative disorders, including ALS. 

 

Altered Nucleocytoplasmic Compartmentalization in Stress and Disease 

RNA Binding Protein Egress and Nucleocytoplasmic Transport 

RBPs redistribute throughout the cell in response to stimuli as well as stress and 

disease. However, how or why this response occurs is not well understood. To 

understand the nature of RBP distribution, we investigated the localization of a 

panel of proteins linked to neurodegenerative disease during excitotoxicity, a 

neurodegenerative disease-linked stress. In doing so we observed RBP egress. 

However, the degree in redistribution varied (Fig. III-1, II-2, II-3) and this implies 

some form of selectivity. Interestingly, we did not observe a significant change in 

the localization of the shuttling protein TAF15 following excitotoxic insult at this 

experimental time point (Fig. II-2D,H). It would be interesting to examine the rate 

of TAF15 egress and/or import change with stress, as such dynamics may be 

reduced relative to proteins exhibiting a relatively robust response to stress. 

In attempt to understand RBP redistribution following excitotoxic stress, we 

considered what might mechanistically drive the nucleocytoplasmic distribution of 

these proteins. In light of the robust cytoplasmic accumulation of FUS and 

predicted nuclear export sequence (NES) in the RRM domain, we first investigated 
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the involvement of potential export pathways. We found that inhibition of CRM1-

mediated export by KPT-330 failed to completely prevent FUS egress (Fig. II-4C-

E) as well as the positive control (NES-tdTomato-NLS, Fig. II-4C-E), indicating 

global transport is altered. However, unlike FUS, we still observed a partial effect 

of KPT on NES-tdTomato-NLS localization that suggests Gluexcito-induced FUS 

egress occurs independently of CRM1. This conclusion is consistent with a recent 

report examining FUS export mechanisms under steady state conditions (Ederle 

et al. 2018).  

To widen our view on the state of global transport during excitotoxic stress, 

we also evaluated the localization of the shuttling protein RAN, which facilitates 

both import and export (Kim & Taylor 2017). We found nucleocytoplasmic 

equilibrium of RAN was also shifted to the cytoplasm (Fig. II-4J,K), further 

confirming that nucleocytoplasmic transport is globally altered by excitotoxic 

stress. Our observations reflect a growing body of literature implicating stress in 

impaired nucleocytoplasmic transport (Bano et al. 2010, Kelley & Paschal 2007, 

Kodiha et al. 2004, Yasuda & Mili 2016, Zhang et al. 2018a). For example, severe 

oxidative stress was shown to inhibit nuclear import and cause a collapse of the 

Ran gradient (Kodiha et al. 2004). Similar observations for Ran were reported for 

cells under hyperosmotic stress (Kelley & Paschal 2007), a stress that, like 

excitotoxicity, induces FUS egress (Sama et al. 2013). Intriguingly, It was recently 

observed that specific surface residues can directly promote or impede the 

association of proteins with nuclear pore components and thus, respectively 
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increase or decrease their rate of passage independent of transport adaptor 

proteins (Frey et al. 2018). This phenomenon blurs the line between the traditional 

binary classification of ‘diffuse/passive’ and ‘adaptor-assisted/active’ nuclear 

transport (Frey et al. 2018) and may have profound implications for our 

understanding of the nucleocytoplasmic equilibrium of RBPs during stress and 

disease. For instance, if processes reliant on the RAN gradient, such as 

transportin-1 (also karyopherin b2) which mediates FUS import (Dormann et al. 

2010, 2012), are sufficiently disrupted, such a scenario could result in the 

accumulation of cytoplasmic FUS independent of CRM1 or other export factors 

(Ederle et al. 2018). Thus, it would be interesting to directly test the relationship 

between inhibition of RAN-mediated transport processes and FUS egress. 

Unlike excitotoxic-FUS egress (Fig. 7II-A,B), the redistribution of FUS to 

hyperosmotic stress is not calcium-mediated (Fig. 7II-H,I) and suggests a 

difference in upstream mechanism. We do not know how direct the response of 

FUS to calcium is and thus, it is possible that the molecular underpinnings of 

excitotoxic and hyperosmotic stress egress may converge downstream through 

pathways or cellular states resulting from increased molecular crowding or ionic 

strength (Neuhofer et al. n.d.; Bounedjah et al. 2012; Rødgaard et al. 2008; Dong 

et al. 2009; Burg et al. 2007). Intriguingly, recent in vitro experiments have shown 

that RNA (Maharana et al. 2018) or other proteins linked to liquid-liquid phase 

separation (LLPS) (Hofweber et al. 2018) as well as ionic concentration (Qamar et 

al. 2018) can influence the LLPS dynamics of FUS. Although the extrapolation of 
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such experiments in cells is currently ongoing, it is intriguing that such conditions 

can influence the behavior of FUS and may be relevant to the altered dynamics of 

FUS observed in cells following specific forms of stress, such as calcium-mediated 

excitotoxity.  

In regards to FUS itself, additional in vitro experiments indicate that the 

modification of residues important in creating electrostatic interactions within FUS 

as well as between RNA and proteins (Hofweber et al. 2018, Qamar et al. 2018, 

Wang et al. 2018) could have relevance to aspects of cellular FUS function. For 

instance, under basal conditions, such a biophysical regulation of FUS may 

manifest as the addition of phospho- or methyl-groups previously shown to 

influence FUS interactions and transport (Darovic et al. 2015, Dormann et al. 2012, 

Hofweber et al. 2018). To this end, we hypothesized that FUS phosphorylation 

might contribute to FUS localization but were unable to conclude a difference in 

phosphorylation (Fig. II-8, Table II-1). Consistent with recent reports of FUS 

following hyperosmotic stress (Rhoads et al. 2018a), we did not observe a shift in 

the molecular weight of FUS following excitotoxic insult as observed for known 

phosphorylated FUS species (Rhoads et al. 2018a). Thus, these correlative 

observations suggest FUS may not be differentially phosphorylated following 

excitotoxic stress. However, FUS phosphorylation in the NLS has been shown to 

impede FUS import (Darovic et al. 2015). Both our mass spectrometry (Fig. II-8) 

as well as domain deletion experiments  (Fig. II-9) did not address potential 

modifications to the NLS or neighboring residues that influence FUS transport 



 116 

(Darovic et al. 2015, Dormann et al. 2012) and thus regulation of FUS egress 

through this C-terminal domain remains a possibility.  While FUS may be modified 

in response to stress and result in the cytoplasmic accumulation of this protein, it 

is intriguing to speculate that under conditions of stress in which the cellular 

environment is vastly altered (e.g. extreme increase in intracellular ions), such 

changes could potentially be sufficient to disrupt and/or ‘override’ the normal 

activities and associations of FUS, consistent with notions derived from in vitro 

reports in which ionic concentration impedes FUS LLPS (Qamar et al. 2018). 

However, this hypothesis remains untested. Regardless of mechanism, the 

change in localization may activate differential FUS functions as observed for other 

RBPs (Cammas et al. 2007, Lin et al. 2007) and, if unregulated, could potentially 

become pathogenic.  

 

Functional Response of FUS to Excitotoxicity  

Within neurons, mRNA localization is key to localized protein expression; 

nearly half the neurite-enriched proteome is encoded by neurite-localized mRNAs 

(Zappulo et al. 2017). Neuron excitation induces local mRNA translation in 

dendrites (Buxbaum et al. 2014, Ju et al. 2004) and the accompanying increase in 

RBPs is likewise viewed as essential for synaptic mRNA metabolism (Zhang et al. 

2012). Although FUS predominantly localizes to the nucleus under basal 

conditions, a low-level, basal presence of this RBP in dendrites under is well-

established (Fujii et al. 2005, Ling 2018) and consistent with our observations (Fig 
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II-F,G). Further, following neuronal excitation by chemically-induced, long term 

potentiation (LTP) or activation of mGluR5 receptors, FUS specifically increases 

within dendritic synapses ( Fujii et al. 2005, Sephton et al. 2014, Zhang et al. 2012). 

In the case of mGluR5 stimulation, GFP-tagged FUS was observed to move from 

the dendritic shaft to spines, although no increase in the total levels of FUS were 

reported (Fujii et al. 2005). While the localization of FUS to spines was not 

examined in this study, using the physiological neurotransmitter glutamate, we 

observed a previously unreported and robust accumulation of FUS in dendritic 

shafts (Fig. II-3F,G) and somatic cytoplasm (Fig. II-2A,E).    

Beyond a physical increase of FUS in dendrites, we further uncovered a 

FUS-dependent enrichment of dendritic Gria2 upon exposure to Gluexcito (Fig. II-

3F,G, II-10C-F), although we do not yet know if dendritic FUS is specifically 

responsible for this effect. Gria2 encodes the GluR2 protein subunit of the AMPA 

receptor and incorporation of post-transcriptionally edited GluR2 subunit renders 

AMPA receptors calcium impermeable (Wright & Vissel 2012) (Fig III-2). Following 

neuronal stimulation with mGluR5 or potassium (Fig II-7F), Gria2 is locally 

translated in dendrites (Ju et al. 2004) (Fig III-2). Thus, stress-specific Gria2 

expression in response to excitotoxic stress is conceivable. Given the acute 

strength of Gluexcito, our observations possibly reflect a homeostatic response to 

strengthen synapses (Liu & Cull-Candy 2005, Liu & Zukin 2007). During this time, 

an increase in GluR2-containing AMPA receptors has been observed (Liu & Cull-

Candy 2005). While this immediate increase may result from the migration of  
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Figure III-2. Normal Gria2/GluR2 biology and association with FUS. Gria2 is 
transcribed, spliced and edited in the nucleus. Glutamine to arginine (Q/R) post-
transcriptional editing is mediated by the enzyme ADAR2, and this editing event 
confers calcium impermeability to the assembled AMPA receptor and is highly 
efficient in cortical and spinal neurons (Kawahara et al. 2003, 2004; Nutt & Kamboj 
1994). Gria2 is transported to neuronal dendrites for local translation, which can 
be specifically induced by response stimulation. The Gria2-encoded AMPA 
subunit, GluR2, is present in the majority of AMPA receptors, although there is a 
noted biological contribution of GluR2-lacking (calcium permeable) AMPA 
receptors (Cull-Candy et al. 2006, Gascon et al. 2014). In regards to FUS, FUS 
does not appear directly linked to Gria2 transcription (Lagier-Tourenne et al. 2012) 
or GluR2 expression under basal conditions ((Udagawa et al. 2015) and (Fig. II-
10)). FUS binds both Gria2 introns and 3’UTR and influences the splicing of this 
transcript, as observed in changes in Gria2 splicing following FUS knockdown 
(Lagier-Tourenne et al. 2012). Including the findings presented here, we observe 
a novel FUS-dependent increase of Gria2 in dendrites following excitotoxic insult 
(Fig. II-10). 
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receptors from an extra-synaptic pool, there may be a potential role for Gria2 

translation in the replacement of this pool or the specific need to express of GluR2-

containing receptors. Such a hypothesis is consistent with reports of FUS 

enrichment in post synaptic densities by mass spectrometry following chemical 

LTP (Zhang et al. 2012) and separate observations of GluR2 translation following 

application of a potassium-based LTP-linked protocol (Ju et al. 2004). However, 

whether the effect of FUS on Gria2 stems from acute stimulation or the explicit 

activation of cell stress pathways is currently unclear and requires further 

investigation. Regardless, increased expression of Gria2 could serve a protective 

role following excitotoxic insult by increasing the overall number of calcium-

impermeable (GluR2 containing) AMPA receptors by reducing net calcium influx 

caused by calcium-permeable (GluR2 lacking) receptors (Gascon et al. 2014, Liu 

& Zukin 2007).  

A model in which there is a select increase in Gria2/GluR2 expression is 

consistent with our preliminary observations that response of Gria1 to excitotoxicity 

is relatively modest and/or unchanged (Table II-2). Although we presume Gria2 is 

translated in response to excitotoxicity (Ju et al. 2004), we did not detect an 

increase in total protein (Fig. II-10G,H). It is probable that our examination of 

steady-state, whole-cell lysates lacks the sensitivity to detect subtle changes in 

rapid protein expression 30 minutes post-insult. The Bosco lab has previously 

found that labelling nascent peptides was required to detect the translation of 

select proteins during stress (Baron et al. unpublished results). 
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While we have yet to determine the biological significance of increased 

Gria2 in dendrites following excitotoxic insult. However, that increased dendric 

Gria2 expression occurs in a FUS and stress specific manner is novel (Fig. II-10) 

and increases our understanding of FUS function and glutamate signaling. 

Although FUS has been shown to bind and influence the splicing of Gria2 (Fig. III-

2) (Lagier-Tourenne et al. 2012), a selective effect of FUS on the levels of 

endogenous AMPA transcripts has only been observed for Gria1 under non-

stimulated conditions (Lagier-Tourenne et al. 2012, Udagawa et al. 2015). Given 

the involvement of FUS in dendritic RNA transport (Kanai et al. 2004) and 3’UTR-

mediated stabilization of synaptic transcripts Gria1 and SynGAPa2 (Udagawa et 

al. 2015, Yokoi et al. 2017) for expression, it is possible that FUS may function 

similarly in regards to Gria2 following excitotoxic stimulation. However, we cannot 

rule out that Gria2 regulation by FUS may also involve splicing (Lagier-Tourenne 

et al. 2012), transport (Kanai et al. 2004) and/or mRNP remodeling for translation 

(Buxbaum et al. 2014).  

In addition to Gria1 or Gria2, we had also selected Nd1-L as a candidate 

transcript for assessment of FUS function during excitotoxicity based upon a 

previously reported relationship between FUS (Table II-2). The Nd1-L transcript 

encodes an actin-stabilizing protein whose transcript levels increase in a FUS-

dependent manner following activation of mGluR5 in hippocampal dendrites (Fujii 

& Takumi 2005, Fujii et al. 2005). As glutamate can also activate mGluR5, we had 

expected a similar result. However, we observed no change in dendritic Nd1-L and 
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our preliminary data further suggest the number of somatic Nd1-L transcripts 

decreases following excitotoxicity (Table II-2). As glutamate activates multiple 

receptors in addition to mGluR5 and there is much crosstalk between the 

downstream, receptor-activated pathways (Reiner & Levitz 2018) this could 

represent one reason for this observational conflict. Thus, if not a consequence of 

cell type differences (hippocampal vs. cortical), understanding the significance of 

these observations would require further investigation. 

Together, our data demonstrate the involvement of FUS in the regulation of 

the synaptic transcript, Gria2, during excitotoxic stress. These observations 

provide mechanistic insight into the RNA-processing activities of FUS in neurons. 

Indeed as FUS knockout and knockdown studies demonstrate FUS as an essential 

player in shaping dendritic spines (Fujii & Takumi 2005, Fujii et al. 2005, Udagawa 

et al. 2015, Yokoi et al. 2017), our findings further the importance of FUS in 

dendritic spine and post-synaptic biology.  

 

Glutamate Signaling and Cellular Stress in ALS 

Calcium Defines a New Link Between FUS and ALS 

Here we identified a novel redistribution of FUS to the cytoplasm following 

glutamate-induced excitotoxicity in primary neurons (Fig III-1) and together these 

data uncover a new role for FUS in glutamate signaling pathways. Calcium is a 

key player in the neuronal response to glutamate and we find that the calcium 

ionophore, Ionomycin, is sufficient to incite a response of FUS in murine cortical 
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and motor neurons (Fig. II-2A,E and II-12A-D) as well as human iPSC-derived 

motor neurons (Fig. II-12E). Although we do not know how direct the response of 

FUS to calcium is, these data reveal that increased intracellular calcium 

consistently induces FUS egress in multiple neuronal models.  

The work presented here was predominantly conducted in cortical neurons. 

Although not the primary affected cell type in ALS, cortical neurons share many 

properties with motor neurons and are associated with the neurodegenerative 

disease FTD, which lies on a ‘disease-spectrum’ with ALS (Ling et al. 2013). Thus, 

the tractability and amenability to biochemical assays make cortical neurons useful 

in establishing neuronal precedent. To extend key findings from our cortical neuron 

system, we used kainic acid to induce excitotoxicity in primary murine motor 

neurons and observed changes to SMI-32 that are consistent with the notion that 

kainic acid induces cellular stress (Fig. II-12A-D). Intriguingly, unlike cortical 

neurons, the distribution of FUS C:N ratios in murine spinal cord motor neurons 

FUS appeared bimodal. This may suggest that a sub-population of neurons exhibit 

enhanced vulnerability to stress and could, potentially, trigger transneuronal or 

secondary neuronal degeneration within neighboring cells with time (Fricker et al. 

2018) and would be an interesting direction for future research. Although we 

attempted to induce excitotoxicity with glutamate and kainic acid in iPSC-derived 

motor neurons using conditions previously described (Donnelly et al. 2013), we 

were unable to elicit FUS egress or alterations to neuronal morphology, as 

expected based on our observations in cortical neurons and excitotoxicity 
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literature. These data suggest that the application of excitotoxic agonists in iPSC 

did not induce stress in these cells. However, that we consistently observe 

Ionomycin-induced FUS egress, even in iPSC (Fig. II-12E) supports the notion that 

while different neuron types and/or models may differ in their potential 

susceptibility to excitation (e.g. due to inherent differences in receptor expression, 

neuron maturity etc.), once a calcium-mediated ‘threshold’ is achieved, FUS 

egress is commonly shared.  

The connection we have made between FUS and calcium has implications 

for FUS in ALS. Although acute, transient expression of ALS-mutant R521 FUS or 

the severely cytoplasmic variant, P525L FUS, for 72 hours was not sufficient to 

increase intracellular calcium levels (Tran et al. 2014), hyperexcitability has been 

observed in ALS-FUS iPSC-derived motor neurons (Wainger et al. 2014). 

Hyperexcitability describes a state in which neurons are excessively excitable (i.e. 

an increased propensity for neurons to fire in response to a given stimulus) and is 

a notable feature of ALS that has been recapitulated in multiple ALS animal and 

iPSC models (Fogarty 2018). As such, increased synaptic transmission due to 

hyperexcitability could increase intracellular calcium transients with time and, 

when compounded by age-related defects in synaptic homeostasis (Bezprozvanny 

& Hiesinger 2013), could potentially culminate in excitotoxicity to trigger disease-

linked FUS pathology (Keller et al. 2012, Vance et al. 2009). Support for this 

possibility comes from models of ischemia, an event strongly linked to 

excitotoxicity (Szydlowska & Tymianski 2010), in which RBP translocation (Liu et 
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al. 2010) as well as the partitioning of RBPs (including FUS and TDP-43) to triton-

insoluble aggregates (Kahl et al. 2018) has been observed. Intriguingly, data from 

ALS-models suggests that hyperexcitability precedes and gives way to 

hypoexcitability. Hypoexcitability is a state in which neuronal excitation in response 

to a given stimulus is reduced (Devlin et al. 2015) and has been observed in adult 

ALS-FUS rodent models (de Lourdes Martínez-Silva et al. 2018) as well as ALS-

FUS iPSC models (Naujock et al. 2016). Although the relationship of 

hypoexcitability to ALS pathology is less clear than hyperexcitability, altered pre-

synaptic firing patterns of inhibitory and/or excitatory neurons as well as 

‘unfavorable’ imbalances in calcium-permeable AMPA receptors in post-synaptic 

hypoexcitable neurons could similarly increase intracellular calcium levels in vivo 

(Delestrée et al. 2014).  

ALS-causing FUS mutations result in the mislocalization of mutant FUS to 

the cytoplasm, the varying degree of which correlates with a reduced age in 

disease onset (Dormann et al. 2010). ALS-FUS mutations show impaired binding 

of mutant FUS with the nuclear import protein, Transportin 1 (also called 

karyopherin b2) (Dormann et al. 2010). Further, recently developed murine models 

suggest the increased cytoplasmic presence of FUS promotes the formation of 

ALS-linked phenotypes (Scekic-Zahirovic et al. 2017, Sharma et al. 2016, 

Zahirovic & Sendscheid 2016). Despite these observations, how FUS forms end-

stage disease aggregates and how these mutations functionally contribute to 

pathogenesis is unclear. We observe the robust redistribution of nuclear ALS-FUS 
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mutants in response to excitotoxic stress (Fig. II-13A,B). Thus, these data support 

excitotoxicity as a potential mechanism by which nuclear mutant FUS ultimately 

accumulates in the cytoplasm in end stage tissue.  

Unlike the nuclear ALS-FUS mutants tested, we observe that 

nucleocytoplasmic equilibrium of the severely mislocalized, ALS-mutant, R495X, 

was not further enhanced by excitotoxic stress (Fig. II-13A,B). Given that 

mutations cause an increase in cytoplasmic FUS, providing a basis for gain of 

function mechanism in disease, (Scekic-Zahirovic et al. 2017, Sharma et al. 2016, 

Zahirovic & Sendscheid 2016), we tested if R495X FUS could alter Gria2 

expression in neurons under basal or excitotoxic stress conditions. Our results 

were inconclusive however as transient expression of human, FLAG-HA-WT FUS 

(Fig. II-13C,D) prevents the dendritic Gria2 phenotype previously uncovered in 

naïve murine neurons (Fig. II-10). Precluding an effect of the transfection itself, 

these data suggest human FUS may exert a dominant negative effect in our murine 

system. Although we were unable to determine the effect of R594X FUS on Gria2, 

others have recently observed that P517L (the murine equivalent of human P525L, 

a severely mislocalized cytoplasmic ALS-FUS variant) can reduce Gria2 levels 

through the upregulation of miRNAs targeting this transcript (Capauto et al. 2018). 

Further, through a non-cell autonomous mechanism, astroglial expression of ALS-

FUS mutant, R521G, can reduce AMPA expression in motor neurons and cause 

calcium-mediated toxicity (Kia et al. 2018). Thus, there is a precedence for the 

altered regulation of AMPA subunits, including Gria2/GluR2, by mutant FUS in 
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disease. Over a lifetime mutant FUS may promote conditions of calcium 

dysregulation and lead to conditions cumulating in excitotoxicity that ultimately 

cause motor neuron death and FUS egress. 

 

Excitotoxicity, Cellular Stress and Disease 

While the potential for a pathogenic relationship between mutant FUS and calcium 

may apply to FUS-mediated ALS, glutamate-linked calcium dysregulation is also 

associated with phenotypes common to both familial and sporadic ALS as well as 

FTD (Gascon et al. 2014, Hideyama et al. 2012, Kawahara et al. 2004, Mitchell et 

al. 2010, Plaitakis & Constantakakis 1993, Rothstein et al. 1995, Selvaraj et al. 

2018). Specific to AMPA receptors, an ALS iPSC model of C9orf72 reports 

increased vulnerability to calcium through abnormal expression of the AMPA 

subunit, GluR1 (encoded by Gria1) leading to neuronal susceptibility to calcium 

(Selvaraj et al. 2018). Calcium-permeable AMPA dysfunction is implicated in iPSC 

models of FTD (Gascon et al. 2014, Imamura et al. 2016) as well as toxicity in 

SOD1 ALS motor neuron models (Van Damme et al. 2007). Thus, this investigation 

provides insight and further supports the potential of glutamate and/or calcium 

dysregulation in ALS and FTD (Deng et al. 2010, Keller et al. 2012-b).  

Aside from the glutamate receptors themselves, nucleocytoplasmic 

transport has recently emerged as another common theme amongst age-related 

neurodegenerative diseases, particularly in the context of sporadic and familial 

ALS as well as FTD (Li & Lagier-Tourenne 2018). While certain pathogenic 
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mutations are sufficient to induce pore disruption in culture (Zhang et al. 2015), it 

is possible that stressors, such as excitotoxicity, could also contribute to the 

development of or exacerbate observed defects. For instance, excitotoxicity-linked 

depletion of adenosine triphosphate (ATP) (Szydlowska & Tymianski 2010, 

Yasuda et al. 2006) and/or calcium activation of calpains that degrade nuclear pore 

proteins (Bano et al. 2010, Sugiyama et al. 2017) could potentially disrupt transport 

or nuclear pore permeability. In support of this notion, guanosine triphosphate 

(GTP) can improve reduced import caused by excessive intracellular calcium 

(Sweitzer & Hanover 1996). Further, mice deficient in the astroglial glutamate 

transporters, GLAST and GLT1 (also known as EAAT1 and EAAT2;  the latter 

implicated in ALS (Rothstein et al. 1995)), exhibit motor neuron degeneration 

accompanied by nuclear pore degradation (Sugiyama et al. 2017). Interestingly, 

motor neuron death was delayed in these mice treated with the CRM1 inhibitor 

KPT-350 (Sugiyama et al. 2017), an analogue of KPT-330 that is currently being 

pursued as potential therapy in ALS clinical trials. Although we only observe a 

partial effect of KPT-330 in our model (Fig. II-4C-E), that KPT-330 can modulate 

the effects of excitotoxicity supports further investigation into this line of therapy, 

however increased benefit may be observed when used as part of combination 

therapy.  

Akin to transport, excitotoxicity also reduces translation (Fig. II-5), another 

stress-linked phenotype (Aulas et al. 2017) associated with ALS models (Green et 

al. 2017, Murakami et al. 2015). Surprisingly, global translational repression 30 
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minutes following excitotoxic insult was not mediated by EIF2a phosphorylation as 

commonly observed for cellular stress (Holcik & Sonenberg 2005) as well as 

reported in ALS patients and models (Ilieva et al. 2007, Sharma et al. 2016). 

Although not examined here, alternative forms of calcium-linked, translational 

repression such as eukaryotic elongation factor 2 (eEF2)-phosphorylation (Heise 

et al. 2014, Marin et al. 1997) might be responsible for immediate inhibition (Fig. 

II-5) followed by EIF2a phosphorylation later in the excitotoxic time course (Fan et 

al. 2013). Together this work reveals hallmarks of cell stress associated with 

neurodegeneration in a model of excitotoxicity: RBP egress, nucleocytoplasmic 

transport defects and possibly translational repression. These findings are 

consistent observations in patients and animal models, and thus further our 

understanding of cell stress phenotypes and their relevance to disease 

pathogenesis. 

 

Conclusions 

Glutamate is a neurotransmitter that is essential for the function of neurons in the 

CNS. Dysregulation of this essential molecule can cause neuron toxicity and there 

is evidence for this outcome in neurodegenerative diseases including ALS and 

FTD. That the nuclear egress of FUS and additional disease-linked RBPs identified 

following excitotoxicity is similarly observed in additional contexts (i.e. HOS) 

supports the dynamic redistribution of these proteins as part of a general response 

of RBPs to cell stress. While the RBP redistribution may serve as a switch or signal 
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in cellular state, the functional meaning remains to be uncovered. Interestingly, we 

identified a potential functional role for FUS following excitotoxic insult that 

increases our understanding of the cellular response to excitotoxicity as well as 

current hypothesized mechanisms of neurodegenerative disease. As with many 

biological processes, low or temporary exposure to stimuli can induce favorable 

and/or protective mechanisms within a cell, system or organ. However, too much 

of a “good” thing can be detrimental. In the context of disease, excessive or chronic 

glutamate stress may permanently disrupt the nucleocytoplasmic equilibrium to the 

point where RBPs are dysfunctional and promote neuronal demise. Defining this 

balance is thus an essential part of understanding the consequences of cellular 

disruptions that ultimately manifest as human disease.  

 

 

 

 

 

 

 

 

 

 

 



 130 

PREFACE TO APPENDIX I 

 

All of the work presented in this appendix was performed by Maeve Tischbein 

with the following exceptions:  

 

Murine primary motor neuron experiments were performed and analyzed by Dr. 

Claudia Fallini. Astrocyte cultured media used for osmolarity measurements was 

a generous gift from Dr. Brigitte Van Zundert (Fritz et al. 2013). 
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 APPENDIX I: Investigation of Hyperosmotic Stress in the CNS 

Mutations in FUS cause the neurodegenerative motor neuron disease, 

amyotrophic lateral sclerosis (ALS) (Kwiatkowski et al. 2009, Vance et al. 2009). 

In patient tissue, fused in sarcoma (FUS) aggregates in the cytoplasm of motor 

neurons. Currently >40 ALS-mutations have been identified in FUS and they can 

be found throughout the protein (Kapeli et al. 2017). Intriguingly, the highest 

number of single mutations and those mutations occurring at the highest frequency 

are found in or neighboring the NLS (Lattante et al. 2013), a domain important in 

maintaining FUS localization. Intriguingly the degree of mislocalization conferred 

by ALS mutation correlates with a reduced age in disease onset (Dormann et al. 

2010) and implies that the FUS mislocalization contributes to disease.  

 Upon investigation of the normal, cytoplasmic roles of FUS, it was 

discovered that hyperosmotic stress (HOS) can induce the nuclear egress of FUS 

and FUS accumulation within cytoplasmic stress granules (Sama et al. 2014). 

Stress granules are transient presumably protective, mRNA-protein complexes 

(Buchan & Parker 2009) that can form in response to environmental stressors 

including hyperosmotic, oxidative and ER stress. To date, much of the research 

examining the response of FUS to hyperosmotic stress has been conducted in 

immortalized cells. As ALS affects the central nervous system (CNS), the response 

of CNS-linked cell types to hyperosmotic stress as well as the physiological 

relevance of hyperosmotic stress to the CNS remains to be determined. There are 

reports that hypernatremia, a condition where sodium serum levels are excessively 
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increased, increases the levels of brain osmolytes (Lien et al. 1990) and 

hyperosmolar therapy has been suggested as a treatment to reduce brain swelling 

(i.e. following trauma) (Ropper 2012). More relevant to ALS, solutes such as 

glutamate are increased in patient CSF and there are reports of non-neuronal cells 

contributing to ALS through the release of factors that cause non-cell autonomous 

neuron toxicity in cell cultures models (Fritz et al. 2013, Nagai et al. 2007). Further, 

inflammation is widely observed in ALS and there is evidence suggesting 

hyperosmotic stress is linked to and may event serve as a inflammatory stimulus 

(Brocker et al. 2012).  Given the relevance of FUS localization to disease and that 

FUS egress is observed following HOS suggests HOS as an intriguing, potential 

pathomechanism. The physiological relevance of hyperosmotic stress to 

neurodegeneration however is less clear and explored here. 

 

FUS Egress Following Hyperosmotic Stress (HOS) in Primary Motor Neurons 

To understand the HOS response of FUS and its potential relevance to ALS, FUS 

localization was evaluated in response to HOS in primary motor neurons, the 

primary affected cell type. Extracellular osmolarity was increased with the osmolyte 

sorbitol, using the same paradigm (0.4M sorbitol for one hour) shown to induce 

FUS egress in immortalized cells (Sama et al. 2013) and primary cortical neurons 

(Fig. II-7). Following treatment, FUS egress was observed in primary motor 

neurons and the cytoplasmic:nuclear (C:N) equilibrium of FUS significantly 

increased (Fig. AI-1). While FUS egress seems a common feature of the HOS  
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Figure AI-1. FUS egress is observed in primary motor neurons following 
hyperosmotic stress. (A,B) DIV6-8 primary motor neurons treated with 0.4M sorbitol 
for one hour exhibit FUS egress (green) and a significant increase in FUS C:N ratio 
(Student’s T-test, **p<0.01, n=3 biological replicates). Motor neurons were identified using 
the motor neuron marker, SMI-32 (red) and nuclei were stained with DAPI (blue). The 
extent of cytoplasmic FUS varied to a greater extent between sorbitol treated cells but not 
controls. In (B), black squares indicate individual cell measurements and experimental 
means were calculated from the average C:N ratio across the individual biological 
replicates. Error bars represent SEM. Scale bars = 10µm. 
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response, the absolute extent of egress appears reduced relative to immortalized 

cells (Sama et al. 2013) and may reflect biological differences in cell type. 

 
 
Evaluating Potential Links Between ALS, Non-Cell Autonomous 

Mechanisms of Disease and Cellular Stress 

In ALS motor neurons represent the primary affected cell type, however, 

pathological aggregates are also observed in non-neuronal, glial cells (Peters et 

al. 2015). These observations imply that neurons are not the only cell type affected 

by disease. Thus, understanding the response and/or contribution of glia to CNS 

stress may provide insight as to the cellular mechanisms underlying ALS pathology 

and selective degeneration of motor neurons. In considering HOS as a 

physiological source of stress, we hypothesized that the release of factors from 

non-neuronal glial cells could potentially increase media osmolarity, thereby 

serving as possible mechanism by which HOS might be induce or contribute to 

disease in vivo. Given reports of the release of unknown astrocytic factors capable 

of causing motor neurons toxicity (Fritz et al. 2013, Nagai et al. 2007), we tested if 

the osmolarity of cultured astrocyte media (ACM) from cells expressing wildtype 

(WT) or ALS-mutant SOD1 species (G93A, G85R) was increased. Upon 

measurement of ACM osmolarity (ACM previously described (Fritz et al. 2013)), 

no correlation with genotype or SOD1 overexpression were observed from this, 

albeit limited, analysis (Fig. AI-2A). While not conclusive, these data suggest that 

there are no robust changes in ALS-mutant SOD1 ACM osmolarity.  
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Figure AI-2. Factors secreted by ALS-mutant astrocytes and microglial 
activation do not appear to robustly influence osmolarity. (A) Media osmolarity 
astrocyte cultured media (ACM) from murine astrocytes expressing WT or mutant (G93A, 
G85R) SOD1 species was assessed relative to the non-transgenic control (NT) or water 
(ddH2O) alone. N=1 biological replicate; mutant SOD1 ACM was tested in technical 
duplicates. No appreciable and/or correlative trend could be determined from osmolarity 
measurements. Error bars represent SEM. (B) Primary microglia activation is confirmed 
by the production of TNF-a following stimulation with LPS. (C) The osmolarity of media 
from microglial cultures did not appreciably change following primary microglial activation 
using LPS. (B,C) n=1 biological replicate; results are consistent with n=2 biological 
replicate similarly conducted in BV2 cells.  
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Figure AI-2 continued. (D) Microglia treated with sorbitol or sodium arsenite form stress 
granules (TIAR, red), however nuclear egress of FUS (green) and subsequent 
colocalization with stress granules was only observed following sorbitol treatment. White 
boxes denote areas used for high magnification details. N=2 biological replicates. Scale 
bars = 10µm.  
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Figure AI-2 continued. (E) Primary microglia used for experiments expressed the 
expected cell marker CD11B/C (green). Scale bar = 10µm. (F) TNF-a production was 
similarly assessed by western analysis of BV2 cells treated with LPS, HOS (induced by 
Sorbitol or Mannitol) or oxidative (sodium-arsenite; NaAsO2) stress (n=1 biological 
replicate). However, TNF-a was only detected following treatment with the positive control, 
LPS.  
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Although we did not observe gross alterations to media osmolarity from this 

primary astrocyte model, activation of primary microglia can release factors (i.e. 

pro-inflammatory cytokines) into the extracellular space and such activated states 

are observed in ALS (Saberi et al. 2015) and could potentially trigger HOS. 

Conversely, HOS has been suggested as potential stimulus of an inflammatory 

response (Brocker et al. 2012) and thus, understanding the immune cell response 

to stress could have implications for disease.  

To this end, cultures of primary murine microglia were treated with 

lipopolysaccharide (LPS) to induce activation, the result of which was indicated by 

the production of TNF-a and observed by western (Fig. AI-2B). Next, the 

osmolarity of the media from these activated cultures was measured, however no 

robust differences were observed (Fig. AI-2C). We next assessed if stress 

granules and FUS localization paralleled observation from immortalized cells 

(Sama et al. 2013) and/or cause immune cell activation. Primary microglia were 

treated with HOS and oxidative stress and stress granules (as indicated by the 

stress granule marker, TIAR) were observed following both forms of stress (Fig. 

AI-2D,E). Intriguingly, stress granules caused by HOS were smaller and less 

‘robust’ than sodium arsenite granules (Fig. AI-2D). Moreover, FUS egress was 

only observed for HOS treatment and co-localization with cytoplasmic stress 

granules was qualitatively observed (Fig. AI-2D). Both observations are akin to 

previous reports from immortalized cells (Sama et al. 2013). Upon observing that 

immune cells exhibit a biological response to stress, we next assessed if such 
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forms of stress could directly induce their activation. To do so, the production of 

TNF-a, a marker of immune cell activation was assessed in immortalized, 

microglial-derived BV2 cells following stress. BV2 cells were treated with LPS as 

a positive control for cell activation (Fig. AI-2F).  Although we qualitatively 

observed BV2 cell activation, TNF-a production was not observed by western 

following various forms of HOS or oxidative stress (Fig. AI-2F).  

 
 

Conclusions 

The relevance of HOS to ALS is currently unclear. From these pilot studies it 

appears that FUS egress following hyperosmotic stress is common to motor 

neurons as well as microglia (Fig. AI-1,2D). In conjunction with additional 

observations (Fig. II-7, (Sama et al. 2013)) these data confirm FUS egress is part 

of a common cellular response to HOS. Despite evidence for a connection 

between HOS and the inflammatory response (Brocker et al. 2012), we did not 

observe a direct induction of immune cell activation following HOS and vice versa 

from our limited pilot studies (Fig. AI-2C,F). Further, the osmolarity of media from 

astrocytes known to be toxic to motor neurons did not appreciably differ from 

controls (Fig. AI-2A). Although no positive phenotypes were observed here, we 

cannot rule out potential differences in vivo, larger and/or chronic studies using 

more sensitive techniques and/or relevant models. Thus, HOS could potentially 

occur though alternative means (i.e. increase in CSF solute concentrations 
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following trauma or chronic disease) to trigger and/or exacerbate disease and 

disease-linked phenotypes. 

 

Methods and Materials 

Cell Culture and Treatment 

Dissociated neuron cultures were prepared as described (see Chapter III Methods 

and Materials) and primary microglial cultures as previously reported (Rotunno et 

al. 2014). BV-2 cells were cultured in DMEM F12 50/50 (Corning 10-090-CV) 

supplemented with 10% fetal bovine serum (FBS; MilliporeSigma F4135) and 

grown under standard culture conditions (37°C, 5% CO2/95% air). Frozen, 8-fold 

diluted astrocyte cultured media (ACM) samples were a generous gift from Dr. 

Brigitte Van Zundert (Fritz et al. 2013). To induce stress, 1M sodium arsenite 

(MilliporeSigma 71287) prepared in water was diluted 0.5 mM in media and added 

to cells for 0.5-2 hours. The osmolytes sorbitol (MilliporeSigma S6021) or mannitol 

(MilliporeSigma M9546) were directly dissolved in media to obtain a final 

concentration of 0.4-0.6M and applied to cells for 0.5-2 hours. Stocks of 1 mg/ml 

Lipopolysaccharide (LPS; MilliporeSigma L7770) were prepared and water and 

diluted in cell media for a final concentration of 1 or 10µM and added to cells. 

 

Immunofluorescence, Image Acquisition and Analysis 

Immunofluorescence was completed as described (Bosco et al. 2010, Sama et al. 

2017) (see Chapter III Methods and Materials). Primary antibodies and dilutions 
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used include: 1:1000 FUS (Bethyl Laboratories A300-293A), 1:500 SMI-32 

(Thermo Fisher), 1:2500 TIAR (Fisher Scientific BDB610352) and 1:200 CD11B/C 

(Pierce PA1-46162). Motor neuron images were acquired and processed as 

described for similar experiments in Fig. III-12A-D (see Chapter III Methods and 

Materials).  Single plane microglia images were obtained using a Leica DMI6000B 

microscope as described (Sama et al. 2013).  

 

Western Analysis  

Whole cell lysates from microglia or BV2 cultures were used for Western analysis 

to detect TNF-a production. Western analysis was conducted as described (Ward 

et al. 2014)  (see Chapter III Methods and Materials). Primary antibodies used 

include: 1/1000 Tubulin (Lab Made – Dox) and 1:200 TNF-a (Santa Cruz, sc-

1351). 

 

Osmolarity Measurements 

Measurements of media osmolarity (mOsm) were obtained using a Precision 

Systems Osmette II according to the manufacturer’s instructions. 
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APPENDIX II: Increased Turnover of ALS-mutant Profilin 1 in Neuronal 

Cells 

 

The following chapter is a manuscript published in Proceedings of the National 

Academy of Sciences.  

 

My contributions to this manuscript included developing, performing and analyzing 

experiments examining the turnover of V5-tagged wildtype and ALS- mutant 

profilin 1 in neuronal cell line, SKNAS (Figure 2 and Supplementary Figure 3).  
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profilin 1 in ALS
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Mutations in profilin 1 (PFN1) are associated with amyotrophic lateral
sclerosis (ALS); however, the pathological mechanism of PFN1 in this
fatal disease is unknown. We demonstrate that ALS-linked mutations
severely destabilize the native conformation of PFN1 in vitro and
cause accelerated turnover of the PFN1 protein in cells. This mutation-
induced destabilization can account for the high propensity of ALS-
linked variants to aggregate and also provides rationale for their
reported loss-of-function phenotypes in cell-based assays. The source
of this destabilization is illuminated by the X-ray crystal structures of
several PFN1 proteins, revealing an expanded cavity near the protein
core of the destabilized M114T variant. In contrast, the E117G
mutation only modestly perturbs the structure and stability of PFN1,
an observation that reconciles the occurrence of this mutation in the
control population. These findings suggest that a destabilized form of
PFN1 underlies PFN1-mediated ALS pathogenesis.

amyotrophic lateral sclerosis | profilin 1 | protein stability | X-ray
crystallography | protein misfolding

Mutations in the profilin 1 gene (PFN1) were recently as-
sociated with both familial and sporadic forms of amyo-

trophic lateral sclerosis (ALS) (1, 2), an incurable and fatal
neurodegenerative disease that primarily targets motor neurons
(3). The etiology of sporadic ALS is poorly understood, whereas
familial ALS is caused by inheritable genetic defects in defined
genes such as PFN1 (3). PFN1 is a 15-kDa protein that is best
known for its role in actin dynamics in the context of endocytosis,
membrane trafficking, cell motility, and neuronal growth and
differentiation (4). In addition to binding monomeric or G-actin,
PFN1 also binds to a host of different proteins through their poly-
L-proline motifs and to lipids such as phosphatidylinositol 4,5-
bisphosphate (4, 5). However, little is known about the mechanism(s)
associated with PFN1-mediated ALS pathogenesis. The observa-
tion that most ALS-linked PFN1 variants are highly prone to ag-
gregation in mammalian cultured cells suggests that disease-
causing mutations induce an altered, or misfolded, conformation
within PFN1 (2). Protein misfolding is a hallmark feature of most
neurodegenerative diseases, including ALS (3), and can contribute
to disease through both gain-of-toxic-function and loss-of-normal-
function mechanisms (6). Although mutations in PFN1 cause ALS
through a dominant inheritance mode (2), there is some evidence
supporting a loss-of-function mechanism for mutant PFN1. For
example, ALS-linked mutations were shown to abrogate the
binding of PFN1 to actin (2) and to impair the incorporation of
PFN1 into cytoplasmic stress granules during arsenite-induced
stress (7) in cultured cells. Moreover, ectopic expression of
these variants in murine motor neurons led to a reduction in
both axon outgrowth and growth cone size, consistent with a loss
of function through a dominant-negative mechanism (2).
Although ALS-linked mutations were shown to induce PFN1

aggregation, the effect of these mutations on protein stability
and structure has not been studied. Because the impact of dis-
ease-causing mutations on protein stability varies from protein to
protein (8–10), these parameters must be determined empirically.
Here, we demonstrate that certain familial ALS-linked mutations

severely destabilize PFN1 in vitro and cause faster turnover of the
protein in neuronal cells. To gain insight into the source of this
mutation-induced instability, the 3D crystal structures for three
PFN1 proteins, including the WT protein, were solved by X-ray
crystallography. We discovered that the M114T mutation created a
cleft that extended into the interior of PFN1. Further, we predict
that the most severely destabilizing C71G mutation also creates a
cavity near the core of the PFN1 protein, proximal to the cleft
formed by M114T. Experimental mutations that create enlarged
pockets or cavities are known to exert a destabilizing effect on the
protein’s native conformation (11), and there are several examples
of mutation-induced cavity formation occurring in nature and dis-
ease (12, 13). Interestingly, the variant predicted to be the least
pathogenic according to recent genetics studies, E117G, was rela-
tively stable and closely resembled the WT protein in every assess-
ment performed herein (2, 14). These data implicate a destabilized
form of PFN1 in ALS pathogenesis and call for therapeutic strate-
gies that can stabilize mutant PFN1.

Results
ALS-Linked Mutations Destabilize PFN1 in Vitro. To investigate the
effect of ALS-linked mutations on the stability of PFN1, PFN1
proteins were expressed and purified from Escherichia coli and
subjected to chemical and thermal denaturation analyses. A
novel purification protocol that includes sequential cation-
exchange and gel filtration chromatography steps was developed
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here and applied to all PFN1 variants (Materials and Methods).
PFN1 C71G was found to be highly prone to aggregation in
E. coli, consistent with observations that this variant exhibited
particularly low solubility in mammalian cells (2), and therefore
was isolated from inclusion bodies (Materials and Methods). The
biochemical properties of PFN1 C71G purified from inclusion
bodies are indistinguishable from PFN1 C71G purified from the
soluble lysate of E. coli as determined by several assays (Fig. S1),
providing confidence that PFN1 proteins purified by these two
methods can be directly compared.
To examine the stability of PFN1 proteins, fluorescence from

tryptophans (W4 and W32) in PFN1 WT and ALS-linked variants
was measured as a function of increasing urea concentration (Fig.
1A). To ensure reversibility, the reciprocal analysis was also per-
formed, where denatured PFN1 proteins in urea were refolded
upon dilution with buffer (Fig. S2 A–E). Only one transition was
observed between the folded or native (N) and unfolded (U) states
for all PFN1 proteins, indicative of a two-state (N$U) unfolding
mechanism. This two-state unfolding model was further sub-
stantiated with an unfolding study of two PFN1 proteins (WT and
M114T) using CD spectroscopy (Fig. S2F). The following thermo-
dynamic parameters were determined by fitting the fluorescence
data to a two-state folding model: apparent ΔG°, the free energy of
folding; m, the denaturant dependence of ΔG°; and Cm, the mid-
point of the unfolding transition (Table 1). Both ΔG° and Cm were
reduced for ALS-linked variants relative to PFN1 WT, particularly
for the PFN1 variants C71G, M114T, and G118V, indicating these
variants are severely destabilized compared with PFN1WT (Fig. 1A

and Table 1). Differential scanning fluorimetry (DSF) with SYPRO
Orange, a fluorescent indicator of hydrophobic regions exposed
upon protein unfolding, was used next to determine the apparent
melting temperature, Tm, for all PFN1 proteins used in this study
(15). Consistent with the chemical denaturation results, all ALS-
linked variants except E117G exhibited a Tm that was at least 10 °C
lower than WT (Fig. 1B and Table 1). Based on the denaturation
studies, C71G emerges as the most destabilizing mutation in the
context of PFN1, whereas the E117G mutation has a relatively
modest impact on PFN1 stability.

ALS-Linked PFN1 Exhibits Faster Turnover in a Neuronal Cell Line. The
turnover rate for proteins with destabilizing mutations is often
faster relative to their WT counterparts, generally because
destabilized proteins are misfolded and targeted for degradation
by the cellular quality control machinery (16). To determine
whether the results of our in vitro denaturation studies extend to
a cellular environment, V5-tagged PFN1 variants were tran-
siently transfected into human neuronal SKNAS cells, and PFN1
turnover was assessed by tracking V5-PFN1 protein expression
over a 12.5-h time course in the presence of cycloheximide. At
the start of the experiment (t = 0 of the cycloheximide time
course), all V5-tagged PFN1 variants were expressed at similar
levels except that V5-PFN1 C71G, M114T, and G118V parti-
tioned into the insoluble fraction (Fig. 2 A and B) as reported
previously (2). The turnover of both PFN1 C71G and M114T
occurred significantly faster than that of PFN1 WT. As early as
2.5 h, the majority of PFN1 C71G and M114T within the soluble
fraction had already degraded (Fig. 2 A and C). This decrease in
soluble PFN1 content was not simply due to further PFN1 ag-
gregation, which could confound our analysis, as evidenced by
the concomitant clearance of PFN1 from the insoluble fraction
at the early time points of cycloheximide exposure (Fig. 2B). The
faster turnover of PFN1 C71G and M114T in cells closely cor-
relates with their reduced stabilities in vitro, confirming the
destabilizing effect of the C71G and M114T mutations. We note
that the turnover of PFN1 C71G was faster in the soluble frac-
tion compared with the insoluble fraction (Fig. S3), likely be-
cause clearance of insoluble cellular aggregates by the quality
control machinery is less efficient compared with the turnover of
smaller, soluble species (17). Although PFN1 G118V was destabi-
lized to a similar degree as M114T in vitro, the turnover of this
variant within the soluble fraction seemed slower in cells (Fig. 2C),
which may reflect a stabilizing effect of other proteins and/or factors
that interact with PFN1 in the cellular milieu (4), or that this variant
is not properly handled by the quality control machinery in the cell.
In fact, we detected a low level of insoluble PFN1 G118V that
persisted throughout the 12.5-h time course (Fig. 2B and Fig. S3).

ALS-Linked Mutations Induce a Misfolded Conformation Within PFN1.
We reasoned that ALS-linked variants must undergo some de-
gree of structural or conformational change to account for their
destabilization. However, ALS-causing mutations did not perturb

Fig. 1. ALS-linked mutations destabilize PFN1. Chemical and thermal de-
naturation studies reveal that ALS-linked variants C71G, M114T, and G118V,
but not E117G, are severely destabilized relative to PFN1 WT. (A) Equilibrium
unfolding curves for PFN1 WT and ALS-linked variants generated by mea-
suring the intrinsic tryptophan fluorescence of the indicated protein equil-
ibrated in increasing concentrations of urea. Data were processed to obtain
the center of mass (COM) of the emission spectrum and then fit to a two-
state model for protein folding. The resulting fits are displayed as solid lines.
The corresponding thermodynamic parameters obtained from the fitted
data are shown in Table 1. (B) Thermal denaturation profiles of PFN1 pro-
teins measured by SYPRO Orange fluorescence as a function of increasing
temperature were used to determine the apparent Tm, which is the tem-
perature corresponding to 0.50 fluorescence signal as denoted by the in-
tersection of the dashed lines for each curve.

Table 1. Summary of experimental stability and binding measurements for PFN1 variants

Variant

Equilibrium unfolding (N$U)* Tm,
† °C

Binding to poly-L-proline†,‡

Kd, μMΔG°, kcal·mol–1 m, kcal·mol–1·M–1 Cm, M Protein alone + 4 mM proline

WT 7.04 ± 0.49 2.25 ± 0.16 3.13 ± 0.31 54.68 ± 0.04 57.25 ± 0.03 463 ± 26
C71G 1.89 ± 0.70 1.95 ± 0.40 0.97 ± 0.41 34.60 ± 0.03 39.96 ± 0.03 687 ± 77
M114T 3.51 ± 0.40 2.51 ± 0.24 1.40 ± 0.21 42.62 ± 0.03 46.52 ± 0.02 572 ± 23
E117G 6.90 ± 0.74 2.49 ± 0.26 2.77 ± 0.42 51.05 ± 0.04 53.78 ± 0.03 407 ± 27
G118V 3.70 ± 0.44 2.20 ± 0.23 1.68 ± 0.26 42.84 ± 0.04 46.92 ± 0.04 397 ± 40

*Errors are shown as SD.
†Errors are shown as SE.
‡Kd values are reported in terms of proline residues.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1424108112 Boopathy et al.
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the secondary structural elements of PFN1 as determined by CD
spectroscopy (Fig. S4), and the fact that similar m values were de-
termined for all PFN1 variants by the urea denaturation analysis
suggested these proteins adopt similar tertiary structures as well
(Table 1) (18). To probe further for potential structural differences
between PFN1 WT and ALS-linked variants, these proteins were
subjected to native gel electrophoresis, a biochemical technique
capable of detecting conformational differences between misfolded
variants and their WT counterparts (19). PFN1 WT and E117G
migrated predominately as single, distinct bands with similar mo-
bility, whereas multiple bands of slower mobility were observed for
PFN1 variants C71G, M114T, and G118V (Fig. S5A). The slower
mobility bands likely reflect the larger hydrodynamic volume due to
partial unfolding of these variants. In addition, PFN1 C71G,
M114T, and G118V produced relatively large-molecular-weight
species that were retained in the stacking gel and unable to elec-
trophorese through the separating native gel but were resolublized
under conditions used for the denaturing gel (Fig. S5A). Analytical
size-exclusion chromatography revealed that all PFN1 proteins
eluted as expected for soluble, monomeric PFN1 (Fig. S5 B–G).
However, despite equal loading of PFN1 proteins onto the ana-
lytical size-exclusion column, the peak area corresponding to
soluble monomer PFN1 is reduced for ALS-linked variants, par-
ticularly for the most aggregation-prone variant, C71G. These
data are consistent with a loss of soluble monomer PFN1 in the
form of insoluble species that cannot pass through the analytical
size-exclusion column filter.

A Source of Mutation-Induced Destabilization Revealed by X-Ray
Crystallography of PFN1. Crystal structures of PFN1 proteins
were determined to identify regions within mutant PFN1 that are
conformationally distinct from PFN1 WT at atomic resolution.

PFN1 WT, E117G, and M114T produced crystals that diffracted
at relatively high resolution (∼2.2 Å; Table S1). The 3D structure
of human PFN1 WT agrees well with previously determined
structures (20–22). PFN1 WT and E117G crystallized in the
same space group, C121, whereas M114T crystallized in the P6
space group, with two molecules (designated as chains A and B)
in the asymmetric unit (Table S1).
Residues 22–36, 46–52, 101–105, 112–120, and 125–128 within

PFN1 were used for Cα superimposition of the four molecules
(PFN1 WT, M114T chains A and B, and E117G). In agreement
with the biochemical analyses described above (Table 1 and Fig.
S4), the secondary and tertiary structures of all three PFN1
proteins, including chains A and B of M114T, are highly similar
(Fig. 3). Although the space groups for PFN1 WT and M114T
crystals were different, we calculated the double difference plots
between these and the other PFN1 structures to get a sense for
structural perturbations potentially induced by the ALS-linked
mutations. Double difference plots were constructed by calcu-
lating the distances between all of the Cα atoms in PFN1 WT
and an ALS-linked variant separately, and then plotting the
difference of the difference between PFN1 structures as de-
scribed previously (23). Virtually no structural deviations were
observed between PFN1 WT and E117G, whereas moderate
differences were detected between WT and M114T (Fig. S6).
Next we sought to determine whether these moderate struc-

tural changes between PFN1 WT and M114T mapped to regions
involved in PFN1 function, namely to residues that make contact
with actin (24–31) or poly-L-proline (21, 22, 24, 32, 33). The
ternary complex comprised of PFN1 WT, actin, and the poly-L-
proline peptide derived from vasodilator-stimulated phospho-
protein (VASP) (21) (PDB ID code 2PAV) is shown in Fig. 4.
Residues with the highest (0.3 Å or greater) average of absolute
double difference (Avg-Abs-DD) values between PFN1 WT and
M114T chain B (Fig. S6C) were mapped onto PFN1 WT (Fig.
S7). PFN1 M114T chain B was used for this and all subsequent
structural comparisons because chain B had lower B factors
compared with chain A (Fig. S8). Indeed, several PFN1 residues
that reportedly make contacts with actin (V119, H120, G122,
and K126) and poly-L-proline (W4, Y7, H134, and S138) also
have relatively high Avg-Abs-DD values (Fig. S7).
To assess whether these mutation-induced structural changes

are sufficient to alter the normal binding interactions of PFN1,

Fig. 2. ALS-linked PFN1 variants exhibit faster turnover in a neuronal cell
line. SKNAS cells transiently transfected with V5-PFN1 constructs were treated
with cycloheximide (CHX) for up to 12.5 h, during which time lysates were
collected and probed by Western analysis with a V5-specific antibody to assess
the rate of PFN1 turnover in cells. (A and B) A representative Western blot
analysis of soluble and insoluble fractions from cell lysates demonstrates a de-
crease in V5-PFN1 protein with time. GAPDH serves a loading control for the
soluble fraction. (C) Densitometry analysis ofA reveals that the turnover of PFN1
C71G and M114T is significantly faster than that of PFN1 WT. Statistical signif-
icance was determined using a two-way ANOVA followed by a Tukey’s post hoc
analysis (*P < 0.05, **P < 0.01, #P < 0.0001). Error bars represent SEM. WT and
E117G, n = 3; G118V, M114T and C71G, n = 4 independent experiments.

Fig. 3. Superimposition of the crystal structures for PFN1 WT, E117G, and
M114T. (A and B) The secondary and tertiary structures for PFN1 WT (green),
E117G (mustard), M114T chain A (pink), and B (red) are highly superimpos-
able. For each structure, sticks and spheres denote the side chains and van
der Waals radii, respectively, for residues at position 114 and 117. Residue
117 is located within a solvent-exposed flexible loop that has no discernible
secondary structure, whereas Met114 is located within a β-sheet toward the
interior of the protein. (B) A zoomed cartoon representation showing resi-
dues within 4 Å of residue 114. The side chains of these residues are in-
dicated as sticks with nitrogen, oxygen, and sulfur atoms indicated in blue,
red, and yellow, respectively. The van der Waals radii of the atoms com-
prising residue 114 are reduced upon mutation of methionine (green and
mustard structures) to threonine (red and pink structures).
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we first monitored changes in the intrinsic tryptophan fluorescence
of PFN1 as a function of poly-L-proline peptide concentration (Fig.
5A). Our results revealed that the effect of ALS-linked mutations
on the PFN1-poly-L-proline interaction was modest, because the
apparent dissociation constants (Kd) were within twofold for all
PFN1 proteins in this study (Table 1). In fact, excess concentrations
of poly-L-proline effectively stabilized all PFN1 proteins as de-
termined by DSF, with the largest increase in Tm observed upon
poly-L-proline peptide binding to C71G (Fig. 5B and Table 1). Next,
we measured the binding capacity of our PFN1 proteins for G-actin
by comparing their concentration-dependent abilities to suppress
spontaneous polymerization of pyrenyliodoacetamide‐labeled actin
monomers (34). This assay is based on the fact that PFN1 binds
G-actin and inhibits actin nucleation in the absence of formins (34).
As expected, increasing concentrations of recombinant PFN1 WT
reduced the rate of actin polymerization, whereas the H120E var-
iant that exhibits impaired binding to actin failed to suppress actin
polymerization to the same extent (Fig. 6). Of the four ALS-linked
variants, only G118V was defective in suppressing actin polymeri-
zation, which was most apparent at the highest concentration of
PFN1 used in this assay, although this effect did not reach statistical
significance (Fig. 6). These data argue against a general mechanism
for PFN1-mediated ALS pathogenesis that involves impaired direct
binding between PFN1 and either poly-L-proline or actin.
Importantly, the X-ray crystal structures reveal a possible

mechanism by which ALS-linked mutations destabilize PFN1.
Residues Thr90, Met114, and Gln18 contribute to the formation
of a surface exposed pocket that was detected using SiteMap
(Fig. 7). Mutation of methionine to threonine at position 114
increased the size of this pocket, thereby forming a cleft, because
the residues nearby failed to rearrange and compensate for the
loss of van der Waals contacts (Fig. 7B). This cleft is expected to

exert a destabilizing effect on the native conformation of PFN1
owing to this loss of van der Waals contacts and the reduced
hydrophobicity of the threonine side chain relative to that of
methionine (11). Moreover, hydrophobic residues that are oth-
erwise buried in the PFN1 WT structure were exposed by the
cleft in the PFN1 M114T structure (Fig. 7 and Fig. S9). To in-
vestigate the potential impact of the C71G mutation on PFN1
structure, the cysteine side chain of residue 71 was removed to
mimic a glycine amino acid in the PFN1 WT structure using
PyMOL. Interestingly, this mutation is predicted to form a void
in the core of the protein that partially overlaps with the cleft
observed in the PFN1 M114T crystal structure (Fig. 7B). Anal-
ysis using PyMOL and SiteMap suggest that, unlike the solvent-
accessible WT and the M114T pocket, the proposed C71G void
is buried within the core of the protein. Solvent-inaccessible
voids have a more destabilizing effect than solvent-exposed
cavities (11, 35), providing an explanation for why the C71G
mutation is more destabilizing than M114T (Fig. 1).

Discussion
Here we show that ALS-linked mutations severely destabilize (Fig.
1) and alter the native protein conformation (Fig. 3) of PFN1.
Changes in protein stability owing to disease-causing mutations,
whether these mutations stabilize or destabilize the protein, are
thought to play a pivotal role in various disease mechanisms (13).
In the context of ALS, disease-linked mutations destabilize Cu,
Zn-superoxide dismutase (SOD1) (9), but instead hyperstabilize
TAR DNA-binding protein 43 (TDP-43) (8, 10, 36). These find-
ings underscore the importance of defining the toxic properties of
disease-linked proteins, thereby directing the rational design of
therapeutic strategies against those offending proteins (3).
Our X-ray crystal structures of PFN1 proteins illuminate a

probable source of mutation-induced destabilization. An enlarged
surface pocket, or void, forms as a result of the M114T mutation
(Fig. 7). The destabilizing effect of similar voids has been dem-
onstrated using a systematic site-directed mutagenesis approach
with lysozyme and is thought to arise from a loss of hydrophobic
interactions (11, 35). Examples of mutation-induced cavity for-
mation and destabilization have also been observed in nature (13).
Interestingly, modeling the removal of the cysteine side chain at
position 71 creates an internal cavity that is predicted to partially
overlap the cleft formed by M114T, raising the intriguing possi-
bility that both mutations destabilize PFN1 through a common
mechanism that involves the loss of hydrophobic and van der
Waals contacts within the same region of PFN1 (Fig. 7). Because

Fig. 4. Structure of actin–PFN1–VASP peptide ternary complex with the
actin and poly-L-proline binding residues mapped on PFN1. The X-ray structure
of the PFN1 WT (gray)–actin (blue)–poly-L-proline peptide (gold) complex
(PDB ID code 2PAV) is shown. Residues reportedly involved in actin binding
(V61, K70, S72, V73, I74, R75, E83, R89, K91, P97, T98, N100, V119, H120,
G122, N125, K126, Y129, and E130) and poly-L-proline binding (W4, Y7, N10,
A13, S28, S30, W32, H134, S138, and Y140) are highlighted in blue and gold,
respectively. The sites of ALS-linked mutations investigated in this study are
highlighted and labeled in black with side chains displayed as black sticks.
Residues involved in actin or poly-L-proline binding that also exhibit Avg-
Abs-DD values of 0.3 Å or greater between PFN1 WT and M114T chain B
(W4, K126, and S138) are labeled in black (the remaining residues that fulfill
this criteria are shown in Fig. S7).

Fig. 5. ALS-linked PFN1 variants retain the ability to bind poly-L-proline.
(A) Binding of PFN1 to the poly-L-proline peptide was monitored by measuring
the intrinsic tryptophan fluorescence of the indicated PFN1 protein as a
function of increasing peptide concentration. The data points were fit using
a one-site total binding model in GraphPad Prism and the apparent disso-
ciation constants (Kd) obtained from the fit are shown in Table 1. Note that
the concentration of the peptide is reported in terms of [proline] because
the peptide stock is supplied as a mixture of poly-L-proline species (Materials
and Methods). (B) DSF was performed as described in Fig. 1B in the presence
(dashed lines) and absence (solid lines) of 4 mM proline. The presence of
proline increases the Tm for all PFN1 proteins used in this study (Table 1), as
illustrated here for WT, C71G, and M114T.
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G118V is located within a solvent-exposed flexible loop, it is dif-
ficult to predict whether this mutation propagates structural
changes to the same region affected by M114T. We note that the
phi and psi angles for Gly118 are in a region of the Ramachandran
plot that are generally disallowed for a valine residue, and therefore
we speculate that the G118V mutation also induces a conforma-
tional change within PFN1 that allows valine to adapt dihedral
angles that are energetically more favorable.
Our study also provides insight into the relative pathogenicity

of ALS-linked PFN1 variants. The pathogenicity of the E117G
variant was called into question after it had been detected in the
control population (2, 14, 37, 38). Moreover, this variant exhibited
mild phenotypes compared with other ALS-linked PFN1 variants in
cell-based functional experiments (2, 7). Here, the E117G mutation
had only a modest effect on the stability and structure of PFN1
(Table 1 and Fig. S6), supporting the view that E117G is a risk
factor for disease rather than overtly pathogenic (1, 14). Further,
the E117G mutation was detected in sporadic ALS and fronto-
temporal lobar degeneration cases (14, 37–40), consistent with the
idea that environmental factors and/or genetic modifiers contribute
to PFN1 E117G toxicity. In fact, proteasome inhibition triggered
the aggregation of PFN1 E117G (2), suggesting that cellular stress
may exacerbate PFN1 misfolding and dysfunction in vivo.
Although the mechanism of PFN1 in ALS has yet to be fully

elucidated, the destabilized mutant-PFN1 species identified here
can serve as an upstream trigger for either loss-of-function or gain-
of-toxic-function mechanisms. Several investigations from cell-based
experiments support a loss-of-function mechanism for ALS-linked
PFN1 variants with respect to actin binding (2), actin dynamics (2),
and stress granule assembly (7). For example, PFN1 variants immu-
noprecipitated less actin from mammalian cells compared with PFN1
WT (2). Our in vitro results suggest this is unlikely due to a general
defect in the inherent ability of mutant PFN1 to directly bind actin
(Fig. 6) but may be the consequence of mutant PFN1 being se-
questered away from actin and/or engaged in other aberrant in-
teractions within the cell. Moreover, ALS-linked mutations do not
simply abrogate the direct-binding interaction between PFN1 and
the poly-L-proline motif (Fig. 5A) that is present in many biological

PFN1 ligands. These data, however, do not rule out the possibility
that mutation-induced misfolding and destabilization culminate in
defective actin homeostasis in vivo. PFN1 plays a complex role in
actin homeostasis, requiring coordinated interactions between PFN1
and many other cellular factors that ultimately dictate the fate of
different actin networks within the cell (41).
The misfolding of PFN1 variants may also induce gain of toxic

functions and interactions, the latter via aberrant protein–pro-
tein interactions through exposed hydrophobic patches, such as
those detected for PFN1 M114T (Fig. S9). Further, the aggregation
of PFN1 variants can potentially sequester other vital proteins, in-
cluding those with poly-L-proline binding motifs (4), culminating in
compromised actin and/or cellular homeostasis (6).
Although the downstream effect of ALS-linked PFN1 on actin

dynamics and other cellular processes have not been elucidated,
our data identify misfolded and destabilized PFN1 as a potential
upstream trigger of the adverse events that culminate in ALS,
opening new avenues for therapeutic advancement in ALS.
One potential direction is the development of pharmacological
chaperones (16). For example, small molecules that fill the void
formed by the M114T mutation are expected to stabilize the
protein (35). Our data with poly-L-proline (Fig. 5B) suggest that
small-molecules binding to other regions of PFN1 could also
stabilize the protein. We posit that stabilizing mutant PFN1 will
restore the normal structure and function of the protein, thereby
preventing the pathogenic cascade leading to ALS.

Materials and Methods
A pET vector containing human PFN1 flanked by NdeI and EcoRI restriction
sites was kindly provided by Bruce Goode, Brandeis University, Waltham,MA.
The mutant PFN1 DNA (2) was amplified using primers 5′- GGACCA-
TATGGCCGGGTGGAAC -3′ and 5′- GCCTGAATTCTCAGTACTGGGAACGC -3′
and ligated into the pET vector using NdeI and EcoRI restriction sites. BL21
(DE3) pLysS cells (200132; Agilent Technologies) transformed with PFN1
constructs were cultured in LB containing 100 μg·mL–1 ampicillin and
34 μg·mL–1 chloramphenicol at 37 °C until an OD600 of 0.7, at which point PFN1
expression was induced by addition of 1 mM isopropyl β-D-thiogalactopy-
ranoside (0487; Amresco) for either 3 h at 37 °C (for WT and E117G) or 24 h at
18 °C (for C71G, M114T, and G118V). Cells were harvested by centrifugation
and stored until purification. Refer to Supporting Information for complete
details on methods.

Fig. 7. The M114T mutation causes a surface-exposed pocket to expand
into the core of the PFN1 protein. (A) Residues are depicted as described in
Fig. 3. The van der Waals radii of residues 90, 114, and 18 are in contact in
the PFN1 WT structure (Top). These contacts are reduced by the M114T
mutation (Bottom) owing to the smaller size of threonine, leading to an
enlargement of the surface-exposed pocket. (B) PFN1 WT is shown with a
transparent surface and the secondary structure is shown in cartoon repre-
sentation. The surface pocket volume for PFN1 WT (green) and the cleft volume
for PFN1 M114T chain B (red) are depicted as opaque surfaces and were gen-
erated using SiteMap. The predicted cavity (blue) for PFN1 C71G (generated
using PyMOL) overlays with the M114T void, and unlike the WT and M114T
volumes, is not surface-exposed. The insets (Right) show the aforementioned
voids for WT (Top), M114T chain B (Middle), and C71G (Bottom).

Fig. 6. The binding of PFN1 proteins to G-actin. Polymerization of mono-
meric rabbit muscle actin (3 μM, 5% pyrene-labeled) was monitored in the
presence of increasing concentrations of WT or ALS-linked PFN1 variants and
used to derive relative rates of polymerization (n = 3). The variant H120E,
which is impaired in binding to actin, fails to suppress spontaneous actin po-
lymerization as effectively as WT PFN1. Although G118V is relatively weak in
suppressing actin polymerization, the data did not reach statistical signifi-
cance. Statistical significance was determined using a two-way ANOVA fol-
lowed by a Tukey’s post hoc analysis. **P ≤ 0.01 for WT vs. H120E at 7 μM
concentration. No other significant comparisons with WT were obtained.
Other significant comparisons included C71G vs. H120E and E117G vs. H120E
(P ≤ 0.05) at 7 μM concentration. Error bars represent SD.
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SI Materials and Methods
Purification of Recombinant PFN1. Cells containing recombinant
PFN1 were lysed by sonication in 10 mM citrate and 10mMNaCl,
pH 5.0 (buffer A) containing protease inhibitor (11873580001;
Roche). The lysate was cleared by centrifugation and applied to
a Nuvia cPrime hydrophobic cation exchange column (35-mL
column volume) (156-3402; Bio-Rad) preequilibrated with buffer
A using an ÄKTAPurifier FPLC system (GEHealthcare). Bound
impurities were eluted with 200 mL linear gradient of 10 mM
citrate and 1 M NaCl, pH 5.0 (buffer B). PFN1-containing
fractions eluted at 100% buffer B at ∼300 mL from the start of
the gradient. SDS/PAGE was used to identify PFN1-containing
fractions, which were pooled and dialyzed into buffer A with
6,000–8,000 molecular weight cut-off dialysis tubing (8015-40;
Membrane Filtration Products, Inc.) before being applied to an
anion (Q-resin) exchange column (17-0510-01; GE Healthcare).
PFN1 eluted in the flow-through and was concentrated to
1–2 mL using stirred ultrafiltration cells (5123 and 5121; Millipore)
and then applied to a Sephacryl S-100 HR (17-1194-01; GE
Healthcare) size-exclusion column preequilibrated with PBS.
PFN1 proteins eluted at ∼200 mL and were >95% pure as as-
sessed by SDS/PAGE analysis with Coomassie Brilliant Blue
stain. The identity and purity of the PFN1 proteins were verified
by intact mass analysis at the Proteomics and Mass Spectrometry
Facility (University of Massachusetts Medical School). The
concentration of PFN1 was determined spectrophotometrically
at an absorbance of 280 nm using a molar extinction coefficient
of 18,450 M–1·cm–1. Aliquots of PFN1 proteins were stored at
–80 °C, typically at concentrations between 60–600 μM.
When PFN1 C71G was purified from inclusion bodies, BL21

(DE3) pLysS cells expressing C71G were cultured as described for
PFN1WT and C71G-containing inclusion bodies were extracted as
previously described (42). Inclusion bodies were solubilized in
50 mMTris·HCl, pH 7.0, containing 5 mMEDTA, 5 mMDTT, and
3 M guanidinium hydrochloride (buffer C) at ambient tempera-
ture. The solubilized inclusion bodies were diluted in buffer C to
a PFN1 C71G concentration of ∼5 mg·mL–1. PFN1 C71G was re-
folded in buffer A containing 0.5 M L-arginine at ambient tem-
perature under conditions where the final concentrations of
guanidinium hydrochloride and C71G were below 0.1 M and
0.2 mg·mL–1, respectively. The refolded protein was dialyzed in
buffer A at 4 °C and purified using a Sephacryl S-100 HR column
as described for PFN1 WT.

Equilibrium Unfolding Experiments. For equilibrium unfolding ex-
periments using tryptophan fluorescence, solutions of increasing
urea concentration were prepared from a concentrated stock
solution of 10.546 M urea in PBS using a Hamilton Microlab 500
titrator. PFN1 was mixed into the urea solutions to a final con-
centration of 2 μM with 1 mM Tris(2-carboxyethyl)phosphine)
(TCEP) and the samples were equilibrated for 15–30 min. The
intrinsic tryptophan fluorescence of PFN1 was measured at 25 °C
with a T-format Horiba Fluorolog fluorimeter using an excita-
tion wavelength of 295 nm. Three emission spectra (310 nm to
450 nm) were collected for each sample and averaged. The
concentration of the urea in each sample was measured using an
Abbe refractometer after data acquisition. Data were processed
to obtain the center of mass (COM) of the emission spectrum.
The COM was fit to a two-state transition model as previously
described and the thermodynamic parameters, apparent ΔG°
(the free energy of folding), m (the denaturant dependence of
ΔG°), and Cm (the midpoint of the unfolding transition) were

determined with the program Savuka (43, 44). Because the
quantum yield of the native and unfolded states was within a
factor of 2, the use of COM analysis is justified. We explicitly
checked this by a rigorous global analysis using singular value
decomposition and showed that the fit of the urea dependence
basis vector gave thermodynamic parameters that were within
the error of the COM and CD spectroscopy analyses, and no
indications of non-two-state behavior. For equilibrium unfolding
experiments using CD spectroscopy, PFN1 (10 μM) was equili-
brated in various concentrations of urea as described above and
CD spectra were acquired from 215 nm to 260 nm using a Jasco
J-810 spectropolarimeter. Three spectra were averaged and the
mean residual ellipticity (MRE) at 220 nm was plotted as a
function of urea concentration and fit to a two-state equilibrium
unfolding model.
For protein refolding experiments, a concentrated stock of

PFN1 (100–250 μM) denatured in urea (4–8.5 M) was diluted in
urea/PBS to obtain a series of samples with decreasing concen-
trations of urea, 10 μM PFN1 and 1 mM TCEP. Samples were
equilibrated for 30 min before acquisition of fluorescence emis-
sion spectra as described above.

DSF. Samples containing WT or mutant PFN1 (20 μM) in PBS
with 20× SYPRO Orange (S6651; Invitrogen) were pipetted in
quadruplicate into a 384-well plate and subjected to heat de-
naturation using a Bio-RadCFX384 Touch Real-Time PCR
Detection System. The temperature was increased from 25 °C to
100 °C in 0.3 °C increments and at each increment fluorescent
intensities were acquired using HEX detector (excitation
515–535 nm, emission 560–580 nm). PFN1 proteins were analyzed
alone and in the presence of the poly-L-proline peptide (molec-
ular weight 1,000–10,000, P2254; Sigma). Because this peptide was
supplied from the manufacturer as a mixture of poly-L-proline
species, the concentration is reported here in units of proline
(molecular weight 115.13 g·mol–1). For experiments with the poly-L-
proline peptide, PFN1 was prepared with 4 mM proline. The
fluorescence intensities for the four replicates were averaged, nor-
malized to the maximum fluorescence intensity, and plotted as a
function of temperature to obtain melting curves, which were fit
with a sigmoidal function in GraphPad Prism to determine the
midpoint of transition or the apparent Tm.

Measuring PFN1 Turnover in Cells. Human SKNAS cells were cul-
tured in DMEM (11965; Gibco) containing 10% (vol/vol) FBS
(F4135; Sigma-Aldrich) and 1% (wt/vol) penicillin and strepto-
mycin (10378; Gibco) under standard culture conditions (37 °C,
5% CO2/95% air). SKNAS cells were transiently transfected with
0.5 μg of V5-PFN1 plasmids (2) in 24-well plates using 1.75 μL
NeuroMag (NM50500; OZ Biosciences) diluted in Opti-MEM
(38915; Invitrogen). After 12 h of V5-PFN1 expression, trans-
lation was inhibited with 30 μg·mL–1 cycloheximide (C7698;
Sigma-Aldrich). Cells were lysed at specific time points during a
12.5-h time course following cycloheximide addition using RIPA
buffer (BP-115-500; Boston BioProducts) supplemented with
protease inhibitors (11836170001; Roche) and centrifuged at
19,357 × g for 15 min, after which the supernatant (containing
soluble PFN1) was collected. The remaining pellet (containing
insoluble PFN1) was washed once with RIPA lysis buffer,
centrifuged again, and resolubilized with 8 M urea in volumes
equal to their soluble counterparts. The protein concentration of
the soluble fractions was determined using a bicinchoninic acid
assay (23227; Thermo Scientific Pierce). Samples were processed
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and subjected to Western blot and densitometry analyses es-
sentially as described (19). Western blots were probed using V5-
specific (1:1,000, R96025; Invitrogen) and GAPDH-specific
(1:20,000, G9545; Sigma) antibodies. Bands corresponding to
soluble V5-PFN1 were normalized to the loading control,
GAPDH, and then to the band corresponding to cycloheximide
treatment for “0 h” for each protein. For each biological
replicate, visible bands corresponding to insoluble V5-PFN1
were normalized to their respective 0 h PFN1 C71G band. Sta-
tistical significance was determined using a two-way ANOVA
followed by Tukey’s post hoc analysis.

CD Spectroscopy. CD spectra of WT PFN1 or mutants (10 μM in
PBS) were acquired from 190 nm to 260 nm at a scan speed of 2 s
per wavelength with a 1-mm cuvette at 25 °C using a AVIV
Biomedical CD spectrometer model 400. Data reflect an av-
erage of five scans that were blank subtracted. The resulting
ellipticity curves were transformed to mean residue ellipticity
as described (45).

Acidic Native PAGE.The method for acidic native PAGE analysis of
basic proteins described by the Mario Lebendiker laboratory
(wolfson.huji.ac.il/purification/) was used. Briefly, 29:1 acrylam-
ide-bisacrylamide (BP1408-1; Fisher Scientific) native gels were
cast with 7.5% (wt/vol) polyacrylamide in the resolving gel,
pH 4.3, and 3% (wt/vol) polyacrylamide in the stacking gel, pH 6.8.
The gel sample containing WT or mutant PFN1 (0.8 μg·μL–1)
was prepared under native conditions using ice-cold acetate–
KOH, pH 6.8 and 10% (vol/vol) glycerol with 0.025% (wt/vol) of
methylene blue. PFN1 proteins (10 μg) were loaded onto the gel
and subjected to reversed polarity electrophoresis under ice-
cold conditions for 2 h at 100 V. The protein bands were vi-
sualized with Coomassie Brilliant Blue as described above for
denaturing gels.

Analytical Size-Exclusion Chromatography. WT or mutant PFN1
(50 μL of PFN1 at 0.8 μg·μL–1) were subjected to analytical size-
exclusion chromatography at 4 °C using a Superdex 75 column
(17-5174-01; GE Healthcare) equilibrated with PBS and a flow
rate of 0.5 mL·min−1. For each trial (n = 2), elution profiles were
acquired using absorbance at 280 nm and normalized to the peak
value of WT PFN1. The area under peak was calculated using
GraphPad Prism.

Protein Crystallization and X-Ray Structural Determination. PFN1
crystals were grown by hanging drop vapor diffusion after mixing
the PFN1 protein with a 1:1 ratio of reservoir solution at 25 °C for
WT and E117G and at 18 °C for M114T. Reservoir solution for
WT contained 50 mM KH2PO4, 36% (wt/vol) PEG 8,000 and
100 mM MES, pH 6.0. Reservoir solution for E117G contained
50 mM KH2PO4, 41% (wt/vol) PEG 8,000 and 100 mM MES,

pH 6.0. Reservoir solution for M114T contained 750 mM sodium
citrate, 200 mM NaCl, and 100 mM Tris, pH 7.5.
E117G crystals where soaked in cryoprotectant composed of

25% (vol/vol) ethylene glycol and 75% (vol/vol) reservoir solution
and M114T crystals were passed through mineral oil before
mounting for data collection. Diffraction data were collected
using a Rigaku 007 MicroMax HF rotating anode X-ray gener-
ator, under a nitrogen cryostream at 100 K (Oxford Cryosystems),
on a Saturn944+ CCD detector.
The data were processed using Xia2 (46) [running XDS (47)]

for WT and M114T and HKL2000 (HKL Research) for E117G.
All three structures were solved via molecular replacement with
Phaser (48) using the profilin structure PDB ID code 1FIK (20) as
the starting model followed by multiple rounds of manual model
building performed with Coot (49). WT was refined with
PHENIX (50) and E117G with REFMAC5 (51) using standard
refinement protocols. M114T was refined with PHENIX using
twin refinement with the twin law {h,-h-k,l} applied through re-
finement, because the data were highly twinned with a twin
fraction estimated to be 0.48.

Structural Analysis. SiteMap (Schrödinger, LLC) was used to identify
and evaluate the mutation-site cavity volumes. Figures were gen-
erated using PyMOL (Schrödinger, LLC).

Poly-L-Proline Peptide Binding Experiments.The intrinsic tryptophan
fluorescence of WT or ALS-PFN1 (2 μM) as a function of in-
creasing concentrations of the poly-L-proline peptide described
above at 25 °C was used to measure binding of PFN1 to poly-L-
proline as previously described (52). The samples were excited at
295 nm and three emission spectra between 310 nm and 450 nm
were collected for each sample and averaged. The fluorescence
emission intensity at 323 nm was baseline-corrected, normalized,
plotted as a function of poly-L-proline and fit to a one-site total
binding model in GraphPad Prism to yield apparent Kd values.

Inhibition of Spontaneous Actin Assembly. Gel-filtered monomeric
rabbit muscle actin (3 μM, 5% pyrene-labeled) was converted to
Mg–ATP–actin immediately before use in each reaction and
mixed with 7 μL of different concentrations of PFN1 WT, and
PFN1 mutants or control buffer and 3 μL of 20× initiation mix
(40 mM MgCl2, 10 mM ATP, and 1 M KCl) in 60-μL reactions.
Actin polymerization was monitored over time at 365 nm exci-
tation and 407 nm emission in a PTI fluorometer at 25 °C. Av-
erage relative rates of actin polymerization (n = 3) were
determined based on the slopes of the assembly curves during
the first 500 s of each reaction and plotted against increasing
concentrations of PFN1 (mutants). Statistical significance was
determined using a two-way ANOVA followed by Tukey’s
post hoc analysis.
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Fig. S1. A comparison of PFN1 C71G purified from the soluble lysate of Escherichia coli vs. from inclusion bodies. (A) Equilibrium unfolding and (B) thermal
denaturation curves (described in Fig. 1) for PFN1 C71G purified from the soluble lysate and inclusion bodies. The apparent melting temperature of PFN1 C71G
purified from inclusion bodies (34.62 ± 0.05 °C) is the same as that purified from soluble lysate (34.60 ± 0.03 °C). (C) PFN1 C71G has similar affinities to poly-L-
proline as determined by the binding assay described in Fig. 6 irrespective of whether this variant was purified from the soluble lysate or inclusion bodies.
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Fig. S2. All PFN1 variants unfold by a two-state process. (A–E) PFN1 variants denatured in urea were refolded by diluting the urea. The final concentration of
PFN1 in each sample was 10 μM and tryptophan fluorescence was used to monitor folding. The equilibrium transition regions overlay closely for the unfolding
and refolding curves, indicating that the unfolding reaction is reversible. Filled and open circles represent unfolding and refolding, respectively. (F) The two-
state unfolding of PFN1 observed by intrinsic fluorescence (data from Fig. 1A; Fluor) was verified by CD measurements for PFN1 WT and M114T. The con-
centration of protein used was 2 μM and 10 μM for tryptophan fluorescence and CD measurements, respectively. The y axis on the left is the mean residue
ellipticity at 220 nm (MRE220) obtained from CD experiments, whereas the y axis on the right reflects the change in the COM (as shown in Fig. 1). The
thermodynamic parameters obtained by fitting the CD data agree well with those obtained from the fluorescence data (Table 1) and are as follows: for WT
ΔG° = 7.16 ± 0.11 kcal·mol−1, m = 2.36 ± 0.04 kcal·mol−1·M−1, Cm = 3.03 ± 0.07 M; for M114T ΔG° = 4.35 ± 0.10 kcal·mol−1, m = 2.95 ± 0.06 kcal·mol−1·M−1, Cm =
1.47 ± 0.05 M.

Fig. S3. The turnover of insoluble PFN1 in SKNAS cells. The experiment was carried out as described in Fig. 2, and a representative Western blot analysis of the
insoluble fraction is shown in Fig. 2B. The data above reflect the densitometry results from an average of n = 2 (M114T) or n = 3 (C71G and G118V) independent
experiments and error bars represent SEM. Each sample was normalized to the PFN1 C71G band corresponding to “time 0.” The turnover of C71G within the
insoluble fraction was slower relative to C71G within the soluble fraction (compare this graph to that in Fig. 2C). There was relatively less M114T and G118V in
the insoluble fraction compared with C71G, and the small fraction of insoluble G118V persisted throughout the experimental time course.
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Fig. S4. ALS-linked PFN1 variants retain the same secondary structure as PFN1 WT. (A–D) Far UV CD spectra for the indicated PFN1 variant (10 μM) overlaid
with CD spectrum for PFN1 WT (10 μM).
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Fig. S6. Structural changes induced by the M114T mutation revealed in double difference plots. Double different plots (Left) of WT vs. E117G (A), WT vs. M114T chain A (B), WT vs. M114T chain B (C), and M114T chains A vs. B
(D). The Avg-Abs-DD values are plotted as a function of residue number for each structural comparison (Middle); these plots provide an indication for residues that undergo a structural change between the proteins that are
being compared. Residues with Avg-Abs-DD values of 0.3 Å or greater are plotted onto the structure (Right) of PFN1 WT (A–C) and PFN1 M114T chain A (D) in green. Residues not used in this analysis are colored black.
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Fig. S7. Actin and poly-L-proline binding residues exhibit relatively high double difference values. Residues that have Avg-Abs-DD values of 0.3 Å or greater
that are also engaged in actin binding (V119, H120, G122, and K126) or poly-Pro binding (W4, Y7, H134, and S138) are mapped onto the structure of PFN1 WT
in magenta. All other residues with Avg-Abs-DD values of 0.3 Å or greater are highlighted in green. Residues with Avg-Abs-DD values between chain A and
chain B of M114T 0.3 Å or greater (Fig. S6D) were excluded from this analysis. Residues not used in this analysis are colored black.
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Fig. S8. The calculated α-carbon B factors for all PFN1 structures. Cartoon representations of WT (A), E117G (B), and M114T chains A (C) and B (D). Residues are
colored according to the α-carbon B factors using the scale shown at the bottom. The average α-carbon B factor for WT, E117G, and M114T chains A and B
structures are 30.52, 22.94, 29.47, and 27.33, respectively. Because the average B factor is higher for M114T chain A, M114T chain B was used for structural
analyses unless otherwise noted.

Fig. S9. Electrostatic surface potential (ESP) of PFN1 WT and PFN1 M114T. A comparison of the ESP for PFN1 WT (A) and M114T (B) around the surface pocket
(for WT) and cleft (for M114T) shown in Fig. 7. Comparison of the ESP was calculated using Maestro (Schrödinger, LLC). The Red_White_Blue color scheme was
used to depict the ESP of both surfaces, where red denotes negative, blue denotes positive, and white denotes neutral ESP. The minimum and maximum values
are −0.12 and 0.12, respectively. The cleft (boxed region in B) formed by M114T exposes a deeper pocket comprised of hydrophobic residues that would
otherwise be buried beneath the surface-exposed pocket (boxed region in A) in PFN1 WT.
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Table S1. Crystallographic and refinement statistics of human PFN1 structures

Statistics WT E117G M114T

Resolution, Å 2.160 2.170 2.230
Space group C121 C121 P6
a, Å 74.26 73.65 81.69
b, Å 31.84 31.71 81.69
c, Å 61.02 60.54 65.35
Α, ° 90 90 90
Β, ° 122.66 122.03 90
Γ, ° 90 90 120
Z 1 1 2
Rmerge, % linear 0.075 0.036 0.147
I/sigma 13.3 12.2 12.4
Completeness, % 99.28 99.49 99.58
Total no. of reflections 20,783 16,453 76,801
No. of unique reflections 6,416 6,422 12,156
Rfactor, % 0.2159 0.1965 0.1952
Rfree, % 0.2469 0.2139 0.2383
RMSD in bond lengths, Å 0.002 0.003 0.003
RMS angle, ° 0.62 0.67 0.61
Temperature, °C −80 −80 −80
Residues missing 1, 2, 57–62, 92–96 1, 2, 59–62, 81,82, 93–95, 140
Chain A 1, 93–97
Chain B 1, 13, 91–97

PDB ID code 4X1L 4X1M 4X25
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am thankful to Drs. Vivian Budnik, Baojin Ding and Ashely James for their 

conversations, insight and advice.  
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 APPENDIX III: Investigating a Relationship Between FUS, MegaRNPs and 

Disease 

Disruptions in nucleocytoplasmic transport have recently emerged as a 

widespread theme amongst neurological disorders (Li & Lagier-Tourenne 2018). 

In the field neurodegeneration, particularly the motor neuron disease amyotrophic 

lateral sclerosis (ALS), there has been much attention regarding the 

mislocalization of transport factors and cargo, however alterations to the structure 

and composition of the nuclear envelope may also contribute to the observed 

defects. One critical feature of the nuclear envelope is lamin. Lamins are 

intermediate filaments that form mesh-like matrix along the inner nuclear 

membrane of the nuclear envelope. There are two types of Lamins. First, B-type 

lamins (Lamin B), which are expressed are expressed early in development and, 

second, A-type lamin (Lamin A), expressed in differentiated cells and can be 

alternatively spliced to form Lamin C, (Fradkin & Budnik 2016). Together, they form 

the laminar matrix, which provides structure and integrity to the nuclear envelope 

by anchoring components of cytosolic cytoskeletal network. More than structural 

support, lamins can also influences nuclear function by binding chromosomes and 

nuclear transcription factors. Disruption of nuclear matrix can lead to the 

inappropriate clustering of nuclear pores and disruption in chromatin organization, 

resulting in alterations to gene expression (Coutinho et al. 2009, Wiggan et al. 

2017). 
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Notably, disease resulting from lamin mutations are referred to as 

laminopathies, the most well-known of which is Hutchinson-Gilford progeria 

syndrome (HGPS) (Coutinho et al. 2009). HGPS is a rare genetic disease which 

manifests as ‘pre-mature aging’ in children. This disease affects 1 per 4–8 million 

live births and the life expectancy is primarily 13 years. HGPS is caused by 

autosomal dominant mutations in Lamin A and while there are multiple associated 

mutations, >90% of cases are caused by the mutation G608G which results in the 

mis-splicing of prelamin (McClintock et al. 2007). Immature Lamin A (prelamin) 

undergoes several round of C-terminal processing: first, C-terminal farnesylation, 

followed the cleavage of three terminal amino acids, methylation and second round 

of C-terminal cleavage in which 15 amino acids and the farnesyl modification are 

removed to form mature Lamin A. The G608G mutation prevents the second round 

of C-terminal cleavage resulting in an improperly farnesylated protein, referred to 

as progerin, that forms abnormally strong association with the nuclear envelope 

(Coutinho et al. 2009, McClintock et al. 2007). As a result, the nuclear envelope 

becomes notably misshapen, often described as ‘blebbing’ (Coutinho et al. 2009).   

 Nuclear export primarily occurs though nuclear pores, however recent 

studies have suggested the presence of an alternative export pathway (nuclear 

budding) that may be relevant to HGPS and general nucleocytoplasmic transport. 

This emerging pathway was first observed in the nuclei of Drosophila skeletal 

muscle in response to neuromuscular Wingless/DFz2 (in humans: Wnt-

1/DFrizzled2) signaling (Speese et al. 2012). In this pathway, large nuclear RNP 
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granules (megaRNPs) containing synaptic and mitochondrial mRNAs are brought 

to the nuclear envelope where they induce rearrangements of the laminar matrix, 

bud from the inner nuclear membrane (C-terminal fragment of DFz2 (DFz2C)-

positive granules appearing enveloped by Lamin A) and then fuse with the outer 

nuclear membrane for release into the cytoplasm(Jokhi et al. 2013, Li et al. 2016, 

Speese et al. 2012). Mutations in Drosophila Lamin A, equivalent to human HGPS-

causing mutations, results a decrease of DFz2C-postive Lamin A foci and 

increased blebbing (Li et al. 2016). Upon expression of HGPS-linked Drosophila 

Lamin A mutations, mitochondria degeneration and neuromuscular junction 

defects were observed (Li et al. 2016).  It is hypothesized that improper export of 

mRNA through this pathway contributes to the development of these phenotypes 

resulting in detrimental cellular effects, including accelerated aging (Li et al. 2016).   

 The connection between age-linked neurodegenerative disease and 

laminopathy pathologies is not well studied. However, defects in 

nucleocytoplasmic transport and partitioning are emerging as relevant to 

neurodegenerative disease as well as the normal gaining process. Lamin 

specifically has gained attention in Tauopathy models (Frost et al. 2016), 

Parkinson’s (Miller et al. 2013) as well as the normal aging process (McClintock et 

al. 2007, Scaffidi et al.). Mutations in multiple RNA binding proteins (RBPs), 

including fused in sarcoma (FUS) and TAR DNA-binding protein 43 (TDP-43), 

cause ALS, an adult onset neurodegenerative disease that affects motor neurons 

(Brown & Al-Chalabi 2017). Further nuclear envelope abnormalities and nuclear 
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mRNA accumulation are observed in Drosophila models of ALS (Freibaum et al. 

2015) and mislocalization of transport factors has been observed both the patient 

tissue of inherited (familial) as well as sporadic ALS (Freibaum et al. 2015, 

Kinoshita et al. 2009, Zhang et al. 2015). Thus, RNA processing and 

nucleocytoplasmic transport appear important to the pathomechanism of ALS. To 

investigate the potential relevance of Lamin-mediated disruptions to the 

development of ALS-linked, nucleocytoplasmic transport phenotypes, we 

evaluated the expression of ALS-linked RBPs in models of HGPS as well as 

HGPS/Lamin-linked processes in neuronal modes of ALS. 

 

Progerin-Induced Nuclear Misfolding Alters Expression of ALS-linked RBPs 

To probe for a connection between disruptions in the laminar matrix and 

neurodegenerative-disease linked phenotypes, we evaluated the expression and 

localization of ALS-linked RBPs in primary fibroblasts expressing HGPS-linked, 

Lamin A mutations known to alter nuclear morphology (Table AIII-1). Fibroblast 

lines were grown until they reached ~50-70% confluency and were collected for 

western analysis (Fig. AIII-1A-E).  TDP-43 levels were significantly decreased in 

only the G608G lines, relative to the pooled control (Fig. AIII-1B,C). Although not 

significant, FUS protein also levels appeared reduced in both these lines as well 

(Fig. AIII-1B,D). Interestingly, both FUS and TDP43 levels did not appear reduced 

in the R644C line (Fig. AIII-1B,C) suggesting the effects of the G608G mutation 

are more severe than R644C. This is supported by the observation that both  
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Table AIII-1. Primary fibroblast lines. Characteristics of HGPS and non-

diseased controls used for experimental analysis. 

Fibroblast 

Line Name 

Coriell 

ID 

Affected 

Status 
Source Mutation Sex 

Age at 

Sampling 

(Year) 

Passage* 

G608G (1) AG11513 Yes; HGPS Skin, leg GLY608GLY Female 8 5 
G608G (2) AG06297 Yes; HGPS Skin, thigh GLY608GLY Male 8 18 

R644C GM00989 Yes; HGPS Skin ARG644CYS Male 20 15 
Control (1) GM02036 No Skin -- Female 11 13 
Control (2) GM03440 No Skin, leg -- Male 20 4 
Control (3) AG16409** No Skin -- Male 12 4 

*From time of purchase from Coriell. 
**With the exception of AG16409, all lines were purchased from Coriell. AG16409 was a generous gift from the Budnik lab.  
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Figure AIII-1. TDP-43 protein expression is altered in G608G-HGPS 

expressing fibroblasts. (A) Phase images of fibroblast lines used for analysis of 
ALS-linked RBP expression. Scale bar = 50µm. (B) Western and (C-E) 
densitometry analysis of fibroblast protein lysates revealed that TDP-43 protein 
levels, unlike FUS or GAPDH, are significantly decreased in both G608G lines 
compared to the pooled control (one-way ANOVA; *p<0.05, n.s. = non-significant, 
n = 3 experimental replicates). For quantification, RBP levels from all six lines were 
normalized to total protein levels and then the pooled control. Error bars = SEM. 
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G608G lines also grew at a slower rate in culture. There was no significant or 

trending decrease in GAPDH levels for any fibroblast line indicating that not all 

proteins are affected by the presence of the G608G mutations (Fig. AIII-1B,E). 

We next sought to observe the distribution of these RBPs in situ. To denote 

the nucleus and nuclear envelope immunofluorescence of Lamin A/C was 

performed. As expected, misshapen nuclei were observed in HGPS-mutant 

expressing fibroblasts (Fig. AIII-2A). Akin to the trend observed by western (Fig. 

AIII-1), a decrease in the number of cells with robust nuclear FUS staining was 

observed in both G608G fibroblast lines (Fig. AIII-2A). This observation was 

confirmed following quantification of qualitative FUS levels and nuclear envelope 

morphology; the number of cells with essentially no FUS staining was increased in 

these lines (Fig. AIII-2B-H; as indicated by both green and magenta bars for 

‘None’).  It was also observed that this phenotype could be observed in both normal 

and misshapen nuclei (Fig. AIII-2B-H). This suggests that the observed reduction 

in FUS immunoreactivity phenotype does not correlate with nuclear envelope 

distortion. Upon staining for TDP-43 all but one line, G608G (2), exhibited robust 

nuclear staining (Fig. AIII-2B-I). Interestingly, this loss of nuclear signal detected 

by immunofluorescence does not appear to faithfully match the Western analysis 

in which TDP-43 levels were reduced in both G608G lines. Together, these 

experiments together indicate that HGPS-causing Lamin mutations influence the 

expression of the ALS-linked proteins, FUS and TDP-43 (Fig. AIII-1,2), although 

the significance of our immunofluorescence observations is unclear at this time.  
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Figure AIII-2. Decreased detection of endogenous FUS and increased 
nuclear envelope misshapenness in G608G fibroblast lines. (A) 
Immunofluorescence of FUS (green) reveal a decreased detection of this protein 
in fibroblast lines containing the G608G mutation. Nuclear envelope distortion, as 
indicated by Lamin A/C staining (red), was also observed in G608G fibroblast lines. 
Scale bar = 10µm.  
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Figure AIII-2 continued. (B) Qualitative scoring of FUS staining levels and nuclear 
envelope shape was conducted. FUS levels were evaluated as Robust, Low or 
None and nuclear envelop shape (as indicated by Lamin A/C staining) as normal 
or misshapen. Scale bar = 10µm. (C-H) In G608G lines there was an increased 
number of cells with reduced FUS staining as well as misshapen nuclear 
envelopes. However, reduced FUS staining was observed in fibroblasts with 
normal as well as misshapen nuclear envelope morphology (n = 3 experimental 
replicates, 100 cells per line and replicate were quantified). 
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Figure AIII-2 continued. (I) TDP-43 staining in HGPS and control fibroblast lines. 
For all lines expect G608G (2), TDP-43 staining (green) was strongest in the 
nucleus (indicated by DAPI, blue). For G608G (2), there were notably more cells 
with reduced nuclear TDP43 staining than other conditions (observations were not 
quantified or scored; n = 1 experimental replicate). Scale bar = 10µm. 
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Increased Lamin puncta observed in PCNs after excitotoxic treatment 

The previous experiments suggest that ALS-linked RBPs are affected by HGPS-

causing mutations in the nuclear matrix protein, Lamin A. Both FUS and TDP-43 

regulate various aspects of RNA regulation, including the expression of synaptic 

transcripts, and alterations in RNA processing by ALS-mutations in these proteins 

is hypothesized to contribute to disease(Ling 2018). Further, both FUS and TDP-

43 have been shown to associate with a variety of RNA-protein complexes 

including transport granules, stress granules as well as nuclear transcriptional and 

splicing complexes(Ratti & Buratti 2016). Similarly, megaRNPs are thought to 

contain transcripts essential for the formation of neuromuscular synapses (Li et al. 

2016, Speese et al. 2012) and their nuclear export is disrupted in a Lamin-A 

Drosophila model of HGPS (Li et al. 2016). Thus, RBP and megaRNP biology both 

appear affected by disruptions to the laminar matrix.  

In light of such parallels, we considered if megaRNP biology could also be 

affected in models of ALS, in which RBP localization and nucleocytoplasmic 

transport are likewise disrupted. Nuclear envelope-adjacent Lamin A foci have 

previously been used to indicate the presence of megaRNPs as these complexes 

remodel and become surrounded Lamin as they pass through the nuclear 

envelope. Thus, to test this hypothesis, the presence of Lamin A foci was 

evaluated in a cellular model of excitotoxity, a neuronal form of stress associated 

ALS and capable of causing FUS and TDP-43 egress (Fig. II-2) as well as disrupt 

nuclear export (Fig. II-4). Following excitotoxic treatment of primary cortical  
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Figure AIII-3. Increased Lamin A/C foci following excitotoxic stress. (A) 
Excitotoxic stress induced primary cortical neurons using 10µM glutamate for 10 
minutes followed by a 30-minute washout period. (B) Lamin A/C staining (red) 
revealed the nuclear envelope as well as the foci exhibiting excitotoxic FUS egress 
(green). Scale bars = 10µm. High magnification insets of white boxes show FUS 
staining is not enhanced within Lamin A/C foci. Nuclei were stained with DAPI 
(blue). High magnification scale bars = 2.5µm. (C) The number of neurons with 
Lamin A/C foci from (B) were significantly increased following excitonic insult 
(Student’s T-test, ***p<0.001, n= 4 biological replicates, 46-200 neurons per 
condition were quantified). Scale bars represent SEM.  
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neurons, we observed a significant increase in the number of Lamin A/C foci (Fig. 

AIII-3A,B). Moreover, it was qualitatively observed that these granules were not 

enriched for FUS, an RBP that robustly translocate to the cytoplasmic following 

excitotoxic insult (Fig. AIII-3 A). The observed increase in Lamin A/C-positive 

distortions observed in a model of ALS are consistent with similar previous finding 

made in a Drosophila model of HGPS. Although the validation of neuronal foci and 

their functional significance remains to be determined, these data support the 

potential relevance of Lamin-linked nuclear envelope processes and 

neurodegenerative disease. 

 

Conclusions 

The mislocalization of normally nuclear, disease-linked RBPs is well-documented 

in models of cellular stress and disease. Moreover, defects in nucleocytoplasmic 

transport have recently emerged as a common theme in neurodegenerative 

disease as well. As a result, these observations have sparked an interest in 

understanding the relationship between these two disease-linked pathologies. 

Here we consider the relevance of the nuclear envelope and nuclear envelop-

linked processes to pathological ALS phenotypes and disease models.  

 First using a model of the laminopathy, HGPS, we uncovered alterations in 

the physical expression of the ALS-linked RBPs, FUS and TDP-43. In two separate 

fibroblasts line expressing the common HGPS mutation, G608G, we observed a 

significant decrease in TDP-43 protein levels and a trending, but not significant, 
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decrease in FUS level by western (Fig. AIII-1). Interestingly, upon evaluation of 

these proteins by immunofluorescence, we observed an increased number of 

G608G-expressing fibroblasts with apparently decreased FUS staining (Fig. AIII-

2A-H). However, we cannot rule out that FUS may be somehow modified in these 

mutant cells in a manner that precludes their detection by the antibody used, thus 

reducing immunoreactivity and appearing decreased. Intriguingly, a pilot 

immunofluorescence experiment of TDP-43 revealed that, unlike FUS, a loss of 

TDP-43 staining from a subset of cells was only observed in the G608G (2) line 

(Fig. AIII-2I). Given that a significant decrease in TDP-43 protein levels was 

observed by western (Fig. AIII-1), if reproducible, our immunofluorescence 

observations suggest that the decrease in TDP-43 levels may possibly reflect a 

reduction across the population of cells vs. an effect from a subpopulation of cells 

devoid of TDP-43. Intriguingly, although G608G is known to cause alterations in 

nuclear morphology (Coutinho et al. 2009), reduced FUS staining was not 

restricted to cells with notably disturbed nuclear envelopes (Fig. AIII-2D,C). This 

observation suggests that the effect of G608G on FUS is not linked the presence 

of this phenotype and may result from alternative consequences not evaluated 

here (i.e. altered chromosomal rearrangement, nuclear pore function etc.). 

Together, although the significance of our western and 

immunofluorescence observations are not clear, it appears that disruptions to the 

nuclear lamina can alter RBP dynamics. It was surprising that a redistribution of 

these proteins was not observed, as seen in models of stress and disease (Sama 
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et al. 2013). To confirm this possibility, a quantitative analysis of FUS staining 

intensity could be completed; biochemical fractionation might not capture this 

observed effect, given it occurs in a subset of cells.  Intriguingly, sporadic spinal 

motor neurons with TDP-43, pathology have hnRNPA1 reactivity (another ALS-

linked protein) and thus, a similar mechanism could be at play (Honda et al. 2014).  

 In contrast to the evaluation of phenotypes in a model of disrupted lamin 

biology, we also assessed if HGPS and lamin-linked processes (megaRNP export) 

were disrupted in a cellular model of ALS (excitotoxicity), thereby providing insight 

as to the relevance of nuclear envelope disruptions to ALS. Interestingly, we 

observed an increase in the number of Lamin A/C-puncta following excitotoxic 

stress (Fig. III-3), consistent with a possibly change to megaRNP export (e.g. 

increased export or impaired export, resulting in overall increase in number). Given 

that excitotoxity causes FUS and TDP-43 egress (Fig. II-2), influences the 

processing of synaptic transcripts (Table II-2, Fig. II-10) and induces mitochondria 

dysfunction (the latter two downstream effects linked to megaRNP-contained 

transcripts (Jokhi et al. 2013, Li et al. 2016)), it is intriguing to think that the 

functional response of FUS and/or TDP-43 might contribute to the regulation 

transcripts present within megaRNPs and/or megaRNP complex formation/export 

itself. However, confirmation of these foci as megaRNP through co-localization of 

additional markers and visualization by electron microscopy (Speese et al. 2012) 

would be first required. Upon validation it would be interesting to reduce FUS or 

TDP-43 levels and/or express ALS-linked mutant proteins and observe their effect 
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on this phenotype. Although not investigated at this time, the observations 

described here support a possible connection between lamin-mediated disruptions 

the nuclear envelope and phenotypes associated with neurodegenerative disease. 

Thus, they may have relevance to our understanding of the development or 

consequences of altered nucleocytoplasmic shuttling observed in ALS.  

 
Methods and Materials 

Cell Culture and Treatment 

Fibroblasts lines were obtained from Coriell (Table AIII-1). AG11513 cells were 

plated on gelatin coated plates (MilliporeSigma G1890); the remaining lines were 

plated on uncoated dishes. All lines were grown under standard culture conditions 

(37°C, 5% CO2/95% air). AG11513 was grown in 50:50 Dulbecco’s minimal 

essential medium with glucose (DMEM, Invitrogen 11965118):MEM with Earle's 

salts (Invitrogen 11095080) supplemented with 2mM L-Glutamine (Gln; 

25030081), 1% penicillin and streptomycin (P/S; Invitrogen 15140122) and 15% 

fetal bovine serum (FBS; not inactivated; MilliporeSigma F2442). Lines: GM00989, 

AG0697, GM02036 and GM03440 were grown in Eagle's MEM with Earle's Salts 

supplemented with non-essential amino acids (Invitrogen 11140050), 2mM Gln, 

1% P/S and 15% FBS (not inactivated). AG16409 was grown in DMEM with 

glucose supplemented with 2mM Gln, Sodium Pyruvate (Invitrogen 11360070) and 

1% P/S and 10% heat inactivated FBS (MilliporeSigma F4135). All cultures were 

passed at 1:2-1:5 dilutions. Dissociated neuron cultures were prepared as 

described (see Chapter III Methods and Materials)  
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To induce stress, 100mM glutamate (MilliporeSigma G5889) was freshly 

prepared in Neurobasal media and diluted using primary conditioned media (PCM) 

to the desired concentration. To apply stress, neuronal media was replaced with 

glutamate-containing PCM or PCM alone (glutamate-free control) for 10 minutes. 

After 10 minutes, treatment media was replaced with PCM for 30 minutes or longer 

depending on the experiment, prior to fixation or lysate collection. 

 

Immunofluorescence, Image Acquisition and Analysis 

Immunofluorescence was completed as described (Bosco et al. 2010, Sama et al. 

2017) (see Chapter III Methods and Materials). Primary antibodies and dilutions 

used include: 1:1000 FUS (Bethyl Laboratories A300-293A), 1:500 Lamin A/C 

(MilliporeSigma SAB4200236) and 1/1000 TDP-43 (EnCor Biotechnology Inc. 

MCA-3H8). Single plane microglia images were obtained using a Leica DMI6000B 

microscope as described (Sama et al. 2013). The number of cells with peri-nuclear 

envelope Lamin A/C foci were quantified and expressed as a percent.  

 

Western Analysis  

Whole cell lysates from fibroblasts were obtained and processed for Western as 

described (Ward et al. 2014)  (see Chapter III Methods and Materials). Primary 

antibodies used include: 1/1000 TDP-43 (EnCor Biotechnology Inc. MCA-3H8), 

1/200 FUS (Santa Cruz 4H11 sc-47711) and 1:2000 GAPDH (MilliporeSigma 

G8795). 
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