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Abstract 
The rapid development of DNA sequencing technologies has opened up new 

avenues of research, including the investigation of population structure within infectious 

diseases (both within patient and between populations). In order to take advantage of these 

advances in technologies and the generation of new types of data, novel bioinformatics tools 

are needed that won’t succumb to artifacts introduced by the data generation, and thus 

provide accurate and precise results. To achieve this goal I have create several tools. 

First, SeekDeep, a pipeline for analyzing targeted amplicon sequencing datasets 

from various technologies, is able to achieve 1-base resolution even at low frequencies and 

read depths allowing for accurate comparison between samples and the detection of 

important SNPs. Next, PathWeaver, a local haplotype assembler designed for complex 

infections and highly variable genomic regions with poor reference mapping. PathWeaver is 

able to create highly accurate haplotypes without generating chimeric assemblies. 

PathWeaver was used on the key protein in pregnancy associated malaria Plasmodium 

falciparum VAR2CSA which revealed population sub-structuring within the key binding 

domain of the protein observed to be present globally along with confirming copy number 

variation. Finally, the program Carmen is able to utilize PathWeaver to augment the results 

from targeted amplicon approaches by reporting where and when local haplotypes have 

been found previously.  

These rigorously tested tools allow the analysis of local haplotype data from various 

technologies and approaches to provide accurate, precise and easily accessible results.  
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Chapter 1: Introduction 

The development of high-throughput sequencing has helped to advance the field of 

molecular genetics, with the ability to generate data rapidly outstripping our ability to analyze 

it. With these advances in technologies constantly increasing the amount that can be 

sequenced and advances making sequencing cheaper, more and more research fields are 

performing sequencing analyses. This has necessitated the need for novel bioinformatics 

tools that are able to analyze a large amount of data at once and that can be used by 

researchers of many different skill levels. This means the output of results needs to be in a 

form that is most readily consumable by other analysis pipelines and researchers in order to 

ensure the most efficient workflows.  

The availability of high-throughput sequencing has been a great asset to the study of 

microbial populations, like the analysis of bacterial communities (Taft et al. 2015), viral 

quasispecies analysis (Beerenwinkel et al. 2012), and malaria infections (Lin et al. 2015; 

Mideo et al. 2016), among other infectious diseases. The analysis of microbial populations 

differs from sequencing approaches carried out on a human because rather than 

sequencing a single genome from one individual, there exists a population of individuals 

(microbes) with several genomes present. These populations are clonal populations which 

means that many of the individuals have the same exact genome and the population can 

either be monoclonal, meaning all individuals have the same exact genome, or polyclonal, a 

mix of genomes with varying degrees of differences with some individuals sharing the same 

exact genome. These polyclonal populations are often referred to as “complex” mixtures.  

https://paperpile.com/c/Egpczv/k2NLV
https://paperpile.com/c/Egpczv/cSh9I
https://paperpile.com/c/Egpczv/FYMJ+GIIf
https://paperpile.com/c/Egpczv/FYMJ+GIIf
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The study of the Plasmodium species, the causative agent of malaria, has benefited 

greatly from the advances in high-throughput sequencing. Plasmodium is a protozoan 

parasite transmitted by female Anopheles mosquitoes and there are five known species to 

infect humans; P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, with P. 

falciparum being credited with the majority of the fatalities. Plasmodium was estimated to 

infect 216 million people and caused 445,000 deaths in 2016 (WHO 2017). Immunity to 

Plasmodium is not sterilizing allowing for repeated infections and people living in endemic 

areas eventually stop experiencing symptomatic infections by various processes but mostly 

thought to be achieved by building up a repertoire of antibodies to keep parasitemia low (A. 

Barry and Hansen 2016). The life cycle of Plasmodium is complex; it is diploid within its 

mosquito vector and haploid while it infects its human host. It undergoes several stages 

within the human host including a liver stage and a blood stage where it spends the majority 

of its time inside of infected erythrocytes and the species P. vivax and P. ovale can lay 

dormant in the liver.  

Plasmodium is a long time enemy of humans and has been credited with being one 

of the most powerful recent forces for causing genetic changes within the human genome 

(Evans and Wellems 2002; McManus et al. 2017). This genetics arms race between humans 

and Plasmodium has lead to the creation of extreme diversity within Plasmodium, driven in 

part by balancing selection and directional selection (Weedall and Conway 2010).  

Balancing selection is a phenomenon that selects for diversity, especially in immune 

epitopes; the more diverse an epitope, the more likely the parasite is able to survive and 

reinfect a host with a previous infection especially if cross-strain reactive antibodies are not 

able to be formed. This is especially true for infectious agents that don’t induce lasting 

immunity and lead to individuals being infected multiple times which leads to a strain’s 

https://paperpile.com/c/Egpczv/bF9Qq
https://paperpile.com/c/Egpczv/AeJx
https://paperpile.com/c/Egpczv/AeJx
https://paperpile.com/c/Egpczv/fayM+xiBC
https://paperpile.com/c/Egpczv/Ac8f
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frequency being inversely correlated with its survivability (Lipsitch and O’Hagan 2007). The 

presence of balancing selection is important for vaccine candidate consideration as epitopes 

that exhibit balancing selection will likely not make good vaccine candidates because the 

parasite will have the necessary diversity to avoid the antibodies induced by the vaccine. For 

this reason many vaccines for Plasmodium have failed to induce completely protective 

antibodies (Offeddu et al. 2012; Ouattara et al. 2013) with the most effective vaccine being 

only 35% protective (Neafsey et al. 2015). It has been shown that even a single base 

difference between strains can prevent cross reactivity of antibodies (Sedegah et al. 2016) 

and therefore it is essential to be able to achieve single base resolution for the study of 

vaccine candidate regions within Plasmodium for both informing the development of a 

potential vaccine and for the monitoring of current vaccines.  

While balancing selection maintains diversity and prevents allelic fixation, directional 

selection promotes allele fixation. Common examples of directional selection include 

mutations that help parasites to adapt to a new host and mutations that induce drug 

resistance. These pressures will cause a single mutation to fix rapidly within a population 

shortly after occuring. P. falciparum has a long history of developing drug resistance and 

often resistance can form with just a single base change like the K76T mutation in the 

chloroquine resistance transporter (CRT) (Lakshmanan et al. 2005) among several other 

examples (Basco et al. 1995; Nagesha et al. 2001; Nwakanma et al. 2014). As these 

mutations are not selected for until the pressure of a specific drugs is added, mutations can 

stay at low frequencies in populations and it is important for drug resistance monitoring 

purposes to be able to detect these single base differences even at these low frequencies to 

help predict the possibility of drug treatment failure (Ngondi et al. 2017).  

https://paperpile.com/c/Egpczv/fVx0
https://paperpile.com/c/Egpczv/G6Aj+Z7TA
https://paperpile.com/c/Egpczv/y2xz
https://paperpile.com/c/Egpczv/5ya3
https://paperpile.com/c/Egpczv/PPBO
https://paperpile.com/c/Egpczv/3hem+jyCM+rsZq
https://paperpile.com/c/Egpczv/Xw6om
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One method for analyzing Plasmodium diversity is to focus analysis on specific 

genomic regions of interest by designing PCR primers to amplify and sequence only these 

regions, an approach called targeted amplicon analysis (Lerch et al. 2017; Hathaway et al. 

2017). Depending on the specific research goals, the targeted regions could be genes 

responsible for drug resistance (Ngondi et al. 2017), vaccine candidates (Bailey et al. 2012; 

Neafsey et al. 2015; Mideo et al. 2016), highly diverse surface antigens targeted by the 

immune system which make for good biomarkers to trace strains (R. H. Miller et al. 2017; 

Patel et al. 2017; Verity et al. 2018; Lin et al. 2015) or regions that are associated with 

disease mechanisms (Patel et al. 2017; Waltmann et al. 2018). Complex Plasmodium 

infections, being infected by more than one strain at a time, are a common occurrence in 

endemic areas (Juliano et al. 2010; Arez et al. 2003); as a result, in some research 

approaches, samples from multiple patients are pooled together, a common technique for 

studies on drug resistance mutations monitoring (Taylor et al. 2010; Ngondi et al. 2017). 

Therefore it is important that any analysis pipeline for targeted amplicon sequencing to be 

able to detect differences between strains within a mixture with single base resolution and at 

low abundances.  

In order to accomplish accurate targeted amplicon analysis from high-throughput 

sequencing, the various errors produced in the data generation need to be corrected without 

over-correcting by removing real biological variation or by under-correcting by reporting error 

as true biological variation. The major sources of error are in the PCR amplification step and 

the sequencing step. The errors produced by PCR include the creation of single base 

substitutions which can result at appreciable frequencies depending on the amount of input 

DNA and the PCR cycle within which the error occurred (e.g. errors in early cycles of PCR, 

https://paperpile.com/c/Egpczv/8ioRH+ybSn
https://paperpile.com/c/Egpczv/8ioRH+ybSn
https://paperpile.com/c/Egpczv/Xw6om
https://paperpile.com/c/Egpczv/gMNy+y2xz+GIIf
https://paperpile.com/c/Egpczv/gMNy+y2xz+GIIf
https://paperpile.com/c/Egpczv/s16U+YNyP+74Kc+FYMJ
https://paperpile.com/c/Egpczv/s16U+YNyP+74Kc+FYMJ
https://paperpile.com/c/Egpczv/YNyP+gDC2
https://paperpile.com/c/Egpczv/Z9Qji+i9xlW
https://paperpile.com/c/Egpczv/Dd52+Xw6om
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especially for low input DNA amounts, will prograte into the next cycles). The errors 

produced in the sequencing step will be dependent upon the specific technology used.  

There now exist many different sequencing technologies which all vary in 

sequencing methodologies and the number and length of sequences they can produce 

among many other aspects (Quail et al. 2012). While technologies share some similarities in 

the data they produce (e.g. most technologies will supply “per base quality scores,” a score 

representing how likely a base call is a sequencing error or not), each comes with its own 

set of specific biases that might have to be handled differently. For example, 454 and Ion 

Torrent create a large number of indels in homopolymers (long stretches of the same 

nucleotide base) due to the similarity in sequencing methodology they use; however, they 

also both compute their per base quality scores in very different ways, and thus special care 

is needed when utilizing the quality scores they report (Brazeau et al. 2016). Also, while 

Illumina, 454, and Ion Torrent tend to have decreasing quality scores and increased error as 

they move along a read, technologies like PacBio have high error rates that have no 

correlation with position in the read. For this reason, care must be taken when trying to apply 

one computational tool built for a specific technology to another technology; certain 

assumptions based on one technology's characteristics could be invalid on another 

technology and lead to artifacts.  

The majority of analyses with targeted amplicon approaches have been conducted 

determining various microbiomes by sequencing various variable regions of the 16S 

ribosomal subunit (NIH HMP Working Group et al. 2009) and this has greatly influenced the 

tools that are available (Caporaso et al. 2010; Edgar 2013). The 16S subunit is analyzed 

because it is shared by all bacterial species but, because of its extreme biological 

importance, it is slowly evolving and doesn’t differentiate bacteria at the species level (Woo 

https://paperpile.com/c/Egpczv/3q2Q
https://paperpile.com/c/Egpczv/31R0
https://paperpile.com/c/Egpczv/vMUc
https://paperpile.com/c/Egpczv/jwpD+RULxC
https://paperpile.com/c/Egpczv/LFCq+0TfR
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et al. 2008; Janda and Abbott 2007). In fact, the most closely related 16S sequence are 

often different 16S copies within one bacterial species genome (Kembel et al. 2012). For this 

reason the majority of 16S targeted amplicon sequencing is conducted by clustering 

sequences at an operational taxonomic unit (OTU) which involves clustering sequences that 

are similar up to a certain percent identity, commonly 97%. Clustering at 97% identity would 

serve to correct for any errors that arise in data generation but would also collapse many 

real biological differences which could be up to 9 differences for a region of 300 bases in 

length. Clustering at this level is not adequate for studying Plasmodium and a greater 

resolution is needed that would still correct for any errors. While some recent developments 

have greatly increased the resolution capable, these approaches either are unable to detect 

single base differences, like Swarm (Mahé et al. 2014), or fail to detect single base 

differences at low read depths or low frequencies like the programs UNOISE2 (Edgar 2016) 

and DADA2 (Callahan et al. 2016).  

Shotgun whole genome sequencing is another popular technique for analyzing 

Plasmodium infections. This process involves generating reads from the entire genome of 

interest, rather than just a targeted locus like in targeted amplicon sequencing. While this 

generates a large amount of data across the whole genome, reads all start and end in 

random locations and often require mapping to a reference genome to be analyzed. These 

mapped reads are normally run through a traditional variant-calling pipeline for calling single 

polymorphisms (SNPs) and short insertions and deletions (INDELs). While this process 

works for stable regions of the genome, it might fail to call variants in regions so diverse that 

mapping to a reference is not possible. For this reason, highly diverse regions of the 

Plasmodium genome are often masked from this type of analysis even though these regions 

encode key virulence factors for Plasmodium. There is a growing large collection of publicly 

https://paperpile.com/c/Egpczv/LFCq+0TfR
https://paperpile.com/c/Egpczv/CT600
https://paperpile.com/c/Egpczv/cjHfE
https://paperpile.com/c/Egpczv/W9ibc
https://paperpile.com/c/Egpczv/83XDi
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available field samples that have been shotgun whole genome sequenced has been 

generated but remain unanalyzed for these key virulence factors.  

One of the major contributing factors to P. falciparum causing more fatal clinical 

outcomes is due to its multigene family called var genes that encode for the protein 

erythrocyte membrane protein 1 (PfEMP1) (Smith et al. 2000; Gardner et al. 2002). This 

highly diverse family encodes a protein that contains several domains capable of binding to 

various endothelial cell surfaces. The protein gets transported to the surface of P. falciparum 

infected erythrocytes and causes the erythrocytes to adhere to the walls of blood vessels. 

This helps the parasite survive by avoiding traveling through the spleen which is a major 

mechanism for clearing infected erythrocytes (Rowe et al. 2009). The adhesion of infected 

erythrocytes to blood vessel walls can lead to the destruction of microvasculature and 

depending on the location of the microvascular can lead to various clinical outcomes (e.g. 

destruction of microvasculature in the brain can lead to stroke) (Rowe et al. 2009). There are 

approximately 60 var genes each capable of binding to various targets and many of the 

genes undergoing recombinations between different var genes (Rask et al. 2010; Gardner et 

al. 2002). The var genes have a complex transcription regulation and only one var gene is 

expressed at a time (Duffy et al. 2017; Dimonte et al. 2016).  

One var gene of interest that appears to have become isolated from the other var 

genes and only undergoes recombination with itself is VAR2CSA which binds to chondroitin 

sulfate (CSA), a protein only found on placental tissue (Salanti et al. 2003a). Therefore, 

VAR2CSA expressing P. falciparum parasites that infect a pregnant woman can cause the 

destruction of placental tissue and poor birth outcomes (Salanti et al. 2003a). 

Naturally-acquired antibodies to VAR2CSA have been shown to be protective during 

pregnancy (Rogerson et al. 2007; Ataíde, Mayor, and Rogerson 2014). Efforts to develop a 

https://paperpile.com/c/Egpczv/ORLz+CWPy
https://paperpile.com/c/Egpczv/btWZ
https://paperpile.com/c/Egpczv/btWZ
https://paperpile.com/c/Egpczv/egYcw+CWPy
https://paperpile.com/c/Egpczv/egYcw+CWPy
https://paperpile.com/c/Egpczv/AbLD+mq2J
https://paperpile.com/c/Egpczv/6lO8
https://paperpile.com/c/Egpczv/6lO8
https://paperpile.com/c/Egpczv/Oamy+xEWDy
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VAR2CSA vaccine are underway (Fried and Duffy 2015; Tuikue-Ndam and Deloron 2015). 

However, their efficacy may be hampered by the genetic and geographical variation in the 

protein. Previous studies on VAR2CSA diversity have been limited to less than 30 full length 

genes and the full global diversity has yet to be fully revealed.  

The var2csa gene is approximately 8 kilobases (kb) long and key binding domains 

with the protein are 1.8kb. There are few conserved regions, due to its high diversity, to 

target for PCR and the gene’s long length make a targeted approach unfeasible. This high 

diversity also prevents traditional variant calling with reference based mapping approaches 

as the sequence differences prevent approximately 20% of the reads from mapping to the 

reference. Due to this poor mapping which is common to all var genes, previous attempts 

have been made to use assembly programs, like SPAdes (Bankevich et al. 2012), to 

construct var gene sequences (Jespersen et al. 2016; Lennartz et al. 2017). However, these 

previous attempts have not been extensively validated and it has been observed that 

assemblies done on polyclonal mixtures can lead to erroneous chimeric assemblies where 

sequences from different genomes are combined into one sequence. The assembly 

programs being used were designed to do assembly of only one genome and therefore do 

not handle the presence of multiple genomes well.  

In this thesis, I present several novel computational tools I have created to analyze 

the high diversity found within microbial mixtures with a focus on Plasmodium. Chapter II 

describes the program SeekDeep for analyzing targeted amplicon sequencing to achieve 

single base resolution even at low frequencies. Chapter III extends the use of SeekDeep to 

be used on longer amplicon targets created by the PacBio technology. Chapter IV presents 

PathWeaver, a program designed to recruit var2csa sequences from shotgun whole genome 

sequencing datasets to assemble highly diverse regions of the genome, which I apply to the 

https://paperpile.com/c/Egpczv/QOTtU+efQ0Z
https://paperpile.com/c/Egpczv/2QBsg
https://paperpile.com/c/Egpczv/X1SWo+fiEn
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var2csa gene to fully elucidate the global diversity to help further vaccine development. 

Chapter V further leverages the PathWeaver program to utilize the wealth of publicly 

available data to augment targeted amplicon analysis by reporting on where and when 

haplotypes have been found previously.  



22 

Chapter II: SeekDeep: single-base resolution de 

novo clustering for amplicon deep sequencing 

Preface 

The following research chapter was adapted from “SeekDeep: Single-Base Resolution de 

Novo Clustering for Amplicon Deep Sequencing.” Hathaway, Nicholas J., Christian M. 

Parobek, Jonathan J. Juliano, and Jeffrey A. Bailey. 2017 Nucleic Acids Research, 

November. https://doi.org/10.1093/nar/gkx1201. (Hathaway et al. 2017).  

ABSTRACT 

PCR amplicon deep sequencing continues to transform the investigation of genetic diversity 

in viral, bacterial, and eukaryotic populations. In eukaryotic populations such as Plasmodium 

falciparum infections, it is important to discriminate sequences differing by a single 

nucleotide polymorphism. In bacterial populations, single-base resolution can provide 

improved resolution towards species and strains. Here we introduce the SeekDeep suite 

built around the qluster algorithm, which is capable of accurately building de novo clusters 

representing true, biological local haplotypes differing by just a single base. It outperforms 

current software, particularly at low frequencies and at low input read depths, whether 

resolving single-base differences or traditional OTUs. SeekDeep is open source and works 

with all major sequencing technologies, making it broadly useful in a wide variety of 

https://doi.org/10.1093/nar/gkx1201
https://paperpile.com/c/Egpczv/ybSn
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applications of amplicon deep sequencing to extract accurate and maximal biologic 

information.  

INTRODUCTION 

The development of targeted next-generation sequencing technologies has 

dramatically expanded research into population-level genetic diversity, from the study of 

bacterial communities (Taft et al. 2015), intrahost variation in infections, such as HIV and 

malaria (Beerenwinkel et al. 2012; Lin et al. 2015; Mideo et al. 2016), to heterogeneity in 

cancer tumors (Dawson et al. 2013). In general, targeted amplicon deep sequencing utilizes 

areas of conserved sequence for amplification primer placement, surrounding a region of 

interest containing known mutations or high sequence variability. Thousands to millions of 

product molecules from the amplification are then individually sequenced using current 

massively parallel techniques. To date, experimental and computational techniques for deep 

sequencing have been driven largely by microbiome 16S and targeted viral sequencing 

where single-base resolution is not a necessity (Quince et al. 2011; Beerenwinkel et al. 

2012; Prabhakaran et al. 2010). While initial microbiome work has focused on genus-level 

resolution of 97% sequence identity, there is greater interest in maximizing species and 

strain information in bacterial and viral populations (Benítez-Páez, Portune, and Sanz 2016; 

Beerenwinkel and Zagordi 2011). In eukaryotic populations, such as malaria strains, and for 

mutation detection, differentiation at the single-nucleotide level resolution is a necessity (Lin 

et al. 2015; Mideo et al. 2016). 

The central bioinformatic challenge of all targeted deep sequencing is to accurately 

resolve the true biologic differences that are obscured by the numerous errors introduced 

during PCR amplification and sequencing. PCR errors include substitutions, insertions and 

https://paperpile.com/c/Egpczv/k2NLV
https://paperpile.com/c/Egpczv/cSh9I+FYMJ+GIIf
https://paperpile.com/c/Egpczv/7Hx9g
https://paperpile.com/c/Egpczv/FYWfK+cSh9I+QdCzi
https://paperpile.com/c/Egpczv/FYWfK+cSh9I+QdCzi
https://paperpile.com/c/Egpczv/MOsDO+7J4Dq
https://paperpile.com/c/Egpczv/MOsDO+7J4Dq
https://paperpile.com/c/Egpczv/FYMJ+GIIf
https://paperpile.com/c/Egpczv/FYMJ+GIIf
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deletions, as well as chimeras formed by incomplete extension and subsequent re-priming 

on a highly-similar (but non-identical) template (Figure 2.1). Sequencing error types and 

frequencies tend to be platform specific, and are related to either the sequencing 

polymerase or detection technology. For instance, pyrosequencing-based technologies 

generate numerous insertion-deletion (indel) errors, particularly in homopolymers, since 

these technologies estimate the number of a particular nucleotide in succession based on 

the cumulative fluorescent (454) or ion (Ion Torrent) signal. On the other hand, Illumina 

technology mainly misidentifies individual nucleotides, thus producing base-substitution 

errors (Lysholm, Andersson, and Persson 2011; Huang et al. 2012). 

Numerous computational solutions have been developed to correct for these errors 

(Zhbannikov and Foster 2015), including minimum entropy decomposition (MED (Murat 

Eren et al. 2014)), homopolymer runs correction (Acacia (Bragg et al. 2012)), clustering 

based on consistency of inferred error models (DADA2 (Callahan et al. 2016)), operational 

taxonomic unit (OTU) clustering (UPARSE (Edgar 2013)), k-mer correcting (KEC (Skums et 

al. 2012)), and many others (Zagordi et al. 2011; Yang, Chockalingam, and Aluru 2013). All 

of these methods have advantages and disadvantages vis-a-vis speed, sensitivity, 

specificity, flexibility, range of sequencing technologies, and types of errors corrected. In 

general, the latest methods aim for greater resolution to allow better definition of microbial 

populations. The ultimate goal is discriminating sequences differing by a single base, which 

is the quantum level of evolutionary change. Such resolution will allow more detailed 

assessment of bacterial, viral, and eukaryotic microbial populations particularly with longer 

amplicons. Consistent single-base resolution is a particular necessity for studies of 

eukaryotic intra-species populations and for mutation detection. For example, in malaria 

research, the sequence of a single amplicon is frequently used to define strains within an 

https://paperpile.com/c/Egpczv/q0AUL+BTyQ2
https://paperpile.com/c/Egpczv/OjAS6
https://paperpile.com/c/Egpczv/7iGNz
https://paperpile.com/c/Egpczv/7iGNz
https://paperpile.com/c/Egpczv/lIRpN
https://paperpile.com/c/Egpczv/83XDi
https://paperpile.com/c/Egpczv/RULxC
https://paperpile.com/c/Egpczv/CeU0Z
https://paperpile.com/c/Egpczv/CeU0Z
https://paperpile.com/c/Egpczv/fFN7L+yyYSK
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infected individual, and these sequences often differ by only a single base, representative of 

a SNP within the larger parasite population. In microbiome studies, single-base resolution of 

16S amplicon clustering extracts maximal information for downstream analyses. Thus, we 

sought to develop new algorithms that could consistently differentiate single-base 

differences in a wide variety of conditions and applications including improved accuracy and 

sensitivity of traditional operational taxonomic units (OTUs).  

Here we present SeekDeep, an open-source software suite for de novo (i.e 

reference free) analysis of amplicons that is fast, sensitive, customizable, and is able to 

resolve sequences differing by only a single base, even at low frequencies. At the center of 

SeekDeep is the algorithm qluster (for quality clustering) that improves the correction of 

PCR and sequencing errors in multiple key ways including base quality values and k-mer 

frequencies. SeekDeep also provides a growing set of pre- and post-processing tools, 

including an embedded web server to dynamically view results and ancillary data - 

particularly useful when working with large datasets and numerous samples, a scenario 

which has become common with targeted amplicon studies (Lin et al. 2015; Mideo et al. 

2016).  

We compared SeekDeep to other recent best-in-class programs, DADA2 (Callahan 

et al. 2016), MED (Murat Eren et al. 2014) and UNOISE in USEARCH (preprint 

https://doi.org/10.1101/081257), which also aim for single-base resolution. All programs aim 

to determine the local PCR amplicon haplotypes, herein referred to simply as haplotypes for 

brevity, that represent the specific sequences (linked variation from the same chromosome) 

found in the biologic material prior to amplification. We also compared OTU based clustering 

to commonly used programs USEARCH (aka UCLUST/UPARSE) (Edgar 2013) and to 

Swarm (Mahé et al. 2014) which cannot resolve at the single-base level. We focused our 

https://paperpile.com/c/Egpczv/FYMJ+GIIf
https://paperpile.com/c/Egpczv/FYMJ+GIIf
https://paperpile.com/c/Egpczv/83XDi
https://paperpile.com/c/Egpczv/83XDi
https://paperpile.com/c/Egpczv/7iGNz
https://paperpile.com/c/Egpczv/RULxC
https://paperpile.com/c/Egpczv/cjHfE
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comparisons on programs that could work with both Illumina and 454/Ion Torrent sequence 

and did not compare to programs that only correct 454 and Ion Torrent pyrosequencing 

errors like AmpliconNoise (Quince et al. 2011), Acacia (Bragg et al. 2012), and HECTOR 

(Wirawan et al. 2014) as we are interested in tools that are broadly applicable in the field.  

To ascertain the performance of these programs, we compared results of in silico 

simulated datasets and in vitro mixtures of isolated DNA representing mock infections of 

both Plasmodium falciparum and bacterial communities. The simulations focused on the 

quantitative accuracy of discerning minor (low-abundance) haplotypes in terms of how much 

they differ (1 to 13 bp equating to 99.6% to 95.6% similarity) from a major (high-abundance) 

haplotype and how much they differ from another minor haplotype unrelated to all other 

haplotypes. 

RESULTS 

Simulation Studies 

First we compared the performance of SeekDeep to the other programs on the two 

types of simulated mixtures: mixtures where minor haplotypes are closely related to a major 

haplotype which was at a much greater abundance (Figure 2.2a-b), and mixtures where a 

minor haplotype was closely related to another minor haplotype at the same abundance 

(Figure 2.2c-d). For all simulations, SeekDeep matched or outperformed MED, DADA2, and 

UNOISE in recovery of all haplotypes, especially one-off haplotypes (Figure 2.3). SeekDeep 

showed improved haplotype recovery compared to other methods, which was accentuated 

as read depth, divergence and abundance of haplotypes decreased (Figures 2.3, 2.4-2.6). 

Together these factors combined to show marked differences in haplotype recovery for 

https://paperpile.com/c/Egpczv/FYWfK
https://paperpile.com/c/Egpczv/lIRpN
https://paperpile.com/c/Egpczv/wz6Dc
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low-abundance haplotypes differing by a single-base (i.e. one off from the closest sequence) 

assessed with low numbers of reads (Figure 2.3). SeekDeep was also better able to 

estimate the expected abundance of haplotypes, demonstrated by a lower root mean 

squared error (RMSE) (Figures S12-13) compared to all programs. The MED algorithm 

appears to have trouble as a haplotype's abundance increases, which could be due to the 

fact that it was developed specifically for microbiome data where the abundance of each 

haplotype usually does not exceed more than 10%. Though SeekDeep creates more false 

haplotypes than DADA2 and UNOISE, the abundance of the false haplotypes is generally 

much lower than 0.1% while DADA2, MED, and UNOISE were shown, especially for 454, to 

create false haplotypes greater than 1%, with most falling between 0.1% and 1% (Figure 

2.9). While DADA2 minimizes the number of false haplotypes (Figure 2.9), it also loses 

sensitivity particularly with lower read depth input (Figures 2.3, 2.5). Overall, SeekDeep 

shows greater consistency at lower thresholds providing unbiased detection in the face of 

variable haplotype abundance and input read depths. 

In vitro Control Mixtures 

Plasmodium 454 and Ion Torrent pyrosequencing 

Next we evaluated the performance of haplotype detection for P. falciparum lab 

strains for TRAP, AMA1, and CSP genes on both 454 and Ion Torrent by creating mock 

mixtures in the lab that were PCR amplified and then sequenced. This provides important 

insight into factors that may not be captured in the simulated sequence. For these in vitro 

mixtures, both SeekDeep and MED were able to achieve 100% haplotype recovery across 

all samples while UNOISE had 92% and DADA2 had 83% haplotype recovery (Figure 

2.10a). Missed haplotypes usually represented the collapse of low-abundance highly similar 
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haplotypes. In part, it also appeared that haplotype recovery for UNOISE and DADA2 were 

hampered by indel errors especially in homopolymers which are difficult to overcome in Ion 

Torrent and 454 data. This is a known issue as UNOISE’s website states that UNOISE does 

not work well on Ion Torrent and 454 data 

(http://www.drive5.com/usearch/manual/faq_unoise_not_illumina.html). All programs had 

appreciable false haplotypes (Figure 2.10c), and, while DADA2 had the lowest number of 

false haplotypes, when they did occur they often had appreciable frequencies even 

exceeding 10%. Only SeekDeep limited the occurrence of false haplotypes to low 

abundances (<=0.5%). Replicates again aided all programs but dramatically reduced the 

number of false haplotypes for SeekDeep. SeekDeep again showed the most accurate 

abundance estimates (Figure 2.10b). Notably MED, while demonstrating 100% haplotype 

recovery, consistently underestimated abundances due to the numerous false haplotypes at 

appreciable frequencies (Figure 2.10c).  

Plasmodium Illumina MiSeq 

We also evaluated a mock mixture of P. falciparum across 23 loci that represent 

important markers of drug resistant or regions of diverse variation. These amplicons were 

PCR amplified and sequenced on Illumina MiSeq 2x250 paired end. SeekDeep and MED 

were able to achieve 100% haplotype recovery of all 23 targets while DADA2 and UNOISE 

both failed to detect nine out of the 88 total haplotypes. Five haplotypes were missed in 

common by both programs (Figures 2.11 and 2.12). The haplotypes that UNOISE and 

DADA2 failed to detect where either related to another haplotype by a single nucleotide or 1 

large indel (~10 nucleotides) and ranged in abundance from 4 - 20%. SeekDeep 

demonstrated a minimal number of false haplotypes on par with UNOISE (Figure 2.11c). 
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Unlike UNOISE and the other programs which report false haplotypes at abundances that 

can exceed 10%, SeekDeep’s false haplotypes were all less than 0.8% abundance. Again 

SeekDeep showed the highest accuracy in terms of predicting the abundance (Figure 

2.11b).  

Mock Microbiome 

We also tested SeekDeep on a mock microbiome dataset previously described in 

Salipante et al. 2014 (Salipante et al. 2014), which had been amplified and sequenced in 

triplicate on the Illumina platform. It contained 47 distinct 16S copies (Table 2.1). MED and 

SeekDeep were able to recover 100% of all expected haplotypes in all datasets, while 

DADA2 missed one haplotype. For all three replicates of this dataset, DADA2 missed the L. 

monocytogenes.2 haplotype, which had an expected abundance of 0.8% and is one 

nucleotide different from the L. monocytogenes.5 haplotype which had an expected 

abundance of 1.5%. UNOISE also missed L. monocytogenes.2 in one replicate and in all 

three replicates missed B. vulgatus.3 (0.035%), B. cereus.4 (0.33%), and B. cereus.1 

(0.36%), haplotypes, which all differ by one nucleotide from another haplotype.  

Downsampled Mock Microbiome  

Because the mock microbiome dataset previously described in Salipante et al. 2014 

(Salipante et al. 2014) was sequenced to a great depth (>600,000 reads), we randomly 

downsampled the dataset to lower read depths (2,000-20,000) to test detection at levels of 

sequencing more commonly employed in experiments. For the downsampled mock 

microbiome dataset from Salipante et al. 2014 (Salipante et al. 2014), SeekDeep 

outperformed DADA2, MED, and UNOISE in haplotype recovery of the twenty-three one-off 

haplotypes (out of forty-seven total haplotypes in the dataset). The highest relative 

https://paperpile.com/c/Egpczv/P9OFJ
https://paperpile.com/c/Egpczv/P9OFJ
https://paperpile.com/c/Egpczv/P9OFJ
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abundance of missed one-off haplotypes was approximately 3% for DADA2 and MED, 2% 

for UNOISE, but only 0.25% for SeekDeep (Figure 2.13). Again, SeekDeep does well using 

fewer input reads in estimating the expected abundance of the known haplotypes with a 

lower RMSE (Figure 2.14). 

Viral strain mixtures 

To further ensure that SeekDeep works across a breadth of experiments and 

organisms, we examined control mixtures of viral strains. All programs performed well with 

respect to recall for both the EBV (Figure 2.15) and HIV (Figure 2.16) mixtures, which was 

not unexpected as these mixed strain haplotypes all differed by more than a single base. 

Importantly, SeekDeep’s specificity compared well. All other programs other than SeekDeep 

created false haplotypes above 1% in the EBV dataset with the highest for each program 

being 2% for UNOISE, 17% for MED, 22% for DADA2, 19% for ShoRAH and 0.65% for 

SeekDeep which was mitigate but not completely removed with replicates (1% for UNOISE, 

16% for MED,14% for DADA2, 16% for ShoRAH and 0.46% for SeekDeep). Programs 

performed better on the HIV dataset and though SeekDeep had a large number of false 

haplotypes all of them fell below the recommended cut off of 0.5% with the highest being at 

0.35%. This high amount of apparent false haplotypes at low frequency was probably 

representative of both increased biologic variation due to HIV replication by error-prone 

reverse transcriptase as well as the elevated 65 rounds of PCR amplification prior to 

sequencing. 



31 

Chimera detection 

For these in vitro control mixtures, chimera formation and abundance was highly 

variable depending upon the experiment. The Illumina P. falciparum dataset only 

demonstrated 3 chimeras across all 28 amplicions. The IonTorrent controls demonstrated 

significant numbers of low abundance chimeras. Across the 7 samples there were a total of 

186 false haplotypes of which 83% (155) were chimeras. These IonTorrent false haplotypes 

generally showed higher abundances relative to other false haplotypes and were 

highly-reproducible abundances across replicates (R2=0.81-0.99; Figure 2.17). The 

differences in chimera formation between datasets most likely originates from differences in 

the amount of input template and PCR conditions as well as potentially the library 

preparation which involves PCR. The mock microbiome showed minimal chimera formation 

likely due to the decreased sequence relatedness and greater amounts of starting template. 

Overall, the variability in chimera occurrence rates along with their high-degree of 

reproducibility within replicates emphasizes the need to carefully consider the experimental 

conditions and the utilization of experimental controls to determine the need and optimal 

settings for chimera detection.  

Traditional Microbiome OTU Analysis 

In addition to providing single-base resolution between sequences, SeekDeep was 

designed to also allow users to define the needed level of resolution by setting either the 

number of bases or percent identity to create operational taxonomic units (OTUs). We 

therefore compared SeekDeep to older commonly used programs offering OTU level 

resolution that can operate on multiple platforms. In comparison to USEARCH (i.e. 
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UCLUST), Seekdeep showed both better accuracy and precision clustering at 97% OTUs 

(Figure 2.18). Also, USEARCH at times misconstructs the OTUs, returning a consensus 

sequence that is not one of the actual input haplotypes (Figure 2.18b). SeekDeep routinely 

returns the major haplotype within an OTU. We also compared to SWARM collapsing on 

1-base differences - the most sensitive setting for SWARM (Figure 2.19). Again SeekDeep 

demonstrated better haplotype recovery and fewer false haplotypes. Thus, SeekDeep 

provides more optimized OTU definition, which again is more robust to varying read depth.  

Performance 

Algorithm speed can be an important factor in terms of practicality, and SeekDeep 

compares favorably with other programs. While UNOISE is the fastest algorithm (Figure 

2.20), this speed comes at a cost (Figure 2.3). The proprietary algorithm in UNOISE works 

by collapsing one-off errors if the ratio of abundance between two sequences is at a certain 

threshold, which precludes UNOISE from detecting new haplotypes that differ by only one 

nucleotide from the major haplotype in the population. This aspect can be problematic when 

screening for cancer mutations or pathogen drug resistance. Also UNOISE recommends not 

using singlet sequences, decreasing haplotype recovery at lower read depths. This, in part, 

contributes to its speed (Figure 2.20) but decreases haplotype recovery. Apart from 

UNOISE, SeekDeep is comparable in speed to DADA2 and MED (Figure 2.20). In fact, for 

the mock microbiome data set (Salipante et al. 2014), which had approximately 800,000 for 

each of three replicates, the run times for the programs were 2hrs and 41 minutes for 

SeekDeep, 2hrs and 40 minutes for DADA2, and 1hr and 58 minutes for MED on standard 

hardware as found in a personal computer. Given runtimes are comparable, the built-in 

general pipelines for sample processing make SeekDeep a potentially less-time consuming 

https://paperpile.com/c/Egpczv/P9OFJ
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option for the general user looking to process numerous samples and multiple amplicons per 

sample. 

DISCUSSION 

With newer sequencing technologies increasing our ability to probe a wide variety of 

biologic samples, the ability to bioinformatically discern the full extent of sequence diversity, 

even if only a single-base difference, is key to answering many important questions. Though 

all programs tested are able to detect one-off haplotypes, SeekDeep is the only one 

consistently able detect these haplotypes at lower frequencies and at lower input read 

depths for all technologies (Figures 2.3, 2.4-2.6, 2.13). SeekDeep performs well across a 

diverse set of simulations and in vitro control data sets and provides a more favorable 

balance between haplotype recovery and false haplotypes such that missed haplotypes and 

false calls are limited to the lowest frequencies, usually below 0.25%. In fact, when applying 

0.25% as a lower threshold, SeekDeep has near perfect haplotype recovery and precision 

(Figure 2.21). We apply a slightly higher cutoff of 0.5% as the default in processClusters, 

the final processing step, ensuring high confidence in the called haplotypes. Essentially, 

SeekDeep provides the ability to confidently detect haplotypes across variable read depths 

regardless of haplotype abundance, similarity or platform, a feature which is crucial for 

maximizing experimental information and minimizing biases. Minimizing bias is important for 

downstream analyses such as time series that generally presume random deviations (Bucci 

et al. 2016; Friedman and Alm 2012). 

SeekDeep showed important differences in terms of haplotype recovery and false 

haplotype creation compared to other programs. While DADA2 creates a smaller number of 

false haplotypes than SeekDeep, this comes at the cost of missing low-abundance one-off 

https://paperpile.com/c/Egpczv/BP0Z6+zSrrD
https://paperpile.com/c/Egpczv/BP0Z6+zSrrD
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haplotypes. Also, when DADA2 does create a false haplotype it is generally at a higher 

abundance than SeekDeep (Figures 2.10-2.11, 2.9). DADA2 did not compare well at lower 

read depths where haplotype recovery suffered remarkably. Thus, for users of DADA2 it 

may be important to ensure that all samples have deep read depth to minimize biases. MED 

has good haplotype recovery but also creates numerous false haplotypes, particularly 

high-abundance haplotypes in samples with low diversity (Figures 2.10-2.11, 2.17). 

SeekDeep’s balance between haplotype recovery and false haplotypes at very 

low-abundances was by design. For subsequent aggregate or longitudinal analyses across 

samples, low-level noise in individual samples can often be better controlled across the 

entire sample set. However, missing haplotypes or false calls at appreciable levels are more 

difficult to compensate for and can be a source of significant bias. 

Importantly SeekDeep is extremely robust to sequence quality or types of sequence 

variation. SeekDeep directly utilizes the actual base quality of each sequencing read. Thus, 

it is robust to sequences that are outliers with extremely poor quality. Unlike both MED and 

DADA2 that require that input sequences be the same exact length, SeekDeep can handle 

variable length input given it performs optimal global alignments, and thus is adept at 

analyzing sequences with insertions or deletions. Variable length inputs are very common 

among Ion Torrent and 454 sequencing data. 

Users can further optimize SeekDeep for more advanced applications. It can flexibly 

cluster based on insert size, allowing for the detection of biologically relevant insertions such 

as nucleotide triplets consistent with an amino acid change while filtering out homopolymer 

or smaller indels that are particularly common in some sequencing platforms such as 

IonTorrent. With SeekDeep, users can set the specific number of each type of alignment 

differences (indels and/or SNPs) upon which to collapse clusters, enabling concrete tuning 
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for the specific biologic questions. For instance, this allows a user to collapse haplotypes 

that differ by one base, two bases, or traditional analyses collapsing to 97% or 99% OTUs 

and detect more divergent lower abundance variants that may be only represented by a few 

sequences in a sample.  

SeekDeep offers robust and flexible pre- and post-clustering tools and workflows for 

rapidly preprocessing numerous samples by demultiplexing barcodes, identifying and 

removing primers, trimming, and cleaning sequence to user specifications. After clustering, 

the tool set helps evaluate the sequence and perform initial data evaluation with key sample 

and population statistics. SeekDeep has built-in support for a number of steps including (1) 

scanning for contamination, which is especially helpful, for example, in Plasmodium datasets 

which can often be contaminated with human DNA due to low relative amount of parasite 

DNA, (2) built-in support for incorporating replicate comparison, and (3) support for analysis 

of multiple amplicon targets at once. It also supports chimera detection and removal akin to 

other programs which should be carefully considered and tuned based on experimental 

conditions, controls and the biologic question of interest. SeekDeep also provides a 

dynamically interactive HTML viewer, which makes it easy to explore differences between 

strains and has support for viewing results on subgroups in large sample sets when given 

group metadata. 

Overall, SeekDeep expands the potential for de novo amplicon clustering - 

particularly given its improved haplotype recovery at lower read depths for haplotypes 

differing by one base. This is crucial for projects that seek to detect and quantify minority 

haplotypes that may be represented by a single SNP. Such projects are becoming 

increasingly common in the oncology and infectious disease fields. For example, when using 

marker regions to differentiate bacterial strains, or when monitoring for pathogen 
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drug-resistance mutations, these sequences often only differ from the wild type by a single 

base (Miotto et al. 2015). Accurately quantifying these low-abundance and genetically 

similar strains in these cases is key.  

In summary, SeekDeep can be widely applied to all forms of amplicon deep 

sequencing to improve the haplotype recovery of highly-similar sequences while minimizing 

false haplotypes across a broad range of relative frequencies, read depths and platforms. 

This should allow users to maximize information extraction while minimizing biases in their 

downstream analyses and conclusions. In addition, the full SeekDeep suite of tools for pre- 

and post-processing will speed clustering optimization and provide high-quality and 

interpretable haplotype data for further analysis.  

Code availability.  

Source code for the current stable release of SeekDeep can be found at 

https://github.com/bailey-lab/SeekDeep and full usage and tutorials can be found at the 

SeekDeep website. For full install information see 

http://baileylab.umassmed.edu/SeekDeep/installingSeekDeep  

Availability of Data and materials.  

The in vitro data can be found via their original publications. The simulation raw data and the 

P. falciparum Illumina MiSeq data can be found at 

http://baileylab.umassmed.edu/data/SeekDeepPaperData. 

https://paperpile.com/c/Egpczv/H7XJ
https://github.com/bailey-lab/SeekDeep
http://baileylab.umassmed.edu/SeekDeep
http://baileylab.umassmed.edu/data/SeekDeepPaperData
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MATERIALS AND METHODS 

Overview of the SeekDeep Suite.  

SeekDeep is a software suite written in C++ centered around de novo clustering providing 

rapid sample and input sequence preprocessing, and postprocessing sample and population 

summaries for further downstream analysis. SeekDeep can be utilized with most major 

sequencing technologies, including Ion Torrent, 454, and Illumina, to swiftly analyze 

numerous samples and amplicons (Figure 2.22). SeekDeep provides start-to-finish workflow 

from raw sequence files to population-level clustering and tabular and graphical summaries. 

SeekDeep is freely available under the GNU Lesser General Public License v3.0 and is 

actively developed on github (https://github.com/bailey-lab/SeekDeep) while usage and 

details on the program can be found at the SeekDeep website 

(http://baileylab.umassmed.edu/SeekDeep/). SeekDeep has three main components, 

extractor, qluster, and processClusters, that are central to generating clustering results, and 

an additional component, popClusteringViewer, to aid in viewing and sharing the results. 

extractor: de-multiplexing and read filtering 

The subprogram extractor is generalized to process 454 and Ion Torrent standard 

flowgram format (SFF) files and standard FASTQ files from any source. Extractor also 

demultiplexes samples and amplicons using a wide variety of barcode and primer schemes 

but can also operate on already demultiplexed data (e.g. data that has been demultiplexed 

by standard Illumina pipelines). Like most extraction programs, SeekDeep includes typical 

tools for initial filtering based on read length, presence of primers, quality score metrics, 

https://github.com/bailey-lab/SeekDeep
http://baileylab.umassmed.edu/SeekDeep/
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and/or presence of ambiguous bases (i.e. Ns). Extractor first separates reads based on 

sample barcodes handling a wide range of barcoding schemes that are commonly 

employed. Next, multiple or a single pair of forward and reverse primers are detected, 

demultiplexed and removed. Filtering is then done on per base quality scores, and on 

expected read lengths which can be set per primer set. Also, optional contamination filtering 

can be performed by supplying the sequences of target regions whereby sequences that 

differ drastically from these are removed. 

See http://baileylab.umassmed.edu/SeekDeep/extractor_usage for full details on 

the options offered by extractor. 

qluster: rapid and accurate clustering based on quality 

At the core of the SeekDeep package is the qluster algorithm, which iteratively 

collapses amplicon reads based on pairwise global alignments (Figures 2.23-2.24). It 

leverages sequencer-generated quality values to discern likely true differences from 

sequencing errors as well as k-mer frequencies to filter out likely low abundance PCR 

errors. Although SeekDeep can process multiple amplicons at once, they are processed 

independently and haplotypes are not built or phased across different amplicons. The 

clustering process is summarized below. 

First, reads lacking differences are collapsed into identical sequence clusters, which 

are then indexed for k-mers (default size 9). These initial identical clusters are then sorted 

based on the associated number of reads. An iterative comparison process is then 

undertaken with successive rounds of clustering allowing for an increasing number of 

differences to trigger the merger of two clusters. Majority-rule consensus of the smallest 

clusters are pairwise aligned and compared sequentially to the consensus of the largest 

http://baileylab.umassmed.edu/SeekDeep/extractor_usage
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clusters to determine if they should be merged into one cluster or remain as two separate 

clusters (Figures 2.23-2.24). Once the clusters have all been initially compared and 

collapsed, if meeting threshold, the threshold for collapse is stepwise-raised to allow for 

more divergence in a subsequent iteration. At the end of each iteration majority-rule 

consensus are generated to represent each of the clusters. If consensus have changed due 

to the addition of new sequences, the clusters are again compared at the same error 

thresholds before advancing to the next iteration. The algorithm allows for flexibility not only 

in the number of iterations, but also in the threshold number and type of differences to 

collapse. Differences are classified as one-base indels, two-base indels, greater than 

two-base indels, low-quality mismatches, high-quality mismatches, and low k-mer frequency 

mismatches. In this way, the clustering is similar to operational taxonomic unit (OTU) 

percent identity clustering, but instead of counting all differences equally we are able to 

weigh the type and the quality of the difference before determining whether to merge 

clusters - an important feature for sequencing technology-aware clustering.  

For clustering iterations, there are default collapse threshold profiles for 454, Ion 

Torrent, and Illumina, or a custom file can be supplied. The custom input parameter file 

allows the expert user to balance sensitivity, specificity, and speed for specific applications. 

The default profiles were used for all analyses in this paper. For a 454/Ion Torrent dataset, 

our standard error profile limits initial collapsing to sequences differing by single-base indels, 

given that the predominant errors in these datasets are small indels caused by 

homopolymer misestimation. On an Illumina dataset, which is unlikely to have erroneous 

single-base indels but more likely to have base miscalls, the default profile does not collapse 

on indels but allows more low quality mismatches. This framework makes the qluster 

algorithm highly extensible and adaptable to changing error profiles in updated or novel 
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sequencing platforms. In terms of applications, the ability to collapse to an exact number of 

differences allows for biologic questions to be concretely addressed. For example, settings 

could allow 2-3 mismatches when sequencing viruses like HIV to collapse the viral clouds, 

or settings could be used to not allow a single high quality difference when searching for 

point mutations in the domain of a gene associated with drug resistance. 

Differentiating mismatches with quality 

The quality of any mismatch is determined by assessing the quality scores of the two 

mismatching bases in the pairwise alignment between clusters and the quality of the 

neighboring bases in the region (Altshuler et al. 2000). A primary quality and a neighboring 

quality is calculated. For a mismatch to be considered high-quality it must exceed the set 

thresholds for both of these quality values. The number of neighboring bases included can 

be changed; the default value is 2, which includes 2 bases upstream and downstream for a 

total of 4 neighboring bases examined. If a mismatch is determined to be a high quality 

error, its k-mer frequency is also checked to determine if the mismatch is in a low frequency 

k-mer. To calculate this, the mismatched base is centered in odd number length k-mer 

(defaulting to 9). Next, the previously indexed k-mers are checked to determine if 

mismatched centered k-mer has a low frequency – either as user defined or as a percentage 

of total reads. The k-mer cutoff defaults to 1 read, so if the k-mer occurs only once in the 

sample read set it is counted as a low frequency error. The k-mer position within the 

sequence can also be taken into account and helps to improve the filtering when repeats are 

present. 

https://paperpile.com/c/Egpczv/AC2A9
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Homopolymer indel weighting for 454 and Ion Torrent 

In the Ion Torrent and 454 technologies, the most common errors are indels in 

homopolymers. Thus, for homopolymers, indels are weighted to count less than other indels 

rather than separately categorizing them. Weighting incorporates the length by taking the 

size of the indel and dividing by the average size of both homopolymer runs. For example, a 

single-base indel found in a homopolymer of 4 bases (meaning one read has 4 bases and 

the other has 3 bases), the indel weight will be counted as 1/3.5 instead of 1. 

Chimera Detection 

After clustering, the resultant haplotypes can be examined for likely chimeras that 

may have resulted from PCR (Figure 2.22b). If replicates are available, then potential 

chimeras not appearing in all replicates will be removed. However, chimeras are often 

reproducible (Haas et al. 2011) which requires additional checks. This is accomplished by 

pairwise comparison of all the putative haplotypes from qluster checking to see if any cluster 

could be the result of a composite of two other clusters, which is similar to other approaches 

(Quince et al. 2011; Callahan et al. 2016). Since, by definition, parental haplotypes 

contributing to a cluster must preexist for a chimera to form from them, we normally require 

that the parents are of equal or greater abundance relative to the potential chimera. By 

default, chimeras are called when both parents are at least 2-fold greater in abundance 

(user definable). This is a conservative approach to minimize false discovery that prioritizes 

removal of artifactual chimeras at the cost of potentially excluding low abundance biologic 

recombinants, but for most applications chimeras tend to be more numerous. To minimize 

the loss of true biologic haplotypes in population analyses, we have implemented an option 

in our population clustering to check if a cluster marked as possibly chimeric appears in 

https://paperpile.com/c/Egpczv/jFs4
https://paperpile.com/c/Egpczv/FYWfK+83XDi
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another sample as one of the dominant haplotypes. If such a sample is found, the haplotype 

in question is, in that sample, unlikely to be chimeric since ideally a chimera would have two 

parents greater in abundance than itself. In this case, the putative chimera can be recovered 

in the original sample where it was at low-abundance. It is important to note that this step 

may not recover all true haplotypes as they might never appear at a high abundance in 

another sample. Also, a low-level chimera could be reinstated as a true haplotype. As there 

is no optimal solution for defining chimeras, we recommend every effort should be made 

during the PCR step to decrease likelihood of chimera formation. Also, chimera removal 

should be carefully considered and tuned, preferably with adequate controls, for the specific 

biology and experiment conditions. Again, these are options and during the sample and 

population clustering step it is possible to keep all putative chimeras for further analysis or to 

apply other chimera detection methods. 

OTU Clustering 

SeekDeep also offers classical OTU clustering, which is slightly modified to be 

calculated by taking into account only errors not characterized as low k-mer frequency or 

low quality mismatches and optionally weighing indels in homopolymers less when 

analyzing 454 and Ion Torrent data. In this way, the percent identity calculated takes into 

account only likely biological differences between sequences.  

See http://baileylab.umassmed.edu/SeekDeep/qluster_usage for full qluster 

usage information. 

http://baileylab.umassmed.edu/SeekDeep/qluster_usage
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processClusters: Replicate and Population Comparisons. 

The qluster algorithm removes sequencing error and low level PCR error, but rare 

high-abundance errors due to polymerase errors in early rounds of PCR amplification are 

not easily discriminated. Therefore, when available, the SeekDeep pipeline uses PCR 

replicates (independent parallel amplifications of biologic sample aliquots) to identify and 

remove such errors – as early PCR errors should occur only in a single replicate, while 

biologic differences should occur faithfully in all samples. To compare replicates, the 

clustering results from each PCR are pooled and clustered again using the qluster algorithm. 

After this cross-replicate clustering a replicate number cutoff is applied, which defaults to the 

number of replicates used; for example, if three replicates were analyzed, the default would 

require all 3 replicates contain a given haplotype. Though PCR replicates are recommended 

they are not required for SeekDeep to run.  

Additionally, a cutoff for the fraction of total reads within the cluster can also be given 

for comparison; if the average fraction of a new cluster is not above the cutoff, the new 

cluster is removed. This cutoff defaults to 0.005 (0.5%), a generally conservative cutoff to 

minimize false haplotypes for the vast majority of experimental conditions, but can be set to 

more appropriate levels. For chimera filtering, if the majority of a cluster is made up of reads 

marked as possibly chimeric, it is also marked as chimeric and is removed by default. Final 

relative abundances for haplotypes are re-calculated after cutoffs have been applied and 

when replicates are available the final abundances of a haplotype is calculated by averaging 

the abundances across the replicates.  

In addition to replicate processing and applying final cutoffs, processClusters can 

also assess the haplotypes across samples to provide population-level statistics. Once each 
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sample has been processed, information is then collated across biologic samples within the 

defined population for each haplotype. 

popClusteringViewer: viewing and manipulating final results 

A web server has been added to the SeekDeep suite to aid in the visualization and 

exploration of final results; this can be very helpful with large sample sets. The viewer is 

interactive and allows rapid exploration of final consensus sequences and the population 

haplotypes. It can also be used to extract subsets of the data. The viewer can easily be run 

on an individual’s computer and can also be broadcast over the internet to provide persistent 

access to additional individuals.  

See http://baileylab.umassmed.edu/SeekDeep/popClusteringViewer_usage  

for full usage information.  

Performance Studies 

To validate performance of the SeekDeep pipeline, we used two types of data. The 

first was simulated 454 and Illumina datasets. The second was actual PCR-amplified and 

sequenced (by Ion Torrent, 454, and Illumina) control mixtures of DNA from strains of 

several different pathogens to create mock mixed infections, which were collected from 

several previous studies and work in our own lab. We also used available mock bacterial 

communities. See below for a detailed description of these datasets. 

Simulated Datasets 

The 454 and Illumina simulated datasets were created to test theoretical limits of 

detection for SeekDeep and other popular programs. The 454 datasets were simulated with 

http://baileylab.umassmed.edu/SeekDeep/popClusteringViewer_usage
http://baileylab.umassmed.edu/SeekDeep/popClusteringViewer_usage
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454sim (Lysholm, Andersson, and Persson 2011) and Illumina datasets were created with 

ART (Huang et al. 2012). While a specific Ion Torrent simulator could not be found, the 454 

simulator should provide results representative of Ion Torrent pyrosequencing given their 

similarities. An in-house program was used to generate the PCR error by simulating the 

rounds of PCR where a PCR error that occurred in an earlier round would appear at higher 

abundance than latter round errors, a feature not available in other PCR simulators. The 

program takes a starting DNA template amount, PCR error rate, a fasta file with relative 

abundances for reference haplotypes to simulate, and the number of rounds to simulate. For 

these simulations we used 2,000 copies of starting DNA template, a PCR error rate of 

3.5e-6 (representative of high-fidelity polymerases), and 30 rounds of PCR. Given the 

complexity of their formation, chimeras were not simulated. 

Two mock haplotype mixtures were simulated to generate multiple test conditions: 

• Mock haplotype mixture 1 (Minor vs Major): This mixture tests the ability of programs 

to discriminate minor haplotypes at various levels of divergence and abundance from a 

major abundant haplotype (Figure 2.2a); thereby assessing the likelihood of minor 

haplotypes being collapsed into the major as probable error. Specifically, we simulated 

seven different haplotypes with increasing base mismatches (decreasing % identity) of 

1 (99.7%), 2 (99.4%), 3 (99.1%), 4 (98.8%), 6 (98.2%), 8 (97.6%), and 13 (96.1%) from 

the major haplotype, with no shared mismatches between minor haplotypes to create 

distances always greater to other minor haplotypes than to the major haplotype, e.g. the 

minor haplotype with 1 mismatch and the minor haplotype with 2 mismatches from the 

major haplotype are 3 mismatches away from each other. The relative abundance of 

the minor haplotypes were simulated at 10%, 5%, 2%, 1%, 0.5%, 0.25%, 0.1%, and 

0.05% (Figure 2.2b).  

https://paperpile.com/c/Egpczv/q0AUL
https://paperpile.com/c/Egpczv/BTyQ2
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• Mock haplotype mixture 2 (Minor vs Minor Pairs with Varying Differences): This 

mixture examined the effect of divergence between minor haplotype pairs unrelated to 

the major haplotype (Figure 2.2c). For this, we simulated 15 different haplotypes, 

making one major abundant haplotype and 14 minor haplotypes. Each minor haplotype 

was paired with another closely related minor haplotype, and each haplotype in the pair 

differed by at least 15 mismatches from the other pairs or to the major haplotype. Pairs 

had a range of base mismatches (% identity) consisting of 1 (99.7%), 2 (99.4%), 3 

(99.1%), 4 (98.8%), 6 (98.2%), 8 (97.6%), and 13 (96.1%) nucleotides. The relative 

abundances of the minor haplotypes were simulated at 5%, 2%, 1%, 0.5%, 0.25%, 

0.1%, and 0.05% with the rest composed of the major haplotype. (Figure S4d). 

For each mixture and minor haplotype abundance above, we generated simulated 

datasets with two replicate PCRs with 2,000-10,000 reads incrementing by 2,000 and at 

50,000 reads (to test the extremes of coverage) for a total of 6 different read depths 

(equivalent throughout to nonredundant read or stitched-read coverage across the 

amplicon--or equivalently per base). Each of these conditions was simulated 10 times and 

the results were averaged to get the best estimate of program performance. 

Known Control Mixture Datasets 

Five different experimental in vitro control mixtures were analyzed spanning the 

common sequencing technologies; 454, Ion Torrent, and Illumina (Table 2.2). This included 

data from a eukaryotic parasite (Plasmodium falciparum) and a mock microbiome. 

Specifically these were:  

• Plasmodium falciparum control mixtures, 454 and Ion Torrent: Plasmodium 

falciparum control mixtures from our labs were sequenced on Ion Torrent and 454 
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(Table 2.2). These pools contained three different amplicons: thrombospondin-related 

anonymous protein (TRAP) (Figure 2.25), apical membrane antigen 1 (AMA1) (Figure 

2.26), and circumsporozoite protein (CSP) (Figure 2.27). The AMA1 and TRAP 

samples had the same mixture of five strains: 40% K1, 30% 7G8, 15% Dd2, 10% 

RO33, and 5% V1/S and the CSP region had a mixture of 40% K1, 30% 7G8, 20% 

DD2, and 10% RO33 (Figures 2.25-2.27). 

• Plasmodium falciparum control mixtures, Illumina MiSeq: Additionally, twenty-eight 

different regions, including vaccine candidates and drug resistance genes, were PCR 

amplified and sequenced with 2x250 paired-end Illumina MiSeq from a control mixture 

of Plasmodium falciparum (Table 2.2). The mixture consisted of the following strains 

and relative abundances; 3D7 (~79%), HB3 (~7%), 7G8 (~7%), and DD2 (~7%). These 

targets included multiple probes in important vaccine candidate regions in AMA1, CSP, 

and merozoite surface protein 1 (MSP1). Also known drug resistance or associated loci 

were targeted including apicoplast ribosomal protein S10 (ARPS10), multidrug 

resistance protein 1 (MDR1), multidrug resistance protein 2 (MDR2), kelch13 (K13), 

protein phosphatase (PPH), Cytochrome b (CYTB), dihydrofolate reductase thymidylate 

synthase (DHFR-TS), and dihydropteroate synthase (DHPS) (Figure 2.28).  

• Mock Microbiome: Previous mock microbiome datasets by Salipante et al. 2014 were 

analyzed consisting of Illumina paired-end sequencing of the V1 region of the 16S 

coding region with 3 PCR replicates (Salipante et al. 2014). This mock microbiome 

mixture contains 20 species, but due to highly similar copies within each species the 

number of expected haplotypes at one-base resolution for the V1 region is 47. Twenty 

of these haplotypes are only one base pair different from another haplotype. The 3 PCR 

replicates were deeply sequenced with approximately 800,000 reads each. To analyze 

https://paperpile.com/c/Egpczv/P9OFJ
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data at more commonly assessed read depths (MacIntyre et al. 2015; Mideo et al. 

2016; Lin et al. 2015) the replicates were downsampled to depths between 

2,000-20,000 increasing by intervals of 2,000. Each read depth was sampled 10 times 

each for all 3 PCR replicates which generated a total of 300 different randomly sampled 

datasets.  

• Epstein-Barr Virus (EBV) and Human immunodeficiency virus type 1 (HIV) 

controls: To provide a broader set of biologic examples, we also examined available 

viral controls of amplicon sequencing consisting of a previous mock HIV mixture (Seifert 

et al. 2016) and a mock EBV mixture from our lab. The HIV dataset had 5 strains mixed 

together; 89.6 (10%), HXB2 (14%), YU2 (16%) , NL4-3 (24%) and JR-CSF (36%). The 

mixture was sequenced 5 different times, two of the replicates were chosen and due to 

the great depth (>600,000) were each downsampled to 10,000 reads 10 times each for 

a total of 20 randomly sampled datasets. The EBV dataset was mixtures of an EBV 

type 1 strain and an EBV type 2 strain with frequencies ranging from 1% to 90% and a 

monoclonal sample of the type 1 strain. See Table 2.2 for more details. 

MED (version 2.1), DADA2 (version 1.0.3), UNOISE (USEARCH version 9.2), and 

SeekDeep (version 2.4.0) were each run on the datasets with default or recommended 

parameters. The program ShoRAH (Zagordi et al. 2011) (version 1.1.0) was used on the 

viral datasets to represent a standard program for viral analysis. DADA2 and UNOISE have 

their own chimera detection program; MED and ShoRAH do not have a chimera-detection 

utility, so our own chimera detection was applied to the final results produced by MED and 

ShoRAH to make the results comparable. Each program has a different output format from 

which the consensus sequences and relative abundances of final clusters were extracted. 

The expected abundance of pooled species for each dataset was determined by aligning 

https://paperpile.com/c/Egpczv/6x3Gj+GIIf+FYMJ
https://paperpile.com/c/Egpczv/6x3Gj+GIIf+FYMJ
https://paperpile.com/c/Egpczv/nZvZd
https://paperpile.com/c/Egpczv/nZvZd
https://paperpile.com/c/Egpczv/fFN7L
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raw reads to reference sequences for that dataset. This calculation was performed because 

mock mixtures are manually produced in the lab, making the targeted mixture frequencies 

approximate. Common sources of experimental error arise by pipetting inaccuracy and 

imperfect amplification of the initial low abundance template leading to the introduction of 

random noise during the early rounds of PCR. Final clustering results were compared to the 

expected reference sequences and to determine which references were identified. For the 

paired-end Illumina data, sequences were stitched together with the program FLASH 

v1.2.11 (Magoc and Salzberg 2011).  

To evaluate performance of each program we determined the number of expected 

haplotypes recovered - especially one-off haplotypes - and how well their abundances were 

predicted. We also determined the number and abundances of false haplotypes created. 

Recovery was calculated as the number of haplotypes exactly matching expected 

haplotypes divided by the total number of haplotypes expected. The haplotype recovery for 

MED, DADA2, and UNOISE was calculated based on each replicate separately, while 

SeekDeep’s haplotype recovery was calculated if it found the expected haplotype in both 

replicates for a sample, as this is its default. Thus, SeekDeep’s haplotype recovery is 

conservative relative to the other programs given that a haplotype must be present in both 

replicates to be counted as recovered. 

All analyses and program comparisons were run on an Ubuntu 14.04 server with 64 

2.4-GHz AMD processor cores and 512 gigabytes (GB) of RAM to allow parallelization of all 

simulations and in vitro datasets. For SeekDeep, all analyses presented could also be run 

individually on a laptop, a Macbook Pro with 16GB of RAM and a 4-core 2.4 GHz Intel i7 

processor.  

https://paperpile.com/c/Egpczv/hWFve
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Tables  

Table 2.1: Full Mock Microbiome Results 

Program Replicate 
True Haplotypes 

Predicted 
True Haplotypes 

Expected Recall 
UNOISE 1 44 47 93.62 
UNOISE 2 44 47 93.62 
UNOISE 3 43 47 91.49 
MED 1 47 47 100 
MED 2 47 47 100 
MED 3 47 47 100 
DADA2 1 46 47 97.87 
DADA2 2 46 47 97.87 
DADA2 3 46 47 97.87 
SeekDeep 1 47 47 100 
SeekDeep 2 47 47 100 
SeekDeep 3 47 47 100 
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Table 2.2: In vitro control datasets 

Dataset Amplicon Technology 
Read 

Depth* 
Sample 
Number Replicate** 

Read 
Length 

Region 
Length 

Unique 
Haploty

pe 
Number 

Range of 
Haplotype base 
differences (% 

identity) *** 

PfTRAP 454 812 - 987 1 2x 345 345 5 
1 (99.7%) - 7 

(97.9%) 

PfAMA1 Ion Torrent 
1,323 - 
1,712 2 2x 494 494 5 

2 (99.1%) - 12 
(94.9%) 

PfCSP Ion Torrent 
1,054 - 
6,403 4 2x 319 319 4 

2 (99.3%) - 9 
(97.2%) 

Various P. falciparum 
targets**** 

Illumina 
MiSeq 

614 - 
4,497 28 none 2x250 

330-40
3 2-4 

1 (99.7%) - 17 
(95.3%) 

Microbiome 16S-V1 
Illumina 
MiSeq 

584,575 - 
899,804 1 3x 2x250 280 47 

1 (99.6%) – 101 
(63.9%) 

EBV 
Illumina 
MiSeq 

342 - 
1,350 6 2x 2x250 372 2 20 (92.6%) 

HIV 
Illumina 
MiSeq 10,000 20 2x 2x250 206 5 2 (99%) - 5 (97.5%) 

* Read depth equals number of stitched read pairs with minimum and maximum observed 
depths in the case of multiple samples and replicates. 
** 2x = two independent PCRs; 3x = three independent PCRs, or none = no replicate (single 
PCR) done 
*** Number of differences are enumerated and followed by the corresponding percent 
identity, the range is shown when there are more than 2 unique haplotypes 
**** Summary of the 28 targets here, see Table 2.3 for details for each target 
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Table 2.3: In vitro P. falciparum Illumina control datasets 

Dataset 
Amplicon Technology 

Read 
Depth* 

Sample 
Number 

Replicate*
* 

Read 
Length 

Region 
Length 

Unique 
Haplotype 

Number 

Range of Haplotype 
base differences (% 

identity) *** 

PfAMA1_0 
Illumina 
MiSeq 1,362 1 none 2x250 389 4 1 (99.7%) - 4 (99%) 

PfAMA1_1 
Illumina 
MiSeq 1,016 1 none 2x250 389 4 

9 (97.7%) - 14 
(96.4%) 

PfAMA1_2 
Illumina 
MiSeq 3,220 1 none 2x250 395 4 

9 (97.7%) - 14 
(96.5%) 

PfAMA1_3 
Illumina 
MiSeq 2,171 1 none 2x250 392 4 2 (99.5%) - 9 (97.7%) 

PfAMA1_4 
Illumina 
MiSeq 1,221 1 none 2x250 359 4 2 (99.4%) - 6 (98.3%) 

PfAMA1_5 
Illumina 
MiSeq 936 1 none 2x250 403 4 1 (99.8%) - 8 (98%) 

PfAMA1_6 
Illumina 
MiSeq 1,642 1 none 2x250 387 4 1 (99.7%) - 7 (98.2%) 

PfARPS10_
2 

Illumina 
MiSeq 2,159 1 none 2x250 330 2 1 (99.7%) 

PfCSP_1 
Illumina 
MiSeq 926 1 none 2x250 354 4 2 (99.4%) - 9 (97.5%) 

PfCYTB_2 
Illumina 
MiSeq 4,303 1 none 2x250 361 2 1 (99.7%) 

PfDHFR-TS
_0 

Illumina 
MiSeq 4,497 1 none 2x250 371 4 1 (99.7%) - 3 (99.2%) 

PfDHFR-TS
_2 

Illumina 
MiSeq 3,165 1 none 2x250 360 4 1 (99.7%) - 3 (99.2%) 

PfDHFR-TS
_3 

Illumina 
MiSeq 1,365 1 none 2x250 349 2 1 (99.7%) 

PfDHPS_5 
Illumina 
MiSeq 2,946 1 none 2x250 346 3 1 (99.7%) - 2 (99.4%) 

PfDHPS_6 
Illumina 
MiSeq 1,433 1 none 2x250 388 2 1 (99.7%) 

PfK13_8 
Illumina 
MiSeq 614 1 none 2x250 351 2 2 (99.4%) - 3 (99.1%) 

PfMDR1_0 
Illumina 
MiSeq 2,347 1 none 2x250 358 3 2 (99.4%) 

PfMDR1_1 
Illumina 
MiSeq 2,059 1 none 2x250 391 4 1 (99.7%) - 3 (99.2%) 

PfMDR1_11 
Illumina 
MiSeq 3,075 1 none 2x250 360 3 1 (99.7%) - 2 (99.4%) 

PfMDR1_12 
Illumina 
MiSeq 3,846 1 none 2x250 373 3 1 (99.7%) - 2 (99.5%) 

PfMDR1_13 
Illumina 
MiSeq 2,067 1 none 2x250 347 2 1 (99.7%) 

PfMDR1_2 
Illumina 
MiSeq 1,960 1 none 2x250 402 2 1 (99.8%) 

PfMDR2_3 
Illumina 
MiSeq 3,159 1 none 2x250 359 2 1 (99.7%) 

PfMDR2_5 
Illumina 
MiSeq 2,292 1 none 2x250 354 4 2 (99.4%) - 2 (99.4%) 

PfMSP1_2 Illumina 1,051 1 none 2x250 364 4 1 (99.7%) - 17 
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MiSeq (95.3%) 

PfPPH_1 
Illumina 
MiSeq 2,770 1 none 2x250 403 2 1 (99.8%) 

PfPPH_10 
Illumina 
MiSeq 2,384 1 none 2x250 358 2 1 (99.7%) 

PfPPH_11 
Illumina 
MiSeq 1,171 1 none 2x250 384 4 1 (99.7%) - 3 (99.2%) 
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Figures 

 

Figure 2.1: PCR and Sequencing Errors 
Clustering of amplicon sequencing must contend with errors that occur during PCR and 
sequencing. a) Early round PCR errors can be difficult to identify because these propagate 
in subsequent rounds and can reach a relatively-high abundance. While usually uncommon, 
the degree of such high-abundance errors is highly dependent on the number of initial target 
DNA copies in the PCR. Thus, experiments that utilize nested PCR to amplify low DNA 
concentration samples are particularly prone to high-abundance errors. Low-abundance 
errors that occur in later rounds of amplification may be numerous but are more easily 
identified and removed. b) Another common problem in PCR, particularly when 
co-amplifying highly-similar sequences, is the creation of chimeras, which are formed when 
a partial PCR product re-anneals to a similar template creating a hybrid product. 
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Figure 2.2: Simulated Mixtures 
Two types of haplotype mixtures were simulated to assess performance. a) The first mixture 
tests discrimination of related low-abundant minor haplotype and highly-abundant major 
haplotype and is comprised of 7 minor haplotypes differing from the major haplotype by 1 to 
13 differences. c) The second simulated mixture tests the ability to discriminate highly 
similar low-abundance haplotypes from each other. There are seven minor haplotype pairs 
differing by 1, 2, 3, 4, 6, 8, or 13 nucleotides. Between pairs and between the major 
haplotypes there are at least 15 nucleotides (all red dots not shown). b) The 8 different 
abundances at which haplotypes in panel a) were simulated. d) The 7 different abundances 
at which haplotypes in panel c) were simulated. Each was simulated 10 times at a variety of 
read depths. The number of red nodes between haplotypes is the number of base pair 
mismatches (bpm) differentiating them. 

 
 

 
 

 



57 

 

 



58 

Figure 2.3: Haplotype Recovery of Simulated Minor Haplotypes Differing 
by a Single Base 
a) Recovery of the haplotype differing by a single-base from a major haplotype in the 
mixture described by Figure 2.2a-b. b) Recovery of the two minor haplotypes that are 
one-off from each other described in the mixture described by Figure 2.2c-d. For both 
panels, the y-axis represents the percent of simulations in which the haplotype differing by a 
single-base was detected and the x-axis represents the simulated expected abundance of 
the minor haplotype. Data is broken down by read depth (rows) and sequencing technology 
(columns), and bars are colored by program. Grey boxes at low-abundances represent 
combinations where the depth is not sufficient for reads to be observed for the minor 
haplotypes. For each minor haplotype abundance, there are 20 simulations from which 
DADA2, MED and UNOISE haplotype recovery was calculated as a percent of simulations 
in which the minor haplotype was detected. To best emulate real world situations in which a 
user would use SeekDeep to analyze replicates, we used paired simulations with the 
requirement that SeekDeep detect haplotypes in both simulations. 
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Figure 2.4: Haplotype Recovery of Simulation Data - Platform 
The average haplotype recovery of the simulation datasets binned on technology and minor 
haplotype divergence for each program. The top row shows the average haplotype recovery 
of the minor haplotypes closely related to the major haplotype (Figure 2.2a), and the bottom 
is the average haplotype recovery of minor haplotypes close to another minor haplotype 
(Figure 2.2c). Error bars represent one standard error. 
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Figure 2.5: Haplotype Recovery of Simulation Data - Read Depth 
The average haplotype recovery of the simulation datasets binned on simulated read depth 
and haplotype divergence for each program. The top row shows the average haplotype 
recovery of the minor haplotypes closely related to the major haplotype (Figure 2.2a) and 
the bottom is the average haplotype recovery of minor haplotypes close to another minor 
haplotype (Figure 2.2c). Error bars represent standard error. 
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Figure 2.6: Haplotype Recovery of Simulation Data - Minor Haplotype 
Abundance 
The average haplotype recovery of the simulation datasets binned on minor haplotype 
abundance and divergence for each program. The top row shows the average haplotype 
recovery of the minor haplotypes close to a major haplotype (Figure 2.2a), and the bottom is 
the average haplotype recovery of minor haplotypes close to another minor haplotype 
(Figure 2.2c). Error bars represent standard error. 
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Figure 2.7: Predicted vs Expected Haplotype Abundances for 
Simulations 
Panel a) is the plot of every simulated minor haplotype comparing each program’s predicted 
abundance to the expected abundance based on direct read counts (Figure 2.2 mixtures). 
Panel b) is the complementary plot of the major haplotypes for all simulations. c) A violin 
plot of the root mean squared error (RMSE) on the y-axis on a log scale for each program 
for all simulated datasets. For panels a) and b), the black line of identity for expected and 
predicted is shown. If points are above the line of identity the program is overestimating the 
abundance of the haplotype and if points are below the line the program is underestimating 
the abundance of the haplotype. The Spearman’s correlation (R2) is in the upper left corner 
of each plot. 
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Figure 2.8: Predicted vs Expected Haplotype Abundances for 
Simulations of Closely Related Haplotypes 
The predicted vs expected abundances for known haplotypes differing by only one (Panels 
a-b), two (Panels c-d), or three (Panels e-f) bases is plotted to illustrate the effects of 
different read depths and technology for each program. Data points are colored by program. 
A diagonal black line is drawn to indicate perfect predicted for the expected abundance. 
Points above this line are overestimating haplotype abundance and points below this line 
are underestimating haplotype abundance. The Spearman’s correlation has been placed in 
the upper left corner of each plot. Panels are a) haplotypes one mismatch off a major 
haplotype, b) haplotypes one mismatch off of another minor haplotype, c) haplotypes two 
mismatches off a major haplotype, d) haplotypes two mismatches off of another minor 
haplotype, e) haplotypes three mismatches off a major haplotype, and f) haplotypes three 
mismatches off of another minor haplotype. 
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Figure 2.9: False Haplotype Abundances from Simulations 
The relative abundances of predicted false haplotypes are binned by read depth (x-axis), 
technology (columns), and the use of replicates (rows). The y-axis is log scaled and is the 
relative abundance at which the false haplotypes were predicted.  
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Figure 2.10: In Vitro Ion Torrent and 454 Mixtures Performance 
 a) The mean haplotype recovery for in vitro pyrosequencing samples with bars showing 
standard error. b) Predicted abundance (y-axis) estimated by the various programs is 
plotted against the expected abundance (x-axis). Deviation from the line of identity 
represents the error and is summarized by the correlation coefficient. c) False haplotypes 
are shown on a jitterplot to demonstrate their relative abundances and numbers. Results are 
shown per program and also by the effect of utilizing or not utilizing replicates (haplotypes 
are only accepted if they appear in both replicates).  
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Figure 2.11: In Vitro Illumina P. falciparum Performance 
a) The mean haplotype recovery for P. falciparum in vitro Illumina datasets with bars 
showing standard error. b) Predicted abundance (y-axis) estimated by the various programs 
plotted against the expected abundance (x-axis). Deviation from the line of identity 
represents the error and is summarized by the correlation coefficient. c) False haplotypes 
are shown on a jitterplot to demonstrate their relative abundances and numbers. No 
replicates were available for this dataset. 
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Figure 2.12: In vitro P. falciparum Illumina Mixtures Performance 
The expected vs predicted abundances for all the target regions for when any of the 
programs failed to recover one of the expected reference haplotypes. The leftmost bar is the 
expected abundance based on direct mapping to the known reference and subsequent bars 
represent predicted abundances by program. 
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Figure 2.13: Down-sampled Mock Microbiome Haplotype Recovery of 
Haplotypes Differing by One Base 
a) Shows the haplotype recovery of the 23 haplotypes that are one-off from another 
haplotype in an overall mixture of 47 bacterial haplotypes which were down-sampled from 
the Salipante et al. 2014 data. Each of the three original replicates was down sampled 
randomly 10 times for each of 10 different read depths, which means each read depth has 
30 randomly down sampled samples. b) A bar graph of the greatest observed abundance of 
missed one-off haplotype is shown for each program at each read depth. 
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Figure 2.14: Down-sampled Mock Microbiome Predicted vs Expected 
Haplotype Abundances 
a) A plot of predicted vs expected haplotype abundances is shown for each program for all 
down sampled datasets from Salipante et al. 2014. If the program predicted an abundance 
that equalled the expected abundance, points would fall on the depicted black line of 
identity. If a program overestimated the haplotype abundance, points would fall above the 
line. If a program underestimated the haplotype abundance, points would fall below the line. 
b) The log-scaled RMSE is shown as a violin plot for all down sampled data. 
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Figure 2.15: In Vitro EBV Illumina Performance 
a) The mean haplotype recovery for the EBV datasets. b) Predicted abundance (y-axis) 
estimated by the various programs is plotted against the expected abundance (x-axis). 
Deviation from the line of identity represents the error and is summarized by the correlation 
coefficient. c) False haplotypes are shown on a jitterplot to demonstrate their relative 
abundances and numbers. Results are shown per program and also by the effect of utilizing 
or not utilizing replicates (haplotypes are only accepted if they appear in both replicates). 
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Figure 2.16: In Vitro HIV Illumina Performance 
a) The mean haplotype recovery for the HIV datasets. b) Predicted abundance (y-axis) 
estimated by the various programs is plotted against the expected abundance (x-axis). 
Deviation from the line of identity represents the error and is summarized by the correlation 
coefficient. c) False haplotypes are shown on a jitterplot to demonstrate their relative 
abundances and numbers. Results are shown per program and also by the effect of utilizing 
or not utilizing replicates (haplotypes are only accepted if they appear in both replicates). 
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Figure 2.17: Chimera Detection 
a) A jitter scatter plot of the SeekDeep results for the haplotypes for samples that had 
appreciable chimeras with the x-axis being sample and y-axis being predicted relative 
abundance (truncated at 10%, all haplotype above 10% are true haplotypes). The 
haplotypes are to appear in both replicates to be plotted. The haplotypes that were marked 
chimeric are orange diamonds, true haplotypes less than 10% are green circles, and false 
haplotypes that didn’t get marked chimeric are grey circles. b) A plot comparing the the 
predicted relative abundances of the replicates for the false haplotypes which demonstrates 
the reproducibility of chimera formation across PCR reactions. Deviation from the line of 
identity represents the difference in the replicates and is summarized by the correlation 
coefficient.  
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Figure 2.18: OTU Clustering Performance on Simulation Data 
SeekDeep offers OTU clustering that is based on only high quality differences rather than 
any difference. This helps to improve both haplotype recovery and false haplotype creation 
compared to the OTU clustering offered by USEARCH. Performance of OTU clustering for 
SeekDeep is shown for both 99% and 97% OTU clustering while only 97% OTU clustering is 
shown from USEARCH due to a reported bug in the program that only allows 97% 
clustering. a) Haplotype recovery is shown for the two different simulation mixtures depicted 
in Figure 2.2. Haplotype recovery is binned by the degree of difference (and corresponding 
percent identity) between the haplotypes, and is further stratified by read depth. b) A jitter 
scatter plot is shown of the relative abundance of false haplotypes, stratified by read-depth 
(x-axis) and sequencing technology. Bars and points are colored by program and OTU level 
of clustering. 
  



78 

 

Figure 2.19: Collapsing on Single-base Differences Performance on 
Simulation Data 
SeekDeep, like swarm, can be tuned to account for the number of differences upon which to 
collapse; however, unlike swarm, SeekDeep can account for type and quality of errors 
during clustering. Here, we demonstrate the performance of swarm collapsing on 1 
difference compared against SeekDeep collapsing on 1 high quality difference and allowing 
for low abundance and low quality differences as well is shown. a) Haplotype recovery is 
shown for the two different simulation mixtures depicted in Figure 2.2. It is binned by the 
degree of difference (and corresponding percent identity) between the haplotypes, and is 
further stratified by read depth. b) A jitter scatter plot of the relative abundance of false 
haplotypes, stratified by read-depth (x-axis) and sequencing technology. Bars and points are 
colored by program. 
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Figure 2.20: Program Run Times 
The distribution of program run times in seconds is shown a) for simulation datasets across 
read depths, b) for all the randomly down sampled samples from Salipante et al. 2014, c) for 
the in vitro P. falciparum control datasets. These times should approximate what a user 
would expect using a personal computer. 
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Figure 2.21: Haplotype Recovery of Expected Haplotypes and Creation 
of False Haplotype above ≥0.25% on Simulated Datasets 
Performance on the simulations dataset is shown, using a minimum haplotype abundance 
threshold of 0.25%. a) SeekDeep is able to haplotype recovery all expected haplotypes 
across all read depths simulated. b) By making a cut at 0.25% SeekDeep calls practically no 
false haplotypes. Detection of haplotypes at ≥ 0.25% likely approaches what can be 
detected by sampling and PCR. At this level of resolution SeekDeep has excellent 
performance characteristics with better haplotype recovery than other programs with 
minimal false haplotypes rates that occur only at low abundances.  
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Figure 2.22: SeekDeep Overview 
The depicted SeekDeep pipeline was designed to handle diverse experimental and 
computational workflows. In general, input sequence data is organized as one or more 
groups of samples that can represent natural populations, different experimental conditions, 
or any other defined classification. The pipeline is modular, allowing for substitute or 
additional processing at any step as well as access to the underlying data. The goal of 
SeekDeep is to perform initial processing and clustering along with exploration of the results 
and quality control. Extraction is done by extractor to demultiplex on sample barcodes 
(depicted here as colored squares at the beginning of sequences) and/or multiple primers if 
either are still present in input data. Next, sequences are clustered at the sample level by 
qluster based on either presets for specific sequencing technologies or user defined 
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parameters to provide the requisite level of resolution (see Figure 2.23 for how these errors 
are characterized). Finally the haplotypes generated by qluster are analyzed by 
processClusters to take into account replicate comparisons (if available) and then compare 
sample haplotypes to generate population-level haplotypes and statistics. Final results can 
be viewed with popClusteringViewer in an interactive HTML viewer. For more specific 
downstream analyses, data can be outputted in multiple formats.  
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Figure 2.23:Overview of the qluster Algorithm 
 
Qluster starts by operating on the initial reads that have already been demultiplexed 
by sample and primers. Qluster first (1) creates initial clusters of identical sequences 
and then sorts these clusters by read count in descending order. Pairwise global 
alignments are then used to compare the representative sequences and (2) collapse 
initially on a minimal amount of allowable errors (see Figure 2.24 for depiction on 
how errors are characterized). Qluster thus collapses only the most similar 
sequences and creating larger aggregate clusters for further comparisons. After 
each collapse, a consensus sequence is created. On the next iteration comparing all 
clusters, the amount of (3) allowable error is increased to further collapse clusters. 
Further iterations (4) increase amount of error allowed, again creating a consensus 
after each collapse. Final clusters are created after the final iteration. After 
clustering, (5) mark any sequences that could be a possible chimera. 
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Figure 2.24: Characterizing Errors in Pairwise Comparisons within 
qluster  
Clustering incorporates both base quality and abundance of k-mers as well as parameters 
relevant to the error profile of the sequencing platform. Depicted is a detailed example of 
how qluster scores and then determines whether to collapse two clusters. a) After pairwise 
global alignment of the cluster consensus, potential errors are categorized into indels and 
mismatches. b) Mismatches between sequences are first checked for base quality, which 
includes comparing the base quality scores of mismatching bases and the surrounding 
bases to a quality thresholds (default is 20 for mismatching bases and 15 for surrounding 
bases). Both the mismatch site and regional qualities must be higher than this threshold to 
be considered a high quality mismatch. c) High quality mismatches are then further 
classified by their occurrence in the input data based on the abundance of k-mers in each 
sequence centered on the mismatch. By default, if the k-mer only occurs once in the input 
data it is marked as a low abundance mismatch signifying likely error. d) Indels are 
classified by size and are classified into 1-base indels, 2-base indels, and > 2-base indels. 
Optional weighting for indels that occur in homopolymers can be turned on for 
pyrosequencing platforms (i.e. 454 and Ion Torrent). e) Errors are tabulated and then 
compared to the current thresholds to determine if the two given clusters should be merged 
or maintained. In the depicted example, the clusters are not merged as the number of high 
quality mismatches observed exceeds the threshold for collapse. 
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Figure 2.25: In vitro P. falciparum TRAP Strain Mixture 
The TRAP mixture consisted of 5 different P. falciparum strains. The mixture was amplified 
and sequenced twice. Panel a) gives the expected relative abundances for the mixture and 
b) is a distance matrix describing the number of base mismatches and percent identity 
between the strains. 
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Figure 2.26: In vitro P. falciparum AMA1 Strain Mixture 
The AMA1 mixture consisted of 5 different P. falciparum strains. The mixture was amplified 
and sequenced 4 times. Panel a) gives the expected relative abundances for the mixture 
and b) is a distance matrix describing the number of base mismatches between the strains 
and the corresponding percent identity. 
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Figure 2.27: In vitro P. falciparum CSP Strain Mixture 
The CSP mixture consisted of 4 P. falciparum strains. The mixture was amplified and 
sequenced 8 times. Panel a) gives the expected relative abundances for the mixture and 
panel b) is a distance matrix describing the number of base mismatches between the strains 
and the corresponding percent identity. 
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Figure 2.28: In vitro P. falciparum Illumina Strain Mixtures 
The expected abundances for all amplicons in the control mixture of the strains 3D7, 7G8, 
HB3, and DD2. While the mixture of the individual strains was constant (3D7 = 79%, 7G8 = 
HB3 = DD2 = 7%) for all amplicons the strains often shared the same haplotype leading to 
variation in the number and abundance of haplotypes (2-4) across the amplicons. 
Differences between strains range from 1-2 SNPs and sometimes large indels (10-15 bp). 
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Chapter III: kluster: Long Amplicon Clustering 

using k-mer Similarity Scores 

Preface 

The following chapter is currently being drafted into a manuscript for submission.  

Abstract 

Longer amplicon analysis than what is possible with Illumina or Ion Torrent can greatly aid a 

targeted approach when analyzing highly diverse regions, where shorter target primers 

cannot be designed, or if the region of interest is longer than the length possible with 

Illumina and Ion Torrent which could occur when sequencing several SNPs associated with 

drug resistance that are more than 1kb apart from each other. To that end, PacBio, which 

has sequence reads at lengths of several kb in length, is the ideal tool; unfortunately, PacBio 

also suffers from a much higher error rate that hinders analysis. Here, I introduce a novel 

cluster algorithm that clusters PacBio reads to 1-base resolution, and I test its performance 

on both in silico datasets and known lab strain control mixtures.  

Introduction 

SeekDeep, which was introduced in the previous chapter, performs well for targeted 

amplicon analysis when dealing with sequencing from sequencing platforms 454, Ion 

Torrent, and Illumina; unfortunately, SeekDeep ran into challenges when its pipeline was 
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tried on PacBio data. Challenges encountered included much higher error rate and the much 

longer sequencing length which can be several kilobases (kb) for PacBio but only ~400 bp 

for Ion Torrent, 454, and Illumina. This presents challenges for SeekDeep’s pipeline, since 

the pipeline relies on building solid initial clusters by collapsing on unique sequences and 

then comparing with global alignments to other sequences. PacBio’s high error rate and long 

sequence length means that the majority of the time no sequences are identical enough to 

be used to create solid initial clusters; thus the amount of time required to create pairwise 

global alignments goes up exponentially due to the need to create a matrix of sequence 

length by sequence length to dynamically determine the best alignment--which means that 

costly all-by-all pairwise comparison would have to be conducted. Previous attempts have 

either simply clustered the sequences at an 97% OTU (Schloss et al. 2016) or have 

attempted to determine local haplotypes by mapping to a reference sequence and 

correlating SNP variants (Alexander Artyomenko et al. 2016). However, these methods are 

not adequate if studying regions that can’t be mapped to a reference, or if looking for 

causative single nucleotide differences in drug resistance genes. For these reasons, I 

developed a novel method for clustering PacBio sequences based off of a similarity score 

using shared k-mers between sequences which can be used instead of the qluster algorithm 

described in Chapter II.  

The method proves to be much faster than alignment-based comparisons and is 

sensitive to 1 base pair difference for variants down to 1% abudances. Here, I provide 

results to validate the method by analyzing mixtures of P. falciparum lab strains artificially 

created in the lab by mixture DNA of known lab strains at specific concentrations. The 

regions analyzed were a 5kb region of VAR2CSA (a gene that goes under a high level of 

recombination which prevents mapping to a reference genome), a 1.8kb region of dhfr-ts (a 

https://paperpile.com/c/Egpczv/zNCJx
https://paperpile.com/c/Egpczv/QmEcw
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known drug resistant gene). Previously published control mixtures were also analyzed which 

included an influenza mixture (Alexander Artyomenko et al. 2016). Also, to determine 

theoretical limits of detection, a PacBio simulator was created based off monoclonal lab 

strains and was used to simulated PacBio samples of read depths of 500 to 3,000 reads 

with sequences of 1.8 kb in length differing by 1, 2, 3, 4, 8,10, and 20 nucleotides.  

Results 

in silico  simulations 

All simulated haplotypes differing by 8, 10, and 20 nucleotides showed perfect 

recovery for all frequencies and read depths. Haplotype recovery for haplotypes that differed 

by 2, 3, and 4 were 100% recovered at abundances down to 5% but only got up to 80% for 

lower abundances even at read depths of 3,000 (Figure 3.1a). Recovery is dramatically 

improved (Figure 3.1b) when utilizing the method of removing internal clusters based off of 

SNPs falling 2 standard deviations above the mean error rate (Figure 3.2). False haplotypes 

were rare and never appear above 0.89% abundance and utilizing replicates removed all 

false haplotypes.  

Known Lab Strain Mixtures 

An influenza dataset from a previous study (A. Artyomenko et al. 2015) which 

contained 10 clones with strains and differences ranged from 2 (99.0% identity) to 21 

(89.5% identity). All 10 clones were recovered at close to expected frequencies and no false 

haplotypes were created (Figure 3.4).  

https://paperpile.com/c/Egpczv/QmEcw
https://paperpile.com/c/Egpczv/QJyI
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The P. falciparum dhfr-ts dataset consisted of 3 different mixtures of the four lab 

strains Pf3D7 (major), Pf7G8 (minor), PfDd2 (minor), PfHB3 (minor), with minor strains at 

5% (mixture 1), 1% (mixture 2), and 0.2% (mixture 3) abundances (Figure 3.3). All strains 

were recovered for mixtures 1 and 2, but all three minors were missing in mixture 3 (Figure 

3.4). Recovered strains were close to expected frequencies and no false haplotypes were 

created.  

The P. falciparum var2csa dataset consisted of 6 mixtures with 7 different known lab 

strains at various abundances (Figure 3.4) done in duplicate. All expected strains were 

detected in all mixtures very close to expected abundances. One false haplotype was 

created and this was removed by utilizing duplicates.  

Discussion 

Longer amplicon analysis can improve the amount of information gained from a 

targeted amplicon analysis; in some cases, a longer amplicon is needed to encompass the 

entire region of interest or is needed due to lack of regions with sufficient sequence 

conservation to design shorter target primers. PacBio can generate sequences of several kb 

in length, but also suffers from a high error among other issues. In order to take advantage 

of the longer read lengths offered by PacBio but still have single base resolution, the kluster 

algorithm was added to the SeekDeep pipeline described in Chapter II. The kluster algorithm 

works by creating connections between sequences based on similarity scores created by 

counting the number of k-mer shared between sequences at various k-mer lengths. In this 

way, a connected graph of reads is created and clusters determined with a density-based 

spatial clustering of applications with noise (DBSCAN) approach to avoid over-clustering.  
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Kluster is able to detect single base differences in sequences down to 10% 

abundance at read depths of 500-3,000, but starts to over-collapse the closely related 

strains below that (Figure 3.1). To further help detect closely related strains at low 

frequencies that may have been over-collapsed, reads within a cluster that all contain a 

variant detected at a frequency higher than expected based on the error rate calculated 

across all clusters are removed to form their own cluster; this dramatically increases 

haplotype recovery without creating more false haplotypes (Figure 3.1).  

Using kluster, we have shown that it has perfect recall of a mixture of 4 P. falciparum 

strains all related to another strain by one difference on a region of Pfdhfr-ts, an important 

gene involved in drug resistance in P. falciparum. In P. falciparum even a single difference in 

a gene can lead to drug resistance, and 1-base resolution is paramount when sequencing 

such genes. Here, we have demonstrated that the novel algorithm, kluster, is able to cluster 

sequences with single base resolution even at low read depths. 

 

Methods 

Datasets  

in silico simulations 

PacBio Simulator 

At the time of writing, there are no available simulators for PacBio that will do 

targeted amplicon sequencing, so an in-house simulator was created. This was done by 

utilizing 10 monoclonal FCR3 var2csa PacBio samples and 20 monoclonal 3D7 var2csa 
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PacBio samples and first aligning the samples to their expected sequences. The PacBio 

technology currently reports quality values up to a max of 42, and the per base error rate 

was calculated for bases with quality of 42 and assumed to be the PCR error rate. This 

theoretical PCR error rate was subtracted from overall error rate to get a PacBio error rate 

per base. Quality score distributions were then created for both mismatches and matches 

after subtracting the theoretical PCR error rate for each quality score. Insertions and 

deletions of up to 5 bases were observed, and the per base indel rate was calculated; a size 

distribution for both insertions and deletions was created based off of the counts observed. 

No correlation between position and error rate was observed (unlike Illumina and Ion Torrent 

that show positional effects). This is not unexpected due to the circular nature of PacBio 

sequencing and the fact each position gets several sequencing passes rather than just 

being sequenced once in a linear fashion; the same was true for rate of insertions and 

deletions.  

Using the calculated rates and distributions, a simulator was written to take a 

sequence and simulate per base whether there was no error, a mismatch, a deletion, or 

insertions. If a match, the quality score is determined by pulling from the match quality score 

distribution. For mismatches, the mutated base was based off the observed substitutions 

rates per base, above which favored transitions over transversion and the quality score was 

pulled from the mismatch quality score distribution. The size of a simulated deletion or 

insertion was determined from the appropriate size distribution; if an insertion was 

simulated, the bases inserted was randomly generated using the base composition of the 

input sequence. In this way, a simulator was created that could take an input sequence and 

emulate reads that would result from PacBio sequencing. This was combined with the 
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simulator described in Chapter II, which simulates PCR by taking PCR cules into account, 

with errors occuring in earlier cycles appearing at higher abundances.  

Simulated Datasets 

Datasets representing several different abundances, read depths, and sequence 

identities were simulated using the above simulator to test the theoretical bounds of kluster. 

Each dataset consisted of 7 minor strains and 1 major strain for a total of 8 strains per 

mixture. The minor strains differed from the major strain by 1, 2, 3, 4, 8, 10, and 20 SNPs, 

and did not share SNPs. A template haplotype of P. falciparum 3D7 ama1 was used as the 

major strain and SNPs were randomly generated off this template to generate the minor 

strains. Mixtures were simulated with all the minor strains at the same abundance, with the 

major strain taking up the rest of the mixture. The minor strains abundances were 10%, 5%, 

2%, 1%, and 0.5%. Each of these abundance datasets were simulated twice to emulate 

duplicates and were simulated at read depths of 500, 1,000, 1,500, 2,000, 2,500, and 3,000. 

This was done 10 times, with new SNPs generated each time. This resulted in 600 

simulated datasets; kluster was evaluated for its ability to recover all expected sequences, 

and this was averaged across the ten different sets of randomly generated SNPs. 

Influenza  

An influenza dataset from a previous study was also analyzed (A. Artyomenko et al. 

2015). The amplicon was 2kb and was a mixture of 10 clones at relative frequencies of 50%, 

25%, 12.5%, 6.25%, 3.125%, 1.56%, 0.78%, 0.39%, 0.19%. The clones were closely related 

and differences ranged from 2 (99.0% identity) to 21 (89.5% identity) and sequenced at a 

depth of 18,134. 

https://paperpile.com/c/Egpczv/QJyI
https://paperpile.com/c/Egpczv/QJyI
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Plasmodium falciparum 

dhfr-ts 

A 2kb region of the dhfr-ts gene of P. falciparum was amplified in three different 

mixtures of the lab strains 3D7, HB3, 7G8, Dd2 in duplicate. The three mixture were HB3, 

7G8, and Dd2 all at 5% (mixture 1), 1% (mixture 2), and 0.2% (mixture 3) with the rest of the 

mixture being 3D7 for each mixture. For the dhfr-ts region each strain differed from at least 

one other strain by 1 mismatch while the differences between strains for the ama1 region 

ranged from 16 (99.2 identity shared) to 28 (98.5% identity). Read depth for samples ranged 

from 557 to 2800.  

var2csa 

Six different mixtures of known lab strains of P. falciparum that were amplified in 

duplicate for a 3kb region of the var2csa gene were analyzed. Strains were very distantly 

related to each other (90.6% to 92.2%) and sample read depths ranged from 119 to 319.  

 

Algorithm Overview 

K-mer Similarity Score 

First, I define a k-mer similarity score for a given k-mer length of k as the total 

number of shared k-mers between the two sequences divided by the total number of 

possible k-mers shared (which is the length of the shorter sequence minus k plus 1). A score 

of 0 would mean that there are no k-mers shared between the sequences, and a score of 1 
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would mean that all the k-mers of the shorter sequence can be found within the longer 

sequence.  

Graph Based Clustering 

The algorithm starts with calculating all pairwise comparisons with k-mer similarity 

scores which has the option to be parallelized if multiple CPUs are available. A graph is 

created, with nodes as sequences and the edges connecting the nodes are undirected with 

weights as the similarity scores.  

The goal of the first round of clustering is not to cluster all sequences that belong to 

one haplotype into 1 cluster: rather, the goal is to gather together enough sequences into 

each cluster to ensure that when a consensus sequence is created from this cluster, it 

creates the correct consensus for the local haplotype it belongs to--thus, clusters that end up 

creating the same consensus can then be further clustered together (Figure 3.5). This 

allows the initial clustering to be strict enough to minimize clustering together similar 

haplotypes. Several attempts at optimizing k-mer length and a k-mer similarity score cut off 

for making connections in the graph were attempted but it was found that each dataset with 

different read lengths had different optimal k-mer lengths and k-mer similarities that were 

able to recover all expected sequences. Therefore, a new score was calculated to make 

connections: first, calculate the k-mer similarity scores between sequences for k-mer lengths 

of 2, 3, 4 and 5 and take the slope in k-mer similarity between lengths to calculate a distance 

score to be used in edge connections. This approach was settled upon from out of the 

several approaches and different scores attempted because it proved to be able to recover 

all expected sequences for different read lengths and different species datasets; the 

approach could also be calculated quickly, as the time it takes to calculate scores for these 
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k-mer lengths is small compared to longer k-mers. Clusters are then created by using a 

density-based spatial clustering of applications with noise (DBSCAN) approach (Ester et al. 

1996). In short the DBSCAN algorithm works by taking a node connecting all nodes that are 

connected under a certain distance, called epsilon, and if the number of nodes connected is 

greater than or equal to a set number, called minimum number of neighbors, then the nodes 

are clustered into one group. Once neighbors from a single node are connected, one of 

these neighbors is chosen and its neighbors are connected under the epsilon. Nodes that do 

not meet the minimum number of neighbors requirement do not spread to their neighbors 

and are considered edge points while nodes that do have the minimum neighbors and do 

spread are considered center points. Nodes that are not center or edge points are 

considered noise points and do not fall into any clusters. Nodes are chosen at random and 

classified until all nodes are classified as either center, edge, or noise points and 

interconnected points are considered a cluster. The clustering for sequences are carried out 

with a default epsilon of 1, chosen based off simulations where only sequences originating 

from the same original haplotypes had a slope of decreasing k-mer similarity below 1, and a 

minimum number of neighbors of a default of 4.  

Once final clusters have been created the original raw PacBio sequences are then 

mapped to the final consensus sequences to determine final read count for each cluster. 

Sequences that differ by more than a certain percent identity (default 90%) are placed in a 

separate file which can be investigated for possible missed haplotypes. To avoid clustering 

together very similar sequences, a per base error rate is calculated from the remapped 

sequences to the final consensus and then on a per consensus sequence basis, sequences 

are removed from a cluster to form their own cluster if they all share the same differences to 

the consensus sequence and if that difference is at least 2 standard deviations (SD) from 

https://paperpile.com/c/Egpczv/h2ac
https://paperpile.com/c/Egpczv/h2ac
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the mean per base error rate (Figure 3.2). Final consensus sequences are given in a fastq 

file with quality scores being the average quality score for that base along with the number 

of reads for each given cluster (Figure 3.6). These final results can then be given to 

SeekDeep’s processClusters function to determine shared haplotypes between samples.  
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Figures 

 

Figure 3.1: in silico Haplotype Recovery Results 
Haplotype recovery for the in silico datasets. This was calculated as the number of times the 
haplotype was recovered divided by the total number expected which was 10. The x-axis is 
the abundance for the minor haplotypes, the lines are colored by read depth, and the plots 
are paneled where each panel is one minor haplotype and the title indicates the number of 
differences from the major haplotype it is. a) is haplotype recovery without removing sub 
clusterings that contain the same SNPs that fall two SD above the mean error rate observed 
and b) is haplotype recovery when this feature is utilized which greatly improves the recall 
for all haplotypes down to 1%.  
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Figure 3.2: Removing Internal Clusters on Shared SNPs 
A feature is offered to attempt to recover closely related haplotypes that were improperly 
clustered with another haplotype where the per base error rate is calculated across all 
clusters. The PacBio error rate is randomly distributed across the reads and so it’s 
unexpected for the same error to occur in the same base positions multiple times. Therefore, 
any SNPs that occur at a rate greater than 2 standard deviations above the global error rate 
are determined and reads containing that SNP are removed to form their own cluster. 
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Figure 3.3: P. falciparum dhfr-ts Mixture Setup 
a) The relative frequencies of the lab strains in the three mixtures. b) Each strain is one 
base different from at least one other strain, the number of red dots on the lines connecting 
strains is the number of difference between them.  
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Figure 3.4: kluster Results on Known Lab Strain Control Mixtures 
a) kluster recovers all ten of the influenza clones and created no false haplotypes, x-axis is 
expected abundance and y-axis is kluster’s abundance for the clone, black line is line of 
identity. b) kluster recovers all 3 minor strains at 5% and 1% mixtures but fails to recover all 
at the 0.1%, no false haplotypes were created, x-axis is expected abundance and y-axis is 
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kluster’s abundance for the clone, black line is line of identity. c) kluster recovers all strains 
in all mixtures for P. falciparum var2csa datasets, the first bar represents the expected the 
frequencies and the second bar is the frequencies obtained from kluster which matches very 
close to expected.  
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Figure 3.5: Example Initial Clustering Step 
This is an example of the first round of cluster described in the methods section. The nodes 
are colored by the strain they belong to. Multiple small clusters of the same color can be 
seen and that is because the goal of the first step of clustering is not to gather every single 
read that belongs to the same strain but rather to gather enough reads to gather that when a 
consensus sequence is created for each cluster and it will match the consensus sequence 
of clusters coming from the strain they belong to.  
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Figure 3.6: Workflow Overview 
1) Initial reads are taken and clustered based on k-mer similarity scores to create initial 
clusters. 2) Consensus are created for these clusters and each consensus is compared to 
collapse clusters with the same consensus to create clusters again. 3) final clusters are 
used to map the raw reads to better determine read abundance. 4) optionally clusters are 
checked internally to remove any reads that all contain SNPs that appear at a higher 
abundance than expected when comparing to a base error rate calculated across all clusters 
by taking internal reads and comparing to consensus sequence.  
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Chapter IV: Global antigenic diversity and copy 

number polymorphism of var2csa the leading 

vaccine candidate for placenta malaria 

Preface 

The following is adapted from a manuscript being prepared for submission.  

Abstract 

Pregnant woman can be infected with the Plasmodium falciparum species expressing 

VAR2CSA protein which primarily binds to placental chondroitin sulfate (CSA), leading to 

sequestration of parasites in the placenta and poor birth outcomes. Antibodies against 

VAR2CSA has been found to be protective in multigravid women and for this reason the 

minimum CSA binding ID1-DBL2x-ID2a has been used in two vaccine trials; however, the 

trials might be hampered by the high degree of diversity of VAR2CSA. For this reason, we 

have developed a novel program PathWeaver to extract VAR2CSA sequence from publicly 

available shotgun whole genome sequenced field samples to better characterize this 

diversity globally and across time. We have found 4 major and 2 minor groups within the 

ID1-DBL2x-ID2a region that are stable across time and space; this stability is suggestive of 

balancing selection as well as evidence confirming previous reports of possible VAR2CSA 

copy number variation.  
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Introduction 

The protozoan disease malaria is still endemic in much of the developing world, 

infecting an estimated 216 million people per year and causing 445,000 deaths in 2016 

(WHO 2017). Pregnant women are particularly susceptible to malaria; Plasmodium 

falciparum-infected erythrocytes sequester in the placenta and can cause poor birth 

outcomes (Rogerson et al. 2007; Salanti et al. 2003b; Tuikue Ndam et al. 2005). Placental 

sequestration is mediated by a highly variable protein called VAR2CSA, that primarily binds 

to placental chondroitin sulfate (CSA) (Rogerson et al. 2007; Duffy et al. 2006; Salanti et al. 

2004). Naturally-acquired antibodies to VAR2CSA have been shown to be protective during 

pregnancy (Rogerson et al. 2007; Ataíde, Mayor, and Rogerson 2014). Efforts to develop a 

VAR2CSA vaccine are underway (Fried and Duffy 2015; Tuikue-Ndam and Deloron 2015). 

However, their efficacy may be hampered by the genetic and geographical variation in the 

protein. 

The gene var2csa, like most P. falciparum var genes, has two exons and is 

composed of multiple Duffy binding-like (DBL) domains along with a transmembrane 

domain. The first exon contains 3 DBLX domains and three DBLε, with the 6th and last 

domain traversing into exon 2. Most var genes can be classified by their 5’ upstream (ups) 

region and fall primarily into UpsA, UpsB, UpsB/C or UpsC groups, but VAR2CSA is the only 

var with that has UpsE. UpsE also contains an ups open reading frame (uORF) that 

encodes 119 amino acids that ends 274 base pairs before the VAR2CSA start codon. This 

uORF was confirmed to be part of the mRNA transcript of the VAR2CSA transcript although 

it’s not clear if it’s translated or not (Lavstsen et al. 2003).  

https://paperpile.com/c/Egpczv/bF9Qq
https://paperpile.com/c/Egpczv/Oamy+3yRoR+TLlc
https://paperpile.com/c/Egpczv/Oamy+dXr5g+nINFA
https://paperpile.com/c/Egpczv/Oamy+dXr5g+nINFA
https://paperpile.com/c/Egpczv/Oamy+xEWDy
https://paperpile.com/c/Egpczv/QOTtU+efQ0Z
https://paperpile.com/c/Egpczv/2xKzX


110 

One particular region of VAR2CSA, ID1-DBL2x-ID2a, appears to be most 

responsible for placental cytoadherence and will hereafter be referred to as the minimum 

CSA binding domain (MCBD) (Srivastava et al. 2011; Clausen et al. 2012). Antibodies 

directed to this minimal binding region have shown to occur naturally in woman protected 

from malaria and have been shown to block binding(Bigey et al. 2011; Salanti et al. 2010). 

This region is the target of two current vaccines undergoing clinical trial and vaccine efforts 

of several groups has recently been summarized (Chêne et al. 2016).  

In a study of pregnant women in Benin and Malawi, we found that the gene is highly 

variable with 152 variants in 101 clinical malaria isolates. Previous studies have found two 

regions within the MCBD to be dimorphic, one region in the beginning of the DBL2 region 

(VAR2CSA3D7 amino acids 589-617) (Sander et al. 2009) and the other region takes up the 

majority of ID1 region (VAR2CSA 3D7 amino acids 397-568) (Doritchamou et al. 2015). The 

combinations of these two regions creates 4 subtypes with one of the types being found 

exclusively in multigravid women (Doritchamou et al. 2015). The global distribution of these 

types has yet to be adequately described and it is not known if all types are found globally. 

Beyond polymorphisms, copy number variation of var2csa has also been recognized 

(Sander et al. 2011). The lab strain HB3 has two copies of VAR2CSA although it is unclear if 

this was a culture adaptation or was naturally present in the strain before culturing. Unlike 

other PfEMP1 vars where only one copy at a time is expressed, these copies showed 

coexpression in two field isolated and HB3 with confirmed two copies of var2csa (Sander et 

al. 2009). The genomic positions of these copies were estimated using using pulsed field gel 

separation of chromosomes and placed HB3’s on chromosome 1, confirmed with assembly, 

and the position of the two field isolates’ copies on chromosome 8 and somewhere on 5-8 

(Sander et al. 2009). Further investigation of 111 natural isolates from Sudan and Tanzania 

https://paperpile.com/c/Egpczv/QOQiY+LDzM8
https://paperpile.com/c/Egpczv/Jjn1x+tG3w0
https://paperpile.com/c/Egpczv/adDp1
https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/GZqPA
https://paperpile.com/c/Egpczv/GZqPA
https://paperpile.com/c/Egpczv/6uzq
https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/4eFx
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showed that 20% of isolates had multiple copies var2csa (Sander et al. 2009). Follow up 

study of isolates from the Cameroon found frequent multicopy isolates as well and 

determined that multiple copies were associated with pregnancy and increasing gravida. 

Infections with multicopy strains had longer persistence further suggesting a survival 

advantage for placental parasites carrying multiple copies (Sander et al. 2011). While such 

studies suggest var2csa copy number polymorphism may be common occurrence, a full 

survey of the extent of copy number across the world is lacking. 

Recently, thousands of Plasmodium falciparum genomes have been shotgun whole 

genome sequenced with primarily 100-base paired end Illumina 

sequencing(https://www.malariagen.net/projects/pf3k, Plasmodium 100 Genomes initiative, 

Broad Institute (https://www.broadinstitute.org)). However, because of the high variability of 

va2csa and its proximity to the telomere, it has been difficult to assess the gene using 

standard read mapping to reference genome or assembly approaches. Previous studies 

have tried to use standard de novo assembly programs to analyze complex P. falciparum 

genes (Crosnier et al. 2016; Jespersen et al. 2016; Dara, Drábek, et al. 2017) but these 

were meant for monoclonal sample assembly and were not built to handle mixtures of 

multiple genomes (polyclonal samples) or samples with increased gene copy number. This 

can lead to chimeric assembled sequences where sequence from one strain or copy are 

falsely combined with sequences from another copy of the gene to create false sequence.  

Here we present PathWeaver, a new method which leverages initial read recruitment 

to a region of interest in a reference genome followed by iterative de novo local assembly 

and recruitment of unmapped reads in order to assemble highly variable genes that are not 

amenable to analysis using standard short-read reference mapping methods. Using publicly 

available whole genome sequencing data, we use this method to interrogate var2csa 

https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/6uzq
https://www.malariagen.net/projects/pf3k
https://www.broadinstitute.org/
https://www.broadinstitute.org/
https://paperpile.com/c/Egpczv/c6NdE+X1SWo+7KbTB
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diversity and copy number variation in order to comprehensively describe genetic variation, 

genomic signatures of selection and global population structure. These data provide critical 

information about the potential impacts var2csa diversity may play on the successful 

development of PAM vaccines. 

Results 

Assembly on VAR2CSA Upstream Region and Exon 1 (UpsE-ID5)  

The PathWeaver algorithm, described in the methods section, was run on all 

datasets. Subsequent analysis was then performed on full length contigs and then 

subsequently on contigs that spanned smaller subregions of interest. These subregions 

were the five DBL regions, their inter domains, the minimal CSA binding domain (Bordbar et 

al. 2012), and the previously found dimorphic regions in ID1 (Doritchamou et al. 2015) and 

in DBL2 (Sander et al. 2009).  

Mapping Characteristics of in silico Simulated Sequences  

The 30 unique var2csa UpsE-ID5 sequences collected from the Pf3k Pacbio genome 

assemblies and from previous studies (Rask et al. 2010) were used to in silico simulate 

shotgun 2x100 Illumina sequencing runs with approximately 40 per base read coverage 

using a custom shotgun simulator and an Illumina simulator (Huang et al. 2012). On average 

90.81% of the simulated sequences aligned to 3D7 (range 81.66%-97.48%), with on 

average 95.41% of the paired sequences both mapped together (range 92.48%-98.08%) 

and the rest of the pairs only had one mate mapped. Sequences mapped to var2csa 98.93% 

(range 96.24%-99.95%) of the time, while an average of 1.2% sequence reads mapped to 

https://paperpile.com/c/Egpczv/ZMuRo
https://paperpile.com/c/Egpczv/ZMuRo
https://paperpile.com/c/Egpczv/GZqPA
https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/egYcw
https://paperpile.com/c/Egpczv/BTyQ2
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other var genes (range 0.07%-3.38%) and an average of 0.28% mapped to other genomic 

locations (range 0.07%-0.65%). Mapped sequences were then examined for the extent of 

soft clipping, with on average 31.57 bases being soft clipped (range 28.08-35.73). This 

suggests that like most var genes, var2csa cannot be assembled using reference based 

variant calling pipelines and thus necessitate novel assembly approaches. 

Performance on in silico Simulations and Monoclonal Lab Strains 

In order to show that PathWeaver accurately recruits reads and reconstructs the 

UpsE-ID5 region, the in silico simulation datasets were analyzed. In all cases, PathWeaver 

assembled a single contig which perfectly matched the expected sequence. Shotgun short 

reads of monoclonal samples from publicly available laboratory strains, for which the 

var2csa sequence is known, DD2, GB4, IT/FCR3, W2, 7G8, and 3D7 were also analyzed by 

PathWeaver. Each produced a single contig, perfectly matching the expected var2csa 

sequence. This suggests that other var genes aren’t being erroneously recruited and 

assembled.  

Performance on laboratory strain mixtures (Pf3k Controls) 

Twenty eight lab control mixtures generated by MalariaGen were then also analyzed 

by PathWeather and compared against a gold standard de novo assembler and the 

assembler used most often previously for var genes (Jespersen et al. 2016), SPAdes 

(v3.11.0) (Bankevich et al. 2012). SPAdes can be run with a standard or “careful” mode, 

which maps sequences back to the assembled contigs to try to error correct them. Results 

from both the default mode and the careful mode along with PathWeaver are shown in 

Table 4.1. In samples with more than 1 copy of var2csa, the default SPAdes program 

https://paperpile.com/c/Egpczv/X1SWo
https://paperpile.com/c/Egpczv/2QBsg
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created inaccurate contigs in almost all but two of the samples. While SPAdes careful mode 

improves its results it still fails on the majority of the samples with copies of var2csa >=3, 

while PathWeather accurately reconstructed contigs in all samples with three or less copies 

and created only one false contig in the samples with 4 var2csa copies.  

Field Samples  

We then sought to better determine the global diversity of var2csa using available 

whole genome sequence data from global isolates. Approximately 2,900 field samples were 

processed yielding a total of 743 UpsE-ID5 sequences and an average of 1,800 sequences 

on sub-regions, see Table 4.2 and Table 4.3 for a breakdown of total sequences found per 

geographical region and var2csa sub-regions. Rarefaction curves were created for each 

defined region broken down for each geographical region, see Figure 4.1. The rarefaction 

curves only reached saturation in Southeast Asia suggesting a significant level of diversity in 

the African regions yet to be described. 

Given the high number of variants described, we assessed for population structure 

using Principal Components Analysis (PCA). When evaluating the complete amino acid 

sequence of NTS-ID5 contigs (3D7 codons 1-2481), we identified two major population 

clusters (Figure 4.2). Figure 4.3 shows that most of the structured amino acid variation 

(positions with the highest loading values for PC1 and PC2) is mostly contained in two 

regions within the MCBD (the ID1 hypervariable region and DBL2 hypervariable region). Of 

note, while these regions showed an excess of variation, there remained a high level of 

diversity along the entire region of the gene analyzed. We then evaluated how individual 

sub-domains of the protein impacted the population structure by generating PCAs based 

upon their amino acid sequence (Figure 4.4 and Figure 4.5 of all domains). The MCBD 
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(3D7 codons 373-999) (Figure 4.4a), combined hypervariable region of ID1 and DBL2 (3D7 

codons 392-624) (Figure 4.4b), ID1 hypervariable region (3D7 codons 392-568) (Figure 

4.4c) and DBL2 hypervariable region (3D7 codons 585-624) (Figure 4.4d) broke into 4, 6, 4 

and 3 groups respectively and PCA of MCBD outside of the polymorphic region shows no 

structure (Figure 4.6). PCA of the regions outside of these shows little to no structure 

(Figure 4.5) with the exception of DBL1. Interestingly, all major groups were found across all 

geographic regions and were also found across years of collection consistent with a 

semi-stable population for these most polymorphic regions (Figure 4.7). 

The number of sequences that make up each group and the amount of amino acid 

conservation is summarized in Table 4.4. Though the PCA plot shows fairly tight clustering 

in this region, amino acid conservation for within groups averages at 55% ranging from 40% 

to 62% though that is much higher than the 18% conservation when all sequences within 

this region are considered. 

UpsE Open Reading Frame 

Among var genes, var2csa is distinct in terms of its upstream sequence, UpsE. All 

1559 sequences collected for the UspE open reading frame had the start codon and stop 

codon conserved and 79% of its 119 codons are perfectly conserved. The translated protein 

doesn’t match any other proteins when protein blasted on the NCBI website. Though it has 

been found that this region is present in the VAR2CSA mRNA transcript (Lavstsen et al. 

2003) it’s not clear what function it serves or if it is also translated. This open reading frame 

is also conserved in the UpsE region of the P. reichenowi ortholog of var2csa.  

https://paperpile.com/c/Egpczv/2xKzX
https://paperpile.com/c/Egpczv/2xKzX
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Copy number variation in var2csa 

To examine the extent of copy number variation, we limited our analysis to field 

samples representing monoclonal infections. Monoclonal infections were determined by 

running PathWeaver on 300 non-overlapping additional hypervariable 200 bp window in 230 

single copy genes. A sample was then classified as monoclonal if data was recovered for 

200 or more of these loci and if PathWeaver constructed only a single haplotype. This 

identified 1514 monoclonal samples. Since samples were observed to have non-uniform 

coverage which biased copy number conformation, we then eliminated samples using a 

t-SNE analysis to cluster samples with uniform coverage away from the non-uniform sample 

(Supplemental Figure Figure 4.8) and additionally eliminated samples with a coverage 

standard deviation of greater than 20 and mean coverage of less than 50. This left 525 high 

quality coverage monoclonal samples for copy number variation analysis. Of these samples, 

373 (71%) had a singular contig constructed and the coverage for each matched mean base 

coverage in areas with similar GC content across the genome. Due to read sizes not always 

being long enough to span areas of conservation, full NTS-ID5 contigs were not always 

possible to generate, leading to several different contigs (see Figure 4.9). Mean base 

coverage was again normalized to the mean base coverage of genomic regions with similar 

GC content. For each sample with increased copy number, each copy var2csa had a unique 

haplotype. Copy calls were then summed by geographic regions and collection year and 

shown in Figure 4.10. Samples from South America were only found to have a single copy 

of var2csa across all years sampled there (2009-2012), while samples from South East Asia 

had samples with up to 3 copies and African samples had evidence of up to 5 copies. This 

distribution is similar to other studies of copy number variation in the Plasmodium falciparum 
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genome (Cheeseman et al. 2016). Also, another lab strain other HB3, UGT5.1, was also 

found to have two copies of var2csa.  

The samples with 2 var2csa copies (n=107) were typed for their ID1 and DBL2 

polymorphic hypervariable regions to determine if they contained different types, typing was 

done with what PCA group on the ID1 and DBL2 polymorphic regions PCA analyses Figure 

4.11, Figure 4.12. These samples almost all have the at least 1 copy of ID1 type 2 with the 

majority of samples (62.2%) having a different ID1 type in the other copy of var2csa. Given 

the high prevalence of type 2 ID1 hypervariable regions in the single var2csa copy 

monoclonal infections (87% of 383 infections), this type of ID1 region appears to be 

underrepresented in parasites with more than one var2csa copies (66% of copies) 

(Chi-squared test X-squared = 53.7, df = 3, p-value = 2.64e-11). There did not appear to be 

a significant different in the number of DBL2 types (X-squared = 6.68, df = 2, p-value = 

0.0708) 

We used Pf3k’s PacBio assembled genomes to then confirm the locations of multiple 

copies of var2csa on these genomes. The genomic location of the HB3 duplicate was 

confirmed on chromosome 1 when extracting from the Pf3k assembled genomes. Two of the 

clinical isolates were also found to have multiple VAR2CSA genes. One isolated, PfSN01 

from Senegal, had two copies on chromosome 12 and the other isolate, PfTG01 from Togo, 

had 2 copies on chromosome 12 and 2 on chromosome 8 in close proximity, all of which 

had an intact UpsE region, see Figure 4.13. The relatedness of the four copies in PfTG01 

ranged from 90.5% to 93.8% and the relatedness of the two copies in PfSN01 was 92.0%. 

Previous studies have suggested that the possible location of additional VAR2CSA copies 

could be on chromosome 8 which would consist with what is seen here (Sander et al. 2011).  

https://paperpile.com/c/Egpczv/bGQVM
https://paperpile.com/c/Egpczv/6uzq
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Discussion 

Var2csa, which mediates the binding of malaria parasites to the placenta, is an 

important potential vaccine candidate to prevent malaria in pregnancy. Antibodies to var2csa 

have been found to be protective against malaria-associated poor birth outcomes(Rogerson 

et al. 2007; Ataíde, Mayor, and Rogerson 2014). The study of var2csa is obstructed by its 

high diversity which prevents it from being studied with traditional reference based variant 

calling as it does not map well to a single reference. Another hurdle to studying var2csa 

using short read sequencing libraries is the fact that it has multiple copies and that many P. 

falciparum infections are polyclonal which means special care has to be taken when 

attempting to apply genome assembly approaches that unique copies are not improperly 

stitched together to form false sequence.  

Here we introduced a novel algorithm, PathWeaver, for extracting local haplotype 

sequence from even highly diverse regions of a genome and within polyclonal infections. 

The need for this algorithm arose from current assembly tools not being specifically 

designed for this purpose. While SPAdes does well on monocopy samples, which is what it 

was designed for, it does create false haplotypes even on careful mode when dealing with 

polyclonal samples. Other assembly type programs were tested as well, Trinity, Velvet, 

SSAKE, megahit among others and all suffered when it came to polyclonal samples (data 

not shown) for various reasons ranging from over collapsing variation to creating false 

haplotypes to not allowing output contigs to both contain regions of conserved sequence. 

While some of these problems had the potential to be circumvented with writing programs to 

wrap the assemblers in various ways a greater benefit was seen in creating a custom 

assembler specifically designed to handle cases of polyconality and that could be more 

https://paperpile.com/c/Egpczv/Oamy+xEWDy
https://paperpile.com/c/Egpczv/Oamy+xEWDy
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easily adapted for various scenarios it was needed for. While there do exists programs that 

were created to handle local haplotype assembly of polyconal infections (ShoRaH (Zagordi 

et al. 2011), ViQuaS (Jayasundara et al. 2015), etc) these all work directly with only the 

mapped portions of sequences rather than the full query sequence which, as shown above 

with 30% of var2csa sequences being clipped off, wouldn’t work for regions like var2csa and 

the concept of PathWeather was conceived with special interest in regions like var2csa, 

other var genes, and other Plasmodium regions that contain DBL domains or other binding 

domains that often show polymorphic allelic types(Crosnier et al. 2016; Ware et al. 1993; 

McColl and Anders 1997; Pearce et al. 2004).  

By utilizing in silico simulation of 30 different var2csa variants we have proved that 

our iterative recruitment method of using 3D7 var2csa and subsequent recruitment of 

unmapped reads is adequate to gather enough UpsE-ID5 var2csa reads to be assembled 

into the expected sequence. Followed by tests on lab strains which had been whole genome 

shotgun sequence showed that this recruitment method only assembled the expected 

var2csa and does not recruit other var sequences. What aids in this endeavor to recruit only 

var2csa sequence is the utilization of mapping all reads to the 3D7 genome and pulling only 

the sequences that map to the 3D7 var2csa which due to the nature of mapping reads via 

local alignment and soft clipping if a portion of the read matches a region then it will be 

recruited unless it matches another region better. Though var2csa is fairly unique among the 

var genes it still shares some homology blocks with other vars as well as other DBL proteins 

like EBA-175 and so if only var2csa was used to recruit reads it could improperly recruit 

reads from other regions while using the whole 3D7 genome will help recruit these similar 

reads to their proper regions because they will more closely match those regions. However, 

it was observed that from the in silico simulations that approximately 1-3% of sequences 

https://paperpile.com/c/Egpczv/fFN7L
https://paperpile.com/c/Egpczv/fFN7L
https://paperpile.com/c/Egpczv/FerJz
https://paperpile.com/c/Egpczv/c6NdE+HwRia+VvTe8+1td2k
https://paperpile.com/c/Egpczv/c6NdE+HwRia+VvTe8+1td2k
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were recruited to other 3D7 regions including var genes and an algorithmic improvement 

could be to incorporate checking other regions once initial contigs have been assembled but 

based on our results here it was shown that this wasn’t necessary to assemble the expected 

sequence. It might also be tempting to utilize multiple var2csa sequences in the initial 

recruitment but this increases the potential danger of recruiting sequences other than 

var2csa and again we with our results here we have shown that such an approach is not 

necessary. In addition, by mapping to the 3D7 reference genome for the initial recruitment 

also allows the study of multiple regions from the same alignment file, which can be quite 

large and could potentially hamper the investigation of several regions at once if multiple 

alignments had to be created for each region. PathWeaver has allowed us to extract a large 

number of sequences for var2csa.  

PCAs of the entire gene show little structure (Figure 4.2). However, a higher degree 

of structuring is observed when focusing on the MCBD and its polymorphic regions which 

demonstrates 4 major groups and 2 minor groups (Figure 4.4). Thus, much of the structured 

diversity in var2csa is found within the MCBD. This is consistent with evidence that the 

MCDB is the principal CSA ligand and that antibodies to the MCBD are particularly 

protective (Rogerson et al. 2007; Ataíde, Mayor, and Rogerson 2014). The MCBD regions 

also show the least amount of conserved amino acids and the highest mean expected 

heterozygosity for the gene (Table 4.3).  

Balancing selection is a phenomenon that selects for diversity, especially in immune 

epitopes; the more diverse an epitope, the more likely the parasite is able to survive and 

reinfect a host with a previous infection especially if cross-strain reactive antibodies are not 

able to be formed. This is especially true for infectious agents that don’t induce lasting 

immunity and leads to individuals being infected multiple times which leads to a strain’s 

https://paperpile.com/c/Egpczv/Oamy+xEWDy
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frequency being inversely correlated with its survivability (Lipsitch and O’Hagan 2007). 

There is substantial evidence for for balancing selection in malaria antigens especially for 

blood stage antigens (Weedall and Conway 2010). All 4 major groups and to a certain the 2 

minor groups are observed at a similar frequency across time and space (Figure 4.10) 

suggests that the same balancing selection forces are occurring independently on different 

continents.  

Gene duplication in var2csa has been previously reported (Sander et al. 2009, 

2011). Here, using the PathWeaver algorithm we were able to detect multiple copies of 

var2csa in monoclonal field samples found that each copy had approximately mean base 

coverage. When multiple copies do exist in a single genome, they were always found to be 

unique from each other which is consistent with previous findings (Sander et al. 2009). We 

were able to utilize chromosome level assemblies provided by MalariaGen’s Pf3k project 

(https://www.malariagen.net/projects/pf3k) to confirm that var2csa has a conserved 

chromosome 12 loci and to show that the genomes of two field isolates had two tandem 

copies on chromosome 12 for one isolate and the other isolate had two tandem copies on 

12 and 8 which is also consistent with previous finding suspecting the possible location of 

additional var2csa copies being on 8 (Sander et al. 2009). As more chromosome level 

genome assemblies become available the possible locations of these copies can further 

characterized. It’s been postulated before that the multiple copies could explain the 

polymorphic types seen within var2csa (Sander et al. 2009), however we have observed 

here that all types for both ID1 and DBL2 appear in the monocopy samples so though the 

multiple copies are likely helping drive this diversity it doesn’t appear that the conserved 

chromosome 12 loci is associated with just one type.  

https://paperpile.com/c/Egpczv/fVx0
https://paperpile.com/c/Egpczv/Ac8f
https://paperpile.com/c/Egpczv/4eFx+6uzq
https://paperpile.com/c/Egpczv/4eFx+6uzq
https://paperpile.com/c/Egpczv/4eFx
https://www.malariagen.net/projects/pf3k
https://paperpile.com/c/Egpczv/4eFx
https://paperpile.com/c/Egpczv/4eFx
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We have only scratched the surface for analyses that could be done here. However, 

conventional tools and metric are not easily applied to a gene like var2csa with its complex 

evolutionary history, high rate of recombination, high diversity preventing the ability to use 

one sequence as a reference and its multiple copies. With having extremely divergent types 

there is no single good reference for sequences to be compared to which is the 

basis/requirement for many traditional measures of diversity and other population structure 

analyses. Also, a 3D structure could greatly inform the information gained from the 

sequence variation gathered here to see if variation is buried or forms pockets. There is 

currently no 3D structure available for var2csa but the amount of sequence gathered here 

could aid in the simulation of one.  

Methods 

PathWeaver 

PathWeaver represents a novel iterative multistep assembly method that allows 

accurate local assemblies of highly variable genes. Raw sequences are aligned to a 

reference genome using BWA-MEM (http://bio-bwa.sourceforge.net/) with default 

parameters. Extracted reads are then processed through a custom graph based method 

described below. Extracted reads are all oriented to the either the plus or negative strand, 

depending on input settings, so that final contigs are all oriented in the same direction. 

Recruited reads are then k-mer indexed at a certain k-mer size, default 40, to create nodes, 

nodes that fall below an occurrence cut off, default 5, are remove. Edges are then added to 

connect the nodes using a method called “threading” (J. R. Miller, Koren, and Sutton 2010) 

where nodes are connected if the k-mers occur adjacent in the input reads as opposed to a 

http://bio-bwa.sourceforge.net/
https://paperpile.com/c/Egpczv/yHLEf
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classical approach of simply connecting k-mer nodes when their suffix and prefix match 

perfectly. Once de novo contigs have been constructed, the initially unmapped sequences 

are then aligned against the de novo assembled contigs using BWA-MEM 

(http://bio-bwa.sourceforge.net/) again. Graph assembly is repeated using the reads initially 

pulled down and these newly recruited reads to create new contigs. The still unmapped 

sequences are then aligned again to the new contigs to recruit more of the unmapped 

sequences. This is done iteratively until there are no newly recruited sequences or a max 

iteration number is hit (default of 20).  

Once the final iteration is done the final sequences are then trimmed to the region of 

interest. The number of final contigs and whether they span the whole region will be 

dependent on the size of the region, the depth, the amount of variation present if there are 

more than one unique copy of the region of interest, and the size of the read length of the 

input data. For example, if unique copies share a region of conserved sequence longer than 

read length than the variation flanking the conserved region cannot be stitched together or if 

a portion of the region of the interest fails to get sequenced than the output will be several 

contigs that covered the region. Another scenario where a full length contig might be 

possible is if there is a tandem repeat in the region which is longer than the read length and 

therefore the size of the repeat cannot be easily determined, several contigs will be reported 

even when there is only one unique copy. See Figure 4.14 for a visual representation of the 

read recruitment strategy.  

var2csa Assembly 

The untranslated upstream region UpsE to the inter domain 5 (ID5) region of var2csa 

(UspE-ID5, genomic position Pf3D7_12_v3 49360-57446 in 3D7 (v3) 

http://bio-bwa.sourceforge.net/
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(http://plasmodb.org/common/downloads/release-34/Pfalciparum3D7/fasta/data/PlasmoDB-

34_Pfalciparum3D7_Genome.fasta)) was chosen for the var2csa assembly to ensure the 

highest recovery of data. Exon 2 of var2csa, like most var genes, shows a high degree of 

similarity to other var exon 2 sequences and has a high potential to recruit other var 

sequences and so was avoided. DBL6 is split between exon 1 and exon 2 and was also 

avoided recruiting sequences that extend into the intron, which has hard to assembly 

sequences with long tandem repeats. For samples with multiple copies of var2csa, full 

length UspE-ID5 reconstruction is not possible due to long conserved regions that reads are 

unable to span and the unique path cannot be determined. Partial sequences were used for 

subregion analyses if they covered the entire length of the analyzed region. 

In silico Simulations of var2csa UpsE-ID5 sequences 

In order to test the PathWeather algorithm, we simulated shotgun sequencing of 

UpsE-ID5 var2csa sequences. We collected UpsE-ID5 sequences by using MalariaGEN’s 

15 Pacbio chromosome level genome assemblies for 5 lab strains (GB4, 7G8, DD2, HB3 

and IT/FCR3) and for 10 clinical isolates (https://www.malariagen.net/projects/pf3k). 

UpsE-ID5 of 3D7 var2csa was extracted from these genomes by determining var2csa’s 

location using LASTZ (Harris 2007). Additionally, the var2csa sequences from a previous 

study on var genes which collected var sequence from NCBI’s BLAST and available lab 

genome assemblies (Rask et al. 2010). A total of 30 unique var2csa sequences were 

collected and each were used to simulate a shotgun 2x100 Illumina sequencing run with 

approximately 40 reads per base coverage.  

http://plasmodb.org/common/downloads/release-34/Pfalciparum3D7/fasta/data/PlasmoDB-34_Pfalciparum3D7_Genome.fasta
http://plasmodb.org/common/downloads/release-34/Pfalciparum3D7/fasta/data/PlasmoDB-34_Pfalciparum3D7_Genome.fasta
https://www.malariagen.net/projects/pf3k
https://paperpile.com/c/Egpczv/qdRf
https://paperpile.com/c/Egpczv/egYcw
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Parasite Whole Genome Shotgun Sequencing Data  

Data was collected from several publicly available studies (Baniecki et al. 2015; 

Cerqueira et al. 2017; Parobek et al. 2017; Dara, Drábek, et al. 2017; Kumar et al. 2016) by 

parsing the SRA database and by using MalariaGEN’s Pf3K 

(https://www.malariagen.net/projects/pf3k) and Broad’s 100 genome project (Plasmodium 

100 Genomes initiative, Broad Institute (https://www.broadinstitute.org)). The number of 

samples collected for each country was Bangladesh=50, Cambodia=663, DRC=113, French 

Guiana=58, Ghana=605, Guinea=100, Laos=85, Malawi=269, Mali=119, Myanmar=60, 

Nigeria=5, Senegal=137, Thailand=536, The Gambia=65, Uganda=11, Vietnam=97. In 

addition to the field samples, datasets contained the following lab strains, DD2, GB4, W2, 

IT/FCR3, 3D7, Tanzania (2000708), UGT5.1, 7G8, FCH/4, CAMP/Malaysia, 

MaliPS096_E11, NF135/5.C10, NF54, Santa Lucia, Palo Alto/Uganda and Vietnam 

Oak-Knoll (FVO). See below for a description of each study.  

Pf3k 

MalariaGEN’s Pf3K sequence reads (data release 5) of 2,512 whole genome sequencing 

samples were downloaded using their SRA accession numbers 

(https://www.malariagen.net/projects/pf3k). Data represents samples collected from 14 

different countries across Africa and Southeast Asia {Supplemental Table}. The majority of 

samples were 2x100 paired end Illumina sequencing. The Pf3k data also consists of 28 lab 

control various mixtures of 3D7, DD2, 7G8, and HB3 with the strains mixed with frequencies 

range from 1-99% (6 mixtures of 3D7/DD2, 3 mixtures of DD2/HB3/7G8, 16 mixtures of 

https://paperpile.com/c/Egpczv/w3iQQ+2HgYS+TgPDv+7KbTB+CAytm
https://paperpile.com/c/Egpczv/w3iQQ+2HgYS+TgPDv+7KbTB+CAytm
https://www.malariagen.net/projects/pf3k
https://www.broadinstitute.org/
https://www.broadinstitute.org/
https://www.malariagen.net/projects/pf3k
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HB3/7G8, 1 monoclonal of HB3, and 1 monoclonal of 7G8). Pf3K contains multiple 

instances of some samples and these were removed.  

Other Lab Strains 

Several more monoclonal lab strain sequencing samples were also found by querying the 

SRA database. The strains were DD2 (ERR663287), GB4 (ERR027100), IT/FCR3 

(ERR713965), and W2 (ERR663245) and 10 3D7 samples (ERR043381, ERR043382, 

ERR044266, ERR047177, ERR047178, ERR047179, ERR047184, ERR047185, 

ERR047186 and ERR047187).  

Broad 100 Genomes Project 

The data from The Broad Institute’s 100 Genome project for Plasmodium (Plasmodium 100 

Genomes initiative, Broad Institute (broadinstitute.org)) has produced whole genome 

sequencing for the following lab strains Tanzania (2000708), UGT5.1, 7G8, FCH/4, 

CAMP/Malaysia, MaliPS096_E11, NF135/5.C10, NF54, Santa Lucia, Palo Alto/Uganda and 

Vietnam Oak-Knoll (FVO). The majority of lab strains were sequenced in triplicate with two 

libraries having a target insert size of 180 and 1 library with a target insert size of 5000. 

Whole genome sequencing was also produced for 44 samples from three different countries, 

22 from French Guiana, 11 from Mali and 11 from Uganda. The French Guiana samples 

were sequences similarly to the lab strains described above while the Mali and Uganda 

samples were sequenced only once with a target insert size of 180. All libraries were 

sequenced by Illumina 2x100 paired ends. 
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Baniecki et al. 2015 

An additional 34 samples from a longitudinal study in French Guiana from South America 

(Baniecki et al. 2015). 

Cerquerira et al 2017 

An additional 179 samples from a longitudinal study in Thailand were used though the 

majority of these samples were captured used hybrid capture which avoid the var gene 

regions so some samples lacked var2csa sequences (Cerqueira et al. 2017). 

Parobek et al 2017 

Data from a study on the effect of artemisinin partner drug usage had 93 clinical samples 

from 3 different regions in Cambodia, see paper for further details (Parobek et al. 2017).  

Dara et al 2017 

Data from a study on constructing var genes by utilizing Pacbio assemblies combined with 

Illumina paired end sequence had 12 samples from a village in Mali, see paper for further 

details (Dara, Travassos, et al. 2017).  

Kumar et al 2016 

Five samples from a study looking at Plasmodium falciparum diversity in India were also 

used (Kumar et al. 2016). 

https://paperpile.com/c/Egpczv/w3iQQ
https://paperpile.com/c/Egpczv/2HgYS
https://paperpile.com/c/Egpczv/TgPDv
https://paperpile.com/c/Egpczv/pTXse
https://paperpile.com/c/Egpczv/CAytm
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Determining Monoclonal Samples 

In order to investigate copy number we needed to determine which samples were 

monoclonal. We identified 300 hypervariable non-overlapping 200bp windows within 230 

single copy genes spread across all the chromosome of the Plasmodium genome. These 

were identified by interrogating the genomes of known laboratory strains to find small 

hypervariable regions that uniquely mapped back to the reference strain. We then 

determined that these windows had reliable coverage across the clinical datasets, then 

using PathWeather to conduct local reconstruction. A region was only considered if all 

contigs constructed spanned the whole region and not just a sub-portion of the region as 

these could represent failed constructions due to having more than one clone. Contigs also 

had to consist of at least 98% of the recruited reads to a region to ensure that all possible 

variants were being assembled. A sample was then classified as monoclonal if data was 

recovered for 200 or more of these 230 genes (some genes have more than 1 of the 300 

windows) and if PathWeaver constructed only a single haplotype. These windows had an 

expected heterozygosities ranging from .53 to .98 (mean 0.68). 

Analysis Programs Used  

Other analysis methods: Rarefaction curves generated by R package vegan 

(v2.4-6)(Oksanen et al. 2018); PCAs on multiple protein alignments were generated by 

custom c++ scripts using the method described in (Wang and Kennedy 2014) and using R’s 

(R version 3.4.3) prcomp followed by group clustering by Hierarchical DBSCAN (Ricardo J 

G, Moulavi, and Sander 2013).  

  

https://paperpile.com/c/Egpczv/2Z85x
https://paperpile.com/c/Egpczv/zohSZ
https://paperpile.com/c/Egpczv/DBY1m
https://paperpile.com/c/Egpczv/DBY1m
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Tables 

Table 4.1: Pf3k Control Assembly Programs Results 

Program 
# of var2csa 

copies 
Error Free 
Samples 

Total 
Samples 

Average # of 
False Contigs 

PathWeaver 5 5 5 0 

PathWeaver 2 7 7 0 

PathWeaver 3 16 16 0 

PathWeaver 4 2 3 0.67 

Spades 5 5 5 0 

Spades 2 1 7 1.29 

Spades 3 1 16 5.81 

Spades 4 0 3 9 

Spades-careful 5 5 5 0 

Spades-careful 2 6 7 0.29 

Spades-careful 3 2 16 2.75 

Spades-careful 4 0 3 6.33 
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Table 4.2: Reconstructed Sequences Count Per Region 

Region* 

UpsE-ID5 
NTS-ID5 

(Codon1-Codon24
81)** 

ID1-DBL2x-ID2a 
(MCBD) 

(Codon372-Codon999)
** 

Polymoprhic Region in 
MCBD 

(Codon391-Codon624)** 

South 
America 44 (7) 52 (8) 54 (7) 55 (7) 

West Africa 158 (142) 246 (205) 331 (240) 856 (506) 

Central Africa 23 (23) 34 (32) 40 (38) 111 (100) 

East Africa 54 (52) 68 (63) 82 (72) 274 (210) 

India 4 (2) 4 (2) 5 (2) 6 (2) 

South East 
Asia 456 (106) 518 (115) 644 (132) 1079 (172) 

Total 739 (332) 922 (420) 1156 (472) 2381 (906) 

Number of total sequences collected with number of unique sequences collected in 
parentheses  
* Countries per Region: Central Africa = Democratic Republic of the Congo; East Africa = 
Malawi,Mozambique,Uganda; India = India; South America = French Guiana; South East 
Asia = Bangladesh,Cambodia,Laos,Myanmar,Thailand,Vietnam; West Africa = 
Ghana,Guinea,Mali,Nigeria,Senegal,Gambia  
** Start amino acid (AA) codon to the beginning of DBL6  
*** Minimal binding domain spanning ID1-DBL2x-ID2a  
**** Polymorphic Region within minimal binding domain, includes regions from ID1 to DBL2
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Table 4.3: Counters Per Domain  

region 

3D7 
Codo

n 
Start 

3D7 
Codo

n 
Stop 

le
ng
th 

# of 
Seque
nces 

# of Unique 
Sequences 

# of 
Singl

ets 

Max 
Uniq
ue 

Coun
t*** 

# of 
Sampl
es**** 

# of 
Positions 

>=95% 
Conserved

***** 

% of 
Positions 

>=95% 
Conserved

***** 

Mean 
He(S

D) 

Upse-ID5* 
4936

1 
5744

6 
80
86 743 332 261 60 730 6076 75.14% 

0.241
(0.20

2) 

UpsE ORF** 1 119 
11
9 1553 197 81 223 1462 95 79.83% 

0.213
(0.17

7) 

NTS-ID5 1 2481 
24
81 904 405 309 63 904 1438 57.96% 

0.317
(0.22

1) 

NTS 1 65 65 2864 693 353 139 2109 40 61.54% 

0.296
(0.22

5) 

DBL1 66 356 
29
1 1694 612 397 73 1480 149 51.20% 

0.301
(0.22

7) 

ID1 357 568 
21
2 2558 936 591 110 1936 31 14.62% 

0.365
(0.19

6) 

Minimal CSA Binding 
Domain 372 999 

62
8 1145 465 331 72 1095 279 44.43% 

0.328
(0.22

4) 

Minimal CSA Binding 
Domain Polymorphic 
Region 391 624 

23
4 2366 885 569 108 1869 44 18.80% 

0.37(
0.197

) 

ID1-Polymorphic 391 572 
18
2 2648 914 554 112 1992 20 10.99% 

0.367
(0.19

1) 

DBL2 569 916 
34
8 1286 509 359 77 1196 213 61.21% 

0.252
(0.24

5) 

DBL2-Polymorphic 579 624 46 3313 306 107 210 2272 17 36.96% 

0.419
(0.20

8) 

ID2 917 1331 
41
5 1143 440 313 72 1118 229 55.18% 

0.34(
0.206

) 

DBL3 1332 1646 
31
5 1096 414 298 75 1095 230 73.02% 

0.29(
0.202

) 

ID3 1647 1715 69 1751 166 72 165 1594 54 78.26% 

0.337
(0.22

2) 
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DBL4 1716 2001 
28
6 1135 415 284 76 1130 209 73.08% 

0.156
(0.19

5) 

ID4 2002 2150 
14
9 1413 455 283 67 1294 115 77.18% 

0.199
(0.20

4) 

DBL5 2151 2430 
28
0 1564 573 384 81 1412 144 51.43% 

0.256
(0.22

9) 

ID5 2431 2481 51 3022 397 141 100 2158 23 45.10% 

0.308
(0.25

9) 

* 3D7 genomic location on chromosome 12 are given for the UpsE to ID5 region as it can't 
be fully translated 
** Codon positions are for the open reading frame and not the VAR2CSA codons 
*** The max number of times the same sequence was found 
**** The number of samples sequences were recovered from, some samples contribute 
more than one sequence for a region if it has more than 1 contig spanning the region 
***** 95% conserved meaning that for a given position 95% of the total sequences had the 
same amino acid/base 
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Table 4.4: Counts for MCBD PCA Groups  
 

group 

# of 
Sequen

ces 

# of 
Unique 
Sequen

ces 
# of 

Singlets 

Median 
Unique 
Count 

Max 
Unique 
Count 

# of 
Sample

s 

# of 
Position
s >=95% 
Conserv

ed 

% of 
Position
s >=95% 
Conserv

ed He 

1 947 325 212 3 108 872 127 54.27% 0.975 

2 52 27 15 2.5 6 50 95 40.60% 0.943 

3 926 348 226 3 104 862 127 54.27% 0.979 

4 96 11 5 10 38 96 147 62.82% 0.736 

5 128 71 42 3 6 124 138 58.97% 0.98 

6 230 105 65 3 18 227 145 61.97% 0.979 
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Figures  

 

Figure 4.1: Rarefaction Curves 
Rarefaction curves for the a) NTS-ID5 region, b) MCBD, and c) the polymorphic region in 
the MCBD. South East Asia shows signs of leveling out but the African regions are still very 
steep suggesting that there is still a high degree of diversity in Arica not yet documented.  
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Figure 4.2: PCA of NTS-ID5 
PCA of the protein multiple alignment of the NTS-ID5 region. The nodes are colored by the 
groups based on the PCA of the polymorphic region in the MCBD. Lab strains are labeled. 
PC1’s highest loading values fall mostly into the ID polymorphic region (Figure 4.3a)  
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Figure 4.3: PC1 and PC2 Loading Values for NTS-ID5, MCBD, 
MCBD-Polymorphic 
The PC1 and PC2 for the protein PCAs loading values normalized to the the max loading 
values for each, PC1 loading values are always the bar on top and PC2 loading values are 
always the bar on the bottom. a) shows the loading values for NTS-ID5, the highest values 
are PC1 fall within the ID1-Polymorphic b) shows loading values for the MCBD,the highest 
values for both PC1 and PC2 can be seen within the MCBD-Polymorphic region, and c) 
shows the loading values for the MCBD-Polymorphic region, showing that PC2 is being 
driven by the DBL2 polymorphic and PC1 is being driven by the ID1 polymorphic.  
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Figure 4.4: PCAs on the MCBD Domains 
PCAs on protein multiple alignments for several domains within the MCBD. a) The full 
minimum CSA binding domain itself, it is colored by the clusters determined for the 
polymorphic region in b), b) The polymorphic region of the MCBD made up of the ID1 
polymorphic c) and the DBL2 polymorphic d), shows 4 major groups and 2 minor groups, c) 
the ID1 polymorphic region colored by HDBSCAN on its own region,splits into 4 groups d) 
the DBL2 polymorphic region, breaks up into 3 groups  
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Figure 4.5: All Domains PCAs 
PCA plots for each DBL and ID domains and the NTS and the UpsE ORF. Coloring is done 
by HDBSCAN on the PCA.  
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Figure 4.6: PCA of the Region Beyond the DBL2 within the MCBD 
PCA of the region beyond the polymorphic region in the MCBD, cover most of the DBL2 
region and the ID2 region within MCBD. No structure is evident from the plot showing that 
the majority of the structure in the MCBD is in the polymorphic regions in ID1 and DBL2.  
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Figure 4.7: MCBD Polymorphic PCA Group Counts 
Counts across years and regions of the groups determined by the PCA on the polymorphic 
region in MCBD. The groups appear to stay stable across a) regions and b) years, 
suggestive of balancing selection keeping diversity.  
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Figure 4.8: t-SNE of the Chromosome 12 Coverage 
A TSNE off of the mean genome coverage of chromosome 12 of all monoclonal samples to 
select groups that were observed to have normal coverage.  
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Figure 4.9: Example of Assembly Output of 2 var2csa Copies Samples 
Example of 4 monoclonal samples with evidence for two copies of var2csa. The relative 
positions of the domains are shown on the bottom. The length of the blocks indicate length 
and the height of the blocks indicate read depth. Blue rectangles have 1 tail and pink 
rectangles have 2 tails.  
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Figure 4.10: var2csa Copies Calls Across Time and Region 
The x axis is both year and region, y axis is the relative amount of the monoclonal samples 
for each copy count. Bars are colored by the number of copies. The total amount for a given 
year and region is on the top of the bars.  
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Figure 4.11: ID1 Types Monocopy var2csa Samples 
The y axis is the rounded var2csa coverage for this region divided by the mean base 
coverage and x axis is samples. The bars are colored by ID1 type determined in Figure 
4.4a.  
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Figure 4.12: ID1 Types Two Copies var2csa Samples 
The y axis is the rounded var2csa coverage for this region divided by the mean base 
coverage and x axis is samples. The bars are colored by ID1 type determined in Figure 
4.4a.  
  



147 

 

Figure 4.13: Locations of var2csa in Pf3k Assembled Genomes 
The locations of var2csa as determined by LASTZ(Harris 2007) in the chromosome level 
assemblies of the Pf3k genomes. a) PfTG01 is from Togo and has 4 copies have var2csa, 
two in tandem on chromosome 12 and two in tandem on chromosome 8. How related the 
copies are shown to the right. b) PfSN01 is from Senegal and has two var2csa copies in 
tandem on chromosome 12. c) Lab PfHB3 strain is from Honduras and has a var2csa copy 
on chromosome 12 and one on chromosome 1.  
  

https://paperpile.com/c/Egpczv/qdRf
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Figure 4.14: PathWeaver Recruitment Algorithm Overview 
a) First what reads do map to a region are extracted and are used to construct initial contigs. 
b) These contigs are then used to recruit reads from the reads that are unmapped and 
assembly is ran again with all reads. c) This is done iteratively until there are either no more 
reads recruited or the max iterations (default 20) is hit.  
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Chapter V: Carmen: Where in the world is my 

haplotype?  

Abstract  

There have been many tools invented to view or summarize SNP/INDEL variant calls from 

shotgun whole genome sequencing; however, as targeted amplicon sequencing becomes 

more popular, tools that report haplotype information rather than the traditional variant calls 

will be more useful. For this reason, Carmen was invented to utilize the PathWeaver 

algorithm introduced in Chapter IV to both collect and visualize haplotype data from publicly 

available datasets to better inform targeted amplicon studies. Carmen was found to be 

accurate based off of results on various regions in the P. falciparum genome using known 

lab strain control mixture, and proved to be useful on a previous targeted amplicon dataset.  

Introduction 

As mentioned in previous chapters, the analysis of infectious disease by using 

haplotypes rather than just by calling SNP/INDEL variants is becoming more popular of late 

(Bailey et al. 2012; Mideo et al. 2016; R. H. Miller et al. 2017; Verity et al. 2018). However, 

there aren’t as many programs that report haplotype worldwide prevalence like MalariaGen 

does with its Panoptes application for SNP variants (Vauterin et al. 2017). Haplotypes can 

also be checked in NCBI’s BLAST to determine if a haplotype has been found before, but 

https://paperpile.com/c/Egpczv/gMNy+GIIf+s16U+74Kc
https://paperpile.com/c/Egpczv/r8Kz
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this lacks the ability to report comprehensive summary reports on how many times, where, 

and when a haplotype has been found as appropriate metadata is often lacking or hard to 

collate. For that reason, I have invented the program dubbed Carmen to find where in the 

world certain haplotypes are found.  

Carmen takes a genomic location, a directory of bam alignment files, and a metadata 

file for the input samples with country and collection year to collect local haplotypes for the 

given region and report the years in which each haplotype was found. Carmen was 

designed to be broadly applicable to any species, but was tested here on P. falciparum with 

several highly variable genomic regions, including regions often studied in targeted 

sequencing approaches, such as thrombospondin-related anonymous protein (TRAP), 

circumsporozoite protein (CSP) (Mideo et al. 2016; Bailey et al. 2012), and apical membrane 

antigen 1 (AMA1) (R. H. Miller et al. 2017), among many others; see Table 5.1 and Table 

5.2 for a list of all genes. These regions were chosen because highly variable regions are 

the common target of targeted approaches and represent the most likely regions Carmen 

would be used on. Carmen was then tested for accuracy on known lab control mixtures 

provided by MalariaGen’s Pf3k project (Table 5.3) and then used on output of a previous 

study on the CSP gene (Mideo et al. 2016).  

Results 

Known Lab Strains  

The goal of Carmen is to collect as many high quality accurate local haplotype 

sequences from samples as possible, and not necessarily to call all expected sequences 

from a sample (especially since, depending on the length of the region of interest, this is not 

https://paperpile.com/c/Egpczv/GIIf+gMNy
https://paperpile.com/c/Egpczv/s16U
https://paperpile.com/c/Egpczv/GIIf
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always possible with a short read assembly method, as variation cannot always stitched 

together if read length is not adequate enough to bridge conserved sequence in between). 

For this reason, Carmen was evaluated for the number of haplotypes that matched the 

expected sequence, here coined “True haplotypes.” Results are summarized in Tables 5.4 

and 5.5. Carmen shows high accuracy on all samples for all MOIs. For the 200 bp window, 

20/31 (67%) of the samples showed perfect accuracy, with at most 5 windows out of the 

1862 windows containing errors for a sample, and 1819/1862 (97.7%) of the windows were 

always reconstructed correctly. For the 400 bp window, 27/31 (87.1%) of the samples 

showed perfect accuracy, with at most 2 windows out of the 128 windows containing errors 

for a sample, and 123/128 (96.1%) of the windows were always reconstructed correctly. 

With the exception of the IT sample, Carmen was able to accurately reconstruct the majority 

of windows for both 200 bp and 400 bp for the monoclonal samples, showing that Carmen is 

able to accurately reconstruct all windows. The failure on the polyclonal samples are due to 

read length not being able to span the variation present in the multiple clones.  

Example PfCSP Dataset 

To test Carmen on a real set of haplotypes from a targeted amplicon analysis, I 

selected a previous study on the region of P. falciparum CSP encoding the polymorphic 

C-terminal region the gene, which resulted in 45 unique population haplotypes (Mideo et al. 

2016). Carmen determined the genomic location of the 45 haplotypes to be Pf3D7_03_v3 

221423-221670(-) in the 3D7 reference genome (v3), which is the correct region targeted in 

the study (247 bp long). Carmen used this determined region to call haplotypes from the 

samples described in Chapter IV which, in short, contain samples from the following 

countries: Bangladesh=50, Cambodia=663, DRC=113, French Guiana=58, Ghana=605, 

https://paperpile.com/c/Egpczv/GIIf
https://paperpile.com/c/Egpczv/GIIf
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Guinea=100, Laos=85, Malawi=269, Mali=119, Myanmar=60, Nigeria=5, Senegal=137, 

Thailand=536, The Gambia=65, Uganda=11, Vietnam=97, as well as the control datasets 

described above. The sequences extracted from the control dataset all matched the 

expected sequences for all 31 samples. Carmen was able to collect 3,181 (219 unique) 

sequences from the field samples.  

Carmen was able to create a connected haplotype network by connecting all 

haplotypes that were 2 or fewer differences from each other (Figure 5.1 PfCSP Network). 

The network is made up of nodes of haplotypes colored by the region found in, and the area 

of the circle corresponds to number of times it was found. It can be observed that there is 

some distinct clustering by geography, where haplotypes are more likely to cluster with other 

haplotypes found in the same region--which has been observed for this region previously (A. 

E. Barry et al. 2009). Nodes were also created for all 45 input population sequences, and 

colored by the country they came from in the previous study. The top 5 that appeared in the 

most subjects in the previous are labeled. We can see that the most abundant haplotype 

from the Cambodia samples (which was the dominant infection across all Cambodian 

subjects), matches perfectly with the most abundant haplotype from South East Asia; 

similarly, the most abundant haplotypes from the Tanzania samples cluster closely with 

haplotypes from Africa.  

Discussion 

As the focus moves from SNP/INDEL variant calling to targeted amplicon 

approaches, we will need more tools specifically for analyzing haplotype data. For that 

reason, I have created Carmen, a tool that can take advantage of the wealth of publicly 

available data which has associated country and collection year metadata to report 

https://paperpile.com/c/Egpczv/zXgc
https://paperpile.com/c/Egpczv/zXgc
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important prevalence data for newly found haplotypes. Carmen should be an important aid 

for interrupting targeted haplotype approaches.  

I have evaluated Carmen’s accuracy by utilizing control mixtures of known P. 

falciparum lab strains for which there are whole chromosome level assemblies available to 

check expected sequences against. I have demonstrated that Carmen can accurately 

reconstruct regions of interest of 200 bp and 400 bp which includes genes like AMA1 and 

CSP, which are often targets of targeted amplicon approaches in P. falciparum studies (R. 

H. Miller et al. 2017; Bailey et al. 2012; Mideo et al. 2016). Carmen has demonstrated the 

ability to accurately collect local haplotypes from the majority of windows from monoclonal 

samples, as well as from polyclonal samples, which allows it to optimize the amount of 

haplotype data it can collect and is not limited to only monoclonal samples.  

Carmen was then used on a real dataset from a previous study (Mideo et al. 2016) 

using targeted amplicon sequencing of P. falciparum to create strain specific clearance 

curves for patients from Cambodia and Tanzania. Carmen was able to determine the 

appropriate region and extracted 3,181 (219 unique) from publically available field samples. 

Using the metadata associated with these field samples, we are able to see that the 

haplotypes from the Cambodian and Tanzanian samples matched haplotypes from the 

corresponding regions in the field samples. At the time of writing of the previous study 

(Mideo et al. 2016), there were some concerns whether to trust the data from the Cambodia 

dataset, since all of the samples were strongly dominated by a single haplotype; it was 

postulated that it could have been contamination. At that time, there wasn’t a comprehensive 

way of determining whether this haplotype had been found before in Cambodia, other than 

by looking at haplotypes reported by other studies; however, now with Carmen, we can 

https://paperpile.com/c/Egpczv/s16U+gMNy+GIIf
https://paperpile.com/c/Egpczv/s16U+gMNy+GIIf
https://paperpile.com/c/Egpczv/GIIf
https://paperpile.com/c/Egpczv/GIIf
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confirm that the haplotype found is in fact the most dominant haplotype in the South East 

Asia region.  

In conclusion, Carmen has proven to accurately extract haplotype sequence from 

publicly available shotgun whole genome field samples for P. falciparum; used on a real 

dataset, Carmen has shown the utility of being able to compare to expected haplotype 

sequence for both the genomic and geographical regions being studied. Carmen is written to 

be able to work with a variety of species, and should prove to be a valuable resource for 

targeted amplicon studies moving forward.  

Methods 

Algorithm Overview  

Carmen can either be run by giving it a set of genomic location in a Browser 

Extensible Data (BED, https://genome.ucsc.edu/FAQ/FAQformat.html#format1) file, or a 

set of haplotypes from which Carmen will determine the genomic location by mapping to a 

reference genome using LASTZ (Harris 2007) to create a BED file. Carmen then runs the 

PathWeaver algorithm, described in Chapter IV, on the region(s) from the BED file on a 

directory of alignment of files. In short, the PathWeaver algorithm is a graph assembly based 

algorithm designed specifically to construct local haplotypes from a region of interest in an 

alignment file, with special care taken to avoid creating false haplotypes for the cases of 

multiple copies, or multiple clones for a region that share large amounts of conserved 

sequence. Carmen then collates the haplotypes called for a region from each sample into 

one file, and reports countries and years found in supplied with a metadata file, which is a 

tab separated file with one column being sample names and each additional column being a 

https://genome.ucsc.edu/FAQ/FAQformat.html#format1
https://paperpile.com/c/Egpczv/qdRf
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meta field for the given samples. The only requirements of Carmen are that all alignment 

files are aligned to the same reference genome file; for inputs, Carmen also needs the 

reference genome that the samples were aligned to, and a metadata file that contains at 

least country and collection year (NAs can be provided as placeholders). In addition, other 

genomes or assemblies of known/lab strains can be provided, and the sequences of these 

strains will be added to the output. Carmen was designed to be broadly applicable and, 

therefore, as long as the input data matches the above requirements, Carmen should be 

able to run on input from a variety of sources.  

Carmen’s output is a directory which contains all the result files. These files include 

1) a fasta file of collected sequences, given a unique identifier named with genomic location 

extracted from and appended with an ID number starting from 0 where 0 is the most 

commonly found haplotype, 1 is the second most commonly found haplotype, etc., 2) a 

report of the samples the haplotypes were found in and a summary of the years and 

countries these samples are from, and 3) if Carmen was run with input haplotypes rather 

than just a given BED file, a report of the newly constructed haplotypes that match or most 

closely match the input haplotypes. Carmen also comes with a lightweight HTML viewer that 

can be run on the output directory to interactively view where haplotypes are found on a 

map, an interactive sequence viewer, and a network of how all the haplotypes are related 

(Figure 5.2).  

P. falciparum Known Control Mixtures  

Though Carmen is designed to be broadly applicable, my lab primarily works with P. 

falciparum, and therefore its capabilities and accuracy was tested on input from P. 

falciparum. Carmen’s accuracy was tested on 27 known lab strain control mixtures provided 
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by MalariaGen’s Pf3k project (https://www.malariagen.net/projects/pf3k). The mixtures were 

of either 2 or 3 strains and consisted of the lab strains 3D7, Dd2, HB3, and 7G8; see Table 

5.3 for details. Also, four additional monoclonal lab strains shotgun whole genome samples 

were analyzed, GB4 (ERR027100), 3D7 (ERR043381), IT (ERR713965), and Dd2 

(ERR663287). These sample were chosen because Pf3k have assembled genomes for 

them and therefore expected sequences can be determined and checked for accuracy in 

reconstructions.  

P. falciparum Genomic Locations Analyzed 

Carmen was run on 1,843 windows of 200 base pairs (bp) in length, and 127 

windows of 400 bp in length from an analysis on highly variable regions in P. falciparum 

(unpublished). The 200 bp windows covered 390 genes and the 400 bp windows covered 27 

genes, see Tables 5.1 and 5.2. Window sizes of 200 bp and 400 bp were chosen as these 

are common sizes for targeted approaches due to sequence technology read length 

limitations of Illumina. Carmen was run on the lab control mixtures and monoclonal samples 

to extract local haplotypes from these regions. Extracted sequences compared to the 

expected sequence. Expected sequences were determined by extracting sequences from 

the Pf3k PacBio assembled genomes using LASTZ (Harris 2007) to determine their location. 

Data is only reported for a location if a haplotype that spans the whole region of interest is 

reconstructed. This is not always possible for polyclonal samples or for polycopy regions 

when the read length is insufficient to properly stitch together variation on the ends of 

conserved regions when the conserved region is longer than read length. In this case, 

segments that are shorter than the region of interest are created, but since the interest here 

is the local haplotype that spans the whole region, only full length local haplotypes are 

https://www.malariagen.net/projects/pf3k
https://paperpile.com/c/Egpczv/qdRf
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collected. For this reason, some samples will have no local haplotypes called for a region 

which can happen more often as the number of strains/copies increases. 

Example Dataset 

To test Carmen, a real dataset a previous study had done in collaboration with our 

lab was used. The study had amplified the region of P. falciparum CSP encoding the 

polymorphic C-terminal region the gene in order to create strain specific clearance curves 

from samples from patients in Tanzania and Cambodia to look for evidence of slow clearing 

parasites (Mideo et al. 2016). The study had 14 patients sampled over 72 hours up to 4 

times each. Analysis resulted in 45 final unique population haplotypes and these haplotypes 

were run through the Carmen pipeline.  

  

   
  

https://paperpile.com/c/Egpczv/GIIf
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Tables 

Table 5.1: Gene IDs for 200 bp Windows  
 

Gene ID Gene Description 
# of 
200bp 
windows 

PF3D7_0102500 erythrocyte binding antigen-181 (EBA181) 1 
PF3D7_0102800 conserved Plasmodium protein, unknown function 2 
PF3D7_0103100 vacuolar protein sorting-associated protein 51, putative (VPS51) 1 
PF3D7_0103300 conserved Plasmodium protein, unknown function 5 
PF3D7_0103500 conserved Plasmodium protein, unknown function 4 
PF3D7_0103600 ATP-dependent RNA helicase, putative 2 
PF3D7_0104100 conserved Plasmodium membrane protein, unknown function 7 
PF3D7_0106300 calcium-transporting ATPase (ATP6) 4 
PF3D7_0110200 FAD-linked sulfhydryl oxidase ERV1, putative (ERV1) 1 
PF3D7_0110600 phosphatidylinositol-4-phosphate 5-kinase (PIP5K) 1 
PF3D7_0112200 multidrug resistance-associated protein 1 (MRP1) 5 
PF3D7_0112900 Plasmodium exported protein, unknown function 3 
PF3D7_0113100 surface-associated interspersed protein 1.1 (SURFIN 1.1) (SURF1.1) 8 
PF3D7_0113600 surface-associated interspersed protein 1.2 (SURFIN 1.2), pseudogene (SURF1.2) 11 
PF3D7_0113800 DBL containing protein, unknown function 48 
PF3D7_0202100 Plasmodium exported protein (PHISTc), unknown function,liver stage associated protein 2 (LSAP2) 9 
PF3D7_0204500 aspartate aminotransferase,aspartate transaminase (AspAT) 8 
PF3D7_0207000 merozoite surface protein 4 (MSP4) 1 
PF3D7_0207300 serine repeat antigen 8 (SERA8) 3 
PF3D7_0207500 serine repeat antigen 6 (SERA6) 3 
PF3D7_0207700 serine repeat antigen 4 (SERA4) 1 
PF3D7_0208000 serine repeat antigen 1 (SERA1) 5 
PF3D7_0209000 6-cysteine protein (P230) 1 
PF3D7_0210200 conserved Plasmodium protein, unknown function 2 
PF3D7_0210800 conserved Plasmodium protein, unknown function 7 
PF3D7_0211700 tyrosine kinase-like protein, putative (TKL1) 1 
PF3D7_0212100 conserved Plasmodium protein, unknown function 4 
PF3D7_0212400 conserved Plasmodium membrane protein, unknown function 4 
PF3D7_0213800 conserved Plasmodium protein, unknown function 1 
PF3D7_0214600 serine/threonine protein kinase, putative 2 
PF3D7_0214800 conserved Plasmodium membrane protein, unknown function 1 
PF3D7_0220000 liver stage antigen 3 (LSA3) 2 
PF3D7_0220100 DnaJ protein, putative 9 
PF3D7_0220800 cytoadherence linked asexual protein 2 (CLAG2) 1 
PF3D7_0221100 Plasmodium exported protein, unknown function, pseudogene 1 
PF3D7_0221200 Plasmodium exported protein (hyp15), unknown function 2 
PF3D7_0301400 Plasmodium exported protein, unknown function 2 
PF3D7_0301800 Plasmodium exported protein, unknown function 2 
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PF3D7_0301900 conserved Plasmodium protein, unknown function 2 
PF3D7_0302100 serine/threonine protein kinase (SRPK1) 3 
PF3D7_0302600 ABC transporter, (TAP family), putative 6 
PF3D7_0303100 conserved Plasmodium protein, unknown function 1 
PF3D7_0304600 circumsporozoite (CS) protein (CSP) 3 
PF3D7_0304700 conserved Plasmodium protein, unknown function 1 
PF3D7_0305100 conserved Plasmodium protein, unknown function 1 
PF3D7_0308000 DNA polymerase epsilon subunit b, putative 1 
PF3D7_0308100 conserved Plasmodium protein, unknown function 10 
PF3D7_0309900 conserved Plasmodium protein, unknown function 5 
PF3D7_0310200 phd finger protein, putative 1 
PF3D7_0311600 dolichyl-diphosphooligosaccharide--protein glycosyltransferase subunit 1, putative 1 
PF3D7_0312100 E3 ubiquitin-protein ligase, putative 7 
PF3D7_0315200 circumsporozoite- and TRAP-related protein (CTRP) 5 
PF3D7_0315600 conserved Plasmodium protein, unknown function 6 
PF3D7_0316200 conserved Plasmodium protein, unknown function 8 
PF3D7_0318200 DNA-directed RNA polymerase II subunit RPB1, putative (RPB1) 7 
PF3D7_0318300 conserved Plasmodium protein, unknown function 5 
PF3D7_0319400 kinesin-8, putative 7 
PF3D7_0319800 conserved Plasmodium protein, unknown function 1 
PF3D7_0320400 oocyst capsule protein (Cap380) 12 
PF3D7_0321500 peptidase, putative 3 
PF3D7_0323400 Rh5 interacting protein (RIPR) 1 
PF3D7_0401900 acyl-CoA synthetase (ACS6) 8 
PF3D7_0402000 Plasmodium exported protein (PHISTa), unknown function 3 
PF3D7_0402200 surface-associated interspersed protein 4.1 (SURFIN 4.1), pseudogene (SURF4.1) 22 
PF3D7_0402300 reticulocyte binding protein homologue 1,normocyte binding protein 1 (RH1) 9 
PF3D7_0402400 Plasmodium exported protein, unknown function (GEXP18) 14 
PF3D7_0402800 erythrocyte membrane protein 1 (PfEMP1), pseudogene 6 
PF3D7_0404600 conserved Plasmodium membrane protein, unknown function 5 
PF3D7_0408600 sporozoite invasion-associated protein 1 (SIAP1) 23 
PF3D7_0412300 phosphopantothenoylcysteine synthetase, putative 3 
PF3D7_0413400 erythrocyte membrane protein 1 (PfEMP1), exon 1, pseudogene (VAR) 7 
PF3D7_0414000 chromosome associated protein, putative 5 
PF3D7_0414100 conserved Plasmodium membrane protein, unknown function 10 
PF3D7_0414200.1 calmodulin-like+protein 4 
PF3D7_0415200 conserved Plasmodium protein, unknown function 1 
PF3D7_0415800 RING zinc finger protein, putative 1 
PF3D7_0417200 bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) 2 
PF3D7_0417400 conserved Plasmodium protein, unknown function 1 
PF3D7_0418000 conserved Plasmodium protein, unknown function 12 
PF3D7_0418300 conserved Plasmodium protein, unknown function 1 
PF3D7_0418600 regulator of chromosome condensation, putative 7 
PF3D7_0419000 conserved Plasmodium protein, unknown function 3 
PF3D7_0419400 conserved Plasmodium protein, unknown function 1 
PF3D7_0419900 phosphatidylinositol 4-kinase, putative 6 
PF3D7_0420000 zinc finger protein, putative 12 
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PF3D7_0420100 serine/threonine protein kinase RIO2 (RIO2) 3 
PF3D7_0420200 holo-(acyl-carrier protein) synthase, putative 9 
PF3D7_0422200 erythrocyte+membrane-associated+antigen 8 
PF3D7_0422500 pre-mRNA-splicing helicase BRR2, putative (BRR2) 1 
PF3D7_0422800 serpentine receptor, putative (SR12) 3 
PF3D7_0424100 reticulocyte binding protein homologue 5 (RH5) 7 
PF3D7_0424300 erythrocyte binding antigen-165, pseudogene (EBA165) 5 
PF3D7_0424400 surface-associated interspersed protein 4.2 (SURFIN 4.2) (SURF4.2) 29 
PF3D7_0424600 Plasmodium exported protein (PHISTb), unknown function 7 
PF3D7_0424900 Plasmodium exported protein (PHISTa), unknown function 3 
PF3D7_0425000 Plasmodium exported protein, unknown function, pseudogene 1 
PF3D7_0500900 serine/threonine protein kinase, FIKK family (FIKK5) 5 
PF3D7_0501600 rhoptry-associated protein 2 (RAP2) 8 
PF3D7_0501800 chromosome assembly factor 1 (CAF1) 3 
PF3D7_0502400 ring-stage membrane protein 1,merozoite surface protein 8 (MSP8) 4 
PF3D7_0503200 conserved Plasmodium protein, unknown function 1 
PF3D7_0504700 conserved Plasmodium protein, unknown function 6 
PF3D7_0506500 conserved Plasmodium protein, unknown function 3 
PF3D7_0506900 rhomboid protease ROM4 (ROM4) 4 
PF3D7_0508000 6-cysteine protein (P38) 8 
PF3D7_0509600 asparagine--tRNA ligase (AsnRS) 7 
PF3D7_0511400 conserved Plasmodium protein, unknown function 1 
PF3D7_0514300 aspartate--tRNA ligase, putative 1 
PF3D7_0515500 amino acid transporter, putative 2 
PF3D7_0516100 cation-transporting ATPase 1 (ATPase1) 5 
PF3D7_0518700 mRNA-binding protein PUF1 (PUF1) 1 
PF3D7_0519300 cytochrome c oxidase assembly protein (heme A: farnesyltransferase), putative 1 
PF3D7_0519900 conserved Plasmodium protein, unknown function 1 
PF3D7_0522400 conserved Plasmodium protein, unknown function 3 
PF3D7_0523000 multidrug resistance protein (MDR1) 6 
PF3D7_0525100 acyl-CoA synthetase (ACS10) 15 
PF3D7_0525800 inner membrane complex protein 1g, putative (IMC1g) 8 
PF3D7_0526600 conserved Plasmodium protein, unknown function 2 
PF3D7_0529000 conserved Plasmodium protein, unknown function 8 
PF3D7_0529300 apicoplast TIC22 protein (TIC22) 2 
PF3D7_0529400.1 conserved Plasmodium protein, unknown function 1 
PF3D7_0529800 conserved Plasmodium protein, unknown function 1 
PF3D7_0532200 Plasmodium exported protein (PHISTc), unknown function 1 
PF3D7_0532300 Plasmodium exported protein (PHISTb), unknown function 13 
PF3D7_0532600 Plasmodium exported protein, unknown function 2 
PF3D7_0602400 elongation factor G (EF-G) 3 
PF3D7_0602800 JmjC domain containing protein (JmjC2) 2 
PF3D7_0603600 conserved Plasmodium protein, unknown function 9 
PF3D7_0604100 transcription factor with AP2 domain(s),SPE2-interacting protein (SIP2) 5 
PF3D7_0604300 conserved Plasmodium protein, unknown function 4 
PF3D7_0606000 conserved Plasmodium protein, unknown function 5 
PF3D7_0609600 probable protein, unknown function 4 
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PF3D7_0612700 6-cysteine protein (P12) 1 
PF3D7_0612900 nucleolar GTP-binding protein 1, putative 6 
PF3D7_0613300 rhoptry protein (ROP14) 6 
PF3D7_0615400 ribonuclease, putative 5 
PF3D7_0615900 conserved Plasmodium protein, unknown function 4 
PF3D7_0619500 acyl-CoA synthetase (ACS12) 6 
PF3D7_0619800 conserved Plasmodium membrane protein, unknown function 1 
PF3D7_0620400 merozoite surface protein 10 (MSP10) 6 
PF3D7_0622300 vacuolar transporter chaperone, putative 4 
PF3D7_0622800 leucine--tRNA ligase, putative 1 
PF3D7_0624800 conserved Plasmodium protein, unknown function 1 
PF3D7_0625600 poly(A) polymerase PAP, putative 5 
PF3D7_0625900 conserved Plasmodium protein, unknown function 2 
PF3D7_0628100 HECT-domain (ubiquitin-transferase), putative 2 
PF3D7_0628200 protein kinase PK4 (PK4) 1 
PF3D7_0629700 SET domain protein, putative (SET1) 12 
PF3D7_0630300 DNA polymerase epsilon, catalytic subunit a, putative 7 
PF3D7_0630600 conserved Plasmodium protein, unknown function 3 
PF3D7_0701900 Plasmodium exported protein, unknown function 7 
PF3D7_0702000 Plasmodium exported protein (hyp12), unknown function 11 
PF3D7_0702500 Plasmodium exported protein, unknown function 7 
PF3D7_0703900 conserved Plasmodium membrane protein, unknown function 3 
PF3D7_0704600 E3 ubiquitin-protein ligase (UT) 1 
PF3D7_0705200 conserved Plasmodium protein, unknown function 2 
PF3D7_0706100 conserved Plasmodium protein, unknown function 1 
PF3D7_0709300 Cg2 protein (CG2) 8 
PF3D7_0710000 conserved Plasmodium protein, unknown function 14 
PF3D7_0710200 conserved Plasmodium protein, unknown function 4 
PF3D7_0710900 50S ribosomal protein L1, mitochondrial, putative (RPL1) 3 
PF3D7_0711200 conserved Plasmodium protein, unknown function 2 
PF3D7_0713900 conserved Plasmodium protein, unknown function 2 
PF3D7_0714200 conserved Plasmodium protein, unknown function 4 
PF3D7_0716300 conserved Plasmodium protein, unknown function 5 
PF3D7_0716700 conserved Plasmodium protein, unknown function 9 
PF3D7_0716800 eukaryotic translation initiation factor 3 37.28 kDa subunit, putative 1 
PF3D7_0721700 secreted ookinete protein, putative (PSOP1) 1 
PF3D7_0723800 conserved Plasmodium protein, unknown function 1 
PF3D7_0727000 vacuolar protein sorting-associated protein 53, putative (VPS53) 1 
PF3D7_0727200 cysteine desulfurase, putative (NFS) 2 
PF3D7_0728100 conserved Plasmodium membrane protein, unknown function 9 
PF3D7_0729700 conserved Plasmodium protein, unknown function 2 
PF3D7_0731400 serine/threonine protein kinase, FIKK family, pseudogene (FIKK7.2) 2 
PF3D7_0731500 erythrocyte binding antigen-175 (EBA175) 26 
PF3D7_0801300 von Willebrand factor A domain-related protein (WARP) 6 
PF3D7_0802000 glutamate dehydrogenase, putative (GDH3) 6 
PF3D7_0802300 rRNA processing WD-repeat protein, putative 4 
PF3D7_0804500 conserved Plasmodium membrane protein, unknown function 6 
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PF3D7_0806200 conserved Plasmodium membrane protein, unknown function 2 
PF3D7_0806300 ferlin, putative 4 
PF3D7_0806500 DnaJ protein, putative 1 
PF3D7_0806700 conserved Plasmodium membrane protein, unknown function 6 
PF3D7_0808300 ubiquitin regulatory protein, putative 1 
PF3D7_0809600 peptidase family C50, putative 2 
PF3D7_0810600 RNA helicase, putative 7 
PF3D7_0810800 dihydropteroate synthetase (DHPS) 6 
PF3D7_0811300 CCR4-associated factor 1 (CAF1) 3 
PF3D7_0811600 conserved Plasmodium protein, unknown function 3 
PF3D7_0812900 probable protein, unknown function 1 
PF3D7_0814600 conserved Plasmodium protein, unknown function 1 
PF3D7_0816300 conserved Plasmodium protein, unknown function 1 
PF3D7_0818800 U3 small nucleolar ribonucleoprotein protein, putative 1 
PF3D7_0819400 perforin-like protein 4 (PLP4) 1 
PF3D7_0820700 2-oxoglutarate+dehydrogenase+E1+component 2 
PF3D7_0823800 DnaJ protein, putative 1 
PF3D7_0825800 conserved Plasmodium protein, unknown function 6 
PF3D7_0826500 ubiquitin conjugation factor E4 B, putative (UBE4B) 1 
PF3D7_0826900 conserved Plasmodium protein, unknown function 2 
PF3D7_0827100 translation initiation factor IF-2, putative 1 
PF3D7_0827600 conserved Plasmodium protein, unknown function 3 
PF3D7_0827800 SET domain protein, putative (SET3) 2 
PF3D7_0827900 protein disulfide isomerase (PDI8) 3 
PF3D7_0829000 conserved Plasmodium membrane protein, unknown function 1 
PF3D7_0829600 early transcribed membrane protein 8 (ETRAMP8) 2 
PF3D7_0829800 unspecified+product 1 
PF3D7_0830100 unspecified+product 1 
PF3D7_0830300 sporozoite invasion-associated protein 2 (SIAP2) 1 
PF3D7_0830600 Plasmodium exported protein (PHISTc), unknown function 2 
PF3D7_0830800 surface-associated interspersed protein 8.2 (SURFIN 8.2) (SURF8.2) 30 
PF3D7_0831300 Plasmodium exported protein, unknown function (GEXP13) 7 
PF3D7_0831400 Plasmodium exported protein, unknown function 6 
PF3D7_0831600 cytoadherence linked asexual protein 8 (CLAG8) 1 
PF3D7_0901700 Plasmodium exported protein (hyp5), unknown function 8 
PF3D7_0902000 serine/threonine protein kinase, FIKK family (FIKK9.1) 3 
PF3D7_0903300 conserved Plasmodium membrane protein, unknown function 1 
PF3D7_0903400 DEAD/DEAH box helicase, putative 1 
PF3D7_0903600.1 conserved Plasmodium protein, unknown function 2 
PF3D7_0904300 conserved protein, unknown function 15 
PF3D7_0905400 high molecular weight rhoptry protein 3 (RhopH3) 5 
PF3D7_0905600 conserved Plasmodium protein, unknown function 4 
PF3D7_0906400 dynein light intermediate chain 2, cytosolic 4 
PF3D7_0910800 cytosolic Fe-S cluster assembly factor NBP35, putative (NBP35) 4 
PF3D7_0911300 cysteine repeat modular protein 1 (CRMP1) 10 
PF3D7_0912200 conserved Plasmodium membrane protein, unknown function 1 
PF3D7_0912600 conserved Plasmodium protein, unknown function 2 
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PF3D7_0913900 arginine--tRNA ligase, putative 3 
PF3D7_0914000 pseudouridylate synthase, putative 2 
PF3D7_0914100 conserved Plasmodium protein, unknown function 1 
PF3D7_0915400 6-phosphofructokinase (PFK9) 8 
PF3D7_0916400 conserved Plasmodium protein, unknown function 1 
PF3D7_0920200 CS domain protein, putative 2 
PF3D7_0920700 conserved Plasmodium protein, unknown function 5 
PF3D7_0922600 glutamine synthetase, putative 6 
PF3D7_0924000 patatin-like phospholipase, putative 5 
PF3D7_0926500 conserved Plasmodium protein, unknown function 2 
PF3D7_0926600 conserved Plasmodium membrane protein, unknown function 11 
PF3D7_0927200 zinc finger protein, putative 4 
PF3D7_0929400 high molecular weight rhoptry protein 2 (RhopH2) 9 
PF3D7_0930300 merozoite surface protein 1 (MSP1) 19 
PF3D7_0935600 gametocytogenesis-implicated protein (GIG) 3 
PF3D7_0936300 ring-exported protein 3 (REX3) 2 
PF3D7_1001400 alpha/beta hydrolase, putative 3 
PF3D7_1001600 alpha/beta hydrolase, putative 4 
PF3D7_1001700 Plasmodium exported protein (PHISTc), unknown function 6 
PF3D7_1002200 tryptophan-rich antigen 3 (PArt) 9 
PF3D7_1004600 conserved Plasmodium membrane protein, unknown function 3 
PF3D7_1005000 methionine--tRNA ligase, putative 2 
PF3D7_1005300 conserved Plasmodium protein, unknown function 7 
PF3D7_1005500 regulator of nonsense transcripts, putative 4 
PF3D7_1009200 small subunit rRNA synthesis-associated protein, putative 1 
PF3D7_1010800 50S ribosomal protein L22, mitochondrial, putative 4 
PF3D7_1011500 conserved Plasmodium membrane protein, unknown function 2 
PF3D7_1011800 PRE-binding protein (PREBP) 1 
PF3D7_1013900 initiation factor 2 subunit family, putative 1 
PF3D7_1016400 serine/threonine protein kinase, FIKK family (FIKK10.1) 5 
PF3D7_1019300 zinc finger protein, putative 1 
PF3D7_1020300 cytoplasmic dynein intermediate chain, putative 1 
PF3D7_1022200 conserved Plasmodium membrane protein, unknown function 2 
PF3D7_1023700 conserved Plasmodium protein, unknown function 8 
PF3D7_1028500 conserved Plasmodium protein, unknown function 2 
PF3D7_1029000 conserved Plasmodium protein, unknown function, pseudogene 1 
PF3D7_1029100.1 conserved Plasmodium protein, unknown function 2 
PF3D7_1029400 conserved Plasmodium protein, unknown function 4 
PF3D7_1029600 adenosine deaminase (ADA) 5 
PF3D7_1031400.1 OTU-like cysteine protease, putative 6 
PF3D7_1032300 conserved Plasmodium protein, unknown function 1 
PF3D7_1033000 conserved Plasmodium protein, unknown function 4 
PF3D7_1034600 conserved Plasmodium protein, unknown function 3 
PF3D7_1035000 U2 snRNA/tRNA pseudouridine synthase, putative 4 
PF3D7_1035100 probable protein, unknown function 10 
PF3D7_1035300 glutamate-rich protein (GLURP) 18 
PF3D7_1035700 duffy binding-like merozoite surface protein (DBLMSP) 5 
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PF3D7_1036300 merozoite surface protein (DBLMSP2) 5 
PF3D7_1036400 liver stage antigen 1 (LSA1) 11 
PF3D7_1102400 flavoprotein, putative 7 
PF3D7_1102500 Plasmodium exported protein (PHISTb), unknown function (GEXP02) 6 
PF3D7_1102600 Plasmodium exported protein, unknown function (GEXP14) 2 
PF3D7_1105600 translocon component PTEX88 (PTEX88) 5 
PF3D7_1106800 protein kinase, putative 4 
PF3D7_1111700 conserved Plasmodium protein, unknown function 2 
PF3D7_1112100 conserved Plasmodium protein, unknown function 1 
PF3D7_1113000 conserved Plasmodium protein, unknown function 12 
PF3D7_1116800 heat shock protein 101,chaperone protein ClpB2 (HSP101) 2 
PF3D7_1117200 conserved Plasmodium protein, unknown function 3 
PF3D7_1118300 insulinase, putative 5 
PF3D7_1120300 metal ion channel - Mg2+, Co2+ and Ni2+ 10 
PF3D7_1120400 alpha/beta hydrolase fold domain containing protein, putative 2 
PF3D7_1121300 tyrosine kinase-like protein (TKL2) 5 
PF3D7_1121800 petidase, M16 family 5 
PF3D7_1125700 kelch protein, putative 1 
PF3D7_1125800 kelch protein, putative 1 
PF3D7_1126100 autophagy-related protein 7, putative (ATG7) 4 
PF3D7_1126600 steryl ester hydrolase, putative 7 
PF3D7_1128300 6-phosphofructokinase (PFK11) 5 
PF3D7_1128900 conserved Plasmodium protein, unknown function 6 
PF3D7_1129100 parasitophorous vacuolar protein 1 (PV1) 3 
PF3D7_1131600 conserved Plasmodium protein, unknown function 2 
PF3D7_1133400 apical membrane antigen 1 (AMA1) 29 
PF3D7_1133900 conserved Plasmodium protein, unknown function 7 
PF3D7_1135100 protein phosphatase 2C, putative 9 
PF3D7_1139100 RNA-binding protein, putative 2 
PF3D7_1140500 myosin F, putative (MyoF) 3 
PF3D7_1140900 conserved Plasmodium protein, unknown function 4 
PF3D7_1141000 conserved Plasmodium protein, unknown function 4 
PF3D7_1141300 conserved Plasmodium protein, unknown function 1 
PF3D7_1143500 conserved Plasmodium protein, unknown function 1 
PF3D7_1143800 conserved Plasmodium protein, unknown function 3 
PF3D7_1145200 serine/threonine protein kinase, putative 1 
PF3D7_1145800 conserved Plasmodium protein, unknown function 10 
PF3D7_1147500 farnesyltransferase beta subunit, putative 14 
PF3D7_1200700 acyl-CoA synthetase (ACS7) 10 
PF3D7_1201400 Plasmodium exported protein, unknown function 14 
PF3D7_1205400 conserved Plasmodium protein, unknown function 7 
PF3D7_1205900 conserved protein, unknown function 3 
PF3D7_1208200 cysteine repeat modular protein 3 (CRMP3) 4 
PF3D7_1208900 conserved Plasmodium protein, unknown function 2 
PF3D7_1215900 serpentine receptor, putative (SR10) 1 
PF3D7_1216600 cell traversal protein for ookinetes and sporozoites (CelTOS) 7 
PF3D7_1217300 GTP-binding protein, putative 3 
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PF3D7_1217700 conserved Plasmodium protein, unknown function 3 
PF3D7_1218000 thrombospondin-related apical membrane protein (TRAMP) 1 
PF3D7_1218900 conserved Plasmodium protein, unknown function 6 
PF3D7_1219000 formin+2 5 
PF3D7_1219300 erythrocyte membrane protein 1, PfEMP1 (VAR) 2 
PF3D7_1221000 histone-lysine N-methyltransferase, H3 lysine-4 specific (SET10) 1 
PF3D7_1223400 phospholipid-transporting ATPase, putative 7 
PF3D7_1226400 conserved Plasmodium protein, unknown function 3 
PF3D7_1227500 cyclin (CYC2) 3 
PF3D7_1228600 merozoite surface protein 9 (MSP9) 1 
PF3D7_1228800 conserved Plasmodium protein, unknown function 8 
PF3D7_1229500 T-complex protein 1, gamma subunit, putative 1 
PF3D7_1230000 conserved Plasmodium protein, unknown function 1 
PF3D7_1231000 conserved Plasmodium protein, unknown function 1 
PF3D7_1231400 amino acid transporter, putative 5 
PF3D7_1234200 conserved Plasmodium protein, unknown function, pseudogene 5 
PF3D7_1235200 V-type K+-independent H+-translocating inorganic pyrophosphatase (VP2) 7 
PF3D7_1235800 conserved Plasmodium protein, unknown function 2 
PF3D7_1236400 conserved Plasmodium protein, unknown function 3 
PF3D7_1237400 conserved Plasmodium protein, unknown function 2 
PF3D7_1239800 conserved Plasmodium protein, unknown function 8 
PF3D7_1239900 vacuolar protein sorting-associated protein 16, putative (VPS16) 4 
PF3D7_1240200 erythrocyte membrane protein 1 (PfEMP1), pseudogene 16 
PF3D7_1244400 conserved Plasmodium protein, unknown function 1 
PF3D7_1244500 conserved Plasmodium protein, unknown function 6 
PF3D7_1247500 serine/threonine protein kinase, putative 10 
PF3D7_1248700 conserved Plasmodium protein, unknown function 4 
PF3D7_1250100 osmiophilic body protein (G377) 2 
PF3D7_1251200 coronin 8 
PF3D7_1251700 tryptophan--tRNA ligase, putative,tryptophanyl-tRNA synthetase, putative (aTrpRS) 2 
PF3D7_1252100 rhoptry neck protein 3 (RON3) 14 
PF3D7_1252400 reticulocyte binding protein homologue 3, pseudogene (RH3) 9 
PF3D7_1301600 erythrocyte binding antigen-140 (EBA140) 7 
PF3D7_1301800 surface-associated interspersed protein 13.1 (SURFIN 13.1), pseudogene (SURF13.1) 5 
PF3D7_1302900 conserved Plasmodium protein, unknown function 13 
PF3D7_1303800 conserved Plasmodium protein, unknown function 7 
PF3D7_1305000 conserved Plasmodium protein, unknown function 5 
PF3D7_1306500 MORN repeat protein, putative 3 
PF3D7_1308400 conserved Plasmodium protein, unknown function 12 
PF3D7_1312600 2-oxoisovalerate dehydrogenase subunit alpha, mitochondrial, putative (BCKDHA) 1 
PF3D7_1312800 conserved Plasmodium protein, unknown function 3 
PF3D7_1313600 conserved Plasmodium protein, unknown function 7 
PF3D7_1318300 conserved Plasmodium protein, unknown function 6 
PF3D7_1318900 conserved Plasmodium protein, unknown function 5 
PF3D7_1320700 conserved Plasmodium protein, unknown function 15 
PF3D7_1321100 conserved Plasmodium protein, unknown function 3 
PF3D7_1321900 conserved Plasmodium protein, unknown function 3 
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PF3D7_1322300 translation+initiation+factor+EIF-2B+subunit+related 7 
PF3D7_1327300 conserved Plasmodium protein, unknown function 6 
PF3D7_1328200 conserved Plasmodium protein, unknown function 6 
PF3D7_1331000 protein kinase, putative 8 
PF3D7_1331500 conserved Plasmodium protein, unknown function 1 
PF3D7_1333400 conserved protein, unknown function 3 
PF3D7_1335100 merozoite surface protein 7 (MSP7) 18 
PF3D7_1335900 sporozoite surface protein 2 (TRAP) 37 
PF3D7_1340400 conserved Plasmodium protein, unknown function 3 
PF3D7_1342600 myosin A (MyoA) 6 
PF3D7_1342900 transcription factor with AP2 domain(s) (ApiAP2) 1 
PF3D7_1343100 conserved Plasmodium protein, unknown function 2 
PF3D7_1343400 DNA repair protein RAD5, putative (RAD5) 6 
PF3D7_1343800 conserved Plasmodium protein, unknown function 2 
PF3D7_1344000 aminomethyltransferase, putative 3 
PF3D7_1344400 conserved Plasmodium protein, unknown function 5 
PF3D7_1345600 inner+membrane+complex+protein 3 
PF3D7_1346400 conserved Plasmodium protein, unknown function 2 
PF3D7_1346700 6-cysteine protein (P48/45) 4 
PF3D7_1347200 nucleoside transporter 1 (NT1) 2 
PF3D7_1350500 conserved Plasmodium protein, unknown function 1 
PF3D7_1352700 P-loop containing nucleoside triphosphate hydrolase, putative 3 
PF3D7_1352900 Plasmodium exported protein, unknown function,fam-f protein 19 
PF3D7_1353100 Plasmodium exported protein, unknown function 9 
PF3D7_1355600 conserved Plasmodium protein, unknown function 2 
PF3D7_1358200 conserved Plasmodium protein, unknown function 4 
PF3D7_1358600 zinc finger protein, putative 2 
PF3D7_1359500 conserved Plasmodium protein, unknown function 3 
PF3D7_1359600 conserved Plasmodium protein, unknown function 3 
PF3D7_1361800 conserved Plasmodium protein, unknown function 7 
PF3D7_1362800 conserved Plasmodium protein, unknown function 1 
PF3D7_1366300 conserved Plasmodium protein, unknown function 1 
PF3D7_1366800 phosphatidylserine synthase, putative 2 
PF3D7_1368800 DNA repair endonuclease, putative (ERCC4) 1 
PF3D7_1369200 conserved Plasmodium protein, unknown function 3 
PF3D7_1401200 Plasmodium exported protein, unknown function 1 
PF3D7_1402100 conserved Plasmodium protein, unknown function 1 
PF3D7_1403200 conserved Plasmodium protein, unknown function 1 
PF3D7_1403300 conserved Plasmodium protein, unknown function 1 
PF3D7_1404300 secreted ookinete adhesive protein (SOAP) 1 
PF3D7_1406100 conserved Plasmodium protein, unknown function 4 
PF3D7_1406500 conserved Plasmodium protein, unknown function 1 
PF3D7_1406600 ATP-dependent Clp protease, putative (ClpC) 1 
PF3D7_1407700 conserved Plasmodium protein, unknown function 8 
PF3D7_1410300 conserved Plasmodium protein, unknown function 4 
PF3D7_1410400 rhoptry-associated protein 1 (RAP1) 11 
PF3D7_1412000 p1/s1 nuclease, putative 2 
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PF3D7_1414200 conserved Plasmodium protein, unknown function 3 
PF3D7_1414900 ATP-dependent protease, putative 3 
PF3D7_1415000 uracil-DNA glycosylase (UDG) 2 
PF3D7_1415400 conserved Plasmodium protein, unknown function 3 
PF3D7_1416100 root hair defective 3 GTP-binding protein (RHD3) homolog, putative 8 
PF3D7_1416200 metacaspase-like protein (MCA3) 5 
PF3D7_1417400 cyclic nucleotide-binding protein, putative, pseudogene (cNBP) 1 
PF3D7_1417600 conserved Plasmodium protein, unknown function 5 
PF3D7_1418100 liver specific protein 1, putative (LISP1) 2 
PF3D7_1420100 conserved Plasmodium protein, unknown function 5 
PF3D7_1422900 14-3-3 protein, putative 1 
PF3D7_1423500 conserved Plasmodium protein, unknown function 1 
PF3D7_1424400 60S ribosomal protein L7-3, putative 6 
PF3D7_1426700 phosphoenolpyruvate carboxylase (PEPC) 9 
PF3D7_1428500 protein kinase, putative 4 
PF3D7_1429800 coatamer beta subunit, putative 3 
PF3D7_1429900 ATP-dependent DNA helicase, putative 8 
PF3D7_1434100 queuine tRNA-ribosyltransferase, putative 3 
PF3D7_1436300 translocon component PTEX150 (PTEX150) 6 
PF3D7_1440200 stromal-processing peptidase, putative (SPP) 2 
PF3D7_1442200 GTP-binding protein, putative 3 
PF3D7_1442400 conserved Plasmodium protein, unknown function 6 
PF3D7_1442600 TRAP-like protein,sporozoite-specific transmembrane protein S6 (TREP) 4 
PF3D7_1442700 conserved Plasmodium protein, unknown function 3 
PF3D7_1443200 conserved Plasmodium protein, unknown function 4 
PF3D7_1444100 conserved Plasmodium protein, unknown function 5 
PF3D7_1445500 conserved Plasmodium protein, unknown function 1 
PF3D7_1446500 conserved Plasmodium protein, unknown function 4 
PF3D7_1447900 multidrug resistance protein 2 (heavy metal transport family) (MDR2) 6 
PF3D7_1448200 conserved Plasmodium protein, unknown function 5 
PF3D7_1448500 conserved Plasmodium protein, unknown function 7 
PF3D7_1451600 LCCL domain-containing protein (LAP5) 3 
PF3D7_1453900 conserved Plasmodium protein, unknown function 1 
PF3D7_1454200 conserved Plasmodium protein, unknown function 2 
PF3D7_1455800 LCCL domain-containing protein (CCp2) 3 
PF3D7_1457400 conserved Plasmodium protein, unknown function 1 
PF3D7_1457900 conserved Plasmodium protein, unknown function 5 
PF3D7_1458300 conserved Plasmodium protein, unknown function 8 
PF3D7_1460500 conserved Plasmodium protein, unknown function 3 
PF3D7_1461800 conserved Plasmodium protein, unknown function 5 
PF3D7_1462300 conserved Plasmodium protein, unknown function 2 
PF3D7_1462400 conserved Plasmodium protein, unknown function 2 
PF3D7_1464500 conserved Plasmodium membrane protein, unknown function 6 
PF3D7_1465800 dynein beta chain, putative 9 
PF3D7_1467600 conserved Plasmodium protein, unknown function 2 
PF3D7_1467900 rab GTPase activator, putative 7 
PF3D7_1469600 biotin carboxylase subunit of acetyl CoA carboxylase, putative (ACC) 4 



168 

PF3D7_1472200 histone deacetylase, putative (HDA1) 4 
PF3D7_1472400 M1-family alanyl aminopeptidase, putative 2 
PF3D7_1472700 DNA-directed RNA polymerase, alpha subunit, putative 1 
PF3D7_1474000 probable protein, unknown function 2 
PF3D7_1475100 conserved Plasmodium protein, unknown function 3 
PF3D7_1475500 LCCL domain-containing protein (CCp1) 2 
PF3D7_1475800 conserved Plasmodium protein, unknown function 12 
PF3D7_1475900 conserved Plasmodium protein, unknown function 11 
PF3D7_1476600 Plasmodium exported protein, unknown function 7 
PF3D7_1477500 Plasmodium exported protein (PHISTb), unknown function 3 
PF3D7_1477600 surface-associated interspersed protein 14.1 (SURFIN 14.1) (SURF14.1) 4 
PF3D7_1478000 Plasmodium exported protein (PHISTa), unknown function (GEXP17) 8 
PF3D7_1478600 EMP1-trafficking protein (PTP3) 5 
PF3D7_1478700 Plasmodium exported protein, unknown function, pseudogene 3 
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Table 5.2: Gene IDs for 400 bp Windows 
 
Gene ID Gene Description # of 400bp windows 
PF3D7_0113800 DBL containing protein, unknown function 13 
PF3D7_0202100 Plasmodium exported protein (PHISTc), unknown function,liver stage associated protein 2 (LSAP2) 1 
PF3D7_0402200 surface-associated interspersed protein 4.1 (SURFIN 4.1), pseudogene (SURF4.1) 1 
PF3D7_0402400 Plasmodium exported protein, unknown function (GEXP18) 3 
PF3D7_0418000 conserved Plasmodium protein, unknown function 1 
PF3D7_0420000 zinc finger protein, putative 4 
PF3D7_0422200 erythrocyte+membrane-associated+antigen 2 
PF3D7_0424400 surface-associated interspersed protein 4.2 (SURFIN 4.2) (SURF4.2) 12 
PF3D7_0525100 acyl-CoA synthetase (ACS10) 5 
PF3D7_0702000 Plasmodium exported protein (hyp12), unknown function 2 
PF3D7_0731500 erythrocyte binding antigen-175 (EBA175) 12 
PF3D7_0830800 surface-associated interspersed protein 8.2 (SURFIN 8.2) (SURF8.2) 8 
PF3D7_0930300 merozoite surface protein 1 (MSP1) 5 
PF3D7_1002200 tryptophan-rich antigen 3 (PArt) 1 
PF3D7_1035100 probable protein, unknown function 1 
PF3D7_1035300 glutamate-rich protein (GLURP) 3 
PF3D7_1133400 apical membrane antigen 1 (AMA1) 18 
PF3D7_1135100 protein phosphatase 2C, putative 4 
PF3D7_1200700 acyl-CoA synthetase (ACS7) 1 
PF3D7_1240200 erythrocyte membrane protein 1 (PfEMP1), pseudogene 3 
PF3D7_1302900 conserved Plasmodium protein, unknown function 2 
PF3D7_1320700 conserved Plasmodium protein, unknown function 1 
PF3D7_1335100 merozoite surface protein 7 (MSP7) 5 
PF3D7_1335900 sporozoite surface protein 2 (TRAP) 14 
PF3D7_1352900 Plasmodium exported protein, unknown function,fam-f protein 1 
PF3D7_1475800 conserved Plasmodium protein, unknown function 3 
PF3D7_1475900 conserved Plasmodium protein, unknown function 1 
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Table 5.3: Known Lab Strain Control Mixture Percentages 
 
sample acc 3D7* Dd2* HB3* 7G8* 

PG0389-C ERS319116 90 10 0 0 

PG0390-C ERS319119 80 20 0 0 

PG0391-C ERS319122 67 33 0 0 

PG0392-C ERS319125 33 67 0 0 

PG0393-C ERS319128 20 80 0 0 

PG0394-C ERS319130 10 90 0 0 

PG0395-C ERS319132 0 33.3 33.3 33.3 

PG0396-C ERS319134 0 25 25 50 

PG0397-C ERS319136 0 14.3 14.3 71.4 

PG0399-C ERS319140 0 0 99 1 

PG0400-C ERS319142 0 0 95 5 

PG0401-C ERS319117 0 0 90 10 

PG0402-C ERS319120 0 0 85 15 

PG0403-C ERS319123 0 0 80 20 

PG0404-C ERS319126 0 0 75 25 

PG0405-C ERS319129 0 0 70 30 

PG0406-C ERS319131 0 0 60 40 

PG0407-C ERS319133 0 0 50 50 

PG0408-C ERS319135 0 0 40 60 

PG0409-C ERS319137 0 0 30 70 

PG0410-C ERS319139 0 0 25 75 

PG0411-C ERS319141 0 0 20 80 

PG0412-C ERS319143 0 0 15 85 

PG0413-C ERS319121 0 0 5 95 

PG0414-C ERS319124 0 0 1 99 

PG0415-C ERS319127 0 0 0 100 

PG0398-C ERS319138 0 0 100 0 
* The relative abundance of each lab strain 
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Table 5.4: 200 bp Windows Results 
 

sample MOI* 
True Haplotypes 

(%) Total Haplotypes 

# Windows 
Reconstructed 
Error Free (%) 

# Windows 
Reconstructed 

3D7 1 1862 (100%) 1862 1862 (100%) 1862 

7G8 1 1862 (100%) 1862 1862 (100%) 1862 

Dd2 1 1862 (100%) 1862 1862 (100%) 1862 

GB4 1 1860 (100%) 1860 1860 (100%) 1860 

HB3 1 1860 (100%) 1860 1860 (100%) 1860 

IT 1 1769 (100%) 1769 1769 (100%) 1769 

PG0389-C 2 2266 (99.7%) 2273 1622 (99.6%) 1629 

PG0390-C 2 2796 (100%) 2796 1584 (100%) 1584 

PG0391-C 2 2834 (100%) 2834 1602 (100%) 1602 

PG0392-C 2 2828 (100%) 2828 1599 (100%) 1599 

PG0393-C 2 2800 (100%) 2801 1598 (99.9%) 1599 

PG0394-C 2 2142 (99.8%) 2146 1624 (99.8%) 1628 

PG0399-C 2 1708 (100%) 1708 1704 (100%) 1704 

PG0400-C 2 1637 (100%) 1637 1636 (100%) 1636 

PG0401-C 2 2376 (99.9%) 2379 1655 (99.8%) 1658 

PG0402-C 2 2819 (100%) 2819 1699 (100%) 1699 

PG0403-C 2 2807 (100%) 2807 1666 (100%) 1666 

PG0404-C 2 2853 (100%) 2853 1684 (100%) 1684 

PG0405-C 2 2777 (100%) 2777 1646 (100%) 1646 

PG0406-C 2 2795 (100%) 2795 1653 (100%) 1653 

PG0407-C 2 2793 (100%) 2793 1652 (100%) 1652 

PG0408-C 2 2766 (100%) 2766 1639 (100%) 1639 

PG0409-C 2 2785 (100%) 2785 1648 (100%) 1648 

PG0410-C 2 2828 (100%) 2829 1669 (99.9%) 1670 

PG0411-C 2 2843 (100%) 2844 1677 (99.9%) 1678 

PG0412-C 2 2582 (99.8%) 2586 1686 (99.8%) 1690 

PG0413-C 2 1634 (99.8%) 1638 1608 (99.8%) 1612 

PG0414-C 2 1853 (100%) 1853 1853 (100%) 1853 

PG0395-C 3 3102 (100%) 3103 1401 (99.9%) 1402 

PG0396-C 3 2989 (99.8%) 2994 1363 (99.6%) 1368 

PG0397-C 3 2975 (99.5%) 2990 1425 (99%) 1439 

 
*MOI=multiplicity of infection, number of strains in mixture 
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Table 5.5: 400 bp Windows Results 
 

sample MOI* 
True Haplotypes 

(%) Total Haplotypes 

# Windows 
Reconstructed 
Error Free (%) 

# Windows 
Reconstructed 

3D7 1 128 (100%) 128 128 (100%) 128 

7G8 1 128 (100%) 128 128 (100%) 128 

Dd2 1 128 (100%) 128 128 (100%) 128 

GB4 1 128 (100%) 128 128 (100%) 128 

HB3 1 127 (100%) 127 127 (100%) 127 

IT 1 116 (100%) 116 116 (100%) 116 

PG0389-C 2 53 (100%) 53 39 (100%) 39 

PG0390-C 2 99 (100%) 99 53 (100%) 53 

PG0391-C 2 107 (100%) 107 57 (100%) 57 

PG0392-C 2 99 (100%) 99 53 (100%) 53 

PG0393-C 2 72 (100%) 72 40 (100%) 40 

PG0394-C 2 74 (98.7%) 75 51 (98.1%) 52 

PG0399-C 2 73 (100%) 73 73 (100%) 73 

PG0400-C 2 79 (100%) 79 79 (100%) 79 

PG0401-C 2 112 (98.2%) 114 68 (97.1%) 70 

PG0402-C 2 128 (99.2%) 129 71 (98.6%) 72 

PG0403-C 2 118 (100%) 118 65 (100%) 65 

PG0404-C 2 123 (100%) 123 67 (100%) 67 

PG0405-C 2 108 (100%) 108 60 (100%) 60 

PG0406-C 2 129 (100%) 129 70 (100%) 70 

PG0407-C 2 105 (100%) 105 58 (100%) 58 

PG0408-C 2 109 (100%) 109 60 (100%) 60 

PG0409-C 2 113 (100%) 113 62 (100%) 62 

PG0410-C 2 129 (100%) 129 70 (100%) 70 

PG0411-C 2 135 (100%) 135 73 (100%) 73 

PG0412-C 2 105 (100%) 105 63 (100%) 63 

PG0413-C 2 63 (100%) 63 63 (100%) 63 

PG0414-C 2 128 (100%) 128 128 (100%) 128 

PG0395-C 3 45 (100%) 45 19 (100%) 19 

PG0396-C 3 46 (100%) 46 20 (100%) 20 

PG0397-C 3 76 (97.4%) 78 36 (94.7%) 38 

*MOI=multiplicity of infection, number of strains in mixture 
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Figures  

 

Figure 5.1: PfCSP Network 
A network of PfCSP haplotypes extracted from publicly available data was created by 
generating nodes for haplotypes colored by the region they were found in and the area of 
the node is relative to the number of times a haplotype was found. Haplotypes are 
connected if they are 2 or fewer differences from each other. Nodes were also added from a 
previous study on CSP on patients from Tanzania and Cambodia which had resulted in 45 
haplotypes and the top 5 haplotypes are labeled. The most abundant haplotype for the 
Cambodian samples can be clustered with the South East Asia haplotypes while the 
Tanzanian haplotypes are most clustered with the African samples.  
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Figure 5.2: Carmen Viewer Example 
Carmen offers an interactive HTML viewer which can be used to view the sequences a) and 
offers some lightweight functionality like translating, running muscle, etc. b) An interactive 
map can be used to view where haplotypes appeared globally, when a haplotype’s node is 
hovered over, all regions it was found in are highlighted for easy viewing.  
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Chapter VI: Discussion  

In this thesis I have presented a suite of tools designed to analyze local 

haplotype-based approaches via high-throughput sequencing especially in the cases of 

polyclonal infections.  

SeekDeep: 

Chapter II introduced the SeekDeep pipeline which can be used to analyze targeted 

amplicon approaches using sequencing technologies 454, IonTorrent, and Illumina. 

SeekDeep has undergone heavy development over the years, with a focus on being as 

adaptive as possible. SeekDeep can handle several different technologies, and has default 

settings to handle each. SeekDeep was adapted to handle multiple different barcoding 

strategies, and can also handle doing a variable number of targets at once. One of the great 

strengths of SeekDeep is its ability to be able to recover data in even low read depths; this 

aids the recovery of data in hard to amplify samples and prevents the need to over-amplify 

samples which often leads to artifacts. The work on SeekDeep accumulated in its own 

publication (Hathaway et al. 2017) but has been used for a variety of studies for both P. 

falciparum (Mideo et al. 2016; R. H. Miller et al. 2017; Verity et al. 2018) and P. vivax (Lin et 

al. 2015) but can be--and is--used on a variety of infectious sources like the microbiome and 

HIV.  

SeekDeep was used for a previous study on a region of P. falciparum CSP that 

encodes the polymorphic C-terminal region the gene. This study was with 8 patients from 

Tanzania and 8 from Cambodia and was done to detect the presence of slow clearing 

https://paperpile.com/c/Egpczv/ybSn
https://paperpile.com/c/Egpczv/GIIf+s16U+74Kc
https://paperpile.com/c/Egpczv/FYMJ
https://paperpile.com/c/Egpczv/FYMJ
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parasites. The presence of slow clearing parasites has been linked to developing resistance 

to first line malaria treatment with Artemisinin based drug therapies (Noedl et al. 2008; 

Dondorp et al. 2009; Phyo et al. 2012). To detect the presence of slow clearing parasites, 

clearance curves are created by taking parasitemia levels following drug treatment. 

However, for complex infections with the presence of multiple different strains there could be 

a mix of drug-resistant and drug-susceptible parasites but a clearance curve based solely on 

parasitemia levels would represent an average clearance of all parasites and a slow clearing 

drug-resistance strain that was at low frequency within the infection would be masked due to 

the regular clearing of the major strains in the infections. For this reason, targeted amplicon 

sequencing was utilized to determine the relative frequencies of all strains present in the 

infection and strain specific clearance curves could be created. Up to 40% of the strains 

detected in the study differed from another strain by only a single base pair and due to 

decreasing parasitemia in the latter time points these samples often had low read depths of 

~2,000. Therefore, in order to create accurate strain specific clearance curves SeekDeep’s 

ability to detect single base difference between strains at various frequencies even at low 

read depths was essential, which is where SeekDeep has been able to outperform other 

programs (Hathaway et al. 2017).  

Another study wherein SeekDeep’s ability to detect single base differences was a 

great asset was a study conducted on P. vivax on the MSP1 gene (Lin et al. 2015). P. vivax 

has the ability to lay dormant in the liver of patients and disease can relapse after initial 

infection if dormant P. vivax parasite are released from the liver 3-4 weeks after drug 

treatment (White 2011). Relapse, which could be due to initial drug treatment failure, can be 

hard to distinguish from a new infection. In this study 78 adults were followed after an initial 

P. vivax infection and drug treatment for signs of recurrence of P. vivax in their blood. 

https://paperpile.com/c/Egpczv/ilhH+zP5s+iOeo
https://paperpile.com/c/Egpczv/ilhH+zP5s+iOeo
https://paperpile.com/c/Egpczv/ybSn
https://paperpile.com/c/Egpczv/FYMJ
https://paperpile.com/c/Egpczv/ChKq
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Sequencing of the MSP1 gene was done for initial infection and for any follow up infections 

to determine relapse vs new infection. 70% of the parasites detected in the study were only 

a single base different from another parasite and therefore to adequately determine relapse 

vs new infection single base resolution was needed even if the parasite was at low 

frequency in order to determine the likelihood that specific parasites were in the initial 

infections, even if they were at low frequencies.  

Though SeekDeep has primarily been used with malaria samples in the literature, it 

should also be useful in the study of other microbial populations that are also haploid-like 

viruses or bacterial populations.  

kluster: Long Amplicon Clustering using k-mer Similarity Scores  

SeekDeep’s ability to analyze short amplicon sequences from technologies like Ion 

Torrent and Illumina was highlighted by Chapter II. Chapter III expands this work to longer 

amplicon approaches, primarily on PacBio sequencing which can be several kilobases in 

length. SeekDeep’s core clustering algorithm, qluster, was ill suited to handle the high error 

rate of PacBio, and was further hampered by the longer amplicon length due to its 

dependence on alignment based comparison (which can slow exponentially with sequence 

length depending on implementation of the alignment approach). For this reason Chapter III 

introduces a novel clustering algorithm based on clustering sequences based on the k-mers 

(short sequence segments) shared by the sequences. This novel algorithm, kluster, can be 

used in place of the qluster algorithm from Chapter II and is integrated into the SeekDeep 

pipeline. This means the initial extraction and final population clustering can still be taken 

advantage of while using kluster. The performance of kluster proved to be as good as that of 
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qluster and can detect single base differences even with the increased sequence length and 

error rate of PacBio to read depths as low as 500 and frequencies of 1%.  

The kluster algorithm has supported the study of var2csa, a protein expressed by P. 

falciparum that causes the parasite to sequester itself to placenta of pregnant woman 

leading to poor birth outcomes (Rogerson et al. 2007; Salanti et al. 2003a; Tuikue Ndam et 

al. 2005). Due to its high diversity, var2csa is hard to study via SNP variant calling; likewise, 

primers are difficult to design due to the target diversity, and the region responsible for 

binding is approximately 1.8kb long. These factors meant that the longer read lengths 

offered by PacBio were an ideal method to analyze the region. The kluster method was used 

to analyze the sequence of var2csa from pregnant woman from Benin and Malawi and to 

correlate these sequence birth outcomes. It was found that a specific clade of var2csa was 

associated with poor birth outcomes (Patel et al. 2017).  

The kluster algorithm was then used on 15 of the women from Benin, comparing 

parasites found in the peripheral blood to parasites collected from the placenta. It was found 

that the same parasites found in the peripheral blood had the same var2csa haplotypes as 

the placental parasites for 13 out of the 15 women with the other 2 samples sharing the 

majority of the haplotypes from the two sites. This suggests that the parasites collected from 

the peripheral blood are a good approximation of what the parasites in the placenta, and the 

more invasive placental collection is not needed (Waltmann et al. 2018). As the goals of the 

study was to perfectly match up the haplotypes between the two different body sites it was 

critical that accurate sequence was called for each site to enable the matching of haplotypes 

and therefore the accuracy offered by kluster was essential for the study.  

https://paperpile.com/c/Egpczv/Oamy+6lO8+TLlc
https://paperpile.com/c/Egpczv/Oamy+6lO8+TLlc
https://paperpile.com/c/Egpczv/YNyP
https://paperpile.com/c/Egpczv/gDC2
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PathWeaver: Global Diversity of P. falciparum var2csa 

While Chapter II and Chapter III introduced algorithms that worked on targeted 

amplicon sequencing, another common approach is to use shotgun whole genome 

sequencing, which generates reads starting from random locations across the whole 

genome. The targeted approach analysis is simplified by the fact all the reads start and end 

at the same location and clustering/analysis can be done by using all reads; however, the 

shotgun approach requires special handling because reads are from many different regions. 

For this reason, the traditional approach to analyzing shotgun whole genome sequencing is 

to map reads to a reference genome and call SNP/INDEL variants. While this approach 

works for much of the genome, for organisms like P. falciparum which has regions that are 

so diverse due to recombination or heavy immune selection that reads can’t be mapped to 

the reference genome. These regions include key virulence factor genes in P. falciparum 

called var genes which encode EMP1, a protein that mediates the binding of infected 

erythrocytes to blood vessel walls often leading to the destruction of microvasculature and 

contribute to the more fatal clinical outcomes observed with P. falciparum infections like 

cerebral malaria. While several attempts have been made by utilizing genome assemblers 

like SPAdes(Lennartz et al. 2017; Jespersen et al. 2016), these studies did not check for 

accuracy of these assemblies and it was observed that these programs can lead to 

erroneous assemblies especially within mix infections (Chapter IV).  

This dilemma led to the the development of the program PathWeaver which 

assembles local haplotypes for a given region of high diversity by first using the region to 

recruit initial reads to construct contigs by a graph assembly approach to then iteratively 

recruit unmapped sequences to these contigs until full local haplotypes are created. 

https://paperpile.com/c/Egpczv/fiEn+X1SWo
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PathWeaver was written with special care to not construct false haplotypes in 

multicopy/multiclonal scenarios where more than one unique sequence is present for a 

region, which can sometimes lead to variation belonging to separate copies being 

improperly stitched together, a common problem in graph assembly approaches. This was 

done by utilizing “threading” of sequences through the graph and making connections 

between variation only if supported by the underlying sequence data, an approach not 

utilized by SPAdes.  

I was able to use the PathWeaver algorithm on a specific var gene of interest, P. 

falciparum var2csa, which causes poor birth outcomes in pregnant women due to its ability 

to bind to a placental protein CSA. With its high diversity, the PathWeaver algorithm was 

needed in order to properly collect genetic variation information for this gene due to only 

80% of var2csa sequence being able to be mapped to reference. PathWeaver was 

extensively tested for accuracy and precision on the var2csa region using in silico 

simulations and monoclonal lab strains datasets where expected sequence was known. By 

utilizing approximately 3,000 field samples, PathWeaver was then used to collect between 

1,000 and 2,000 sequences across the different domains of var2csa including the domain 

shown to be the domain most responsible for binding to CSA. Previous studies of var2csa 

only had approximately 30 sequences to analyze and so this number of collected sequences 

is a great improvement on fully elucidating the full global diversity of the gene. 

PCAs on the minimum CSA binding domain showed 4 major groups and 2 minor 

groups that appear to be stable in the parasite population across geographical region and 

time which is suggestive of balancing selection (Lipsitch and O’Hagan 2007) acting on this 

region. Balancing selection is a phenomenon where diversity is maintained within a genomic 

region often due to due immune pressure and is often observed for surface epitopes 

https://paperpile.com/c/Egpczv/fVx0
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(Weedall and Conway 2010). This is especially true for a parasite like P. falciparum when 

people experience multiple infections and the increase in diversity aids the parasite in 

immune evasion when infecting a person not yet exposed to the parasite harboring specific 

epitopes. This causes a parasite’s chance of survival to be inversely related to its frequency 

preventing fixation of a specific epitope. The evidence of balancing selection has 

implications for vaccine development for var2csa because, for a vaccine to protect against 

all parasites, it most likely will have to incorporate sequences from all the groups detected 

here. The two current vaccine trials only contain 1 strain each, 3D7 and FCR3, which both 

fall into different groups in the PCA and most likely will only protect against that group as 

even a single base difference has been shown to reduce the efficacy of a vaccine (Sedegah 

et al. 2016).  

I was also able to extend previous findings of copy number variation (Sander et al. 

2011, 2009) by finding multiple unique var2csa sequences across the whole gene within 

confirmed monoclonal samples. Each unique copy had the mean base genome coverage 

which supports that each copy is present in the genome. While previous studies have shown 

evidence of copy number variation, they were from only one country but here we were able 

to show that copy number variation is present in 21% of samples globally with up to 3 copies 

being observed in South East Asia and up to 5 copies in Africa though there was no 

evidence found in South America. This might be due to a sampling issue as there were only 

34 samples from South America. The study of copy number variation would not have been 

possible without the ability of PathWeaver to be able to accurately assemble closely related 

copies of the same gene.  

We have only scratched the surface for analyses that could be done here. However, 

conventional tools and metrics are not easily applied to a gene like var2csa with its complex 

https://paperpile.com/c/Egpczv/Ac8f
https://paperpile.com/c/Egpczv/5ya3
https://paperpile.com/c/Egpczv/5ya3
https://paperpile.com/c/Egpczv/6uzq+4eFx
https://paperpile.com/c/Egpczv/6uzq+4eFx
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evolutionary history, high rate of recombination, high diversity preventing the ability to use 

one sequence as a reference and its multiple copies. Thanks to extremely divergent types 

there is no single good reference for sequences to be compared to which is the 

basis/requirement for many traditional measures of diversity and other population structure 

analyses. Also, a 3D structure could greatly inform the information gained from the 

sequence variation gathered here to see if variation is buried or forms pockets. There is 

currently no 3D structure available for var2csa but the amount of sequence gathered here 

could aid in the simulation of one.  

This chapter was able to prove the accuracy of the PathWeaver algorithm as well as 

demonstrate the practical use of it on highly diverse P. falciparum var2csa which suggests it 

could be useful for other highly diverse regions of P. falciparum and other species.  

Carmen: Where in the world is my haplotype?  

 As targeted approaches and other local haplotype-based analyses become more 

popular there will be a need for development for tools to view haplotype data similar to those 

created to view SNP data (Vauterin et al. 2017). For this purpose, Carmen was created. It 

utilizes the PathWeaver algorithm introduced in Chapter IV and the availability of thousands 

of publicly available shotgun whole genome sequence of field samples from around the 

world. While Carmen was written to be able to work for any input that can be aligned, it was 

primarily tested on highly diverse regions in P. falciparum. These regions were chosen as 

they are commonly targeted for amplicon approaches (R. H. Miller et al. 2017; Mideo et al. 

2016; Bailey et al. 2012) and represent regions that Carmen is likely to be used on. Carmen 

was tested on monoclonal lab strains and mixtures of these lab strains for which there are 

whole genome assemblies available; this allowed checking against expected sequences. 

https://paperpile.com/c/Egpczv/r8Kz
https://paperpile.com/c/Egpczv/s16U+GIIf+gMNy
https://paperpile.com/c/Egpczv/s16U+GIIf+gMNy
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Carmen was able to correctly reconstruct ~97% of the windows in all test samples and the 

majority of windows that had errors only had one or two false haplotypes from a single 

sample. Carmen had high accuracy (~99%) for windows reconstructed from samples with 

mixtures multiple strains, a scenario that may lead some assemblers to create false 

haplotypes.  

Carmen takes advantage of the metadata associated with publicly available field 

samples to create summary reports of where and when haplotypes have been found for a 

specific genomic region. Carmen was written with the output of SeekDeep specifically in 

mind. For this reason, Carmen was used on the results from a previous study on P. 

falciparum CSP gene on patients from Tanzania and Cambodia to create strain specific 

clearance curves. Carmen was able to take the population haplotypes called from this study 

and accurately determine the appropriate genomic region by wrapping LASTZ (Harris 2007). 

Approximately 3,000 sequences were collected for this region and it was found that the most 

abundant haplotypes from Tanzania and Cambodia patients in the study matched the most 

prevalent haplotypes collected from the appropriate geographical regions. These results 

help mitigate past concerns that the haplotype from Cambodia could have been 

contamination, since it was found to be the dominant infection for all the Cambodian patients 

and demonstrate the utility of the results provided by Carmen.  

Conclusion  

In this thesis I have introduced a suite of tools for analyzing local haplotypes in 

complex mixtures from high-throughput sequencing with a focus on Plasmodium falciparum 

polyclonal infections. Though tested primarily on Plasmodium, the tools were written to take 

input general to the study of many different microbial populations and should be able to be 

https://paperpile.com/c/Egpczv/qdRf
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utilized for the study of populations similar to Plasmodium (e.g. viruses, other haploid 

organisms, bacterial populations, etc). This includes SeekDeep which analyzes targeted 

amplicon sequencing approaches on both short read technologies (like Ion Torrent and 

Illumina) and longer amplicon lengths with PacBio achieving one-base resolution. This 

one-base resolution enables the research of important targets for vaccine development or 

drug resistant genes, all of which can differ by only one base. I have also introduced the tool 

PathWeaver which has enabled an often ignored but very important virulence factor for 

malaria in pregnancy, P. falciparum var2csa. PathWeaver’s analysis of this region has 

allowed for the further study of the global diversity and copy number variation to a much 

greater extent than previously possible which should greatly aid vaccine development. And 

lastly, Carmen uses the PathWeaver algorithm on the wealth of publicly available data to 

augment targeted amplicon analysis results by reporting on where and when haplotypes 

have been found before. These tools should hopefully prove to be useful to the field for 

years to come.  
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