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Abstract:		1	

Introns	are	found	in	5’	untranslated	regions	(5’UTRs)	for	35%	of	all	human	transcripts.		2	

These	5’UTR	introns	are	not	randomly	distributed:	genes	that	encode	secreted,	membrane-3	

bound	and	mitochondrial	proteins	are	less	likely	to	have	them.		Curiously,	transcripts	lacking	4	

5’UTR	introns	tend	to	harbor	specific	RNA	sequence	elements	in	their	early	coding	regions.	To	5	

model	and	understand	the	connection	between	coding-region	sequence	and	5’UTR	intron	6	

status,	we	developed	a	classifier	that	can	predict	5’UTR	intron	status	with	>80%	accuracy	7	

using	only	sequence	features	in	the	early	coding	region.	Thus,	the	classifier	identifies	8	

transcripts	with	5’	proximal-intron-minus-like-coding	regions	(“5IM”	transcripts).	9	

Unexpectedly,	we	found	that	the	early	coding	sequence	features	defining	5IM	transcripts	are	10	

widespread,	appearing	in	21%	of	all	human	RefSeq	transcripts.	The	5IM	class	of	transcripts	is	11	

enriched	for	non-AUG	start	codons,	more	extensive	secondary	structure	both	preceding	the	12	

start	codon	and	near	the	5’	cap,	greater	dependence	on	eIF4E	for	translation,	and	association	13	

with	ER-proximal	ribosomes.	5IM	transcripts	are	bound	by	the	Exon	Junction	Complex	(EJC)	at	14	

non-canonical	5’	proximal	positions.	Finally,	N1-methyladenosines	are	specifically	enriched	in	15	

the	early	coding	regions	of	5IM	transcripts.	Taken	together,	our	analyses	point	to	the	existence	16	

of	a	distinct	5IM	class	comprising	~20%	of	human	transcripts.		This	class	is	defined	by	17	

depletion	of	5’	proximal	introns,	presence	of	specific	RNA	sequence	features	associated	with	18	

low	translation	efficiency,	N1-methyladenosines	in	the	early	coding	region,	and	enrichment	for	19	

non-canonical	binding	by	the	Exon	Junction	Complex.			20	

	 	21	
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Introduction:	1	

	2	

Approximately	35%	of	all	human	transcripts	harbor	introns	in	their	5’	untranslated	3	

regions	(5’UTRs)	(Cenik	et	al.	2010;	Hong	et	al.	2006).	Among	genes	with	5’UTR	introns	(5UIs),	4	

those	annotated	as	“regulatory”	are	significantly	overrepresented,	while	there	is	an	under-5	

representation	of	genes	encoding	proteins	that	are	targeted	to	either	the	endoplasmic	6	

reticulum	(ER)	or	mitochondria	(Cenik	et	al.	2011).	For	transcripts	that	encode	ER-	and	7	

mitochondria-targeted	proteins,	5UI	depletion	is	associated	with	presence	of	specific	RNA	8	

sequences	(Cenik	et	al.	2011;	Palazzo	et	al.	2007,	2013).		Specifically,	nuclear	export	of	an	9	

otherwise	inefficiently	exported	microinjected	mRNA	or	cDNA	transcript	can	be	promoted	by	10	

an	ER-targeting	signal	sequence-containing	region	(SSCRs)	or	mitochondrial	signal	sequence	11	

coding	region	(MSCRs)	from	a	gene	lacking	5’	UTR	introns	(Cenik	et	al.	2011;	Lee	et	al.	2015).	12	

However,	more	recent	studies	suggest	that	many	SSCRs	have	little	impact	on	nuclear	export	for	13	

RNAs	transcribed	in	vivo	(Lee	et	al.	2015),	but	rather	enhance	translation	in	a	RanBP2-14	

dependent	manner	(Mahadevan	et	al.	2013).	15	

Among	SSCR-	and	MSCR-containing	transcripts	(referred	to	hereafter	as	SSCR	and	16	

MSCR	transcripts),	~75%	lack	5’	UTR	introns	(“5UI–”	transcripts)	and	~25%	have	them	(“5UI+”	17	

transcripts).		These	two	groups	have	markedly	different	sequence	compositions	at	the	5’	ends	18	

of	their	coding	sequences.		5UI–	transcripts	tend	to	have	lower	adenine	content	(Palazzo	et	al.	19	

2007)	and	use	codons	with	fewer	uracils	and	adenines	than	5UI+	transcripts	(Cenik	et	al.	20	

2011).		Their	signal	sequences	also	contain	leucine	and	arginine	more	often	than	the	21	

biochemically	similar	amino	acids	isoleucine	and	lysine,	respectively.	Leucine	and	arginine	22	

codons	contain	fewer	adenine	and	thymine	nucleotides,	consistent	with	adenine	and	thymine	23	
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depletion.		This	depletion	is	also	associated	with	the	presence	of	a	specific	GC-rich	RNA	motif	1	

in	the	early	coding	region	of	5UI–	transcripts	(Cenik	et	al.	2011).			2	

Despite	some	knowledge	as	to	their	early	coding	region	features,	key	questions	about	3	

this	class	of	5UI–	transcripts	have	remained	unanswered:		Do	the	above	sequence	features	4	

extend	beyond	SSCR-	and	MSCR-containing	transcripts	to	other	5UI–	genes?		Do	5UI–	5	

transcripts	having	these	features	share	common	functional	or	regulatory	features?		What	6	

binding	factor(s)	recognize	these	RNA	elements?		A	more	complete	model	of	the	relationship	of	7	

early	coding	features	and	5UI–	status	would	begin	to	address	these	questions.		8	

Here,	to	better	understand	the	relationship	between	early	coding	region	features	and	9	

5UI	status,	we	undertook	an	integrative	machine	learning	approach.	We	reasoned	that	a	10	

machine	learning	classifier	which	could	identify	5UI–	transcripts	solely	from	early	coding	11	

sequence	would	potentially	provide	two	types	of	insight:	First,	it	could	systematically	identify	12	

predictive	features.		Second,	the	subset	of	5UI–	transcripts	which	could	be	identified	by	the	13	

classifier	might	then	represent	a	functionally	distinct	transcript	class.		Having	developed	such	14	

a	classifier,	we	found	that	it	identified	~21%	of	all	human	transcripts	as	harboring	coding	15	

regions	characteristic	of	5UI–	transcripts.		While	many	of	these	transcripts	encode	ER-	and	16	

mitochondrial-targeted	proteins,	many	others	encode	nuclear	and	cytoplasmic	proteins.		This	17	

class	of	transcripts	shares	characteristics	such	as	a	tendency	to	lack	5’	proximal	introns,	to	18	

contain	non-canonical	Exon	Junction	Complex	binding	sites,	to	have	multiple	features	19	

associated	with	lower	intrinsic	translation	efficiency,	and	to	have	an	increased	incidence	of	N1-20	

methyladenosine	modification.	21	

	22	

Results:		23	
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A	classifier	that	predicts	5UI	status	using	only	early	coding	sequence	information.	1	

To	better	understand	the	previously-reported	enigmatic	relationship	between	certain	early	2	

coding	region	sequences	and	the	absence	of	a	5UI,	we	sought	to	model	this	relationship.	3	

Specifically,	we	used	a	random	forest	classifier	(Breiman	2001)	to	learn	the	relationship	4	

between	5UI	absence	and	a	collection	of	36	different	nucleotide-level	features	extracted	from	5	

the	first	99	nucleotides	of	all	human	coding	regions	(CDS)		(Figs	1A-C;	Table	S1;	Methods).		6	

We	then	used	all	transcripts	known	to	contain	an	SSCR	(a	total	of	3743	transcripts	clusters;	7	

Methods),	regardless	of	5UI	status,	as	our	training	set.		This	training	constraint	ensured	that	all	8	

input	nucleotide	sequences	were	subject	to	similar	functional	constraints	at	the	protein	level.		9	

Thus,	we	sought	to	identify	sequence	features	that	differ	between	5UI–	and	5UI+	transcripts	at	10	

the	RNA	level.	11	

Our	classifier	assigns	to	each	transcript	a	“5’UTR-intron-minus-predictor”	(5IMP)	score	12	

between	0	and	10,	where	higher	scores	correspond	to	a	higher	likelihood	of	being	5UI–	(Fig	13	

1C).	Interestingly,	preliminary	ranking	of	the	5UI–	transcripts	by	5IMP	score	revealed	a	14	

relationship	between	the	position	of	the	first	intron	in	the	coding	region	and	the	5IMP	score.	15	

5UI–	transcripts	for	which	the	first	intron	was	more	than	85	nts	downstream	of	the	start	codon	16	

had	the	highest	5IMP	scores.		Furthermore,	the	closer	the	first	intron	was	to	the	start	codon,	17	

the	lower	the	5IMP	score	(Fig	1D).	We	explored	this	relationship	further	by	training	classifiers	18	

that	increasingly	excluded	from	the	training	set	5UI–	transcripts	according	to	the	distance	of	19	

the	first	intron	from	the	5’	end	of	the	coding	region.	This	revealed	that	classifier	performance,	20	

as	measured	by	the	area	under	the	precision	recall	curve	(AUPRC),	increased	as	a	function	of	21	

the	distance	from	start	codon	to	first	intron	distance	(Methods,	Fig	1E).	Thus,	the	RNA	22	

sequence	features	we	identified	as	being	predictive	of	5UI–	transcripts	are	more	accurately	23	

described	as	being	predictors	of	transcripts	without	5’-proximal	introns.			24	
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To	minimize	the	impact	of	transcripts	that	may	‘behave’	as	though	they	were	5UI+		due	1	

to	an	intron	early	in	the	coding	region,	we	eliminated	5UI–	SSCR	transcripts	with	a	first	intron	2	

<90	nts	downstream	of	the	start	codon	(Methods)	and	generated	a	new	classifier.	3	

Discriminative	motif	features	were	learned	independently	(Methods),	and	performance	of	this	4	

new	classifier	was	gauged	using	10-fold	cross	validation.		We	assessed	cross-validation	5	

performance	in	two	ways:	1)	in	terms	of	the	area	under	the	receiver	operating	curve	(AUC)—6	

which	can	be	thought	of	as	a	measure	of	average	recall	across	a	range	of	false	positive	rates;		2)	7	

in	terms	of	area	under	the	precision	vs	recall	curve	(AUPRC),	which	can	be	thought	of	as	the	8	

average	precision	(fraction	of	predictions	which	are	correct)	across	a	range	of	recall	values.		9	

Specifically,	the	classifier	showed	an	AUC	of	74%	and	AUPRC	of	88%	(Fig	2A,	yellow	curves;	10	

exceeding	AUC	50%	and	AUPRC	71%,	the	performance	value	expected	of	a	naïve	predictor).		11	

We	used	this	optimized	classifier	for	all	subsequent	analyses.		12	

SSCR	transcripts	exhibited	markedly	different	5IMP	score	distributions	for	the	5UI+	and	13	

5UI–	subsets	(Fig	2B).		The	5UI+	score	distribution	was	unimodal	with	a	peak	at	~2.4.		In	14	

contrast,	the	5UI–	score	distribution	was	bimodal	with	one	peak	at	~3.6	and	another	at	~9,	15	

suggesting	the	existence	of	at	least	two	underlying	5UI–	transcript	classes.		The	peak	at	score	16	

3.6	resembled	the	5UI+	peak.	Also	contributing	to	the	peak	at	3.6	is	the	set	of	5UI–	transcripts	17	

harboring	an	intron	in	the	first	90	nts	of	the	CDS	(55%	of	all	5UI–	transcripts).		The	other	18	

distinct	high-scoring	5UI–	class	(peak	at	score	9)	is	composed	of	transcripts	that	have	specific	19	

5UI--predictive	RNA	sequence	elements	within	the	early	coding	region.		20	

We	next	wished	to	evaluate	whether	our	classifier	was	discriminating	5UI+	and	5UI–		21	

SSCR	transcripts	using	signals	that	appear	specifically	in	the	early	coding	region	as	opposed	to	22	

signals	that	appear	broadly	across	the	coding	region.	To	do	so,	for	every	transcript	we	23	
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randomly	chose	99	nts	from	the	region	downstream	of	the	3rd	exon.		The	5IMP	score	1	

distributions	of	these	‘3’	proximal	exon’	sets	were	identical	for	5UI+	and	5UI–	transcripts	(Figs	2	

2A,	and	2C),	confirming	that	the	sequence	features	that	distinguish	5UI+	and	5UI–	transcripts	3	

are	specific	to	the	early	coding	region.	4	

	5	

RNA	elements	associated	with	5UI–	transcripts	are	pervasive	in	the	human	genome	6	

Having	trained	the	classifier	on	SSCR	transcripts,	we	wondered	how	well	it	would	predict	the	7	

5UI	status	of	other	transcripts.	Despite	having	been	trained	exclusively	on	SSCR	transcripts,	8	

the	classifier	performed	remarkably	well	on	MSCR	transcripts,	achieving	an	AUC	of	86%	and	9	

AUPRC	of	95%	(Fig	2A,	purple	line;	Fig	2D;	as	compared	with	50%	and	77%,	respectively,	10	

expected	by	chance).		This	result	suggests	that	RNA	elements	within	early	coding	regions	of	11	

5UI–	MSCR-transcripts	are	similar	to	those	in	5UI–	SSCR-transcripts	despite	distinct	functional	12	

constraints	at	the	protein	level.		13	

We	next	wondered	whether	the	class	of	5UI–	transcripts	that	can	be	predicted	on	the	14	

basis	of	early	coding	region	features	is	restricted	to	transcripts	encoding	proteins	trafficked	to	15	

the	ER	or	mitochondria,	or	is	instead	a	more	general	class	of	transcripts.		We	therefore	asked	16	

whether	the	classifier	could	predict	5UI–	status	in	transcripts	that	contain	neither	an	SSCR	nor	17	

an	MSCR	(“S–/M–”	transcripts).		Because	unannotated	SSCRs	could	confound	this	analysis,	we	18	

first	used	SignalP	3.0	to	identify	S–/M–	transcripts	most	likely	to	contain	an	unannotated	SSCR	19	

(Bendtsen	et	al.	2004).	These	‘SignalP+‘	transcripts	had	a	5IMP	score	distribution	comparable	20	

to	those	of	known	SSCR	and	MSCR	transcripts	(Fig	2E),	and	the	classifier	worked	well	to	21	

identify	the	5UI–	subset	of	these	transcripts	(AUC	82%	and	AUPRC	95%,	Fig	2A,	light	blue	22	

line).		While	5UI+	SignalP+	transcripts	had	predominantly	low	5IMP	scores,	5UI–	SignalP+	5IMP	23	
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scores	were	strongly	skewed	towards	high	5IMP	scores	(peak	at	~9;	Fig	2E).			These	results	1	

were	consistent	with	the	idea	that	SignalP+	transcripts	do	contain	many	unannotated	SSCRs.			2	

Having	considered	SignalP+	transcripts	as	well	as	SSCR-	and	MSCR-containing	3	

transcripts,	we	used	the	classifier	to	calculate	5IMP	scores	for	all	remaining	“S–/M–/SignalP–”	4	

transcripts.		Although	the	performance	was	weaker	on	this	gene	set,	it	was	still	better	than	5	

expected	of	a	naive	predictor	(Fig	2A,	green	line).	5UI+	S–/M–/SignalP–		transcripts	were	6	

strongly	skewed	toward	low	5IMP	scores	(Fig	2F).		Surprisingly,	however,	a	significant	7	

fraction	of	5UI–	S–/M–/SignalP–	transcripts	had	high	5IMP	scores	(~18%).		Thus,	our	results	8	

suggest	a	broad	class	of	transcripts	with	early	coding	regions	carrying	sequence	signals	that	9	

predict	the	absence	of	a	5’proximal	intron,	or	in	other	words,	a	class	of	transcripts	with	10	

5’proximal-intron-minus-like	coding	regions.		Hereafter	we	refer	to	transcripts	in	this	class	as	11	

“5IM”	transcripts.		12	

We	sought	to	identify	what	fraction	of	transcripts	have	5IMP	scores	that	exceed	what	13	

would	be	expected	in	the	absence	of	5UI--predictive	early	coding	region	signals.		To	establish	14	

this	expectation,	we	used	the	above-described	negative	control	set	of	equal-length	coding	15	

sequences	from	outside	of	the	early	coding	region.	By	quantifying	the	excess	of	high-scoring	16	

sequences	in	the	real	distribution	relative	to	this	control	distribution,	we	estimate	that	21%	of	17	

all	human	transcripts	are	5IM	transcripts	(a	5IMP	score	of	7.41	corresponds	to	a	5%	False	18	

Discovery	Rate;	Fig	2G).	The	set	of	5IM	transcripts	defined	by	our	classifier	(Table	S2)	19	

includes	many	that	do	not	encode	ER-targeted	or	mitochondrial	proteins.	The	distribution	of	20	

various	classes	of	mRNAs	among	the	5IM	transcripts	was:	38%	ER-targeted	(SSCR	or	SignalP+),	21	

9%	mitochondrial	(MSCR)	and	53%	other	classes	(S–/M–/SignalP–)	(Figure	2G).	These	results	22	

suggest	that	RNA-level	features	prevalent	in	the	early	coding	regions	of	5UI–	SSCR	and	MSCR	23	
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transcripts	are	also	found	in	other	transcript	types	(Figs	2F-G),	and	that	5IM	transcripts	1	

represent	a	broad	class.	2	

	3	

Functional	characterization	of	5IM	transcripts		4	

5IM	transcripts	are	defined	by	mRNA	sequence	features.	Hence,	we	hypothesized	that	5IM	5	

transcripts	may	be	functionally	related	through	shared	regulatory	mechanisms	mediated	by	6	

the	presence	of	these	common	features.	To	this	end,	we	collected	large-scale	datasets	7	

representing	diverse	attributes	covering	six	broad	categories	(see	Table	S3	for	a	complete	list):	8	

(1)	Curated	functional	annotations	--	e.g.,	Gene	Ontology	terms,	annotation	as	a	‘housekeeping’	9	

gene,	genes	subject	to	RNA	editing;	(2)	RNA	localization	--	e.g.,	to	dendrites,	to	mitochondria;	10	

(3)	Protein	and	mRNA	half-life,	ribosome	occupancy	and	features	that	decrease	stability	of	one	11	

or	more	mRNA	isoforms	--	e.g.,	AU-rich	elements	(4)	Sequence	features	associated	with	12	

regulated	translation	--	e.g.,	codon	optimality,	secondary	structure	near	the	start	codon;	(5)	13	

Known	interactions	with	RNA-binding	proteins	or	complexes	such	as	Staufen-1,	TDP-43,	or	the	14	

Exon	Junction	Complex	(EJC)	(6)	RNA	modifications	–	i.e.,	N1-methyladenosine	(m1A).			15	

We	adjusted	for	multiple	hypotheses	testing	at	two	levels.	First,	we	took	a	conservative	16	

approach	(Bonferroni	correction)	to	correct	for	the	number	of	tested	functional	17	

characteristics.	Second,	some	of	the	functional	categories	were	analyzed	in	more	depth	and	18	

multiple	sub-hypotheses	were	tested	within	the	given	category.	In	this	in-depth	analysis	a	false	19	

discovery-based	correction	was	adopted.	Below,	all	reported	p-values	remain	significant	(p-20	

adjusted	<	0.05)	after	multiple	hypothesis	test	correction.	21	
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No	associations	between	5IM	transcripts	and	features	in	categories	(1),	(2)	and	(3)	were	1	

found,	other	than	the	already-known	enrichments	for	ER-	and	mitochondrial-targeted	mRNAs.		2	

However,	analyses	for	the	remaining	categories	yielded	the	significant	results	described	below.	3	

	4	

5IM	transcripts	have	features	suggesting	lower	translation	efficiency	5	

Translation	regulation	is	a	major	determinant	of	protein	levels	(Vogel	and	Marcotte	2012).	To	6	

investigate	potential	connections	between	5IM	transcripts	and	translational	regulation,	we	7	

examined	features	associated	with	translation.		Features	found	to	be	significant	were:	8	

(I)	Secondary	structures	near	the	start	codon	can	affect	initiation	rate	by	modulating	9	

start	codon	recognition	(Parsyan	et	al.	2011).		We	observed	a	positive	correlation	between	10	

5IMP	score	and	the	free	energy	of	folding	(-ΔG)	of	the	35	nucleotides	immediately	preceding	11	

the	start	codon	(Fig	3A;	Spearman	rho=0.39;	p	<	2.2e-16).		This	suggests	that	5IM	transcripts	12	

have	a	greater	tendency	for	secondary	structure	near	the	start	codon,	presumably	making	the	13	

start	codon	less	accessible.	14	

(II)	Similarly,	secondary	structures	near	the	5’cap	can	modulate	translation	by	15	

hindering	binding	by	the	43S-preinitiation	complex	to	the	mRNA	(Babendure	et	al.	2006).		We	16	

observed	a	positive	correlation	between	5IMP	score	and	the	free	energy	of	folding	(-ΔG)	of	the	17	

5’most	35	nucleotides	(Fig	3B;	Spearman	rho=0.18;	p	=	7.9e-130).		This	suggests	that	5IM	18	

transcripts	have	a	greater	tendency	for	secondary	structure	near	the	5’cap,	presumably	19	

hindering	binding	by	the	43S-preinitiation	complex.	20	

(III)	eIF4E	overexpression.	The	heterotrimeric	translation	initiation	complex	eIF4F	21	

(made	up	of	eIF4A,	eIF4E	and	eIF4G)	is	responsible	for	facilitating	the	translation	of	22	
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transcripts	with	strong	5’UTR	secondary	structures	(Parsyan	et	al.	2011).		The	eIF4E	subunit	1	

binds	to	the	7mGpppG	‘methyl-G’	cap	and	the	ATP-dependent	helicase	eIF4A	(scaffolded	by	2	

eIF4G)	destabilizes	5’UTR	secondary	structure	(Marintchev	et	al.	2009).		A	previous	study	3	

identified	transcripts	that	were	more	actively	translated	under	conditions	that	promote	cap-4	

dependent	translation	(overexpression	of	eIF4E)	(Larsson	et	al.	2007).	In	agreement	with	the	5	

observation	that	5IM	transcripts	have	more	secondary	structure	upstream	of	the	start	codon	6	

and	near	the	5’cap,	transcripts	with	high	5IMP	scores	were	more	likely	to	be	translationally,	7	

but	not	transcriptionally,	upregulated	upon	eIF4E	overexpression	(Fig	3C;	Wilcoxon	Rank	Sum	8	

Test	p	=	2.05e-22,	and	p	=	0.28,	respectively).		9	

(IV)	Non-AUG	start	codons.		Transcripts	with	non-AUG	start	codons	also	have	10	

intrinsically	low	translation	initiation	efficiencies	(Hinnebusch	and	Lorsch	2012).		These	11	

mRNAs	were	greatly	enriched	among	transcripts	with	high	5IMP	scores	(Fisher’s	Exact	Test	p	12	

=	0.0003;	odds	ratio	=	3.9)	and	have	a	median	5IMP	score	that	is	3.57	higher	than	those	with	13	

an	AUG	start	(Fig	3D).		14	

(V)	Codon	optimality.		The	efficiency	of	translation	elongation	is	affected	by	codon	15	

optimality	(Hershberg	and	Petrov	2008).		Although	some	aspects	of	this	remain	controversial	16	

(Charneski	and	Hurst	2013;	Shah	et	al.	2013;	Zinshteyn	and	Gilbert	2013;	Gerashchenko	and	17	

Gladyshev	2015),	it	is	clear	that	decoding	of	codons	by	tRNAs	with	different	abundances	can	18	

affect	the	translation	rate	under	conditions	of	cellular	stress	(reviewed	in	Gingold	and	Pilpel	19	

2011).	We	therefore	examined	the	tRNA	adaptation	index	(tAI),	which	correlates	with	copy	20	

numbers	of	tRNA	genes	matching	a	given	codon	(dos	Reis	et	al.	2004).	Specifically,	we	21	

calculated	the	median	tAI	of	the	first	99	coding	nucleotides	of	each	transcript,	and	found	that	22	

5IMP	score	was	negatively	correlated	with	tAI	(Fig	S1A;	Spearman	Correlation	rho=	-0.23;	p	<	23	
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2e-16	median	tAI	and	5IMP	score).		This	effect	was	restricted	to	the	early	coding	regions	as	the	1	

negative	control	set	of	randomly	chosen	sequences	downstream	of	the	3rd	exon	from	each	2	

transcript	did	not	exhibit	a	relationship	between	5IMP	score	and	codon	optimality	(Fig	S1B-C).		3	

Thus,	5IM	transcripts	show	reduced	codon	optimality	in	early	coding	regions,	suggesting	that	4	

5IM	transcripts	have	decreased	translation	elongation	efficiency.	5	

To	more	precisely	determine	where	the	codon	optimality	phenomenon	occurs	within	6	

the	entire	early	coding	region,	we	grouped	transcripts	by	5IMP	score.		For	each	group,	we	7	

calculated	the	mean	tAI	at	codons	2-33	(i.e.,	nts	4-99).	Across	this	entire	region,	5IM	8	

transcripts	(5IMP	>7.41;	5%	FDR)	had	significantly	lower	tAI	values	at	every	codon	except	9	

codons	24	and	32	(Fig	3E;	Wilcoxon	Rank	Sum	test	Holm-adjusted	p	<	0.05	for	all	10	

comparisons).	To	eliminate	potential	confounding	variables,	including	nucleotide	composition,	11	

we	performed	several	additional	control	analyses	(Methods);	none	of	these	altered	the	basic	12	

conclusion	that	5IM	transcripts	have	lower	codon	optimality	than	non-5IM	transcripts	across	13	

the	entire	early	coding	region.	14	

(VI)	Ribosomes	per	mRNA.		Finally,	we	examined	the	relationship	between	5IMP	score	15	

and	translation	efficiency,	as	measured	by	the	steady-state	number	of	ribosomes	per	mRNA	16	

molecule.	To	this	end,	we	used	a	large	dataset	of	ribosome	profiling	and	RNA-Seq	experiments	17	

from	human	lymphoblastoid	cell	lines	(Cenik	et	al.	2015).	From	this,	we	calculated	the	average	18	

number	of	ribosomes	on	each	transcript	and	identified	transcripts	with	high	or	low	ribosome	19	

occupancy	(respectively	defined	by	occupancy	at	least	one	standard	deviation	above	or	below	20	

the	mean;	see	Methods).	5IM	transcripts	were	slightly	but	significantly	depleted	in	the	high	21	

ribosome-occupancy	category	(Fig	3F;	Fisher’s	Exact	Test	p	=	0.0006,	odds	ratio	=	1.3).	22	
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Moreover,	5IMP	scores	exhibited	a	weak	but	significant	negative	correlation	with	the	number	1	

of	ribosomes	per	mRNA	molecule	(Spearman	rho=-0.11;	p	=	5.98e-23).		2	

Taken	together,	all	of	the	above	results	reveal	that	5IM	transcripts	have	sequence	3	

features	associated	with	lower	translation	efficiency,	at	the	stages	of	both	translation	initiation	4	

and	elongation.		5	

	6	

Non-ER	trafficked	5IM	transcripts	are	enriched	in	ER-proximal	ribosome	occupancy	7	

We	next	investigated	the	relationship	between	5IMP	score	and	the	localization	of	translation	8	

within	cells.	Exploring	the	subcellular	localization	of	translation	at	a	transcriptome-scale	9	

remains	a	significant	challenge.	Yet,	a	recent	study	described	proximity-specific	ribosome	10	

profiling	to	identify	mRNAs	occupied	by	ER-proximal	ribosomes	in	both	yeast	and	human	cells	11	

(Jan	et	al.	2014).		In	this	method,	ribosomes	are	biotinylated	based	on	their	proximity	to	a	12	

marker	protein	such	as	Sec61,	which	localizes	to	the	ER	membrane	(Jan	et	al.	2014).	For	each	13	

transcript,	the	enrichment	for	biotinylated	ribosome	occupancy	yields	a	measure	of	ER-14	

proximity	of	translated	mRNAs.		15	

We	reanalyzed	this	dataset	to	explore	the	relationship	between	5IMP	scores	and	ER-16	

proximal	ribosome	occupancy	in	HEK-293	cells.	As	expected,	transcripts	that	exhibit	the	17	

highest	enrichment	for	ER-proximal	ribosomes	were	SSCR-containing	transcripts	and	18	

transcripts	with	other	ER-targeting	signals.	Yet,	we	noticed	a	surprising	positive	correlation	19	

between	ER-proximal	ribosome	occupancy	and	5IM	transcripts	with	no	ER-targeting	evidence	20	

(Fig	4).	This	relationship	was	true	for	both	mitochondrial	genes	(Fig	4;	Spearman	rho=0.43;	p	21	

<	2.2e-16),	and	genes	with	no	evidence	for	either	ER-	or	mitochondrial-targeting	(Fig	4;	22	
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Spearman	rho=-0.36;	p	<	2.2e-16).	These	results	suggest	that	5IM	transcripts	are	more	likely	1	

than	non-5IM	transcripts	to	engage	with	ER-proximal	ribosomes.		2	

	3	

5IM	transcripts	are	strongly	enriched	in	non-canonical	EJC	occupancy	sites	4	

Shared	sequence	features	and	functional	traits	among	5IM	transcripts	causes	one	to	wonder	5	

what	common	mechanisms	might	link	5IM	sequence	features	to	5IM	traits.	For	example,	5IM	6	

transcripts	might	share	regulation	by	one	or	more	RNA-binding	proteins	(RBPs).	To	7	

investigate	this	idea	further,	we	tested	for	enrichment	of	5IM	transcripts	among	the	8	

experimentally	identified	targets	of	23	different	RBPs	(including	CLIP-Seq,	and	variants;	see	9	

Methods).	Only	one	dataset	was	substantially	enriched	for	high	5IMP	scores	among	targets:	a	10	

transcriptome-wide	map	of	binding	sites	of	the	Exon	Junction	Complex	(EJC)	in	human	cells,	11	

obtained	via	tandem-immunoprecipitation	followed	by	deep	sequencing	(RIPiT)	(Singh	et	al.	12	

2014,	2012).	The	EJC	is	a	multi-protein	complex	that	is	stably	deposited	upstream	of	exon-13	

exon	junctions	as	a	consequence	of	pre-mRNA	splicing	(Le	Hir	et	al.	2000).	RIPiT	data	14	

confirmed	that	canonical	EJC	sites	(cEJC	sites;	sites	bound	by	EJC	core	factors	and	appearing	15	

~24	nts	upstream	of	exon-exon	junctions)	occupy	~80%	of	all	possible	exon-exon	junction	16	

sites	and	are	not	associated	with	any	sequence	motif.		Unexpectedly,	many	EJC-associated	17	

footprints	outside	of	the	canonical	-24	regions	were	observed	(Fig	5A)	(Singh	et	al.	2012).	18	

These	‘non-canonical’	EJC	occupancy	sites	(ncEJC	sites)	were	associated	with	multiple	19	

sequence	motifs,	three	of	which	were	similar	to	known	recognition	motifs	for	SR	proteins	that	20	

co-purified	with	the	EJC	core	subunits	(Singh	et	al.	2012).		Interestingly,	another	motif	(Fig	5B;	21	

top)	that	was	specifically	found	in	first	exons	is	not	known	to	be	bound	by	any	known	RNA-22	

binding	protein	(Singh	et	al.	2012).		This	motif	was	CG-rich,	a	sequence	feature	that	also	23	
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defines	5IM	transcripts.	This	similarity	presages	the	possibility	of	enrichment	of	first	exon	1	

ncEJC	sites	among	5IM	transcripts.	2	

Position	analysis	of	called	EJC	peaks	revealed	that	while	only	9%	of	cEJCs	reside	in	first	3	

exons,	19%	of	all	ncEJCs	are	found	there.	When	we	investigated	the	relationship	between	5IMP	4	

scores	and	ncEJCs	in	early	coding	regions,	we	found	a	striking	correspondence—the	median	5	

5IMP	score	was	highest	for	transcripts	with	the	greatest	number	of	ncEJCs	(Fig	5C;	Wilcoxon	6	

Rank	Sum	Test;	p	<	0.0001).	When	we	repeated	this	analysis	by	conditioning	on	5UI	status,	we	7	

similarly	found	that	ncEJCs	were	enriched	among	transcripts	with	high	5IMP	scores	regardless	8	

of	5UI	status	(Fisher’s	Exact	Test,	p	<	3.16e-14,	odds	ratio	>	2.3;	Fig	5D).	These	results	suggest	9	

that	the	striking	enrichment	of	ncEJC	peaks	in	early	coding	regions	was	generally	applicable	to	10	

all	transcripts	with	high	5IMP	scores	regardless	of	5UI	presence.		11	

Transcripts	harboring	N1-methyladenosine	(m1A)	have	high	5IMP	scores	12	

It	is	increasingly	clear	that	ribonucleotide	base	modifications	in	mRNAs	are	highly	prevalent	13	

and	can	be	a	mechanism	for	post-transcriptional	regulation	(Frye	et	al.	2016).	One	RNA	14	

modification	present	towards	the	5’	ends	of	mRNA	transcripts	is	N1-methyladenosine	(m1A)	15	

(Li	et	al.	2016;	Dominissini	et	al.	2016),	initially	identified	in	total	RNA	and	rRNAs	(Dunn	1961;	16	

Hall	1963;	Klootwijk	and	Planta	1973).	Intriguingly,	the	position	of	m1A	modifications	has	17	

been	shown	to	be	more	correlated	with	the	position	of	the	first	intron	than	with	18	

transcriptional	or	translational	start	sites	(Figure	2g	from	Dominissini	et	al.	2016).	When	the	19	

distance	of	m1As	to	each	splice	site	in	a	given	mRNA	was	calculated,	the	first	splice	site	was	20	

found	to	be	the	nearest	for	85%	of	m1As	(Dominissini	et	al.	2016).		When	5’UTR	introns	were	21	

present,	m1A	was	found	to	be	near	the	first	splice	site	regardless	of	the	position	of	the	start	22	

codon	(Dominissini	et	al.	2016).		Given	that	5IM	transcripts	are	also	characterized	by	the	23	
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position	of	the	first	intron,	we	investigated	the	relationship	between	5IMP	score	and	m1A	RNA	1	

modification	marks.		2	

We	analyzed	the	union	of	previously	identified	m1A	modifications	(Dominissini	et	al.	3	

2016)	across	all	cell	types	and	conditions.	Although	there	is	some	evidence	that	these	marks	4	

depend	on	cell	type	and	growth	condition,	it	is	difficult	to	be	confident	of	the	cell	type	and	5	

condition-dependence	of	any	particular	mark	given	experimental	variation	(see	Methods).		6	

Nevertheless,	we	found	that	mRNAs	with	m1A	modification	early	in	the	coding	region	(first	99	7	

nucleotides)	had	substantially	higher	5IMP	scores	than	mRNAs	lacking	these	marks	(Fig	6A;	8	

Wilcoxon	Rank	Sum	Test	p	=	3.4e-265),	and	were	greatly	enriched	among	5IM	transcripts	(Fig	9	

6A;	Fisher’s	Exact	Test	p	=	1.6e-177;	odds	ratio	=	3.8).	In	other	words,	the	sequence	features	10	

within	the	early	coding	region	that	define	5IMP	transcripts	also	associate	with	m1A	11	

modification	in	the	early	coding	region.	12	

We	next	wondered	whether	5IMP	score	was	related	to	m1A	modification	generally,	or	13	

only	associated	with	m1A	modification	in	the	early	coding	region.		Indeed,	many	of	the	14	

previously	identified	m1A	peaks	were	within	the	5’UTRs	of	mRNAs	(Li	et	al.	2016).		15	

Interestingly,	5IMP	scores	were	only	associated	with	m1A	modification	in	the	early	coding	16	

region,	and	not	with	m1A	modification	in	the	5’UTR	(Fig	6B).		This	offers	the	intriguing	17	

possibility	that	the	sequence	features	that	define	5IMP	transcripts	are	co-localized	with	m1A	18	

modification.		19	

	20	

Discussion:	21	
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Coordinating	the	expression	of	functionally	related	transcripts	can	be	achieved	by	post-1	

transcriptional	processes	such	as	splicing,	RNA	export,	RNA	localization	or	translation	(Moore	2	

and	Proudfoot	2009).	Sets	of	mRNAs	subject	to	a	common	regulatory	transcriptional	process	3	

can	exhibit	common	sequence	features	that	define	them	to	be	a	class.		For	example,	transcripts	4	

subject	to	regulation	by	particular	miRNAs	tend	to	share	certain	sequences	in	their	3’UTRs	that	5	

are	complementary	to	the	regulatory	miRNA	(Ameres	and	Zamore	2013).	Similarly,	transcripts	6	

that	share	a	5’	terminal	oligopyrimidine	tract	are	coordinately	regulated	by	mTOR	and	7	

ribosomal	protein	S6	kinase	(Meyuhas	2000).		Here	we	quantitatively	define	‘5IM’	transcripts	8	

as	a	class	that	shares	common	sequence	elements	and	functional	properties.	We	estimate	the	9	

5IM	class	to	comprise	21%	of	all	human	transcripts.	10	

	Whereas	35%	of	human	transcripts	have	one	or	more	5’UTR	introns,	the	majority	of	11	

5IM	transcripts	have	neither	a	5’UTR	intron	nor	an	intron	in	the	first	90	nts	of	the	ORF.		Other	12	

shared	features	of	5IM	transcripts	include	sequence	features	associated	with	low	translation	13	

initiation	rates.		These	are:	(1)	a	tendency	for	RNA	secondary	structure	in	the	region	14	

immediately	preceding	the	start	codon	(Fig	3A),	and	near	the	5’cap	(Fig	3B);	(2)	translational	15	

upregulation	upon	overexpression	of	eIF4E	(Fig	3C);	and	(3)	more	frequent	use	of	non-AUG	16	

start	codons	(Fig	3D).		Also	consistent	with	low	intrinsic	translation	efficiencies,	5IM	17	

transcripts	additionally	tend	to	depend	on	less	abundant	tRNAs	to	decode	the	beginning	of	the	18	

open	reading	frame	(Fig	3E).		19	

We	had	previously	reported	that	transcripts	encoding	proteins	with	ER-	and	20	

mitochondrial-targeting	signal	sequences	(SSCRs	and	MSCRs,	respectively)	are	over-21	

represented	among	the	65%	of	transcripts	lacking	5’UTR	introns	(Cenik	et	al.	2011).		22	

Transcripts	in	this	set	are	enriched	for	the	sequence	features	detected	by	our	5IM	classifier.	By	23	
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examining	these	enriched	sequence	features,	we	showed	that	the	5IM	class	extends	beyond	1	

mRNAs	encoding	membrane	proteins.			Jan	et	al.	recently	developed	a	transcriptome-scale	2	

method	to	identify	mRNAs	occupied	by	ER-proximal	ribosomes	in	both	yeast	and	human	cells	3	

(Jan	et	al.	2014).		As	expected,	transcripts	known	to	encode	ER-trafficked	proteins	were	highly	4	

enriched	for	ER-proximal	ribosome	occupancy.		However,	their	data	also	showed	many	5	

transcripts	encoding	non-ER	trafficked	proteins	to	also	be	engaged	with	ER-proximal	6	

ribosomes	(Reid	and	Nicchitta	2015b).	Similarly,	several	other	studies	have	suggested	a	critical	7	

role	of	ER-proximal	ribosomes	in	translating	several	cytoplasmic	proteins	(Reid	and	Nicchitta	8	

2015a).	Here,	we	found	that	5IM	transcripts	including	those	that	are	not	ER-trafficked	or	9	

mitochondrial	were	significantly	more	likely	to	exhibit	binding	to	ER-proximal	ribosomes	10	

(Figs	4A-B).			11	

In	addition	to	ribosomes	directly	resident	on	the	ER,	an	interesting	possibility	is	the	12	

presence	of	a	pool	of	peri-ER	ribosomes	(Jan	et	al.	2015;	Reid	and	Nicchitta	2015a).		13	

Association	of	5IM	transcripts	with	such	a	peri-ER	ribosome	pool	could	potentially	explain	the	14	

observed	correlation	of	5IM	status	with	binding	to	ER-proximal	ribosomes.		The	ER	is	15	

physically	proximal	to	mitochondria	(Rowland	and	Voeltz	2012),	so	peri-ER	ribosomes	may	16	

include	those	translating	mRNAs	on	mitochondria	(i.e.,	mRNAs	with	MSCRs)	(Sylvestre	et	al.	17	

2003).	However,	even	when	transcripts	corresponding	to	ER-trafficked	and	mitochondrial	18	

proteins	were	excluded	from	consideration,	ER-proximal	ribosome	enrichment	and	5IMP	19	

scores	were	highly	correlated	(Fig	4A).		Thus	another	shared	feature	of	5IM	transcripts	is	their	20	

translation	on	or	near	the	ER	regardless	of	the	ultimate	destination	of	the	encoded	protein.	21	

In	an	attempt	to	identify	a	common	factor	binding	5IM	transcripts,	we	asked	whether	22	

5IM	transcripts	were	enriched	among	the	experimentally	identified	targets	of	23	different	23	
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RBPs.		Only	one	RBP	emerged--the	exon	junction	complex	(EJC).		Specifically,	we	observed	a	1	

dramatic	enrichment	of	non-canonical	EJC	(ncEJC)	binding	sites	within	the	early	coding	region	2	

of	5IM	transcripts.		Further,	the	CG-rich	motif	identified	for	ncEJCs	in	first	exons	is	strikingly	3	

similar	to	the	CG-rich	motif	enriched	in	the	first	exons	of	5IM	transcripts	(Fig	5B).	Previous	4	

work	implicated	RanBP2,	a	protein	associated	with	the	cytoplasmic	face	of	the	nuclear	pore,	as	5	

a	binding	factor	for	some	SSCRs	(Mahadevan	et	al.	2013).	This	finding	suggests	that	nuclear	6	

pore	proteins	may	influence	EJC	occupancy	on	these	transcripts.		7	

EJC	deposition	during	the	process	of	pre-mRNA	splicing	enables	the	nuclear	history	of	8	

an	mRNA	to	influence	post-transcriptional	processes	including	mRNA	localization,	translation	9	

efficiency,	and	nonsense	mediated	decay	(Chang	et	al.	2007;	Kervestin	and	Jacobson	2012;	10	

Choe	et	al.	2014).	While	canonical	EJC	binding	occurs	at	a	fixed	distance	upstream	of	exon-exon	11	

junctions	and	involves	direct	contact	between	the	sugar-phosphate	backbone	and	the	EJC	core	12	

anchoring	protein	eIF4AIII,	ncEJC	binding	sites	likely	reflect	stable	engagement	between	the	13	

EJC	core	and	other	mRNP	proteins	(e.g.,	SR	proteins)	recognizing	nearby	sequence	motifs.			14	

Although	some	RBPs	were	identified	for	ncEJC	motifs	found	in	internal	exons	(Singh	et	al.	15	

2014,	2012),	to	date	no	candidate	RBP	has	been	identified	for	the	CG-rich	ncEJC	motif	found	in	16	

the	first	exon.		If	this	motif	does	result	from	an	RBP	interaction,	it	is	likely	to	be	one	or	more	of	17	

the	~70	proteins	that	stably	and	specifically	bind	to	the	EJC	core	(Singh	et	al.	2012).			18	

Finally,	we	observed	a	dramatic	enrichment	for	m1A	modifications	among	5IM	19	

transcripts,	with	specific	enrichment	for	m1A	modifications	in	the	early	coding	region.	Given	20	

this	striking	enrichment	perhaps	it	is	perhaps	not	surprising	that	m1A	containing	mRNAs	were	21	

also	shown	to	have	more	structured	5’UTRs	that	are	GC-rich	compared	to	m1A	lacking	mRNAs	22	

(Dominissini	et	al.	2016).	Similar	to	5IM	transcripts,	m1A	containing	mRNAs	were	found	to	23	
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decorate	start	codons	that	appear	in	a	highly	structured	context.	While	ALKBH3	has	been	1	

identified	as	a	protein	that	can	demethylate	m1A,	it	is	currently	unknown	whether	there	are	2	

any	proteins	that	can	specifically	act	as	“readers”	of	m1A.	Recent	studies	have	begun	to	identify	3	

such	readers	for	other	mRNA	modifications	such	as	YTHDF1,	YTHDF2,	WTAP	and	HNRNPA2B1	4	

(Ping	et	al.	2014;	Liu	et	al.	2014;	Wang	et	al.	2014,	2015;	Alarcón	et	al.	2015).	Our	study	5	

highlights	a	possible	link	between	non-canonical	EJC	binding	and	m1A.	Hence,	our	results	yield	6	

the	intriguing	hypothesis	that	one	or	more	of	the	~70	proteins	that	stably	and	specifically	bind	7	

to	the	EJC	core	can	function	as	an	m1A	reader.	Future	work	involving	directed	experiments	8	

would	be	needed	to	test	this	hypothesis.		9	

Given	that	5IM	transcripts	are	enriched	for	ER-targeted	and	mitochondrial	proteins,	it	10	

is	plausible	that	the	observed	functional	characteristics	of	5IM	transcripts	are	driven	solely	by	11	

SSCR	and	MSCR-containing	transcripts.	Hence,	we	repeated	all	analyses	for	the	subclasses	of	12	

5IM	transcripts	(MSCR-containing,	SSCR-containing,	S–/M–/SignalP+,	or	S–/M–/SignalP–).	We	13	

found	the	observed	associations	remained	statistically	significant	and	had	the	same	direction	14	

of	effect,	even	after	eliminating	SSCR-	and	MSCR-containing	transcripts,	despite	the	fact	that	all	15	

training	of	the	5IM	classifier	was	performed	only	using	SSCR	transcripts.	We	also	found	that	16	

5IMP	score	was	equally	or	more	strongly	associated	with	each	of	the	functional	characteristics	17	

compared	to	the	5UI	status.	In	conclusion,	the	molecular	associations	we	report	apply	to	5IM	18	

transcripts	as	a	whole,	and	are	not	driven	solely	by	the	subset	of	5IM	transcripts	encoding	ER-	19	

or	mitochondria-targeting	signal	peptides,	and	seem	to	indicate	shared	features	beyond	simple	20	

lack	of	a	5’UTR	intron.	21	

An	intriguing	possibility	is	that	5IM	transcript	features	associated	with	lower	intrinsic	22	

translation	efficiency	may	together	enable	greater	‘tunability’	of	5IM	transcripts	at	the	23	
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translation	stage.		Regulated	enhancement	or	repression	of	translation,	for	5IM	transcripts,	1	

could	allow	for	rapid	changes	in	protein	levels.		There	are	analogies	to	this	scenario	in	2	

transcriptional	regulation,	wherein	highly	regulated	genes	often	have	promoters	with	low	3	

baseline	levels	that	can	be	rapidly	modulated	through	the	action	of	regulatory	transcription	4	

factors.	As	more	ribosome	profiling	studies	are	published	examining	translational	responses	5	

transcriptome-wide	under	multiple	perturbations,	conditions	under	which	5IM	transcripts	are	6	

translationally	regulated	may	be	revealed.	Directed	experiments	will	be	needed	to	test	7	

translational	features	of	5IM	transcripts	hypothesized	via	this	computational	analysis.			8	

Taken	together,	our	analyses	reveal	the	existence	of	a	distinct	‘5IM’	class	comprising	9	

21%	of	human	transcripts.		This	class	is	defined	by	depletion	of	5’	proximal	introns,	presence	10	

of	specific	RNA	sequence	features	associated	with	low	translation	efficiency,	non-canonical	11	

binding	by	the	Exon	Junction	Complex	and	an	enrichment	for	N1-methyladenosine	12	

modification.			13	

	 	14	
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Materials	and	Methods:	1	

Datasets	and	Annotations	2	

Human	transcript	sequences	were	downloaded	from	the	NCBI	human	Reference	Gene	3	

Collection	(RefSeq)	via	the	UCSC	table	browser	(hg19)	on	Jun	25	2010	(Kent	et	al.	2002;	Pruitt	4	

et	al.	2005).	Transcripts	with	fewer	than	three	coding	exons,	and	transcripts	where	the	first	99	5	

coding	nucleotides	straddle	more	than	two	exons	were	removed	from	further	consideration.	6	

The	criteria	for	exclusion	of	genes	with	fewer	than	three	coding	exons	was	to	ensure	that	the	7	

analysis	of	downstream	regions	was	possible	for	all	genes	that	were	used	in	our	analysis	of	8	

early	coding	regions.	Specifically,	the	downstream	regions	were	selected	randomly	from	9	

downstream	of	the	3rd	exons.	Hence,	genes	with	fewer	exons	would	not	be	able	to	contribute	a	10	

downstream	region	potentially	creating	a	skew	in	representation.	In	total	there	were	~3000	11	

genes	that	were	removed	from	consideration	due	to	this	filter.	Therefore,	our	classifier	is	12	

limited	in	its	ability	to	assess	transcripts	from	these	genes.	However,	the	performance	13	

measures	reported	in	our	manuscript	are	robust	to	exclusion	of	these	genes,	in	the	sense	that	14	

the	same	class	of	transcripts	was	used	in	both	training	and	test	datasets.	15	

Transcripts	were	clustered	based	on	sequence	similarity	in	the	first	99	coding	16	

nucleotides.	Specifically,	each	transcript	pair	was	aligned	using	BLAST	with	the	DUST	filter	17	

disabled	(Altschul	et	al.	1990).	Transcript	pairs	with	BLAST	E-values	<	1e-25	were	grouped	18	

into	transcript	clusters.	In	total,	there	were	15576	transcript	clusters	that	were	considered	19	

further.	These	clusters	that	were	subsequently	assigned	to	one	of	four	categories:	MSCR-20	

containing,	SSCR-containing,	S–	/MSCR–	SignalP+,	or	S–	/MSCR–	SignalP–	as	follows:	21	

	MSCR-containing	transcripts	were	annotated	using	MitoCarta	and	other	sources	as	22	

described	in	(Cenik	et	al.	2011).		SSCR-containing	transcripts	were	the	set	of	transcripts	23	
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annotated	to	contain	signal	peptides	in	the	Ensembl	Gene	v.58	annotations,	which	were	1	

downloaded	through	Biomart	on	Jun	25	2010.	For	transcripts	without	an	annotated	MSCR	or	2	

SSCR,	the	first	70	amino	acids	were	analyzed	using	SignalP	3.0	(Bendtsen	et	al.	2004).	Using	3	

the	eukaryotic	prediction	mode,	transcripts	were	assigned	to	the	S–	/MSCR–	SignalP+	category	4	

if	either	the	Hidden	Markov	Model	or	the	Artificial	Neural	Network	classified	the	sequence	as	5	

signal	peptide	containing.	All	remaining	transcript	clusters	were	assigned	to	the	S–	/MSCR–	6	

SignalP–	category.	The	number	of	transcript	clusters	in	each	of	the	four	categories	was:	3743	7	

SSCR,	737	MSCR,	696	S–	/MSCR–	SignalP+,	10400	S–	/MSCR–	SignalP–.	8	

For	each	transcript	cluster,	we	also	constructed	matched	control	sequences.	Control	9	

sequences	were	derived	from	a	single	randomly	chosen	in-frame	‘window’	downstream	of	the	10	

3rd	exon	from	the	evaluated	transcripts.	If	an	evaluated	transcript	had	fewer	than	99	11	

nucleotides	downstream	of	the	3rd	exon,	no	control	sequence	was	extracted.	5UI	labels	and	12	

transcript	clustering	for	the	control	sequences	were	inherited	from	the	evaluated	transcript.	13	

The	rationale	for	this	decision	is	that	our	analysis	depends	on	the	position	of	the	first	intron;	14	

hence	genes	with	fewer	than	two	exons	need	to	be	excluded,	as	these	will	not	have	introns.	We	15	

further	required	the	matched	control	sequences	to	fall	downstream	of	the	early	coding	region.	16	

In	the	vast	majority	of	cases	the	third	exon	fell	outside	the	first	99	nucleotides	of	the	coding	17	

region,	making	this	a	convenient	criterion	by	which	to	choose	control	regions.		18	

Sequence	Features	and	Motif	Discovery	19	

36	sequence	features	were	extracted	from	each	transcript	(Table	S1).	The	sequence	20	

features	included	the	ratio	of	arginines	to	lysines,	the	ratio	of	leucines	to	isoleucines,	adenine	21	

content,	length	of	the	longest	stretch	without	adenines,	preference	against	codons	that	contain	22	

adenines	or	thymines.		These	features	were	previously	found	to	be	enriched	in	SSCR-23	
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containing	and	certain	5UI–		transcripts	(Cenik	et	al.	2011;	Palazzo	et	al.	2007).	In	addition,	we	1	

extracted	ratios	between	several	other	amino	acid	pairs	based	on	having	2	

biochemical/evolutionary	similarity,	i.e.	having	positive	scores,	according	to	the	BLOSUM62	3	

matrix	(Henikoff	and	Henikoff	1992).	To	avoid	extreme	ratios	given	the	relatively	short	4	

sequence	length,	pseudo-counts	were	added	to	amino	acid	ratios	using	their	respective	5	

genome-wide	prevalence.	6	

In	addition,	we	used	three	published	motif	finding	algorithms	(AlignACE,	DEME,	and	7	

MoAN	(Roth	et	al.	1998;	Redhead	and	Bailey	2007;	Valen	et	al.	2009))	to	discover	RNA	8	

sequence	motifs	enriched	among	5UI–	transcripts.	AlignACE	implements	a	Gibbs	sampling	9	

approach	and	is	one	of	the	pioneering	efforts	in	motif	discovery	(Roth	et	al.	1998).	We	10	

modified	the	AlignACE	source	code	to	restrict	motif	searches	to	only	the	forward	strand	of	the	11	

input	sequences	to	enable	RNA	motif	discovery.	DEME	and	MoAN	adopt	discriminative	12	

approaches	to	motif	finding	by	searching	for	motifs	that	are	differentially	enriched	between	13	

two	sets	of	sequences	(Redhead	and	Bailey	2007;	Valen	et	al.	2009).	MoAN	has	the	additional	14	

advantage	of	discovering	variable	length	motifs,	and	can	identify	co-occurring	motifs	with	the	15	

highest	discriminative	power.		16	

In	total,	six	motifs	were	discovered	using	the	three	motif	finding	algorithms	(Table	S1).	17	

Position	specific	scoring	matrices	for	all	motifs	were	used	to	score	the	first	99	-	l	positions	in	18	

each	sequence,	where	l	is	the	length	of	the	motif.	We	assessed	the	significance	of	each	motif	19	

instance	by	calculating	the	p-value	of	enrichment	(Fisher’s	Exact	Test)	among	5UI–	transcripts	20	

considering	all	transcripts	with	a	motif	instance	achieving	a	PSSM	score	greater	than	equal	to	21	

the	instance	under	consideration.	The	significance	score	and	position	of	the	two	best	motif	22	

instances	were	used	as	features	for	the	classifier	(Table	S1).	23	
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5IM	Classifier	Training	and	Performance	Evaluation	1	

We	modified	an	implementation	of	the	Random	Forest	classifier	(Breiman	2001)	to	2	

model	the	relationship	between	sequence	features	in	the	early	coding	region	and	the	absence	3	

of	5’UTR	introns	(5UIs).	This	classifier	discriminates	transcripts	with	5’proximal-intron-4	

minus-like-coding	regions	and	hence	is	named	the	‘5IM’	classifier.	The	training	set	for	the	5	

classifier	was	composed	of	SSCR	transcripts	exclusively.	There	were	two	reasons	to	restrict	6	

model	construction	to	SSCR	transcripts:	1)	we	expected	the	presence	of	specific	RNA	elements	7	

as	a	function	of	5UI	presence	based	on	our	previous	work		(Cenik	et	al.	2011);	and	2)	we	8	

wanted	to	restrict	model	building	to	sequences	that	have	similar	functional	constraints	at	the	9	

protein	level.	10	

We	observed	that	5UI–	transcripts	with	introns	proximal	to	5’	end	of	the	coding	region	11	

have	sequence	characteristics	similar	to	5UI+	transcripts	(Fig	1D).	To	systematically	12	

characterize	this	relationship,	we	built	different	classifiers	using	training	sets	that	excluded	13	

5UI–	transcripts	with	a	coding	region	intron	positioned	at	increasing	distances	from	the	start	14	

codon.	We	evaluated	the	performance	of	each	classifier	using	10-fold	cross	validation.		15	

Given	that	a	large	number	of	motif	discovery	iterations	were	needed,	we	sought	to	16	

reduce	the	computational	burden.	We	isolated	a	subset	of	the	training	examples	to	be	used	17	

exclusively	for	motif	finding.	Motif	discovery	was	performed	once	using	this	set	of	sequences,	18	

and	the	same	motifs	were	used	in	each	fold	of	the	cross	validation	for	all	the	classifiers.	19	

Imbalances	between	the	sizes	of	positive	and	negative	training	examples	can	lead	to	20	

detrimental	classification	performance	(Wang	and	Yao	2012).	Hence,	we	balanced	the	training	21	

set	size	of	5UI–		and	5UI+	transcripts	by	randomly	sampling	from	the	larger	class.	We	22	

constructed	10	sub-classifiers	to	reduce	sampling	bias,	and	for	each	test	example,	the	23	
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prediction	score	from	each	subclassifier	was	summed	to	produce	a	combined	score	between	0	1	

and	10.	For	the	rest	of	the	analyses,	we	used	the	classifier	trained	using	5UI–	transcripts	where	2	

first	coding	intron	falls	outside	the	first	90	coding	nucleotides	(Fig	1E).	3	

We	evaluated	classifier	performance	using	a	10-fold	cross	validation	strategy	for	SSCR-4	

containing	transcripts	(i.e.	the	training	set).	In	each	fold	of	the	cross-validation,	the	model	was	5	

trained	without	any	information	from	the	held-out	examples,	including	motif	discovery.	For	all	6	

the	other	transcripts	and	the	control	sets	(see	above),	the	5IMP	scores	were	calculated	using	7	

the	classifier	trained	using	SSCR	transcripts	as	described	above.	5IMP	score	distribution	for	8	

the	control	set	was	used	to	calculate	the	empirical	cumulative	null	distribution.	Using	this	9	

function,	we	determined	the	p-value	corresponding	to	the	5IMP	score	for	all	transcripts.	We	10	

corrected	for	multiple	hypotheses	testing	using	the	qvalue	R	package	(Storey	2003).	Based	on	11	

this	analysis,	we	estimate	that	a	5IMP	score	of	7.41	corresponds	to	a	5%	False	Discovery	Rate	12	

and	suggest	that	21%	of	all	human	transcripts	can	be	considered	as	5IM	transcripts.			13	

While	the	theoretical	range	of	5IMP	scores	is	0-10,	the	highest	observed	5IMP	is	9.855.	14	

We	note	that	for	all	figures	that	depict	5IMP	score	distributions,	we	displayed	the	entire	15	

theoretical	range	of	5IMP	scores	(0-10).		16	

Functional	Characterization	of	5IM	Transcripts:	17	

We	collected	genome-scale	dataset	from	publically	available	databases	and	from	18	

supplementary	information	provided	in	selected	articles.	For	all	analyzed	datasets,	we	first	19	

converted	all	gene/transcript	identifiers	(IDs)	into	RefSeq	transcript	IDs	using	the	Synergizer	20	

webserver	(Berriz	and	Roth	2008).	If	a	dataset	was	generated	using	a	non-human	species	(ex.	21	

Targets	identified	by	TDP-43	RNA	immunoprecipitation	in	rat	neuronal	cells),	we	used	22	

Homologene	release	64	(downloaded	on	Sep	28	2009)	to	identify	the	corresponding	ortholog	23	
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in	humans.	If	at	least	one	member	of	a	transcript	cluster	was	associated	with	a	functional	1	

phenotype,	we	assigned	the	cluster	to	the	positive	set	with	respect	to	the	functional	phenotype.	2	

If	more	than	one	member	of	a	cluster	had	the	functional	phenotype,	we	only	retained	one	copy	3	

of	the	cluster	unless	they	differed	in	a	quantitative	measurement.	For	example,	consider	two	4	

hypothetical	transcripts:	NM_1	and	NM_2	that	were	clustered	together	and	have	a	5IMP	score	5	

of	8.5.	If	NM_1	had	an	mRNA	half-life	of	2hr	while	NM_2’s	half-life	was	1hr	than	we	split	the	6	

cluster	while	preserving	the	5IMP	score	for	both	NM_1	and	NM_2.		7	

Once	the	transcripts	were	partitioned	based	on	the	functional	phenotype,	we	ran	two	8	

statistical	tests:	1)	Fisher’s	Exact	Test	for	enrichment	of	5IM	transcripts	within	the	functional	9	

category;	2)	Wilcoxon	Rank	Sum	Test	to	compare	5IMP	scores	between	transcripts	partitioned	10	

by	the	functional	phenotype.	Additionally,	for	datasets	where	a	quantitative	measurement	was	11	

available	(ex.	mRNA	half-life),	we	calculated	the	Spearman	rank	correlation	between	5IMP	12	

scores	and	the	quantitative	variable.	In	these	analyses,	we	assumed	that	the	test	space	was	the	13	

entire	set	of	RefSeq	transcripts.	For	all	phenotypes	where	we	observed	a	preliminary	14	

statistically	significant	result,	we	followed	up	with	more	detailed	analyses	described	below.	15	

Analysis	of	Features	Associated	with	Translation:	16	

For	each	transcript,	we	predicted	the	propensity	for	secondary	structure	preceding	the	17	

translation	start	site	and	the	5’cap.	Specifically,	we	extracted	35	nucleotides	preceding	the	18	

translation	start	site	or	the	first	35	nucleotides	of	the	5’UTR.	If	a	5’UTR	is	shorter	than	35	19	

nucleotides,	the	transcript	was	removed	from	the	analysis.		hybrid-ss-min	utility	(UNAFold	20	

package	version	3.8)	with	default	parameters	was	used	to	calculate	the	minimum	folding	21	

energy	(Markham	and	Zuker	2008).		22	
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Codon	optimality	was	measured	using	the	tRNA	Adaptation	Index	(tAI),	which	is	based	1	

on	the	genomic	copy	number	of	each	tRNA	(dos	Reis	et	al.	2004).		tAI	for	all	human	codons	2	

were	downloaded	from	Tuller	et	al.	2010	Table	S1.	tAI	profiles	for	the	first	30	amino	acids	3	

were	calculated	for	all	transcripts.		Codon	optimality	profiles	were	summarized	for	the	first	30	4	

amino	acids	for	each	transcript	or	by	averaging	tAI	at	each	codon.		5	

We	carried	out	two	control	experiments	to	test	whether	the	association	between	5IMP	6	

score	and	tAI	could	be	explained	by	confounding	variables.		First,	we	permuted	the	nucleotides	7	

in	the	first	90	nts	and	observed	no	relationship	between	5IMP	score	and	mean	tAI	when	these	8	

permuted	sequences	were	used	(Fig	S1).	Second,	we	selected	random	in-frame	99	nucleotides	9	

from	3rd	exon	to	the	end	of	the	coding	region	and	found	no	significant	differences	in	tAI	(Fig	10	

S1).	These	results	suggest	that	the	relationship	between	tAI	and	5IMP	score	is	confined	to	the	11	

first	30	amino	acids	and	is	not	explained	by	simple	differences	in	nucleotide	composition.		12	

Ribosome	profiling	and	RNA	expression	data	for	human	lymphoblastoid	cells	(LCLs)	13	

were	downloaded	from	NCBI	GEO	database	accession	number:	GSE65912.	Translation	14	

efficiency	was	calculated	as	previously	described	(Cenik	et	al.	2015).	Median	translation	15	

efficiency	across	the	different	cell-types	was	used	for	each	transcript.	 	16	

Analysis	of	Proximity	Specific	Ribosome	Profiling	Data:	17	

We	downloaded	proximity	specific	ribosome	profiling	data	for	HEK	293	cells	from	Jan	18	

et	al.	2014;	Table	S6.		We	converted	UCSC	gene	identifiers	to	HGNC	symbols	using	g:Profiler	19	

(Reimand	et	al.	2011).	We	retained	all	genes	with	an	RPKM	>5	in	either	input	or	pulldown	and	20	

required	that	at	least	30	reads	were	mapped	in	either	of	the	two	libraries.	We	used	ER-21	

targeting	evidence	categories	“secretome”,	“phobius”,	“TMHMM”,	“SignalP”,	“signalSequence”,	22	

“signalAnchor”	from	(Jan	et	al.	2014)	to	annotate	genes	as	having	ER-targeting	evidence.	The	23	
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genes	that	did	not	have	any	ER-targeting	evidence	or	“mitoCarta”	/“mito.GO”	annotations	were	1	

deemed	as	the	set	of	genes	with	no	ER-targeting	or	mitochondrial	evidence.	We	calculated	the	2	

log2	of	the	ratio	between	ER-proximal	ribosome	pulldown	RPKM	and	control	RPKM	as	the	3	

measure	of	enrichment	for	ER-proximal	ribosome	occupancy	(as	in	Jan	et	al.	2014).		A	moving	4	

average	of	this	ratio	was	calculated	for	genes	grouped	by	their	5IMP	score.	For	this	calculation,	5	

we	used	bins	of	30	mitochondrial	genes	or	100	genes	with	no	evidence	of	ER-	or	mitochondrial	6	

targeting.		7	

Analysis	of	Genome-wide	Binding	Sites	of	Exon	Junction	Complex:	8	

Dr.	Gene	Yeo	and	Gabriel	Pratt	generously	shared	uniformly	processed	peak	calls	for	9	

experiments	identifying	human	RNA	binding	protein	targets.	These	datasets	include	various	10	

CLIP-Seq	datasets	and	its	variants	such	as	iCLIP.	A	total	49	datasets	from	22	factors	were	11	

analyzed.	These	factors	were:	hnRNPA1,	hnRNPF,	hnRNPM,	hnRNPU,	Ago2,	hnRNPU,	HuR,	12	

IGF2BP1,	IGF2BP2,	IGF2BP3,	FMR1,	eIF4AIII,	PTB,	IGF2BP1,	Ago3,	Ago4,	MOV10,	Fip1,	CF	13	

Im68,	CF	Im59,	CF	Im25,	and	hnRNPA2B1.	We	extracted	the	5IMP	scores	for	all	targets	of	each	14	

RBP.	We	calculated	the	Wilcoxon	Rank	Sum	test	statistic	comparing	the	5IMP	score	15	

distribution	of	the	targets	of	each	RBP	to	all	other	transcripts	with	5IMP	scores.	None	of	the	16	

tested	RBP	target	sets	had	an	adjusted	p-value	<	0.05	and	a	median	difference	in	5IMP	score	>	17	

1	when	compared	to	non-target	transcripts.	18	

In	addition,	we	used	RNA:protein	immunoprecipitation	in	tandem	(RIPiT)	data	to	19	

determine	Exon	Junction	Complex	(EJC)	binding	sites	(Singh	et	al.	2014,	2012).	We	analyzed	20	

the	common	peaks	from	the	Y14-Magoh	immunoprecipitation	configuration	(Singh	et	al.	2012;	21	

Kucukural	et	al.	2013).	Canonical	EJC	binding	sites	were	defined	as	peaks	whose	weighted	22	

center	were	15	to	32	nucleotides	upstream	of	an	exon-intron	boundary.	All	remaining	peaks	23	
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were	deemed	as	“non-canonical”	EJC	binding	sites.	We	extracted	all	non-canonical	peaks	that	1	

overlapped	the	first	99	nucleotides	of	the	coding	region	and	restricted	our	analysis	to	2	

transcripts	that	had	an	RPKM	greater	than	one	in	the	matched	RNA-Seq	data.		3	

Analysis	of	m1A	modified	transcripts		4	

We	downloaded	the	list	of	RNAs	observed	to	contain	m1A	from	Li	et	al.	(2016)	and	5	

Dominissini	et	al.	(2016).	RefSeq	transcript	identifiers	were	converted	to	HGNC	symbols	using	6	

g:Profiler	(Reimand	et	al.	2011).	The	overlap	between	the	two	datasets	was	determined	using	7	

HGNC	symbols.	m1A	modifications	that	overlap	the	first	99	nucleotides	of	the	coding	region	8	

were	determined	using	bedtools	(Quinlan	and	Hall	2010).		9	

	Li	et	al.	(2016)	identified	600	transcripts	with	m1A	modification	in	normal	HEK293	10	

cells.	Of	these,	368	transcripts	were	not	found	to	contain	the	m1A	modification	in	HEK293	cells	11	

by	Dominissini	et	al.	(2016).	Yet,	81%	of	these	were	found	to	be	m1A	modified	in	other	cell	12	

types.	Li	et	al.	(2016)	also	analyzed	m1A	upon	H2O2	treatment	and	serum	starvation	in	HEK293	13	

cells	and	identified	many	m1A	modifications	that	are	only	found	these	stress	conditions.	14	

However,	20%	of	371	transcripts	harboring	stress-induced	m1A	modifications	were	found	in	15	

normal	HEK293	cells	by	Dominissini	et	al.	(2016).	Taken	together,	these	analyses	suggest	that	16	

transcriptome-wide	m1A	maps	remain	incomplete.	Hence,	we	analyzed	the	5IMP	scores	of	all	17	

mRNAs	with	m1A	across	cell	types	and	conditions.	We	reported	results	using	the	Dominissini	18	

et	al.	dataset	but	the	same	conclusions	were	supported	by	m1A	modifications	from	Li	et	al.		19	

	 	20	
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Figure	Legends:		1	

Fig	1	|	Modeling	the	relationship	between	sequence	features	in	the	early	coding	2	

region	and	the	absence	of	5’UTR	introns	(5UIs).	(a)	For	all	human	transcripts,	3	

information	about	36	nucleotide-level	features	of	the	early	coding	region	(first	99	4	

nucleotides)	and	5UI	presence	was	extracted.	(b)	Transcripts	containing	a	signal	sequence	5	

coding	region	(SSCR)	were	used	to	train	a	Random	Forest	classifier	that	modeled	the	6	

relationship	between	5UI	absence	and	36	sequence	features.	(c)	With	this	classifier,	all	7	

human	transcripts	were	assigned	a	score	that	quantifies	the	likelihood	of	5UI	absence	8	

based	on	specific	RNA	sequence	features	in	the	early	coding	region.	Transcripts	with	high	9	

scores	are	thus	considered	to	have	5’-proximal	intron	minus-like	coding	regions	(5IMs).		10	

(d)	“5’UTR-intron-minus-predictor”	(5IMP)	score	distributions	for	SSCR-containing	11	

transcripts	shift	to	higher	scores	with	later-appearing	first	introns,	suggesting	that	5IM	12	

coding	region	features	not	only	predict	lack	of	a	5UI,	but	also	lack	of	early	coding	region	13	

introns.	(e)	Classifier	performance	was	optimized	by	excluding	5UI–	transcripts	with	14	

introns	appearing	early	in	the	coding	region.		Cross-validation	performance	(area	under	the	15	

precision	recall	curve,	AUPRC)	was	examined	for	a	series	of	alternative	5IM	classifiers	16	

using	different	first-intron-position	criterion	for	excluding	5UI–	transcripts	from	the	17	

training	set	(Methods).	18	

	19	

Fig	2	|	Predicting	5UI	status	accurately	using	only	early	coding	sequences.	(a)	As	20	

judged	by	area	under	the	receiver	operating	characteristic	curve	(AUROC)	and	AUPRC,	The	21	

5IM	classifier	performed	well	for	several	different	transcript	classes.		(b)	The	distribution	22	

of	5IMP	scores	reveals	clear	separation	of	5UI+	and	5UI–	transcripts	for	SSCR-containing	23	
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transcripts,	where	each	SSCR-containing	transcript	was	scored	using	a	classifier	that	did	1	

not	use	that	transcript	in	training	(Methods).		(c)	Coding	sequence	features	that	are	2	

predictive	of	5’	proximal	intron	presence	are	restricted	to	the	early	coding	region.		This	was	3	

supported	by	identical	5IM	classifier	score	distributions	with	respect	to	5UI	presence	for	4	

negative	control	sequences,	each	derived	from	a	single	randomly	chosen	‘window’	5	

downstream	of	the	3rd	exon	from	one	of	the	evaluated	transcripts.	(d)	MSCR	transcripts	6	

exhibited	a	major	difference	in	5IMP	scores	based	on	their	5UI	status	even	though	no	MSCR	7	

transcripts	were	used	in	training	the	classifier.		(e)	Transcripts	predicted	to	contain	signal	8	

peptides	(SignalP+)	had	a	5IMP	score	distribution	similar	to	that	of	SSCR-containing	9	

transcripts.	(f)	After	eliminating	SSCR,	MSCR,	and	SignalP+	transcripts,	the	remaining	S–10	

/MSCR–	SignalP–	transcripts	were	still	significantly	enriched	for	high	5IM	classifier	scores	11	

among	5UI–	transcripts.	(g)	The	control	set	of	randomly	chosen	sequences	downstream	of	12	

the	3rd	exon	from	each	transcript	was	used	to	calculate	an	empirical	cumulative	null	13	

distribution	of	5IMP	scores.	Using	this	function,	we	determined	the	p-value	corresponding	14	

to	the	5IMP	score	for	all	transcripts.	The	red	dashed	line	indicates	the	p-value	15	

corresponding	to	5%	False	Discovery	Rate.	The	inset	depicts	the	distribution	of	various	16	

classes	of	mRNAs	among	the	input	set	and	5IM	transcripts.	17	

	18	

Fig	3	|	5IM	transcripts	are	more	likely	to	be	differentially	expressed	and	have	19	

sequence	features	associated	with	lower	translation	efficiency	(a)	The	5IM	classifier	20	

score	was	positively	correlated	with	the	propensity	for	mRNA	structure	preceding	the	start	21	

codon	(-ΔG)	(Spearman	rho=0.39;	p	<	2.2e-16).		For	each	transcript,	35	nucleotides	22	

immediately	upstream	of	the	AUG	were	used	to	calculate	-ΔG	(Methods).		(b)	The	5IM	23	
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classifier	score	was	positively	correlated	with	the	propensity	for	mRNA	structure	near	the	1	

5’cap	(-ΔG)	(Spearman	rho=0.18;	p	=	7.9e-130;	Methods).	(c)	Transcripts	that	are	2	

translationally	upregulated	in	response	to	eIF4E	overexpression	(Larsson	et	al.	2007)	3	

(blue)	were	enriched	for	higher	5IMP	scores.	Light	green	shading	indicates	5IMP	scores	4	

corresponding	to	5%	FDR.	(d)	Transcripts	with	non-AUG	start	codons	(blue)	exhibited	5	

significantly	higher	5IMP	scores	than	transcripts	with	a	canonical	ATG	start	codon	(yellow).	6	

(e)	Higher	5IMP	scores	were	associated	with	less	optimal	codons	(as	measured	by	the	7	

tRNA	adaptation	index,	tAI)	for	the	first	33	codons.	For	all	transcripts	within	each	5IMP	8	

score	category	(blue-high,	orange-low),	the	mean	tAI	was	calculated	at	each	codon	position.	9	

Start	codon	was	not	shown.	(f)	Transcripts	with	lower	translation	efficiency	were	enriched	10	

for	higher	5IMP	scores.	Transcripts	with	translation	efficiency	one	standard	deviation	11	

below	the	mean	(“LOW”	translation,	yellow)	and	one	standard	deviation	higher	than	the	12	

mean	(“HIGH”	translation,	blue)	were	identified	using	ribosome	profiling	and	RNA-Seq	data	13	

from	human	lymphoblastoid	cell	lines	(Methods).		14	

	15	

Fig	4	|	5IM	transcripts	with	no	evidence	of	ER-targeting	are	more	likely	to	exhibit	ER-16	

proximal	ribosome	occupancy.	A	moving	average	of	ER-proximal	ribosome	occupancy	17	

was	calculated	by	grouping	genes	by	5IMP	score	(see	Methods).	We	plotted	the	moving	18	

average	of	5IMP	scores	for	transcripts	with	no	evidence	of	ER-	or	mitochondrial	targeting	19	

(green)	or	for	transcripts	predicted	to	be	mitochondrial	(purple).	We	plotted	a	random	20	

subsample	of	transcripts	on	top	of	the	moving	average	(circles).		21	

	22	
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Fig	5	|	5IM	transcripts	harbor	non-canonical	Exon	Junction	Complex	(EJC)	binding	1	

sites	(a)	Observed	EJC	binding	sites	(Singh	et	al.	2012)	are	shown	for	an	example	5IM	2	

transcript	(LAMC1).	Canonical	EJC	binding	sites	(purple)	are	~24nt	upstream	of	an	exon-	3	

intron	boundary.	The	remaining	binding	sites	are	considered	to	be	non-canonical	(green).	4	

(b)	A	CG-rich	sequence	motif	previously	identified	to	be	enriched	among	ncEJC	binding	5	

sites	in	first	exons	(Singh	et	al.	2012)	is	shown	(c)	5IMP	score	for	transcripts	with	zero,	6	

one,	two	or	more	non-canonical	EJC	binding	sites	in	the	first	99	coding	nucleotides	reveals	7	

that	transcripts	with	high	5IMP	scores	frequently	harbor	non-canonical	EJC	binding	sites.	8	

(d)	Transcripts	with	high	5IMP	scores	are	enriched	for	non-canonical	EJCs	regardless	of	9	

5UI	presence	or	absence.	10	

	11	

Fig	6	|	5IM	transcripts	are	enriched	for	mRNAs	with	early	coding	region	m1A	12	

modifications	(a)	Transcripts	with	m1A	modifications	(blue)	in	the	first	99	coding	nucleotides	13	

exhibit	significant	enrichment	for	5IM	transcripts	and	have	higher	5IMPS	scores	than	14	

transcripts	without	m1A	modifications	in	the	first	99	coding	nucleotides	(yellow).	(b)	15	

Transcripts	with	m1A	modifications	(blue)	in	the	5’UTR	do	not	display	a	similar	enrichment.		16	

	17	

Supporting	Information	18	

Figure	S1	|	Association	between	5IMP	scores	and	codon	optimality	is	restricted	to	the	19	

first	30	amino	acids	and	is	not	explained	by	nucleotide	content.	(a)	5IM	transcripts	tend	20	

to	have	less	optimal	codons	in	their	first	30	amino	acids	as	measured	by	tRNA	adaptation	index	21	

(tAI).	The	median	tAI	for	each	transcript	was	calculated	and	transcripts	were	grouped	by	their	22	
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5IMP	scores.	The	distribution	of	median	tAI	was	plotted	as	a	boxplot.	(b)	We	permuted	the	1	

nucleotides	of	the	first	99	nucleotides	and	found	that	the	relationship	between	5IMP	and	tAI	2	
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Table	S2-	|	5IMP	scores	of	all	human	transcripts.		10	
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