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SUMMARY

Many patients with type 1 diabetes (T1D) have resid-
ual b cells producing small amounts of C-peptide
long after disease onset but develop an inadequate
glucagon response to hypoglycemia following T1D
diagnosis. The features of these residual b cells
and a cells in the islet endocrine compartment are
largely unknown, due to the difficulty of comprehen-
sive investigation. By studying the T1D pancreas
and isolated islets, we show that remnant b cells
appeared tomaintain several aspects of regulated in-
sulin secretion. However, the function of T1D a cells
was markedly reduced, and these cells had alter-
ations in transcription factors constituting a and b

cell identity. In the native pancreas and after placing
the T1D islets into a non-autoimmune, normoglyce-
mic in vivo environment, there was no evidence of
a-to-b cell conversion. These results suggest an
explanation for the disordered T1D counterregula-
tory glucagon response to hypoglycemia.

INTRODUCTION

The events related to type 1 diabetes (T1D) pathophysiology in

humans are poorly defined. For example, we do not under-

stand the initiating trigger for T1D, how b cell loss proceeds,

whether the loss is inevitable or can be abrogated, or the po-

tential for residual b cell recovery. The long-standing view of

T1D pathogenesis was that autoimmune b cell destruction re-

sulted in complete loss of pancreatic insulin secretion. The

improved sensitivity of C-peptide detection as well as studies

using pancreatic specimens have recently led to the realiza-

tion that many individuals with T1D have insulin-secreting

cells, even 50 years after diagnosis (Keenan et al., 2010;

Oram et al., 2014). Additionally, little is known about the prop-

erties of the glucagon-producing a cells in the T1D pancreas

and whether they share the plasticity recently described in

mouse models of profound b cell loss (Chera et al., 2014;

Thorel et al., 2010). Moreover, it is unclear why T1D a cells

have impaired glucagon secretion (Bolli et al., 1983; Gerich

et al., 1973; Sherr et al., 2014), which contributes to hypogly-

cemia susceptibility.

To comprehensively define the functional and molecular

properties of T1D islets, we used an approach that allows

study of the pancreas and isolated islets from the same organ

donor. Our findings show that remnant b cells appeared to

maintain several features of regulated insulin secretion. In

contrast, glucagon secretion was significantly compromised,

and the levels of essential a cell transcription factors and

their downstream targets involved in a cell electrical activity

were reduced. Moreover, an important b-cell-enriched tran-

scription factor was misexpressed in T1D a cells. These re-

sults provide insight into the functional and molecular profile

of a cells in T1D.

RESULTS

Procurement of Pancreatic Islets and Tissue from the
Same Organ Donor Allows for Multifaceted Phenotypic
Analysis of T1D Islets
Our methodology for islet isolation and tissue procurement from

the same pancreas allowed coupling of islet functional and
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molecular analysis with histological assessment of islets in the

native organ (Figure S1A). In this way, we were able to study 5

donors with recent-onset T1D (<10 years of T1D duration) and

3 donors with long-standing T1D (>10 years of T1D duration)

receiving continuous insulin therapy compared to the appro-

priate non-diabetic controls (Tables 1 and S1). Experimental ap-

proaches used for analysis of each T1D donor are indicated in

Table 1 and labeled accordingly in figure legends. Due to clinical

heterogeneity of T1D, we confirmed disease status by DNA

sequencing (Sanyoura et al., 2018) as described in the Supple-

mental Experimental Procedures. DNA sequencing covering

coding regions and splice junctions of 148 genes associated

with monogenic diabetes did not detect variants associated

with monogenic diabetes (Alkorta-Aranburu et al., 2016;

Table S2). By flow cytometry analysis, recent-onset T1D islets

contained 7-fold more a cells than b cells, and the b cell fraction

was reduced approximately 6-fold compared to normal islets

(Blodgett et al., 2015; Figures S1B–S1D).

T1D b Cells Have Regulated Insulin Secretion
and Express Key Transcriptional Regulators
Next, we analyzed the secretory function of the T1D islets in a

dynamic cell perifusion system and compared it with islets

from normal donors (Kayton et al., 2015). We found that the

few remaining T1D b cells responded to glucose, cyclic AMP

(cAMP)-evoked stimulation, and KCl-mediated depolarization

with a similar pattern as controls (Figures 1A and 1B). The

biphasic glucose-stimulated insulin secretion in islets at T1D

onset was also shown recently by Krogvold and colleagues

(Krogvold et al., 2015). As expected, insulin secretion by T1D is-

lets was diminished when normalized to overall islet cell volume

(expressed in islet equivalents [IEQs]; Figure 1A) due to the

greatly reduced b cell number (Figure S1C). However, insulin

secretion normalized to islet insulin content (reflecting b cell

number) by T1D islets nearly overlapped in terms of magnitude

with the secretory response of controls (Figure 1B). Consistent

with flow cytometry data in Figure S1C, the T1D b cell population

was 4- to 6-fold less than in control islets when adjusted to

islet insulin content (Figure 1C). Furthermore, the expression of

transcription factors critical for b cell identity PDX1 (Gao et al.,

2014) and NKX6.1 (Taylor et al., 2013) was not changed in

either isolated T1D islets (Figure 1D) or by protein analysis of

the native pancreatic tissue (Figures 1E, 1F, and S2). Even in

the 58-year-old T1D donor with long-standing T1D, these tran-

scription factors were expressed in rare insulin+ cells found scat-

tered in the exocrine parenchyma (Figures 1E, 1F, and S2). How-

ever,MAFA (Guo et al., 2013), a transcription factor known to be

required for murine b cell maturation, was reduced in the T1D

islet (Figure 1D), and there were fewer NKX2.2-expressing T1D

b cells compared to controls (Figures 1G and S2), even though

islet NKX2-2 mRNA was unchanged (Figure 1D). These studies

allowed us to directly access multiple pathways of insulin secre-

tion and suggest that the T1D b cells appear to maintain several

functional features of normal b cells, supporting the notion that

T1D is a disease primarily of b cell loss. Due to very few T1D b

cells available for deeper analyses, we focused our efforts on

comprehensive characterization of the most abundant endo-

crine cell type in T1D islets, the a cell (Figure S1C).

T1D a Cells Are Functionally Impaired and Have Altered
Expression of Transcription FactorsConstituting a andb

Cell Identity
Surprisingly, in spite of T1D islets containing 2-fold more a cells

than normal islets (Figure S1C), their glucagon secretion was not

significantly increased compared to controls when normalized to

overall islet cell volume (expressed as IEQs; Figure 2A). The

response was reduced when normalized to islet glucagon con-

tent (Figures 2B and 2C) and lacked the appropriate increase

at low glucose following 30-min high glucose inhibition (Fig-

ure 2B, inset). Marchetti and colleagues (Marchetti et al., 2000)

observed a similar defect in glucagon secretion in islets isolated

from a single T1D donor 8 months after the disease onset. These

Table 1. Demographic Information and Phenotype of T1D Donors

Donors

Age

(Years)

T1D Duration

(Years) Ethnicity/Race Gender BMI

Cause

of Death High-risk HLAa AutoAb

C-Peptide

(ng/mL) HbA1Cb

1 12 3 Caucasian F 26.6 anoxia DR3, DQ2 mIAA 0.05 9.8

2 13 5 Caucasian M 19.1 anoxia DR4, DQ2, DQ8 IA2A, mIAA <0.02 NA

3 nPOD

case no. 6342

14 2 Caucasian F 24.3 anoxia DR4 IA2A, mIAA 0.26 9.2

4 20 7 Caucasian M 25.5 anoxia DR4, DQ2, DQ8 IA2A 0.43 NA

5 nPOD

case no. 6323

22 6 Caucasian F 24.7 anoxia DR3, DR4, DQ2 GADA, IA2A <0.02 6.6

6 27 17 Caucasian M 18.5 anoxia DR4, DQ2, DQ8 ND <0.02 NA

7 30 20 Caucasian M 29.8 anoxia DR4, DQ8 ND <0.02 NA

8 58 31 Caucasian M 21.7 anoxia DR4 NA NA 8.8

The nature of T1D pancreas, organ scarcity, and logistics of organ procurement and processing precluded us from collecting the entire dataset on each

T1D donor. Perifusion, donors nos. 1, 3, 4, and 5; qRT-PCR, donors nos. 1, 4, and 5; islet endocrine cell composition by FACS, donors nos. 1, 4, 5, and

8; histology, donors nos. 1, 2, 5, and 8; islet transplantation, donors nos. 1, 5, and 8; a cell purification and RNA sequencing, donors nos. 3, 6, and 7.

AutoAb, autoantibodies; GADA, glutamic acid decarboxylase autoantibody; HbA1C, hemoglobin A1C; IA2A, autoantibody to transmembrane protein

of the protein tyrosine phosphatase family; mIAA, insulin autoantibody; NA, not available; ND, non-detectable.
aHLA typing provided by Organ Procurement Organization.
bHbA1C collected from donor’s redacted medical chart.
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Figure 1. T1D b Cells in Recent-Onset T1D Retain Secretory Properties and Gene Expression Pattern Similar to Normal b Cells

(A and B) Insulin secretion was assessed in islets isolated fromdonorswith recent-onset T1D (n = 4; ages 12–22 years; donors nos. 1, 3, 4, and 5) and compared to

normal controls (n = 7; ages 7–21 years); G 5.6–5.6mMglucose, G 16.7–16.7mMglucose, G 16.7 + IBMX 100–16.7mMglucose + 100 mM isobutylmethylxanthine

(IBMX), G 1.7 + Epi 1–1.7 mM glucose + 1 mM epinephrine, KCl 20–20 mM potassium chloride.

(A) Insulin secretion normalized to overall islet cell volume (expressed as islet equivalents [IEQs]); ****p < 0.0001.

(B) Insulin secretion normalized to islet insulin content; ***p = 0.0005. Data in (A) and (B) were compared by two-way ANOVA.

(C) Insulin content of control (3.873 ± 0.763 ng/IEQ) and T1D islets (1.131 ± 0.660 ng/IEQ); p = 0.0394; data are represented as mean ± SEM.

(D) Expression of b-cell-enriched transcription factors by qRT-PCR in whole T1D islets (n = 3 donors; ages 12–22 years; donors nos. 1, 4, and 5) and controls (n = 3

donors; ages 11–29 years) was normalized to endogenous control and INS expression; ***p < 0.0007.

(E–G) Expression of b-cell-enriched transcription factors in the native pancreatic tissue from donors with recent-onset T1D (n = 2; ages 12–22 years; donors nos. 1

and 5) was compared to 58-year-old donor with 31 years of T1D duration (donor no. 8) and controls (n = 7; ages 8–55 years). The pancreas of 58-year-old T1D

(legend continued on next page)

Cell Reports 22, 2667–2676, March 6, 2018 2669



functional changes in T1D a cells were accompanied by reduced

mRNA expression of two bona fide a cell regulators ARX (Court-

ney et al., 2013) and MAFB (Guo et al., 2013) in isolated islets

(Figure 2D). Notably, histological analysis of native tissues further

revealed that most a cells from T1D donors did not express

MAFB and ARX (Figures 2E, 2F, and S3) but did express low

levels of NKX6.1 (Figures 2G and S3), which is normally only

found in b cells (Figures 1G and S2). A similar pattern has been

seen in a mouse model with extreme b cell loss (Chera et al.,

2014; Thorel et al., 2010). To test whether there was evidence

of a-to-b cell conversion in the T1D donor pancreas, we

searched for, but did not find, islet cells co-expressing insulin

and glucagon (data not shown). This observation differs from

the recently described a-to-b cell conversion in a mouse model

of 99% b cell loss (Chera et al., 2014; Thorel et al., 2010).

Non-autoimmune, Normoglycemic Environment Does
Not Promote Conversion of T1D a Cells into b Cells
To determinewhether human T1D a cells following extreme b cell

loss can give rise to b cells when placed in a normoglycemic,

non-autoimmune environment, we transplanted islets from the

same T1D donors into immunodeficient Nod-SCID-IL2Rgnull

(NSG) mice (Brissova et al., 2014; Figure 3A). After one-month

engraftment, mice were treated with either PBS or exendin-4

(Dai et al., 2017), a GLP-1 analog reported to promote b cell

maturation or proliferation for an additional 1 month. At the end

of the treatment, in vivo insulin secretion was stimulated by a

bolus of high glucose and arginine. Although a species-specific

assay readily detected a rise in mouse plasma insulin levels,

human insulin was undetectable (data not shown), indicating

the absence of functional human b cells in T1D islet grafts.

Similar to native tissue, graft immunocytochemistry showed

that b cells were very rare and did not detect insulin/glucagon

co-expression (Figure 3B; data not shown). Because there

were no significant phenotypic differences between PBS- and

exendin-4-treated groups, these treatment groups were com-

bined to assess a cell transcription factor expression. After

transplantation, the number of a cells expressing ARX in T1D

islet grafts was greater (Figure 3D) with a decrease in the number

of NKX6.1+ a cells (Figure 3E) compared to a cells in the native

T1D pancreas, suggesting that the normoglycemic, non-autoim-

mune environment allowed for partial recovery of a cell identity

marker expression.

Genes Critical to a Cell Identity and Function Are
Differentially Expressed between T1D and Control a
Cells
T1D and control islet a cells were purified by fluorescence-acti-

vated cell sorting (FACS) (Figure S4A). RNA-sequencing analysis

(RNA-seq) performed on these cells indicated significant differ-

ences in the gene expression profiles (Figures 4A, 4B, and

S4B). Ingenuity pathway analysis (IPA) and Gene Ontology

(GO) term analysis (Tables S3 and S4; Figures S4C and S4D)

identified differences in processes associated with protein syn-

thesis and handling, immune-activated signaling, and cell stress

response pathways. Specifically, T1D a cells had increased

expression of genes important in the unfolded protein response

and formation of tight and adhesive junctions. Conversely, T1D a

cells had significantly reduced expression of genes recently

identified by single-cell RNA-seq as a cell enriched, such as

KLHL41, LOXL4, and PTGER3 (Muraro et al., 2016; Segerstolpe

et al., 2016; Figure 4C). Our RNA-seq analysis further confirmed

dysregulated expression of several islet-enriched transcription

factors in T1D a cells, which we initially detected by RT-PCR

in whole islets and at a protein level in pancreatic tissues

(MAFB, ARX, and NKX6-1; Figures 2D–2G and 4C). Among

islet-enriched transcription factors, RFX6, which lies upstream

of MAFB, ARX, and NKX6-1 in endocrine cell differentiation

(Piccand et al., 2014; Smith et al., 2010), had the most reduced

expression (7.2-fold). In mature mouse and human b cells,

RFX6 directly controls expression of P/Q and L-type voltage-

gated calcium channels (CACNA1A,CACNA1C, andCACNA1D)

and the KATP channel subunit sulfonylurea receptor 1 (ABCC8)

(Chandra et al., 2014; Piccand et al., 2014; Figure 4C) that asso-

ciates with Kir6.x pore-forming subunits (Winkler et al., 2009).

T1D a cells also had altered expression of potassium and sodium

ion channels, vesicle trafficking proteins, and cAMP signaling

molecules, which collectively point to altered T1D a cell electrical

activity and impaired glucagon exocytosis (Figure 4D).

DISCUSSION

These results show the utility and advantages of an experimental

approach that studies the pancreatic tissue and isolated islets

from the same T1D individual and incorporates the in vitro and

in vivo analysis of islets removed from the autoimmune, hyper-

glycemic environment. This approach also allowed us to directly

test multiple pathways of hormone secretion and uncouple ef-

fects of decreased b cell mass and b cell dysfunction not

possible in clinical studies in vivo. We found that the rare b cells

in the pancreas present not only in recent-onset T1D but also

many years after T1D diagnosis maintained features of regulated

insulin secretion and/or produced key transcriptional regulators

known to play a critical role in the maintenance of b cell fate and

function. In contrast, T1D a cells, while highly abundant, were

functionally impaired. Impaired glucagon secretion by T1D islets

was associated with altered expression of multiple nuclear reg-

ulators (e.g., ARX, MAFB, and RFX6) and their downstream tar-

gets, suggesting that these changes directly and indirectly

impact glucagon secretory pathways by altering expression of

potassium and sodium ion channels, vesicle trafficking proteins,

and cAMP signaling molecules. Abnormal glucagon secretion is

a common complication of T1D, including impaired counterregu-

latory response of glucagon to hypoglycemia (Gerich et al., 1973)

donor did not have any insulin+ islets; only rare b cells were found in exocrine parenchyma. T1D b cells (n = 3 donors; ages 12–58 years; donors nos. 1, 5, and 8)

had normal expression of b-cell-enriched transcription factors PDX1 (E) and NKX6.1 (F) but decreased expression of NKX2.2 (G) compared to controls (n = 7

donors; ages 8–55 years); ****p < 0.0001; ns, not significant.

Data in (C)–(G) were compared by two-tailed Student’s t test. Data in (A)–(G) are shown as mean ± SEM. The scale bar in (E) represents 10 mm and also cor-

responds to (F) and (G). See also Figures S1 and S2.
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Figure 2. T1D a Cells in Recent-Onset T1D Have Reduced Glucagon Secretion and Dysregulated Gene Expression

The same sets of islets shown in Figures 1A and 1Bwere simultaneously analyzed for glucagon secretion. The same non-diabetic controls were used as Figure 1.

The labeling of islet stimuli is identical to that in Figure 1.

(A) Glucagon secretion normalized to overall islet cell volume (expressed as IEQs); p = 0.2470.

(B) Glucagon secretion normalized to islet glucagon content; ****p < 0.0001. Data in (A) and (B) were compared by two-way ANOVA. Inset shows mean glucagon

response to low glucose following the 30-min inhibition with high glucose.

(C) Glucagon content in control (206 ± 62 pg/IEQ) and T1D islets (362 ± 149 pg/IEQ); p = 0.2831; data are represented as mean ± SEM.

(D) Expression of a-cell-enriched factors by qRT-PCR inwhole T1D islets (n = 3 donors; ages 12–22 years; donors nos. 1, 4, and 5) and controls (n = 3 donors; ages

11–29 years) was normalized to endogenous control and GCG expression; ****p < 0.0001; *p = 0.0184.

(legend continued on next page)
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and an inappropriate rise in circulating glucagon in response to a

mixed meal challenge (Sherr et al., 2014). Defects in neural

glucose sensing, impaired islet innervation, or intra-islet insulin

deficiency have been proposed to explain these abnormalities

in glucagon secretion (Mundinger et al., 2016). The current anal-

ysis provides a new explanation and molecular mechanism for

the dysregulated glucagon secretion in T1D, namely an intrinsic

a cell defect (Figure 4D). Our observation that the changes in a

cell gene expression partially resolved when T1D islets were

transplanted into a normoglycemic, non-autoimmune environ-

ment suggests that interventions might be developed to improve

a cell gene expression and glucagon secretion in T1D.

These data provide insight and raise important questions

about the molecular and functional changes in human T1D

a cells. After massive b cell loss in mice, b cells can be

gradually and partially replenished by a sustained a-to-b

cell reprogramming (Chera et al., 2014; Thorel et al., 2010).

Unlike in mice, the current analysis did not identify cells co-

expressing insulin and glucagon in the native pancreas or

after transplantation into a normoglycemic, non-autoimmune

environment, further supporting the notion that a-to-b cell

conversion in humans is a very rare event (Chakravarthy

et al., 2017). Our findings do suggest that T1D a cells have

reduced key molecular regulators (ARX and MAFB) and ex-

press a transcription factor, NKX6.1, that is usually b cell

specific, raising the possibility of partial change toward a b

cell phenotype. Perhaps an additional stimulus or multiple

stimuli may be required for human a cell reprogramming.

Lineage-tracing studies of human a cells are needed to

investigate the plasticity of human a cells.

These results stimulate a number of questions about the mo-

lecular and cellular changes in T1D islets. Are the a cell

changes the result of the autoimmune attack on the b cells

also affecting a cells, the lack of a cell-b cell contact, the dia-

betic milieu of hyperglycemia, or reduced intra-islet insulin?

Have the remnant b cells, which have a number of features of

normal b cells, somehow escaped the autoimmunity; do they

comprise a specific subset of b cells (Dorrell et al., 2016); or

do they represent an incomplete regenerative attempt, arising

via de novo neogenesis from facultative pancreas progenitors

(Xu et al., 2008), b replication (Brissova et al., 2014; Cano

et al., 2008; Nir et al., 2007), and/or transdifferentiation of acinar

cells (Zhou et al., 2008) or other islet endocrine cell types, such

as a cells (Chera et al., 2014; Thorel et al., 2010)? Additional

studies of isolated T1D islets and T1D pancreatic tissue are

needed to better understand the phenotype and possible het-

erogeneity of T1D a and b cells.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures (Resources Table).

Animals

Immunodeficient 10- to 12-week-old NSG male mice were used for human

islet transplantation studies (Brissova et al., 2014; Dai et al., 2016). Animals

were maintained by Vanderbilt Division of Animal Care in group housing in

sterile containers within a pathogen-free barrier facility housed with a 12 hr

light/12 hr dark cycle and access to free water and standard rodent chow.

All animal procedures were approved from by the Vanderbilt Institutional

Animal Care and Use Committees.

Primary Cell Cultures

Primary human islets were cultured in CMRL 1066 media (5.5 mM glucose,

10% FBS, 1% Pen/Strep, and 2 mM L-glutamine) in 5% CO2 at 37�C for

24–72 hr prior to reported studies (Brissova et al., 2014; Dai et al., 2016). No

cell lines were used in this study.

Human Subjects

Pancreata and islets from normal and T1D donors were obtained through a

partnership with the International Institute for Advancement of Medicine

(IIAM), National Disease Research Interchange (NDRI), Integrated Islet

Distribution Program (IIDP), and Network for Pancreatic Organ Donors with

Diabetes (nPOD). Most pancreata from normal donors were processed

either for islet isolation (Balamurugan et al., 2003) or histological analysis

(described below and Table S1). In most T1D pancreatic organs, islets and

tissue specimens were procured from the same organ. For a number of

controls, human islets were obtained through IIDP (Table S1). Donor

demographic information and phenotype of T1D donors is summarized in

Table 1. The Vanderbilt University Institutional Review Board declared

studies on de-identified human pancreatic specimens do not qualify as

human subject research.

Human Pancreatic Islet Procurement

Pancreata from normal juvenile and T1D donors were received within 18 hr

from cold clamp and maintained in cold preservation solution on ice until

processing. Pancreas was then cleaned from connective tissue and fat,

measured, and weighed. Prior to islet isolation, multiple cross-sectional

slices of pancreas with 2- to 3-mm thickness were obtained from the

head, body, and distal tail (Figure S1A). Pancreatic slices were further

divided into four quadrants and then either snap frozen or processed for

cryosections. Tissue specimens processed for cryosections were fixed in

0.1 M PBS containing 4% paraformaldehyde (Electron Microscopy

Sciences) for 3 hr on ice with mild agitation, washed in four changes of

0.1 M PBS over 2 hr, equilibrated in 30% sucrose/0.01 M PBS overnight,

and embedded in Tissue-Plus O.C.T. compound (Fisher Scientific). Pancre-

atic organs were processed for islet isolation using an approach previously

described (Balamurugan et al., 2003). Briefly, depending on the size of

pancreatic duct, 18G or 22G catheters were inserted into the main pancre-

atic duct (one catheter toward head and the other one toward tail). Acces-

sory duct and main pancreatic duct were clamped at the points where

sections were collected to prevent leakage of collagenase solution during

infusion. Collagenase solution consisting of collagenase NB1 (1,600 U/isola-

tion; Crescent Chemical), neutral protease NB1 (200 U/isolation; Crescent

Chemical), and DNase I (12,000 U/isolation; Worthington Biochemical

Corporation) was pre-warmed to 28�C and delivered intraductally using a

Rajotte’s perfusion system and then maintained at 37�C for approximately

20 min. The inflated tissue was then transferred to a Ricordi’s chamber

apparatus for combined mechanical and enzymatic digestion, which was

maintained at 36�C for 5–15 min prior to warm and cold collection. The

digest was incubated in cold RPMI media (Mediatech) supplemented with

heat-inactivated 10% fetal calf serum (Life Technologies) for 1 hr on ice.

(E–G) Analysis of native pancreatic tissue for expression of islet-enriched transcription factors. T1D a cells (n = 4 donors; ages 12–58 years; donors nos. 1, 2, 5,

and 8) expressed b cell marker NKX6.1 (G) and lost bona fide a cell markers MAFB (E) and ARX (F) in most T1D a cells compared to controls (n = 7 donors; ages

8–55 years); ****p < 0.0001.

Data in (C)–(G) were compared by two-tailed Student’s t test. Data in (A)–(G) are shown as mean ± SEM. The scale bar in (E) represents 10 mm and also cor-

responds to (F) and (G). See also Figures S1 and S3.
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If post-digestion tissue pellet was larger than 2 mL and islets were distin-

guishable from exocrine tissue by Dithizone staining (Sigma), a purification

step consisting of density gradient (Biocoll; Cedarlane) centrifugation on a

COBE 2991 Cell Processor (Gambro-Terumo) was used to separate islets

from exocrine tissue. Islets were re-suspended in CMRL 1066 medium

(Mediatech) supplemented with 10% heat-inactivated fetal calf serum

(Life Technologies), 100 units/mL penicillin/0.1 mg/mL streptomycin (Life

Technologies), and 2 mmol/L L-glutamine (Life Technologies). On average,

islet-enriched fraction contained from 30,000 (T1D pancreas) to 90,000

IEQs (normal pancreas) with 25%–50% purity. Islets were cultured for

12–24 hr and then shipped from Pittsburgh to Vanderbilt University and/or

University of Massachusetts for further analysis following shipping

protocols developed by the Integrated Islet Distribution Program (IIDP).

Subsequent assays with isolated islets were set up within 24–48 hr of islet

arrival.

Statistical Analysis

To compare global differences in perifusion outcomes in T1D donors and con-

trols, two-way ANOVA with Sidak’s multiple comparisons test was used. Data

were expressed as mean ± SEM. Two-tailed Student’s t test was used for

Figure 3. T1D a Cells Do Not Show Evidence of a-to-b Cell Reprogramming in Normoglycemic, Non-autoimmune Environment

(A) Islets from donors with recent-onset and long-standing T1D (n = 3 donors; 12–58 years; donors nos. 1, 5, and 8) depicted in Figures 1 and 2 were transplanted

into NSGmice. After 1-month engraftment, mice were treated with either PBS or Ex-4 for an additional 1 month. Representative images of islet grafts are from the

12-year-old individual with 3-year T1D duration (donor no. 1). In control and T1D columns, regions denoted by the dashed line in images on the left (B)–(E) (scale

bar in B is 50 mm) are displayed on the right (scale bar is 10 mm).

(B) Insulin (INS) and glucagon (GCG) double-positive cells were not detected in either type of T1D islet grafts (PBS or Ex-4).

(C–E) As there were no phenotypic differences between PBS and Ex-4 treatment groups, representative images were taken from both cohorts and analyzed for a

cell transcription factor expression. Change in number of GCG+ cells expressing MAFB (C), ARX (D), and NKX6.1 (E) in transplanted T1D islets (TX) relative to

donor’s native pancreas (Panc) is shown. ****p < 0.0001; ns, not significant.

Data in (C)–(E) are shown as mean ± SEM and were compared by two-tailed Student’s t test.
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Figure 4. Genes Critical to a Cell Function Are Differentially Expressed in T1D a Cells

Transcriptome by RNA-sequencing analysis of purified human a cells from T1D donors (n = 3; ages 14–30 years; donors nos. 3, 6, and 7) and controls (n = 5; ages

26–55 years).

(A) Principal-component analysis (PCA) plot shows clustering of a cell samples from control and T1D donors.

(B) Heatmap of the pairwise correlation between all samples based on the Spearman correlation coefficient. Perfect correlation is indicated by 1.

(C) Genes associated with a cell identity and function are significantly downregulated in the T1D a cells with increased expression of stress response factors and

cell-cell contact proteins. Vertical dotted lines represent point of significance for fold change (FC) = 1.53 threshold analysis; p < 0.05 for all values shown.

(legend continued on next page)
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analysis of statistical significance for two-group comparisons between T1D

donors and controls. A p value less than 0.05 was considered significant. Sta-

tistical analysis was performed using GraphPad Prism software. Statistical de-

tails of experiments are described in the figure legends, Results section, and

Supplemental Experimental Procedures.
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