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ARTICLE

Bayesian nonparametric discovery of isoforms and
individual specific quantification
Derek Aguiar1, Li-Fang Cheng2, Bianca Dumitrascu3, Fantine Mordelet4, Athma A. Pai5,7 &

Barbara E. Engelhardt 1,6

Most human protein-coding genes can be transcribed into multiple distinct mRNA isoforms.

These alternative splicing patterns encourage molecular diversity, and dysregulation of iso-

form expression plays an important role in disease etiology. However, isoforms are difficult to

characterize from short-read RNA-seq data because they share identical subsequences and

occur in different frequencies across tissues and samples. Here, we develop BIISQ, a Bayesian

nonparametric model for isoform discovery and individual specific quantification from short-

read RNA-seq data. BIISQ does not require isoform reference sequences but instead estimates

an isoform catalog shared across samples. We use stochastic variational inference for effi-

cient posterior estimates and demonstrate superior precision and recall for simulations

compared to state-of-the-art isoform reconstruction methods. BIISQ shows the most gains for

low abundance isoforms, with 36% more isoforms correctly inferred at low coverage versus a

multi-sample method and 170% more versus single-sample methods. We estimate isoforms

in the GEUVADIS RNA-seq data and validate inferred isoforms by associating genetic var-

iants with isoform ratios.
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A lternative splicing is the process by which a single gene
produces distinct mRNA isoforms, which vary in usage of
component exons1. Isoforms can differ by alternative

transcription initiation sites, alternative usage of splice sites
(either 5′ donor or 3′ acceptor sites), alternative polyadenylation
sites, or variable inclusion of entire exons or introns (Fig. 1).
Altogether, alternative splicing enables the large diversity of
mRNA expression levels and proteome composition observed in
eukaryotic cells, which is particularly important for regulating the
context-specific needs of the cell2.

It is estimated that 95% of human protein-coding genes can be
alternatively spliced1. These splicing decisions are important
drivers of many biological processes, with considerable variation
in splicing patterns across human tissues3. For example, muta-
tions in splicing regulatory elements may lead to disease patho-
genesis and progression,1, 4–8 and mutations in protein domains
of specific splicing factors occur at a high rate in tumor cells,
resulting in increased cellular proliferation9. Furthermore, pro-
teins resulting from splicing variants often have distinct mole-
cular functions. For instance, the two variants of survivin have
opposite functions: one with pro-apoptotic and the other with
anti-apoptotic properties10.

Although there is increasing evidence of the biological
importance of splicing processes, the precise role of alternative
isoforms in regulating complex phenotypes is still largely
uncharacterized. This gap in understanding is due, in part, to the
difficulty of identifying and quantifying isoforms with high
accuracy from short-read RNA-seq data11. Transcript recon-
struction is essential to elucidate the role of gene expression in
biological processes because gene-level quantification is con-
voluted by the multiple transcribed isoforms for each gene. The
difficulties in isoform quantification stem from the tissue- and
sample-specific composition and expression patterns of isoforms,
the lack of a complete reference for isoform composition, and low
abundance levels of many isoforms2. Further, RNA-seq reads that

overlap informative splice junctions are rare, often noisy12, and
difficult to map to a reference genome13. Improvements in
reconstructing and quantifying tissue- and sample-specific iso-
forms would enable substantial improvements in understanding
the role of alternative splicing in complex disease.

While many tools exist for isoform reconstruction using RNA-
seq data, these methods have a number of drawbacks. First, many
quantification methods assume that a high-resolution isoform
sequence reference is available for each gene in the genome14–16;
in practice these references are often not available or incomplete
for non-model organisms and rare tissue or disease samples11.
Second, while a few methods process multiple samples simulta-
neously17–19, most methods consider a single sample in isolation,
which fails to exploit the sharing of isoforms across samples to
gain power for identification of rare or low abundance iso-
forms20–22. Third, many methods make technology-dependent
assumptions by controlling for specific biases (e.g., non-uniform
sampling of reads23) that do not generalize to mixtures of existing
technologies or new technologies with different biases.

Our method, Bayesian isoform discovery and individual spe-
cific quantification (BIISQ), addresses these limitations. First, BIISQ
uses annotations of transcribed regions as prior information24, 25,
but the number and composition of isoforms across samples are
estimated directly from the data, and the catalog of isoforms may
grow with additional observations. Second, BIISQ explicitly cap-
tures isoforms shared across samples using a Bayesian hier-
archical admixture model, which models multiple samples jointly
and borrows statistical strength across samples to identify shared
isoforms that may be in low abundance. Third, BIISQ assumes that
each nucleotide base in an isoform has an independent frequency
in the mapped reads, allowing BIISQ to account for read mapping
biases in RNA-seq data26.

We develop a computationally tractable stochastic variational
inference (SVI) algorithm to fit this model to short-read RNA-seq
data to estimate the structure of isoforms, probabilistically assign
reads to isoforms, and compute sample-specific and global iso-
form proportions27. We compare and validate BIISQ results on
simulated data from the benchmarker for evaluating the effec-
tiveness of RNA-seq (BEERS) software16 and by simulating short-
read data from available Pacific Biosciences (PacBio) Iso-seq data,
which include 1–10 kb sequence reads potentially capturing full-
length isoforms28. Finally, we apply BIISQ to a large RNA-seq data
set from lymphoblastoid cell lines (LCLs)29 to identify the catalog
of isoforms across samples. We use our catalog of sample-specific
inferred isoforms and genotype data to identify genetic variants
associated with isoform ratios and then to assess the functional
significance of alternatively spliced genes and associated splicing
variants.

Results
Isoform reconstruction and quantification with BIISQ. The goal
of isoform reconstruction and quantification is to robustly esti-
mate both absolute and relative mRNA isoform expression levels
for transcripts expressed at both low and high levels, and for each
sample in short-read RNA-seq data from multiple samples. Our
method, BIISQ, approaches this problem by postulating a model of
isoform composition and relative isoform abundance shared
across samples. Specifically, BIISQ implements a Bayesian non-
parametric hierarchical model of RNA-seq reads and isoforms
inspired by the hierarchical Dirichlet process30, and we use sto-
chastic variational inference (SVI) methods for computationally
tractable and robust posterior inference27. Importantly, in our
model, exon usage, RNA-seq read assignments, and the sample-
specific and global isoform proportions are interpretable

Simple transcript

Alternative 5′ splice site

Skipped exon

Alternative polyadenylation

Isoforms

Alternative transcript initiation

Alternative 3′ splice site

Fig. 1 Alternative splicing mechanisms. A single gene may be transcribed
into several distinct mRNA variants called isoforms through alternative
splicing mechanisms. This figure shows six common types of splicing
events (top to bottom): simple transcript; alternative transcription start site;
alternative 5′ splice site; alternative 3′ splice site; skipped exon; and
alternative polyadenylation
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parameters that translate directly to isoform composition, and
global and sample-level isoform quantification (see Methods).

The BIISQ model probabilistically maps each RNA-seq read into
a distribution over isoform exon compositions. Sample-specific
isoform proportions are drawn from a global distribution over an
arbitrarily large catalog of isoforms. The exon composition of
each isoform is modeled with a structured prior over exon
usage that constrains the space of possible isoforms to
those with support in the observed RNA-seq reads. The model
grows the global isoform catalog by constructing novel isoforms
given observed RNA-seq reads inconsistent with the current
catalog.

Variational methods enable computationally tractable posterior
inference in Bayesian models such as BIISQ31, 32. In brief, the
posterior distribution of the BIISQ model is intractable to compute
directly; instead, we hypothesize a family of tractable variational
distributions. Then, we iteratively compute the values of the
variational parameters that minimize the distance between the
variational and true posterior distributions with respect to the
Kullback–Leibler divergence33, 34. BIISQ implements stochastic
variational inference (SVI), an extension of variational inference
that uses random subsets of the samples to update the variational
parameters27.

Related isoform quantification methods. Methods for jointly
inferring and quantifying alternatively spliced transcripts can be
broadly partitioned based on the required level of reference
annotation35. Transcriptome annotation-dependent methods
require complete annotation of the transcriptome, including
isoform transcripts and splice junctions14–16. In contrast,
annotation-free methods require neither transcriptome nor gen-
ome annotations20, 36, 37. A third class of method requires
annotations of transcribed regions but is agnostic to isoform
and splicing annotations20–22; our method BIISQ is in this
category. Methods may include modes that cross these categories.
For example, Cufflinks has evaluation modes that can be anno-
tation free or guided by reference annotations of transcribed
regions20.

We compared results from BIISQ with four representative
isoform reconstruction and quantification methods: Cufflinks20,
CEM22, SLIDE21, and ISP19. These methods were selected
based on the following criteria: (i) the ability to use annotations
of transcribed genomic regions for isoform discovery and
quantification, but no requirement for isoform transcripts or
splice junction annotations; (ii) coverage of combinatorial and
statistical approaches; (iii) support for both single-end and
paired-end reads; and (iv) high-quality performance in a recent
benchmark study of isoform detection and quantification38.
While ISP does not leverage available gene annotations, it does
support isoform reconstruction across multiple samples
simultaneously.

Cufflinks uses a parsimonious approach to isoform discovery
in order to find the minimal number of transcripts to explain the
aligned reads20. After filtering erroneous spliced read alignments,
aligned reads are assigned to vertices in an overlap graph, whose
edges represent isoform compatibility between aligned reads.
Transcript assembly then reduces to finding a minimum set of
paths through the overlap graph such that each aligned read is
part of a path. Transcript quantification uses a statistical model
for RNA-seq reads to compute a point estimate of the isoform
quantifications, extending an earlier unpaired model39.

CEM, an extension of the method IsoLasso40, constructs a
connectivity graph to generate a set of candidate isoforms22. CEM
and IsoLasso model the coverage of aligned reads at each location
as a Poisson distribution and use lasso regression to produce a set

of inferred isoforms and abundance levels. The principle
difference between CEM and IsoLasso is how candidate isoforms
are selected: CEM uses expectation maximization (EM) while
IsoLasso solves a quadratic program. In our comparison, we
preferred CEM because of superior performance demonstrated on
benchmark data22.

The sparse linear modeling for isoform discovery and
abundance estimation (SLIDE) method implements a statistical
approach based on the start and end positions of aligned reads21.
SLIDE computes the number of aligned read start and end
positions that group into transcribed regions of exons and
organizes them into bins. Isoform proportions are quantified
using a linear model of the observed bin proportions; a modified
lasso penalty limits the number and composition of isoforms. We
ran SLIDE using two settings of the regularization parameter, λ=
0.01 (denoted SLIDE_more) and λ= 0.2 (denoted SLIDE_fewer),
which encourages more and fewer discovered isoforms,
respectively.

The iterative shortest path (ISP) isoform reconstruction
method builds a multi-sample generalization of the connectivity
graph often used for transcriptome assembly19, 41; vertices in this
graph denote transcribed segments, and edges connect two
segments if there exists one or more reads supporting their
adjacency. In this model, every distinct path corresponds to a
possible isoform segment. By assigning weights to edges that are
inversely proportional to the probability of inclusion in an
isoform, the problem of isoform reconstruction is equivalent to
solving an iterative shortest path problem.

Evaluation criteria. We evaluated precision and recall for each
method in terms of exact and partial matches to simulated RNA-
seq data42. Precision and recall were calculated based on
exact full-length isoform matches between simulated and esti-
mated isoforms (Eq. (4), Methods). Partial precision and recall
were calculated by defining imperfect matches between
each estimated transcript and the true transcripts (see Methods
and Supplementary Fig. 1). We controlled for issues regardin-
g exon identification by counting an exon as successfully
inferred if any subsequence of the inferred isoform overlapped an
exon in the gene annotation. Thus, reconstructing any sub-
sequence of an exon was equivalent to reconstructing the whole
exon correctly. For matched transcripts, we also computed
the proportion of isoform bases correctly covered (Supplementary
Methods).

Short-read RNA-seq simulations with BEERS. We first eval-
uated our model on simulated data generated using the bench-
marker for evaluating the effectiveness of RNA-seq software
(BEERS)16. In our simulations, we varied the number of alter-
natively spliced transcripts, coverage, the number of samples, read
lengths, and reference annotations (Methods and Supplementary
Fig. 2). After removing genes with fewer than three exons, we
divided the simulated genes into three equally sized groups
according to exon counts, producing gene sets with 3–6 exons,
7–12 exons, and 13–182 exons. In total, the simulation produced
reads for 3102 genes across 532,800 samples.

To test the accuracy of each method, we applied the five
isoform reconstruction methods to these simulated data and
computed the precision and recall of the isoform discovery results
—both perfect and partial matches (Fig. 2). For both perfect and
partial matches, BIISQ showed significantly higher precision across
the 3102 genes (pairwise t-tests, all p ≤ 2.2 × 10−16). However, ISP
showed significantly higher recall at the cost of lower precision
than both BIISQ and Cufflinks (pairwise t-tests, all p ≤ 2.2 × 10−16).
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BIISQ achieves the second highest recall for both perfect and partial
matches.

We also evaluated isoform reconstruction based on terminal
exons at both the 3′ and 5′ ends of the gene since isoform
boundaries are more difficult to infer due to biological variation
and known biases of RNA-seq42. When only the exons internal to
the true transcription start and end sites are considered, the
performance of all methods improves dramatically; BIISQ achieves
the highest mean precision with 0.612, and ISP achieves the
highest mean recall with 0.568, while the relative ranking of the
methods in terms of precision and recall remains the same
(Supplementary Fig. 3). When considering the proportion of exon
sequence shared by matched inferred and true isoforms, BIISQ

outperforms the other methods with 91.6% of true isoform exon
sequence covered (Supplementary Table 1). This result is
expected because BIISQ explicitly builds isoforms using a reference
for the collection of exons within each gene.

The precision and recall results are largely recapitulated when
we factored the results by the number of alternatively spliced
transcripts (Supplementary Fig. 4) or the number of exons in the
gene (Supplementary Figs. 5 and 6). All methods performed
better for genes with a small number of alternative isoforms (1–4)
and genes with a fewer number of exons (3–6), except for ISP,
which had a higher recall for genes with 13–182 exons at
threshold= 0.1. This is because ISP predicts a large number of
isoforms, many of which are incorrect, as indicated by a
consistently low precision (Supplementary Fig. 5). Moreover,
BIISQ showed the largest difference between maximum and
minimum precision (or recall) when factoring the results by the
number of transcripts (Supplementary Fig. 4). This suggests that
there are opportunities to improve performance for BIISQ in
precision and recall for genes with large numbers of isoforms or
exons. The BIISQ hyperparameters were set by grid search on a
single gene with small numbers of alternative transcripts;

BIISQ

ISP

CEM

CUFF

SLIDE_fewer

SLIDE_more

0.1 0.2 0.3 0.4

Matched proportion of transcripts

0.376 0.407

0.237 0.346

Precision
Recall

Fig. 2 Isoform discovery precision and recall for simulated data. Precision (red) and recall (blue) of the results from BIISQ, ISP, CEM, Cufflinks (CUFF), and
SLIDE (SLIDE_more and SLIDE_fewer) applied to the BEERS-simulated single-end RNA-seq data. The thick center bars denote the mean precision or recall
and the fill denotes three times the standard error. Transparent fill denotes partial precision and recall with a matching threshold of 0.1. Across all methods,
the best (partial) precision and recall values are annotated above their respective data points

a
SLIDE_more: r =  0.914
SLIDE_fewer: r =  0.908

−3

0

3

6

−2 0 2 4

Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

70
140
210

SLIDE

r =  0.942

−2.5

0.0

2.5

5.0

−2 0 2 4

Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

50
100
150

BIISQ

r =  0.870

−2

0

2

4

6

−2 0 2 4

Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

40
80
120

CEM

r =  0.918

−3

0

3

6

−2 0 2 4 6

Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

75
150
225

Cufflinks

SLIDE_more: r =  0.236
SLIDE_fewer: r =  0.609

−3

−2

−1

0

1

−1 0 1 2
Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

SLIDE

r =  −0.002

0.5

1.0

1.5

−2 −1 0 1 2
Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

CEM

r =  0.835

−1

0

1

2

−1 0 1 2
Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

Cufflinks

r =  0.814

−1.0

−0.5

0.0

0.5

1.0

1.5

−2 −1 0 1 2
Log10 true RPKM

Lo
g 10

 in
fe

rr
ed

 R
P

K
M

BIISQb
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optimizing hyperparameters on a more diverse set of genes would
likely improve precision and recall.

Next, to study BIISQ’s high precision, we evaluated the number
of perfectly inferred isoform transcripts with positive expression
values across coverages, which is the number of bases sampled
from the transcript with simulated reads normalized by the
transcript length. Across all samples in the simulated data, BIISQ,
CEM, Cufflinks, SLIDE_more, SLIDE_fewer, and ISP correctly
inferred 246,896, 15,829, 90,186, 85,156, 59,716, and 242,244 tran-
scripts, respectively, at a coverage of <1; the gains are more
pronounced at a coverage of <0.1, where BIISQ inferred 11,153
more true transcripts than ISP and 26,465 more than Cufflinks
(Supplementary Fig. 7). Despite the higher recall of ISP, BIISQ

inferred more transcripts at lower expression levels, which
highlights that much of the performance gains of BIISQ come
from explicitly encoding gene composition and exon usage, and
sharing strength across samples to identify low abundance
isoform transcripts. These results show that BIISQ is more precise
than the related methods, and BIISQ infers more total isoforms
than all methods besides ISP, which has better recall than BIISQ or
Cufflinks at the expense of greater numbers of false discoveries.

We assessed the quantification accuracy of each method by
computing the correlation between true and inferred normalized
read counts independently for each gene (reads per kilobase of
exon per million mapped reads, or RPKM). We omitted ISP from
these results as ISP reports expression as a percentage and relies
on third-party methods to compute RPKM19, 43. BIISQ inferred
positive expression for 697,605 transcripts compared to 556,306,
343,494, 316,975, and 179,327 for SLIDE_more, Cufflinks,
SLIDE_fewer, and CEM, respectively. We found a wide range
of expression-level estimates from the five methods (Fig. 3a),
typical of isoform quantification in human samples42. Overall,
BIISQ showed the highest correlation of expression across the
BEERS data, followed by Cufflinks (Spearman correlation
coefficient, BIISQ r= 0.942, Cufflinks r= 0.918). Correlation

improves for BIISQ, Cufflinks, and CEM for high coverage
transcripts (Supplementary Fig. 8), suggesting that the difficulty
associated with reconstruction of low coverage transcripts
negatively affects quantification.

Short-read RNA-seq simulations from long-read RNA-seq
data. The BEERS-simulated data models technology-specific
biases of short-read RNA-seq data but does not capture the
exon composition of true transcript isoforms. The Pacific Bios-
ciences Iso-Seq protocol enables single molecule transcriptome
sequencing with read lengths of up to 10 kb28. Iso-Seq reads may
span entire RNA transcripts, making the characterization of
isoform composition straightforward relative to inference from
short-read data, where a short read may map to multiple iso-
forms. While long-read sequencing allows experimentally driven
evaluation of isoform reconstruction, the cost and platform-
specific error rates make this technology unlikely to replace short-
read RNA-seq in the near future, necessitating the development
of methods such as BIISQ. Further, while long reads facilitate
isoform reconstruction, quantifying isoforms is challenging due
to low throughput, making precision and recall the principal
metrics for evaluation of Iso-Seq data44.

We simulated short-read RNA-seq data from full-length Iso-
Seq reads, which allows us to precisely capture true isoform
composition and proportions in simulated data. To do this, we
constructed a reference set of genes from the Iso-Seq human
transcriptome reference samples of heart and brain tissue. After
mapping genes and transcripts across tissues, we identified seven
genes with two or more isoforms in the heart and brain tissues
(see Supplementary Methods). To account for the platform-
specific biases in Iso-Seq, we evaluated both GMAP and
STARlong’s Iso-Seq read alignments to the human genome
version hg1945 (Supplementary Figs. 9 and 10). For seven
transcripts (Supplementary Table 2), we simulated reads with
lengths 50, 100, and 200 bp for 50 replicates of brain and heart
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Fig. 4 Comparison of methods on Iso-seq simulations. Precision (red) and recall (blue) of the results from BIISQ, CEM, Cufflinks (CUFF), SLIDE_more, and
SLIDE_fewer applied to a the short-read data simulated from Iso-Seq reads; b simulated data split by read length; and c simulated data split by span.
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Iso-Seq samples. We define transcript span relative to the
transcript sequence coverage of simulated reads; for example, a
span of 0.5 indicates that short reads were generated until the
reads mapped to half of the length of the Iso-Seq reads for a
transcript.

We first evaluated the accuracy of isoform reconstruction in
terms of perfect and partial (threshold= 0.2) precision and recall.
Due to the complex error profile and high error rates in PacBio
sequencing46, we evaluated the four methods that support PacBio
reference sequences: BIISQ, CEM, Cufflinks, and SLIDE. BIISQ

achieved the highest precision and recall from both exact
and partial matching thresholds across the seven Iso-Seq
transcripts (Fig. 4a). This strong performance improvement
remains when partitioning the RNA-seq data by read length and
span (Fig. 4b,c). Importantly, the performance of BIISQ, Cufflinks,
and SLIDE_fewer does not deteriorate substantially in either
precision or recall for paired-end short reads relative to the
deterioration in performance from CEM and SLIDE_more (Figs. 2
and 4a).

We then compared isoform quantifications across the four
methods in the paired-end short-read data (Fig. 3b). BIISQ inferred
5395 transcripts while Cufflinks, SLIDE_fewer, SLIDE_more,
and CEM inferred 3111, 2074, 1221, and 1003 transcripts,
respectively. Rankings of quantification results on paired-end
data largely mirrored the BEERS simulations, with Cufflinks
and BIISQ achieving the highest correlation between true
and inferred expression (Spearman correlation coefficients,
Cufflinks r= 0.835 and BIISQ r= 0.814). BIISQ and Cufflinks
showed the greatest agreement between any pair of methods
(Spearman correlation coefficient, r= 0.835, Supplementary
Fig. 11). BIISQ inferred more transcripts across all exon
compositions (Supplementary Fig. 12) and all spans (Supple-
mentary Fig. 13) in the Iso-Seq data.

We investigated the run time of each method as a function of
the number of exons, gene length, read length, and span; BIISQ run
times are averaged across 20 runs and eliminate the onetime cost
to convert aligned reads to read terms (Supplementary Figs. 14–
17). CEM was the most efficient method tested, followed closely
by Cufflinks, while BIISQ and SLIDE had the longest run times.
However, isoform reconstruction can be parallelized at the level
of reference transcripts, so difficulties associated with running
BIISQ transcriptome-wide may be reduced by using many compute
nodes to process distinct genes in parallel.

GEUVADIS RNA-seq data for 462 samples. Building on the
simulated data results, we tested BIISQ transcript reconstruction
and quantification on high-dimensional RNA-seq data across
ethnically diverse samples. We applied BIISQ to short-read RNA-
seq data for 462 lymphoblastoid cell lines (LCLs) from the
GEUVADIS RNA sequencing project for 1000 Genomes Project
samples29. We built a model of transcription for each gene from
the human genome annotations in GENCODE release 19 and
mapped RNA-seq reads with STAR 2-pass to the human genome
version hg19 (Methods). Applying BIISQ to these data, we dis-
covered 31,712 novel and 14,044 known transcript isoforms with
respect to the GENCODE database v19 transcript
isoform annotations, considering only perfect matches to isoform
exon composition. When using a matching threshold of 0.2, we
discovered 24,871 novel and 20,885 known isoforms. The dis-
tribution of the number of isoforms per gene is peaked for genes
with no evidence of alternative splicing (one transcript) and
heavily spliced genes (≥7 transcripts), although this distribution
could be confounded by erroneous splice junctions and frag-
mented transcripts in the BIISQ output (Methods and Supple-
mentary Fig. 18)12.

To investigate population- and sex-specific splicing patterns,
we analyzed transcript ratio patterns across all genes in the
GEUVADIS data. We considered global signatures of differential
transcript ratio usage, and we did not find a significant difference
in the average isoform transcript counts across sex (χ2 test, p ≤
0.99) or population (χ2 test, p ≤ 1) when counts were aggregated
across protein-coding genes. We computed population- and sex-
specific transcript ratio distributions for each protein-coding gene
separately using likelihood ratio (LR) tests (Methods). We found
924 and 148 genes that showed population- and sex-specific
transcript ratio distributions, respectively (χ2 test, Bonferroni-
corrected p ≤ 0.05; Supplementary Data 1). The gene PTPRN2
showed the most significant differential effects of population on
isoform ratios (LR test, Bonferroni-corrected p ≤ 2.2 × 10−16;
Fig. 5a, top). The gene LGALS9B showed the most significant
differential effects of sex on isoform ratios (LR test, Bonferroni-
corrected p ≤ 2.2 × 10−16; Fig. 5a, bottom, b). Most samples
express at most two of the five isoform transcripts of LGALS9B
(ordered by GENCODE annotation), but females show more
variable isoform expression levels than males, in particular for
isoform 5 (Fig. 5b).

Next, due to scarce information on population- or sex-specific
transcript ratios, we validated these results by testing for over-
representation of population- and sex-specific variants in the
exonic and intronic regions of the 924 and 148 genes
(Supplementary Data 1). First, we partitioned the GEUVADIS
sample into subgroups by (a) 1000 Genomes Project population
samples in GEUVADIS (CEU, TSI, FIN, GBR, YRI), (b)
European (EUR) versus African (AFR) ancestry, and (c) sex
(male, female). A variant allele is included if its minor allele
frequency (MAF) in the GEUVADIS data is above a threshold,
and if its MAF for individuals within the subgroup in question is
above the population- or sex-specific threshold (Methods). We
compared intragenic variant frequencies in the population- and
sex-specific genes to variant frequencies in background genes
randomly selected from genes that do not overlap the population-
and sex-specific genes (version hg19) using the hypergeometric
test for overabundance. To control for linkage disequilibrium
(LD) among variants, we removed variants that were well
correlated with neighboring variants (Methods). We found a
significant over-representation of population-specific alleles at
MAF ≥0.15 and a population threshold ≥0.15 (hypergeometric
test, Bonferroni-corrected p ≤ 1.8 × 10−5). We set the
MAF threshold relatively high for this test because we wanted
to discriminate between closely related populations with
fewer samples in each. We also found an overabundance of
European- or African-specific alleles (MAF ≥0.05,
population threshold ≥0.25, hypergeometric test, Bonferroni-
corrected p ≤ 1.42 × 10−5). We found a similar overabundance of
sex-specific alleles (MAF ≥0.05, sex threshold ≥0.40, hypergeo-
metric test, Bonferroni-corrected p ≤ 3.01 × 10−4); allelic variation
for autosomal chromosomes is unbiased, and thus sex thresholds
are closer to 0.5.

Quantitative trait loci analysis in GEUVADIS. Expression
quantitative trait loci (eQTLs) are genetic variants that regulate
RNA expression47; eQTL studies have been valuable for inter-
preting the functional significance of phenotype-associated var-
iants from genome-wide association studies48, 49. Expression QTL
analyses capture differences in gene expression relative to geno-
types across a population, but transcript ratio QTLs (trQTLs)
associate transcript ratios with genotype, deconvolving regulation
of expression of each of the gene transcripts29. We validated the
RNA isoforms that BIISQ identified in GEUVADIS by finding both
cis-eQTLs and cis-trQTLs using GEUVADIS genotype data, by
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separating CEU and YRI populations (following the GEUVADIS
paper), and also jointly across both populations29, 50 (see Meth-
ods). In the CEU/YRI separated analysis, we identified 692 (458
in CEU, 250 in YRI) unique cis-trQTLs at 5% FDR compared to
639 (620 in CEU, 83 in YRI) in the GEUVADIS study29. Finding
three times as many cis-trQTLs in YRI may be indicative of BIISQ's
increased power to find lowly expressed isoforms or a relative
deficiency of YRI transcripts compared to CEU in reference
databases. Only 27 of the 639 genes (4.2%) identified as cis-
trQTLs in GEUVADIS were also annotated as cis-trQTLs in our
analysis. In total, 492 of the 692 cis-trQTLs (71.1%) in our results
also had significant evidence as cis-eQTLs; in contrast, 292 of the
639 cis-trQTLs (45.7%) in the GEUVADIS study were also cis-
eQTLs. This suggests that some loci may act simultaneously as a
cis-eQTL and cis-trQTL, or that the regulation of transcript ratios
can obfuscate gene-level quantification.

In the joint mapping of CEU and YRI data, we identified a total
of 766 cis-trQTLs and 11,687 cis-eQTLs (5% FDR; Fig. 5c and
Supplementary Fig. 19). We found that the cis-trQTLs, and cis-
eQTLs to a lesser degree, showed spatial clustering near splice
junctions (Fig. 5d). A total of 511 genes with a cis-trQTL also had
a cis-eQTL (66.7%) and 264 cis-trQTLs were also cis-eQTLs

(33.33%). These results suggest that cis-trQTL signals may be
masked when restricting analysis to gene-level quantification.

We computed genes with cis-trQTLs exclusively inferred by
BIISQ compared to previous work29 and evaluated their association
with alternative splicing and disease phenotypes. The most
significant cis-trQTL (rs7042091) was identified for gene LCN8 by
BIISQ (5% FDR; Fig. 5e); neither the gene nor the trQTL were
identified in the GEUVADIS study (5% FDR)29. We found
evidence for a cis-eQTL at this SNP-gene pair in the GTEx study
across a number of tissues (whole blood, lung, muscle, spleen, and
others p ≤ 2.2 × 10−16)49. We also identified the SNCA gene
among the 721 genes with a significant cis-trQTL; mutations in
SNCA, which is typically expressed in neurons but also in LCLs,
have been associated with Parkinson’s disease51. It has been
shown that alternatively spliced transcripts can cause proteins to
misfold52 and the misfolding of SNCA’s protein has been
suggested as a therapeutic target to treat Parkinson’s disease53.
These results suggest that the alternatively spliced transcripts of
SNCA might be interesting targets for future research and
demonstrate the unique utility of BIISQ.

To further characterize the functional relationships among
these cis-trQTLs, we performed variant set enrichment (VSE)
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analysis for regions associated with variable intron splicing events
identified by LeafCutter, which identifies regions that associate
spatially with splicing QTLs8 and cis-regulatory elements (CREs)
from ENCODE in a diverse set of cell types54–56. VSE is a
statistical test that computes the significance of enrichment or
depletion of an associated variant set (here cis-trQTLs) with
respect to a genomic annotation. Here, we computed enrichment
of cis-trQTLs in DNase I hypersensitive sites (DHSs),
H3K4me3 sites, and H3K27ac sites (Supplementary Table 3)57.
Histone modifications are linked to the regulation of alternative
splicing58 and are associated with isoform diversity in normal and
cancer cells59. We found that cis-trQTLs were significantly
enriched in B cells when considering only DHSs (Fig. 5f: Bcell-2,4;
VSE, Bonferroni-corrected p ≤ 2.07 × 10−4 and p ≤ 6.39 × 10−6)
but not when jointly considering DHSs and H3K4me3 marks, or
DHSs and H3K27ac marks (Fig. 5f: Bcell-1,3). Furthermore, cis-
trQTLs were enriched in an annotation track that combines
DHSs, FAIRE, and ChIP to identify regions associated with
chromatin accessibility and regulatory activity in LCL samples
(Fig. 5f: LCL-1-5; VSE, Bonferroni-corrected p ≤ 3.60 × 10−3,
2.94 × 10−5, 2.19 × 10−4, 4.35 × 10−3, 2.16 × 10−5, respectively)
and clusters of alternatively excised introns identified by
LeafCutter (Fig. 5f LCClusters-1, VSE, Bonferroni-corrected p ≤
1.57 × 10−5). We only find significant enrichment in three of the
ten control cell types, including embryonic stem cells (VSE,
Bonferroni-corrected p ≤ 2.36 × 10−4), cervical carcinoma cells
(VSE, Bonferroni-corrected p ≤ 3.38 × 10−3), and mesoderm
leukemia cells (VSE, Bonferroni-corrected p ≤ 2.87 × 10−3),
indicating that there may be significant sharing of cis-trQTL-
related chromatin markers between these cell types and LCLs
(Fig. 5f; samples H1hescPk-1, Helas3Ifna4hPk-1, and K562Pk-1).

To understand if our cis-trQTL target genes shared biological
function, we quantified enrichment of cis-trQTLs in the
Database for Annotation, Visualization and Integrated Discovery
(DAVID)60 (Supplementary Table 4). We computed functional
enrichment among the targets of the cis-trQTLs, and genes with
>1, >4, and >6 transcript isoforms, using all annotated human
genes as the background set. We found enrichment of cis-trQTL
gene targets in a single KEGG pathway, olfactory transduction
(BH adjusted p ≤ 2.5 × 10−3; Supplementary Table 5). This
pathway shows substantial transcript diversity: more than two
thirds of olfactory receptors have been estimated to be
alternatively spliced61. The most significant enrichment for the
SwissProt and UniProt seq-feature annotations were alternative
splicing and splice variant, respectively (BH adjusted p ≤ 2.2 × 10
−16 for both; Supplementary Tables 6–8). The most significant
enrichment from InterPro was protein kinases (BH adjusted p ≤
2.2 × 10−16), which exhibit high proteomic and functional
diversity as the result of alternative splicing62. These database
enrichment results demonstrate that cis-trQTLs and spliced gene
sets identified by BIISQ are enriched for alternative splicing
functions and pathways.

Discussion
We presented a statistical model, BIISQ, for quantifying RNA
isoforms in short-read RNA-seq samples, which shares strength
across samples to estimate isoforms—especially those at low
abundance—without reference isoform compositions. We used a
stochastic variational inference method to fit BIISQ to data that
allows our approach to scale to transcriptome-wide study data;
further, BIISQ scaled efficiently as the coverage or length of a gene
increased in simulated paired-end Iso-Seq data. We demonstrated
that our method improves substantially over four state-of-the-art
methods in precision of isoforms on two different types of
simulated data, with significant improvement for low abundance

transcripts. BIISQ also achieves relatively high recall while retaining
high precision. We applied BIISQ to the GEUVADIS RNA-seq data
and identified known and novel isoforms that we validated, in
part, by identifying cis-trQTLs. The cis-trQTLs cluster near
known splice junctions and are significantly enriched in cis-
regulatory elements associated with chromatin accessibility,
alternatively excised intron clusters, and histone modifications,
which are all associated with splicing regulation and isoform
diversity58, 59.

BIISQ has several advantages over existing representations of
RNA isoforms: (1) sample-specific isoforms are drawn from a
collection of global isoforms, which leads to higher power to
discover low frequency isoforms by sharing strength across
samples; (2) a Bayesian hierarchical approach enables the prin-
cipled incorporation of high-quality prior information such as
variance in the number of known global isoforms or observed
variation in the exon composition of isoforms; and (3) a non-
parametric approach allows us to flexibly combine computa-
tionally tractable posterior inference with model selection,
allowing the number of isoforms to grow with more samples. BIISQ
also enables the interpretation of model parameters as specific
quantities in RNA-seq analyses, for example, the probability of
assignment of a read term to a specific isoform. BIISQ is guaranteed
to converge to a local maximum, but the results on BEERS and
Iso-Seq data demonstrate that the quality of isoform recon-
struction is improved from taking the best maximum a posteriori
solution from multiple random restarts.

Our results on GEUVADIS data show that BIISQ captures bio-
logically interesting trends. This suggests that the partial tran-
script catalog identified by BIISQ can be biologically meaningful
and considered for downstream analyses. The flexible and robust
model for isoform identification and quantification from short-
read RNA-seq data in BIISQ enables a more precise estimate of
transcript isoform levels than is currently available, and opens the
door to a better characterization of the cellular regulation and role
of transcript isoforms in complex systems.

Methods
The BIISQ model. In the BIISQ model, we consider each gene independently and a
gene is defined as an ordered list of contiguous transcribed exons or retained
introns; we will refer to both DNA sequence types as exons for simplicity. A gene’s
exons are ordered from the 5′ to 3′ end of the gene, and gene transcripts are
represented by an ordered list of integers denoting the exons included in that
transcript. A gene includes ι= 1: E exons, and the set of global and sample-specific
isoforms are indexed by k= 1: K and ‘ ¼ 1 : L, respectively. We represent the
composition of an isoform as a binary vector, where 1 signifies an exon is included,
and a 0 encodes a spliced exon. Read terms are tuples defined by the terminal base
pair (bp) positions of a mapped read and the set of covered exons. For example,
consider a 100 bp read that starts 40 bp into BRCA2, covers exons 1 and 2, and
skips the first intron. The boundaries for the first two exons of BRCA2 are [1,67]
and [2617,2865], so the corresponding read term tuple is (40,2690,{1,2}).

Observations are encoded by the matrix X ¼ xvj
� � 2 RV ´m where V is the total

number of read terms observed across all m samples and xvj denotes the number of
times read term v was observed in sample j; let x⋅j= (x1j, …, xvj, …, xVj) denote the
vector of read term counts observed in sample j. The BIISQ model assumes x⋅j is
generated from a multinomial distribution with probability vector determined by
isoform k, which follows a Dirichlet distribution βk 2 RV .

βk � Dir bk1η1; ¼ ; bkVηV
� �

: ð1Þ

where bkv ~ Bernoulli (πι) controls whether read term v is expressed in isoform k,
η1; ¼ ; ηV are hyperparameters, and πι ~ β(r, s) if read term v starts in exon ι; this
forms a many-to-one mapping between read terms and exons. In other words, all
read terms that start in exon ι share the prior πι ~ β(r, s). The hyperparameters r
and s may be tuned to encourage isoform compositions with fewer exons or,
equivalently, induce sparsity over read term usage in the vector bkvð Þv¼1;¼ ;V .

The distribution of global isoforms follows a Dirichlet process with
concentration parameter ω and a uniform base distribution H ¼ UN over the set of
all isoforms, G0jω;H � DPðω;UNÞ. The set of natural numbers N defines the set
of possible isoforms through their binary encodings; e.g., the number 5 encodes the
isoform with the first and third exons included in a three exon gene (101). Sample-
specific isoforms are distributed according to a Dirichlet process with base
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distribution G0, and concentration parameter α: Gj|α,G0 ~ DP(α, G0). The sharing
of the base distribution G0 ensures isoforms are shared among the samples, and the
clustering property of the Dirichlet process encourages new observations to join
existing isoforms with the largest numbers of observations (rich-get-richer
property). Sample-specific and global isoforms are related through a multinomial
mapping variable cj,l, and the latent isoform assignment for each read is drawn
from a multinomial distribution

zj;i � MultinomialðψjÞ

where

ψj ¼ ðψj;lÞ1l¼1

are the sample specific isoform proportions (Supplementary Methods). Finally,
reads are drawn from a multinomial distribution with probability vector
determined by the global isoform, wji � Multinomial βcjl′

� �
, l′ ¼ zji .

See Supplementary Methods, Supplementary Fig. 20, and Supplementary Tables 9
and 10 for details of the BIISQ model.

Posterior inference in BIISQ. We developed a stochastic variational inference (SVI)
method to tractably and robustly estimate posterior probabilities in the BIISQ model,
following earlier work on SVI for the hierarchical Dirichlet process (HDP)27. We
modified this method for the BIISQ-specific model parameters as follows. We add
constant noise using hyperparameter ϵ to bkv ~ Bernoulli (πι) which ensures that
the Dirichlet distribution βk is defined. Sparsity, in terms of the number of exons
per isoform, may be induced by controlling the hyperparameters of the beta-
Bernoulli hierarchy, which affects the probability of emitting the corresponding
read terms in the Dirichlet distribution (Supplementary Fig. 20). Threshold
parameters in the inference algorithm are configurable and tuned through the
evaluation of a single held-out simulated gene (Supplementary Methods).

To handle the expansion and contraction of the population-wide isoforms, we
implemented a merge-propose-reduce step in SVI and executed this step every 30
iterations64, 65. For every pair of isoforms, the merge step calculates the likelihood
of the data before and after merging the pair of isoforms; if the sample likelihood is
greater after the merge, the merge is accepted. BIISQ proposes new isoforms by
computing the union of exons in randomly sampled, poorly mapped read terms,
where the likelihood of that read mapping to existing isoforms is <0.5. If at least
one novel isoform is proposed, BIISQ reinitializes all variational parameters
(Algorithm 1 in Supplementary Methods). Finally, the reduce step removes isoform
k from the local and global distributions if, for all samples, there are no reads that
map to isoform k with a probability >0.01.

After convergence of SVI, transcripts are quantified for each sample using
RPKM

RPKMt ¼ 109 � Xt

Lt � N
ð2Þ

where Xt is the number of reads mapped to transcript t, Lt is the length of transcript
t and N is the total number of mapped reads. For BIISQ, the number of reads
mapped to a transcript is calculated by the product of the total number of reads
mapped to the gene and the per-sample isoform proportions (Supplementary
Methods).

BEERS-simulated data runs. Single-end RNA-seq reads were generated by the
benchmarker for evaluating the effectiveness of RNA-seq software (BEERS)16. The
number of reads required to detect a full range of isoforms in human RNA-seq
experiments has been estimated to be at least 200 million66; therefore, we generated
a pool of (2 × 108/2 × 104) ×Ng reads where Ng is the number of genes for each
simulation. We divided the gene models into three equally sized groups according
to exon count, producing groups of genes with 3–6, 7–12, and 13–182 exons. Gene
models were drawn from two reference annotation data sets, the RefSeq database
and a database collection composed of ten annotation tracks including UCSC and
Ensembl databases (Supplementary Methods). We varied the number of novel
transcripts in {2,4,6,12,16}67, the minimum gene coverage in {1, 5, 15, 50, 100}, and
the number of samples in {100, 250}. We also included 30 simulated genes for read
lengths in {200, 400}. For each gene model, we sampled reads according to their
parameter configuration from the aligned RNA-seq reads in the BEERS-simulated
read pool. We sampled 10 genes for each parameter configuration and discarded
data from BEERS-simulated genes that were under the desired coverage or did not
have at least one read in each exon. This resulted in a pool of 3102 simulated genes
from 532,800 RNA-seq samples. The start position of a read was sampled from a
gamma distribution with a parameter that decreases linearly with the position to
simulate a 5′ bias. The exonic composition of a novel splice form was generated by
BEERS, and isoform proportions for each sample were sampled from a Dirichlet
distribution with concentration parameter α= 1.

Short-read simulations from PacBio Iso-Seq long-read data. We downloaded
the full-length non-chimeric human transcriptome liver, heart, and brain data from
the Iso-Seq protocol, which included unaligned sequence reads and general feature

format (GFF) reference files for each tissue28. The gene identifiers provided in
the reference files were created independently for each tissue, so we constructed a
reference set of genes and their transcripts across tissues as follows. For each
gene, we created a standard set of exons by parsing its transcripts and collapsing
overlapping exons in the GFF files. We then mapped genes across the three
tissues based on a base pair overlap of 95% and discarded non-unique mappings.
For each gene, we then mapped transcripts across tissues based on a 95% over-
lap (see Supplementary Methods). This process was conservative by design, lea-
ding to a confident baseline of cross-tissue isoforms. We found seven genes
having at least two transcripts isoforms shared across two tissues (see Supple-
mentary Table 2): BLOC1S6, ZFAND6, CYTH1, APP, C1orf43, SPARCL1, and
RNF14. None of these genes were expressed in liver and thus the liver data were
discarded.

We mapped the Iso-Seq reads to the gene sequences of the identified transcripts
from human genome version hg19 (Supplementary Table 2) using the GMAP and
STARlong algorithms45. We built an Iso-Seq short-read simulator (ISSRS) that
simulates short reads from longer Iso-Seq reads. The inputs to ISSRS are
sequencing parameters, a gene reference file with exon boundaries, and an aligned
sequence read file. The outputs of ISSRS are aligned sequences in SAM format that
contain short sequence reads but retain the read mapping biases present in the Iso-
Seq data by copying the sequence position from the Iso-Seq reads. In brief, the
simulator works as follows: (1) compute Iso-Seq reads that map to the exons of a
known transcript; (2) for each read, determine the amount of sampling based on
input coverage; (3) sample reads by attempting to add insert sizes distributed
normally with mean 10 bp and 40 bp standard deviation; (4) output sampled reads
while preserving sequence and quality scores from the aligned Iso-Seq transcripts
in SAM and BIISQ format (see Supplementary Methods). For step (1), STARlong
mappings yielded fewer false positives than GMAP, but GMAP produced many
more usable alignments (Supplementary Figs. 9 and 10). For the seven transcripts
identified across tissues, we simulated reads with lengths 50, 100, and 200 bp and
approximate coverage values of the input Iso-Seq transcripts of 0.25, 0.5, and 1 for
50 samples from brain and heart tissues.

GEUVADIS RNA-seq data preparation. RNA-seq reads from EBV-transformed
LCLs were downloaded from the Genetic European Variation in Health and Dis-
ease (GEUVADIS) project29. BIISQ requires read terms—mapped RNA-seq read
start positions, end positions, and exons covered tuples—and a model of tran-
scription for each gene indicating contiguous transcribed subsequences including
exons or retained introns. To build the transcription model, we first extracted the
protein-coding representative (as defined by ENCODE annotation “basic”) tran-
scripts from the comprehensive gene annotations in GENCODE release 19 for
human genome assembly version GRCh37.p13. We then built a set of repre-
sentative exons for each protein-coding gene. Most genes had a single transcript
annotated as basic; for the remaining genes, we kept the transcript with the largest
number of exons.

To build the read terms, we mapped the raw RNA-seq reads with STAR 2-pass
to the human genome version 19. We removed unmapped reads or non-primary
reads that failed quality checks or were marked as duplicates. For each mapped
read, we computed the set of overlapping transcript exons, producing an
intersection file. The full catalog of read terms was built from a first pass
through the intersection files of each sample; we then constructed read term
expression files for each sample from a second pass with the read term catalog.
A final step reduces the number of read terms by collapsing terms with a
similar start position and exon content to an approximate target number of read
terms of 2500.

Cis-QTL mapping. We used Matrix eQTL68 to perform association mapping for
local eQTLs and transcript ratio QTLs (cis-trQTLs), where the ratio of expression
levels for each isoform to all isoforms in a gene—or the transcript ratio—replaces
the RPKM values for each gene69. Logistic regression (Fig. 5e) was computed using
a generalized linear quasibinomial model. For the joint-processed results, we define
the cis region of a gene as the genetic variants falling within 100 kb of a gene’s
transcription start or end site. Sex, population, the first three genotype principal
components, and 15 PEER factors estimated from the isoform ratio matrix were
included as covariates using a standard processing pipeline for RNA-seq data to
control for population structure and latent confounders70–72 (Supplementary
Fig. 21 and Supplementary Table 11). The LD-based SNP pruned cis-trQTL set
(Fig. 5d) was computed using the SNPRelate package with an LD threshold of
0.270. The expression of cis-eQTLs were also quantile normalized, and we removed
genes with a single transcript or fewer than three exons in the computation of cis-
trQTLs. We generated the null distribution of p-values by permuting genotype
labels while keeping isoform ratio labels constant (Supplementary Methods). To
achieve well calibrated null hypothesis p-values and filter transcripts containing
false splice junctions, transcripts with ratios of 0 or 1 in all samples and transcripts
expressed in less than 10% of the samples were discarded.

For the comparisons to the GEUVADIS study, we used Matrix eQTL for
association mapping with a cis region of 1Mb, 10 PEER factors, quantile
normalization, 5% FDR, and 3 genotype PCs for CEU and 2 genotype PCs for YRI.
In order to accommodate partially constructed transcripts, we required only 10% of
samples to have >0 expression.
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GEUVADIS functional assessment. The Database for Annotation, Visualization
and Integrated Discovery (DAVID v6.8, May 2016) analysis included functional
enrichment for nine databases (Supplementary Table 4) and used the default whole
genome set of genes60. We compiled sets of high confidence isoforms for each gene
by filtering out transcript isoforms not present in ≥10% of the samples. To reduce
the affects of linkage disequilibrium (LD) on the variant set enrichment analysis,
we filtered genetic variants for YRI, CEU, FIN, GBR, and TSI populations such that
the MAF >0.001, pairwise r2 < 0.8, and genotyping rate >0.8 using the rAggr
interface to Haploview on the 1000 Genomes Project phase 3 data73. Variant set
enrichment analysis was run on the LD blocks for ENCODE Encyclopedia 3
annotations: DNase I hypersensitive sites, H3K4me3, H3K27ac, annotations gen-
erated from a chromatin state segmentation computational tool sourcing from the
Broad Histone UCSC track for nine factors and nine cell types, DNase I/FAIRE/
ChIP synthesis annotations from ENCODE and OpenChrom57, and LeafCutter
clusters (Supplementary Table 3). Sample Gm12878HMM was removed from
enrichment analysis due to a non-normal null distribution (KS test, p ≤ 0.01),
which is required by VSE (Supplementary Fig. 22). We included annotations from
LCLs as well as several other cell types: glioblastoma, cervical carcinoma, hepato-
cellular carcinoma, trophoblast, and embryonic stem cells.

Population- and sex-specific splicing. Population- and sex-specific
transcript ratios were evaluated based on a likelihood ratio test. The alternative
hypothesis modeled sample transcript ratios as draws from population- and sex-
specific Dirichlet distributions while the null hypothesis assumed a shared
Dirichlet distribution. We computed the maximum likelihood estimates for para-
meters of the shared, population-specific, and sex-specific Dirichlet distributions.
Genes were selected for the isoform proportion plots (Fig. 5a) based on the like-
lihood ratio test

2 log
L θ̂CEU jxCEUtð Þ;L θ̂FIN jxFINtð Þ;L θ̂GBR jxGBRtð Þ;L θ̂TSI jxTSItð Þ;L θ̂YRI jxYRItð Þ

L θ̂ALL jxALLtð Þ � χ2

where θ̂a are the maximum likelihood estimates for the parameters of the Dirichlet
distribution for population a, xt are the sample transcript ratios and populations
are denoted as superscripts. Sex-specific likelihood ratio tests were calculated
analogously.

The EUR versus AFR, population-, and sex-specific variant enrichment analyses
were computed from the 1000 Genomes Project phase three main release data
(human genome version hg19). We describe the processing for population-specific
variants (sex-specific and EUR versus AFR variants follow analogously). First, to
control for linkage disequilibrium (LD), we masked variants in pairwise LD >0.90
using PLINK v1.9 (indep-pairwise 100000 1000 0.9). We then extracted two
orthogonal sets of variants in protein-coding gene regions: population-specific
genes (selected set) and non-population-specific genes (background set). For a
specific variant, let the count of an allele a in population p be denoted |a|p, the set
of all alleles be A and the set of all populations P. Then, a variant is population-
specific if

9a; pj aj jpP
q2P

aj jq >t ð3Þ

for some population threshold t. Then, for each variant we count the number of
population-specific alleles greater than a minor allele frequency threshold for our
selected set and background set and test for an abundance of selected population-
specific alleles with a hypergeometric test.

Evaluation criteria. An isoform transcript is defined by the set of exons that are
expressed from a known gene reference. An evaluation criterion that requires the
true and inferred exon sets to be identical is often conservative due to variable read
coverage of exons. Therefore, isoform reconstruction was evaluated by considering
both perfect and imperfect matchings to determine precision and recall (Supple-
mentary Fig. 1). For exact matches, precision and recall were calculated based on
exact full-length isoform matches between true (simulated) and estimated isoforms:
let true positives, false positives, and false negatives be denoted TP, FP, and FN,
respectively. Then,

precision ¼ TP
TP þ FP

recall ¼ TP
TP þ FN

ð4Þ

For inexact matches, partial precision and recall were calculated by defining a
matching M, or a set of pairs of inferred-true isoforms, that is of maximum
cardinality and minimum weight (i.e., distance between isoform composition of a
pair) between each computed transcript and the true transcripts as follows. Let KC

and KT be the set of estimated and true isoforms, respectively, which are Boolean
vectors of length E exons {1,2, …, E}. A 1 at position ι signifies that exon ι is
contained within that isoform, and k[ι] indexes the position of the Boolean vector
k. We define the distance between an inferred and true isoform dk,l for all k∈ KC

and l∈ KT to be the Hamming distance.

The Hamming distance counts the number of mismatched exons between the
estimated and true isoforms. The maximum cardinality minimum weightM is then
the solution to the optimization problem

minM ¼
X

k21:KC

X
‘21:KT

xk‘dk‘ ð5Þ

s:t:
X

k21:KC

xk‘ ¼ 1 8‘ 2 1 : KT ð6Þ

X
‘21:KT

xk‘ ¼ 1 8k 2 1 : KC ð7Þ

xk‘ 2 f0; 1g 8k 2 1 : KC; 8‘ 2 1 : KT ð8Þ

If the total number of isoforms is I, finding a maximum cardinality
minimum weight matching can be solved in O(I3) time74. If dk‘ is the distance
between inferred isoform k∈ KC and true isoform ‘ 2 KT for matching M, then
dk;‘ ¼ 0 dk;‘>0

� �
implies k is a true (false) positive; if dk;‘ � p Ej j dk;‘>p Ej j� �

then k
is a p-partial true (false) positive (p-TP and p-FP). Any true isoform not matched
by a p-partial true positive is a p-partial false negative (p-FN). Using these
definitions of p-TP, p-FP, and p-FN, we can compute p-precision and p-recall as in
Eq. (4).

Code availability. The source code and software implementing the BIISQ model and
inference methods can be downloaded from: https://github.com/bee-hive/BIISQ.

Data availability. The GEUVADIS RNA-sequencing data are available for
public use in EBI ArrayExpress (accessions E-GEUV-1, E-GEUV-2, and
E-GEUV-3)29.
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