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University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
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Abstract

The fruit fly Drosophila melanogaster is a powerful model system for the study of innate

immunity in vector insects as well as mammals. For vector insects, it is particularly important

to understand all aspects of their antiviral immune defenses, which could eventually be har-

nessed to control the transmission of human pathogenic viruses. The immune responses

controlling RNA viruses in insects have been extensively studied, but the response to DNA

virus infections is poorly characterized. Here, we report that infection of Drosophila with the

DNA virus Invertebrate iridescent Virus 6 (IIV-6) triggers JAK-STAT signaling and the robust

expression of the Turandots, a gene family encoding small secreted proteins. To drive JAK-

STAT signaling, IIV-6 infection more immediately induced expression of the unpaireds, a

family of IL-6-related cytokine genes, via a pathway that required one of the three Drosophila

p38 homologs, p38b. In fact, both Stat92E and p38b were required for the survival of IIV-6

infected flies. In addition, in vitro induction of the unpaireds required an NADPH-oxidase,

and in vivo studies demonstrated Nox was required for induction of TotA. These results

argue that ROS production, triggered by IIV-6 infection, leads to p38b activation and

unpaired expression, and subsequent JAK-STAT signaling, which ultimately protects the fly

from IIV-6 infection.

Author summary

Mosquitoes and other biting insects transmit many harmful pathogens to humans,

including parasites and viruses. In order to better protect humans from these diseases,

we must gain a more complete understanding of how insects successfully—or unsuc-

cessfully—combat these infections. While we know a great deal regarding how insects

combat RNA viruses, we know little about their immune response to DNA virus infec-

tions. Studies of DNA virus infections may reveal novel immune mechanisms, which

could be uniquely effective against DNA virus infections or could be broadly effective

against many viruses. In this study, we utilized an invertebrate DNA virus, IIV-6, infec-

tion model with the fruit fly Drosophila melanogaster, and found that virus infection

activated several innate immune signaling pathways, which help protect the animal
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against this virus. Eventually, a more complete understanding of the antiviral responses

of insects may be useful to restrict virus infections of disease transmitting insects.

Introduction

Like all multicellular organisms, insects face a constant threat of infection from a wide array of

microorganisms, including viral, bacterial, and fungal pathogens. Insects combat these infec-

tions with both static and inducible defenses, including a chitinous exoskeleton, circulating

phagocytes and the induction of host defense genes, such as antimicrobial peptides [1]. For

example, Drosophila melanogaster respond to bacterial and fungal infections through two con-

served NF-κB signaling pathways, Toll and Imd, that drive the production of antimicrobial

peptides and other inducible host defense molecules. Toll and Imd pathways are homologous

to the TLR-MyD88 and TLR-TRIF signaling pathways in mammals, respectively. Unlike mam-

mals, the Drosophila NF-κB pathways seem to play a limited role in response to invertebrate

viral infections [2–5].

Insects, especially mosquitoes, are major vectors of arboviral diseases, and characterizing the

pathways that they utilize to combat viral infections is necessary to gain a complete understand-

ing of disease transmission. Drosophila, also a dipteran insect, has served as a productive model

for studying insect antiviral immunity [6]. In Drosophila, the most intensely studied antiviral

pathway is the siRNA response. The siRNA response is triggered when viral dsRNA intermedi-

ates, either derived directly from the viral genome or produced as an intermediate during repli-

cation or transcription, are recognized by Dicer-2, which processes these dsRNAs into 21 base-

pair fragments and loads them onto Argonaute-2. This complex, termed an RNA-Induced

Silencing Complex (RISC), is then able to destroy its complementary target sequence. This

mechanism is a potent antiviral defense against RNA viruses and, in some circumstances,

against DNA viruses [7, 8]. In addition, it has been suggested that Dicer-2, following the recog-

nition of viral dsRNA, can trigger a signaling pathway that induces the transcription of the anti-

viral gene Vago [9]. While antiviral effects of Vago have only been shown upon Drosophila C

virus (DCV) infection of flies, mosquito Vago was induced upon flavivirus infections of Culicine

cell lines and animals and was suggested to be antiviral [10, 11].

On the other hand, mammalian antiviral defenses are triggered after recognition of an

array of pathogen-associated and damage-associated molecular patterns (PAMPs and

DAMPs), including but not limited to dsRNA. For example, various RNA species are recog-

nized in the endosome by TLR3, 7 & 8, or in the cytosol by RIG-I or MDA-5. In addition,

numerous viral proteins are recognized directly by various TLRs [12], and viral-induced dam-

age often leads to induction of inflammasome activation and pyroptosis or necroptosis.

Inflammasome activation results in the production of proinflammatory cytokines to promote

recruitment of effector cells to the site of infection, while pyroptosis can act to restrict viral

infection by killing the infected cell and thereby limiting viral replication [13].

Compared to mammalian systems, the extent to which the invertebrate immune system

recognizes PAMPs and DAMPs, beyond viral dsRNA, is less well-studied. Examples from Dro-
sophila include Toll-7, which was demonstrated to sense vesicular stomatitis virus (VSV) and

Rift Valley fever virus (RVFV), and activate autophagy as an antiviral defense [14, 15]. Addi-

tionally, JAK-STAT signaling has been shown to induce vir-1 in response to DCV or cricket

paralysis virus (CrPV), although the mechanism by which these viruses activate JAK-STAT

signaling is unknown [8]. Imd signaling in the gut, triggered by commensals, is required for

the activation of the ERK pathway, which protects against several enteric RNA viruses [5].

p38b signaling protects against a DNA virus infection in Drosophila
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This commensal-mediated priming may explain the previously reported activity of Imd and

Toll pathways in protecting against other viral infections [2–4, 16]. A study examining the ori-

gins of cGAS-STING signaling—an important cytosolic DNA sensing pathway in mammals,

leading to Type I interferon production—concluded that cGAS homologs in insects lack

regions required for DNA binding [17]. Thus, the role of the cGAS homologs in insects

remains unclear.

In fact, the pathways responding to DNA virus infections in Drosophila have not been char-

acterized. Insect DNA viruses, such as baculoviruses, the invertebrate iridescent viruses, and

polydnaviruses are large, complex viruses ranging from 50 to more than 200 genes. These viral

genes include many immunomodulators and other proteins that manipulate the cellular envi-

ronment to facilitate replication [18]. These large DNA viruses and their myriad of host target-

ing and manipulating factors suggest that many host immune response pathways, beyond

RNAi, interfere with viral replication.

Here, we report that Drosophila infection with the DNA virus Invertebrate iridescent virus

6 (IIV-6) induces a p38b-dependent pathway that activates JAK-STAT signaling and the

robust transcriptional induction of a class of small secreted proteins known as the Turandots.

Activation of this pathway requires the production of reactive oxygen species, perhaps indica-

tive of a response to damage. Moreover, two key components of this pathway, p38b and

Stat92E, are essential for host defense against IIV-6 infection.

Results

Turandots are induced by IIV-6 infection

Given the paucity of data on the insect response to DNA virus infection, we sought to identify

the immune-related genes upregulated upon IIV-6 infection of adult flies. Male flies were

injected with PBS (vehicle control) or IIV-6 at 1x104 TCID50 for 12, 24, or 48 hours, RNA was

isolated and analyzed by NanoString nCounter Analysis, with a codeset probing 139 immune-

related genes (Fig 1A). Two members of the Turandot (Tot) family, TotA and TotM were

strongly upregulated at all time points in the IIV-6 infected samples compared to PBS-injected

controls (Fig 1A and 1A’). These genes are part of a family of eight closely related, rapidly

evolving genes that are induced by a variety of stressors including bacterial infection, heat

shock, mechanical pressure, and UV-exposure [19, 20]. The Tots encode for small secreted

proteins that have no known function [19, 21]. As the NanoString codeset included only two

Tot genes, we used qRT-PCR to examine the expression of all eight Tot genes following IIV-6

infection. Six Tot genes were induced 10–1000 fold, compared to the PBS injected controls, 6

to 24 hours following IIV-6 infection (Fig 1B). The two Tot genes not up-regulated, TotE and

TotF, are clustered together on Chromosome 2, suggesting that these two closely related Tots

may respond to a different set of stimuli. Note, TotE was undetectable, while TotF was detected

but unchanged by IIV-6 infection. Drosophila S2� cells also induced TotA, peaking between

24–36 hours after IIV-6 infection, while in mock-treated controls TotA expression remained at

baseline levels (Fig 1C).

To begin to dissect the mechanisms that lead from DNA virus infection to Tot gene induc-

tion, we tested the requirement for live virus infection and viral replication in this process. IIV-

6 was heat- or UV-inactivated, which typically creates virus that can attach, enter cells, and pos-

sibly deliver damaged nucleic acids or protein but is not replicative [22]. These inactivated

viruses were then used to stimulate S2� cells (Fig 2A). Both UV-inactivation and heat treatment

significantly reduced TotA induction, to levels near baseline. In addition, infection with another

DNA virus, Vaccinia virus (VACV), which is known to abortively infect S2 cells [23, 24], failed

to induce TotA expression (Fig 2A). Consistent with this observation, pretreatment of S2� cells

p38b signaling protects against a DNA virus infection in Drosophila
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with viral DNA polymerase inhibitors, phosphonoacetic acid (PAA) or cidofovir, also resulted

in significantly diminished IIV-6 triggered TotA induction (Fig 2B and 2C). These results sug-

gest that the presence of viral DNA alone is not sufficient to trigger Tot induction, in contrast to

mammalian systems where cytosolic DNA triggers a robust cytokine response and triggers

inflammasome activation [25]. Studies with the polymerase inhibitors PAA and cidofovir fur-

ther argue that virus entry and expression of early gene transcripts are also not sufficient for this

response. Together, these data indicate that active viral replication (or the processes down-

stream of viral replication) is required for IIV-6 induced TotA induction.

Turandot induction is JAK-STAT dependent

Previous studies demonstrated that the JAK-STAT signaling pathway is responsible for induc-

ing Tot expression after Gram-negative bacterial infection [26]. To test whether JAK-STAT

signaling is also required for IIV-6-induced Tot expression, domeless, hopscotch, and Stat92E,

the sole Drosophila homologs for the gp130 receptor, JAK, and STAT, respectively, were tar-

geted by RNAi in S2� cells. Knockdown of any of these genes led to a significant decrease in

TotA induction (Fig 3A, knock-down efficiencies S1A–S1C Fig). We then asked whether the

JAK-STAT pathway had any effect on survival following IIV-6 infection. Stat92E was ubiqui-

tously knocked down using the tubulin-GAL4 driver and these flies were challenged with 104

TCID50 of IIV-6. The Stat92E knockdown flies exhibited significantly increased lethality com-

pared to the control strain (progeny of w1118 x tubulin-GAL4) after virus infection (Fig 3B,

additional trials S2 Fig, statistical analysis for all survival assays can be found in S2 Table). On

the other hand, both control and Stat92E knockdown lines tolerated the control PBS injection

to a similar degree. This was confirmed using additional RNAi lines (Figs 3C and S1E), and all

lines had significant knock-down efficiencies (S1D Fig). These results demonstrate that IIV-6

induced Tot expression is controlled by the JAK-STAT pathway, and this pathway is critical

for survival following infection.

Next, we hypothesized that IIV-6 infection may induce the expression of one or more of the

unpaireds, which encode the ligands for the gp130-like receptor Domeless. Unpaired 1, 2, and

3 are all distantly related to IL-6 [27]. Unpaired 1 is critical for embryonic development, and

upd1 null flies are embryonic lethal, while the upd2, upd3 double deletion is viable. Unpaired 3
is induced in hemocytes after septic injury [26] and plays a role in gut regeneration following

damage [28]. In S2� cells, IIV-6 infection induced expression of all three unpaireds, ~104-fold

as measured by qRT-PCR (Fig 4A). Hypomorphic alleles of upd1, also known as outstretched,

are viable and some of these alleles, such as oss, also affect the expression of upd3, which lies

nearby [29]. In adult flies, IIV-6 induced TotA expression was significantly reduced in all upd
alleles, with the largest decrease in the oss allele (Fig 4B). TotM induction was similarly reduced

by oss to levels observed in the PBS injected control, with lesser but still significant reductions

in the upd3 mutant and upd2Δ,upd3Δ double mutant. Given the phenotypes in the hypo-

morphic oss allele and the upd2Δupd3Δ double mutant, these data indicate that the unpaireds
function redundantly to drive JAK-STAT signaling in response to IIV-6 infection.

Fig 1. Turandot genes are expressed upon IIV-6 Infection A) Heatmap of mRNA levels for selected immune-related genes following IIV-6 infection of adult w1118

flies for 12, 24 and 48 hours assayed in duplicate by NanoString nCounter. RNA was isolated from PBS-injected flies at the same time points. Each data point is a

biologically independent sample. A’) Detailed comparison of mRNA levels for Tot A or Tot M from nCounter data. B) Fold induction of all eight Tots from w1118 flies

infected with IIV-6, relative to PBS injected controls, at 6, 12, or 24 hours, quantified by qRT-PCR. n = 3, error bars represent SEM and statistical significance

determined by Multiple t-tests with correction for multiple comparisons using the Holm-Sidak method. By this analysis, all Turandots were significantly induced with

p values between 0.05 and 0.0003 at all time-points with the exception of TotF (ns) and TotE, which was undetectable (nd). C) S2� cells were infected with IIV-6 and

TotA expression was assayed by qRT-PCR at the indicated time points. Significance was determined by two-way ANOVA and Sidak’s multiple comparisons test,

comparing the infected sample to its time-matched uninfected control. � p< 0.05; ��� p< 0.001; and ���� p< 0.0001 Error bars indicate standard deviation and black

bars indicate the mean. A.U., Arbitrary Units.

https://doi.org/10.1371/journal.ppat.1007020.g001
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The IIV-6 triggered expression of upds suggests that virus infection may induce these cyto-

kine genes, which in turn will drive JAK-STAT signaling and Tot expression. In other systems,

such as gut renewal, it has been suggested that various MAPK pathways are responsible for

driving upd expression [28, 30–32]. Therefore S2� cells were treated with inhibitors targeting

the three Drosophila MAPKs (JNK, p38, or ERK) and then infected with IIV-6. Treatment

with p38 inhibitor significantly reduced upd3 expression to near baseline levels, while ERK

inhibitor had no effect and JNK inhibitor actually increased upd3 expression (Fig 4C). On the

other hand, the JAK-STAT inhibitor Tofacitinib blocked IIV-6 induced TotA expression but

had no effect on the expression of upd3 (Fig 4D). Together, these data indicate that while

JAK-STAT is required for Tot induction, the virus-triggered expression of the upds (JAK--

STAT activating cytokines) involves the p38 MAPK pathway.

In vivo, p38b is required for IIV-6 induced TotA expression and survival

from infection

Drosophila encode three p38 homologs, p38a, p38b, and p38c, with p38a and p38c juxtaposed

on third chromosome and p38b on the second. p38a/cmutant flies are susceptible to oxidative

stress and heat shock, though not to osmotic shock [33], while p38b has been shown to provide

protection against pathogenic bacterial or fungal challenge, although the underlying mecha-

nisms are unclear [34]. p38c has also been implicated in gut homeostasis and reactive oxygen

species (ROS) production in the gut upon infection with P. entomophila or Erwinia carotovora
carotovora 15 [35]. In addition, p38c is required for the induction of DOPA decarboxylase,
which is required for the production of antimicrobial quinones produced in response to

wounding [36]. p38b has also been linked to tolerance to infection with Salmonella typhimur-
ium [37]. Mutant flies for all three p38 homologs are viable to adulthood and were infected

with IIV-6 to determine their ability to induce Tots. We found that p38a and p38c null flies dis-

played normal levels of Tot expression following IIV-6 infection, while p38b null flies had only

basal levels of Tot expression (Fig 5A). Furthermore, p38b heterozygous flies also expressed

wild-type levels of Tots upon IIV-6 infection. Consistent with these TotA expression data, p38b
mutants but not p38a mutants were hypersusceptible to IIV-6 infection (Fig 5B and 5C, with

additional trials in S4 and S5 Figs). Likewise, p38bRNAi, when expressed with a ubiquitous

driver (tubulin-GAL4), exhibited significantly reduced survival following IIV-6 infection com-

pared to wild-type (driver alone) controls (Fig 5D, additional trials S6 Fig), while p38aRNAi

lines survived similarly to controls (Fig 5E, additional trials, S7 Fig). The knock-down efficien-

cies for these lines are shown in S3 Fig These combined results show that p38b is required for

Tot induction and survival following IIV-6 infection in adult flies. The S2� cell data further

demonstrates that p38 is required for unpaired induction. Together, these data suggest that

some aspect of viral infection triggers p38b activation leading to Unpaired production, JAK--

STAT activation, and Tot induction.

These results prompted us to ask whether these survival defects indicate a direct antiviral

role for p38b, or whether p38b promotes tolerance to IIV-6. To discern between these possibil-

ities, viral genomes were quantified by QPCR from p38b heterozygous and homozygous

Fig 2. Viral replication is required for IIV-6 induced turandot expression. A) S2� cells were infected with heat- or

UV-inactivated IIV-6 or infected with VACV or IIV-6 in serum-free (SF) media, and TotA induction was assayed by

qRT-PCR. B, C) S2� cells were treated with the viral polymerase inhibitors B) phosphonoacetic acid (PAA) or C)

cidofovir at the indicated concentrations for one hour prior to IIV-6 infection. For all panels, TotA induction was

assayed at 24 hours post-infection by qRT-PCR. Significance, compared to IIV-6 infected samples without treatment

or drugs, was determined by one-way ANOVA and Sidak’s multiple comparisons test (� p< 0.05; ��� p< 0.001; and
���� p< 0.0001). Error bars indicate standard deviation and black bars indicate the mean. A.U., Arbitrary Units.

https://doi.org/10.1371/journal.ppat.1007020.g002

p38b signaling protects against a DNA virus infection in Drosophila
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strains. p38b homozygous mutant flies showed no increase in viral titer compared to heterozy-

gous p38b siblings, suggesting that p38b promotes tolerance (Fig 5F).

Viral infection damages cells, often inducing cell death (both apoptotic and necrotic) as

well as the acute production of antivirals. These responses to viral infections can also trigger

the release of endogenous activators of inflammation, so called DAMPs. These DAMPs often

lead to MAPK activation. In particular, it has been shown that ROS can trigger p38 MAPK sig-

naling [38][31]. Therefore, we sought to determine whether ROS generation is required for

IIV-6-triggered, p38-dependent unpaired expression. To this end, we treated S2� cells with

diphenyleneiodonium chloride (DPI), an NADPH oxidase inhibitor, prior to infection with

IIV-6. DPI treatment completely abrogated induction of both upd3 (Fig 6A) and TotA (Fig 6B)

24 hours after IIV-6 infection. To investigate which of the two NADPH oxidases encoded by

Drosophila is responsible for this effect, we utilized previously characterized RNAi lines target-

ing each oxidase [39], with a fat-body specific expression (c564 driver). Nox knockdown, but

not Duox, prevented IIV-6-triggered TotA induction (Fig 6C). It is noteworthy that Nox has

previously been implicated to function in the sterile injury response, in particular the response

to extracellular actin, within the fat body [38]. These results argue that IIV-6 infection triggers

ROS production through Nox, that, in turn, stimulates p38b activation, Upd production and

Tot induction.

Discussion

Here, we show that infection of Drosophila with the DNA virus IIV-6 triggers a protective

p38b-dependent response (see pathway model in Fig 7). While previous work has demon-

strated that Drosophila p38b is critical for survival to bacterial or fungal infections and affects

the tolerance to bacterial infections [34, 37], this is the first time p38b has been linked to antivi-

ral defenses. Critical targets for p38b for the protection against IIV-6 infection are the unpair-
eds, a family of three IL-6-like genes clustered together on Chromosome X. The genetic data

presented here argue that the three Unpaireds function together, in a partially redundant man-

ner, to activate the JAK-STAT pathway following IIV-6 infection, thereby driving Tot gene

expression. The JAK-STAT pathway also protects against IIV-6 infection, although the role of

the Tots in antiviral defense requires more study. These results also imply that p38b is activated

following IIV-6 infection. While the mechanisms leading from virus infection to p38 activa-

tion are unclear, they likely involve ROS-mediated signaling as the induction of TotA expres-

sion is potently blocked by an NADPH oxidase inhibitor and require the Nox gene. This is

reminiscent of the activation of p38a by ROS generated from apoptotic cells in models of tissue

regeneration [31].

Interestingly, p38b has also been shown to provide tolerance to Salmonella typhimurium
infections, promoting survival of the host without reducing bacterial burden [37]. This study

Fig 3. JAK-STAT signaling is required for IIV-6-induced turandot expression and survival from virus infection A) S2� cells were

transfected with dsRNA targeting hopscotch, domeless, or Stat92E, and 48 hours later were infected with IIV-6 for 24 hours. RNA was then

isolated and TotA induction was quantified by qRT-PCR. Data shown are from three biologically independent assays. Two non-overlapping

dsRNAs were used to target each gene. Error bars indicate standard deviation and black bars indicate mean. Statistical analysis was

performed comparing control dsRNA (GFP or mCherry) transfected cells to target gene knockdowns by two-way ANOVA with corrections

for multiple comparisons using the Holm-Sidak method (���� p<0.0001). A.U., Arbitrary Units. B) Kaplan-Meier curves showing survival of

Stat92ERNAi expressing (UAS-Stat92ERNAi (VDRC)x tubulin-Gal4) flies (green lines) or control (w1118 x tubulin-Gal4) flies (black lines)

following infection with IIV-6 (solid lines) or injection with PBS (dotted lines). C) Kaplan-Meier curves showing survival of Stat92ERNAi

expressing (UAS-Stat92ERNAi (TRiP-1)x c564-Gal4) flies (green lines) or control (w1118) flies (black lines) following infection with IIV-6 (solid

lines) or injection with PBS (dotted lines). Survival assays utilized at least 50 animals per treatment in each trial and statistical significance

was determined by Log-rank (Mantel-Cox) test, comparing IIV-6 infected RNAi lines to IIV-6 infected control animals, or PBS-injected

RNAi lines to PBS-injected controls. ����p<0.0001.

https://doi.org/10.1371/journal.ppat.1007020.g003
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suggested that p38b contributes to tolerance by enabling hemocyte enlargement, and hence,

engulfment of larger quantities of bacteria. In the context of IIV-6 infection, p38b could be act-

ing to promote engulfment of infected and damaged cells, thereby providing a repair mecha-

nism to enable the animals to better tolerate and limit virus infection. Future studies will be

necessary to probe all the roles of p38b in antiviral defense.

Although the data presented here demonstrate that the JAK-STAT pathway is protective

against IIV-6 infection, the protective mechanisms require further study. In the case of the

RNA virus DCV, the JAK-STAT pathway is also protective, possibly through the induction of

vir-1. However, the JAK-STAT pathway is not broadly antiviral and vir-1 was not induced by

IIV-6 [8]. Curiously, a previous study examining the role of the JAK-STAT pathway during

IIV-6 infection, using one particular hypomorphic allelic combination hopscotch (JAK), con-

cluded that hopscotch (and by inference the JAK-STAT pathway) was not involved in protect-

ing flies against IIV-6 infection [7]. Our data, with multiple RNAi lines targeting stat92E, as

well as the S2 cell based results with RNAi targeting domeless, hopscotch, and stat92E, demon-

strate a consistent and reproducible role for this pathway in the response to and survival from

IIV-6 infection. We believe these contradictory outcomes may be due to differences in alleles

used or dose delivered.

The Tots are intriguing candidates for JAK-STAT induced antivirals. They are rapidly

evolving with evidence of positive selection, typical for immune effectors [20, 40]. However,

the Tots have not yet been demonstrated to provide direct antimicrobial activity. To date, we

have been unable to demonstrate any antiviral activity for the Tots. In particular, over-expres-

sion of TotA resulted in reduced survival following IIV-6 infection and no change in viral titers

(S8 Fig), consistent with the previously reported general toxicity caused by over expression of

this gene [21]. Further studies, examining all six of the IIV-6 induced Tots, with both loss- and

gain-of-function approaches, will be necessary to more fully examine this possibility.

The sensitivity of STAT knockdowns to IIV-6 infection argues that JAK-STAT signaling is

an important antiviral target of p38b. However, other p38b targets are also possible. For exam-

ple, an established target of p38b is the heat shock response. In the context of bacterial and fun-

gal infections, p38b is known to regulate Heat shock factor (Hsf) expression and the induction

of heat shock proteins (Hsps) [34]. In addition, another report has shown that Hsf protects

flies against both RNA and DNA viral infections [41]. Together, these results suggest that the

antiviral effects of p38b could be mediated, at least in part, through Hsf and Hsps. Indeed, Hsf
mutant flies display an increased rate of death after IIV-6 infection. It will be interesting to

learn if the heat shock response is activated by p38b following IIV-6 infection, and how this

response interacts with JAK-STAT dependent viral protection.

Successful host defenses detect multiple characteristics of an invading pathogen. For exam-

ple, cellular damage is one common indicator of pathogenic infection that can be sensed by

Fig 4. p38-dependent IIV-6 induced unpaired expression A) S2� cells were infected with IIV-6 for the indicated times and induction of upd1, upd2, or upd3 was

monitored by qRT-PCR, compared to PBS injected controls. Three biologically independent replicates are shown and statistical analysis was performed by Multiple t-

tests with the Holm-Sidak correction for multiple comparisons. Error bars indicate standard deviation and black bars indicate the mean. B) TotA or TotM expression

was measured by qRT-PCR from control w1118 flies as well as outstretcheds (oss), upd2Δ, upd3Δ, or upd2Δ,3Δ mutant flies 24 hours after IIV-6 infection or PBS injection.

The results of 3–5 biologically independent assays are displayed. Error bars represent the standard deviation and black bars represent the mean. Statistical significance

compared to the IIV-6 infected control strain (w1118) was determined by two-way ANOVA with Holm-Sidak correction. C) S2� cells were treated with inhibitors for the

three MAPKs: JNK (SP600125, 25μΜ), ERK (U0125, 10μΜ), and p38 (SB203580, 10μΜ), or treated with a vehicle control (DMSO), for one hour prior to IIV-6 infection

or mock treatment. After 24 hours of infection, upd3 expression was assayed by qRT-PCR. The results of 3 biologically independent assays are shown. Statistical

significance, compared to the DMSO treated control, was determined by two-way ANOVA with Holm-Sidak correction. D) S2� cells were treated with the JAK

inhibitor Tofacitinib (CP690,550 10 μM), or treated with a vehicle control (DMSO), for one hour prior to IIV-6 infection or mock treatment. After 24 hours of

infection, TotA and upd3 expression were assayed by qRT-PCR. 3 biologically independent assays with statistical significance, comparing virus infected vehicle to

inhibitor treatments, determined by two-way ANOVA with Holm-Sidak’s multiple comparisons test. Significance is indicated in A-D as � p< 0.05; �� p< 0.01; ���

p< 0.001; ���� p< 0.0001; and ns, not significant. A.U., Arbitrary Units.

https://doi.org/10.1371/journal.ppat.1007020.g004
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the innate immune system. In mammals, several danger-associated molecular patterns

(DAMPs) have been characterized, including HMGB1, F-actin, and histones [42–44]. Like-

wise, a recent report examining a Drosophila model of sterile injury demonstrated that extra-

cellular actin activates JAK-STAT signaling [38]. In this paradigm, detection of extracellular

actin, via an unknown receptor, triggered Nox-dependent ROS generation, the activation of

Src42A and Shark (Syk homolog), and induction of unpaireds and eventually Tots. This

Fig 5. p38b is required for turandot induction and survival A) Mutant strains for the three p38 homologs, p38aMPK1, p38bex9, or p38c1A1, were infected with IIV-6 or

injected with PBS, and TotA expression was measured by qRT-PCR 24 hours post-infection. Control genotypes included w1118 and p38bex9/CyO heterozygotes. The results

of 3–5 biologically independent replicates are shown. Black bars indicate the mean and error bars represents standard deviation. Statistical analysis, comparing TotA levels

in the virus infected control to mutant strains, was determined by two-way ANOVA with Sidak’s correction for multiple comparisons (���p = 0.0004, �� p = 0.0045) B)

Kaplan-Meier curves showing survival of homozygous (p38bex9, red lines) or heterozygous (p38bex9/CyO, orange lines) p38bmutant flies following IIV-6 infection (solid

lines) or PBS-injected controls (dotted lines) compared to control (w1118, black lines) flies. C) Kaplan-Meier curves showing survival of p38amutant flies (red lines)

following IIV-6 infection (solid lines) or PBS-injected controls (dotted lines) compared to control (w1118, black lines) flies. D) Kaplan-Meier curves showing survival of

p38bRNAi expressing (blue lines) or E) p38aRNAi expressing flies (purple lines) following IIV-6 infection (solid lines) or PBS-injected controls (dotted lines). UAS-p38aRNAi

and UAS-p38bRNAi flies were crossed to tubulin-GAL4 for ubiquitous knock-down, while the control was generated by w1118 crossed to tubulin-GAL4 (black lines).

Statistical significance was determined by Log-rank (Mantel-Cox) test (���� p<0.0001; ns, not significant). A.U., Arbitrary Units. F) Viral loads as determined by QPCR

for p38bex9 and p38bex9/CyO heterozygous siblings. Each data point represents 5 flies. Error bars indicate standard error, and black lines indicate the mean. A.U., arbitrary

units. Statistics were determined using two-way ANOVA. ns, not significant.

https://doi.org/10.1371/journal.ppat.1007020.g005
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pathway is very similar to that reported here, although p38b was not examined in this actin-

DAMP, and suggests that IIV-6 infection may cause cellular damage, rupture and the release

of actin, which in turn triggers ROS production, unpaired expression, JAK-STAT signaling

and the induction of Tots. Formally testing this model will be facilitated by the identification of

an extracellular actin receptor.

In summary, we have found a novel role for Drosophila p38b in protecting against DNA

virus infection. Virus infection leads to p38b dependent responses, including the induction of

the JAK-STAT activating cytokines, the Unpaireds, and the induction of downstream target

genes such as the Tots. Based on the analysis of viral load, the p38b pathway appears to func-

tion primarily by increasing tolerance to IIV-6, as viral loads were not altered in the p38b
strain. Whether the Tots contribute to this tolerance and, more generally, whether p38b

induces a directly antiviral response, or relies entirely on the Unpaired and JAK-STAT signal-

ing for its ability to tolerize against this viral infection will be probed in future studies.

Methods

Reagents

p38 inhibitor SB203580 (CAT#13067) [45], JNK inhibitor SP600125 (CAT#10010466) [46],

JAK inhibitor Tofacitinib CP690,550(CAT#11598) [47], and ERK inhibitor U-0126

(CAT#70970) [48–50], were purchased from Cayman Chemical. Diphenyleneiodonium chlo-

ride DPI (CAS#4673-26-1) [39] was purchased from Sigma-Aldrich. All inhibitors were dis-

solved in DMSO and used at the indicated concentrations.

Fly stocks and infections

p38aMPK1, p38bex9/CyO, p38c1A1/TM6, and p38c7B&/TM6 flies were a kind gift of Bruno Lemai-

tre. UAS-TotA flies were a kind gift of Dan Hultmark. NoxRNAi and DuoxRNAi lines were gener-

ated by Won-Jae Lee [39] and obtained from Andreas Bergmann. stat92ERNAi, w1118; P
{UAS-STAT92E GD4492RNAi}v43866, and w1118; P{UAS-p38aGD17018RNAi}v52277 were obtained

from the Vienna Drosophila Resource Center (VDRC). y1 v1; P{p38bTRiP.JF03341RNAi}attP2, Ab
(1)oss, upd1os-s upd3os-s(BIN#79), Df(1)oso, upd1os-o upd3os-o(BIN#78),w

�

upd2Δ (BIN#55727),

w
�

upd3Δ (BIN#55728),w
�

upd2Δupd3Δ: (BIN#55729), stat92ERNAi-2, y1 v1; P{TRiP.HMS00035}

attP (BIN#33637), stat92ERNAi-1, y1 v1; P{TRiP.JF01265} attP2 (BIN#31317), were obtained

from Bloomington Drosophila Stock Center (BDSC). w1118 flies were used as an immunologi-

cally wild-type control in all experiments, as these are the most similar background to the

alleles listed above.

Three to five day old flies, maintained at 22˚C, were used for all experiments. Flies were

injected intrathoracically with 32.2 nL of virus (1x104 TCID50) or vehicle (PBS) using a Nano-

ject II (Drummond). For survival assays, a minimum of fifty flies were used per treatment, per

genotype and the dead were counted daily. Kaplan-Meier curves are shown and significance

Fig 6. Nox is required for IIV-6 induced upd3 and turandot expression S2� cells were treated with the indicated

concentrations of DPI (an NADPH oxidase inhibitor) or vehicle control (DMSO) for one hour, and then infected with

IIV-6 or mock treated. A) TotA expression and B) unpaired3 expression were quantified by qRT-PCR 24 hours post-

infection. For A) and B), 3 biologically independent replicates are shown, and statistics performed comparing virus

infected vehicle treated to DPI treated conditions. C) UAS-NoxRNAi and UAS-DuoxRNAi flies were crossed to

c564-GAL4 for fat body specific knock-down, while the control was generated by w1118 crossed to c564-GAL4. Progeny

were infected with IIV-6 or injected with PBS, and TotA expression was measured in whole flies by qRT-PCR 24 hours

post-infection. 5 biologically independent replicates are shown. For all panels, error bars represent standard deviation,

black lines indicate the mean, and statistical significance was determined using two-way ANOVA with Sidak’s

correction.(���p = 0.0004, ����p<0.0001). A.U., Arbitrary Units.

https://doi.org/10.1371/journal.ppat.1007020.g006
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was determined by log-rank (Mantel-Cox) using GraphPad Prism. For qRT-PCR analysis, at

least three independent replicates of 15–20 flies each were used for RNA extraction. In all

cases, three or more independent replicates, as indicated in each figure legend, were performed

in parallel on the same day. At least 2 additional trials, each with 3 or more biologically inde-

pendent replicates, were performed at other times, with similar results.

nCounter analysis

The expression levels of 139 Drosophila immune genes were assayed from 100 nanograms of

RNA via a customized Nanostring nCounter codeset. Two biological replicates of 10–15 adult

male flies 3–5 days of age were analyzed for each treatment and timepoint. The results were

analyzed using nSolver 3.0 software according to the manufacturers instructions (NanoString

Technologies, Seattle, WA, USA), and the heatmap was created using nSolver 3.0 software and

JavaTree.

RNA isolation and qRT-PCR

Total RNA from flies or S2� cells was extracted using TRIzol (Invitrogen). Samples were then

DNase treated (RQ1, Promega) and RNA re-extracted by phenol-chloroform. cDNA was syn-

thesized using iScript cDNA Synthesis kit (BioRad). Alternatively, the gDNAclear cDNA syn-

thesis kit (BioRad) was used following TRIzol purification. qRT-PCR was analyzed normalizing

to the housekeeping gene Rp49. Primer sequences can be found as S1 Table. Cycling conditions:

50˚C, 2 minutes; 94˚C, 2 minutes; 95˚C, 15 seconds; 61˚C, 30 seconds; 72˚C, 30 seconds; plate

read, amplification cycle repeated 39 times. Melt curve performed and plate read, 58˚C-95˚C,

0.5˚C increments. 10˚C for 5 minutes. Cycling conditions for IIV-6 QCPR: 50˚C, 2 minutes;

94˚C, 2 minutes; 95˚C, 15 seconds; 72˚C, 1 minute; plate read, two-step amplification cycle

repeated 39 times. Melt curve performed and plate read, 58˚C-95˚C, 0.5˚C increments. 10˚C for

5 minutes.

Cell culture and RNAi

dsRNA was produced as previously described, using primers and cycling conditions as recom-

mended by the DRSC (Drosophila RNAi Screening Center) [51, 52]. Primer sequences can be

found in S1 Table. S2� cells were cultured as previously described [53, 54] and were transfected

with 3μg of dsRNA using Cellfectin II reagent (Invitrogen). Cells were split 24 hours after

transfection to 5x105 cells/mL and 24 hours later cells were infected with IIV-6 at an MOI of 2.

As a control, cells were mock-treated with the same volume of PBS (virus diluent) as used in

infections. Cells were harvested in TRIzol (Invitrogen) 24 hours post-infection. In experiments

with small molecule inhibitors, cells were treated with the indicated inhibitor at the stated con-

centration or the appropriate vehicle control 1 hour prior to virus infection.

Virus preparation

IIV-6 was provided by Luis Teixeira. IIV-6 was propagated and purified on DL-1 cells as previ-

ously described (9), with a final resuspension in PBS, and quantified on DL-1 cells by TCID50.

Fig 7. IIV-6 infection activates a protective response through p38b and JAK-STAT signaling IIV-6 infection activates p38b through the NADPH

oxidase Nox and presumably ROS production. p38b triggers the induction of the unpaireds, which encode for secreted ligands which activate the

JAK-STAT pathway via the receptor, Domeless. JAK-STAT signaling leads to induction of the Turandots (Tots), a family of small, secreted proteins with

no known function. JAK-STAT as well as p38b signaling protects Drosophila from IIV-6 infection, and p38b in particular increases tolerance to this virus.

https://doi.org/10.1371/journal.ppat.1007020.g007
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Cells were infected at an MOI of 2 unless otherwise noted, while flies were injected with 1x104

TCID50, as detailed above.

Supporting information

S1 Table. Primer sequences used for RT-PCR, QPCR, or dsRNA synthesis.

(PDF)

S2 Table. Hazard ratios for IIV-6-infected or PBS-injected flies. In each case the mutant or

RNAi line of interest (Genotype A) is compared to the control line (Genotype B). p value is

indicated for each comparison, and the Figure and Panel is indicated at right.

(PDF)

S1 Fig. A-C) RT-PCR showing knockdown efficiencies of A) stat92E, B) domeless, and C)

hopscotch in S2� cells. Expression levels were normalized to Rp49, and are shown as % Max

Expression, determined by expression of control samples Raw p values are shown above rele-

vant data. D) RT-PCR showing knockdown efficiencies of stat92ERNAi fly lines crossed to

c564-GAL4. stat92ERNAi VDRC; stat92ERNAi-1, P{TRiP.JF01265}; stat92ERNAi-2, P{TRiP.

HMS00035}. Expression levels were normalized to Rp49, and are shown as % Max Expression,

with maximum determined by expression of control w1118 samples. D) Statistics were deter-

mined by one-way ANOVA. �p<0.05, ��p<0.01, ���p<0.001. E) Kaplan Meier curve showing

survival of stat92ERNAi-2, under control of c564-GAL4 (green lines), following IIV-6 infection

(solid lines) or PBS-injection (dotted lines). w1118 (black lines) are used as control flies. Statisti-

cal significance was determined by Log-rank (Mantel-Cox) test, comparing IIV-6 infected

RNAi lines to IIV-6 infected control animals, or comparing PBS-injected RNAi lines to PBS-

injected control lines. ��p<0.005. ns, not significant.

(PDF)

S2 Fig. Replicate trials of stat92ERNAi (VDRC) survival curves. Kaplan-Meier curves show-

ing survival of Stat92ERNAi expressing (UAS-Stat92ERNAi x tubulin-Gal4) flies (green lines) or

control (w1118 x tubulin-Gal4) flies (black lines) following infection with IIV-6 (solid lines) or

injection with PBS (dotted lines). Results shown are for 50 flies per genotype and treatment.

Statistical significance was determined by Log-rank (Mantel-Cox) test, comparing IIV-6

infected RNAi lines to IIV-6 infected control animals, or comparing PBS-injected RNAi lines

to PBS-injected control lines. ����p<0.0001. ns, not significant.

(PDF)

S3 Fig. RT-PCR showing knockdown efficiencies for progeny of A) p38bRNAi fly lines crossed

to Tubulin-GAL4 or B) p38aRNAi fly lines crossed to Tubulin-GAL4. Expression levels were

normalized to Rp49, and are shown as % Max Expression, with maximum determined by

expression of control (w1118 xTubulin-GAL4) flies. Statistical significance was determined by

two-tailed unpaired t test, �p<0.05, ��p<0.005.

(PDF)

S4 Fig. Replicate trials of p38bex9 survival curves. Kaplan-Meier curves showing survival of

homozygous (p38bex9, red lines) or heterozygous (p38bex9/CyO, orange lines) p38bmutant flies

following IIV-6 infection (solid lines) or PBS-injected controls (dotted lines) compared to con-

trol (w1118, black) flies. Statistical significance was determined by Log-rank (Mantel-Cox) test,

comparing IIV-6 infected mutants to IIV-6 infected control animals, or comparing PBS-

injected mutants to PBS-injected control animals. �p<0.05, ����p<0.0001. ns, not significant.

(PDF)
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S5 Fig. Replicate trials of p38aMPK1 survival curves. Kaplan-Meier curves showing survival

of p38a mutant flies (red lines) following IIV-6 infection (solid lines) or PBS-injected controls

(dotted lines) compared to control (w1118, black) flies. Statistical significance was determined

by Log-rank (Mantel-Cox) test, comparing IIV-6 infected mutants to IIV-6 infected control

animals, or comparing PBS-injected mutants to PBS-injected control animals. �p<0.05, ����p

<0.0001. ns, not significant.

(PDF)

S6 Fig. Replicate trials of p38bRNAi survival curves. Kaplan-Meier curves showing survival

of p38bRNAi expressing flies following IIV-6 infection (solid lines) or PBS-injected controls

(dotted lines). UAS-p38bRNAi flies were crossed to tubulin-GAL4 for ubiquitous knock-down

(blue lines), while the control was generated by w1118 crossed to tubulin-GAL4 (black lines).

Statistical significance was determined by Log-rank (Mantel-Cox) test, comparing IIV-6

infected RNAi lines to IIV-6 infected control animals, or comparing PBS-injected RNAi lines

to PBS-injected control lines.���� p<0.0001; ns, not significant.

(PDF)

S7 Fig. Replicate trials of p38aRNAi survival curves. Kaplan-Meier curves showing survival of

p38aRNAi expressing flies following IIV-6 infection (solid lines) or PBS-injected controls (dot-

ted lines). UAS-p38aRNAi flies were crossed to tubulin-GAL4 for ubiquitous knock-down (pur-

ple lines), while the control was generated by w1118 crossed to tubulin-GAL4 (black lines).

Statistical significance was determined by Log-rank (Mantel-Cox) test, comparing IIV-6

infected RNAi lines to IIV-6 infected control animals, or comparing PBS-injected RNAi lines

to PBS-injected control lines.���� p<0.0001; ns, not significant.

(PDF)

S8 Fig. A) Kaplan-Meier curve showing survival of TotA over-expressing flies or control

(w1118) flies under the control of a fat body (c564-GAL4) or ubiquitous (Tubulin-GAL4) driver,

infected with IIV-6. ����p<0.0001. n>50. B) Viral loads from TotA over-expressing flies or

control (w1118) flies under the control of a fat body (c564-GAL4) or ubiquitous (Tubulin-
GAL4) driver infected with IIV-6 and assayed by limiting dilution (TCID50) post-infection.

TCID50 was calculated using Reed-Muench method. Each data point represents 5 flies. ns, no

significance.

(PDF)
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