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Abstract 

 Individuals with psychiatric disorders have elevated rates of autoimmune comorbidity and altered 

immune signaling.  It is unclear whether these altered immunological states have a shared genetic basis 

with those psychiatric disorders.  The present study sought to use existing summary-level data from 

previous genome-wide association studies (GWASs) to determine if commonly varying single nucleotide 

polymorphisms (SNPs) are shared between psychiatric and immune-related phenotypes.  We estimated 

heritability and examined pair-wise genetic correlations using the linkage disequilibrium score regression 

(LDSC) and heritability estimation from summary statistics (HESS) methods.  Using LDSC, we observed 

significant genetic correlations between immune-related disorders and several psychiatric disorders, 

including anorexia nervosa, attention deficit-hyperactivity disorder, bipolar disorder, major depression, 

obsessive compulsive disorder, schizophrenia, smoking behavior, and Tourette syndrome.  Loci 

significantly mediating genetic correlations were identified for schizophrenia when analytically paired 

with Crohn’s disease, primary biliary cirrhosis, systemic lupus erythematosus, and ulcerative colitis.  We 

report significantly correlated loci and highlight those containing genome-wide associations and 

candidate genes for respective disorders.   We also used the LDSC method to characterize genetic 

correlations amongst the immune-related phenotypes. We discuss our findings in the context of relevant 

genetic and epidemiological literature, as well as the limitations and caveats of the study. 

Keywords:  allergy, anorexia nervosa, attention deficit-hyperactivity disorder, autoimmune disorder, 

bipolar disorder, celiac disease, childhood ear infection, C-reactive protein, Crohn’s disease, genetic 

correlation, genome-wide association, hypothyroidism, major depression, neuroticism, obsessive 

schizophrenia, primary biliary cirrhosis, rheumatoid arthritis, smoking, systemic lupus erythematosus, 

Tourette syndrome, tuberculosis susceptibility, type 1 diabetes, ulcerative colitis. 
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Introduction 

 The biological bases of major psychiatric disorders have been studied for decades, yet they 

remain largely unresolved.  Evidence from both clinical and biomedical literature has demonstrated that 

individuals with these conditions show differences in circulating immunologic markers, functional 

capacities of isolated immune cells, and atypical prevalence of clinical immune-related phenotypes 

compared to individuals not affected by psychiatric or neurodevelopmental disorders.1–10  It remains 

unclear what roles (if any) altered immunologic functions may play in the major psychiatric phenotypes, 

though plausible mechanisms linking altered immune functions with neurobiological changes during early 

brain development and in fully developed adults have been identified.11–18  While some studies have 

already suggested potential genetic bases for the immune dysregulation observed in a subset of 

psychiatric patients,19–22 the extent to which co-occurrence or segregation of clinical phenotypes may be 

influenced by similarities in genome-wide genetic risk signals warrants further examination.  Genome-

wide association studies (GWASs) and meta-analyses can shed light on the regions of the genome that 

tend to associate with a clinical phenotype, quantitative trait, or biomarker; this is accomplished through 

tagging and association-testing of single nucleotide polymorphisms (SNPs) that vary within the 

population.  Recently developed methods like linkage disequilibrium (LD) score regression (LDSC)23 and 

Heritability Estimation from Summary Statistics (HESS)24 allow for direct comparison of GWAS 

summary statistics for two different phenotypes for quantitative assessment of genetic correlation.   

In the present study, we leveraged existing data to explore the genetic associations of a set of 

medical phenotypes that are enriched with immune and inflammatory processes; these included allergic 

conditions, classic autoimmune diseases, other inflammatory diseases, and vulnerability to infectious 

disease.  We sought to cross-correlate the genetic associations of these phenotypes with the associations 

obtained from studies of a set of psychiatric and behavioral phenotypes. We hypothesized that some 

phenotype-pairs with evidence for increased clinical comorbidity might also share similarities in their 

genome-wide association profile, which would be reflected in our analyses as significant positive 

correlations.  Additionally, in light of literature suggesting shared genetic risk among some immune and 
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inflammatory disorders, we assessed genetic correlations within this set of phenotypes using the LDSC 

method; these findings are reported within the Supplementary Materials.  Genetic correlations within the 

set of psychiatric phenotypes have been reported previously23,25,26 and are not examined in the present 

study.  

Materials and Methods 

Literature Search 

 We searched the published literature (Pubmed, SCOPUS), data repositories (dbGaP and 

immunobase.org), and the downloads page of the Psychiatric Genomics Consortium (PGC) website 

(https://www.med.unc.edu/pgc/downloads) to identify phenotypes with potentially usable GWAS and 

GWAS meta-analysis summary statistics.  For studies identified in the published literature, we contacted 

corresponding authors to request summary statistics.  In order to facilitate cross-study comparison, we 

utilized studies that reported samples of European ancestry, broadly defined to include Central, Southern 

and Eastern Europe, Scandinavia, and Western Russia.  Our initial search yielded a large number of 

datasets reflecting a wide-range of behavioral and immune-related phenotypes (Supplementary Table 1); 

the set of phenotypes ultimately retained for final analyses was selected based on criteria described below.  

When multiple studies were identified for a given phenotype, we pursued the studies with the largest 

effective sample sizes and ultimately used the available study with the largest heritability z-score.  In 

several instances, data from the largest existing studies could not be shared or reflected a mixed-ancestry 

meta-analysis; in these cases, we deferred to the next largest European-ancestry study. We chose to retain 

datasets with an effective sample size greater than 5000 individuals and with estimated SNP heritability z-

score > 3,  in keeping with previous recommendations.23  This filter resulted in the exclusion of many 

relevant immune-related phenotypes, including eosinophilic esophagitis,27 granulomatosis with 

polyangiitis,28 IgA nephropathy,29 HIV-related neurocognitive phenotypes,30 morning cortisol levels,31 

myeloid leukemias,32 psoriatic arthritis,33 sarcoidosis,34 and systemic sclerosis.35 This also resulted in 

exclusion of several psychiatric and behavior phenotypes, including adolescent alcohol abuse,36 anxiety-

spectrum disorders,37 borderline personality disorder,38 language impairment,39 personality domains (five 
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factor model),40 post-traumatic stress disorder,41 and reading disability.42  We also ultimately excluded 

data from studies of ethanol, opiate, and cocaine dependence,43–45 as genetic correlations involving these 

phenotypes were frequently outside the boundaries tolerated by the LDSC software, making them difficult 

to interpret; this may have been related to the ordinal-ranked phenotypes used in the GWASs.  Finally, 

while relationships between tobacco-smoking behavior and other psychiatric phenotypes have been 

examined previously,23,25 we chose to retain smoking data in order to assess relationships with a more 

complete set of immune-related phenotypes.  The full list of phenotypes identified in the search and 

retained for analyses is shown in Supplementary Table 1, along with identification of the study cohorts 

and consortia that generated these data, full citations of the respective publications, and indications of 

sample size, information regarding genomic inflation, and estimated SNP heritability. 

GWAS Phenotypes Retained for Genetic Correlation 

For our psychiatric and behavior-related phenotypes, we ultimately retained GWAS summary 

data reflecting studies of Alzheimer’s disease, 46 angry temperament 47, anorexia nervosa,48 attention 

deficit-hyperactivity disorder (ADHD),49 autism,50 bipolar disorder (BD),51,52 cigarette smoking (ever-

smoked status),53 major depressive disorder,54 trait neuroticism,55 obsessive-compulsive disorder (OCD),56 

Parkinson’s disease,57 schizophrenia (SZ),58 and Tourette Syndrome (personal communication from PGC 

Working Group).  Collectively, these phenotypes were treated as a set.  For phenotypes that are known or 

suspected to involve alterations to immune cells and/or inflammatory signaling, we ultimately retained 

GWAS data reflecting allergy (any, self-reported),57,59 asthma (self-reported),57 atopic dermatitis,60 

childhood ear infection (self-reported),57 celiac disease,61 serum C-reactive protein (CRP),62 Crohn’s 

disease (CD),63,64 hypothyroidism (self-reported),57  primary biliary cirrhosis (PBC),65 psoriasis,66 

rheumatoid arthritis,67 systemic lupus erythematosus (SLE),68 susceptibility to pulmonary tuberculosis,69 

type 1 diabetes,70 and ulcerative colitis (UC).71  These phenotypes were treated as a set in subsequent 

analyses. 

Data Pre-Processing and Analysis 
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Our primary analyses were performed using the LDSC software (https://github.com/bulik/ldsc).23  

Briefly, this set of tools can be used with existing GWAS summary data in order to distinguish 

polygenicity from confounding caused by uncontrolled population stratification or cryptic relatedness 

among samples,72 to estimate the heritability of a given phenotype,23 and to estimate the genetic 

correlation between two phenotypes based on two separate or related sets of summary statistics.23  In the 

latter application, the minimal requirements for each set of summary statistics include columns of data 

indicating SNP ID, the identities of reference and non-reference alleles, association p-value, effect size, 

test statistic (e.g., odds ratio, regression β, or Z-score), and sample size (per SNP or for all SNPs).  For 

each pair of phenotypes, this tool compares the strength and direction of association signal at each locus 

while correcting for the correlation that would be expected based on genetic linkage alone, and it provides 

an estimate of the genetic correlation between phenotypes.  This method relies on adjustment for the 

linkage between SNPs (i.e., covariance caused by genomic proximity); for our analyses, we used the set 

of LD scores provided by the software’s creators, based on the 1000 Genomes Project’s European sample 

(file = eur_w_ld_chr, URL = https://data.broadinstitute.org/alkesgroup/LDSCORE).  Because minor 

allele frequencies (MAFs) and imputation quality scores were not available for all the obtained sets of 

GWAS results, we filtered the GWAS results to retain only SNPs that were included within the HapMap3 

panel and had a MAF > 5 % within the 1000 Genomes Project Phase 3 European samples;23 this decision 

resulted in the exclusion of a sizable proportion of SNPs, but ensured equitable treatment of all datasets.  

The extended major histocompatibility complex (MHC) region contains high amounts of long-range LD, 

making it challenging to accurately map association signals in this region.  For this reason, and following 

the work of others,23,25 we excluded this region from our analyses (chromosome 6, base positions 25x106 

to 35x106).  Additional SNP quality control (QC) routines followed those implemented by the GWAS 

authors and the defaults employed with the LDSC munge_sumstats.py function; this function checks 

alleles to ensure that the supplied alleles match those in the HapMap3 reference panel.  For each dataset, 

we estimated the phenotype’s heritability.  The results of this analysis, along with features of each GWAS 

dataset (sample size, number of QC-positive SNPs, genomic inflation factor, etc.), are shown for all 
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phenotypes in Supplementary Table 1.  All phenotypes with sample size > 5000 and estimated SNP 

heritability z-score > 3 were retained for correlation analysis (indicated in Supplementary Table 1 in 

green highlight).  Pair-wise genetic correlations were assessed between retained phenotypes based on the 

intersection of QC-positive SNPs, and heatmaps were constructed to depict these relationships.  For 

correlation coefficients returned within the bounds of the LDSC software, p-values were corrected using 

the Benjamini-Hochberg (BH) method for the total number of unique tests depicted in each correlation 

matrix.  Within the main text, we describe only correlations that survived family-wise multiple-test 

correction. Correlations are reported as the coefficient + standard error. For phenotype-pairs showing 

statistically significant genetic correlations, we re-evaluated the genetic correlations and estimated 

heritability using the HESS method (https://github.com/huwenboshi/hess).24   

Characterization of Genetically Correlated Loci and Associated Genes 

For psychiatric-immune phenotype-pairs showing significant genetic correlations after BH 

correction for multiple testing, we used the HESS software to estimate partitioned heritability and genetic 

correlations based on smaller LD-based segments of the genome (average size = 1.5 Mb). We report the 

number and identity of genomic partitions (based on HG19 reference) displaying significant local genetic 

correlations and apply correction for the total number of partitions (≈1694, after MHC removal).  Because 

presently available methods are poorly suited for fine-mapping the loci mediating a genetic correlation, 

we prioritized reporting correlated loci that also contain genome-wide significant associations for the 

relevant phenotypes (i.e., associations with p < 5x10-8; subsequently called GW hits).  We report GW hits 

contained within the present datasets, but also cross-reference these findings with those contained in 

immunobase.org, in order to identify loci associated with multiple immune-related disorders.  We report 

the HGNC symbols for candidate genes proposed to mediate those associations.  The full list of genes 

contained within each correlated loci is provided in Supplementary Table 3.  Additionally, we used HESS 

to examine patterns of local genetic correlation in relationship to GWAS hits to make inferences about 

putative causal directionality between the phenotype-pairs.  For all HESS analyses, we used the 1000 

Genomes Project Phase 3 European reference panel and the LD-independent genome partitions 
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recommended by the software developers.73  Following the developers’ practices, we assumed no sample 

overlap for comparisons of data generated by different consortia.24 

Results 

Genome-Wide Correlations between Psychiatric and Immune-Inflammatory Phenotypes 

All pair-wise LDSC genetic correlations between psychiatric and immune-related phenotypes are 

depicted in Figure 1.  Notably, twenty-one correlations survived BH correction for multiple testing 

(denoted with **) and 6 survived a more stringent Bonferroni correction (denoted with ***).  Full results 

for these analyses are provided in Supplementary Table 2.  Significant positive relationships were 

observed between ADHD and each of: CRP (rg = 0.23 + 0.06, p = 2.0x10-4), childhood ear infections (rg 

= 0.20 + 0.05, p = 2.0x10-4), psoriasis (rg = 0.23 + 0.07, p = 1.0x10-3), rheumatoid arthritis (rg = 0.16 + 

0.05, p = 9.0x10-4), and tuberculosis susceptibility (rg = 0.36 + 0.11, p = 1.6x10-3).  Anorexia nervosa 

showed a negative genetic correlation with CRP (rg = -0.30 + 0.08, p = 1.0x10-4).  BD was positively 

correlated with each of: celiac disease (rg = 0.31 + 0.09, p = 4.0x10-4), CD (rg = 0.21 + 0.05, p = 3.7x10-

5), psoriasis (rg = 0.25 + 0.08, p = 3.8x10-3), and UC (rg = 0.23 + 0.06, p = 2.0x10-4).  Major depressive 

disorder was positively correlated with hypothyroidism (0.33 + 0.09, p = 5.0x10-4).  Similarly, 

neuroticism was positively correlated with hypothyroidism (rg = 0.25 + 0.06, p = 7.2x10-5), in addition to 

childhood ear infection (rg = 0.13 + 0.04, p = 8.0x10-4).  OCD was negatively correlated with type 1 

diabetes (rg = -0.32 + 0.11, p = 5.4x10-3).  Smoking behavior was positively correlated with CRP (rg = 

0.31 + 0.07, p = 3.6x10-5) and with rheumatoid arthritis (rg = 0.17 + 0.05, p = 2.3x10-3).  SZ showed 

positive genetic correlations with CD (rg = 0.12 ± 0.03, p = 2.0x10-4), PBC (rg = 0.14 ± 0.05, p = 2.0 x 

10-3), SLE (rg = 0.15 ± 0.04, p = 2.0x10-4), and UC (rg = 0.14 ± 0.04, p = 2.0x10-4).  Finally, we observed 

a positive genetic correlation between Tourette syndrome and allergy (rg = 0.24 + 0.06, uncorrected p = 

2.7x10-5).  Additionally, several large-magnitude correlations attained a nominal threshold of statistical 

significance (e.g., autism-allergy and OCD-celiac); these correlations tended to have a higher standard 

error and were generated using relatively smaller GWAS sample sizes.  As such, they may be more likely 

to reflect false positives and should be regarded with appropriate skepticism.   
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For phenotypes involved in correlations that survived multiple test correction, estimated SNP 

heritability is shown in Table 2.  For these phenotypes, we reassessed SNP heritability and the magnitude 

of genome-wide genetic correlations using the HESS method (Tables 1 and 2).  Correlation coefficients 

were not correlated between the two methods (pearson r = 0.25, p = 0.25; Supplementary Figure 1) and 

the absolute value of the difference was negatively related to sample size (r = -0.45, p = 0.035; 

Supplementary Figure 2), which is consistent with the software developer’s guidelines.24  LDSC-based 

correlations among the immune-related phenotypes are reported in the Supplementary Text and 

Supplementary Table 5.     

Characterization of Loci Contributing to Psychiatric-Immune Genetic Correlations 

 For psychiatric-immune phenotype-pairs that demonstrated a significant genome-wide correlation 

with the LDSC method (i.e., those in Table 1), we used the HESS software to examine the genetic 

correlation within the ~1694 partitioned genomic loci.  The number of correlated loci before and after BH 

multiple test correction are depicted in Table 3; detailed results for these analyses, including local 

heritability, correlation strength, and the lists of gene symbols within each loci are provided in 

Supplementary Table 3.  Only SZ displayed robust local genetic correlations with immune-related 

phenotypes, including thirty-two loci with CD, 37 loci with PBC, 20 loci with SLE, and 8 with UC (Table 

3, depicted in Figure 2).  Upon closer examination of the loci implicated between SZ and CD, we noticed 

that five of these loci contained GW hits, including one locus on chromosome 4q24 (4:100678360-

103221356; highlighted green in Figure 2) that contained GW hits for both SZ and CD within the present 

data, and with 4 other autoimmune diseases (immunobase.org); these signals are near autoimmunity 

candidate genes NFKB1 and MANBA, as well as proposed SZ candidate gene SLC39A8, among others 

contained within the locus (see Supplementary Table 3).  The locus on 10p12.3 (10:18725659-18816236, 

highlighted green) contains a GW hit for SZ attributed to calcium channel gene CACNB2.  Another locus 

mediating a significantly correlated locus on 12q12 (12:39227169-40816185, highlighted green) contains 

a GW hit for CD attributed to LRRK2.  When examining the loci implicated between SZ and PBC, we 

observed 3 harboring GW hits for the former and 3 harboring signals for the latter, including loci within 
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3p24.3 (3:16282442-17891118, highlighted orange) containing PLCL2 and within 11q23.3 

(11:117747110-119215476, highlighted orange), containing candidate genes CXCR5, DDX6, and TREH.  

Among the loci implicated between SZ and SLE, we observed two harboring GW hits for the former and 

3 harboring hits for the latter.  One such locus within 1q21 (1:148361253-151538881, highlighted yellow) 

contains a SZ association signal localizing near candidate gene APH1A. Another locus within 1q23 

(1:159913048-162346721, highlighted yellow) contains a GW hit for SLE, as well as several other 

autoimmune diseases, associated with candidate gene FCGR2A.  Similarly, a locus within 22q11.21 

(22:19912358-22357325, highlighted yellow) containing multi-disease association signal is associated 

with MAPK1 and UBE2L3.  Among the loci implicated between SZ and UC, one within 11q13.1 

(11:63804569-65898631) harbored GW hits for multiple autoimmune disorders. 

We also sought to examine whether the specific loci might be implicated across multiple 

psychiatric-immune disorder pairs (Figure 2).  An analysis limited to only those surviving BH correction 

for multiple testing yielded only two loci shared by multiple disease pairs.  The first locus (within 3p24.3; 

3:21643707-22204244) was identified in correlations of SZ with PBC and with CD; it contained no GWS 

hits and two genes of unclear consequence ZNF385D and ZNF385D-AS2.  The second locus within 

8p32.1 (8:11278998-13491775, highlighted brown) was identified in correlations of SZ with PBC and 

with SLE; this locus contained numerous genes and is adjacent to a GWS hit for SLE associated with 

candidate gene BLK.  When we broadened the scope to examine all loci implicated in nominally 

significant correlations (uncorrected p < 0.05), we find several that are common to multiple psychiatric-

immune disorder pairs (Table 4).  The most widely implicated locus was shared among the 5 pairs of 

psychotic and inflammatory bowel disorders (within 17q12; 17:36809344-38877404, highlighted purple) 

and contains a GW hit for BD ascribed to candidate gene ERBB2.  There were another eight loci that were 

implicated in four disorder pairs.  Among these, one located within 1q32.1 (1:200137649-201589975, 

highlighted purple) contains GW hits for multiple autoimmune disorders (including celiac disorder, CD, 

multiple sclerosis, and UC) and is near candidate genes CACNA1S and KIF21B.  The full list of loci 

implicated across multiple disorder pairs is available in Supplementary Table 3.  The results of the HESS 
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analysis of putative causal directionality (Table 5) indicated that local genetic correlations were stronger 

in the loci containing GW hits for SZ (rg ≈ 0.41 + 0.12) as compared with those containing hits for the 

paired autoimmune diseases (rg ≈ 0.17 + 0.13). 

Discussion 

In contrast to previous studies examining large sets of medical, anthropomorphic, metabolic, and 

behavioral phenotypes,23–26,74 the present study performed a focused comparison of psychiatric and 

immune-related phenotypes using two methods to estimate genetic correlation from summary statistics.  

We used updated versions of psychiatric GWASs49–51,56 and compiled a more comprehensive set of 

immune-related phenotypes, while simultaneously reducing the burden imposed by multiple testing.  

Additionally, this analysis reflects the first application of the LDSC and HESS method for some of these 

phenotype-pairs.  We identified several genome-wide correlations that were robust to multiple testing.  

Furthermore, we used the HESS method to validate genome-wide correlations and to conduct a 

quantitative analysis that localizes correlations to regions of the genome.  We prioritized the reporting of 

findings based on co-localization with GW hits.  As such, this study provides a quantitative map of 

genetic relationships between psychiatric and immune-related disorders and serves, along with previous 

work,75 as a starting point for identifying and characterizing potentially pleiotropic loci. 

Prominent among the LDSC genome-wide significant findings was a cluster of modest positive 

correlations involving BD (rgs ranging 0.25 to 0.33) and SZ (rgs ranging 0.12 to 0.15) in conjunction 

with immune-related disorders involving the gastrointestinal tract (i.e., CD, PBC, UC).  These findings 

are consistent with available epidemiological evidence indicating that the presence of one set of disorders 

portends increased risk for a diagnosis from the other class of disorders, though the causality and 

temporality of these relationships is not clearly established.76–82  Positive genetic inter-correlations among 

these phenotypes are also consistent with recent work demonstrating that the positive correlation between 

BD and SZ are significantly mediated by both CNS and immunologic tissues.83  Our local genetic 

correlation analyses were inadequately powered to detect loci relevant to most of the psychiatric-immune 
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disorder pairs, including BD.  However, comparisons with SZ yielded 97 loci that were robust to multiple 

test correction, 18 of which also were shown to harbor GW hits in previous studies.  In several instances, 

these GW hits localize near genes with functions that are pleiotropic and relevant to both brain and 

immune system phenotypes.  For example, we identified a SZ-CD correlated locus at 4q24 (4:100678360-

103221356) that contained GW hits for both SZ (putatively attributed to SLC39A8) and several 

autoimmune diseases (putatively attributed to NFKB1 and MANBA); others have proposed that 

associations at this locus may exert pleiotropic effects on a wide range of phenotypes (additionally 

including body mass index, serum levels of manganese, N-terminal pro-B-type natriuretic peptide, and 

HDL-cholesterol) through a functional variant found in European populations affecting the SLC39A8 

cation transporter.84,85 A locus within 11q23.3 (11:117747110-119215476) was significantly correlated 

between SZ and PBC and harbors a region of GW hits for multiple autoimmune disorders attributed to 

PLCL2, a catalytically inactive phospholipase-like protein thought to influence intracellular signaling, 

calcium homeostasis, and GABA-ergic receptor trafficking in immune and neuronal cell types, among 

others.86–88  A de-novo missense mutation affecting this gene was identified in an exome sequencing study 

of SZ affected individuals, though no replication appears to have been reported.89  Similarly, a correlated 

locus within 22q13.1 (22:39307894-40545797, highlighted yellow in Figure 2) contains GW hits for 

PBC, which overlaps with voltage gated calcium channel gene CACNA1I; this gene has been implicated 

by both GWAS and rare-variant studies of SZ.58,90  Another correlated locus within 11q23 (11:118579747-

118743772) contained GW hits for multiple autoimmune disorders and is suspected to exert pleiotropic 

effects through several genes, whose functions include repression of aberrant interferon signaling 

(DDX6),91 chemokine signaling between T-helper and B-cells (CXCR5),92,93 and enzymatic break down of 

microbial disaccharides (TREH).94  Notably, functional genomic studies have identified DDX6 as a gene 

that is perturbed during neuronal differentiation of samples derived from individuals with schizophrenia,95 

and as a peripheral blood marker of cerebrospinal fluid serotonin metabolite levels,96 supporting its 

relevance to psychiatric phenotypes. 
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We also examined loci that showed a nominal genetic correlation across multiple disorder pairs, 

and found these loci also harbored GW hits for respective phenotypes.  The locus at 17q12 shared among 

multiple disorders contains a GW hit for BD (17:36809344-38877404) ascribed to candidate gene 

ERBB2.52  This gene and its relatives encode receptor tyrosine kinases that interact with a family of 

growth factors called neuregulins to regulate the assembly of neural circuitry, myelination, 

neurotransmission and synaptic plasticity. A large body of evidence implicates both ligands and receptors 

from these families as susceptibility genes for SZ and BD.97  Notably, ERBB2 overlaps with GW hits for 

multiple autoimmune disorders, though these have been attributed to different genes in the region.  

Another locus at 1q32.1 (1:200137649-201589975) contains GW hits for multiple autoimmune disorders 

(including celiac disease, CD, multiple sclerosis, and UC) and is near candidate genes C1orf106, 

CACNA1S, GPR25, and KIF21B.  Genetic disruptions of voltage-gated calcium channels, including 

CACNA1S, are well-established susceptibility factors in psychiatric and neurological disorders.98,99 

KIF21B encodes a neuronal motor protein implicated in GABAA receptor trafficking,100 in addition to 

having a suspected role in regulating inflammatory signaling in several lymphocyte subtypes.101 

 While it is tempting to speculate about these observations, we must acknowledge limitations and 

caveats of the present approach.  Current methods for assessing genetic correlations are not well-suited 

for fine-mapping shared liability across disorders; other methods are better suited for this task, including 

extensions of GWAS that model multiple phenotypes simultaneously.22,55,102,103  With respect to local 

genetic correlations, we have prioritized reporting of loci that co-localize with GW hits.  However, this 

implies that the presence of the GW hit is contributing to the observed correlation, which we have not 

demonstrated presently.  As such, our discussion of potentially pleiotropic loci and candidate genes 

should be considered anecdotal at this time.  One indirect approach to assessing the role of GW hits in a 

local genetic correlation might be to re-estimate the local correlation after the removal of the smaller 

region of GW signal from the original datasets.  When we conducted this analysis for the SZ-CD pair, we 

found that the number of significant loci (BH p < 0.05) was reduced from 32 to 8, suggesting that GW 
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hits likely play an important role in many of the local genetic correlations.   Future studies will be able to 

combine larger GWAS sample sizes with new methods aimed at stratifying genetic correlations by 

biological annotations (e.g., tissue type or signaling pathways) in order to more precisely define the parts 

of the genome that mediate a genetic correlation.83 

Several methods have now been used to examine quantitative SNP-based genetic relationships 

between psychiatric and immune-related phenotypes, including restricted maximum likelihood (REML) 

co-heritability, polygenic risk scores, genetic analysis incorporating pleiotropy and annotations, and other 

permutation-based methods.22,104–106  Different approaches rest on unique assumptions, test different sets 

of hypotheses, and appear prone to generating sometimes conflicting results.  Using several approaches 

that were not dependent on the directionality of a given SNP’s effect, Wang and colleagues concluded 

that many (24 of 35) pairs of psychiatric and immune-related phenotypes shared a statistically significant 

proportion of risk-associated loci; among these findings was a significant genetic overlap between BD (as 

well as SZ) and UC.22  However, many of the other relationships identified in that study were not 

significant in the present study.  Another recent study demonstrated that polygenic risk scores reflecting 

additive risk for several autoimmune diseases can explain a small proportion of variance in SZ case-

control status, yet the genome-wide significant SNPs from the autoimmune GWASs were not over-

represented among SZ’s genome-wide significant hits when permutation-based analysis was 

performed.105 The apparent disagreement between different approaches for assessing shared genetic 

liability thus underscores the value of examining the consensus across studies and methods.105     

The LDSC approach featured here attempts to quantitate similarities and differences in 

association signals across the entire genome.  Some of our phenotype-pairs have been examined 

previously using genome-wide assessment methods, yielding apparently contradictory findings.25,26,72  For 

example, a previous study implementing a REML-based approach did not find significant SNP-based co-

heritabilities between CD and the major psychiatric phenotypes.106  Additionally, the first study 

implementing the LDSC method found no significant correlation (rg = 0.08 ± 0.08, uncorrected p = 0.33) 
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between BD and UC;23 this study used a smaller dataset for BD (Sklar et al., 2011; N = 16,731) and a 

different version of the UC dataset (reported as Jostins et al.,2012; N = 27,432).  A similar non-

correlation is also reported in LD-Hub (http://ldsc.broadinstitute.org/), using what appears to be the same 

datasets, although referencing a related article (Liu et al., 2015; N = 27,432).  The analyses portrayed in 

our main text utilized a larger BD dataset (Hou et al., N = 40,225), the same dataset for UC (Liu et al., 

2015; N = 27,432), and uniform criteria for SNP retention based on inclusion in the HapMap3 panel and 

MAF > 5 % within the 1000 Genomes Project Phase 3 European samples.  In order to resolve apparent 

discrepancies, we obtained additional versions of the available data for BD, SZ, CD, and UC and pre-

filtered under both inclusive (imputation INFO score > 0.9 or all SNPs, when INFO score unavailable) or 

exclusive criteria (MAF > 5 % within the 1000 Genomes Project Phase 3 European samples).  We found 

that correlations between SZ and each of CD, PBC, and UC tended to be more positive and more 

significant (i.e., reaching a BH-corrected threshold) when using the SZ data filtered at MAF > 5% 

(Supplementary Figure 3).  A similar pattern held true for inclusive vs. exclusive pre-filtering for the BD 

dataset generated by Sklar et al., but this was not the case for the larger Hou et al., dataset.  A side-by-

side comparison of the effects of different pre-filtering decisions for the BD, SZ, CD, and UC datasets in 

relation to the other phenotypes is provided in Supplementary Figure 4.  These observations indicate that 

decisions pertaining to SNP inclusion can have a considerable effect on the result of the LDSC analysis; 

this idea is further supported by the observation that stratified genetic correlation analyses based on MAF 

thresholds can produce different levels of statistical significance and opposite patterns of correlation 

directionality.83  Thus, our study suggests that genetic correlations between psychiatric and immune-

related disorders may be more significant when analyses are restricted to common variation.  

Reassuringly, the developers of the HESS method use the same datasets examined presently, and also 

report positive genetic correlations between SZ and the inflammatory bowel disorders.24 The results of the 

HESS analysis of putative causal directionality indicate that the local genetic correlations are higher in 

loci occupied by SZ GW hits, as compared to the loci harboring hits for the paired autoimmune 

disorders.24  This pattern is consistent with the hypothesis that genetic liability toward SZ tends to impart 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/070730doi: bioRxiv preprint first posted online Aug. 21, 2016; 

http://dx.doi.org/10.1101/070730
http://creativecommons.org/licenses/by-nc-nd/4.0/


Running Head:  Genetic Correlations: Psychiatric & Immune Phenotypes - 17 

17 
 

a greater genetic risk for the corresponding paired disorder, rather than the opposite directional 

hypothesis.  A related interpretation may be there is an unobserved intermediate phenotype (e.g., a shared 

biological pathways/mechanism) that is pleiotropic for both measured phenotypes, but more strongly 

influences the SZ phenotype.  This pattern of findings could also be caused by the presence of a 

confounding factor (e.g., smoking, socioeconomic status) that portends risk for both phenotypes.24  Thus, 

we caution against over-interpretation of these findings.  Extensions of Mendelian randomization methods 

to incorporate two GWAS samples using multi-allelic risk stratifying instruments will be better suited to 

address these hypotheses,107 especially as future GWASs provide well-powered genetic estimates of 

potentially relevant intermediate phenotypes (e.g., brain structure morphometry, circulating immune cell 

phenotypes, and serum cytokine levels).108–110  Other limitations of the HESS method, including 

assumptions related to sample overlap and ancestry stratification, are discussed extensively by the 

method’s developers.24     

Our study also identified many phenotype-pairs that demonstrated significant genome-wide 

correlations using the LDSC method, but for which HESS-based genome-wide and local genetic 

correlations could not be identified.  This is unsurprising, given that the sample sizes for these phenotypes 

were generally below the recommended sample size for HESS analyses (N > 50,000).24  Nonetheless, 

some of these relationships are supported by evidence from clinical and epidemiological studies, and thus 

may warrant follow-up using larger sample sizes and alternative methods for assessing genetic 

relationships.  For example, we observed a modest positive correlation between self-reported 

hypothyroidism and major depression (rg = 0.33 + 0.09, p = 5.0x10-4), as well as trait neuroticism (rg = 

0.25 + 0.06, p = 7.2x10-5).  This could be consistent with two different sets of clinical observations.  The 

first is that symptoms of depression are common in individuals with hypothyroidism, and that subclinical 

hypothyroidism could play a role in a subset of persons diagnosed with major depression; thus cross-

contamination of GWAS samples could lead to a biased positive correlation.  However, the second 

observation is that there is an increased incidence of major depression and depressive symptomatology in 
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persons with autoimmune thyroiditis receiving hormone replacement therapy.111,112  It is worth noting that 

GWAS data for allergy, asthma, hypothyroidism, childhood ear infection, and Parkinson’s disease were 

obtained through 23andMe, Inc..  These data are based on self-report, and thus could be more susceptible 

to bias stemming from misdiagnosis or misreporting, though previous work supports their validity.113  

None the less, the samples sizes are an order of magnitude larger than many other datasets, resulting in 

smaller standardized errors and better power for the detection of weak genetic correlations.  It is yet 

unclear whether small magnitude genetic correlations like these might be clinically meaningful.  The 

LDSC correlations observed presently were relatively weak magnitude (rgs ≈ 0.12 to 0.30) and of modest 

modest statistical significance (1x10-5 < uncorrected p < 5x10-3), when compared to the strongest genetic 

correlations observed within each group of datasets (e.g., SZ-BD rg = 0.87 with p = 7.4x10-94; CD-UC rg 

= 0.71 with p = 3.5x10-36).  

Several other significant genetic correlations are supported in the clinical and epidemiological 

literature.  For example, we found a positive correlation between ADHD and rheumatoid arthritis (rg = 

0.16 + 0.05, p = 9.0x10-4); this finds support in large registry-based studies indicating an increase in 

ADHD diagnosis in individuals with autoimmune disease,114 children with mother’s affected by 

autoimmune disease,114 and children of mothers with rheumatoid arthritis.115 Registry-based studies also 

provide support for increased incidence of ear infections (rg = 0.20 + 0.05, p = 2.0x10-4) and psoriasis (rg 

= 0.23 + 0.07, p = 1.0x10-3) among individuals with ADHD. 114,116–118  On the other hand, ADHD was 

positively correlated with CRP (rg = 0.23 + 0.06, p = 2.0x10-4), though a relatively large epidemiological 

study finds no association in affected individuals.119  The negative correlation between anorexia nervosa 

and CRP (rg = -0.30 + 0.08, p = 1.0x10-4) is borne out in a recent meta-analysis of relevant studies.120  

Another negative correlation between OCD and type 1 diabetes (rg = -0.32 + 0.11, p = 5.4x10-3) finds no 

support within a limited body of literature.121  However, the positive correlation between Tourette 

syndrome and allergy (rg = 0.24 + 0.06, p = 2.7x10-5) is consistent with evidence of increased 

comorbidity between these phenotypes.122,123  There is a paucity of clinical studies directly assessing the 
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relationship between SZ and PBC (rg = 0.14 ± 0.05, p = 2.0 x 10-3).  On the other hand, the correlation 

between SZ and SLE (rg = 0.15 ± 0.04, p = 2.0x10-4) appears to be supported by both epidemiological 

evidence of increased comorbidity124 and the well-documented (although rare) phenomenon of CNS lupus 

presenting with SZ-like symptoms,125 which may contribute to misdiagnosis.  Finally, positive 

correlations involving cigarette smoking behavior and CRP (rg = 0.31 + 0.07, p = 3.6x10-5), as well as 

rheumatoid arthritis (rg = 0.17 + 0.05, p = 2.3x10-3), are perhaps unsurprising given considerable 

evidence of elevated CRP in persons who smoke,126 and increased incidence of smoking behavior among 

individuals diagnosed with rheumatoid arthritis.127  These findings may indicate a need for more adequate 

statistical treatment of smoking behavior in GWAS studies.     

The present study identified a number of intriguing and previously unreported genetic 

correlations, some of which appear to localize near established risk factors for complex disease.  On the 

whole, these findings are consistent with the idea that similar signatures of common genetic variation may 

increase risk for both psychiatric and immune-related disorders.  However, it is important to keep in mind 

that these findings do not necessarily imply causality or even shared genetic etiology.  SNP-based genetic 

correlations could arise from a wide variety of underlying factors, including the possibility that the 

relationship between phenotypes is mediated by behavioral or cultural factors, or influenced by a heritable 

but unexamined underlying trait that confers risk to both phenotypes.23,26  Other factors that could 

contribute to genetic correlations include effects mediated by parental genotypes and their influence on 

parental behaviors that impact the offspring.128  Additionally, GWAS studies of psychiatric phenotypes 

typically do not screen affected cases on the presence of other medical conditions (and vice-versa), thus 

over-representation of a given phenotype in the sample of another phenotype could bias the data toward 

the detection of a genetic correlation.  Finally, estimates of genetic similarities could be influenced by 

misdiagnosed cases.129  Other general limitations of this method (in comparison with other approaches) 

have been discussed previously elsewhere.23,26  In light of the exploratory nature of the present study, 

another critique pertains to the lack of clearly identified positive and negative control comparisons.  
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Additionally, the clinical significance of weak or modest genetic correlations is yet unclear.  Future work 

could shed light on this topic by comparing the strength of reported genetic correlations with estimates of 

effect size from epidemiological associations, in order to create an atlas of concordance and shed light on 

the sensitivity and specificity of these genetic methods.  One final critique of this approach is that it falls 

short of identifying plausible genetic and biological mechanisms that mediate potentially pleiotropic loci.  

Future work incorporating expression quantitative trait loci, differentially expressed or methylated genes, 

or enriched ontological and functional terms may provide a clearer context for assessing biological 

similarities between phenotypes.  Despite these limitations, the present study indicates that shared aspects 

of common genetic variation may underlie long-recognized epidemiological links between psychiatric 

and immune-related disorders and serves as a start point for the identification and characterization of 

potentially pleiotropic loci. 
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Tables 

Table 1.  Significant Genome-Wide Psychiatric-Immune Genetic Correlations 

Psychiatric Phenotype Immune-Related Phenotype LDSC Correlation + Error, 
Uncorrected p-Value 

HESS Correlation + 
Error 

ADHD CRP 0.23 + 0.06, p = 2.0x10-4 

 
0.21 + 0.04 

ADHD Childhood Ear Infection 0.20 + 0.05, p = 2.0x10-4 0.14 + 0.03 
ADHD Psoriasis 0.23 + 0.07, p = 1.0x10-3 1.99 + 0.20 
ADHD Rheumatoid Arthritis 0.16 + 0.05, p = 9.0x10-4 0.29 + 0.04 
ADHD Tuberculosis Susceptability 0.36 + 0.11, p = 1.6x10-3 0.87 + 0.25 
Anorexia Nervosa CRP -0.30 + 0.08, p = 1.0x10-4 -0.53 + 0.12 
BD Celiac Disease 0.34 + 0.08, p = 4.5x10-5 1.91 + 0.12 
BD CD 0.22 + 0.06, p = 5.0x10-4 1.31 + 0.07 
BD Psoriasis 0.29 + 0.07, p = 2.7x10-5 5.76 + 0.58 
BD UC 0.23 + 0.07, p = 1.5x10-3 1.59 + 0.08 
Cigarettes (Ever-Smoked) CRP 0.31 + 0.07, p = 3.6x10-5 2.24 + 0.73 
Cigarettes (Ever-Smoked) Rheumatoid Arthritis 0.17 + 0.05, p = 2.3x10-3 0.51 + 0.22 
Major Depression Hypothyroidism 0.33 + 0.09, p = 5.0x10-4 0.45 + 0.09 
Neuroticism Childhood Ear Infection 0.13 + 0.04, p = 8.0x10-4 0.06 + 0.01 
Neuroticism Hypothyroidism  0.25 + 0.06, p = 7.2x10-5 0.03 + 0.01  
OCD Type 1 Diabetes -0.32 + 0.11, p = 5.4x10-3   0.98 + 0.18 
SZ CD 0.12 + 0.03, p = 2.0x10-4 0.31 + 0.03 
SZ PBC 0.14 + 0.05, p = 2.0x10-3 0.88 + 0.05 
SZ SLE 0.15 + 0.05, p = 1.2x10-3 0.12 + 0.02 
SZ UC 0.14 + 0.04, p = 2.0x10-4 0.56 + 0.03 
Tourette Syndrome Allergy (Any) 0.24 + 0.06, p = 2.7x10-5 0.29 + 0.07 
Table 1.  This table displays psychiatric-immune phenotype-pairs showing genome-wide genetic correlation 
with the linkage disequilibrium score regression (LDSC) method after correction for the total number of 
genetic correlations depicted in Figure 1 using the Benjamini-Hochberg (BH) method.  We also report the 
genome-wide correlation estimates produced by the heritability estimation from summary statistics (p-HESS) 
method.  Abbreviations: attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BD), C-reactive 
protein (CRP), Crohn’s disease (CD), obsessive compulsive disorder (OCD), primary biliary cirrhosis (PBC), 
schizophrenia (SZ), systemic lupus erythematosus (SLE), ulcerative colitis (UC). 
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Table 2.  Sample Characteristics for Phenotypes Involved in Significant Correlations 

Phenotype Data Source 
Estimated Genome-Wide  
SNP Heritability + Error   
(LDSC / HESS) 

GWAS N 
QC-Positive 
SNPS (MHC 
Excluded) 

ADHD Demontis et al. (2017)   0.24 + 0.02 / 0.26 + 0.02 53,293 1,004,958 

Allergy (Any, Self-Report) The 23andMe Research Team  0.08 + 0.01 /  0.15 + 0.01 181,000 1,060,611 

Anorexia Nervosa Duncan et al. (2017) 0.26 + 0.04 / 0.09 + 0.04 14,477 1,054,719 

BP Hou et al., (2016) 0.20 + 0.02 / 0.14 + 0.02 40,225 1,052,397 

Childhood Ear Infection The 23andMe Research Team 0.07 + 0.01 / 0.10 + 0.01  122,000 1,060,612 

Celiac Disease Dubois et al., (2010) 0.30 + 0.05 / 0.13 + 0.04 15,283 271,764 

Cigarettes (Ever-Smoked) Tobacco and Genetics Consortium 0.07 + 0.01 / 0.01 + 0.02 74,035 963,355 

CD Liu et al. (2015) 0.47 + 0.06 / 0.33 + 0.03 21,389 1,062, 075 

CRP Dehghan et al. (2011) 0.13 + 0.02 / 0.11 + 0.02 66,185 965,855 

Hypothyroidism (Self-Report) The 23andMe Research Team 0.05 + 0.01 / 0.08 + 0.01 135,000 1,060,612 

Major Depression PGC Depression Working Group 0.14 + 0.03 / 0.07 + 0.04 18,759  967,534 

Neuroticism Social Science Genetics Consortium 0.09 + 0.01 / 0.44 + 0.01 168,105 1,053712 

OCD PGC OCD/TS Working Group 0.29 + 0.05 / 0.09 + 0.04 10,215* 1,054,746 

PBC Cordell et al., (2015) 0.37 + 0.06 / 0.17 + 0.04 13,239 940,715 

Psoriasis Tsoi et al., (2015) 0.82 + 0.13 / 0.09 + 0.04 5,116* 1,037,355 

Rheumatoid Arthritis Okada et al,. (2014) 0.14 + 0.02 / 0.10 + 0.01 58,284 1,051,805 

SZ PGC Schizophrenia Working Group 0.47 + 0.02 / 0.62 + 0.01 77,096 1,061,529 

SLE Bentham et al., (2015) 0.27 + 0.05 / 0.27 + 0.03  23,210 1,056,783 

Tourette Syndrome PGC OCD/TS Working Group 0.35 + 0.04 /  0.08 + 0.05 13,341* 1,041, 689 

Tuberculosis Susceptability Curtis et al., (2015) 0.18 + 0.05 /  0.02 + 0.05 11,936 819,917 

Type 1 Diabetes Bradfield et al., (2011) 0.18 + 0.03 /  0.15 + 0.03 26,890 854,164 

UC Liu et al., (2015) 0.25 + 0.03 /  0.23 + 0.03 27,432 1,062,094 
Table 2.  This table displays phenotype names, data sources, and estimated SNP heritability using the linkage 
disequilibrium score regression (LDSC) and heritability estimation from summary statistics (HESS) methods, as 
well as the GWAS sample size and number of SNPs surviving quality control.  Full publication references, consortia 
names, links to web resources, and additional details on the original studies are provided in Supplementary Table I.  
GWAS N denoted with * indicates the median N for all SNPs.  Abbreviations:  Attention deficit-hyperactivity 
disorder (ADHD), bipolar disorder (BD), C-reactive protein (CRP), Crohn’s disease (CD), obsessive-compulsive 
disorder (OCD), primary biliary cirrhosis (PBC), Psychiatric Genomics Consortium (PGC), quality control (QC), 
single nucleotide polymorphism (SNP), schizophrenia (SZ), systemic lupus erythematosus (SLE), ulcerative colitis 
(UC). 
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Table 3.  Significant Local Genetic Correlations Based on HESS Analysis 

Phenotype Pair # of Correlated Loci (BH p < .05 / p < .05) with 
GWS Hits and Associated Genes Contained within Correlated Loci (BH p < 0.05) 

ADHD-CRP 0 / 7 

ADHD-CEA 0 / 3  

ADHD-Psoriasis 0 / 5 

ADHD-RA 0 / 5 

ADHD-Tuberculosis Susceptability 0 / 0 

Anorexia Nervosa-CRP 0 / 0 

BD-Celiac Disease 0 / 30 

BD -CD 0 / 12 

BD -Psoriasis 0 / 3 

BD -UC 0 / 5 

Cigarettes (Ever-Smoked)-CRP 0 / 0 

Cigarettes (Ever-Smoked)-RA 0 / 0 

Major Depression-HPT 0 / 0 

Neuroticism-CEA 0 / 14 

Neuroticism-HPT 0 / 15 

OCD-Type 1 Diabetes 0 / 1 

SZ-CD 

32 / 251 
SZ  4:102921704-103198082** (ACTR3BD4, BDH2, CENPE, SLC39A8, 
SLC9B1, SLC9B2) 
CD 4:103188709-103198082** (CENPE) 
CD 8:126529074-126568355 (FAM84B) 
CD 10:64301873-64588424 (No Genes) 
CD 12:40337163-40815560 (CNTN1, LRRK2, MUC19, RNU6-713P); 
CD 21:16790941-16841303 (No Genes) 
 

SZ-PBC 

37 / 256 
SZ 1:30427639-30437268 (No Genes)  
SZ 10:18725659-18816236 (AIFM1P1, CACNB2) 
PBC 3:16955259-16955259** (PLCL2) 
PBC 11:118579747-118743772** (ARCN1, CXCR5, DDX6, MIR6716, 
PHLDB1, RNU6-1157P, RNU6-376P, TREH, TREHP) 
PBC 22:39670851-39747780 (CACNA1I, ENTHD1) 
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SZ-SLE 

20 / 200 
SZ 1:149999764-150507233 (ANP32E, APH1A, C1orf54, CA14, CIART, MIR6878, MRPS21, 
OTUD7B, PLEKHO1, PRPF3, RN7SL480P, RNU2-17P, RPRD2, TARS2, VPS45) 
SZ 2:58377014-58383820 (FANCL, VRK2) 
SLE 1:161444369-161501904 ** (FCGR2A) 
SLE 7:128562446-128771234 (CALU, CICP14, FAM71F1, FAM71F2, IMP3P2, RN7SL81P, 
RNA5SP242, RNA5SP243, RNU6-177P) 
SLE 8:11332026-11394233 (FAM167A-AS1, RN7SL293P, RNU6-1084P, SLC35G5, TDH) 
SLE 22:21910280-21999229** (MAPK1, PPM1F, PRAMENP, TOP3B, UBE2L3) 
 

SZ-UC 
8 / 205 
UC 11:63804569-65898631** (CCDC88B, RPS6KA4, TRPT1, FLRT1) 

Tourette 
Syndrome-
Allergy 

0 / 0  

Table 3.  This table summarizes findings of local genetic correlation analysis, including the number of 
significantly correlated loci before and after Benjamini-Hochberg (BH) correction for multiple testing (shown in 
bold).  Loci that showed robust correlations were interrogated for co-localization with significant genome-wide 
associations (GWS hits, with p < 5x10-8).  The chromosomal coordinates containing GWS signal are provided, 
along with associated genes.  Proposed candidate genes are highlighted with bold text. Abbreviations:  Attention 
deficit-hyperactivity disorder (ADHD), Benjamini-Hochberg (BH), , bipolar disorder (BD), childhood ear 
infection (CEA), Crohn’s disease (CD), hypothyroidism (HPT), comparison (NC-H), obsessive compulsive 
disorder (OCD), primary biliary cirrhosis (PBC), rheumatoid arthritis (RA), schizophrenia (SZ), systemic lupus 
erythematosus (SLE), ulcerative colitis (UC). 

 

 

 

Table 4.  Loci Implicated Across Multiple Phenotype-Pairs at Uncorrected p < 0.05 

Locus # of 
Pairs Phenotype Pairs GWS Associations and Nearby Genes 

17:36809344-38877404 5 BD-CD, BD-UC, SZ-
CD, SZ-PBC, SZ-UC 

BP 17: 37839493-37893484 (ERBB2) / CD 
17:37912377-38064876 / SLE 17: 38007190-
38007319 / PBC 17:37912377-38080865 / UC 17: 
37903731-38089717 (RNU6-489P, TBC1D3C, 
TBC1D3D, TBC1D3K, TBC1D3L) 

1:200137649-201589975 4 
BD-CD, BD-UC,  SZ-
PBC, SZ-UC 

CD 1:200599616-201069559** / UC 1: 
200864267-201024059** (C1orf106, CACNA1S, 
GPR25, KIF21B) 
 

2:69139564-70755198 4 
BD-CD, SZ-CD, SZ-
SLE, SZ-UC 

None 

3:38356116-40221298 4 
Neuroticism-HPT, SZ-
PBC, SZ-SLE, SZ-UC 

None 

6:17386405-19207487 4 
SZ-CD, SZ-PBC, SZ-
SLE, SZ-UC 

None 
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8:11278998-13491775 4 
Neuroticism-HPT, SZ-
CD, SZ-PBC, SZ-
SLE 

Neuroticism 8:11281273-11895516 / SLE 
8:11426026-11546260** (BLK, C8orf49, CTSB, 
FAM167A, FAM167A-AS1, FDFT1, GATA4, 
LINC00208, MTMR9, NEIL2, RN7SL293P, RNU6-
1084P, SLC35G5, SUB1P1, TDH) 

8:9640787-10463197 4 
Neuroticism-HPT, SZ-
PBC, SZ-SLE, SZ-UC 

Neuroticism 8:9793601-10459000 (LINC00599, 
MIR124-1, MSRA) 

11:27020461-28481593 4 
SZ-CD, SZ-PBC, SZ-
SLE, SZ-UC 

None 

22:19912358-22357325 4 
SZ-CD, SZ-PBC, SZ-
SLE, SZ-UC 

CD 22:21916166-21985094** / SLE 22: 
21910280-21999229** (CCDC116, MAPK1, 
RIMBP3, UBE2L3, YDJC) 

Table 4.  This table depicts the loci that showed significant (uncorrected p < 0.05) correlations across 
multiple pairs of phenotypes.  Bold font denotes phenotype-pairs for which the locus survived BH 
multiple test correction. The ** symbol denotes loci at which multiple autoimmune disorders show an 
association reaching genome-wide significance (per immunobase.org).  Bold font is also used to 
indicate proposed candidate genes.  Abbreviations: Bipolar disorder (BD), Crohn’s disease (CD), 
genome-wide significance (GWS) defined as p < 5x10-8, hypothyroidism (HPT), primary biliary 
cirrhosis (PBC), systemic lupus erythematosus (SLE), ulcerative colitis (UC). 
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Table 5.  HESS Analysis of Putative Causal Directionality 

Phenotype 1, Phenotype 2 

Local Genetic 
Correlation + Error at 
Loci Reaching GWS 
Only for Phenotype 1 

Local Genetic 
Correlation + Error at 
Loci Reaching GWS 
Only for Phenotype 2 

Suggested 
Direction 

SZ-CD 0.37 + 0.09 0.11 + 0.08 SZ � CD 
SZ-PBCs 0.58 + 0.18 0.26 + 0.17 SZ � PBC 
SZ-SLE 0.26 + 0.13 0.16 + 0.16  SZ � SLE 
SZ-UC 0.43 + 0.09 0.16 + 0.10 SZ � UC 
Table 5.  Depicts the results of HESS analysis of putative causal directionality.  Within this analysis, local 
genetic correlations are examined within loci containing GWS associations for each phenotype.  The 
phenotype for which GWS loci produce the larger local correlations suggests that genetic liability for this 
phenotype may contribute to genetic risk for the other, especially when the correlation error bounds of the 
second phenotype overlap with zero. When both phenotypes show correlations overlapping with zero, no 
directionality is supported.  Abbreviations:  Crohn’s disease (CD), genome-wide significance (GWS) 
defined as p < 5x10-8, primary biliary cirrhosis (PBC), systemic lupus erythematosus (SLE), ulcerative 
colitis (UC). 
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Legends for Tables and Supplementary Tables 

Table 1.  This table displays psychiatric-immune phenotype-pairs showing genome-wide genetic 
correlation with the linkage disequilibrium score regression (LDSC) method after correction for the total 
number of genetic correlations depicted in Figure 1 using the Benjamini-Hochberg (BH) method.  We 
also report the genome-wide correlation estimates produced by the heritability estimation from summary 
statistics (p-HESS) method.  Abbreviations: attention deficit-hyperactivity disorder (ADHD), bipolar 
disorder (BD), C-reactive protein (CRP), Crohn’s disease (CD), obsessive compulsive disorder (OCD), 
primary biliary cirrhosis (PBC), schizophrenia (SZ), systemic lupus erythematosus (SLE), ulcerative 
colitis (UC). 
 
Table 2.  This table displays phenotype names, data sources, and estimated SNP heritability using the 
linkage disequilibrium score regression (LDSC) and heritability estimation from summary statistics 
(HESS) methods, as well as the GWAS sample size and number of SNPs surviving quality control.  Full 
publication references, consortia names, links to web resources, and additional details on the original 
studies are provided in Supplementary Table I.  GWAS N denoted with * indicates the median N for all 
SNPs.  Abbreviations:  Attention deficit-hyperactivity disorder (ADHD), bipolar disorder (BD), C-
reactive protein (CRP), Crohn’s disease (CD), obsessive-compulsive disorder (OCD), primary biliary 
cirrhosis (PBC), Psychiatric Genomics Consortium (PGC), quality control (QC), single nucleotide 
polymorphism (SNP), schizophrenia (SZ), systemic lupus erythematosus (SLE), ulcerative colitis (UC). 

 
Table 3.  This table summarizes findings of local genetic correlation analysis, including the number of 
significantly correlated loci before and after Benjamini-Hochberg (BH) correction for multiple testing 
(shown in bold).  Loci that showed robust correlations were interrogated for co-localization with 
significant genome-wide associations (GWS hits, with p < 5x10-8).  The chromosomal coordinates 
containing GWS signal are provided, along with associated genes.  Proposed candidate genes are 
highlighted with bold text. Abbreviations:  Attention deficit-hyperactivity disorder (ADHD), 
Benjamini-Hochberg (BH), , bipolar disorder (BD), childhood ear infection (CEA), Crohn’s disease 
(CD), hypothyroidism (HPT), comparison (NC-H), obsessive compulsive disorder (OCD), primary 
biliary cirrhosis (PBC), rheumatoid arthritis (RA), schizophrenia (SZ), systemic lupus erythematosus 
(SLE), ulcerative colitis (UC). 
 
Table 4.  This table depicts the loci that showed significant (uncorrected p < 0.05) correlations across 
multiple pairs of phenotypes.  Bold font denotes phenotype-pairs for which the locus survived BH 
multiple test correction. The ** symbol denotes loci at which multiple autoimmune disorders show an 
association reaching genome-wide significance (per immunobase.org).  Bold font is also used to 
indicate proposed candidate genes.  Abbreviations: Bipolar disorder (BD), Crohn’s disease (CD), 
genome-wide significance (GWS) defined as p < 5x10-8, hypothyroidism (HPT), primary biliary 
cirrhosis (PBC), systemic lupus erythematosus (SLE), ulcerative colitis (UC). 

 
Table 5.  Depicts the results of HESS analysis of putative causal directionality.  Within this analysis, local 
genetic correlations are examined within loci containing GWS associations for each phenotype.  The 
phenotype for which GWS loci produce the larger local correlations suggests that genetic liability for this 
phenotype may contribute to genetic risk for the other, especially when the correlation error bounds of the 
second phenotype overlap with zero. When both phenotypes show correlations overlapping with zero, no 
directionality is supported.  Abbreviations:  Crohn’s disease (CD), genome-wide significance (GWS) 
defined as p < 5x10-8, primary biliary cirrhosis (PBC), systemic lupus erythematosus (SLE), ulcerative 
colitis (UC). 
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Supplementary Table 1.  GWAS Sample Information and Single Phenotype Statistics, MHC Excluded. 

Supplementary Table 2.  LDSC Psychiatric-Immune Correlations 

Supplementary Table 3.  HESS Local Genetic Correlations.  

Supplementary Table 4.  LDSC Immune-Immune Correlations 

 

Figure Legends. 

Figure 1.  A heatmap depicting LDSC genome-wide genetic correlations between psychiatric and 
immune-related conditions such that red reflects more positive correlation coefficients while blue reflects 
more negative coefficients.  Correlation coefficients are provided within each cell, with full details 
provided in Supplementary Table 2.  Correlations reaching trend-level significance (0.05 < uncorrected p 
< 0.10) are depicted as colored panels, while relationships surpassing uncorrected p < 0.05 are 
additionally denoted with *, and relationships surpassing BH-p < 0.05 (for the total number of tests 
depicted in the figure) are denoted with **.  The rows and columns of the heatmap are hierarchically 
clustered based on correlation coefficients. Abbreviations:  Attention deficit-hyperactivity disorder 
(ADHD), obsessive-compulsive disorder (OCD).  

Figure 2.  This figure depicts the HESS local genetic correlation data with respect to the genome and 
previously reported genome-wide association signals for respective disorders.  A model genome using 
HG19 coordinates is depicted in grey. Moving outward from the center of the plot, the first track 
containing a red histogram depicts loci significantly associated with SZ (GWAS p < 5x10-8), with larger 
peaks indicating more significance (plotted as -log(p-value)). The second track (labeled SZ-CD) depicts 
regions of genetic correlation between SZ and CD, such that blue reflects uncorrected p < 0.05 and red 
reflects BH corrected p < 0.05.  The next track (labeled CD Hits) contains a histogram depicting CD 
GWAS signal as described previously.  The next pair of tracks depict genetic correlations for SZ-PBC 
and PBC GWAS signal, respectively.  The third pair of tracks depicts this information for SZ-SLE (with 
SLE GWAS signal).  The fourth pair of tracks depicts this information for SZ-UC and UC GWAS signal, 
respectively.  In the center of the plot, we identify several GWAS candidate genes using colored text and 
arrows to indicate the pertinent locus; colored text and arrows are used to indicate the relevant phenotype-
pairs, such that green = SZ-CD, orange = SZ-PBC, yellow = SZ-SLE, brown = SZ-PBC/SLE, and purple 
= SZ/BD-CD/PBC/UC. 

Supplementary Figure 1.  Depicts the relationship between LDSC and HESS genome-wide genetic 
correlation coefficients (pearson r = 0.25, p = 0.25).   

Supplementary Figure 2.  Depicts the absolute value of the difference between LDSC and HESS genome-
wide genetic correlation coefficients and the average sample size of the two contributing GWAS studies 
(pearson r = -0.44, p = 0.035).   

Supplementary Figure 3.  Depicts differences in LDSC-based genome-wide correlations based on dataset 
selection and pre-filtering decisions for a select set of phenotypes.  Each dataset is coded with the GWAS 
first author’s name and the filtering threshold.  1KGMAF>=05% reflects retention of SNPs with minor 
allele frequencies > 5% within the thousand genomes phase 3 reference panel.  INFO>=90% reflects 
retention of SNPs with imputation quality scores > 0.9.   ALL SNPs indicates that no SNPs were filtered, 
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because INFO score was not available for these data. Correlations reaching trend-level significance (0.05 
< uncorrected p < 0.10) are depicted as colored panels, while relationships surpassing uncorrected p < 
0.05 are additionally denoted with *, and relationships surpassing BH-p < 0.05 (for the total number of 
tests depicted in Supplementary Figure 2) are denoted with **. 

Supplementary Figure 4.  Depicts differences in LDSC-based genome-wide correlations based on dataset 
selection and pre-filtering decisions for a select set of phenotypes in relation to the larger set of 
phenotypes.  Datasets that were differentially processed are indicated with first author’s name and the 
filtering threshold.  1KGMAF>=05% reflects retention of SNPs with minor allele frequencies > 5% 
within the thousand genomes phase 3 reference panel.  INFO>=90% reflects retention of SNPs with 
imputation quality scores > 0.9.   ALL SNPs indicates that no SNPs were filtered, because INFO score 
was not available for these data. Correlations reaching trend-level significance (0.05 < uncorrected p < 
0.10) are depicted as colored panels, while relationships surpassing uncorrected p < 0.05 are additionally 
denoted with *, and relationships surpassing BH-p < 0.05 (for the total number of tests depicted in 
Supplementary Figure 2) are denoted with **.  Full results are provided in Supplementary Table 2. 

Supplementary Figure 5.  A heatmap depicting LDSC genome-wide genetic correlations between among 
immune-related conditions such that red reflects more positive correlation coefficients while blue reflects 
more negative coefficients.  Correlation coefficients are provided within each cell, with full details 
provided in Supplementary Table 4.  Correlations reaching trend-level significance (0.05 < uncorrected p 
< 0.10) are depicted as colored panels, while relationships surpassing uncorrected p < 0.05 are 
additionally denoted with *, and relationships surpassing BH-p < 0.05 (for the total number of tests 
depicted in the figure) are denoted with **.  The rows and columns of the heatmap are hierarchically 
clustered based on correlation coefficients. 

 

 

Manuscript Abbreviations 

Attention deficit-hyperactivity disorder (ADHD), Benjamini-Hochberg (BH), bipolar disorder (BD), C-

reactive protein (CRP), Crohn’s disease (CD), genome-wide association study (GWAS), genome-wide 

significant associations (GW hits), heritability estimation from summary statistics (HESS), linkage 

disequilibrium (LD), linkage disequilibrium score regression (LDSC), major histocompatibility (MHC), 

obsessive compulsive disorder (OCD), primary biliary cirrhosis (PBC), Psychiatric Genomics Consortium 

(PGC), quality control (QC), restricted maximum likelihood (REML), schizophrenia (SZ), single 

nucleotide polymorphism (SNP), systemic lupus erythematosus (SLE), ulcerative colitis (UC). 
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