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ABSTRACT 

The G2/M checkpoint is activated on DNA damage by the ATM and ATR kinases 

that are regulated by post-translational modifications.  In this paper, the transcriptional co-

regulation of ATM and ATR by SMARCAL1 and BRG1, both members of the ATP-

dependent chromatin remodeling protein family, is described.   SMARCAL1 and BRG1 co-

localize on the promoters of ATM and ATR; downregulation of SMARCAL1/BRG1 results in 

transcriptional repression of ATM/ATR and therefore, overriding of the G2/M checkpoint 

leading to mitotic abnormalities.  On doxorubicin-induced DNA damage, SMARCAL1 and 

BRG1 are upregulated and in turn, upregulate the expression of ATM/ATR.   

Phosphorylation of ATM/ATR is needed for the transcriptional upregulation of SMARCAL1 

and BRG1, and therefore, of ATM and ATR on DNA damage.  The regulation of ATM/ATR 

is rendered non-functional if SMARCAL1 and/or BRG1 are absent or if the two proteins are 

mutated such that they are unable to hydrolyze ATP, as in for example in Schimke Immuno-

Osseous Dysplasia and Coffin-Siris Syndrome.  Thus, an intricate transcriptional regulation 

of DNA damage response genes mediated by SMARCAL1 and BRG1 is present in 

mammalian cells.     
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INTRODUCTION 

ATM and ATR, both members of the PI3K family, are key regulators of DNA 

damage response pathway [1,2].  ATM is recruited to the site of double-strand breaks by the 

MRN complex [3]  while ATR is recruited to the site of single-strand breaks by ATRIP and 

RPA [4,5].  Both proteins then proceed to phosphorylate multiple target proteins effecting 

cell cycle arrest and activating the DNA damage response pathway [6,7].  Despite 

overlapping substrates, it is known that only ATR is essential for the viability of replicating 

cells [8].  ATM, many experiments have shown, is nonessential [9]. 

ATM and ATR are regulated by phosphorylation.  Activation of ATM kinase is 

dependent on the MRN complex as the protein directly interacts with the complex and this 

interaction is needed for the activation of the kinase [3,10].  ATM is present as an inactive 

homodimer in the cells; autophosphorylation on serine 1981 leads to the formation of the 

active monomers [11].  ATM autophosphorylation is regulated by the phosphatase, PP2A, as 

overexpression of dominant negative mutant of PP2A results in constitutive 

autophosphorylation on serine 1981 even in the absence of DNA damage [12,13].  Another 

phosphatase, WIP1, has also been shown to regulate the activity of ATM [12,14].  Recently, 

Tip60 complex has been shown to acetylate ATM in response to DNA damage, thus, adding 

one more post-translational modification to the regulatory repertoire [15,16]. 

ATM can recruit ATR to the sites of DNA damage [17,18].  ATR too is regulated by 

phosphorylation; however, the kinase and the phosphatase acting on ATR in the DNA 

damage response pathway have not been completely delineated.  

The DNA damage response pathway is also controlled by the ATP-dependent 

chromatin remodeling proteins [19–21].  In particular, BRG1, a known transcription 

modulator, has been shown to participate in the DNA damage response pathway [22–24].  

Mutations in BRG1 is associated both with cancer and Coffin-Siris Syndrome (CSS) [25–27].  
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SMARCAL1, another member of the family, in complex with RPA, has also been shown to 

stabilize stalled replication fork when DNA is damaged [28–33].  Studies have also shown 

that ATR phosphorylates SMARCAL1 and thus, regulates its activity [34].  Mutations in 

SMARCAL1 has been linked to Schimke Immuno-osseous Dysplasia (SIOD) [35].   

However, the role of SMARCAL1 and BRG1 in regulating ATM and ATR kinases has not 

been studied as yet. 

The results presented in this paper originated from the observation that 

downregulation of either SMARCAL1 or BRG1 in HeLa cells resulted in the formation of 

mitotic cells possessing multipolar spindles.  Further, both SMARCAL1 and BRG1 

downregulated cells showed DNA damage even in the absence of any DNA damage-inducing 

agent.  Knowing that SMARCAL1 and BRG1 mutually co-regulate the expression of each 

other [36] and that these proteins function as transcriptional co-regulators, the expression of 

cell cycle checkpoint genes was investigated.  In this paper, the transcriptional co-regulation 

of ATM and ATR by SMARCAL1 and BRG1 is reported.  Downregulation of either 

SMARCAL1 or BRG1 results in downregulation of ATM and ATR leading to the failure of the 

G2/M checkpoint.  During DNA damage, the expression of SMARCAL1 and BRG1 is 

upregulated.  This upregulation results in increased expression of ATM and ATR, thus, 

creating a transcriptional network that governs the DNA damage response pathway.  The 

transcriptional network is feedback regulated by the phosphorylation status of ATM and 

ATR.  Finally, it is shown that the SIOD-associated mutations in SMARCAL1 and CSS-

associated mutations in BRG1 result in abrogation of the DNA damage response pathway due 

to their inability to synthesize ncRNA when DNA damage is induced.  
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RESULTS: 

Stable downregulation of SMARCAL1 and BRG1 in HeLa cells results in mitotic 

abnormalities: SMARCAL1 and BRG1 are a pair of mutually co-regulated genes in HeLa 

cells that encode for SMARCAL1 and BRG1, members of the ATP-dependent chromatin 

remodeling family [36].  To understand the impact of this co-regulation on the cell, 

SMARCAL1 and BRG1 were stably downregulated in HeLa cells using shRNA construct 

against the genes.  Both ShSMARCAL1 as well as ShBRG1 cells exhibited multipolar spindles 

and multinucleate cells (Fig. 1A-D and Supplementary Fig. 1A and B).  However, these 

stably downregulated cells could not be stored for a long time.  Therefore, all the experiments 

described, henceforth, in this paper were done using transient transfections.   

Downregulation of SMARCAL1 has been reported to increase replication stress [29] 

and indeed, increased γH2AX foci was found even in the absence of any DNA damaging 

agent in both ShSMARCAL1 and ShBRG1 cells as compared to the control cells indicating  

endogenous DNA damage in these downregulated cells (Fig. 1E).  Increased DNA damage 

should result in G2/M arrest due to activation of G2/M checkpoint [42].  However, 

ShSMARCAL1 and ShBRG1 cells did not arrest at the G2/M boundary; instead, FACS 

analysis showed that the population of G0/G1, S, G2/M cells were similar in the control, 

ShSMARCAL1, and ShBRG1 cells, leading us to hypothesize that  G2/M checkpoint was 

possibly not functional when SMARCAL1/BRG1 was downregulated in HeLa cells (Fig. 

1F).   

ATM and ATR expression is downregulated in both ShSMARCAL1and ShBRG1 

cells: The G2/M checkpoint is mediated by ATM and ATR kinases [43,44] in response to 

DNA damage.  On activation these kinases phosphorylate Chk1 and Chk2 that subsequently 

phosphorylate Cdc25 and blocks the activation of cyclinB-Cdk1 complex [45].  As both 

SMARCAL1 and BRG1 are transcription factors, it was hypothesized that the expression of 
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some of the genes encoding for proteins involved in the G2/M checkpoint was altered 

resulting in the inactivation of the checkpoint.  Hence, the transcription profile of genes 

encoding for G2/M checkpoint were estimated in cells transiently transfected with shRNA 

either against SMARCAL1 (Sh70 and Sh71) or against BRG1 (ShBRG1).  In case of 

SMARCAL1, two independent shRNA, namely Sh70 and Sh71, were used to ensure the 

observed results were not due to off-target effect.  Both qPCR and western blots showed that 

the expression of ATM and ATR were downregulated in ShSMARCAL1 as well as ShBRG1 

cells (Fig. 1G- L).  However, the levels of Chk1, Chk2, CDK1 and CDK2 were found to be 

unchanged (Fig. 1G- L).  To confirm that the regulation of ATM and ATR was due to 

SMARCAL1 and BRG1 only, ShRNA constructs targeting the 3′ UTR of the genes were co-

transfected into HeLa cells with overexpression cassettes of either SMARCAL1 or BRG1.  As 

expected, transfection of the ShRNA construct against either the 3′ UTR of SMARCAL1 or 

BRG1 led to downregulation of ATM and ATR (Fig. 1M and N).  This downregulation could 

be partially or completely reversed when cells were co-transfected with the overexpression 

construct of either SMARCAL1 or BRG1 respectively (Fig. 1M and N).  Finally, ChIP 

confirmed the presence of both SMARCAL1 and BRG1 on ATM and ATR promoters 

(Supplementary Fig. 1C and D). 

Thus, both BRG1 and SMARCAL1 appear to be co-regulating ATM and ATR.  

Downregulation of either BRG1 or SMARCAL1 results in transcription repression of ATM and 

ATR.  

As both Sh70 and Sh71 cells behaved identically, we have used Sh71 (termed as 

ShSMARCAL1) in all the subsequent experiments. 

Downregulation of SMARCAL1 and BRG1 leads to impaired G2/M checkpoint 

trespass on DNA damage in HeLa cells:  The phosphorylation of Chk2 and Chk1 by 

ATM/ATR kinases occurs only in the presence of DNA damage.  To understand whether 
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BRG1 and SMARCAL1 are important for activating the G2/M checkpoint on induction of 

DNA damage, the expression of BRG1, SMARCAL1, ATM and ATR was studied during 

DNA damage.   

Previously, it has been shown that the expression of both SMARCAL1 and BRG1 is 

upregulated in HeLa cells on treatment with 2 μM doxorubicin for 10 minutes [36].  This 

upregulation of both SMARCAL1 and BRG1 was specific to doxorubicin-induced DNA 

damage and was not been observed with other DNA damaging agents [36,37].   

Based on these data, we hypothesized that if SMARCAL1 and BRG1 are co-

regulating ATM and ATR, then treatment with doxorubicin that results in upregulation of 

these two ATP-dependent chromatin remodeling proteins should also result in upregulation 

of these two DNA damage response genes.   

As hypothesized, the expression of both ATM and ATR were indeed found to be 

upregulated in HeLa cells on treatment with 2 μM doxorubicin for 10 minutes (Fig. 2A-C).  

Next the expression of SMARCAL1 and BRG1 along with the mediators of the G2/M 

checkpoint was studied in ShSMARCAL1 and ShBRG1 cells.  It was found that in control 

cells (vector transfected), treatment with doxorubicin resulted in upregulation of 

SMARCAL1, BRG1, ATM, and ATR; however, in ShSMARCAL1 and ShBRG1 cells, the 

expression of these proteins were downregulated and on induction of DNA damage remained 

unchanged (Fig. 2D and E).   Further, phosphorylation of ATM and ATR was also not 

detected in ShSMARCAL1 and ShBRG1 cells as compared to the control cells on doxorubicin 

treatment (Fig. 2D and E).  Concomitantly, though the levels of Chk1 and Chk2 were 

unaltered in control, ShSMARCAL1 and ShBRG1 cells, the phosphorylation of Chk1 and 

Chk2 was impaired in the SMARCAL1/BRG1 downregulated cells as compared to the control 

cells (Fig. 2D and E). 
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The loss of ATM and ATR, and therefore, impaired phosphorylation of Chk1 and 

Chk2, on doxorubicin treatment led to checkpoint trespass in ShSMARCAL1 and ShBRG1 

cells as compared to the control cells as shown by β-tubulin staining (for mitotic spindles) 

and FACS.  The control cells on doxorubicin treatment (as evidenced by the appearance of 

γH2AX foci) arrested at the G2/M checkpoint and none of the cells progressed into mitosis 

(as observed by the localization of β-tubulin to the cytoplasm and lack of mitotic spindles) 

(Fig. 3A-D).  In contrast, 15% of the ShSMARCAL1 and ShBRG1 cells formed mitotic 

spindles indicating the progression into M phase (Fig. 3B and C).  Further, FACS analysis 

showed a 3-fold increase in ShSMARCAL1/ShBRG1 cells present in G2/M phase and a 2-fold 

increase in these cells present in G1 phase compared to the control cells (Fig. 3D).  

Thus, SMARCAL1 regulates the expression of BRG1 and BRG1, in turn, regulates 

the expression of SMARCAL1 creating a positive feedback loop in HeLa cells.  Further, 

SMARCAL1 and BRG1 together positively co-regulate the expression of ATM and ATR in 

this cell line (Supplementary Fig. 2A).   

Regulation of ATM/ATR by SMARCAL1/BRG1 exists in other cell lines also:  

To determine whether this regulation operates in other cell lines expressing both 

SMARCAL1 and BRG1, the expression pattern of these two genes along with that of ATM 

and ATR was studied in HEK293 and MCF-7 cell lines.  Downregulation of SMARCAL1 in 

both HEK293 and MCF-7 led to downregulation of BRG1 (Supplementary Fig. 2B and C).  

However, downregulation of BRG1 in both these cell lines led to upregulation of 

SMARCAL1, indicating SMARCAL1 positively regulates the expression of BRG1 while 

BRG1 negatively regulates the expression of SMARCAL1 (Supplementary Fig. 2B and C).  

Further, downregulation of either SMARCAL1 or BRG1 led to upregulation of ATM and ATR 

in HEK293 cells; in MCF-7 cells, in contrast, both ATM and ATR were downregulated on 

downregulation of either SMARCAL1 and BRG1 (Supplementary Fig 2B and C). 
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Thus, in HEK293 cells, SMARCAL1 positively regulates BRG1 while BRG1 

negatively regulates SMARCAL1; both negatively regulate ATM/ATR (Supplementary Fig 

2D).  In MCF-7cells, on the other hand, SMARCAL1 positively regulates BRG1 and BRG1 

negatively regulates SMARCAL1; both positively regulate ATM/ATR (Supplementar Fig. 

2E). 

If this model is correct, then the upregulation of SMARCAL1, BRG1, ATM and ATR 

should not be observed with doxorubicin-induced DNA damage in MCF-7 cells.  The control 

(vector transfected) MCF-7 cells were treated with 2 μM doxorubicin for 10 minutes and as 

hypothesized, the expression of the four genes did not alter with doxorubicin-induced DNA 

damage (Supplementary Fig. 2F). 

Thus, a regulatory loop does exist between SMARCAL1, BRG1, ATM and ATR;   

however, the nature of the loop varies from cell line to cell line.  

Both SMARCAL1 and BRG1 are required for the upregulation of ATM and 

ATR on doxorubicin-induced DNA damage:   From the above experiments, though it is 

evident that both SMARCAL1 and BRG1 regulate ATM/ATR, it is not clear whether both 

are necessary or whether one remodeler is sufficient.  As it is technically not possible to 

create a HeLa cell where only SMARCAL1 or BRG1 is downregulated, cell lines that lacked 

either SMARCAL1 (HepG2 cell line) or BRG1 (A549 cell line) were used to understand 

whether both the proteins were required for the upregulation of ATM and ATR expression on 

doxorubicin treatment.  However, it needs to be pointed, given the variances between the cell 

lines (as outlined in section 3.4), the differences observed in A549 and HepG2 do not offer a 

complete representation of the role of SMARCAL1 and BRG1 in regulating ATM and ATR.   

In both A549 and HepG2 cell lines, ATM and ATR were downregulated on treatment 

with 2 μM doxorubicin for 10 minutes; however, the protein levels were not significantly 

altered (Supplementary Fig. 3A-F) indicating both SMARCAL1 and BRG1 are required for 
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transcriptional regulation of these genes.  However, in these cells, unlike the 

ShSMARCAL1/ShBRG1 cells, ATM and ATR are phosphorylated on DNA damage 

indicating that the DNA damage response is not altered in these cell lines (Supplementary 

Fig. 3G).  Thus, it appears that the phosphorylation of ATM and ATR is not dependent on 

their upregulation on DNA damage by SMARCAL1/BRG1; however, if ATM and ATR are 

repressed as in SMARCAL1/BRG1downregulated HeLa cells, phosphorylation is affected and 

hence, the phosphorylation of downstream effector molecules is impaired leading to non-

functional G2/M checkpoint. 

SMARCAL1 and BRG1 recruit RNAPII to the promoters of ATM and ATR: 

These three cell lines- HeLa, A549, and HepG2- were now used delineate the 

mechanism of transcription regulation of ATM and ATR by analysing the occupancy of 

SMARCAL1, BRG1, RNAPII and H3K9Ac, an activation mark [46], on these promoters. 

ChIP experiments showed that on doxorubicin treatment, in HeLa cells, the 

occupancy of BRG1, SMARCAL1, RNAPII, and H3K9Ac increased upstream (primer pair 

2) of the transcription start site (TSS) of the ATM promoter (Fig. 4A).  Downstream of the 

TSS (primer pair 3), the occupancy of BRG1 and RNAPII did not change while the 

occupancy of H3K9Ac increased.  ChIP-reChIP experiment showed that on doxorubicin 

treatment BRG1 and SMARCAL1 were present simultaneously on the ATM promoter at the 

region amplified by primer pair 2 (Supplementary Fig. 4A).   SMARCAL1 is known to bind 

to DNA regions possessing secondary structures.  MFold [47] and QGRS [48] showed that 

the region amplified by primer pair 2 can indeed form secondary structures (Supplementary 

Table 1).   Using ADAAD, the bovine homolog of SMARCAL1, it was confirmed that the 

protein was indeed able to bind to the ATM promoter primer pair 2 region in vitro 

(Supplementary Fig. 4B).  Previously, using CD spectroscopy [49], ADAAD has been shown 
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to remodel promoter DNA [36–38].  Using the same technique we confirmed that ADAAD 

can indeed bind to the ATM promoter and remodel DNA (Supplementary Fig. 4C).   

In A549 cells, where BRG1 is not expressed, the occupancy of SMARCAL1 and 

H3K9Ac did not change on doxorubicin treatment upstream of the TSS while the occupancy 

of RNAPII decreased correlating with decreased transcript levels indicating BRG1 is needed 

for recruiting these three proteins to the promoter region (Fig. 4B).  In HepG2 cells, where 

SMARCAL1 is not expressed, the RNAPII occupancy decreased on doxorubicin treatment 

upstream of the TSS correlating with decreased expression (Fig. 4C).  However, BRG1 and 

H3K9Ac occupancy increased indicating SMARCAL1 is needed possibly only for the 

recruitment of RNAPII (Fig. 4C). 

On ATR promoter, ChIP experiments showed that in HeLa cells the occupancy of 

BRG1, SMARCAL1, RNAPII, and H3K9Ac increased both upstream and downstream of the 

TSS on doxorubicin treatment (Fig. 4D).  ChIP-reChIP experiment confirmed that BRG1 and 

SMARCAL1 are present simultaneously on the ATR promoter (primer pair 3) on doxorubicin 

treatment (Supplementary Fig. 4D).  Analysis using MFold and QGRS showed that the 

promoter region amplified by primer pair 5 has the potential to form secondary structures 

(Supplementary Table 1).  Using ADAAD, the bovine homolog of SMARCAL1, it was 

confirmed that the protein can bind to the ATR promoter primer pair 5 region in vitro 

(Supplementary Fig. 4E).  Further, using CD spectroscopy, it was confirmed that the protein 

can remodel the promoter DNA (Supplementary Fig. 4F).   

In A549 cells, the occupancy of SMARCAL1, RNAPII, and H3K9Ac was unaltered 

upstream of the TSS (primer pair 3 and 4) while the occupancy of SMARCAL1 decreased 

around the TSS (primer pair 5), indicating BRG1 is needed for recruiting SMARCAL1, 

RNAPII, and H3K9Ac to the ATR promoter on doxorubicin treatment (Fig. 4E).  In HepG2 

cells, the occupancy of BRG1 on the ATR promoter was unaltered on doxorubicin treatment 
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but the occupancy of H3K9Ac increased upstream as well as around the TSS (Fig. 4F).  The 

occupancy of RNAPII decreased both upstream as well as around the TSS (Fig. 4F), 

indicating once again that SMARCAL1 is needed for RNAPII recruitment. 

Thus, based on these results we propose that both BRG1 and SMARCAL1 are needed 

for recruitment of RNAPII to the ATM and ATR promoters on doxorubicin-induced DNA 

damage; in addition, BRG1 possibly helps in recruiting SMARCAL1 to these promoters.   

Phosphorylation of ATM and ATR is necessary for the activation of the 

transcriptional network: The experimental results presented till now show that 

SMARCAL1 and BRG1 co- regulate the expression of ATM and ATR.  Previously, 

SMARCAL1 and BRG1 had been shown to co-regulate the RNAi genes-DROSHA, DGCR8, 

and DICER-on doxorubicin treatment, and thereby regulating the formation of ncRNA 

required for 53BP1 foci formation [37].  Therefore, we propose that in HeLa cells a 

transcriptional network exists wherein SMARCAL1 and BRG1 transcriptionally regulate 

DNA damage response genes-ATM, ATR, DROSHA, DGCR8, and DICER- and hence, 

regulate the response of the cell to DNA damage agents. 

Reports have also shown that the activity of both SMARCAL1 and BRG1 are 

regulated by phosphorylated ATR and ATM respectively [22,34].  Therefore, the importance 

of phosphorylated ATM and ATR in this transcriptional network was next investigated.  

HeLa cells were treated with either ATM inhibitor (ATMi) or ATR inhibitor (ATRi) for 24 

hours prior to treatment with 2 μM doxorubicin for 10 minutes.  Treatment with ATMi 

inhibited ATM phosphorylation while ATRi treatment inhibited Chk1 phosphorylation, 

confirming that the inhibitor treatment functioned as reported previously [11,17,50–52] (Fig. 

5A).  Quantitative PCR showed that neither SMARCAL1 nor BRG1 were upregulated when 

cells were treated with ATMi/ATRi and doxorubicin (Fig. 5B and C).  As a consequence, 

upregulation of ATM, ATR, DROSHA, DGCR8, and DICER was also not observed in these 
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cells (Fig. 5B and C).  This was confirmed by western blots (Fig. 5A; quantitation of blots is 

shown in Supplementary Fig. 5A).   

As stated earlier, the upregulation of the three RNAi genes by SMARCAL1 and 

BRG1 is needed for 53BP1 foci formation [37].  Therefore, in cells treated with ATM and 

ATR inhibitors, 53BP1 foci formation should be abrogated on doxorubicin treatment.  

Experimental results showed that indeed in cells treated with ATM and ATR inhibitors, 3-

fold less cells formed 53BP1 foci as compared to control cells on doxorubicin treatment (Fig. 

5D and E; Control experiments are shown in Supplementary Fig. 5B).  The formation of 

53BP1 foci was restored on addition of ncRNA from HeLa cells treated with doxorubicin 

(Fig. 5D and E).  It needs to be pointed out that the expression of 53BP1 was not changed 

when cells were treated with ATM and ATR inhibitor (Fig. 5A- C; quantitation of blots is 

shown in Supplementary Fig. 5A). 

Two phosphatases- PP2A and WIP1-have been identified to play a key role in 

dephosphorylating ATM [13,14].  If phosphorylation of ATM is important for the 

transcriptional network mediated by SMARCAL1 and BRG1, then overexpression of WIP1 

and PP2A should result in abrogation of the network and therefore, of 53BP1 foci formed at 

the DNA damage site.  

PP2A-A (the regulatory subunit; henceforth, referred as PP2A) and WIP1 genes were 

transfected into HeLa cells prior to treatment with 2 μM doxorubicin for 10 minutes.  The 

expression of SMARCAL1 and BRG1 were found to be unchanged on doxorubicin treatment 

in cells transfected with either PP2A or WIP1 (Fig. 5F and G).  This was corroborated by the 

western blots (Fig. 5H; quantitation of blots is shown in Supplementary Fig. 5C).  As 

expected, the downstream genes- ATM, ATR, DROSHA, DGCR8, and DICER- were also 

unchanged on doxorubicin treatment in cells transfected with either PP2A or WIP1 (Fig. 5F- 

H; quantitation of blots is shown in Supplementary Fig. 5C).  Finally, 53BP1 foci formation 
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was also found to be abrogated in cells transfected with either PP2A or WIP1 (Fig. 5I and J; 

Control experiments are shown in Supplementary Fig. 5D). The 53BP1 foci formation, once 

again, could be rescued by addition of ncRNA from HeLa cells treated with doxorubicin (Fig. 

5I and J). 

Dephosphorylation of ATM and ATR results in cessation of the DNA damage 

response: Based on the above results, it was hypothesized that the feedback regulation of the 

transcriptional loop by ATM and ATR is needed to amplify the DNA damage response signal 

and dephosphorylation of ATM and ATR would lead to cessation of this signal, thus, 

possibly bringing the DNA damage response pathway to a halt.  To test the hypothesis, HeLa 

cells were treated with okadiac acid, the inhibitor of PP2A along with doxorubicin.  Cells 

were released from doxorubicin treatment and the expression of SMARCAL1, BRG1, ATM 

and ATR was monitored.  It was observed that the expression levels of SMARCAL1, BRG1, 

ATM and ATR were upregulated on doxorubicin treatment for 10 minutes (corresponding to 

0 min time after release) both in the absence and presence of okadiac acid (Fig. 6A-H).  In the 

absence of doxorubicin, the expression of SMARCAL1, BRG1, ATM and ATR returned 

back to normal levels within 5 min of removal of doxorubicin (Fig. 6A-E; G-J).  Further, 

ATM was also dephosphorylated within 5 minutes (Fig. 6E).  However, in the presence of 

okadiac acid, the expression of these genes remain upregulated and return to normal only 

around 30 min after removal of doxorubicin (Fig. 6A-D; F-J) corresponding with ATM 

remaining in the phosphorylated form (Fig. 6F). 

Thus, based on these results, we propose that on DNA damage in HeLa cells, 

SMARCAL1 and BRG1 are upregulated.  This upregulation mediates transcriptional 

activation of DNA damage response genes- ATM and ATR- as well as the three RNAi genes- 

DROSHA, DGCR8, and DICER- leading to the formation of 53BP1 foci.  This transcriptional 

loop is kept in active (switched ON state) mode by phospho-ATM and phospho-ATR.  
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Dephosphorylation of these kinases results in cessation of the signal (switched OFF state) 

(Fig. 6K).  

The mutations present in SIOD and CSS patients lead to abrogation of DNA 

damage response signal: Mutations in SMARCAL1 are associated with Schimke 

Immunoosseous Dysplasia (SIOD) while mutations in BRG1 are associated with Coffin-Siris 

Syndrome (CSS) [27,35].  We rationalized that if SMARCAL1 and BRG1 are necessary for 

DNA damage response pathway, then the patient-associated mutations should abrogate the 

DNA damage response.  Therefore, the role of three SIOD-associated mutants- A468P, 

I548N, and S579L- was studied as previously it has been shown that these three mutants are 

unable to hydrolyze ATP due to impaired DNA binding [53].  In addition, three CSS-

associated mutants- T895M, L921F, and M1011T- were also chosen as these three mutants 

mapped to the ATPase domain and are postulated to lack ATPase activity [27]. 

HeLa cells were co-transfected with ShRNA construct targeting the 3′ UTR of 

SMARCAL1 along with a plasmid either containing the gene for full-length SMARCAL1 or 

containing the gene encoding a SIOD-associated mutation or containing the gene encoding 

for an ATPase dead mutant of SMARCAL1 called K464A [53].  Co-transfection of 

ShRNA(SMARCAL1) along with full-length SMARCAL1 resulted in upregulation of 

SMARCAL1, BRG1, ATM and ATR genes on doxorubicin treatment (Fig. 7A).  This 

upregulation was not observed when ShRNA(SMARCAL1) was co-transfected along with 

K464A mutant or SIOD-associated mutants indicating that the ATPase activity of 

SMARCAL1 is important for the transcriptional upregulation (Fig. 7A).   

A similar observation was made in case of CSS-associated mutants. When HeLa cells 

were co-transfected with ShRNA construct targeting the 3′ UTR of BRG1 along with a 

plasmid encoding for full-length wild type BRG1, the expression of SMARCAL1, BRG1, ATM 

and ATR were upregulated on doxorubicin treatment (Fig.7B).  However, when 
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ShRNA(BRG1) construct was co-transfected with ATPase dead mutant of BRG1, K785R, or 

with genes encoding for CSS-associated mutants, the expression of SMARCAL1, BRG1, ATM 

and ATR were not upregulated on doxorubicin treatment (Fig. 7B). 

Next, the ability of SIOD-associated and CSS-associated mutants to form non-coding 

RNA required for the formation of 53BP1 foci formation was assessed.  Co-transfection of 

ShRNA(SMARCAL1) construct with wild type SMARCAL1 gene resulted in upregulation of 

DROSHA, DGCR8, and DICER expression on doxorubicin treatment (Fig. 7C).  A similar 

result was observed when HeLa cells were co-transfected with ShRNA(BRG1) construct 

along with either wild type BRG1 gene or with K785R mutant or with CSS-associated 

mutants (Fig. 7D).  To estimate the ability of the mutants to support the formation of 53BP1 

foci, non-coding RNA was purified from these co-transfected cells.  HeLa cells were treated 

with 2 μM doxorubicin for 10 minutes leading to the formation of 53BP1 foci (Fig. 7E and 

F).  RNase treatment, as expected, resulted in abrogation of these foci (Fig. 7E and F).  

RNase was inactivated by treatment with RNase inhibitor and the cells were incubated with 

ncRNA purified from the co-transfected cells.  Non-coding RNA purified from cells co-

transfected with ShRNA and wild-type protein was able to restore the formation of 53BP1 

foci (Fig 7G-J).  However, ncRNA purified from cells co-transfected with ShRNA along with 

mutant protein was unable to restore formation of 53BP1 foci (Fig. 7G- J) indicating DNA 

damage response is affected in cells containing SIOD-associated SMARCAL1 mutations or 

CSS-associated BRG1 mutations. 
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DISCUSSION 

The G2/M cell cycle checkpoint mediated by ATM and ATR kinases is important for 

ensuring that the cell gets ample time to effect repair of the damaged DNA, and thus, helps in 

maintaining the fidelity of chromosome segregation during cell division [42,54].  The 

proteins involved in this checkpoint and the role of post-transcriptional modifications in 

effecting the repair have been well-characterized.  However, very few reports exist for 

transcriptional regulation of ATM and ATR.  Inhibition of Nuclear factor like-2 (NRF2), a 

transcription factor, has been reported to cause transcriptional repression of ATM and ATR 

[55].  Peng et al. have reported that downregulation of DNA-PKcs causes transcriptional 

repression of ATM [56].  Histone deacetylases have also been reported to transcriptionally 

regulate ATM [57].  However, none of these reports have characterized the mechanism 

regulating the transcription of these genes.    

In this paper, the existence of a transcriptional regulatory loop controlling the 

expression of ATM and ATR and thus, the G2/M checkpoint in mammalian cells has been 

delineated.  This transcriptional regulatory loop is mediated by the action of two 

transcriptional co-regulators, BRG1 and SMARCAL1, belonging to the family of ATP-

dependent chromatin remodeling proteins [58]. 

BRG1 and SMARCAL1 mutually co-regulate each other [36]; thus, downregulation 

of BRG1 results in reduced SMARCAL1 levels and downregulation of SMARCAL1 leads to 

repression of BRG1 expression in HeLa cells.  Further, downregulation of BRG1/SMARCAL1 

results in mitotic abnormalities and an ability to override the G2/M checkpoint as these two 

proteins drive the transcription of ATM and ATR.  As in the case of the RNAi genes 

(DROSHA, DGCR8 and DICER) [37], BRG1 and SMARCAL1 together co-regulate the 

transcription of these two kinases.   
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The transcriptional activation of ATM and ATR by SMARCAL1 and BRG1 is 

important for mediation of DNA damage response.  On doxorubicin-induced DNA damage, 

both BRG1 and SMARCAL1 are upregulated in HeLa cells.  This upregulation, in turn, 

mediates transcriptional activation of ATM and ATR as well as of the three RNAi genes.  

This leads to the activation of the G2/M checkpoint as well as synthesis of ncRNA required 

for 53BP1 foci formation as a part of DNA damage response.  To keep this transcriptional 

control in an active mode (switch ON), phosphorylation of ATM and ATR is needed.  

Dephosphorylation of these two kinases results in shutting down of the transcriptional loop 

(switch OFF) (Fig. 6K).  Both BRG1 and SMARCAL1 are known to be phosphorylated by 

ATM and ATR respectively [22,34].  Thus, it is possible that phosphorylated BRG1 and 

SMARCAL1 act as a transcriptional co-regulator on DNA damage.  However, the 

mechanism of feedback regulation needs to be further delineated. 

The ATPase activity of both BRG1 and SMARCAL1 is needed for the activation of 

the transcriptional loop.  Thus, SIOD-associated mutants and CSS-associated mutants that 

cannot hydrolyse ATP are unable to mount an appropriate DNA damage response, indicating 

a possible DNA damage response defect in these patients. 

Mechanistically, both SMARCAL1 and BRG1 are required for recruiting RNAPII to 

the ATM and ATR promoter.  Absence of either protein results in downregulation of ATM and 

ATR on doxorubicin treatment, as in the case of A549 and HepG2 cells.  Further, 

transcriptional regulation of ATM and ATR, and therefore, the G2/M checkpoint, appears to 

exist in all cells that contain both SMARCAL1 and BRG1, though the nature of the 

transcriptional regulatory loop varies from cell line to cell line.  Thus, in HeLa cells, 

SMARCAL1 and BRG1 regulate each other and co-regulate ATM and ATR in a positive 

manner while in MCF-7 and HEK293 cells, SMARCAL1 positively regulates BRG1 but 

BRG1 negatively regulates SMARCAL1.  SMARCAL1 and BRG1 positively co-regulate 
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ATM and ATR in MCF-7 cells while in HEK293, these two proteins negatively co-regulate 

ATM and ATR.   As transcriptional regulation requires the action of transcription factors in 

addition to co-regulators such SMARCAL1 and BRG1, it is possible that the variances 

observed between different cell lines are due to different transcription factors.  This needs to 

be further elucidated.  

ATM and ATR kinases regulate not only the G2/M checkpoint but also control 

centrosome biogenesis as well as the spindle assembly checkpoint.  Both the kinases have 

been shown to localize to the centrosome during mitosis [59].  Downregulation of ATR using 

siRNA results in centrosome amplification, and therefore, formation of multipolar spindles 

[60].  ATM controls the PARylation of the spindle pole organizer protein, NuMA1 by 

phosphorylating the protein at positions S1262 and S1601 [61].  As PARylation of NuMA1 is 

needed for correct spindle assembly, treatment of HeLa cells with ATM inhibitor, KU-55933, 

has been shown to result in multipolar spindles [61].  ATM is also required for localization of 

MDC1 to the kinetochores and thus, for activation of the spindle assembly checkpoint [62].  

Thus, the mitotic defects seen on downregulation of SMARCAL1/BRG1 in HeLa cells could 

be due to transcriptional repression of ATM and ATR kinases. 

The results presented in this paper augment the role of BRG1 and SMARCAL1 in 

maintaining genomic stability.  Both these proteins mediate DNA repair and the genomic 

instability in absence of either of these proteins has been attributed to the accumulation of 

damaged DNA.  Our results indicate that in addition to a direct role in DNA repair these two 

proteins are also responsible for mounting an appropriate DNA damage response and 

activating the G2/M cell cycle checkpoint via a transcriptional loop involving the ATM and 

ATR kinases as well as the RNAi genes. 
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MATERIALS AND METHODS 

Reagents: Reagents for cell culture were purchased from HiMedia, USA.  Sodium 

bicarbonate, TRI reagent, Hoechst 33342, doxorubicin, ATM inhibitor (KU-55933), ATR 

inhibitor (NU6027), thymidine, and propidium iodide was purchased from Sigma-Aldrich, 

USA.  Molecular biology reagents were purchased either from MBI Fermentas (USA) or 

from NEB (USA).  Protein-G fast flow bead resin was purchased from Merck-Millipore 

(USA).  Micro-amp Fast 96-well reaction plates (0.1 ml) and micro-amp optical adhesive 

films were purchased from Applied Biosystems (USA).  2X fast SYBR Green PCR master 

mix was purchased from Kapa Biosystems (USA).  For western blotting, Immobilon-P PVDF 

membrane was purchased from Merck-Millipore (USA).   

Antibodies: Antibodies to ATM (1:500 dilution; Catalog # D2E2), phospho-ATM (Ser 1981) 

(1:500 dilution; Catalog # 13050S), ATR (1:500 dilution; Catalog # E1S3S), phospho-ATR 

(Ser 428) (1: 500 dilution; Catalog #2853S) and RNAPII (1:1000 dilution; Catalog # 2629S) 

were purchased from Cell Signaling Technology (USA).  Antibodies to BRG1 (1:1000 

dilution; Catalog #B8184), H3K9Ac (Catalog #H0913), γH2AX (Catalog #H5912), β -actin 

(1:3000 dilution; Catalog #A1978), Chk1 (1:100; Catalog # SAB4500208), phospho-Chk2 

(Thr 68) (1:500; Catalog # SAB4504367), Chk2 (1:1000; Catalog # C9233), CDK1 (1:1000; 

Catalog # HPA003387), and β-tubulin (Catalog # T8328) were purchased from Sigma-

Aldrich (USA).  Phospho-Chk1 (Ser 345) (1:200 dilution; Catalog # sc-17922) was 

purchased from Santa Cruz Biotechnology (USA).  SMARCAL1 antibody was raised against 

N-terminus HARP domain by Merck (India) (Catalog # 106014) [36,41,46].  The TRITC- 

and FITC-conjugated anti-rabbit (1:100 dilution; Catalog # RTC2) and anti-mouse (1:100 

dilution; Catalog # FTC3) antibodies, HRP-conjugated anti-mouse IgG (1:4500 dilution; 

Catalog # HPO5), anti-rabbit IgG (1:3500 dilution; Catalog # HPO3) and anti-goat IgG 

(1:3500 dilution; Catalog # 105500) antibodies were obtained from Merck India.  
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Oligonucleotides: The oligonucleotides were synthesized either by Sigma-Aldrich (USA) or 

by IDT (USA).  The sequences of primers used in qPCR and ChIP experiments are provided 

in Supplementary Tables 2 and 3. 

ShRNA and overexpression constructs: For the downregulation of BRG1, ShRNA 

constructs were used either against the 3′ UTR or against the coding sequence (catalog # 

SHCLNG-NM_003072; Sigma-Aldrich, USA).  SMARCAL1 was downregulated using 

ShRNA construct either against the coding sequence (catalog # SHCLNG-NM_014140; 

Sigma-Aldrich, USA) or against the 3′ UTR created in our laboratory [37].  SMARCAL1 and 

BRG1 overexpression constructs were created in our laboratory [36,37].  WIP1 (hwip1 

FLAG) and PP2A (pmig-Aalpha WT) plasmid were purchased from Addgene (USA). 

Cell culture and transfection: All cell lines were purchased from National Centre for Cell 

Science, Pune, India, and cultured as detailed previously [36,38].   Transfections were done 

using Turbofect (Thermo Fisher Scientific, USA) transfection reagent according to the 

manufacturer’s protocol.  In case of transient transfections, the cells were harvested 36–48 

hours post-transfection.  For stable transfections, cells were selected in antibiotic containing 

media 48 hour post-transfection. 

RNA isolation, cDNA preparation and qPCR: Total RNA was extracted and cDNA was 

prepared using the established protocol [36].  qPCR was performed with 7500 Fast Real-

Time PCR system (ABI Biosystems, USA) using gene-specific primers designed for exon-

exon junctions using the established protocol [36]. 

Immunoblotting:  Immunoblotting was done using previously reported protocol [36] and 

Image J software was used for relative quantitation of protein bands from western blot films. 

Immunofluorescence:  Immunofluorescence was performed as explained in Patne et al. [37] 

and the prepared slides were viewed using confocal microscope (Nikon) under a 60X oil 

immersion objective. 
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Cell cycle synchronization: Cells were synchronized using double thymidine block.  Briefly, 

cells were incubated with 2 mM thymidine for 18 hr.  The cells were washed with 1X PBS 

and cultured in thymidine-free media for 8 hr.   Subsequently, cells were incubated for 16 hr 

in thymidine (2 mM) containing media.  The synchronized cells were cultured in fresh 

DMEM and collected at different times for cell cycle analysis. 

Cell cycle analysis: After washing twice with PBS solution, the cells were fixed with chilled 

70% alcohol at -20°C for 24 h. The cell were pelleted by centrifugation (1500 rpm, 3 min), 

washed twice with PBS solution, incubated with 0.3 mg/ml of RNase A for 30 min at 37°C, 

and stained with 30 μg/ml PI for 30 min at room temperature.  The cell cycle distribution was 

analyzed using BD FACSCalibur system.  

Chromatin Immunoprecipitation :  Chromatin immunoprecipitation was performed using 

the previously described protocol [36,37].  ChIP-reChIP was done as per the published 

protocol [39]. 

ncRNA complementation experiment : HeLa cells were co-transfected with ShRNA 

construct targeting the 3′ UTR of SMARCAL1/BRG1 along with the vector containing  the 

corresponding wild-type or mutated gene .  After 36 hr, the cells were treated with 2 μM 

doxorubicin for 10 min.  The cells were harvested and ncRNA was isolated using 

mirVana 

�� miRNA Isolation Kit (Thermo Fisher Scientific, USA) as per the manufacturer’s 

instructions.  HeLa cells were treated with doxorubicin and subsequently, washed with 1X 

PBS 3-4 times.  The cells were lysed with 2% Tween-20 in 1X PBS for 20 min at room 

temperature.  After washing with 1X PBS, the cells were treated with 1mg/ml RNase for 15 

min at room temperature.  The RNase was inactivated by incubating with RNaseOUT 

(Thermo Fisher Scientific, USA) for 15 min at room temperature.  The cells were  incubated 

with 100 ng of  ncRNA isolated from transfected cells as per the established protocol [40]. 

The cells were subsequently processed for immunostaining. 
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ATPase assay and CD spectroscopy: ATPase assays were performed using purified 

ADAAD as published previously [41].  CD spectra was recorded using Chirascan (Applied 

Photophysics) using the protocol published previously [38].  The CD values were converted 

into Mean Residue Ellipticity [θ] using the following equation: 

[θ] = S X MrW/(10 X C X l) 

Where S is the CD signal, MrW is the mean residue weight of the DNA, C is the 

concentration of DNA, and l is the pathlength of the cuvette. 

Statistical analysis: The statistical significance was calculated using Sigma plot.  The qPCR 

data, unless otherwise stated, is presented as average ± s.d of three independent experiments. 

The western blots were quantitated using Image J software and the data was normalized with 

respect to β-actin. The quantitated data, unless otherwise stated, is presented as average ± s.d 

of two independent experiments.  In case of imaging experiments, unless otherwise stated, the 

data is presented as average ± s.d of three independent experiments where n≥100 were 

counted in each experiment. 
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FIGURE LEGENDS 

Figure 1. SMARCAL1 and BRG1 transcriptionally regulate ATM and ATR. (A). 

Abnormal spindle formation was quantitated in control and SMARCAL1 downregulated cells. 

(B). Multinucleate cells were quantitated in control and SMARCAL1 downregulated cells. 

(C). Abnormal spindle formation was quantitated in control and ShBRG1 cells. (D). 

Multinucleate cells were quantitated in control and ShBRG1 cells.  In these experiments, 

stable transfectants were used.   In case of SMARCAL1, three clones (Sh1, Sh2, and Sh3) 

were analysed while in case of BRG1, one clone was analysed.  The data is presented as an 

average ± s.d. of two independent experiments where >100 cells were counted in each 

experiment. (E). The formation of γH2AX foci was analysed in control, ShSMARCAL1, and 

ShBRG1 cells in the absence of DNA damaging agent.  In this experiment, transiently 

transfected cells were analysed.  (F). The progression of control, SMARCAL1 downregulated 

cells (ShSMARCAL1) and BRG1 downregulated cells (ShBRG1) through the cell cycle was 

monitored using FACS.  Transiently transfected cells were synchronized using double 

thymidine block as explained in materials and methods.  (G). The expression of genes 

regulating the G2/M checkpoint was analysed by qPCR in SMARCAL1 downregulated cells.  

(H). The expression of proteins regulating the G2/M checkpoint were analysed by western 

blot in SMARCAL1 downregulated cells. (I). Quantitation of the western blots.  (J). The 

expression of genes regulating the G2/M checkpoint was analysed by qPCR in ShBRG1 cells. 

(K). The expression of proteins regulating the G2/M checkpoint were analysed by western 

blot in ShBRG1 cells. (L). Quantitation of the western blots. (M). The expression of 

SMARCAL1, BRG1, ATM and ATR was analysed after transfecting cells either with 

ShSMARCAL1 (targeting the 3′UTR of the gene) or co-transfecting cells with ShSMARCAL1 

(targeting the 3′UTR of the gene) along with SMARCAL1 overexpression cassette.  (N). The 

expression of SMARCAL1, BRG1, ATM and ATR was analysed after transfecting cells either 
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with ShBRG1 (targeting the 3′UTR of the gene) or co-transfecting cells with ShBRG1 

(targeting the 3′UTR of the gene) along with BRG1 overexpression cassette.   

The data in case of qPCR experiments is presented as average ± s.d of three independent 

experiments (*P < 0.001; unpaired student’s t-test).   

Figure 2. SMARCAL1 and BRG1 regulate the expression of ATM and ATR during 

doxorubicin-induced DNA damage. (A). The expression of SMARCAL1, BRG1, ATM and 

ATR was analysed in doxorubicin treated HeLa cells using qPCR.  (B). The expression of 

SMARCAL1, BRG1, ATM and ATR was analysed in doxorubicin treated HeLa cells using 

western blot.  (C). Quantitation of the western blot. (D). Western blot analysis of 

SMARCAL1, BRG1, ATM, p-ATM (Ser 1981), ATR, p-ATR (Ser 428), Chk1, p-Chk1 (Ser 

345), Chk2 and p-Chk2 (Thr 68) in control (vector transfected), ShSMARCAL1, and ShBRG1 

cells in the absence and presence of doxorubicin.   (E). Quantitation of the western blots. 

In these experiments, cells were treated with 2 μM doxorubicin for 10 minutes to induce 

DNA damage.  The data in case of qPCR experiments is presented as average ± s.d of three 

independent experiments (*P < 0.001; unpaired student’s t-test).   

Figure 3. Downregulation of SMARCAL1 and BRG1 leads to impaired G2/M checkpoint 

trespass on DNA damage in HeLa cells.  (A). Schematic representation showing the 

experimental methodology.  Briefly, HeLa cells were transfected with vector alone, or with 

ShRNA against SMARCAL1 or ShRNA against BRG1.  The double thymidine block was 

started 24 hr after transfection.  Cells were released from double thymidine block and 1 hr 

after release, were treated with 0.5 μM doxorubicin.  Cells were harvested 8 hr later and 

analysed for the presence of mitotic cells either by immunostaining or by FACS.  (B). The 

formation of γH2AX foci as well as spindle fibres (β-tubulin) in the absence and presence of 

doxorubicin was monitored in control (vector transfected), ShSMARCAL1 and ShBRG1 cells 

using immunostaining. (B). The number of mitotic cells (cells possessing spindle fibres) in 
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the absence and presence of doxorubicin was quantitated in control (vector transfected), 

ShSMARCAL1 and ShBRG1 cells.  The data is presented as an average ± s.d of two 

independent experiments (n ≥ 100 cells).  (C). Analysis of cells in G1, S, G2/M stage of cell 

cycle was performed using FACS and the data is presented as average ± s.d of three 

independent experiments. 

Figure 4. The occupancy of SMARCAL1 and BRG1 is altered on the ATM and ATR 

promoter on doxorubicin treatment. The occupancy of SMARCAL1, BRG1, RNAPII and 

H3K9Ac was monitored on the ATM promoter on doxorubicin treatment in (A). HeLa cells; 

(B). A549 cells; and in (C) HepG2 cells.  The occupancy of SMARCAL1, BRG1, RNAPII 

and H3K9Ac was monitored on the ATR promoter on doxorubicin treatment in (D). HeLa 

cells; (E). A549 cells; and in (F) HepG2 cells. 

The data all these experiments is presented as average ± s.d of three independent experiments 

(*P < 0.001; unpaired student’s t-test).   

Figure 5. Phosphorylation of ATM and ATR feedback regulates transcription of ATM 

and ATR by SMARCAL1 and BRG1.  (A). Protein expression after treatment with 

doxorubicin was analysed in absence and presence of ATMi and ATRi using western blot. 

(B). Expression of the genes in the presence of ATMi. (C). Expression of the genes in the 

presence of ATRi.  (D). The formation of 53BP1 and γH2AX foci in the presence of ATMi 

and ATRi was analysed using immunofluorescence before and after addition of ncRNA 

purified from doxorubicin treated HeLa cells. (E). The number of cells (n≥100) containing 

53BP1 foci (≥5foci per cell) were quantitated in cells (untreated, ATMi treated, and ATRi 

treated) before and after adding ncRNA.  (F). Expression of genes in HeLa cells transfected 

with PP2A gene in the absence and presence of doxorubicin.  (G). Expression of genes in 

HeLa cells transfected with WIP1gene in the absence and presence of doxorubicin.  (H). 

Analysis of protein expression using western blots. (I). The formation of 53BP1 foci was 
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analysed in HeLa cells transfected either with vector alone, or PP2A gene or WIP1 gene in 

the absence and presence of ncRNA after treatment with 2 μM doxorubicin for 10 min.  (J). 

The number of cells (n≥ 100) containing 53BP1 foci ( ≥5 foci per cell) was quantitated in 

cells (transfected either with vector alone, PP2A, or WIP1).  ncRNA used in these 

experiments was purified from HeLa cells treated with 2 μM doxorubicin for 10 min.  The 

data in case of qPCR experiments is presented as average ± s.d of three independent 

experiments (*P < 0.001; unpaired student’s t-test).   

Figure 6. Dephosphorylation of ATM and ATR results in cessation of the DNA damage 

response.  HeLa cells were treated with okadiac acid followed by 2 μM doxorubicin for 10 

min after which doxorubicin-containing media was removed and fresh media was added.  

Cells were harvested at the time points indicated and expression was analysed by qPCR for 

(A). SMARCAL1; (B). BRG1; (C). ATM; (D). ATR.  (E). Protein expression was analysed 

using western blot in cells after release from doxorubicin treatment.  (F). Protein expression 

was analysed using western blot in okadiac acid treated cells after release from doxorubicin 

treatment.  Quantitation of the western blots for (G). SMARCAL1; (H). BRG1; (I). ATM; (J). 

ATR.   (K). Model explaining the transcriptional regulation of G2/M checkpoint.  

SMARCAL1 and BRG1 are mutually co-regulated in HeLa cells.  Together they co-regulate 

the expression of ATM, ATR, DROSHA, DGCR8, and DICER.  On induction of DNA damage 

by doxorubicin, the expression of all these genes is upregulated and this modulation is 

mediated by SMARCAL1 and BRG1.  The signal remains in ON state due to phospho-ATM 

and phospho-ATR.  The result is the formation of ncRNA that enables the formation of 

53BP1 foci at the site of DNA damage.  Dephosphorylation of ATM and ATR leads to 

cessation of the signal. 

The data in case of qPCR experiments is presented as average ± s.d of three independent 

experiments (*P < 0.001; unpaired student’s t-test).   
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Figure 7. Mutations present in SIOD and CSS patients lead to abrogation of DNA 

damage response signal.  (A). Expression of SMARCAL1, BRG1, ATM and ATR was 

analysed after co-transfection of HeLa cells with ShRNA(SMARCAL1) along with vector 

alone or vector containing wild type SMARCAL1, or K464A mutant, or A468P mutant, or 

I548N, or S579L mutant gene. The data is presented as average ± s.d of two independent 

experiments (*P < 0.001; unpaired student’s t-test).   (B). Expression of SMARCAL1, BRG1, 

ATM and ATR was analysed after co-transfection of HeLa cells with ShRNA(BRG1) along 

with vector alone or vector containing wild type BRG1, or K785R mutant, or T895M mutant, 

or L921F, or M1011T mutant gene.  The data is presented as average ± s.d of two 

independent experiments (*P < 0.01; unpaired student’s t-test).  (C). Expression of 

SMARCAL1, BRG1, DROSHA, DGCR8 and DICER was analysed after co-transfection of 

HeLa cells with ShRNA(SMARCAL1) along with vector alone or vector containing wild type 

SMARCAL1, or K464A mutant, or A468P mutant, or I548N, or S579L mutant gene.  The data 

is presented as average ± s.d of two independent experiments (*P < 0.001; unpaired student’s 

t-test).  (D). Expression of SMARCAL1, BRG1, DROSHA, DGCR8 and DICER was analysed 

after co-transfection of HeLa cells with ShBRG1 along with vector alone or vector containing 

wild type BRG1, or K785R mutant, or T895M mutant, or L921F, or M1011T mutant gene.  

The data is presented as average ± s.d of two independent experiments (*P < 0.05; unpaired 

student’s t-test).  (E). The formation of 53BP1 foci in HeLa in the absence and presence of 

RNase was monitored after treatment with 2 μM doxorubicin for 10 min.  (F). The number of 

cells (n≥100; 2 independent experiments) containing 53BP1 foci (≥5) was quantitated in 

HeLa cells in the absence and presence of RNase after treatment with 2 μM doxorubicin for 

10 min.  (G).  The restoration of 53BP1 foci in HeLa cells on doxorubicin and RNase 

treatment was monitored in the presence of ncRNA purified from co-transfected 

(ShSMARCAL1 along with vector containing genes either for wild type SMARCAL1, or 
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K464A, or A468P, or I548N, or S579L gene) HeLa cells.  (H). The number of cells (n≥100; 2 

independent experiments) containing 53BP1 foci (≥5) was quantitated for the images shown 

in Fig. 7G. (I). The restoration of 53BP1 foci in HeLa cells on doxorubicin and RNase 

treatment was monitored in the presence of ncRNA purified from co-transfected (ShBRG1 

along with vector containing genes either for wild type BRG1, or K785R, or T895M, or 

L921F, or M1011T gene) HeLa cells.  (J). The number of cells (n≥100; 2 independent 

experiments) containing 53BP1 foci (≥5) was quantitated for the images shown in Fig. 7I.   
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