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Abstract 

The most recent genome-wide association study in amyotrophic lateral sclerosis 

(ALS) demonstrates a disproportionate contribution from low-frequency variants to 

genetic susceptibility of disease. We have therefore begun Project MinE, an 

international collaboration that seeks to analyse whole-genome sequence data of at 

least 15,000 ALS patients and 7,500 controls. Here, we report on the design of 

Project MinE and pilot analyses of newly whole-genome sequenced 1,264 ALS 

patients and 611 controls drawn from the Netherlands. As has become characteristic 

of sequencing studies, we find an abundance of rare genetic variation (minor allele 

frequency < 0.1%), the vast majority of which is absent in public data sets. Principal 

component analysis reveals local geographical clustering of these variants within 

The Netherlands. We use the whole-genome sequence data to explore the 

implications of poor geographical matching of cases and controls in a sequence-

based disease study and to investigate how ancestry-matched, externally sequenced 

controls can induce false positive associations. Also, we have publicly released 

genome-wide minor allele counts in cases and controls, as well as results from genic 
burden tests. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing, fatal neurodegenerative 

disease.1 Twin studies estimate the heritability of ALS to be ~60%, suggesting a 

strong genetic component contributing to disease risk,2 and approximately 10-15% of 

patients have a clear family history of disease.3 Genetic risk factors have been 

extensively studied in familial ALS cases, and this effort has led to the identification 

of highly penetrant causal mutations, including mutations residing in SOD1,4 

TARBP,5 FUS,6 and C9orf72.7,8 In so-called sporadic ALS cases, who have no 

known family history of disease and comprise the majority of all cases, only a small 

number of other common genetic risk loci have been identified. Among these loci are 

the ATXN2 CAG repeat expansion,9 mutations in C21orf2,10 common variation within 

the UNC13A,11 SARM1,12 MOBP,10 and SCFD110 loci and, most importantly, the 

highly pathogenic C9orf72 repeat expansion. The latter highlights the typical 

categorization of “familial” and “sporadic” ALS as likely non-distinct groups with 

overlapping genetic architectures. 

Despite these recent advances in ALS genetics, the bulk of risk loci in ALS remain 

undiscovered. The most recent and largest ALS GWAS, performed in 12,577 cases 

and 23,475 controls, showed a disproportionate contribution of low-frequency 

variants to the overall risk of ALS.10 Genome-wide association studies to date have 

focused almost exclusively on common variation (minor allele frequency > 1%), 

leaving lower-frequency and rarer variants segregating in the general population 

essentially untested. Thus, there is a pressing need to study rare variation across the 

full length of the genome in cases with and without family history of disease. To this 

end, we have begun Project MinE, a large-scale whole-genome sequencing study in 

ALS. The project leverages international collaboration and recent developments in 

sequencing technologies, allowing us to explore the full spectrum of genetic variation 

in samples collected worldwide. Project MinE seeks to obtain sequencing data in 

15,000 ALS patients and 7,500 matched controls with the aim of identifying new loci 

associated to ALS risk, fine-map known and novel loci, and provide the ALS 

community (and the disease research community at large) with a publicly-available 

summary-level dataset that will enable further genetic research of this and other 

diseases. A data access committee controls access to raw data, ensuring a FAIR 
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data setup (http://www.datafairport.org). 

While common variant association studies have become mostly standardized over 

the last decade, rare variant association studies such as Project MinE face an array 

of new challenges. Sequencing studies demand large sample sizes to detect small 

effects at rare variants, thus making large-scale collaborative consortia a necessity. 

Sequence data itself, measuring into the terabytes, poses a substantive data 

storage, processing, and management challenge. The analytic effects of (tight) 

spatial clustering of rare variants is not yet well understood,13,14 making careful 

case/control selection and proper handling of population stratification key. Rare 

variant association studies typically employ genic burden testing to overcome power 

problems, thus requiring a series of analytic choices be made regarding the 

functional annotation15 and statistical analysis of the data. Here, we discuss the “pilot 

phase” of Project MinE, performed in 1,264 cases and 611 controls collected in the 

Netherlands. Though the sample size is too small to detect moderate-effect genetic 

associations, it allows us to explore the implications of these many analytic 

challenges faced by Project MinE or any disease study employing sequence data, to 

understand the genetic basis of disease. We outline the formation of the consortium, 

study design challenges, data quality control and analysis approaches employed by 

the project, and publicly release all minor allele counts in cases and controls together 
with results from genic burden tests derived from this dataset.   

 

  

.CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/152553doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152553
http://creativecommons.org/licenses/by-nd/4.0/


 

Material and methods 

Consortium design 

The MinE consortium includes ALS research groups from 16 different countries 

collaborating in a “franchise” design (www.projectmine.com, Figure 1). This design 

means that samples and sample-affiliated data (e.g., dense phenotyping) from 

partners are collected, processed and stored according to the same protocol, while 

partners maintain full control over their samples, affiliated data, and any additional 

data generated on those samples. Within the consortium, ALS patients and controls 

are ascertained through clinics affiliated to the research groups. At these clinics, 

neurologists obtain a standardized core clinical data set with phenotypic information 

(Supplementary Table 1) and blood is drawn for DNA isolation. DNA samples are 

stored on site, but are collectively prepared for sequencing at commercial 

sequencing providers, in batches of up to 1,000 samples. The consortium continues 

to expand, welcoming research groups who wish to dedicate time and raise money 
to understand the genetic and environmental underpinnings of ALS.  

A number of variables, including pricing for varying numbers of genomes, DNA input 

requirements, availability of PCR-free library preparation, and methods for data 

delivery, were all considered during selection of a sequencing provider 

(Supplementary Table 2). The majority of the data to date have been sequenced at 

Illumina (San Diego, CA, USA); a small subset is currently being sequenced locally 

in Australia and Canada. From Illumina, the data are transferred through the internet 

(via a secure connection) to SURFsara (Amsterdam, The Netherlands). After arrival, 

the data is automatically checked for corruption and stored in duplicate on two 

geographically separated tape silos. The storage system is connected to a 

distributed parallel file system (dCache16) that provides high performing file service to 
a 5,600 core high-throughput computing cluster. 
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Figure 1 Consortium design. Consortium structure including funding agencies, research groups, the Project 

MinE general assembly, sub-projects, and data management. Each research group obtains funding using 

uniform grant proposals shared between the research groups. DNA samples are provided to the sequencing 

providers via the Project MinE general assembly so research groups can profit from a lower pricing scheme 

available when large numbers of DNA samples are provided together. Samples are sequenced, and data (whole-

genome sequence data in raw and genotype-called format, SNP array data, and methylation array data) is 

centrally stored (the size of the data for the first 1,935 samples is indicated in parentheses; the full dataset for N 

= 22,500 samples will be ~1.7 petabytes). External data can also be contributed to and integrated into the 

dataset. Different research groups, including external groups, collaborate to work on specific projects. After 

review of the project proposal to the general assembly, researchers working on these projects will be granted 

access to the data and may also use the central ICT facilities. ALS: amyotrophic lateral sclerosis, WGS: whole 

genome sequencing. 
 

From here, consortium members can access the genomes of their samples and ask 

that their data be additionally backed up on the High Performance Compute cluster 

at the University Medical Center Utrecht (Utrecht, The Netherlands). Analysis teams 

(possibly including researchers from external groups) can submit analysis proposals 

to the consortium and then gain access to all genomes and make use of the 

SURFsara compute facilities (Figure 1). Access to the data or usage of the compute 

facilities is contingent on (a) X.509 authentication certificates and (b) proposed 

analyses for the data. This data infrastructure allows, for example, particular cohorts 

and individuals access to particular subsets or all of the data, depending on the 

analysis. Based on permission given by the manager of the data (i.e., the principal 
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investigator of the contributing research group), access is provided through the 

gridftp protocol v2 that is tailored for large and reliable file transfers. The X.509 

certificates allow for the possibility to scale out to other compute facilities; given valid 
credentials, the data can then be accessed from anywhere. 

Sample selection 

Patients were diagnosed with definite, probable, and probable lab-supported ALS 

according to the revised El Escorial Criteria.17 For the pilot analyses presented here, 

all patients were seen by neurologists specialized in motor neuron diseases at the 

University Medical Center Utrecht and Academic Medical Center (Amsterdam, The 

Netherlands). The samples were all included in the Prospective ALS study in the 

Netherlands (PAN), an incidence-based registry of ALS cases18. Controls were 

population-based controls that were matched for age, sex, and geographical region. 

As is true for all contributing cohorts to Project MinE, cases and controls were 

ascertained in a roughly 2:1 ratio; the 2:1 case-control ratio was selected to improve 

detection of variants in cases and with the plan to include publicly-available 

sequenced controls in future analyses. 

Phenotypic information 

For all participants in Project MinE, we have defined a core clinical dataset, meant to 

be collected and made available for all cases (Supplementary Table 1). Phenotypic 

information is stored physically separately (https://euromotor.umcutrecht.nl) from the 

genetic data in a clinical database called Progeny. The phenotypic and genetic data 

can be connected through sample identifiers. Phenotypic data storage is organized 

similarly to the sequencing data: every contributing group has default full access to 

their own phenotypic data, but data can easily be jointly shared analysed if desired. 

This core clinical dataset (Supplementary Table 1) includes date of birth, sex, site 

of onset (spinal or bulbar), date of disease onset, diagnostic category (according to 

both revised and original El Escorial scoring), Forced Vital Capacity at time of 

diagnosis, cognitive status measured by the Edinburgh Cognitive and Behavioural 

ALS Screen (ECAS), and a revised ALS functional rating scale score (ALSFRS-R).19 

The required endpoint data include date of death, date of starting invasive ventilation 

or requiring continuous non-invasive ventilation. For the pilot data used in this study, 
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we obtained additional information on place of birth through the Dutch Municipal 

Personal Records Database. 

Whole-genome sequencing 

Venous blood was drawn from patients and controls from which genomic DNA was 

isolated using standard methods. We set the DNA concentrations at 100ng/ul as 

measured by a fluorometer with the PicoGreen® dsDNA quantitation assay. DNA 

integrity was assessed using gel electrophoresis. All samples were sequenced using 

Illumina’s FastTrack services (San Diego, CA, USA) on the Illumina HiSeq 2000 

platform. Sequencing was 100bp paired-end performed using PCR-free library 

preparation, and yielded ~40x coverage across each sample. The Isaac pipeline20 

was used for alignment to the hg19 reference genome as well as to call single 

nucleotide variants (SNVs), insertions and deletions (indels), and larger structural 

variants (SVs). Both the aligned and unaligned reads were delivered in binary 

sequence alignment/map format (BAM) together with variant call format (gVCF) files 

containing the SNVs, indels and SVs.20  gVCF files were generated per individual 

and variants that failed the Isaac-based quality filter were set to missing on an 
individual basis. 

Data analysis 

Quality control. Quality control (QC) of the data included QC at an individuals and 
variant level. Full details of QC are provided in the supplement. 

Principal component analysis. Principal components were calculated for all 

individuals including variants at different allele frequency thresholds using GCTA.21 

The eigenvectors of the first twenty principal components were regressed on latitude 

and longitude of birthplace. In a leave-one-out scheme, this linear model was used to 

predict the birthplace for the individual left out. 

Identity-by-descent analysis. We phased all non-singleton variants using SHAPEIT222 and 

then used BEAGLE423 to detect runs of identity-by-descent (IBD) between individuals. 

Association analysis. Genotypes at common variants (MAF > 0.5%) were tested for an 

association with case/control status using logistic regression (PLINK v1.9)24,25 assuming an 

additive model. Optionally, the first 10 principal components (PCs) were included as 
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covariates. To test rare variation, we performed genic “burden” testing. All variants were 

functionally annotated using ANNOVAR26. We then determined three functional groups for 

gene-based association testing: (a) loss of function (LOF) mutations (premature stop 

mutations, stop-loss mutations, mutations at splice sites, and frameshift indels), (b) 

nonsynonymous mutations, and (c) LOF and nonsynonymous mutations (aggregated). 

Burden testing (T1, T5, Variable Threshold, Madsen-Browning and SKAT) was implemented 

using ScoreSeq27 and performed across all variants with MAF < 5%. All burden tests were 

adjusted for sex and the top ten PCs and performed on the QC-passing set of unrelated 

samples (1,169 cases and 608 controls).  

Population stratification and externally sequenced controls. To assess the type I 

error in a burden testing framework, we simulated 100 different phenotypes for two 

scenarios: perfect matching and imperfect matching with a North-to-South gradient 

for the number of cases (keeping the case/control counts the same, Supplementary 
Figure 1), and then performed burden testing on LOF and nonsynonymous 

mutations with and without principal components as covariates. The most extreme p-

value from each simulation was extracted (resulting in 100 extreme p-values total, 

per scenario); the fifth-most extreme p-value represented the p-value threshold 

necessary to maintain study-wise type I error at 5%. Subsequently, we assessed the 

impact of including ancestry-matched, externally sequenced controls (the Genome of 

the Netherlands, GoNL14) instead of controls sequenced as a part of Project MinE. As 

their data is mostly available formatted as VCF files, we combined both datasets on 

a VCF level, without realignment or joint variant calling. The structure of this dataset 

was described by principal component analysis and we assessed inflation of the test 

statistics when externally sequenced controls were included in genome-wide burden 
testing. 

Study approval and informed consent 

All participants gave written informed consent and the institutional review board of 

the University Medical Center Utrecht approved this study. Additional approval was 

obtained to access the Dutch Municipal Personal Records Database. 

  

.CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/152553doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152553
http://creativecommons.org/licenses/by-nd/4.0/


 

Results 

Baseline characteristics and description of data 

After quality control, 1,169 unrelated Dutch-ancestry cases and 608 ancestrally-

matched controls were available for analysis. Their baseline characteristics are 

displayed in Table 1 and the distribution of cases and controls throughout The 

Netherlands is displayed in Figure 2a. In total, 42,200,214 SNVs and indels passed 

quality control. The majority (69%) of these sequenced variants were rare (MAF < 

0.001, < 3 allele observations in our dataset, Supplementary Figure 2). In 

particular, the bulk of these rare variants were not observed in publicly available 

datasets of whole-genome sequencing data including the Genome of The 

Netherlands project (GoNL release 5 from 28-10-2013, N = 498) and the 1000 

Genomes Project (Phase 1 from 23-11-2010, N = 1,093). This observation reflects 

population-specific variants and the growing number of rare variants that will 

continue to be discovered as sequencing is performed in increasingly larger samples 

around the globe. As expected, most common variants (MAF > 1%) have been 

observed in these two datasets (97.5% in GoNL and 98% in the 1000 Genomes 
Project) reflecting global sharing of common variation. 

Geographic clustering 

The first and second principal components reflected the geographical distribution of 

cases and controls in detail (Figure 2b). The eigenvectors of the first principal 

component explained 55% of the variance in latitude (p = 8.4 × 10-284) and the 

second principal component explained 24% of the variance in longitude (p = 1.7 × 

10-107) of the geographical distribution of the samples across the Netherlands. 

Prediction models including the first twenty principal components predicted the 

birthplace of individuals with high accuracy (Supplementary Figure 3). The 

accuracy increased when including rarer variants; the median distance between the 

predicted and actual birthplace decreased from 50 kilometres (31 miles) when 

considering common variants (MAF > 0.1), to 36 kilometres (22 miles) when 

including rarer variants (MAF > 0.001), illustrating the strong geographical clustering 
of rare variants.28  
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Figure 2 Population structure by principal component analysis. (a) Birthplaces of cases and controls for 

individuals born in The Netherlands. (b) The first two principal components reflect the geographical distribution 

of samples. Individuals are shaded by province of birth as shown in panel (a). The first principal component is 

strongly correlated with birthplace latitude (p = 8.4×10-284) and the second principal component with longitude (p 

= 1.7×10-107). (c-e) Relation between birthplace distance between pairs of individuals and shared IBD segments 

1-2 cM (c), 2-7 cM (d) and 7-15 cM (e). Long IBD segments are, as expected, mostly shared by individuals born 

close to one another. PC: principal component, MAF: minor allele frequency, km: kilometer, cM: centimorgan. 
 

Sharing of IBD segments showed strong geographical patterns throughout the 

Netherlands. As was observed in a previous population genetics study in The 

Netherlands there is a clear North-to-South gradient for sharing of shorter (and thus 

older) IBD segments (Supplementary Figure 4a). We also confirmed the finding 

that people born in the Southern provinces shared more of these IBD segments with 

people from the Northern provinces than they share with people within their own 

province, reflecting the previously described complex migration patterns14. Sharing of 

.CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/152553doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152553
http://creativecommons.org/licenses/by-nd/4.0/


 

longer IBD segments, reflecting more recently shared ancestry, was highly 

dependent on the distance of birthplaces between individuals (Figure 1c-e and 
Supplementary Figure 4b). 

Association testing in ALS cases and controls 

We found no variants reaching genome-wide significance (p = 5.0 × 10-8) with ALS in 

our sample, as expected given the sample size. We looked up known associated 

single-variants, three of which showed nominal association to the trait (p < 0.05, 

Supplementary Table 1). Similarly, no loci achieved exome-wide significance in 

burden testing (p ≈ 5.0 × 10-7, after adjusting for 20,000 tested genes, the various 

burden test types, and sets of SNPs tested; Supplementary Figure 5) due to limited 

power (Supplementary Figure 6). Burden testing p-values for all genes tested can 
be found at http://databrowser.projectmine.com/. 

The implications of study design 

We sought to evaluate how matching cases and control, thereby introducing fine-

grained population structure, influenced the burden testing type I error rate. 

Therefore, we simulated phenotypes that (1) created perfectly geographically 

matched case-control sets and (2) introduced population structure between patients 

and controls (Supplementary Figure 1). We subsequently ran simulations that did 

not correct for any covariates or those that included common-variant (MAF > 0.1%) 

principal components. Imperfect matching did not yield a markedly more stringent p-

value to maintain a study-wide type I error at 0.05 for all burden tests (Table 2), likely 

due to limited power. Correcting for PCs did not affect the p-value to maintain study-
wise type I error at 0.05 either. 

To test the analytic implications of a study design that uses its resources solely for 

the sequencing of cases and collects controls from an external source, we merged 

genotypes from the ALS cases with Dutch-ancestry samples whole-genome 

sequenced as part of the Genome of the Netherlands (GoNL) project.14 Principal 

component analysis indicated a clear separation of the two projects, where PC1 

effectively captured each project (Supplementary Figure 7a). Removal of highly 

differentiated SNPs with a frequency difference > 5% across the two projects 
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somewhat mitigated this separation (Supplementary Figure 7b).  As expected, 

single-variant testing between ALS cases and GoNL controls revealed excessive 

genomic inflation (� = 1.12). Similarly, burden testing comparing ALS cases and 

GoNL controls revealed a strongly inflated QQ plot and genomic inflation factor (� = 

2.49), demonstrating the challenges of using externally sequenced controls to 
identify disease genes in a separately-sequenced set of cases and controls. 
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Discussion and future perspectives 

Family-based and population-level genetic studies have revealed ALS as a complex 

disease with a distinct role for rarer genetic variation. Although numerous genetic 

variants have been identified as conferring ALS risk, the genetic basis in the vast 

majority of cases is not yet understood. Here, we have described the design and 

pilot analyses of a large-scale whole-genome sequencing study aimed at discovering 

new genetic risk factors and further elucidating the genetic basis of ALS.  

Data sharing and open-access science 

Data sharing and transparency in scientific research is advantageous for a host of 

reasons: it allows for analyses across large sets of samples, particularly for lower-

prevalence diseases such as ALS; ensures rigorous experiments that can be 

reproduced by external groups; and allows for publicly-funded research to be made 

available to the public itself. Project MinE cannot publicly release individual-level 

genotype data due to consent. However, genotype frequency information and genic 

burden testing results are publicly available at the project’s online browser 

(http://databrowser.projectmine.com/). This browser will be continuously updated as 

the project expands, and will provide more detailed data integration in future 

releases. To further enhance the transparency within the consortium itself and with 

external collaborators and researchers, the project has begun a GitHub repository, to 
share and maintain scripts and data processing pipelines.  

The advantages of ‘franchising’ 

Given the relatively low prevalence of ALS, international collaboration is crucial to 

assembling large samples. Thus far, the “franchise” design of our consortium has 

allowed us to rapidly expand to sixteen participating research groups globally. This 

joint effort has collected enough resources to sequence >7,000 samples, with more 

currently being collected. Ongoing analyses include case-control association testing, 

as well as association testing in age-of-onset, and survival time. Additionally, the 

available core clinical dataset, uniformly collected for all individuals included in 

Project MinE, will allow for a host of other discovery analyses. 

Study design implications: data management, population architecture, and external 
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controls 

The pilot analyses, though small in sample size, yield several immediate and 

important conclusions. First, while genotype-called data (in VCF format) is easily 

handled by a high-performance compute cluster, whole-genome BAM files 

(approximately 80 gigabytes per genome) demand a compute infrastructure that can 

handle terabytes and even petabytes of data. This includes direct delivery of the 

genomes that are currently being sequenced via a direct high-speed connection 

between the sequencing provider and a computer cluster with a GRID architecture 

(SURFsara). Though some research institutions are already prepared for such a 

deluge of data, others will need to carefully consider compute infrastructure and the 

technical ramifications of assembling big data before embarking on large-scale 

sequencing analyses. Further, having all data stored in a single location enables 
analysis across the full dataset, including on BAM-level data. 

Second, initial quality control of the data suggests that the high-depth sequencing 

and downstream genotype calling is yielding high-quality data, reflected in our ability 

to reconstruct, through principal component analysis and identity-by-descent 

analyses, demographic observations that have been made in separate large-scale 

sequencing efforts in the Dutch population.14 Further, the population analyses 

performed here and in particular the birthplace analysis, highlights the sensitivity of 

genome-wide sequence data. The data must be carefully protected such that those 

who have donated DNA to enable disease research, will also remain anonymous (in 
accordance with the consent provided).29 

Third, the high-resolution geographical clustering of rare variants as observed in 

these analyses could pose challenges in finding rare variants that contribute to ALS 

risk. The commonly applied burden test approach, however, does not seem to suffer 

from increased type I error rates induced by modest imperfections in geographically 

matching samples, as was shown by the burden test simulations. While it is possible 

that aggregating rare variants (found in potentially many geographic locations) in 

these tests makes the approach more robust to population structure, these results 

should be interpreted with caution. The modest power in our pilot sample likely 

limited our ability to detect the increasing type I error rates induced by imperfect 

geographic sample matching. With the increasing number of ancestrally diverse 
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samples that are being included in Project MinE, false positive associations due to 

population stratification remain a serious concern, especially when our aim becomes 

identifying the causal single variant(s) that drive the genic burden signal. Correcting 

for principal components can help to control type I error, though potentially not 

sufficiently so in burden testing. More sophisticated analytic approaches, such as 

employing a linear mixed model in single variant and genic burden testing, will likely 

be helpful in controlling for population stratification across the full set of Project MinE 
samples.30 

We further demonstrate that inclusion of externally-sequenced samples can pose 

analytical challenges. Specifically, we show that using ancestry-matched controls 

from publicly-available datasets can strongly inflate association test statistics if the 

sequences have not been processed together from BAM-level data. Sequence data 

can contain underlying structure due to sequencing platforms, coverage, alignment 

and calling algorithms. Inclusion of externally sequenced cases and controls 

(sequenced either separately or together) is non-trivial must be approached with 

extreme rigor. Methods for handling the merging and calling of heterogeneous 

sequencing datasets are currently being applied in large consortia31–33 and indicate 

that obtaining a high-quality dataset requires calling genotypes from petabytes of raw 

data in a uniform way across the full set of samples. Additional developments in 

handling heterogeneous sequence data include association testing on read-level 

data to allow for externally sequenced controls.34 Although these methods come with 

significant computational burden, similar approaches could be applied in Project 

MinE, in an effort to expand beyond the 22,500 samples sequenced initially by the 
project. 

The future of Project MinE 

With the veritable explosion in methods and approaches being developed for whole-

genome sequence data analysis, Project MinE will seek to leverage new and 

powerful methods for uncovering ALS risk variants. Current plans include more 

sophisticated functional annotation techniques, such as unsupervised-learning 

approaches to discriminate between functionally relevant and benign variation in the 

genome35,36; implementing a linear mixed model approach to burden testing30; a 

burden testing framework that will focus not only on genes but also on regulatory and 
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other non-coding elements; and analyses that investigate both variation and 

methylation data. We have additionally established a pipeline to lift all our data to the 

newest genome build (hg38), which will likely yield better coverage of the genome in 

our samples. As the size of the data expands and additional collaborators join the 

effort, we will explore additional data structures that can facilitate transcontinental 

data analysis with minimal physical movement of data.  

Finally, in addition to testing SNVs and indels, we will explore the role of more 

complex genetic variation such as structural variants and repeat expansions, which 

are known to play an important role in ALS susceptibility, yet have never been 

studied at genome-wide scale. With a global collaboration in place, a wealth of 

genetic variation being generated, and new methods for sequence data constantly in 

development, Project MinE will be the largest and most complete study of ALS 

genetics to date, poised to reveal novel risk loci, fine-map known disease genes, and 
shed light on the biological drivers of disease. 
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Tables 

  ALS Controls 

N 1196 610 

sex, % female 41.1 43.1 

Type   

     familial (%) 31 (2.6) - 

     sporadic (%) 1165 (97.4) - 

C9orf72   

    WT (%) 1095 (91.6) - 

    expanded (%) 74 (6.2) - 

    unknown (%) 27 (2.3) - 

age at onset, years (IQR) 63.97 (56.58 - 70.57) - 

site of onset   

   bulbar (%) 386 (32.3) - 

   spinal (%) 718 (60.0) - 

   thoracic (%) 30 (2.5) - 

   unknown (%) 62 (5.2) - 

survival, years (IQR) 2.29 (1.58 - 3.28) - 

   deceased (%) 966 (80.8) - 

 

Table 1 Baseline characteristics of samples included in Project MinE. WT = wild-type, IQR = interquartile range. 

 

 

  

.CC-BY-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/152553doi: bioRxiv preprint first posted online Jun. 20, 2017; 

http://dx.doi.org/10.1101/152553
http://creativecommons.org/licenses/by-nd/4.0/


 

Scenario 1: perfect matching 

 Type I error in burden tests 

 T1 MB VT SKAT 

No PCs 4.25 x 10-6 3.38 x 10-6 3.94 x 10-6 2.35 x 10-6 

Common PCs 2.86 x 10-6 3.99 x 10-6 8.12 x 10-6 2.24 x 10-6 

Scenario 2: imperfect matching 

 Type I error in burden tests 

 T1 MB VT SKAT 

No PCs 4.40 x 10-6 1.90 x 10-5 1.46 x 10-5 6.72 x 10-6 

Common PCs 5.35 x 10-6 9.35 x 10-6 1.04 x 10-9 7.81 x 10-6 

 

Table 2 Populations structure and use of principal components (PCs) to control type I error. No marked 

differences were observed between the p-values in perfect or imperfect matching scenarios (with or without PCs) 

to maintain the study-wise type I error rate at 0.05. Common PCs = principal components calculated on all 

common SNPs (MAF > 0.01). T1, burden test that considers variants with MAF < 0.01; MB, Madsen-Browning 

burden test that inversely weights variants by frequency; VT, Variable Threshold test; SKAT, Sequence Kernel 

Association Test. 
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