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Social dysfunction is a prominent and disabling aspect of borderline personality disorder.
We reconsider traditional explanations for this problem, especially early disruption in the
way an infant feels physical care from its mother, in terms of recent developments in com-
putational psychiatry. In particular, social learning may depend on reinforcement learning
though embodied simulations. Such modeling involves calculations based on structures
outside the brain such as face and hands, calculations on one’s own body that are used to
make inferences about others. We discuss ways to test the role of embodied simulation
in BPD and potential implications for treatment.

Keywords: associative learning, computational psychiatry, borderline personality disorder, embodied simulation,
attachment

INTRODUCTION
Social dysfunction in borderline personality disorder (BPD) is pro-
found and persistent (1–3). In her memoir about BPD, Merri Lisa
Johnson writes that having relationships was like “bleeding out,”
evoking both the blurring of boundaries between herself and oth-
ers and the bodily seriousness of the problem (4). Psychological
formulations of BPD have also focused on the body.

Current theories describing BPD are complex and treatment
paradigms are time intensive and expensive. Given the large
psychological and healthcare burden of BPD, theoretical and
treatment innovations are essential (5–7).

We aim here to present a hypothesis: that people with BPD
have deficits in embodied simulation, which is a way of computing
information about others that uses data from ones’ own body (see
further explanation below). We discuss the evidence for this posi-
tion, possible experimental approaches to testing it, and potential
implications for treatment.

COMPUTATIONAL PSYCHIATRY
We outline our hypothesis using a computational psychiatry
approach. Given that this is a new but growing field, it is worth
outlining what we mean by computational psychiatry. Compu-
tational psychiatry involves applying advances in computational
neuroscience to psychiatry (8–11). More specifically, we think
of computational psychiatry as an extension of cognitive neu-
ropsychiatry (12). Cognitive neuropsychiatry involves specifying a
cognitive system or process with relevance to a psychiatric symp-
tom and examining how aberrations of that system or process

might give rise to the symptom. For example, monitoring of
inner speech may be relevant to auditory verbal hallucinations
(13). Computational psychiatry develops this approach more for-
mally, specifying mathematically how a problem is solved and then
describing and quantifying how mental symptoms may arise in
departures from that formalization. Those departures are delin-
eated in terms of model parameters and the magnitude of change
in those parameters required to engender mental symptoms.

Computational psychiatry may be useful in generating and
testing hypotheses about mental illness. Furthermore, it may be
possible to use computational psychiatry to generate and apply
more data-driven nosologies for diagnosis and treatment. For
example, by specifying which processes (neural, psychological,
and behavioral) might be driving an individual’s problems, we
can use computational psychiatry to allocate them to particular
treatment strategies. More deeply, it may be possible to use com-
putational neuroscience to bridge mental symptoms with neural
processes. We make this assertion by considering David Marr’s lev-
els of analysis (14), which we think may be key to achieving what
Fodor thought to be impossible (15), a consilient understanding
of cognition and its implementation in the brain.

After David Marr and Thomas Poggio, we believe that the com-
putational problems solved by a system (e.g., a brain) (14) and their
malfunctions (e.g., in mental illnesses like BPD) can be described
at three levels of analysis:

(1) Computational – what are the representations being used by
the system to solve the problem?
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(2) Algorithmic – how are those representations combined and
manipulated to solve the problem?

(3) Implementational – how does the hardware (neurons, circuits,
brain, and body) implement the computations to achieve
the end?

Thus far, most computational psychiatry has been algorithmic.
It has used that level of analysis to discover what is happening at
the implementational (neural) level and how that implementation
may be disrupted in illness. We find this to be a worthy and effi-
cient approach. But it is not the only approach. It is also, we feel,
not the only way that a computational framework might be useful
to psychiatry.

Here, we begin at the computational level (14), roughing out
the problem at hand like a sculptor (16) – seeing whether there is
any use for a computational explanation of BPD at the representa-
tional level. We think the utility of this approach is at least twofold:
first, we can generate a language to explain to patients what their
problems are and how they might be dealt with and second, we can
generate testable hypotheses that will increase our understanding
of BPD and hence facilitate better treatment.

As we progress in our work, we aim to fill in the finer and finer
detail.

We believe the computational problem with BPD involves pre-
dicting the intentions of others using our own experiences as a
template. We do not present any formal simulations nor any analy-
sis of behavioral data in these computational terms – this will be
the topic of our future work. We aim for an algorithmic, equation
driven, explanation for the symptoms of BPD. This may be useful
clinically, since parameter values from the computational model
may be useful in clustering groups of patients into pathophysi-
ological categories (10, 17, 18). Such clustering may be a useful
therapeutic guide toward treatments that addressed underlying
pathophysiology.

In this hypothesis and theory article, we will state our predic-
tions. Our subsequent work will test those predictions.

BPD AND THE BODY
Many have ascribed BPD pathology to disturbance in early
attachment relationships (19, 20), specifically disruptions between

mother and infant occurring at the skin surface, which regu-
late bodily needs such as being nourished and soothed (19).
Current diagnostic criteria for BPD also emphasize the physical
self: feelings of (physical) emptiness, dissociation (feeling physi-
cally apart from the current situation), self-harm, and suicidality.
Studies of tactile experience in BPD have found decreased pain
sensitivity (21–24), and change in discussion of scars (25) and
tattoos (26). Psychotherapies for BPD already engage the body:
DBT begins with physical safety assurances and continues with
body-grounded mindfulness practices (27), and schema-focused
therapy asks patients to trade chairs to physically take another’s
perspective (28).

EMBODIED SIMULATION THEORY
In a ground-breaking 1996 paper, Vittorio Gallese and colleagues
described the observation that certain neurons in the macaque area
F5 (ventral pre-motor cortex) are activated both by doing an action
and by observing someone else do the same action (29). They have
termed these cells “mirror neurons.” Though single cells with mir-
ror properties have not been much studied in humans (30), a
system of brain regions with mirror properties have been mapped
(31). These include pre-motor cortex, supplementary motor areas,
primary somatosensory cortex, inferior parietal cortex, anterior
cingulate cortex, and insula (31). Experiments transiently blocking
mirror-neuron regions in human with transcranial magnetic stim-
ulation (TMS) have shown deficits in mirroring activity (32, 33).
These observations led to an embodied simulation explanation
of the roles these mirror-neurons might play in cognition (34).
This explanation suggests two important things (see Figure 1);
first, observing others performing actions engages our own rep-
resentation of those actions (mirroring) and second, we make
inferences of others intentions using that evoked representation
of our own action. The embodied simulation hypothesis takes
an “extended mind” position (35): that the mind does computa-
tions in the brain, body, and perhaps the near environment. To
make these inferences, we simulate what our own intention would
have been, given their action kinematics and the local context
(36). Hence, we use our representation of bodily self to make pre-
dictions about others, based on our own beliefs about intention,
agency, and responsibility.

FIGURE 1 | Embodied simulation is a computational path from
observing an action (such as scrunched eyebrows and mouth) in
someone (A) to making a prediction about that action’s meaning
(mad) (C). We depict several aspects of this process (as sequential
steps here for clarity) (B): (a) imagining the other’s action, (b) imagining

oneself, (c) thinking of one’s own experiences with that action and low
level activation of motor program to do that action, and (d)
development of a model based on the observed other and personal
simulated thoughts/feelings. The model can be used to predict the
other’s intentions (C).
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Of course, mirroring in neural activity may be a product of sim-
pler associative learning mechanisms (37). We focus here on the
possibility that these learning mechanisms may have gone awry in
BPD and how that might manifest in terms of disrupted inference
about ones’ body and other people.

Learning environmental contingencies (cues that predict
rewards) and social contingencies (whether to trust someone’s
advice) can be described by the same mathematical models (38).
Causal model theories are an important new direction in cog-
nitive science, based in Bayesianism. Thomas Bayes’ doctrine of
probabilities formalizes reasoning about data using hypotheses
and captures the probabilistic nature of many of the tasks faced
by organisms. Organisms must predict their environments and
respond appropriately. Thus, the brain forms and maintains a
set of prior expectancies (predictive associations) about incoming
stimuli in order to minimize uncertainty about subsequent inputs.
This prediction error minimization is evident in hierarchical
neuroanatomy down to the level of single neurons (39, 40).

The development of associationism has highlighted the value
of a reductionist approach to the mind and brain to explain com-
plex cognitive processes. As we predict our world and coordinate
adaptive responses, prediction errors generated in response to a
maladaptive environment can lead to strongly learned and diffi-
cult to change associations that persist into new circumstances.
Also, people who erroneously signal prediction errors can learn
strong (sometimes maladaptive) associations that may manifest as
symptoms.

These predictive models are likely developed at least in part
by embodied simulations (41, 42): we make inferences regarding
other people’s intentions by generating a model of our own inten-
tions in similar contexts and using that model to predict what
other people will do (36). Object relations theorists describe these
predictions about new people in terms of referencing, or perhaps
even overlaying, known models of people (“objects” developed
through early experience) onto novel people (20). Associative
learning theory agrees that social predictions would be based
upon past experiences. If those predictions fail, healthy adults can
update their beliefs into a more accurate model. It may be that the
social difficulties that attend psychiatric illness represent difficulty
with this process of making, testing, and updating accurate social
models.

Although others have raised concern about whether embodied
simulation is used just for mimicry, for some form of understand-
ing others, or for mentalizing in the sense of being able to describe
another’s state of mind [for reviews of this issue, please see Ref.
(35, 43)], leaving this debate unresolved for the time being, we can,
however, assume that any of these uses of embodied simulation
are important for social cognition, and that therefore deficits in
embodied simulation do impact on real world social functioning.

COMPUTATIONAL MODELS OF LEARNING: RELEVANCE TO
BPD
Computational models of learning distinguish between two
neuro-computational systems that can control behavior (44). First,
there is a model-free system that learns and caches the values of
being in particular states. In this system, behavior is guided toward
the choices that lead to subsequent states with the highest cached

value. This system is robust because it is computationally sim-
ple, but it is insensitive to sudden changes in those values (e.g.,
if a food source is poisoned or a relationship becomes toxic).
This cached value system has been associated with the function
of the dorsolateral striatum via human imaging studies, recording
and lesion studies in rodents (44). On the other hand, there is
a computationally intensive Bayesian tree-search mechanism that
constructs model of the environmental contingencies and explores
those models to arrive at the best course of action. This system
has been related to the functioning of the pre-frontal cortex (44).
Behavioral control is ceded to the system that is most certain about
the next option to take. In a stable predictable world, this is most
often the computationally efficient striatal habit system.

Tony Dickinson and Bernard Balleine have proposed an
associative-cybernetic model of learning that foreshadowed
this computational framework. The associations between cues,
rewards, and actions we highlighted above may well be the
representational basis for model-based and model-free learning
(45, 46).

Aberrant association as a result of inappropriate social interac-
tion and feedback will bias the competition between these systems
and the simple, robust habit system will be favored. We argue
that when model-based mentalizing fails people with BPD learn
inappropriate (but computationally efficient) social habits. For
example, someone with BPD might have learned that other peo-
ple are unpredictable and untrustworthy, and they would find it
difficult to update this belief, even in the face of confounding
experience.

Fonagy has argued that in BPD,genetic and early environmental
factors undermine mentalized affectivity – the ability to represent
either people’s emotional states (a second order belief task). The
stress and discomfort associated with this disruption (according to
Fonagy) disrupts the development of cognitive control (47). It also
contributes to poor attachment and an interactive cycle of further
weakening attachment (since poor affect-recognition can make
sensitive caregiving more challenging). Disorganized attachment
also disrupts self-concept, creating incoherence, and splitting that
is hard to manage and leads to frantic attempts to avoid abandon-
ment, as well as the characteristic intense pattern of interpersonal
relationships that escalate rapidly (47).

Fonagy points to the importance of the opioid and dopamine
systems in developing attachment (47). He highlights the work of
Jaak Panksepp in identifying a common neurobiology for mother–
infant, infant–mother, and romantic attachments that involve opi-
oids expressed in the frontostriatal dopaminergic circuitry (48).
This same circuitry is involved in belief-based inference – in partic-
ular, that circuitry is engaged when evidence violates expectation
(49) and in first-time mothers when they see an image of their
own infant. People with disorganized attachment have a sensitized
stress response (47) and are less likely to engage this inference cir-
cuitry and mentalizing processes when viewing pictures of their
own child in distress (50, 51).

We posit that the balance between model-based and model-
free reinforcement learning, mediated by uncertainty-based com-
petition (44) is instructive here. Due to deficits in dopamine
and opioid signaling (resultant from genetic and environmen-
tal insults) BPD individuals have attachment issues. Because of
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these issues, they find it hard to learn a self-concept and to use
that self-concept to mentalize (using the more computationally
intensive and uncertainty sensitive model-based learning system
in pre-frontal cortex). This generates stress that biases processing
even more in favor of the habitual model-free controller. In the
parlance of Regina Pally, through the model-free system, the indi-
vidual learns a pattern of predictive responses in infancy that are
recapitulated later in life (52, 53). The enhanced role of striatally
mediated, relatively inflexible model-free responding is also con-
sistent with the increased susceptibility to substance abuse in this
population – since addictive substances also hijack this brain and
behavioral circuitry.

Habitual model-free responding is enhanced with decreased
opioid signaling in PFC (54) or with increased striatal dopamine
(55) signaling in experimental animals. We believe these two
processes are candidate pathophysiological markers in BPD and
they highlight potential therapeutic avenues for future work.

Bringing these ideas back to our original predictive coding
scheme – the control of behavior can be model-based (flexible
and representationally rich) or model free (inflexible and repre-
sentationally lean). Which system controls behavior depends on
the systems’ relative degrees of certainty about upcoming deci-
sions (56). Within the predictive coding scheme that certainty is
conveyed as precision (57, 58), the degree of confidence, we have
in prediction errors (mismatches between expectation and experi-
ence). Dopamine enhances precision in this scheme, much like the
uncertainty that biases instrumental control (trade-off between
the two control systems – model based vs. model free).

HYPOTHESIS: BPD SOCIAL DYSFUNCTION RELATES TO
DIFFICULTY WITH EMBODIED SIMULATION
In addition to feeling personally disembodied, as described in early
psychological theory and the DSM, people with BPD may also
have difficulty imagining embodied others – using the flexible,
model-based pre-frontal tree-search system.

We believe that BPD pathology may arise from a deficit in
representing bodily self. It may also involve a dysfunction in
associating our action representations with those of others that
we observe (59). People with BPD may have difficulty invert-
ing representations of personal actions to make correct inferences
about others (36). These predictions can be tested in a computa-
tional psychiatry framework that combines theoretical predictions
with neural and behavioral data. It may be that each of these
dysfunctions represents an endophenotype or sub-population
of patients who meet BPD diagnostic criteria. Knowing more
about the mechanisms that drive their particular dysfunction will
allow us to devise targeted therapeutic approaches and allocate
individuals toward those approaches based on their particular
difficulties.

We predict that the diminished subjective sense of embodied
self in BPD is associated with decreased use of embodied pre-
dictive simulations to generate beliefs about others, and decreased
use of prediction errors to update those beliefs. Without the ability
to incorporate new information about other people, social mod-
els may be applied inflexibly, leading to confusing and unstable
interpersonal interactions.

EXPERIMENTAL METHODS: LINKING PSYCHOLOGICAL
THEORY TO SOCIAL LEARNING AND EMBODIED
SIMULATION IN BPD
Combining neuroscience theory (including mirror-neuron the-
ory) and psychoanalytic theory is not new. To pick just a few
among many examples, Nicola Diamond considers Winnicott’s
mirroring between mother and baby against the phantom body
of Ramachandran (60), Vittorio Gallese considers mirror neurons
as a potential substrate for developing interpersonal attunement
(61), and Shantel Ehrenberg relates the process of learning dance
movements in the studio to mirroring oneself and others in the
frameworks of Lacan and the mirror-neuron system (62).

Nonetheless, these ideas are not widespread on the ground
among BPD clinicians and researchers. The ability to enact social
simulations has not been directly assayed in BPD patients, but
several related functions have been studied. Zhao et al. have
reviewed recent work describing self in mental illness, includ-
ing BPD (63). Women with BPD had difficulty in giving detailed
accounts of their own lives, and this correlated with difficulty
figuring out social problems (64). Another study found that ado-
lescents with BPD completing a social task “hypermentalize”; they
indulge in too many hypotheses about others’ intentions with
counter-productive results. They are ultimately unable to make
useful and use-able hypotheses (65). BPD subjects also had more
trouble than did control subjects with cooperating in an economic
game where sharing might be advantageous (66). Tasks that engage
social processes from recognizing facial emotions (67) to looking
at (versus intentionally distancing from) negative social images
(68) to activating empathy (69) all resulted in decreased activity of
mirror-neuron regions in BPD versus control subjects. We might
even speculate that dissociation could represent failure to be able
to simulate very upsetting situations within oneself, perhaps giving
rise to the subjective sense of not being in one’s own body.

We predict that a more globally effective intervention would
engage the brain regions that integrate new data into preexist-
ing models. For example, dopamine levels in pre-frontal cortex
can increase model-based reinforcement learning in rodents (70).
Also, Tim Behrens, Laurence Hunt, and Matthew Rushworth (38,
71) have found that developing a model about how much to
trust another person’s advice engages the superior temporal sulcus
and temporoparietal junction (mirror-neuron regions), and that
weighing the advice with one’s personal factual models engages
the ACC and ventromedial pre-frontal cortex.

Novel therapies for BPD may aim to directly alter the activ-
ity of these brain regions. For example, a recent study found that
people’s calculations about sharing money with a partner could
be titrated by direct current stimulation of the right lateral pre-
frontal cortex (72). These non-invasive safe techniques, practiced
to effect, may have promise for modulating both mirror neuron
and motor regions.

Furthermore, psychological tasks may allow us to quantify
clinical progress. For example, the social valuation task devel-
oped by Behrens, Hunt, and Rushworth described above allows
use to quantify relative use of social data (38, 71). Furthermore,
holding a specific facial emotion modulates our reaction time
to understand novel emotional sentences (73). These and other
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measures could be used to assess the efficacy of novel socially
directed interventions.

Finally, embodied robots, programed with the algorithms we
outline, may be used to explore our hypotheses. There are already
studies of robots interacting with one another (74). Aberrant pre-
diction errors (and hence inappropriate association) can be intro-
duced into a single robot. This engenders inappropriate behaviors
by disrupting the learning and application of top-down priors
(75). The same processes could be examined in two interacting
robots. It would be useful to study the effect of different initial
conditions and biases in the interactant (second robot) as well as
the effect on the interactant of engaging with the BPD model robot.

Further research could help to clarify the relative contribution
of specific cognitive mechanisms to symptom profiles for individ-
ual patients, and to develop (or assign already available) focused
treatments to our patients.

SOCIAL LEARNING IN PSYCHIATRY
Of course, BPD is not the only mental illness characterized by
social difficulties. Autism spectrum disorder (ASD) and psychotic
illnesses are other salient examples of illnesses in which social inter-
actions are profoundly challenging. In the spirit of the Research
Domain Criteria initiative, it is important for us to consider
whether the model that we have outlined is specific to BPD or may
be applied to social dysfunction more broadly. Are we addressing
something that occurs across diagnoses and might even speak to
the debilitating and stigmatizing effects of having a diagnosis of
mental illness?

Inappropriate habit learning has been implicated in psychotic
illness and likewise, excessive precision (or certainty) has been
associated with ASD (76). Both of these illnesses then would
involve social dysfunction because of impaired model-based pre-
frontal learning in the context of spared and perhaps even
enhanced striatal responding. However, we feel that the manner in
which the dysfunction arises is critical. While trauma may play a
role in the genesis of psychosis, we feel there is something specific
about the perturbed infant-parent interaction that culminates in
BPD. By gathering the same data and performing the same model
analyses in groups from each diagnostic category, we will be able
to assess whether this prediction holds.

CONCLUDING REMARKS
Our prediction is that people need to be able to make and use pre-
dictive models to do well in social interactions. Therapies that
engage one’s own body (such as the mindfulness modules of
DBT) may help to repair embodied simulations. This could be
a useful pre-requisite to treatments that directly promote flexi-
bility and precision in social simulations. Predictive models of
social situations depend on understanding others’ emotions and
actions by simulating them in one’s own mind as though they are
actually happening in one’s own body. This may only partially
overlap with being able to verbalize other’s intentions. Feeling
those intentions is also key. Re-acquainting oneself with own body
experience will facilitate simulating the experiences of others. Sub-
sequently, when exposed to other patients in group therapy, our
“body-centered patients” may be better able to use physical and
verbal emotional displays from others to simulate and update their
social predictions.
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