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Summary 

Single-molecule binding assays enable the study of how molecular machines assemble 

and function. Current algorithms can identify and locate individual molecules, but 

require tedious manual validation of each spot. Moreover, no solution for high-

throughput analysis of single-molecule binding data exists. Here, we describe an 

automated pipeline to analyze single-molecule data over a wide range of experimental 

conditions. We benchmarked the pipeline by measuring the binding properties of the 

well-studied, DNA-guided DNA endonuclease, TtAgo, an Argonaute protein from the 

Eubacterium Thermus thermophilus. We also used the pipeline to extend our 

understanding of TtAgo by measuring the protein’s binding kinetics at physiological 

temperatures and for target DNAs containing multiple, adjacent binding sites. 
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Introduction 

Single-molecule binding assays allow the interrogation of individual macromolecules 

from a biological process using purified components or cellular extracts. In contrast to 

ensemble measurements, single-molecule assays can report the order and kinetics of 

individual molecular interactions 1–6. The introduction of commercial microscopes 

designed for single-molecule imaging spurred wide adoption of this technology. 

However, the absence of easy-to-use software with automated pipelines for extracting 

kinetic data from an image series makes data analysis slow and tedious. Many key steps 

for obtaining accurate kinetic parameters from co-localization single-molecule 

spectroscopy (CoSMoS) images still require manual user intervention and the selection 

of parameters guided by user experience 7–9. User-dependent parameter choice and 

manual inspection of images dramatically limits throughput. For example, after spots 

are detected via user-defined intensity and bandpass-filter thresholds, the user must 

still inspect the images to remove overlapping spots and false-positive events. Finally, 

no standard procedure exists to systematically assess the quality of the analysis. To 

overcome these hurdles, we constructed a pipeline for rapid processing of CoSMoS 

images while quantitatively assessing experimental data quality. The process automates 

experimental calibration and high-confidence spot detection and localization using just 

minutes of computational time. CoSMoS data processing is controlled through a single 

graphical user-interface, and the modular interface allows individual functional 

modules to be adjusted for a wide variety of experiments. The pipeline improves 

detection of co-localization experiments, data analysis speed, and experimental 

reproducibility. 
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Results 

Pipeline development 

Figure 1 shows the key steps in our pipeline. The package includes detailed installation 

instructions together with print documentation. The interface comprises a series of tabs, 

each corresponding to a step in the analysis. The user progresses left to right along, but 

can readily return to an earlier step, with changes propagating to subsequent steps. The 

pipeline uses Graphics Processing Unit (GPU) processing to achieve rapid analysis and 

supports multiple graphics cards. 

The first module, preprocessing, consists of Electron Multiplying Charge Coupled 

Device (EMCCD) camera gain calibration, multichannel alignment, and drift correction 

(Fig. 1a,b). The gain and electronic offset of the camera determine the conversion 

between the number of photons recorded by the camera and the number of digital units 

contained in the image 10. Current CoSMoS methods do not estimate the gain and offset 

of the cameras, and express signal intensity in arbitrary units. Therefore, parameters 

required for detection of single molecules are arbitrarily chosen by the user. Because 

signal-to-background ratios vary between experiments, these parameters should be 

adapted for every dataset. Based on calibration data, our pipeline estimates gain by 

exploiting the linear relationship between the noise variance and the mean intensity 

(see SI Manual – Loading data and gain calibration), allowing automatic parameter 

estimation and optimal detection, localization and co-localization of single molecules. 

After calibrating the gain, fields of view from the wavelength channels 

corresponding to the different fluorophores used in the experiment must be aligned 1,7,11. 

Alignment corrects differences in rotation, scaling, translation, and shear. The pipeline 

addresses misalignment by estimating a ‘mapping function’ to relate positions of the 

target locations in one camera to the mobile components in the other camera. The 
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mapping is obtained via an affine transformation from calibration images of fluorescent 

beads that emit in both channels (see SI Manual – Alignment of the cameras).  

Next, the pipeline corrects for drift caused by movements of the stage 7,11. To 

overcome the need for the traditional fiducial markers, the pipeline estimates drift 

based on the correlation between consecutive recorded images (see SI Manual – Gain 

calibration Correction for lateral drift). 

The second module, signal detection and localization, allows identification of target 

locations, detection of the binding complexes, and co-localization of the diffusible 

molecules at each immobilized target (see SI Manual – Target spot detection and 

Obtaining the binding traces). Current methods identify target positions by using a 

bandpass filter set by a user-specified intensity threshold 7,12. Consequently, 

considerable manual effort is required to eliminate overlapping spots to prevent the 

signal from one target molecule from becoming conflated with that from a second, 

nearby molecule. Unlike methods in current use, the pipeline employs an alternative 

detection method that uses the photon statistics from the preprocessed images to 

deliver a minimum number of false-negative detections at a controlled/fixed number of 

false positives 13 (Fig. 1c). To automatically eliminate overlapping spots, the pipeline 

measures the distance from each spot to its neighbors, its circularity, and its width, 

which enables it to quantitatively discard any spot located within 50 nm of another. 

Next, co-localization events are detected. Current methods sum the fluorescence 

intensity of the mobile component over a small region (~0.4 µm) centered on the 

mapped and drift-corrected location of the target molecule 1,2,14. Co-localization events 

begin with an abrupt increase and end with an abrupt decrease of the summed 

fluorescence of the mobile component. To avoid false positives and false negatives, the 

current methods measure the deviation of the center of mass of the mobile component 

from the target location 15. However, the precision of the position estimation of the 

center of mass quickly deteriorates with the low signal-to-background ratios often 
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present in CoSMoS experiments 16. Thus, abnormally detected events persist and must 

be removed by visual inspection of the images corresponding to the co-localization 

intervals, slowing analysis, introducing subjectivity, and degrading reproducibility as 

noted by Friedman and co-workers 7. To address this issue, the pipeline performs 

maximum-likelihood estimation on the target locations and on the mobile components. 

This yields an unbiased estimate of the position, local background, spot intensity, and 

spot width, together with the estimation precision that has the theoretical maximum 

precision 17. Subsequently, these estimates are used by the pipeline to quantitatively 

score binding events and to define the co-localization intervals. The pipeline requires 

that authentic binding events meet three user-defined criteria: (1) the mobile 

component, e.g., an RNA-binding protein, must be detected within a user-specified 

distance of the target molecule, defined according to the average estimated co-

localization precision. The distance between the mobile component and the target 

location is used to eliminate non-specific binding events caused by protein binding to 

the cover glass near a target molecule. (2) The spot width must be smaller or equal to 

the user-specified spot width, defined according to the width of the point-spread 

function of the microscope 18. This criterion ensures that only a single mobile 

component is specifically bound to the target location. Finally, (3) the fluorescent signal 

must be above a user-specified signal-to-background ratio, i.e., the fluorescent signal 

must be a specified number of times greater than the background. This criterion ensures 

that fluctuations in background fluorescence are not recognized as binding events. This 

approach also accounts for variations in field illumination, which typically are caused 

by the relay optics delivering light to the sample 19. The pipeline assists the user in 

setting these criteria by reporting best-practice values for their dataset. 

The third module, data analysis, calculates association and dissociation rates, as 

well as the correction for non-specific binding of the mobile component to the glass 

surface 7,11. The data analysis module also estimates the number of complexes bound to 
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target molecules with multiple binding sites (see SI Manual – Analyzing binding 

kinetics, Correction for the non-specific binding and Hidden Markov Models). 

Automated analysis of single-molecule data for targets containing multiple binding 

sites poses a significant technical challenge, because the single-molecule intensity and 

background fluorescence vary across the field of view. To achieve this, the module uses 

a Hidden Markov Model (HMM), to determine, based solely on probability, the number 

of mobile components bound to the same target molecule and the rates of exchange 

between the different binding states 20–23. Multiple HMM analysis frameworks have 

been proposed to estimate the number of binding states using “information criteria” 24. 

However, when binding events are rare and most target sites are unoccupied, the HMM 

fit is biased toward an estimate that tries to model the noise due to background 

fluorescence (also called an unbalanced estimation problem). Furthermore, the number 

of states of the HMM model is not easy to estimate, because the goodness of the fit 

increases with additional states. To overcome these two challenges, Bayesian (evidence-

based) HMM was introduced by Beal et al. 25,26. This approach allows rebalancing the 

estimation problem using priors to incorporate information known a priori or 

iteratively estimated. The Bayesian HMM method has been successfully applied to 

single particle tracking and fluorescence resonance energy transfer, assuming either a 

zero-mean Gaussian emission distribution 27 or a one-dimensional Gaussian emission 

distribution 28–30. Our pipeline extends this framework and enables the estimation of 

multivariate Gaussians accounting for multi-dimensional, non-zero mean, Gaussian 

distributed variables 31. This permits the use of state estimation in situations where 

variables are not independent, which is the case for the fluorescence signal and 

background in CoSMoS experiments. 

For each module, all steps are controlled via a user-friendly interface; no 

knowledge of MatLab syntax or scripting is required. Results from the pipeline can be 

readily exported to PDF files, and processed data can be exported to MatLab or other 

.CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/261917doi: bioRxiv preprint first posted online Apr. 11, 2018; 

http://dx.doi.org/10.1101/261917
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

8 

software for further analysis. Processed data from an experiment can be saved and 

merged later with processed data from other replicates in order to estimate the kinetic 

behavior of the mobile component using a larger number of molecules. Finally, the 

pipeline uses scripting to save all user-defined parameters, allowing later replication of 

an experiment or the analysis of another dataset using previously defined parameters. 

Experimental validation of the pipeline 

To test the pipeline, we reexamined the binding properties of Thermus thermophilus 

Argonaute (TtAgo), a DNA-guided, DNA-cleaving endonuclease 32,33 (Fig. 1f-i). TtAgo 

binds 5′ phosphorylated, 16-nt DNA guides and targets foreign DNA in vivo 33. TtAgo 

pre-organizes the ‘seed’ segment (nucleotides g2–g8) of the guide, pre-paying the 

entropic penalty for binding the target 11,32,34–36. Like other Argonaute proteins, extensive 

complementarity between the guide and the target allows TtAgo to reach a catalytically 

competent conformation that can cleave the phosphodiester bond between target 

nucleotides t10 and t11. Previous single-molecule measurements at 37°C of the on-rate 

(kon) and off-rate (koff) of TtAgo, guided by a 16-nt DNA corresponding to the first 16 

nucleotides of the animal microRNA (miRNA) let-7, revealed that the protein 

accelerates target finding by >100-times compared to the 16-nt DNA guide in the 

absence of the protein 11. Target complementarity beyond the seed does not increase kon. 

TtAgo remains bound to a fully complementary target DNA, but rapidly dissociates 

from targets complementary to only the seed or the seed plus four 3′ supplementary 

nucleotides. 

Salomon et al. analyzed single-molecule fluorescence images of TtAgo binding  11 

using imscroll 7, a method that identifies co-localization events using high and low 

intensity thresholds to detect the beginning and the end of a binding event. Because 

such thresholds cannot be optimal for the entire field of view, Salomon and co-workers 

manually inspected each binding event analyzed, a process more time consuming than 
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data collection. We compared imscroll to our automated pipeline using single-molecule 

data for TtAgo:guide DNA complex binding a seed-matched DNA target 

(Supplementary Fig. 1). The pipeline and imscroll detected a similar number of target 

locations and similar on- (konpipeline = 7.1 ± 0.1 × 107 M-1·s-1 vs. konimscroll = 8.6 ± 0.1 × 107 M-1·s-

1) and off- (koffpipeline = 0.6 ± 0.01 s-1 vs. koffimscroll = 1.0 ± 0.01 s-1) rates. Imscroll required 348 

of 1,274 putative single target molecules to be manually discarded; the pipeline 

required no user intervention.  

To further test the pipeline, we replicated published experiments analyzing the 

effect of guide:target complementarity on TtAgo binding 11. Using the pipeline to 

analyze the data gave the expected result that complementarity outside of the seed 

sequence has little effect on on-rate: fully complementary, kon = 8.5 ± 0.1 × 107 M-1·s-1; seed 

only, kon = 6.9 ± 0.1 × 107 M-1·s-1; seed plus four, 3′ supplementary nucleotides (guide 

nucleotides g13–g16), kon = 5.5 ± 0.1 × 107 M-1·s-1. As expected, binding of TtAgo:guide 

complex to the fully complementary target was too long-lived to permit its off-rate to be 

measured, because photobleaching of the guide occurred before dissociation. When the 

target was complementary to just seed or to the seed plus four, 3′ supplementary 

nucleotides, TtAgo dissociated with the similar, rapid kinetics reported previously 

(seed only, τoff = 1.6 s vs. seed plus 3′ supplementary, τoff = 1.5 s after binding). Thus, our 

automated approach, using a different method to detect TtAgo binding, calculated kon 

and koff values in good agreement with published results 11. 

The pipeline reveals temperature-dependent TtAgo binding dynamics 

Previous single-molecule studies examined the binding of the TtAgo:guide complex to 

DNA and RNA targets at 23°C 37, 37°C 11, or 45°C 38, but T. thermophilus grows at 62°C to 

75°C 39. Thus, knowing the effect of temperature on TtAgo binding is central to 

understanding the function of the protein in vivo, we measured the temperature 

dependence of binding kinetics of TtAgo for 285-nt DNA targets with different extents 
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of complementarity to the DNA guide (Fig. 2, Supplementary Fig. 2). Key to 

conducting these experiments was our development of an optically transparent sample 

heater that enables single-molecule experiments at temperatures as high as 55°C. At all 

temperatures tested, the TtAgo:guide complex bound the three targets with similar, 

near diffusion-limited on-rates (Fig. 2a). Interestingly, mouse AGO2 RISC, which has a 

similar structure to the TtAgo:guide complex and also possesses endonuclease activity, 

finds seed-matched targets ~10 times more slowly than fully complementary targets 11. 

Our data suggest that TtAgo does not discriminate between seed-matched and fully 

complementary targets during its initial search. 

The dwell time of TtAgo on a target with complete complementarity to the guide 

remained long and was limited by photobleaching at all temperatures tested. Although 

at room temperature the TtAgo:guide complex dissociated from targets complementary 

to the seed or to the seed plus four, 3′ supplementary nucleotides, faster than from the 

fully complementary target, binding events were stable, τoff ~10 s (koff ~0.1 s−1; Fig. 2b). 

Thus, at low temperature, TtAgo displays miRNA-like binding behavior and acts like 

the RNA-binding, miRNA-guided mammalian Ago2 4,11,40. However, at higher, more 

physiological temperatures, TtAgo displayed shorter dwell times on targets 

complementary to the seed or the seed plus four, 3′ supplementary nucleotides, 

averaging 56 ms (koff = 18.0 s−1) and 76 ms (koff = 13.2 s−1), respectively. Unlike mammalian 

Ago2, at near-physiological temperature TtAgo binds only transiently to seed-matched 

targets and requires extensive complementarity to its targets for stable binding. Our 

data are consistent with the idea that the primary function of TtAgo is to catalyze 

cleavage of DNA with extensive complementarity to its DNA guide 34. The finding that 

temperature alone, absent any change in amino acid sequence, can convert an 

Argonaute protein with miRNA-like binding properties into one requiring extensive 

target complementarity for stable binding, has important implications for the evolution 

of Argonaute function. 
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The pipeline reveals non-cooperative binding of TtAgo to adjacent target sites 

In mammals, Argonaute proteins can function cooperatively over short distances, 

although it is not known whether functional cooperativity reflects cooperative binding 

41,42. We developed a method based on Variational Bayesian Evidence Maximization 

(VBEM) and Multivariate Gaussian Hidden Markov Models (MGHMM) to study 

binding to multiple sites on a single target without the use of additional dyes. To test 

our method, we performed multi-state analysis of TtAgo binding to DNA targets 

containing one, two or three binding site(s) fully complementary to the DNA guide. We 

could detect several TtAgo:guide complexes simultaneously bound to a target molecule, 

and the pipeline successfully identified the expected number of states (Supplementary 

Fig. 3). 

Cooperative binding of a complex to one site can either accelerate binding of a 

second complex at an adjacent site (increasing kon) and/or can stabilize binding at 

adjacent sites (decreasing koff). To detect differences in binding between multiple and 

single sites requires a dwell time (1) sufficiently long to allow observation of sequential 

binding of several TtAgo:guide complexes to the same target molecule, but (2) 

nonetheless short enough to allow observations to be made before extensive 

photobleaching occurs. Our standard experimental conditions do not meet these 

criteria, because TtAgo binding to a seed-matched target is too short to be able to 

observe simultaneous binding (Supplementary Fig. 4), whereas the departure of TtAgo 

from a fully complementary target is slower than photobleaching (Fig. 2b). To 

circumvent these issues, we used a seed-matched DNA target with deoxyguanosine in 

the first position (t1G). TtAgo contains a t1G binding pocket 36,43,44, and the dwell time of 

TtAgo for a t1G seed-matched target is >7-times longer (i.e., a smaller koff) than for any 

other t1N target 37 (Supplementary Fig. 5). Our DNA guide starts with deoxythymidine 

(g1T), excluding possible effects of introducing an additional g1:t1 base pair. 
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Multi-state analysis of TtAgo binding to a DNA target containing two, 7 nt-long, 

t1G seed-complementary sites 11 nt apart found that kon for the second site was 0.60 

times smaller than for the first site (Fig. 3), consistent with a multiple independent sites 

model (kon2 bound = 0.5 kon1 bound). Supporting this interpretation, kon for TtAgo binding to a 

DNA target with two t1G seed-matched binding sites separated by 56 nt was not 

significantly different from the kon for the adjacent sites (Supplementary Fig. 6). 

Similarly, koff for the second site was 2.11 times faster than for the first site (Fig. 3), and 

was not significantly different from koff when the distance between the two sites was 

increased (Supplementary Fig. 6). As for kon, the koff values agree well with a model of 

multiple, independent sites in which koff2 bound = 2 koff1 bound. 

Discussion 

We have developed an automated pipeline to analyze single-molecule binding 

experiments. By eliminating the need for user-supervised rejection of data points, the 

pipeline reduces analysis times from several weeks for a few hundred traces to a few 

days for thousands of traces. We validated the pipeline by replicating published results 

for TtAgo binding kinetics and extended these studies to other temperatures. At near-

physiological temperature, TtAgo does not discriminate between miRNA-like targets 

and siRNA-like targets during the initial search for binding sites, but remains stably 

bound only to fully complementary targets. Finally, the pipeline, using a VBEM-

MGHMM strategy, correctly determines the number of binding sites on a target, 

allowing us to discover that TtAgo binds independently to adjacent sites. 
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Methods 

Data acquisition 

Alexa647-labeled target DNA was immobilized on a polymer-coated glass surface via 

biotin-streptavidin interaction. TtAgo was loaded with a 16 nt, 3’ Alexa Fluor 555-

labeled single-stranded DNA guide (see SI - Preparation of TtAgo:guide complex). A 

syringe pump (KD Scientific, Holliston, MA) running in withdrawal mode at 0.15 

ml·min−1 was applied to the flow cell outlet to introduce TtAgo:guide complex (pre-

heated to 23°C, 37°C, 45°C or 55°C) supplemented with an oxygen scavenging system 

45,46 and triplet quenchers 47. Continuous acquisition of frames began when the 

TtAgo:guide solution was introduced. Typically, 1,500–8,000 frames were collected at 5–

67 frames·s−1. 

Imaging was performed on an IX81-ZDC2 zero-drift inverted microscope 

equipped with a cell^TIRF motorized multicolor TIRF illuminator with 405, 488, 561, 

and 640 nm 100 mW lasers and a 100×, oil immersion, 1.49 numerical aperture UAPO N 

TIRF objective with FN = 22 (Olympus, Tokyo, Japan). Alexa555 and Alexa647 

molecules were excited with only the 561-nm laser, as the presence of 17 Alexa647 dyes 

on the target produces sufficient signal at the lower wavelength. Use of a single laser 

ensured that both dyes were excited within the same focal volume. Fluorescence signals 

were split with a main dichroic mirror (Olympus OSF-LFQUAD) and triple emission 

filter (Olympus U-CZ491561639M). The primary image was relayed to two ImagEM 

X2 EM-CCD cameras (C9100-23B, Hamamatsu Photonics, Hamamatsu, Japan) using a 

Cairn three-way splitter equipped with a longpass dichroic mirror (T635lpxr-UF2, 

Chroma) and bandpass filters (Chroma 595/50) in front of the ‘green’ camera. 

Illumination and acquisition parameters were controlled with cell^TIRF and 

MetaMorph software (Molecular Devices, Sunnyvale, CA), respectively. The TIRF 

imaging system was isolated from floor vibrations with a Micro-g laboratory table 

(Technical Manufacturing Corporation, Peabody, MA). 
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A digitally-controlled heater (TP-LH, Tokai Hit) maintained objective 

temperature at 40°C (except when experiments were performed at 23°C). A custom 

fabricated heating stage was heated to 45°C, 55°C, or 80°C to achieve sample 

temperatures of 37°C, 45°C, or 55°C, respectively. Temperature on the surface of the 

cover glass was independently monitored with a Type E, 0.25 mm O.D. thermocouple 

(Omega Engineering Inc., Sutton, MA) inserted between the top and the bottom cover 

glasses. 

Data analysis 

Images were recorded as uncompressed TIFF files and merged into stacked TIFF files. 

Images were processed using the pipeline (SI Manual - collection of a complete dataset). 

First, 100 images of a grid slide and of background were used to estimate the gain of 

CCD cameras 13. Second, 10 images of fluorescent streptavidin-labeled microspheres 

(Life Technologies F-8780) were used to determine alignment of images from multiple 

wavelength channels. Third, lateral drift of the surface was determined for each frame 

using target molecules as immobilized markers. Locations of target molecules were 

picked in the first frame acquired by performing a Generalized Likelihood Ratio Test in 

each pixel 13. Large clusters of positive pixels where filtered out, but all identified spots 

were visually inspected, and locations corresponding to multiple target molecules were 

removed. To obtain binding traces in all frames the identified locations were fitted 

using Maximum Likelihood Estimation. Co-localization events required that (1) the 

intensity of TtAgo complex > 150 photons, (2) ratio intensity of the TtAgo:guide 

complex to the local background > 1, (3) the distance between the target and guide was 

< 1 pixel, and (4) sigma < 4.6. To exclude short, non-specific events, the minimal event 

duration was set to 2–5 frames. To overcome short temporary loss of TtAgo fluorescent 

signal due to blinking of the fluorescent dye, the gap parameter was set to 2–5 frames. 

Only the first binding event at each target location was used for estimation of arrival 
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time and dwell time, in order to minimize errors caused by occupation of sites by 

photobleached molecules. The same analysis was automatically performed on “dark” 

locations, i.e., regions that contained no target molecules; these served as a control for 

non-specific binding of TtAgo complex to the surface of the cover glass. The analysis 

was scripted to ensure reproducibility of user settings. The individual experiments were 

saved, combined, and error evaluated by 1,000-cycle bootstrapping of 90% of the data.  

To calculate the number of binding sites, VBEM-MGHMM analysis was first 

performed with priors manually estimated from fluorescence intensity time traces (See 

manual – Hidden Markov Models). The starting point of the signal and background 

priors, 𝑚, is set to the mean signal and background of a single binding event of TtAgo. 

The starting point of priors 𝜅, 𝜈 and 𝑊1/2 for model order selection are set to 10. 

Subsequently, the estimated prior parameters (𝑚, 𝜅, 𝜈 and 𝑊1/2) are used to 

automatically segment the traces with a correct model order 48. 
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Methods (SI) 

Preparation of TtAgo:guide complex 

Expression and purification of TtAgo was essentially as described 32. Briefly, TtAgo 

coding sequence was cloned into pET SUMO (Life Technologies) and expressed in E. 

coli BL21-DE3 by inducing at OD600 of 0.5 with 0.2 mM isopropyl-b-D-thiogalactoside at 

37°C for 8 h. Cells were lysed (micro-fluidizer, Microfluidics, Westwood, MA), and 

TtAgo purified by HisTrap HP (GE Healthcare) chromatography. The amino terminal 

six-histidine tag was cleaved from TtAgo using SUMO-protease (Life Technologies), 

and the protein was further purified by HiTrap SP HP (GE Healthcare) 

chromatography. Purified TtAgo was dialyzed into storage buffer (20 mM HEPES-

KOH, pH 7.4, 250 mM potassium acetate, 3 mM magnesium acetate, 0.1 mM EDTA, 5 

mM dithiothreitol, 20% [w/v] glycerol). TtAgo (0.4 µM) was incubated with 1.2 µM 16 

nt, synthetic, single-stranded DNA oligonucleotide corresponding to the first 16 nt of 

let-7a and bearing a 3′ Alexa555 dye (Invitrogen) for 30 min at 75°C in 20 mM HEPES-

KOH, pH 7.4, 350 mM potassium acetate, 3 mM magnesium acetate, 0.01% (w/v) Igepal 

CA-630, 5 mM dithiothreitol, and 20% (w/v) glycerol. Unassembled DNA guide was 

removed by passing the loading reaction through a Q Sepharose Fast Flow (GE 

Healthcare) spin column. TtAgo:guide complex concentration was measured by 

fluorescence with Typhoon FLA-7000 (GE Healthcare) following denaturing 

polyacrylamide gel electrophoresis. The complex was flash frozen and stored at ‒80˚C. 

Preparation of DNA Targets 

Single-stranded DNA targets were generated by annealing synthetic oligonucleotides to 

a Klenow template oligonucleotide as described 11 (Table S1). In a typical labeling 

procedure, 100 pmol DNA target was mixed with a 1.5-fold molar excess of Klenow 

template oligonucleotide in 7.5 µl 10 mM HEPES-KOH (pH 7.4), 20 mM sodium 
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chloride and 0.1 mM EDTA. Samples were incubated at 90°C for 5 min in a heat block. 

Then, the heat block was switched off and allowed to cool to room temperature. 

Afterwards, the annealed strands (30% of final reaction volume) were added without 

further purification to a 3′ extension reaction, comprising 1× NEB buffer 2 (New 

England Biolabs, Ipswich, MA), 1 mM dATP, 1 mM dCTP, 0.12 mM Alexa Fluor 647-

aminohexylacrylamido-dUTP (Life Technologies), and 0.2 U/µl Klenow fragment 

(3′⟶5′ exo-minus, New England Biolabs) and incubated at 37°C for 1 h. The reaction 

was quenched with 500 mM (f.c.) ammonium acetate and 20 mM (f.c.) EDTA. A 15-fold 

molar excess of “trap” oligonucleotide (Table S1) was added to the Klenow template 

oligonucleotide. The entire reaction was precipitated overnight at ‒20°C with three 

volumes of ethanol. The labeled target was recovered by centrifugation, dried, 

dissolved in loading buffer (7M Urea, 25 mM EDTA), and incubated at 95°C for 5 min. 

The samples were resolved on 6% polyacrylamide gel and isolated by electroelution. 

Microscope Slide Preparation 

Microfluidic chambers were prepared on cover glasses as described 11. Briefly, cover 

glasses (Gold Seal 24 Å~ 60 mm, No. 1.5, Cat. #3423), and glass coverslips (Gold Seal 25 

Å~ 25 mm, No. 1, Cat. #3307) were cleaned by sonicating for 30 min in NanoStrip (KMG 

Chemicals, Houston, TX), followed by washing with 10 changes of deionized water and 

stored in deionized water. Fresh cover glasses were prepared for each day of imaging. 

Cover glasses and coverslips were dried with a stream of nitrogen. Two ~1 mm 

diameter lines of high vacuum grease (Dow Corning, Midland, MI) were applied to the 

cover glass to create a flow cell. Three layers of adhesive tape were applied outside of 

the flow cell. The coverslip was placed on top of the cover glass, with a ~0.3 mm gap 

between the cover glass and coverslip. To minimize non-specific binding of protein and 

DNA molecules to the glass surface, microfluidic chambers were incubated with 2 

mg/ml poly-L-lysine-graft-PEG-biotin in 10 mM HEPES-KOH, pH 7.4 at room 
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temperature for 30 min and washed extensively with LSE buffer (30 mM HEPES-KOH 

pH 7.9, 120 mM potassium acetate, 3.5 mM magnesium acetate, 20% [w/v] glycerol) 

immediately before use. To allow immobilization of biotinylated protein or DNA 

targets, streptavidin (0.01 mg/ml, Sigma) was incubated for 5 min in each chamber. 

Unbound streptavidin was washed away with LSE buffer. 

Single-Molecule Experiments 

The enzymatic oxygen scavenging system comprised 2.5 mM protocatechuic acid (PCA, 

Aldrich 37580) and 0.5 U/ml Pseudomonas sp. protocatechuate 3,4-Dioxygenase (PCD, 

Sigma P8279). Triplet quenchers, trolox (Aldrich 238813), propyl gallate (Sigma P3130), 

and 4-nitrobenzyl alcohol (Aldrich N12821) were each added to 1 mM (final 

concentration). 

Immediately before each experiment, a flow cell was incubated with LSE buffer 

supplemented with 75 µg/ml heparin (Sigma H4784), oxygen scavenging system and 

triplet quenchers for 2 min. Then, it was filled with ~100 pM target in LSE buffer 

supplemented with 75 µg/ml heparin, oxygen scavenging system and triplet quenchers. 

Target deposition was monitored by taking a series of images; once the desired density 

was achieved, the flow cell was washed three times with LSE buffer supplemented with 

oxygen scavenging system and triplet quenchers. 
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Main figure titles and legends 

Figure 1 | Automated Bayesian Single-Molecule Pipeline for Binding Assays. (a) 

Multiple color channels are registered and corrected for drift. (b) Estimated mapping 

between the colors is time dependent and consists of rotation, scaling, translation, and 

drift. (c) Initial target locations detected by use of Generalized Likelihood Ratio Test 

(GRLT) are mapped to other views and sub-regions, and are extracted to estimate signal 

and background parameters. (d) Estimated parameters include the position, 

background, intensity and width of the single-molecule. (e) Variational Bayesian 

Evidence Maximization of Multivariate Gaussian Hidden Markov Model (VBEM-

MGHMM) is used to cluster the complexity and estimate parameters of the underlying 

kinetics. (f) Experimental setup to measure TtAgo:guide interactions with target DNA. 

(g) Representative fluorescence intensity time traces of TtAgo (green) binding DNA 

target (red) with different extents of complementarity to the DNA guide. Light brown 

indicates background levels of green fluorescence, whereas the black line denotes 

binding events detected by the pipeline after event filtering (minimal duration and gap 

closing; Manual – Obtaining the binding traces). This color code is used throughout the 

Figures in the fluorescence intensity time traces. Fluorescence intensity is expressed in 

thousands of photons. (h) Rastergram summary of traces of individual target molecules, 

each in a single row and sorted according to their arrival time, for different guide:target 

pairings. (i) Comparison of kon and koff of TtAgo with different targets. Values were 

derived from data collected from several hundred individual DNA target molecules 

(indicated in the Table as number of molecules); error of bootstrapping is reported. 

Figure 2 | Properties of DNA-guided TtAgo Binding to DNA Targets with Different 

Extents of Complementarity to the Guide-Strand at Various Temperatures. Values of kon 
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(a) and koff (b) were derived from data collected from several hundred individual DNA 

target molecules (>1100); error of bootstrapping is reported. 

Figure 3 | DNA-guided TtAgo Binds Independently to DNA Targets Containing Two 

Adjacent Seed-Matched t1G Sites. Representative fluorescence intensity time traces of 

TtAgo (green) binding DNA target (red) containing one binding site (a) or two binding 

sites spaced 11 nt apart from t8 to t2 (b). Light brown indicates background levels of 

green fluorescence, whereas the black line denotes binding events detected by the 

pipeline after VBEM-MGHMM analysis. Fluorescence intensity is expressed in 

thousands of photons. Representative rastergrams summarize traces of individual 

target molecules, each in a single row and sorted according to their arrival time. (c) 

Comparison of kon and koff of DNA-guided TtAgo with targets containing one or two 

binding site(s). Values are reported as mean ± standard deviation for three independent 

replicates. 
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Supplemental figure titles and legends  

Figure S1 | Comparison of the Pipeline to Imscroll, Related to Figure 1. The same data 

set of TtAgo:guide complex binding a seed-matched target was analyzed by imscroll (a) 

and by the pipeline (b). Image representing the selection (blue squares around 

molecules) of the DNA targets used to analyze DNA-guided TtAgo binding. “Dark” 

locations, i.e., regions that contained no target molecules (yellow circles) served as a 

control for non-specific binding of TtAgo:guide complex to the surface of the cover 

glass. Representative fluorescence intensity time traces obtained by imscroll (a) or the 

pipeline (b) for DNA-guided TtAgo (green) binding the same DNA target molecule 

(red). The black line denotes detected binding events. Light brown indicates 

background levels of green fluorescence calculated by the pipeline. Imscroll does not 

provide this information. Rastergrams summarize traces of individual target molecules, 

each in a single row and sorted according to their arrival time. Values of kon and koff were 

derived from several hundred individual DNA target molecules; error of bootstrapping 

is reported. 

Figure S2 | DNA-guided TtAgo Binding to and Departing from DNA Targets at 

Different Temperatures, Related to Figure 2. Representative fluorescence intensity time 

traces of DNA-guided TtAgo (green) binding DNA target (red) with different extents of 

complementarity. Light brown indicates background levels of green fluorescence, 

whereas the black line denotes binding events detected by the pipeline after event 

filtering (minimal duration and gap closing; Manual – Obtaining the binding traces). 

Fluorescence intensity is expressed in thousands of photons. Rastergrams summarize 

traces of individual target molecules, each in a single row and sorted according to their 

arrival time, for different guide:target pairings. Experiments were performed at 23°C 

(a), 37°C (b), 45°C (c) and 55°C (d). 
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Figure S3 | DNA-guided TtAgo Binding to Multiple, Fully Complementary Binding 

Sites and Prediction of the Number of States by VBEM-MGHMM, Related to Figure 3. 

Experimental setup to detect TtAgo:guide interactions with target DNA containing one 

(a), two (b) or three (c) binding site(s) complementary to the DNA guide. The number of 

states was estimated by VBEM-MGHMM. Occupancy, mean intensity of background 

and mean intensity of binding event are indicated for each state. Representative 

fluorescence intensity time traces of DNA-guided TtAgo (green) binding DNA target 

(red) are shown. Light brown indicates background levels of green fluorescence, 

whereas the black line denotes binding events detected by the pipeline after VBEM-

MGHMM analysis. Fluorescence intensity is expressed in thousands of photons. o: 

occupancy, bg: background, in: intensity. 

Figure S4 | No Simultaneous Binding of TtAgo:Guide Complexes to a Target DNA 

with Two Seed-matched Binding Sites, Related to Figure 3. Experimental setup to 

measure TtAgo:guide complex interactions with target DNA containing one (a) or two 

(b) seed-matched binding site(s). Representative fluorescence intensity time traces of 

DNA-guided TtAgo (green) binding DNA target (red) are shown. Light brown indicates 

background levels of green fluorescence, whereas the black line denotes binding events 

detected by the pipeline after event filtering (minimal duration and gap closing; Manual 

– Obtaining the binding traces). Fluorescence intensity is expressed in thousands of 

photons. 

Figure S5 | TtAgo:guide Complex Preferentially Binds to a t1G Target DNA, Related to 

Figure 3. (a) Representative fluorescence intensity time traces of DNA-guided TtAgo 

(green) binding DNA target (red) are shown. Light brown indicates background levels 

of green fluorescence, whereas the black line denotes binding events detected by the 

pipeline after event filtering (minimal duration and gap closing; Manual – Obtaining 

the binding traces). Fluorescence intensity is expressed in thousands of photons. Shown 
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below are rastergram summaries of traces of individual target molecules, each in a 

single row and sorted according to their arrival time. (b) Comparison of kon and koff of 

DNA-guided TtAgo with different targets. Values were derived from data collected 

from several hundred individual DNA target molecules (indicated in the Table as 

number of molecules); error of bootstrapping is reported. 

Figure S6 | DNA-guided TtAgo Binds Independently to DNA Targets Containing Two 

Seed-Matched Sites with t1G, Relative to Figure 3. Representative fluorescence intensity 

time traces of DNA-guided TtAgo (green) binding DNA target (red) containing one 

binding site (a) or two binding sites spaced 56 nt apart from t8 to t2 (b). Light brown 

indicates background levels of green fluorescence, whereas the black line denotes 

binding events detected by the pipeline after VBEM-MGHMM analysis. Fluorescence 

intensity is expressed in thousands of photons. Representative rastergrams summarize 

traces of individual target molecules, each in a single row and sorted according to their 

arrival time. (c) Comparison of kon and koff of DNA-guided TtAgo with targets containing 

two or one binding site. Values are reported as mean ± standard deviation for three 

independent replicates. 
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Smith et al., Figure S1
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Synthetic guide strand
description

Sequence
Seed,

p indicates 5′ monophosphate
DNA guide strand with first 16 nt of let‑7a for 

Alexa labeling
pTGA GGT AGT AGG TTG T-NH2

Substrates
Sequence

Bio, Biotin-6-carbon spacer; U, Alexa Fluor 647 deoxyuridine;
 seed; target site/pairing to TtAgo-guide

Klenow polymerase template
to synthesize 3′ DNA extension

containing 17 Alexa Fluor 647 dyes

ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT 
ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT ATT GTT GTT 
ATT GTT GTT ATT GTT GTT ATT TAC ATC TAG TTA AAC AGC GGA ACT GTG

Trap oligonucleotide
for the preceding template

(fully complementary)

CAC AGT TCC GCT GTT TAA CTA GAT GTA AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC 
AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC 
AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT AAC AAC AAT

5′-tethered, DNA target with complete 
complementarity to let‑7a and a 3′ DNA 

extension containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATA CTA TAC AAC CTA CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with let‑7a seed-match 
and a 3′ DNA extension containing 17 Alexa 

Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTC CTC TGG ATT GAT ATG TTG GAT CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with let‑7a seed-match 
plus 3′ supplementary pairing and a 3′ DNA 

extension containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTC CTC TGG ATT GAT AAC AAG GAT CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

Table  S1,  Related  to  Experimental  Procedures.  DNA  oligos  used  in  this  study.
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5′-tethered, DNA target with let‑7a seed-match 
t1A and a 3′ DNA extension containing 17 Alexa 

Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CAT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT AAA AAA AAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with let‑7a seed-match 
t1T and a 3′ DNA extension containing 17 Alexa 

Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CTT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT AAA AAA ATA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with let‑7a seed-match 
t1C and a 3′ DNA extension containing 17 Alexa 

Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CCT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT AAA AAA ACA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with let‑7a seed-match 
t1G and a 3′ DNA extension containing 17 Alexa 

Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CGT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT AAA AAA AGA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 3 complementary to 
let‑7a binding sites and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TAC AAC CTA CTA CCT CAG AAT TGG TCT GGA TTA CTA TAC AAC CTA CTA 
CCT CAG AAT TGG TCT GGA TTA CTA TAC AAC CTA CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 2 complementary to 
let‑7a binding sites and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TAC AAC CTA CTA CCT CAG AAT TGG TCT GGA TTA CTA TTG TTG GAT GAT 
GGA GTG AAT TGG TCT GGA TTA CTA TAC AAC CTA CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU
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5′-tethered, DNA target with 1 complementary to 
let‑7a binding site and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TAC AAC CTA CTA CCT CAG AAT TGG TCT GGA TTA CTA TTG TTG GAT AAA 
AAA AGA AAT TGG TCT GGA TTA CTA TTG TTG GAT AAA AAA AGA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 2 let-7a seed-
matched binding sites and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CAT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT CTA CCT CAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 1 let-7a seed-
matched binding sites and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CAT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT AAA AAA AAA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 2 let‑7a seed-match 
t1G binding sites (11 nt apart) and a 3′ DNA 

extension containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CGT ATG TTG GAT CTA CCT CGA CCT 
TTT ATA CAC AGT TCC GCT GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 1 let‑7a seed-match 
t1G binding site and a 3′ DNA extension 

containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CGT ATG TTG GAT GAT GGA GCA CCT 
TTT ATA CAC AGT TCC GCT GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU

5′-tethered, DNA target with 2 let‑7a seed-match 
t1G binding sites (56 nt apart) and a 3′ DNA 

extension containing 17 Alexa Fluor 647 dyes

Bio-GGG TTT TAA TGA ATA CGA TTT TGT ACC AGA GTC CTT TGA TCG TGA CAA AAC AAT TGC ACT 
GAT AAT GAA TTG GTC TGG ATT GAT ATG TTG GAT CTA CCT CGT CGT GAC AAA ACA ATT GCA CTG 
ATA ATG AAT TGG TCT GGA TTT GAT ATG TTG GAT CTA CCT CGA CCT TTT ATA CAC AGT TCC GCT 
GTT TAA CTA GAT GTA AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU 
AAC AAC AAU AAC AAC AAU AAC AAC AAU AAC AAC AAU
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