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Novel candidate genes important for
asthma and hypertension comorbidity
revealed from associative gene networks
Olga V. Saik1*, Pavel S. Demenkov1, Timofey V. Ivanisenko1, Elena Yu Bragina2, Maxim B. Freidin2,
Irina A. Goncharova2, Victor E. Dosenko3, Olga I. Zolotareva4, Ralf Hofestaedt5, Inna N. Lavrik6,
Evgeny I. Rogaev1,7,8,9 and Vladimir A. Ivanisenko1

From Belyaev Conference
Novosibirsk, Russia. 07-10 August 2017

Abstract

Background: Hypertension and bronchial asthma are a major issue for people’s health. As of 2014, approximately
one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235–330 million people
globally have been affected by asthma and approximately 250,000–345,000 people have died each year from the
disease. The development of the effective treatment therapies against these diseases is complicated by their
comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the
bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As
such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in
elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be
useful for genotyping and identifying new drug targets.

Results: Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension
was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene
network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638
interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid
condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their
importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria
that take into account the characteristics of an associative gene network and the presence of known polymorphisms in
the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority
in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes
is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central
nervous system.
(Continued on next page)
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Conclusions: The application of methods of reconstruction and analysis of gene networks is a productive tool for
studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their
importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of
10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan
experiments for identification of novel candidate genes along with searching for novel pharmacological targets.

Keywords: Comorbidity, Asthma, Hypertension, Apoptosis, Central nervous system, ANDSystem, Associative gene
networks, Gene prioritization

Background
Asthma is a chronic inflammatory disease of the respira-
tory tract, the main characteristics of which are hyper-
sensitivity of the respiratory tract to various stimuli and
reversible obstruction of airflow. The role of inflamma-
tion in the aetiology and pathogenesis of arterial hyper-
tension is not so obvious upon first blush, but the
significance of low-grade chronic inflammation in the
development of metabolic syndrome, atherosclerosis,
and obesity has been established in many studies [1–6].
It is known that the processes of coagulation and anti-
coagulation, the fibrinolytic system, and thrombocytes
are integral to asthma pathophysiology [7]. Therefore, in
a number of studies, it was shown that asthma is associ-
ated with an increase in the incidence of cardiovascular
diseases [8, 9]. As a consequence, the fact that the simul-
taneous diagnosis of asthma and arterial hypertension,
which is termed comorbidity, in a high proportion of
cases, is not surprising. According to Su et al. [10], the
prevalence of hypertension in asthma patients (OR 1.66
[1.47, 1.88]; P < 0.00001) is lower only compared to car-
diovascular, cerebrovascular, and obesity comorbidities.
Apparently, this is not a coincidence as classic asthma
mechanisms turned out to be a part of key processes of
arterial hypertension initiation. A central example might
be the discovery of the role of arachidonic acid-
leukotriene B4 production in spontaneously hypertensive
rats [11] or the significance of Th17 and IL17 in arterial
hypertension [12]. Therapeutic treatment of allergic in-
flammation leads to improvement in the control of ar-
terial pressure [13]. The importance of STAT3
transcription factors have also been uncovered - they
participate in signal transduction with multiple cytokines
and are active in allergic inflammation [14, 15] and vas-
cular remodelling [16]. Based on these findings, it is pos-
sible to deduce that disturbance of the balance between
pro-inflammatory and anti-inflammatory factors within
the organism creates an optimal condition for imple-
mentation of the inherent propensity to both asthma
and arterial hypertension. Besides the critical role of im-
mune reactions and inflammation control in the patho-
genesis of asthma and hypertension, other mechanisms
are expected to be relevant in the comorbidity of these

diseases. For example, β-adrenoblockers and ACE inhibi-
tors are widely used to treat hypertension, but for a long
time, they were contraindicated for patients with asthma
because of the possibility of bronchoconstriction. In a
large cohort of patients, it was demonstrated that adverse
respiratory reactions to beta-blockers in the case of
asthma partially depends on cardioselectivity, dose, and
exposure duration [17]. Polymorphisms in b-adrenergic
receptor genes are associated with the risk of hypertension
and bronchial asthma [18–20]. It is assumed that muta-
tions in the SLC26A4 gene can impact the pathogenesis of
bronchial asthma and hypertension and, as such, the co-
morbidity of these diseases [21–24]. The SLC26A4 gene
codes the pendrin protein with Cl-/HCO3- exchanger ac-
tivity [25]. The loss of function of SLC26A4 in mice pre-
vents development of bronchial asthma and hypertension
symptoms; there is a possibility that mutations in the
SLC26A4 gene among humans is a factor in the absence
of these diseases [26].
Nowadays, much data has been accumulated on these

diseases, allowing for the building of associative gene
networks that describe the potential molecular mecha-
nisms of interactions between the diseases. There are a
number of resources in the world that allow reconstruc-
tion of such associative gene networks, for example,
MetaCore [27], Ingenuity [28] and ANDSystem [29, 30].
In particular, using the developed by us ANDSystem
tool, the following studies were performed: analysis of
proteomic data on Helicobacter pylori infection [31];
analysis of the urine proteomic profile in control and
under the influence of space flight factors [32]; analysis
of tissue-specific gene knockout effect and the search for
potential drug targets [33]; analysis of hepatitis C virus
life cycle gene networks [34]; analysis of comorbid rela-
tions of bronchial asthma and tuberculosis [35], pre-
eclampsia, diabetes and obesity [36], glaucoma [37];
search for novel candidate genes of susceptibility to tu-
berculosis [38].
The goal of this work was prioritization of candidate

genes based on reconstruction and analysis of gene net-
works describing asthma and hypertension interactions.
The associative network reconstructed in this work by
ANDSystem [29, 30] details the interactions between
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genes/proteins that are linked to both asthma and hyper-
tension, specifically including 205 genes and 9638 rela-
tions. It is worth noting that 69 genes from the network
are related to apoptosis and 44 participate in central ner-
vous system (CNS) functioning, suggestive of the im-
portant role of these processes for the formation of
combined asthma and hypertension. From a ranked list
of candidate genes, 10 can be highlighted as having the
most priority. In particular, IL10, TLR4, and CAT had
the highest priority across all examined scores, including
standard methods of prioritization (Endeavor and Topp-
Gene) as well as original methods that take into account
the structure of the asthma/hypertension gene network
and the associations of gene polymorphisms with the
diseases. The predicted genes can be employed for plan-
ning of genotyping experiments.

Methods
The reconstruction of associative gene networks of
asthma and hypertension was carried out using the
ANDSystem tool [29, 30]. The ANDSystem was devel-
oped to automatically analyse scientific publications in
order to extract knowledge on the molecular genetic in-
teractions and associations of proteins, genes, metabo-
lites, drugs, and microRNAs with diseases, biological
processes, drug side effects, and the phenotypes of vari-
ous organisms. The ANDSystem knowledge base was
built on the basis of a large-scale analysis of over 25 mil-
lion abstracts of scientific papers presented in the
PubMed database. In addition, information on molecular
genetic interactions from different factual databases,
such as IntAct, MINT, and others was integrated into
ANDSystem. In total, more than seven million facts re-
garding molecular genetic interactions and associations
are available in the ANDSystem knowledge base. In the

current study we used ANDSystem version 2016. It is
based on the analysis of all PubMed abstracts up to
2016, as well as information obtained from external da-
tabases that were available in 2016.
Enriched gene ontology (GO) biological processes

were identified using the service DAVID 6.8 [39]. All set-
tings were utilised in default mode.
To evaluate the centrality of vertices in the graphs of

gene networks, the following functions from the network
package of the Python programming language were
used: “nx.degree_centrality” to calculate the degree cen-
trality (DC), “nx.closeness_centrality” for calculating
closeness centrality (CC), and “nx.betweenness_central-
ity” for betweenness centrality (BC) [40].
The scheme of the gene prioritization algorithm that

includes 10 criteria is shown in Fig. 1. Criterion 1 was cal-
culated using the Endeavor system for gene prioritization,
version 3.71 (https://endeavour.esat.kuleuven.be/Endea
vour.aspx) [41, 42]: Rank1i = Rank(Xi), where X – sorted
list of genes according to Endeavor output, i – gene num-
ber. All settings used were in default mode. As the input
for the test and training sets, the list of genes from the
complete asthma/hypertension network was utilised.
Criterion 2 was calculated with the gene prioritization

system, ToppGene (https://toppgene.cchmc.org/prioriti
zation.jsp) [43, 44]: Rank2i = Rank(Xi), where X – sorted
list of genes according to ToppGene output, i – gene
number. All settings used were in default mode. The
genes from the complete asthma/hypertension network
were entered as the input, and the list of genes from the
complete asthma/hypertension network, from which the
analysed genes were excluded, was provided as a training
set. Pearson’s correlation coefficient for criteria 1 and 2
ranks and its statistical significance were estimated using
the Social Science Statistics resource (http://www.so
cscistatistics.com).

Fig. 1 A general scheme for calculating criteria of gene prioritization
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Criterion 3: involvement in the GO biological pro-
cesses enriched in the complete and genetic regulatory
networks of asthma/hypertension. This score was com-
puted as Rank3i = Rank(Xi), where X – sorted list of
genes according to Ni = N1i + N2i, where N1i – total
number of enriched GO biological processes in
complete networks of asthma/hypertension in which
gene i was involved, N2 the same as N1 calculated for
genetic regulatory networks of asthma/hypertension
(see Additional file 1: Table S2).
Criterion 4: calculated for gene i as Rank4i = Rank(Xi),

where X – sorted list of genes according to average
measure of the value of DC, CC, and BC for each gene
from complete network of asthma/hypertension.
Criterion 5 was calculated in the same way as Criter-

ion 4 using genetic regulatory network of asthma/
hypertension instead of complete network of asthma/
hypertension.
Criterion 6: Rank6i = Rank(Xi), where X – sorted list of

genes according to specificity of the connection of genes
with biological processes associated with asthma and
hypertension. To arrive at this score, at the first step, a
list of biological processes connected with asthma and
hypertension according to ANDSystem was constructed.
The following types of interactions were considered: as-
sociation, regulation, and treatment. For asthma, there
were 357 linked biological processes and for hyperten-
sion, 338 processes. One hundred and eighteen bio-
logical processes were connected simultaneously with
asthma and hypertension. Furthermore, all the biological
processes presented in ANDSystem were divided into
two groups. A test set that included 118 biological pro-
cesses, associated simultaneously with asthma and
hypertension, and a control set containing all the other
13,538 biological processes from ANDSystem. For each
of the 205 genes/proteins, associated simultaneously
with asthma and hypertension, interactions with bio-
logical processes were established using ANDSystem.
The specificity of the connection between genes/proteins
and the test set of biological processes simultaneously
associated with asthma and hypertension was evaluated
by applying the Student’s t-test. Student’s t-test was per-
formed using the function stats.ttest_ind with the par-
ameter equal_var = False, from the package, scipy.stats,
in Python [45, 46]. A Bonferroni correction for multiple
comparisons was conducted with the function, p.adjust
(Y, “bonferroni”) of the “stats” package in the program-
ming language R [47].
Criterion 7: Rank7i = 1 if SNPs from list Y was present

in gene i, otherwise Rank7i was equal to maximal rank
for list X (Rank7i = 205), since the presence of such poly-
morphisms is of great importance for genotyping. List Y
included all SNPs for each gene from X that were found
in the eQTL gene region with the frequency of the

minor allele in at least 5% in European population. A
threshold of 5% allows to detect MAF polymorphisms
with a high degree of probability using available geno-
typing arrays, thus it is often used in genomic analysis
[48–50]. To calculate this score, the GTEx resource
(http://www.gtexportal.org) [51] was consulted. It pro-
vides information on the variability of global expression
of genes and SNPs affecting the level of gene expression.
For the analysed genes, all SNPs localized in the region
of the eQTL were taken from the database. Such SNPs
may be relevant to the development of diseases [52–54].
Then, only the SNPs that altered the expression of the
analysed genes in whole blood were selected. As the
next step, for SNPs in the eQTL region, the prevalence
of the minor allele among the European population was
estimated. The analysis was carried out using the
Ensembl database (http://www.ensembl.org) [55] based
on the averaged frequencies of minor alleles for popula-
tions of European origin CEU (inhabitants of Western
and Eastern Europe), GBR (Britain and Scotland), IBS
(Spain), and TSI (Italy). In terms of further analysis,
only SNPs that had a minor allele frequency of at least
5% in the European population were selected (for most
of the found SNPs, the minor allele frequency was 20%
or higher).
Criterion 8: Rank8i = 1 if any gene i SNP associated

with either asthma or hypertension was presented in list
Y, otherwise Rank8i was equal to 205.
Criterion 9: Rank9i = 1 if in list Y for gene i an SNP as-

sociated with some disease comorbid to asthma or to
hypertension was present, otherwise Rank9i was equal to
205. Manual analysis of PubMed publications was con-
ducted to generate a list of diseases with comorbidity to
asthma and hypertension. To this end, for asthma, we
manually examined 196 PubMed publications found by
the query, “asthma comorbid diseases”, and filtered via
the parameter, “Free full text”. For hypertension, 622
PubMed publications, obtained with the query, “hyper-
tension comorbid diseases”, and filtered by the param-
eter, “Free full text”, were analysed.
Criterion 10: Rank10i = 1 if in list Y for gene i SNP as-

sociated with any disease was present, except diseases
specified for criterion 8 and criterion 9, otherwise
Rank10i was equal to 205. To calculate criteria 8-10, in-
formation on the associations of SNPs with diseases was
extracted from the databases, SNPedia [56], miRdSNP
[57], GWAS catalog [58], and DisGeNET [59, 60]. It was
considered that a polymorphism was associated with a
disease if this information was found in at least in one of
the databases.
For each gene, the final score was computed as the aver-

age value of ranks formulated according to criteria 1-10.
An independent evaluation of genes selected according

to these criteria was carried out by analyzing the
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normalized frequency of their mentioning in PubMed
together with the “comorbid” or “comorbidity” terms.
The frequency of references (F) was calculated as the
number of PubMed abstracts in which the gene name
was mentioned together with “comorbid” or “comorbid-
ity” divided by the total number of PubMed abstracts
where the gene was mentioned. An analysis of the en-
richment of the list of top genes by genes, which are
often mentioned in the discussion of comorbid states of
various diseases, was carried out by comparing the aver-
age frequencies F calculated for a set of top genes with a
complete list of genes, according to the Mann-Whitney
test, estimated by the function «mannwhitneyu» from
the package «scipy.stats» of Python [45, 46].
The formation of lists of genes associated with apop-

tosis for the GO category “apoptotic process” (GO:
0006915) along with genes involved in the functioning
of the CNS for GO categories “neurotransmitter secre-
tion” (GO:0007269), “neurogenesis” (GO:0022008),
“multicellular organismal response to stress” (GO:00
33555), “social behaviour” (GO:0035176), “cognition”
(GO:0050890), “response to antipsychotic drug” (GO:00
97332), and “response to psychosocial stress” (GO:1,
990,911) was performed using the AmiGO 2 database
[61, 62] available at http://amigo.geneontology.org/.
Only the human genes involved in the analysed GO cat-
egories were selected.
The statistical significance of the differences between

the centrality of the apoptosis genes and the rest of
the genes of the analysed networks was estimated by
the function “stats.ttest_ind” with the parameter
equal_var = False from the package “scipy.stats” of Py-
thon [45, 46]. Similarly, the statistical significance of
the differences between the centrality indices of the
CNS genes and the remaining genes of the analysed
networks was evaluated.

Results and discussion
Associative gene networks of asthma and hypertension
In order to find the molecular genetic mechanisms
underlying the development of asthma and hypertension,
we compiled a list of 755 genes/proteins associated with
asthma and 713 genes/proteins associated with hyper-
tension according to ANDSystem (Additional file 2:
Table S1). The gene network of asthma included 62,603
interactions between 755 genes and 751 proteins, includ-
ing 2402 genetic regulations, 920 activity regulations, 79
degradation regulations, 625 transport regulations, 2594
protein-protein interactions, 751 expression links, 75 co-
expression links, 159 chemical transformations, and
54,998 associative interactions. In ANDSystem associa-
tive interaction is a special type of interactions reflecting
any types of relations between two objects including
listed above.

The gene network of hypertension included 45,479 in-
teractions between 713 genes and 710 proteins, includ-
ing 1373 genetic regulations, 709 activity regulations, 71
degradation regulations, 423 transport regulations, 1905
protein-protein interactions, 708 expression links, 31 co-
expression links, 165 chemical transformations, and
40,094 associative interactions. There are suggestions in
the literature that putative candidate genes for the devel-
opment of comorbid conditions between a pair of dis-
eases are genes simultaneously associated with both
diseases [63–65]. Previously, for such diseases as bron-
chial asthma and tuberculosis, we showed the potential
role of genes concurrently linked with both of them in
the pathogenesis of their comorbid relationships [35].
The network of interactions between genes and proteins,
associated simultaneously with asthma and hypertension
(complete asthma/hypertension network), constructed
by intersection of the asthma and hypertension net-
works, included 85 genes, 201 proteins, and 9638 inter-
actions of 17 types. It should be noted that the complete
asthma/hypertension network included the same types
of interactions as the separate networks of asthma and
hypertension: 345 genetic regulations, 347 activity regu-
lations, 25 degradation regulations, 262 transport regula-
tions, 554 protein-protein interactions, 84 expression
links, three co-expression links, 45 chemical transforma-
tions, and 7973 associative interactions. In summary,
none of the types of interactions disappeared upon
building up complete asthma/hypertension network.
The enriched GO biological processes (p-value < 0.01

with FDR correction) for genes/proteins associated with
asthma were identified with the DAVID 6.8 system. It
was observed that among the most significant GO bio-
logical processes were inflammatory response, immune
response, response to hypoxia, regulation of T cell prolif-
eration, neutrophil chemotaxis, platelet degranulation,
and regulation of interleukin production (Additional
file 1: Table S2). For genes/proteins associated with
hypertension, among the most significant GO biological
processes were regulation of blood pressure, response to
drug, response to hypoxia, inflammatory response, aging,
regulation of vasodilation, response to insulin, and
angiogenesis (Additional file 1: Table S2). Among the
most highly enriched GO biological processes for genes/
proteins associated simultaneously with asthma and
hypertension (complete asthma/hypertension network)
were response to hypoxia, positive regulation of nitric
oxide biosynthetic process, regulation of blood pressure,
aging, inflammatory response, and negative regulation of
apoptotic process (Additional file 1: Table S2). These
processes may be the most significant for the comorbid
relationship between asthma and hypertension.
Among the GO biological processes that were

enriched for the asthma network and not featured in the
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list of enriched processes for the complete asthma/
hypertension network, were microglial cell activation,
regulation of interleukin production, positive regulation
of tissue remodelling, and regulation of cytokine secre-
tion. Those GO biological processes enriched only for
the hypertension network were angiotensin maturation,
regulation of the force of heart contraction, response to
insulin, vasoconstriction, cholesterol homeostasis, and
negative regulation of feeding behaviour. Such processes,
apparently, are more pertinent to the mechanisms of de-
velopment of individual asthma or hypertension. The
GO biological processes, removal of superoxide radicals,
protein kinase B signalling, positive regulation of isotype
switching to IgG isotypes, and positive regulation of
peptidyl-serine phosphorylation, were enriched only for
the complete asthma/hypertension network and not for
the individual asthma or hypertension networks.
It is known that genetic regulation is paramount for the

genetic variability in diseases across patients [66–68]. The
genetic regulatory network of asthma/hypertonia,

including interactions between genes involved in expres-
sion regulation, expression up-regulation, and expression
down-regulation, is portrayed in Fig. 2. This network con-
tains 52 genes, 68 proteins, and 345 interactions. At the
same time, from the Fig. 2 it can be seen, that general
regulatory network can be divided into at least five subnet-
works, including four small subnetworks containing from
2 to 3 participants (for example, PXR protein → Furin
gene). These subnetworks appeared to be unconnected
with the core of the regulatory network, because in
ANDSystem they were connected only by associative
interaction type. It was interesting to evaluate the enrich-
ment of GO biological processes for genes/proteins from
the genetic regulatory network of asthma/hypertension
(Additional file 1: Table S2). It turned out that for this net-
work seven new enriched GO biological processes were
identified (response to heat, positive regulation of ERK1
and ERK2 cascade, embryo implantation, positive regula-
tion of B cell proliferation, glucose homeostasis, positive
regulation of JAK-STAT cascade, and defence response to

Fig. 2 Genetic regulatory network of asthma/hypertension. Proteins are presented by circles and genes are represented by DNA helix. Proteins
involved in a large number of enriched GO biological processes (more than 20) for both the complete and genetic regulatory network of
asthma/hypertension are shown with large icons. The top 10 proteins with the highest value of betweenness centrality in the complete
asthma/hypertension network are highlighted in blue; in the genetic regulatory network of asthma/hypertension, in green; in both networks, in
two-color green/blue. Picture was done using the ANDVisio program, which is a part of ANDSystem, and gene/protein notations are given
according to ANDVisio output
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protozoan) and these were not significant within the
whole asthma/hypertension network. Among the GO pro-
cesses that were simultaneously significant for the
complete and genetic regulatory network of asthma/
hypertension were negative regulation of apoptotic
process, positive regulation of nitric oxide biosynthetic
process, inflammatory response, and several others.
One of the most central regulatory nodes for both the

complete and genetic regulatory network of asthma/
hypertension is TNF-α (Fig. 2). We observed that this
gene is involved in a large number of enriched GO bio-
logical processes. For example, it participates in inflam-
matory response, immune response, the positive
regulation of the nitric oxide biosynthetic process, posi-
tive regulation of NF-kappaB transcription factor activ-
ity, and is closely related to apoptosis. It is known that
the level of TNF-α is elevated in both asthma and hyper-
tension patients. The levels of TNF-α are increased in
the airway tissues of asthmatic subjects and TNF-α ex-
pression has been seen to be up-regulated in alveolar
macrophages, mast cells, and bronchial epithelial cells
[69, 70]. TNF-α was also found to be higher in concen-
tration in chronic inflammatory states, such as hyperten-
sion, and is implicated in both increases and decreases
in blood pressure [71]. It is interesting that the TNF-α,
which has a high centrality, turned out to be connected
in the regulatory network with NF-kappaB, which also
has a high centrality value (Fig. 2). It is known that bio-
logical networks are characterized by a low degree of
assortativity, i.e. vertexes with a large number of connec-
tions are rarely connected with each other [72]. Thus,
the uncovered interactions between TNF-α and NF-
kappaB may indicate the special role of this connection
for the comorbid state of asthma and hypertension. Fur-
ther, TNF-α can activate the expression of NF-kappaB
and increase its activity [73]. It was previously demon-
strated that in both asthma and hypertension, the ac-
tivity of NF-kappaB is enhanced [74–77]. Figure 2
illustrates that, in turn, NF-kappaB is able to reduce the
level of expression of the apolipoprotein A1 (apoA-1)
gene [78]. There are data suggesting that in cases of
hypertension, the level of apoA-1 is diminished [79, 80].
With this, in asthma patients, the level of apoA-1 in
bronchoalveolar lavage fluid was significantly lower than
in healthy controls [81, 82]. ApoA-1 has a specific role
in lipid metabolism, and is the major component of
HDL particles in blood [83]. It is interesting to note that
the apoA-1 gene is involved in the GO category neuro-
genesis (GO:0022008), related to the CNS. Thus, it can
be seen that, the various biological processes featured in
the pathogenesis of asthma and hypertension, as well as
their comorbid development, including apoptosis and
CNS processes, can be mediated through regulatory
interactions.

Prioritization of candidate genes
Gene prioritization is a task of many studies aimed at
candidate gene identification. Among the existing tools
for gene prioritization, there are Endeavour [41, 42],
ToppGene [43, 44], and DIR [84]. These programs allow
one to rank a test set of genes based on a training set of
genes according to certain criteria characterizing the
proximity of genes from the test set to the genes from
the training set. The methods of these resources employ
properties of the vertices of gene network graphs, gen-
etic information (co-localization in the genome), func-
tional properties of genes (involvement in the same GO
categories), etc. To search for candidate genes that
might have an important part in the molecular genetic
mechanisms of asthma and hypertension comorbidity,
here, we utilised the Endeavor (criterion 1) and Topp-
Gene (criterion 2) programs. Additionally, to take into
account the structure of the gene network, describing
the interactions between asthma and hypertension, as
well as polymorphisms in the genes associated with the
studied diseases, criteria 3-10 were used. In particular,
information about polymorphisms was used in criteria
7-10 in the following way: all genes with known poly-
morphisms had a minimal rank (equal to 1), while the
rank of remaining genes had maximal value (equal to
205). It allowed to provide criteria 7-10 with a more
weight compared to other criteria. We believe that the
presence of polymorphisms in the studied genes is import-
ant for the development of comorbidity. The values of the
listed scores for the top ten genes from the complete
asthma/hypertension network are shown in Table 1.
According to criterion 1, among the top ten most im-

portant genes/proteins, sorted by the “P-value” indicator,
were TNF, FN1, NFKB1, TGFB1, APOA1, EGFR,
MMP9, RELA, AKT1, and PLAT (Additional file 3:
Table S3). For criterion 2 the list of the top ten genes/
proteins, ranked according to the “Average Score” indi-
cator, included FURIN, PTGS2, TIMP1, VCAM1, NPY,
CALM3, HP, RAN, AOC1, and IL4 (Additional file 4:
Table S4). The correlation coefficient of the ranks, calcu-
lated according to criteria 1 and 2, was R = 0.548 with a
p-value < 10− 5.
Criterion 3 suggested that for both the complete and

genetic regulatory network of asthma/hypertension, IL6
was involved in the greatest number of over-represented
GO biological processes - 24 and 27 processes, respect-
ively (Additional file 5: Table S5). Ranking by criterion 3
demonstrated that for 18 genes/proteins (IL6, TGFB1,
TNF, IL1B, AKT1, CCL2, IL4, IL10, EGFR, LEP, PTGS2,
PTEN, EDN1, VEGFA, IFNG, ADM, CD40, INS), the
total number of GO biological processes in which these
genes/proteins participated with respect to the complete
and genetic regulatory network of asthma/hypertension
was more than 20 (Fig. 2).
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According to criteria 4 and 5, it turned out that the
genes/proteins with the highest centrality index for both
the complete and genetic regulatory network of asthma/
hypertension were IL6, TGFB1, TNF, IL1B, and IRF6.
The highest centrality index for just the complete net-
work was for genes INS, NFKB1, VEGFA, TP53, and
CRP, and for the genetic regulatory network of asthma/
hypertension, genes VCAM1, ICAM1, CTGF, IFNG,
SERPINE1 (Additional file 6: Table S6).
According to criterion 6, 154 genes/proteins are specif-

ically associated with the test set of biological processes
with a Bonferroni corrected p-value < 0.01 (Additional
file 7: Table S7). Among the genes most significantly asso-
ciated with the test set were TNF, INS, IL6, LEP, SPP1,
VEGFA, IGF1, NFKB1, IL10, and TGFB1.
Criterion 7 showed that of the 205 analysed genes, 30

genes had SNPs found in the eQTL. Moreover, we re-
vealed that there were 1425 SNPs (Additional file 8:
Table S8). The highest number of SNPs (more than
seven per 1000 nucleotides) was observed for genes
ADRB2, TLR4, CST3, IRF6, CAT, and RETN (Fig. 3). Of
these, ten polymorphisms in the ADRB2, IL10 and TLR4
genes were associated with asthma, and seven polymor-
phisms in ADRB2, IL10 and CAT were linked to hyper-
tension (Fig. 3). These genes had the highest priority
according to criterion 8. The eight polymorphisms in
genes ADRB2, IL10, CAT, TLR4, and CST3 were linked
with any disease comorbid to asthma or hypertension
(e.g., diabetes mellitus, arthritis, myocardial infarction,
kidney diseases, diabetic nephropathy). According to cri-
terion 9, genes ADRB2, IL10, CAT, TLR4, and CST3 had
the highest priority. Analysis of the associations of the
pertinent SNPs with other diseases uncovered 51 SNPs
in 12 genes (Additional file 9: Table S9). Thus, according
to criterion 10, the highest priority was given to genes
ADRB2, IL10, CAT, TLR4, ICAM1, IRF6, AKT1, CST3,
NFKB1, PNP, POMC, and SELL.
In reviewing the average rank (Additional file 10: Table

S10), ten genes (IL10, TLR4, CAT, NFKB1, AKT1,

ADRB2, ICAM1, POMC, CST3 and SPP1) had the high-
est priority (Table 1). It appeared that all genes, pre-
sented in Table 1, except CST3, were associated with
asthma and/or hypertension, according to the OMIM
[85] and MalaCards [86] databases. However, the associ-
ations of this gene with asthma and hypertension are
discussed in the literature [87–89].
An independent analysis of co-occurrence of genes

with “comorbid” or “comorbidity” terms showed that
these top ten genes (F = 0.023) are more frequently (p-
value < 0.05) mentioned together with these terms, com-
pared to the total set of 205 genes (F = 0.006) from the
complete regulatory network of asthma/hypertension.
Thus, this may indicate a potentially important role for
the comorbid state of asthma and hypertension. In par-
ticle, among these top genes TLR4 and ADRB2 (2nd and
6th place in Table 1) are directly discussed in the litera-
ture in the context of the comorbidity of asthma and
hypertension [21–24, 26]. TLR4 is involved in activation
of the innate immune system via the NF-κB signalling
pathway along with the up-regulation of inflammatory
cytokine production. With this, the expression of TLR4
was observed to be up-regulated in asthma [90]. Up-
regulation of TLR4 has also been observed after myocar-
dial infarction and inhibition of TLR4 decreases blood
pressure [91]. The ADRB2 gene encodes a beta-2 adren-
ergic receptor mediating catecholamine-induced acti-
vation of adenylate cyclase via G proteins. ADRB2 is a
known drug target to treat asthma [92, 93] and a number
of SNPs in this gene are associated with asthma [94, 95]
and hypertension [96, 97].
Other interesting genes are IL10 and CAT, which had

1st and 3rd places in Table 1, respectively. IL-10 is an
anti-inflammatory cytokine derived from CD4+ T-helper
type 2 (T(H2)) cells, and in cases of asthma, a relative
underproduction of IL-10 from alveolar macrophages
was reported [98]. During asthma, IL-10 can inhibit eo-
sinophilia via suppression of IL-5 and GM-CSF, regulate
eosinophil apoptosis, and down-regulate IL-1. In

Table 1 Top 10 genes with the highest priority according to average rank

Gene name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Average rank

IL10 44 140 6 14 26 9 1 1 1 1 24.3

TLR4 11 92 17 43 92 29 1 1 1 1 28.8

CAT 59 78 11 31 71 37 1 1 1 1 29.1

NFKB1 3 26 13 5 16 8 1 205 205 1 48.3

AKT1 9 64 4 20 20 18 1 205 205 1 54.7

ADRB2 78 82 28 166 92 155 1 1 1 1 60.5

ICAM1 26 86 11 30 3 44 1 205 205 1 61.2

CST3 112 105 25 117 92 117 1 205 1 1 77.6

POMC 93 85 23 59 53 51 1 205 205 1 77.6

SPP1 25 45 26 44 30 5 1 205 205 205 79,1
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addition, IL-10 can suppress nitric oxide production, an
important component of airway inflammation [99]. Up-
regulation of IL-10 was also demonstrated to normalize
blood pressure and endothelial function [100, 101].
Superoxide anion and hydrogen peroxide were found

in higher concentrations in both asthma and hyper-
tension patients compared with controls [102, 103].
Catalase (CAT) is an enzyme that catalyses the decom-
position of hydrogen peroxide to water and oxygen, and
it was observed that catalase overexpression can prevent
hypertension [104] and that catalase activity was en-
hanced during treatment of asthma [105, 106].

Apoptosis in asthma/hypertension gene network
Apoptosis is one of the processes that features most
prominently in various diseases. It is actively studied in
the pathogenesis of asthma and hypertension [107, 108],
and it has been suggested that deregulation of apoptosis
in activated T cells and eosinophils are involved in the de-
velopment of airway inflammation in asthma [109, 110].
With regard to hypertension, there is evidence of in-
creased apoptosis in whole organs [111, 112]. Despite the
fact, that apoptosis is a well-studied regulatory network,
the role of apoptosis genes in the structure of gene

networks of these two diseases requires further clarifi-
cation. A total of 1873 genes are implicated in the
apoptotic process (GO: 0006915) according to the
AmiGO database [61, 62]. In the complete and genetic
regulated gene network of asthma/hypertension, 69 and
48 genes of apoptosis were included, which are 34 and
53% of all the genes of the analysed networks, respect-
ively. Analysis of the centrality of these genes in the
complete network showed that the average DC value is
0.299, CC value was 0.579, and BC value was 0.0064.
Additionally, it appeared that these indicators were sta-
tistically significant (p-value < 10− 4) more than those
for the other genes of the complete network (DC -
0.147, CC - 0.515, BC - 0.0018). In the genetic regula-
tory network, the centrality of the apoptosis genes (DC
- 0.038, CC - 0.296, BC - 0.023) also exceeded the CC
(BC - 0.025, CC - 0.256, DC - 0.014), although no sta-
tistically significant differences were noted.
To further assess the structural role of the apoptosis

genes in the graphs of the complete and genetic regula-
tory networks of asthma/hypertension, we evaluated the
fundamental cycles using the “Find fundamental rings”
function of ANDSystem [29, 30]. Fundamental cycles are
those that form the basis of a cyclic space of a graph,

Fig. 3 Network of interactions between genes/proteins that had SNPs determined by criteria 7-10. Cyan colour - a small number of polymorphisms
(0.01-0.099 SNPs per 1000 nucleotides), purple colour - a moderate number of polymorphisms (0.1-0.9 SNPs per 1000 nucleotides), pink colour - a high
number of polymorphisms (1.0-4.9 SNPs per 1000 nucleotides), orange colour – a very high number of polymorphisms (5.0-31.1 SNPs per 1000
nucleotides). D — gene polymorphisms associated with various diseases; A— gene polymorphisms associated with asthma; H— gene polymorphisms
associated with hypertension. Large icons indicate genes/proteins associated with apoptosis. Picture was done using the ANDVisio program
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that is, any cycle of a graph can be represented by the
sum of fundamental cycles. In the complete and genetic
regulatory networks of asthma/hypertension, 9354 and
230 fundamental cycles were found, respectively. It
turned out that among them, 9201 and 219 cycles con-
tained at least one gene/protein associated with apop-
tosis, respectively. Further, the number of cycles that
featured only the genes of apoptosis was 191 for the
complete network and 31 for the genetic regulatory net-
work of asthma/hypertension. In particular, the cycle of
maximum length for the complete network (Fig. 4a)
among all cycles, including only the apoptotic genes,
consisted of three genes (CTGF, ADM, ADIPOQ) and
five proteins (CTGF, ADM, ADIPOQ, TGFB1, IFNG). In
this cycle, the protein, IFNG, differentially regulates
TGF-beta1 [113] and the up-regulated secretion of TGF-
beta is accompanied by down-regulation of IFN-gamma
[114]. IFN-gamma and IL-1beta can induce expression
of the ADM gene in ARPE-19 cells [115]. As well, it is
known that plasma ADM protein levels are related to
SNP rs182052 in the ADIPOQ gene [116]. In turn, the
ADIPOQ protein can down-regulate CTGF mRNA and
proteins [117] and TGFB1 can elevate CTGF transcript
levels [118]. For the genetic regulatory network, a similar

cycle (Fig. 4 B) included four genes (CTGF, BCL2,
HMOX1, PTGS2) and four proteins (P53, AKT1,
PPARG, IL1B). In this cycle, it could be seen that the
p53 protein can bind the Bcl2 protein to form a complex
that influences apoptosis regulation [119], and moreover
p53 was shown to induce temperature-dependent de-
crease in the expression of the bcl-2 gene [120]. Bcl-2
gene expression is also regulated by activation of Akt
[121]. Subsequently, Akt can regulate the expression of
the HMOX1 gene [122]. The expression of HMOX1
gene can be up-regulated by activation of PPARG [123].
The activation of PPARG can also suppress expression
of the PTGS2 gene [124]. Further, the expression of the
PTGS2 gene can be up-regulated by IL1B [125, 126]. In
turn, IL1B can significantly suppress CTGF gene expres-
sion [127], of which expression can be induced by p53
protein [128].
Along with the important role of apoptosis genes in

the structure of the asthma/hypertension gene network,
the apoptosis genes had high priority in Additional
file 10: Table S10. Their average rank was 108.4, which is
less statistically significant (p-value < 10− 10) than the
average rank throughout the remainder of the Table
(127.3). Thus, among the ten top genes, seven were

a b

c d

Fig. 4 Fundamental cycles revealed in complete and genetic regulatory asthma/hypertension networks associated with apoptosis and CNS. a
Cycle from the complete asthma/hypertension network, which includes just the genes/proteins associated with apoptosis (CTGF, ADM, ADIPOQ,
TGFB1, and IFNG). b Cycle from the genetic regulatory network of asthma/hypertension, which includes just the genes/proteins associated with
apoptosis (CTGF, BCL2, HMOX1, PTGS2, P53, AKT1, PPARG, and IL1B). c Cycle from the complete asthma/hypertension network, which includes
just the genes/proteins associated with the CNS (APOE, INS, and APOA1). d Cycle from the genetic regulatory asthma/hypertension network,
which includes five participants associated with the CNS (genes: VEGFA, BCL2; proteins: AKT1, OBS, EGFR). Proteins are presented by circles and
genes are represented by DNA helix. Picture was done using the ANDVisio program
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associated with apoptosis (Table 1). Such high enrich-
ment in Table 1 can be related to their high centrality
and participation in a large number of fundamental cy-
cles of the asthma/hypertension gene network. Among
the genes of apoptosis and anti-apoptosis network with
the highest priority according to the total score, one can
distinguish IL10, TLR4, CAT, NFKB1, AKT1, ICAM1, and
CST3. As mentioned before, IL-10 is an anti-
inflammatory cytokine and can induce macrophage apop-
tosis [129, 130]. TLR4 stimulation also induces apoptosis
[131] and can mediate neuronal apoptosis [132]. More-
over, TLR4 is necessary for the immunological mechanism
of apoptosis [133]. Meanwhile, CAT was shown to inhibit
apoptosis in different cells, including T cells [134, 135].
NF-kappaB controls cytokine production, cell survival,
and can block apoptosis [136]. Suppression of NF-kappaB
also induces apoptosis [137]. Akt can suppress apoptosis
via activation of the RelA/p65 subunit of NF-κB [138] and
phosphorylation-dependent cleavage of Akt can influence
apoptosis in neural cells [139]. ICAM-1 is able to influ-
ence release of various inflammatory cytokines and react-
ive oxygen species and because of that, its involvement is
notable in apoptosis regulation [140]. Induced expression
of ICAM-1 leads to participation in inhibition of apoptosis
[141]. Cystatin C (CST3) expression in vascular wall
smooth muscle cells is diminished in certain vascular dis-
eases, and it is known that CST3 can bring about apop-
tosis [142].

Genes involved in functioning of the central nervous
system in the asthma/hypertension gene network
At present, there is increased interest among researchers
in the problem of the effect of various pathological pro-
cesses on the CNS, including inflammation, asthma, and
hypertension [143–145]. It is discussed in the literature
that hypertension and/or hypoxia can activate neurogen-
esis as a response to neuronal loss induced by these fac-
tors [146, 147]. There is an evidence that certain
elements of sympathetic neurotransmission can be acti-
vated during hypertension [148]. In keeping with this, it
has been demonstrated that hypertension can lead to the
memory loss as well as impair learning [147, 149] and
cognition [150]. Interestingly, in Guo et al. [151], it was
shown that chronic asthma can affect cognitive func-
tions and impact synaptic transduction [152] and neuro-
genesis [153, 154]. It has also been discussed that
psycho-social stress and psychological factors can play
an important role in bronchial asthma [155, 156].
In order to clarify the role of genes involved in the

functioning of the CNS in the asthma/hypertension gene
network, GO biological processes associated with
asthma and hypertension and involved in the function-
ing of the CNS were selected using ANDSystem. It was
found that of 357 biological processes associated with

asthma, there were six terms of the CNS (neurogenesis,
cognition, neurotransmitter secretion, response to psy-
chosocial stress, social behaviour, and response to anti-
psychotic drug), and among the 338 of biological
processes associated with hypertension, there were four
such terms (neurogenesis, cognition, neurotransmitter
secretion, and multicellular organismal response to
stress). A small number of GO terms associated with
asthma and hypertension associated with the CNS can
be explained by the lack of knowledge surrounding this
matter. This means a study on the relationship of CNS
genes with these diseases is warranted. The following
GO terms were considered: neurotransmitter secretion
(GO:0007269), neurogenesis (GO:0022008), multicellular
organismal response to stress (GO:0033555), social behav-
iour (GO:0035176), cognition (GO:0050890), response to
antipsychotic drug (GO:0097332), and response to psy-
chosocial stress (GO:1,990,911).
A total of 2017 genes were elicited with these seven GO

terms according to the AmiGO database [61, 62]. In the
complete and genetic regulatory gene networks of
asthma/hypertension, 44 CNS genes out of 205 genes and
27 CNS genes out of 91 genes, respectively, were found.
Analysis of the complete network showed that the

centrality of these genes (DC - 0.277, CC - 0.573, BC -
0.005), as well as of the apoptosis genes, statistically sig-
nificantly exceeded the average centrality of the other
genes from the network (DC - 0.177, CC - 0.527, BC -
0.003), with a p-value < 0.05. Similarly, as for apoptosis,
the average centrality of the CNS genes (DC - 0.0336,
CC - 0.3, BC - 0.0194) surpassed the average gene cen-
trality in the genetic regulatory network (BC - 0.0315,
CC - 0.267, DC - 0.0193). It is noteworthy that among
the 44 genes of the CNS, there were 26 genes of apop-
tosis. These genes possessed increased centrality within
the CNS gene grouping. Thus, apoptosis can have a sig-
nificant effect on the functioning of the CNS sub-
network in the asthma/hypertension gene network.
The analysis of the fundamental cycles showed that in

the complete and genetic regulatory network of asthma/
hypertension, there were 8999 and 199 fundamental cy-
cles, respectively, that contained at least one gene/pro-
tein associated with the CNS. It should be acknowledged
that for apoptosis, for both network fundamental cycles,
only the included genes of this process were found. In
the case of the CNS, the fundamental cycles consisting
of CNS genes were detected only in the complete net-
work, numbering at 59. In particular, the cycle of max-
imum length for a complete network, including only
CNS genes, consisted of genes APOE, INS, and APOA1,
and proteins APOE, INS, and APOA1 (Fig. 4 C). In this
cycle, it was demonstrated that INS initiated the syn-
thesis of apoE [157, 158] and APOA1 gene expression
[159, 160]. In turn, apoA1 protein may enhance local

Saik et al. BMC Medical Genomics 2018, 11(Suppl 1):15 Page 71 of 95



secretion and accumulation of apoE and hence influence
anti-atherogenic processes [161].
With respect to the fundamental cycles found in the

genetic regulatory network of asthma/hypertension, the
maximum proportion of CNS genes did not go beyond
50%. For example, in this fundamental cycle, there were
five genes (VEGFA, BCL2, VCAM1, POMC, CTGF), five
proteins (AKT1, OBS, EGFR, P53, ADIPOQ), two CNS
genes (VEGFA, BCL2), and three CNS proteins (AKT1,
OBS, EGFR) (Fig. 4 D). In this cycle, as in the cycle por-
trayed in Fig. 4 B, p53 protein interacted with Bcl-2
[119] and can induce the expression of the CTGF gene
[128]. Bcl-2 gene expression is regulated by activation of
Akt [121] and Akt influences regulation of VEGF-A ex-
pression [162]. VEGF-A expression is promoted by ADI-
POQ through the ADIPOQ receptor, AdipoR [163].
ADIPOQ and OBS are able to induce VCAM-1 expres-
sion [164]. Increased OBS concentrations are linked with
reduced POMC mRNA expression [165]. Of interest is
that EGFR has been demonstrated to regulate expression
of the POMC gene [166] and stimulate expression of
CTGF [167].

Conclusion
Computer reconstruction and analysis of gene networks
makes it possible to put forward hypotheses about the
molecular mechanisms of diseases. It also seems to be
an effective tool for studying the complex interrelation-
ships between diseases as comorbid conditions. The re-
constructed asthma/hypertension gene network, which
describes the potential molecular-genetic interactions
between the two diseases, included 205 genes/proteins.
Analysis of the sub-networks of apoptosis and the CNS
showed that the genes of the CNS, like the genes impli-
cated in apoptosis, are represented to a large extent in the
asthma/hypertension network (69 and 44 genes, respect-
ively) and can play an important role in its structure.
Therefore, they can be important for the development of
the comorbid condition of these two diseases.
Based on standard methods of prioritization, as well as

original criteria that utilise the structure of the asthma/
hypertension gene network, 10 candidate genes for
genotyping and searching for drug targets have been
proposed. The highest priority was given to the genes
IL10, TLR4, and CAT, which occupy an important pos-
ition in the immune system and apoptosis. It appeared
that apoptotic genes had a special place in this top list of
candidate genes, which was highly enriched with the
genes of apoptosis. CNS genes were also present in the
top list. We believe that the role of CNS genes in the
pathology of these diseases and their comorbid condi-
tions are not yet fully understood and merit close atten-
tion in the future via additional experimental studies.
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