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Abstract 20	

Nonsense suppressors (NonSups) treat premature termination codon (PTC) disorders by inducing 21	

the selection of near cognate tRNAs at the PTC position, allowing readthrough of the PTC and 22	

production of full-length protein. Studies  of NonSup-induced readthrough of eukaryotic PTCs 23	

have been carried out using animals, cells or crude cell extracts. In these studies, NonSups can 24	

promote readthrough directly, by binding to components of the protein synthesis machinery, or 25	

indirectly, by inhibiting nonsense-mediated mRNA decay or by other mechanisms. Here we utilize 26	

a highly-purified in vitro system (Zhang et al., 2016. eLife	5:	e13429) to measure exclusively direct 27	

NonSup-induced readthrough. Of 17 previously identified NonSups, 13 display direct effects, 28	

apparently via at least two different mechanisms. We can monitor such direct effects by single 29	

molecule FRET (smFRET). Future smFRET experiments will permit elucidation of the 30	

mechanisms by which NonSups stimulate direct readthrough, aiding ongoing efforts to improve 31	

the clinical usefulness of NonSups. 32	

  33	
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Introduction 34	

Premature termination codons (PTCs) arise as a consequence of nonsense mutations and 35	

lead to the replacement of an amino acid codon in mRNA by one of three stop codons, UAA, UGA 36	

or UAG (Brenner, et al., 1965; Shalev and Baasov, 2014; Keeling, et al., 2014), resulting in 37	

inactive truncated protein products.  Nonsense mutations constitute ~20% of transmitted or de novo 38	

germline mutations (Salvatori, et al., 2009; Goldmann, et al., 2012; Stenson, et al., 2017). Globally, 39	

there are ~7000 genetically transmitted disorders in humans and ~11% of all human disease 40	

mutations are nonsense mutations (Loudon, 2013). Clearly, millions of people worldwide would 41	

benefit from effective therapies directed toward PTC suppression. Clinical trials have begun to 42	

evaluate the treatment of PTC disorders with therapeutic agents called nonsense suppressors 43	

(NonSups) (Peltz, et al., 2013; McDonald, et al., 2017; Zainal Abidin, et al., 2017). NonSups 44	

induce the selection of near cognate tRNAs at the PTC position, and insertion of the corresponding 45	

amino acid into the nascent polypeptide, a process referred to as “readthrough”, which restores the 46	

production of full length functional proteins, albeit at levels considerably reduced from wild-type.  47	

Even low rates of readthrough can improve clinical outcomes when essential proteins are 48	

completely absent. Examples of such essential proteins include Cystic Fibrosis Transmembrane 49	

Regulator (CFTR) (Brodlie, et al., 2015), dystrophin, and the cancer tumor suppressors 50	

adenomatous polyposis coli (APS) (Floquet, et al., 2011; Zilberberg, et al., 2010) protein and p53 51	

(Miyaki, et al., 2002; Floquet, et al., 2011; Roy, et al., 2016; Baradaran-Heravi, et al., 2016).  52	

In vitro, ex vivo, and in vivo experiments and clinical trials have identified a diverse 53	

structural set of NonSups as candidates for PTC suppression therapy (Figure 1), including 54	

aminoglycosides (Shalev and Baasov, 2014; Bidou, et al., 2017; Oishi, et al., 2015; Duscha, et al., 55	

2014; Floquet, et al., 2012; Sangkuhl, et al., 2004; Fuchshuber-Moraes, et al., 2011; Cogan, et al., 56	
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2014; Baradaran-Heravi, et al., 2017), ataluren (Peltz, et al., 2013; Roy, et al., 2016; Welch, et al., 57	

2007) and ataluren-like molecules (Du, et al., 2009; Du, et al., 2013; Gómez-Grau, et al., 2015) 58	

and others (Zilberberg, et al., 2010; Arakawa, et al., 2003; Hamada, et al., 2015; Caspi, et al., 59	

2016; Mutyam, et al., 2016). To date, only one NonSup, ataluren (known commercially as 60	

Translarna), has been approved in the EU for clinical use, but this approval is limited to treatment 61	

of patients with nonsense-mediated Duchenne muscular dystrophy. The clinical utility of other 62	

NonSups, such as aminoglycosides, is restricted, in part, by their toxic side effects. A critical 63	

barrier to development of NonSups that are more clinically useful is the paucity of information 64	

regarding the precise mechanisms by which these molecules stimulate readthrough. All prior 65	

results measuring nonsense suppressor-induced readthrough (NSIRT) of eukaryotic PTCs have 66	

been carried out using animals, intact cells or crude cell extracts. In such systems, NonSups can 67	

promote readthrough directly, by binding to one or more of the components of the protein synthesis 68	

machinery, or indirectly, either by inhibiting nonsense-mediated mRNA decay (NMD) (He and 69	

Jacobson, 2015), or by modulating processes altering the cellular activity levels of protein 70	

synthesis machinery components (Feng, et al., 2014; Keeling, 2016). These assays thus measure a 71	

quantity we define as TOTAL-NSIRT. This multiplicity of possible mechanisms of nonsense 72	

suppression within TOTAL-NSIRT has complicated attempts to determine the precise 73	

mechanisms of action of specific NonSups and limited the use of rational design in identifying 74	

new, more clinically useful NonSups.  75	

Recently, we developed a highly purified, eukaryotic cell-free protein synthesis system 76	

(Zhang, et al., 2016) that we apply here to examine the direct effects of the NonSups on the protein 77	

synthesis machinery, which we define as DIRECT-NSIRT. Our results allow us to distinguish 78	

NonSups acting directly on the protein synthesis machinery from those that act indirectly and 79	
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suggest that NonSups having DIRECT-NSIRT effects can be divided into at least two distinctive 80	

structural groups that induce nonsense suppression by different mechanisms. We also demonstrate 81	

the potential of using single molecule fluorescence resonance energy transfer (smFRET) 82	

experiments to elucidate the details of such mechanisms. 83	

 84	

Materials and Methods 85	

Nonsense suppressors (Figure 1). The following NonSups were obtained from commercial sources: 86	

gentamicin mixture and G418 (Sigma), nourseothricin sulfate, a mixture of streptothricins D and 87	

F (Gold Biotechnology), doxorubicin (Fisher Scientific), escin and tylosin (Alfa Aesar), 88	

azithromycin (APExBIO). Gentamicins B and B1 were prepared as described (Baradaran-Heravi, 89	

et al., 2017). PTC Therapeutics supplied the following NonSups: ataluren sodium salt, RTC13, 90	

GJ071, GJ072, and gentamicin X2. Negamycin was a gift from Alexander Mankin, University of 91	

Illinois at Chicago. NB84 and NB124 (Bidou, et al., 2017), currently available as ELX-02 and 92	

ELX-03, respectively, from Eloxx Pharmaceuticals (Waltham, MA), were gifts from Timor 93	

Baasov (Technion, Haifa). 94	

 95	

Ribosomes and factors. Shrimp (A. salina) ribosome subunits were prepared from dried frozen 96	

commercial cysts as described (Zhang, et al., 2016; Iwasaki and Kaziro, 1979) with slight 97	

modifications. Shrimp cysts (Pentair Aquatic Ecosystems) (425 g) were ground open using a 98	

blender in the presence of buffer M (30 mM HEPES-KOH, pH 7.5, 50 mM KCl, 10 mM MgCl2, 99	

8.5% mannitol, 0.5 mM EDTA, 2 mM DTT, 1 mM PMSF, 1:3000 RNasin (New England Biolabs) 100	

(500 mL), and two Protease Inhibitor Complete minitablets (Roche). Cyst debris was removed by 101	

two centrifugations at 30,000 x g for 15 min at 4°C. 80S ribosomes in the supernatant were 102	
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precipitated by adding 175 mL of 4.5% PEG 20k (Ben-Shem, et al., 2011) and resuspended in 60 103	

mL of dissociation  buffer 1 (20 mM HEPES-KOH, pH 7.5, 500 mM KCl, 2 mM MgCl2, 6.8% 104	

sucrose 2 mM DTT, 1:1000 RNasin, 2 protease minitablets). Puromycin was added to a final 105	

concentration of 2 mM, and the resulting solution was incubated on ice for 30 min, then at 37 °C 106	

for 15 min. 40S and 60S subunits (approximately 6,000 A260 units) were then resolved by a 10-107	

30% hyperbolic sucrose gradient centrifugation for 16 h in a Beckman Ti15 zonal rotor at 376,000 108	

x g in dissociation buffer 2 (20 mM HEPES, pH 7.5, 0.5 M KCl, 5 mM MgCl2, 3 mM EDTA, 2 109	

mM DTT) at 4 oC. Carrier 70S ribosomes were isolated from S30 of E. coli cells by three 110	

consecutive ultracentrifugations through a 1.1 M sucrose cushion in a buffer of 20 mM Tris, pH 111	

7.5, 500 mM NH4Cl, 10 mM Mg Acetate, 0.5 mM EDTA, 3 mM 2-mercaptoethanol. Elongation 112	

factors eEF2 (Jørgensen, et al., 2002) and eEF1A (Thiele, et al., 1985) were isolated from Baker’s 113	

yeast as described.  Yeast 6xHis-tagged release factors (full-length eRF1 and amino acids 166-685 114	

of eRF3) were expressed in E. coli and purified using a TALON cobalt resin. Both release factors 115	

were a generous gift from Alper Celik (University of Massachusetts Medical School).  116	

 117	

tRNA and mRNA. tRNALys, tRNAVal, tRNAGln, and tRNAMet were isolated from E. coli bulk tRNA 118	

(Roche). tRNAArg, tRNATrp and tRNALeu were isolated from Baker’s yeast bulk tRNA (Roche), 119	

using hybridization with immobilized complementary oligoDNA as described previously 120	

(Barhoom, et al., 2013; Liu, et al., 2014). Yeast tRNAPhe (Sigma) and all isoacceptor tRNAs 121	

mentioned above where charged with their cognate amino acids as described (Pan, et al., 2007; 122	

Pan, et al., 2009). CrPV-IRES (Zhang, et al., 2016) was modified by Genscript, Inc to encode the 123	

initial mRNA sequence UUCAAAGUGAGAUGGCUAAUG (denoted Trp-IRES). A point 124	

mutation was introduced into Trp-IRES to convert the UGG codon for Trp into a UGA stop codon 125	
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(UUCAAAGUGAGAUGACUAAUG, denoted Stop-IRES). These two sequences were inserted 126	

into pUC57-Kan plasmid and amplified in TOP 10 competent cells. Plasmids were extracted using 127	

QIAGEN Plasmid Kits and linearized. Trp-IRES and STOP-IRES were produced by in-vitro 128	

transcription.  129	

 130	

POST4 and POST5 Complex Preparation. 80S-IRES complex was first formed by incubating 0.8 131	

µM 40S, 1.1 µM 60S and 0.8 µM IRES in Buffer 4 (40 mM Tris-HCl pH 7.5, 80 mM NH4Cl, 5 132	

mM Mg(OAc)2, 100 mM KOAc, 3 mM 2-mercaptoethanol) at 37 °C for 2 min. Post-translocation 133	

complex with FKVR-tRNAArg  in the ribosomal P-site tRNA (POST4) was formed by incubating 134	

0.4 µM 80S-IRES with 0.4 µM each of the first four aminoacylated tRNAs, 0.4 µM eEF1A, 1.0 135	

µM eEF2, 1 mM GTP at 37 °C for 25 min in Buffer 4.  POST4 was then purified by 136	

ultracentrifugation in 1.1 M sucrose with Buffer 4 at 540,000 x g for 90 min at 4°C. POST4 pellet 137	

was resuspended in Buffer 4. Post-translocation complex with FKVRQ-tRNAGln in the ribosomal 138	

P-site tRNA (POST5) was prepared in identical fashion, except that the first five aminoacylated 139	

tRNAs were added prior to the 25 min incubation at 37 °C. POST-4 amd POST-5 complexes could 140	

be prepared and stored in small aliquots at -80 0C for at least three months with no discernible loss 141	

of activity. 142	

 143	

In vitro tRNA-Quant and PEP-Quant Readthrough Assays. POST5 complex (0.02 µM) was mixed 144	

with Trp-tRNATrp, Leu-tRNALeu, and [35S]-Met-tRNAMet (0.08 µM each), elongation factors 145	

eEF1A (0.08 µM), eEF-2 (1.0 µM) and release factors eRF1 (0.010 µM) and eRF3 (0.020 µM) 146	

and incubated at 37 °C in Buffer 4 for 20 min, in the absence or presence of NonSups.  147	
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For the tRNA-Quant Assay, reaction mixture aliquots (40 µL) were quenched with 150 µL 148	

of 0.5 M MES buffer (pH 6.0). Following addition of carrier 70S E. coli ribosomes (100 pmol, 3 149	

µL of 33 µM 70S), all ribosomes were pelleted by ultracentrifugation through a 1.1 M sucrose 150	

solution in Buffer 4 (350 µL) at 540,000 x g for 70 min at 4°C. The ribosome pellet was 151	

resuspended in Buffer 4, and co-sedimenting FKVRQWL[35S]M-tRNAMet was determined.  152	

For the Pep-Quant Assay, reaction mixture aliquots (80 µL) were quenched with 0.8 M 153	

KOH (9 µL of 8M KOH) and the base-quenched samples were incubated at 37 oC for 1 h to 154	

completely release octapeptide FKVRQWL[35S]M from tRNAMet. Acetic acid (9 µL) was then 155	

added to lower the pH to 2.8. Samples were next lyophilized, suspended in water, and centrifuged 156	

to remove particulates. The particulates contained no 35S. The supernatant was analyzed by thin 157	

layer electrophoresis (TLE) as previously described (Youngman, et al., 2004), using the same 158	

running buffer. The identity of FKVRQWLM was confirmed by the co-migration of the 35S 159	

radioactivity with authentic samples obtained from GenScript (Piscataway, NJ). The 35S 160	

radioactivity in the octapeptide band was used to determine the amount of octapeptide produced.  161	

In both assays, the assay background was determined as 35S either co-sedimenting (tRNA-162	

Quant) or comigrating (PEP-Quant) in the absence of added Trp-tRNATrp. These levels were 0.09 163	

± 0.01 (sd, n = 80) octapeptide/POST5 for the tRNA-Quant assay and 0.04 ± 0.01 (sd, n = 8) 164	

octapeptide/POST5 for the PEP-Quant assay. Some NonSups are poorly soluble in water and were 165	

added to reaction mixtures from concentrated solutions made up in either DMSO (RTC13, GJ071, 166	

GJ072, azithromycin) or methanol (escin). The level of organic solvent in the assay medium was 167	

≤ 0.5%. For these NonSups the small amount of readthrough induced in the presence of added 168	

Trp-tRNATrp by added organic solvent (Table S1) was additionally subtracted as background. 169	

Readthrough levels presented in Figures 3 and S3 are all background subtracted. Although PEP-170	
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Quant has a lower procedural background, it is time consuming to perform, and less precise than 171	

tRNA-Quant.  Both assays show a basal level of readthrough, in the absence of added NonSup, of 172	

0.08 ± 0.02 (sd, n=40) octapeptide/POST5 above background, with some day-to-day variation.  173	

 174	

smFRET experiments. Fluorescent ternary complexes (TCs) were prepared by incubating 1 µM 175	

eEF-1A, 3 µM GTP, and 1 µM charged tRNAs labeled with either Cy3 or Cy5 (Chen, et al., 2011) 176	

at 37 °C for 15 min in Buffer 4. For experiments measuring only PRE6 complex formation, POST4 177	

complex, containing FVKR-tRNAArg in the P-site and formed from ribosomes programmed with 178	

either Trp-IRES or Stop-IRES  biotinylated at the 5’ end (Chen, et al., 2011),  was incubated with 179	

15 nM Gln-TC(Cy5), 1 µM eEF-2 and 2 mM GTP in buffer 4 for 5 min at room temperature. The 180	

resulting POST5 complex was immobilized on a streptavidin/biotin-PEG coated glass surface 181	

(Chen, et al., 2011). After two minutes of incubation, unbound reaction components were washed 182	

out of the channel and 15 nM Trp-TC(Cy3) was added, with or without a NonSup, into the channel 183	

to make a PRE6 complex. Unbound Trp-TC(Cy3) was washed out of the channel with Buffer 4 184	

containing a deoxygenation enzyme system of 100 µg/mL glucose oxidase, 3 mg/mL glucose, and 185	

48 µg/mL catalase to minimize photobleaching. Cy3 and Cy5 fluorescence intensities were 186	

collected with 100 ms time resolution using alternating laser excitation (ALEX) between 532 nm 187	

and 640 nm lasers on an objective-type total internal reflection fluorescence microscope described 188	

previously (Chen, et al., 2011). For experiments measuring both PRE6 complex and POST6 189	

complex formation, Trp-IRES-PRE6 complex was formed as described above and 1 μM eEF-2 190	

was injected while recording the FRET between FVKRQW-tRNATrp(Cy3) and tRNAGln(Cy5). 191	

Ataluren 19F NMR Spectroscopy. Various concentrations of ataluren solutions (0.03, 0.1 and 2.0 192	

mM) were prepared in buffer 4 with 10% D2O. The 19F NMR spectrum of each solution was 193	
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recorded on a Bruker DMX 360 MHz NMR spectrometer with a 5 mm Quattro Nucleus Probe. 194	

Data were analyzed with mNova software. 195	

 196	

Results 197	

The in vitro ribosomal readthrough assay. Structural studies (Fernández, et al., 2014; Koh, et al., 198	

2014; Muhs, et al., 2015; Murray, et al., 2016; Abeyrathne, et al., 2016)  have shown that, prior to 199	

polypeptide chain elongation, the cricket paralysis virus (CrPV) IRES structure occupies all three 200	

tRNA binding sites (E, P, and A) on the 80S ribosome. We have recently demonstrated that the 201	

first two cycles of peptide elongation proceed very slowly due to very low rates of pseudo-202	

translocation and translocation, but that, following translocation of tripeptidyl-tRNA, subsequent 203	

elongation cycles proceed more rapidly (Zhang, et al., 2016). Based on these results we 204	

constructed an assay to directly monitor readthrough of the sixth codon, when the faster elongation 205	

rate is well established. For this purpose, we prepared the two CrPv IRES coding sequences, 206	

STOP-IRES and Trp-IRES (Figure 2). STOP-IRES contains the stop codon UGA at position 6 and 207	

has a peptide coding sequence designed to give a high amount of readthrough, based on previous 208	

studies showing that readthrough at the UGA stop codon proceeds in higher yields than at either 209	

the UAA and UAG stop codons (Dabrowski, et al., 2015) and that such readthrough is further 210	

increased by both a downstream CUA codon (encoding Leu) at positions +4 - +6 (Stiebler, et al., 211	

2014; Loughran, et al., 2014) and an upstream AA sequence at positions -1 and -2 (Dabrowski, et 212	

al., 2015). In TRP-IRES UGA is replaced by UGG which is cognate to tRNATrp, the most efficient 213	

natural tRNA suppressor of the UGA codon (Blanchet, et al., 2014; Roy, et al., 2015). Trp-IRES 214	

encodes the octapeptide FKVRQWLM, which permits facile quantification of octapeptide 215	

synthesis by 35S-Met incorporation. 216	
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For the results reported below, we first prepared two POST5 translocation complexes, each 217	

containing FKVRQ-tRNAGln in the P-site, using ribosomes programmed with either STOP-IRES 218	

or TRP-IRES. We then used the tRNA-Quant assay, which is rapid and precise, to determine the 219	

amount of FKVRQWLM-tRNAMet formed on incubating each POST5 complex with a mixture of 220	

Trp-tRNATrp, Leu-tRNALeu, [35S]-Met-tRNAMet, elongation factors eEF1A and eEF2 and release 221	

factors eRF1 and eRF3. We verified the validity of the tRNA-Quant assay by demonstrating that 222	

it gives results that are very similar  to those obtained with the PEP-Quant assay (Figure S1), in 223	

which, following base treatment, the amount of FKVRQWLM octapeptide is determined following 224	

a TLE separation procedure (Zhang, et al., 2016; Youngman, et al., 2004).  225	

 226	

Induction of readthrough by aminoglycosides (AGs). Results with the eight AGs examined are all 227	

consistent with a single tight site of AG binding to the ribosome (Garreau de Loubresse, et al., 228	

2014) resulting in increased readthrough, with EC50s falling in the range of 0.14 – 4 µM and 229	

fractional readthrough efficiencies of Stop-IRES varying from 0.1 – 0.3 (Table 1), as compared 230	

with an efficiency of 1.00 ± 0.02 (n = 24) for conversion of POST5 to POST8 complex with Trp-231	

IRES (Figure 3A, Table 1). These results are consistent with results on readthrough obtained in 232	

intact cells showing a) G418, gentamicin B1 (Baradaran-Heravi, et al., 2017), NB84, NB124 233	

(Bidou, et al., 2017) and gentamicin X2 (Friesen, et al., 2018) to be much more effective than the 234	

gentamicin mixture currently used as an approved antibiotic; b) gentamicin B1 to be much more 235	

effective than gentamicin B, despite their differing by only a single methyl group (Figure 1) 236	

(Baradaran-Heravi, et al., 2017); c) gentamicin B1 to be more effective than streptothricin (Figure 237	

S2C); d) NB84, NB124 (Bidou, et al., 2017), and gentamicin X2 (Friesen, et al., 2018), to have 238	

similar potencies, measured by either EC50 or readthrough efficiency.  239	
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Induction of readthrough by ataluren-like compounds. The NonSups ataluren, GJ072, and RTC 13 240	

share similar structures, containing a central aromatic heterocycle having two or three substituents, 241	

at least one of which is aromatic (Figure 1). They also show similar S-shaped readthrough activity 242	

saturation curves (Figure 3B), with EC50 values between 0.17 – 0.35 mM and plateau readthrough 243	

efficiencies ranging from 0.10 – 0.16 (Table 1). These S-shaped curves yield Hill n values of ~ 4, 244	

which suggest multi-site binding of ataluren-like NonSups to the protein synthesis machinery. 245	

Formation of NonSup aggregates in solution that induce readthrough could also give rise to S-246	

shaped curves, but we consider this to be unlikely based on the constancy of the chemical shift and 247	

line shape of ataluren’s 19F NMR peak over a concentration range of 0.03 – 2.0 mM (see 248	

Supplementary Information). 249	

 250	

Induction of readthrough by other NonSups. Two other reported NonSups, negamycin (Taguchi, 251	

et al., 2017) and doxorubicin (Mutyam, et al., 2016) also display readthrough activity in the tRNA-252	

Quant assay (Figure 3B). The results with each fit a simple saturation curve. Both NonSups have 253	

similar readthrough efficiencies (0.10 – 0.13) but a 50-fold difference in EC50 values, with 254	

doxorubicin having the much lower value (Table 1). Several other compounds that have 255	

readthrough activity in cellular assays, tylosin (Zilberberg, et al., 2010), azithromycin (Caspi, et 256	

al., 2016), GJ071 (Du, et al., 2013) and escin (Mutyam, et al., 2016) showed little or no activity 257	

in the tRNA-Quant assay in the concentration range 30 – 600 µM (Figure S3). In addition, escin 258	

at high concentration inhibits both basal readthrough elongation and normal elongation, the latter 259	

measured with Trp-IRES programmed ribosomes, with the effect on basal readthrough being much 260	

more severe (Figure S4).   261	

 262	
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Single molecule assay of readthrough activity. Two fluorescent labeled tRNAs, when bound 263	

simultaneously to a ribosome, at either the A- and P-sites in a pretranslocation complex, or the P- 264	

and E-sites in a postranslocation complex, are close enough to generate a FRET signal (Chen, et 265	

al., 2011; Blanchard, et al., 2004). We observed tRNA-tRNA FRET in the pretranslocation 266	

complex (Trp-IRES-PRE6), formed by incubating the Cy5-labeled Trp-IRES-POST5 with Cy3-267	

labeled eEF1A.GTP.Trp-tRNATrp, and having tRNAGln(Cy5) in the P-site and FKVRQW-268	

tRNATrp(Cy3) in the A-site (Figure 4). Addition of eEF2.GTP converted Trp-IRES-PRE6 to a Trp-269	

IRES-POST6 complex, containing tRNAGln(Cy5) in the E-site and FKVRQW-tRNATrp(Cy3) in 270	

the P-site, which is accompanied by an increase in Cy3:Cy5 FRET efficiency (Figure 4). 271	

Repetition of this experiment with Stop-IRES-POST5 in the absence of eEF2 decreased the 272	

number of pretranslocation complexes (STOP-IRES-PRE6) formed to 24% of that seen with Trp-273	

IRES (Figure 4). This value was increased in a dose-dependent manner by addition of either G418 274	

or gentamicin B1 (Figure 4B), with relative potencies similar to those displayed in Table 1. G418 275	

and gentamicin did not significantly affect formation of Trp-IRES-PRE6 from Trp-IRES-POST5 276	

on addition of Cy3-labeled eEF1A.GTP.Trp-tRNATrp. The agreement between the ensemble and 277	

single molecule assays demonstrates our ability to monitor NonSup-induced readthrough by 278	

smFRET, which, in subsequent studies, will allow determination of the effects of NonSups on the 279	

dynamics of the nascent peptide elongation cycle that commences with suppressor tRNA 280	

recognition of a premature stop codon.  281	

  282	

Discussion 283	

 Here we utilize a straightforward in vitro assay, tRNA-Quant, to measure direct nonsense 284	

suppressor-induced readthrough (DIRECT-NSIRT) of a termination codon. In the tRNA-Quant 285	

assay, the arrival of the UGA termination codon into the 40S subunit portion of the tRNA A-site 286	
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has two possible outcomes: termination of peptide synthesis via eRF1/eRF3-catayzed hydrolysis 287	

of the P-site-bound FKVRQ-tRNAGln or readthrough via productive A-site binding of near-cognate 288	

Trp-tRNATrp followed by productive binding of the cognate Leu-tRNALeu and Met- tRNAMet 289	

leading to FKVRQWLM-tRNAMet formation. NonSups increase the readthrough percentage by 290	

binding to one or more of the specific components of the protein synthesis apparatus present in the 291	

assay. Our working hypothesis is that Direct-NSIRT is an important, perhaps dominant, part of 292	

Total-NSIRT for NonSups showing parallel effects in tRNA-Quant and cellular assays, such as 293	

those included in Table 1.  In contrast, biological activities of NonSups showing strong 294	

readthrough activity in cellular assays but little readthrough activity in tRNA-Quant (Figure S3), 295	

are likely be dominated by indirect effects. 296	

Our results suggest that aminoglycosides and ataluren-like compounds stimulate 297	

readthrough by different mechanisms, AGs via binding to a single tight site on the ribosome and 298	

ataluren-like compounds via weaker, multi-site binding. (Figures 3, S2; Table 1). The EC50 values 299	

found in intact cells differ considerably from those measured by tRNA-Quant, being much higher 300	

for AGs (Bidou, et al., 2017; Baradaran-Heravi, et al., 2017), and much lower for ataluren (Peltz, 301	

et al., 2013; Roy, et al., 2016), RTC13 (Du, et al., 2013) and GJ072 (Du, et al., 2013). We attribute 302	

these differences to the fact that positively charged aminoglycosides are taken up poorly into cells, 303	

while uptake is favored for the hydrophobic ataluren-like molecules. Thus, vis-à-vis the culture 304	

medium, intracellular concentration would be expected to be lower for AGs and higher for 305	

ataluren, RTC13 and GJ072. Although the NonSups doxorubicin and negamycin have only modest 306	

activities (Figure 3, Table 1) each of these compounds have potential interest for future 307	

development. Doxorubicin has a relatively low EC50, is clinically approved for use in cancer 308	

chemotherapy, and is the subject of ongoing efforts to identify doxorubicin congeners having 309	
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lower toxicity than doxorubicin itself (Kizek, et al., 2012; Edwardson, et al., 2015).   Negamycin 310	

exhibits low acute toxicity and there are ongoing efforts to increase its readthrough activity via 311	

structure – function studies (Taguchi, et al., 2017).   312	

A critical barrier to further development of NonSups that are clinically useful is the paucity 313	

of information regarding the mechanisms by which they stimulate readthrough and misreading. 314	

Aminoglycosides have well-characterized binding sites in both prokaryotic (Lin, et al., 2018) and 315	

eukaryotic ribosomes (Garreau de Loubresse, et al., 2014), proximal to the small subunit decoding 316	

center, that have been linked to their promotion of misreading.  Similarly, the functionally 317	

important prokaryotic ribosome binding site of negamycin has also been identified within a 318	

conserved small subunit rRNA region that is proximal to the decoding center (Lin, et al., 2018; 319	

Spahn, et al., 2001), and it is not unlikely that this site is also present in eukaryotic ribosomes.   320	

However, nothing is known about the readthrough-inducing sites of action within the protein 321	

synthesis apparatus of the ataluren-like NonSups (Figure 3B) or of doxorubicin. Indeed, it has even 322	

been suggested that ataluren may not target the ribosome (Pibiri, et al., 2015). Although 323	

aminoglycosides have been the subject of detailed mechanism studies of their effects on 324	

prokaryotic misreading (Liu, et al., 2014; Pape, et al., 2000; Gromadski and Rodnina, 2004; 325	

Cochella, et al., 2006; Tsai, et al., 2013; Zhang, et al., 2018), questions remain over their precise 326	

modes of action, and detailed mechanistic studies on aminoglycoside stimulation of eukaryotic 327	

readthrough and misreading are completely lacking. Virtually nothing is known about the 328	

mechanisms of action of negamycin, doxorubicin, and the ataluren-like NonSups in stimulating 329	

eukaryotic readthrough. Single molecule FRET is a method of choice for obtaining detailed 330	

information about processive biochemical reaction mechanisms (Roy, et al., 2008), particularly in 331	

the study of protein synthesis (Perez and Gonzalez, 2011; Aitken, et al., 2010; Wang, et al., 2011; 332	
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Chen, et al., 2013), because it permits determination of distributions, variations and fluctuations 333	

among different ribosome conformational states and of complex multistep reaction trajectories.  334	

Here we demonstrate the feasibility of using smFRET observations for detailed examination of 335	

NonSup-stimulation of readthrough (Figure 4) and misreading, which, combined with other 336	

mechanistic studies, should aid in achieving the understanding needed to improve the clinical 337	

usefulness of NonSups. 338	
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TABLES 593	

Table 1. Non-Sup Induced Readthrough 
NonSup EC50 (µM) Readthrough 

fractiona 
Hill n 

Aminoglycosides    
Gentamicin B1 0.14 ± 0.02 0.27 ± 0.01 - 
Gentamicin X2 0.42 ± 0.08 0.31 ± 0.02 - 
NB124 0.52 ± 0.05 0.21 ± 0.01 - 
Gentamicin B 0.54 ± 0.15 0.081 ± 0.005 - 
NB84 0.68 ± 0.06 0.19 ± 0.01 - 
G418 0.99 ± 0.09 0.32 ± 0.01 - 
Streptothricin 1.5 ± 0.3 0.26 ± 0.01 - 
Commercial Gentamicin 
(mixture) 

4.2 ± 0.6 0.29 ± 0.02 - 

Ataluren-Like     
GJ072 98 ± 4 0.16 ± 0.01 4.2 ± 0.7 
RTC13 270 ± 15 0.10 ± 0.01 3.1 ± 0.5 
Ataluren 350 ± 20 0.15 ± 0.01 4.3 ± 0.8 
Other    
Doxorubicin 9.8 ± 1.8 0.11 ± 0.01 - 
Negamycin 490 ± 70 0.13 ± 0.01 - 
aPlateau octapeptide formed/POST5  
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FIGURES 605	

 606	

Figure 1. The structures of the nonsense suppressors (NonSups) studied in this work. 607	

 608	

 609	
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 620	

Figure 2. Coding sequences of Trp-IRES and Stop-IRES 621	
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622	

 623	

Figure 3. Readthrough as a function of nonsense suppressor concentration. A. Aminoglycosides. 624	

B. Ataluren-like NonSups and Others.  The highest doxorubicin employed was 30 µM because 625	

higher concentrations led to significant ribosome and Met-tRNAMet particle formation (Figure S5). 626	

None of the NonSups in Figure 3 showed appreciable inhibition of octapeptide formation from 627	

pentapeptide by ribosomes programmed with Trp-IRES at concentrations equal to twice their EC50 628	

values. 629	
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 630	

 631	

Figure 4. smFRET Experiments. A. eEF2-induced translocation of the 80S-Trp-IRES-PRE6 632	

complex to form 80S-Trp-IRES-POST6 complex followed by release of tRNAGln. The Trp-IRES-633	

PRE6 complex contains tRNAGln(Cy5) in the P-site and FKVRQW-tRNATrp(Cy3) in the A-site.  634	

The cartoon at top shows the state progression during translocation. i. Single molecule traces. 635	

Green and red traces show tRNATrp(Cy3) emission and tRNAGln(Cy5) sensitized emission, 636	
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respectively, following eEF2 injection, excited at 532 nm. ii. ALEX intensity signal from direct 637	

excitation of tRNAGln(Cy5) at 640 nm. iii. FRET efficiency between tRNATrp(Cy3) and 638	

tRNAGln(Cy5) showing a transient increase following eEF2 on conversion of PRE6 complex to 639	

POST6 complex.	 	 B. Dose-dependent effect of G418 and GmB1 (gentamicin B1) on PRE6 640	

complex formation from 80S-Stop-IRES-POST5 complex as compared with PRE6 complex 641	

formation from 80S-Trp-IRES-POST5 complex in the absence of either G418 or GmB1. 642	

  643	
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SUPPLEMENTARY INFORMATION 644	

The tRNA-Quant and PEP-Quant assays give similar results (Figure S1). 645	

 646	

Identification of streptothricin as a nonsense suppressor in yeast and human cells. An in-house 647	

collection of 664 antimicrobial compounds was screened for suppression of two nonsense alleles 648	

in Saccharomyces cerevisiae using a modification of a published procedure (Baradaran-Heravi, et 649	

al., 2016). Exponentially growing B0133-3B yeast cells harboring met8-1 (TAG) and trp5-48 650	

(TAA) nonsense alleles were seeded in 96-well plates at A600 = 0.01 in Synthetic Complete medium 651	

containing 5 µM Met and 5 µM Trp. This strain is unable to grow in the presence of these low 652	

concentrations of Met and Trp, unlike prototrophic strains. Antimicrobial compounds were added 653	

individually to the wells using a Biorobotics TAS1 robot equipped with a 0.7 mm diameter 96-pin 654	

tool, at a final concentration of ~15 µM. The plates were incubated at 30°C for 42 h and yeast 655	

growth was determined by measuring A600. Paromomycin was added at 10 µM to four wells as a 656	

positive control. In this assay, yeast growth requires efficient suppression of both met8-1 and trp5-657	

48. A single compound, streptothricin, enabled robust yeast growth (Figure S2A), with an EC50 of 658	

5 µM (Figure S2B). Streptothricin was also assayed for nonsense suppression in human cells using 659	

a previously described assay (Baradaran-Heravi et al., 2016).  Briefly, human breast carcinoma 660	

HDQ-P1 cells homozygous for the TP53 R213X (TGA) nonsense mutation were exposed to 661	

different concentrations of streptothricin for 72 h and the production of full-length p53, the 662	

readthrough product, and truncated p53 was determined by automated capillary electrophoresis 663	

western analysis. Streptothricin showed weak readthrough activity, detectable at concentrations of 664	

200 µM and above. By contrast, gentamicin B1 showed much higher levels of readthrough at lower 665	

concentrations (Figure S2C). 666	
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 667	

Assay heterogeneity. The reaction mixtures used for the tRNA-Quant and Pep-Quant assays is 668	

heterogeneous, with ribosomes derived from shrimp cysts or Hela cells, yeast elongation factors, 669	

and yeast and E. coli charged tRNAs. However, such heterogeneity is not problematic. IRESs can 670	

initiate translation on ribosomes from many eukaryotic organisms (Koh, et al., 2014), including 671	

shrimp (Cevallos and Sarnow, 2005), indicating that the molecular mechanism is not species-672	

specific.  CrPV IRES can initiate translation on ribosomes from yeast (Thompson, et al., 2001) to 673	

human (Spahn, et al., 2004). Furthermore, the structures of eukaryotic elongation factors are very 674	

strongly conserved (Soares, et al., 2009; Jørgensen, et al., 2002), and charged tRNAs from one 675	

species form fully functional complexes with both eEF1A and ribosomes from different ones 676	

(Jackson, et al., 2001; Ferguson, et al., 2015).   677	

 678	

Concentration dependence of Ataluren 19F NMR chemical shift. A decrease in chemical shift of 679	

an 19F NMR peak provides an indication of molecular aggregation in solution (Iijima, et al., 1999; 680	

Ohta, et al., 2003; Suzuki, et al., 2013). We sought to determine whether aggregation was 681	

responsible for the sigmoidal readthrough saturation curve for ataluren (Figure 3B) by examining 682	

the chemical shift of its 19F NMR peak at three concentrations, 0.03, 0.1 and 2.0 mM, that bracket 683	

the range employed in the readthrough assay. We found that both the chemical shift (1.0 ppm 684	

downfield from a KF standard) and the line shape of the 19F NMR peak were identical at all three 685	

concentrations, evidence that aggregation is unlikely to be the cause of the readthrough saturation 686	

curve induced by ataluren.  687	

 688	

NonSups having low activity in the tRNA-Quant assay (Figure S3) 689	
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 690	

Escin inhibition of octapeptide synthesis from POST-5 complexes. Escin concentrations ≥ 300 µM 691	

inhibit octapeptide synthesis from POST5 complexes for ribosomes programmed with either Stop-692	

IRES (basal readthrough) or ribosomes programmed with Trp-IRES (normal octapeptide 693	

synthesis), with inhibition being much more pronounced on basal readthrough (Figure S4). This 694	

difference is not currently understood. One possibility under consideration is that inhibition arises 695	

from a destabilization of peptidyl-tRNA binding to the A-site of a PRE6 complex, and that 696	

such binding is weaker for ribosomes programmed with Stop-IRES vs. Trp-IRES. 697	

 698	

Doxorubicin-induced particle formation by both tRNA and ribosomes. Doxorubicin 699	

concentrations above 100 µM induced Met-tRNAMet
 particle formation in accord with prior results 700	

(Agudelo, et al., 2016). High doxorubicin also induced particle formation by ribosome-IRES 701	

complex (Figure S5). To determine the extent of particle formation, various concentrations of 702	

doxorubicin were added to aliquots (250 µL) containing 0.1 µM 80S:IRES complex, 0.1 µM 703	

[35S]Met-tRNAMet, 0.1 µM eEF1A and 1 mM GTP. The mixture was incubated at 37 °C for 20 704	

min. Particles were removed by centrifugation at 17,000 X g for 25 min at 4 °C. The supernatant 705	

was then layered on top of 350 µL Buffer 4 with 1.1 M sucrose and was ultracentrifuged at 540,000 706	

x g for 70 min at 4°C to separate 80S-IRES from [35S]Met-tRNAMet. Virtually all of the A260 units 707	

and [35S] radioactivity (~98% in each case) of the low speed supernatant were found in the high 708	

speed pellet and supernatant, respectively. Accordingly, measurements of A260 units and [35S] 709	

radioactivity in the low speed supernatant were used to determine the amounts of 80S-IRES and 710	

[35S]Met-tRNAMet remaining in solution after doxorubicin-induced particle formation. 711	

 712	
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 813	

 814	

 815	

 816	

Table S1. DMSO and MeOH each induce added basal 
readthrough 
Volume % 
DMSO 

Basal readthrough fractiona above  
–Trp-RNATrp background 

0 0.078 ± 0.013 
0.1 0.099 ± 0.004 
0.33 0.12 ± 0.01 
0.67 0.14 ± 0.01 
1.0 0.15 ± 0.01 
Volume %  
MeOH 

 

0 0.099 ± 0.012 
0.17 0.10 ± 0.01 
0.5 0.12 ± 0.01 
1.0 0.14 ± 0.01 
anormalized to octapeptide synthesis by Trp-IRES in the 
absence of either DMSO or MeOH 
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SUPPLEMENTARY FIGURES 817	

 818	

   819	

 820	

Supplementary Figure 1. tRNA-Quant vs. Pep-Quant  821	
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 822	

Supplemental Figure 2. Nonsense suppression by streptothricin in yeast and human cells. A. 823	

Scatter plot of the nonsense suppression activity of 664 antibiotics in yeast. B. Concentration 824	

dependence of nonsense suppression by streptothricin in yeast. C. Concentration dependence of 825	

p53 PTC readthrough in HDQ-P1 cells. Formation of full-length p53 (FL-p53) and truncated p53 826	

(TR-p53) was determined by automated capillary electrophoresis western analysis and the results 827	

displayed as pseudoblots. FL-p53 and TR-p53 chemiluminescence signal was normalized to that 828	

of the protein loading control vinculin and expressed relative to the amount of TR-p53 detected 829	

in untreated cells.  830	
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 831	

Supplementary Figure 3. Low activity NonSups. With the exception of escin (See Supplementary 832	

Figure 4), none of the NonSups in this Figure at 600 µM showed appreciable inhibition of 833	

octapeptide formation from pentapeptide by ribosomes programmed with Trp-IRES  834	

 835	

 836	

 837	

 838	

 839	

 840	

 841	

 842	

 843	

 844	

0.20

0.15

0.10

0.05

0.00

Oc
ta

pe
pt

id
e/

PO
ST

5

Ataluren Azithromycin Escin Tylosin GJ071

 0 µM
 100 µM
 300 µM
 600 µM

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/330506doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/330506
http://creativecommons.org/licenses/by/4.0/


	 39	

 845	

Supplementary Figure 4. High escin concentrations inhibit both basal readthrough (ribosomes 846	

programmed with Stop-IRES) and normal octapeptide synthesis (ribosomes programmed with 847	

Trp-IRES). 848	
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 860	

Supplementary Figure 5. High doxorubicin concentrations induce particle formation by both 861	

Met-tRNAMet and 80S-IRES complexes.  862	
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