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Optogenetic Control of Voltage-Gated Calcium Channels
Guolin Ma+, Jindou Liu+, Yuepeng Ke+, Xin Liu, Minyong Li, Fen Wang, Gang Han,
Yun Huang, Youjun Wang,* and Yubin Zhou*

Abstract: Voltage-gated Ca2+ (CaV) channels mediate Ca2+

entry into excitable cells to regulate a myriad of cellular
events following membrane depolarization. We report the
engineering of RGK GTPases, a class of genetically encoded
CaV channel modulators, to enable photo-tunable modulation
of CaV channel activity in excitable mammalian cells. This
optogenetic tool (designated optoRGK) tailored for CaV

channels could find broad applications in interrogating
a wide range of CaV-mediated physiological processes.

Voltage-gated Ca2+ (CaV) channels constitute the major
route of Ca2+ entry into cells of the nervous and cardiovas-
cular systems, as well as other electrically excitable cells.[1]

CaV channels respond to membrane depolarization to permit
Ca2+ influx, thereby playing instrumental roles in Ca2+-
dependent physiological processes, including neurotransmit-
ter/hormone release, gene expression, and muscle contrac-
tion.[1b, c] Deregulated CaV channels can give rise to patho-
physiological conditions ranging from cardiovascular disor-
ders to psychiatric conditions.[2] Consequently, CaV channels
are important targets for therapeutic intervention and
physiological regulation.[3] Currently widely used CaV channel

blockers (e.g., dihydropyridines) have prominent drawbacks,
including off-target toxicity, lack of spatial control, and non-
reversibility.[3b,4] New interventional approaches to control
CaV channels are thus needed.

Optogenetics, which involves the incorporation of syn-
thetic photosensitive modules into cells of living tissues to
control cellular activities with high spatiotemporal precision,
provides an ideal solution to overcome the drawbacks
associated with conventional CaV channel blockers.[5] The
Ras-like GTPases Rad/Rem/Gem/Kir (RGK), which func-
tion as negative regulators of CaV channels, are considered to
be the prime candidates for generating optogenetic tools to
modulate CaV channels.[6] Given that membrane anchoring is
necessary for RGKs to exert their suppressive effects on CaV

channels,[6b, 7] we reasoned that CaV channels could be
remotely modulated by harnessing light to control the
translocation of RGK to the plasma membrane (PM). We
therefore engineered a set of optogenetic constructs by using
a light-sensitive heterodimerization system to control the
subcellular localization of engineered Rem (Scheme 1 and
Figure S1 in the Supporting Information). We chose the
optical dimerizer pair iLID (LOV2-ssrA) and sspB because of
their small size, fast photoresponsive kinetics, low back-
ground interaction, and minimized perturbation to endoge-
nous signaling pathways.[8]

To enable light-inducible cytosol-to-PM translocation of
engineered Rem, we set out to install sspB into different
positions of Rem1-266 tagged with the red fluorescent protein
mCherry (mCherry-Rem1-266) via flexible linkers with varying
lengths (Figures S1–3). In parallel, we tethered iLID tagged
with the yellow fluorescent protein Venus (Venus-iLID) to

Scheme 1. Design of optoRGK to photo-tune CaV channel activity.
Spatiotemporal control of the Rem1 core domain is achieved by
utilizing the LOV2-ssrA/sspB optical dimerizer pair. The light-inducible
cytosol-to-PM translocation of Rem enables inducible suppression of
CaV channel activity. Green crescent=1st photodimerizer component
(sspB), blue structure=membrane tethered LOV2, pink sphere = 2nd

photodimerizer component (ssrA), LOV2 + ssrA= improved light-
induced dimer (iLID) protein.

[*] Dr. G. Ma,[+] Y. Ke,[+] X. Liu, Prof. F. Wang, Prof. Y. Huang, Prof. Y. Zhou
Institute of Biosciences and Technology, College of Medicine
Texas A&M University
2121 W Holcombe Blvd, Houston, TX 77030 (USA)
E-mail: yzhou@ibt.tamhsc.edu

J. Liu,[+] Prof. Y. Wang
Beijing Key Laboratory of Gene Resource and Molecular
Development, College of Life Sciences, Beijing Normal University
Beijing 100875 (China)
E-mail: wyoujun@bnu.edu.cn

Prof. M. Li
Department of Medicinal Chemistry, Key Laboratory of Chemical
Biology, School of Pharmacy, Shandong University
Jinan, Shandong 250012 (China)

Prof. G. Han
Department of Biochemistry and Molecular Pharmacology
University of Massachusetts Medical School
Worcester, MA 01605 (USA)

Prof. Y. Zhou
Department of Medical Physiology, College of Medicine
Texas A&M University, Temple, TX 76504 (USA)

[++] These authors contributed equally.

Supporting information and the ORCID identification number(s) for
the author(s) of this article can be found under:
https://doi.org/10.1002/anie.201713080.

T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co.
KGaA. This is an open access article under the terms of the Creative
Commons Attribution-NonCommercial License, which permits use,
distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

Angewandte
ChemieCommunications

7019Angew. Chem. Int. Ed. 2018, 57, 7019 –7022 T 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

http://dx.doi.org/10.1002/ange.201713080
http://dx.doi.org/10.1002/anie.201713080
http://orcid.org/0000-0001-7962-0517
https://doi.org/10.1002/anie.201713080


the PM with a C-terminal PM-targeting sequence (CAAX)
derived from KRas4B[8] or the PM-tethering motif (Lyn11)
from the tyrosine-protein kinase Lyn.[9] We then co-trans-
fected these two constructs into HeLa cells and examined the
reversible recruitment of cytosolic Rem1-266 to the PM (Fig-
ure 1a, Figures S1–4). In the dark, mCherry-Rem1-266–sspB
was evenly distributed in the cytosol (Figure 1a). Upon blue
light illumination, photoexcitation produced a covalent
adduct between residue C450 of LOV2 and the cofactor
FMN, thereby exposing the caged ssrA component of iLID to
restore its interaction with sspB. Consequently, mCherry-
Rem1-266–sspB was recruited toward the PM within seconds
(t1/2, on = 3.2: 1.0 sec). Upon withdrawal of light, mCherry-
Rem1-266–sspB dissociated from the PM-resident ssrA and
diffused back to the cytosol (t1/2, off = 23.0: 2.4 sec; Figure 1,
Figure S3, and Movie S1). After screening over 20 constructs
with different combinations of key elements (various Rem
fragments, linkers, PM-targeting motifs, and insertion sites),
we identified mCherry-Rem11-266–sspB/iLID-CAAX as an
ideal candidate because it exhibited an optimal performance
with high sensitivity and relatively fast kinetics (Figures S1–
S3). To enable a near 1:1 co-expression of the two components
using a single construct within the same cells, we used
a multicistronic expression system by utilizing the self-
cleaving 2A peptide (P2A)to generate fluorescent protein
(FP)-tagged (mCherry or CFP) Rem11-266–sspB-P2A-iLID-
CAAX.[10] We named the system optoRGK and used the FP-
tagged constructs for further characterization and applica-
tions in excitable cells.

To determine whether optoRGK could photo-modulate
CaV channels, we expressed optoRGK in HEK293 cells stably
expressing the human CaV1.2 channel components (HEK-

CaV1.2)[11] and evaluated membrane-depolarization-induced
Ca2+ entry with a red genetically encoded Ca2+ sensor
jRGCaMP1b[12] (Figure 2a,b) or the green Ca2+ dye Fluo-4
(Figure S3). 50 mm potassium chloride (KCl) was employed
to induce membrane depolarization. In the dark, addition of

KCl elicited a pulse of CaV-mediated Ca2+ influx in both
control and optoRGK-expressing cells (Figure 2, 1st cycle).
Upon blue-light illumination, cells overexpressing optoRGK
showed a significant reduction in KCl-induced Ca2+ entry
compared to control cells (Figure 2a, 2nd cycle). Furthermore,
Ca2+ influx could be restored in the absence of blue light
(Figure 2a, 3rd cycle), thereby attesting to the reversibility of
optoRGK in the regulation of CaV channels. In parallel, we
performed electrophysiological studies to independently
confirm optoRGK-mediated, light-switchable modulation of
CaV channels in HEK293-CaV1.2 cells. In the dark, cells
expressing optoRGK showed robust whole-cell currents with
a typical CaV I-V relationship and amplitudes similar to those
of control cells (maximal peak current density& 21.2 pA/pF,
n = 12; Figure 2c,d). However, upon receiving blue-light
stimulation, the amplitudes of depolarization-induced
whole-cell currents were significantly diminished (maximal
peak current density& 6.3 pA/pF, n = 15; Figure 2 c,d). These

Figure 1. Visualization of the reversible recruitment of the Rem core
domain (Rem1-266, without the C-terminus) to the PM in response to
blue-light illumination. a) Representative confocal images showing
light-inducible cytosol-to-PM translocation of mCherry-Rem11-266–sspB
in HeLa cells co-expressing Venus-iLID-CAAX. The images represent
the same cell in the dark (black bar) or exposed to blue light at
470 nm (40 mWmm@2 ; blue bar). Scale bar: 5 mm. b) Quantification of
cytosolic mCherry signals of optoRGK over five repeated light–dark
cycles. n = 34 cells from three independent experiments. Error bars
denote the SEM.

Figure 2. OptoRGK-mediated photoswitchable inhibition of Ca2+ entry
through CaV1.2 channels. a) Ca2+ influx in HEK-CaV1.2 cells transiently
expressing optoRGK and the red Ca2+ sensor jRCaMP1b with and
without blue-light stimulation. Cells transfected with the empty vector
are used as control. Membrane-depolarization-induced Ca2+ entry was
elicited by adding 50 mm KCl (black line below the curves; three
repeated cycles) to transfected cells. Blue line represents light stim-
ulation under 470 nm with a power density of 40 mWmm@2. b) Bar
graphs showing the statistical results of mean Ca2+ entry for each
cycle. c) The current–voltage relationships of CaV channels in HEK-
Cav1.2 cells transfected with optoRGK. Cells were either shielded from
light or exposed to blue light prior to electrophysiological recording.
d) Bar graphs showing the statistical results of peak whole-cell
currents induced by pulses of +10 mV depolarization (pA/pF) in HEK-
CaV1.2 cells before and after photo-stimulation. All data were presented
as mean:SEM. **P<0.01 (paired Student’s t-test).
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results clearly established optoRGK as a genetically encoded
light-switchable channel modulator that allows optical inhib-
ition of CaV channels in excitable cells.

We next moved on to test optoRGK in C2C12 cells,
a mouse myoblast cell line[13] with functional CaV channels.[6b]

Again, we observed light-dependent inhibition of Ca2+ influx
in this excitable cell line (Figure S5). To further test optoRGK
in more physiologically relevant systems, we introduced it
into HL-1 cardiomyocytes, a well-characterized atrial myo-
cyte culture line derived from the adult mouse that retains
many of the differentiated properties of cardiac cells,[14]

including rhythmic oscillations of cytosolic Ca2+ (Movie S2).
By using Fluo-4 as the Ca2+ indicator, we first evaluated
rhythmic Ca2+ oscillations in HL-1 cells with and without
overexpression of full length Rem or its truncated version
Rem1-266 (Figure S6, Movies S3 and S4). Both control cells and
HL-1 cells transfected with mCherry-Rem1-266–sspB (Fig-
ure S6b) exhibited rhythmic Ca2+ oscillations, while cardio-
myocytes expressing the full-length Rem failed to evoke Ca2+

transients (Figure S6a). These findings are consistent with the
results obtained from C2C12 myoblast cells (Figure S5) and
other types of excitable cells.[15]

Having validated the use of HL-1 cardiomyocytes to test
our tool, we next examined the rhythmic oscillations of
cytosolic Ca2+ (Fluo-4 signals as readout) in HL-1 cells
expressing optoRGK. Upon blue-light illumination,
mCherry-Rem11-266–sspB translocated from the cytosol to
close to the PM within several seconds (Figure S7), accom-
panied by the attenuation of oscillatory Ca2+ signals (Fig-
ure 3a, bottom, and Movie S5). By contrast, the control cells
displayed regular Ca2+ oscillations under blue light. To further
validate whether such action was reversible in HL-1 cells, we
used the red Ca2+ indicator Cal-590 (excitation at 562 nm
without pre-activating optoRGK) rather than Fluo-4 to
monitor Ca2+ oscillations (Figure 3b). HL-1 cells expressing
optoRGK showed regular Ca2+ spikes in the dark. However,

upon blue-light illumination, the rhythmic oscillations were
substantially attenuated. Notably, regular Ca2+ oscillations
were restored in the same HL-1 cardiomyocyte after removal
of the light source (Figure 3b).

Taken together, compared with traditional small-molecule
CaV channel blockers that often lack reversibility, selectivity,
and tissue-specificity, engineered RGK proteins could serve
as promising candidates to enable spatiotemporal control of
CaV channels with a simple pulse of light. This study
complements the recent development of engineered stromal
interaction molecule 1 (STIM1) to photo-regulate endoge-
nous Ca2+ channels in mammalian cells (e.g., optoSTIM1[16]

and Opto-CRAC[17]). We anticipate that the optoRGK tool
developed in the current study will find broad applications in
interrogating a wide range of Ca2+-dependent physiological
processes in mammals.

Proof-of-concept experiments have already demonstrated
the potential of using RGK to treat heart disease.[18] To test
potential in vivo applications, we plan to express optoRGK in
the atrioventricular node of rodent models with atrial
fibrillation disease,[19] and examine whether photostimulation
could suppress aberrant atrioventricular nodal conduction to
intervene atrial fibrillation.

Given that RGK proteins primarily exert suppressive
effects on high-voltage-activated Ca2+ (CaV1/CaV2) chan-
nels[20] and that LOV2-based photoswitches have relatively
slow kinetics, the efficacy of optoRGK will likely depend on
the distribution and endogenous levels of CaV channel
subtypes in different cell types and tissues. In its current
configuration, optoRGK is well suited to modulate cardio-
myocytes because of the abundant expression of l-type
CaV1.1/CaV1.2 channels and the relatively long duration of
cardiac action potentials. Its compatibility with neurons and
other types of electrically excitable cells (e.g., pancreatic beta
cells) remains to be tested.
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Figure 3. OptoRGK-mediated light-inducible inhibition of the rhythmic
oscillations of cytosolic Ca2+ in cardiac cells. a) Ca2+ oscillations
reported by Fluo-4 in HL-1 cells with (bottom) and without (top)
expression of optoRGK. Kymographs of Fluo-4 signals in a representa-
tive HL-1 cell are shown above the traces. Excitation was set at
488 nm to record Fluo-4 signals while simultaneously photoactivating
optoRGK. b) Ca2+ oscillations in HL-1 cells monitored by Cal-590. Blue
bar = blue light illumination at 470 nm (40 mWmm@2).
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