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Abstract 

Dopamine (DA) is central to movement, reward, learning, sleep, and anxiety. The 

dopamine transporter (DAT) spatially and temporally controls extracellular 

dopamine levels by taking DA back up into the presynaptic neuron following 

evoked release. Multiple lines of evidence from studies using pharmacological 

DAT blockade or genetic DAT deletion demonstrate that DAT availability at the 

plasma membrane is required for maintenance of homeostatic DA levels. 

Therefore, intrinsic mechanisms that regulate the transporter’s availability at the 

plasma membrane may directly impact downstream DA signaling cascades and 

DA-dependent behaviors. Acute, regulated DAT internalization in response to 

protein kinase C (PKC) activation has been well documented, however the 

physiological importance of this mechanism remains untested. Due to DAT’s 

critical role in regulating DA levels, it is essential to understand mechanisms that 

acutely regulate DAT function and surface expression, and further, how these 

mechanisms contribute to DA related behaviors. 

 

DAT has intracellular amino and carboxy termini, which contain domains for 

transporter phosphorylation, recruitment to and from the plasma membrane, and 

sites for protein-protein interactions. To test whether these domains work 

synergistically for DAT function and regulated endocytosis I made DAT/SERT 

chimeras, in which I switched DAT’s amino, carboxy, or both termini with that of 

SERT, a homologous transporter with highly divergent intracellular domains. I 



 

	 ix 

demonstrated that DAT’s amino and carboxy termini synergistically contribute to 

substrate and select competitive inhibitor affinities. Additionally, I demonstrated 

that the amino terminus is required for PKC-stimulated DAT endocytosis, and 

that both N- and C-termini are required for downstream Ack1-dependent 

regulation of DAT endocytosis.  

 

To test the physiological importance of PKC-stimulated DAT endocytosis in vivo, 

I knocked down Rin, a GTPase required for PKC-stimulated DAT trafficking. This 

study was the first to achieve AAV-mediated, conditional, and inducible gene 

silencing in neurons. Using this AAV approach, I demonstrated a critical role for 

Rin GTPase signaling and DAT trafficking in both anxiety and locomotor 

response to cocaine. 

 

Taken together, this thesis 1) adds to the understanding of DAT functional and 

endocytic mechanisms and 2) is the first to report the physiological impact of Rin 

signaling and DAT endocytosis in DA behavior.  
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Chapter I 

Introduction 

I.A Dopaminergic Signaling 

Dopamine (DA) is a catecholamine neurotransmitter required for movement, 

reward, learning, motivation, and anxiety (Wise, 2004; Schultz, 2007; Zweifel et 

al., 2011; Russo and Nestler, 2013). DA dysregulation is associated with 

Parkinson’s disease (PD), attention deficit hyperactivity disorder (ADHD), and 

addictive disorders (Iversen and Iversen, 2007; Sulzer, 2011). Therefore, it is 

necessary to understand mechanisms that regulate DA and its associated 

signaling cascades. DA is synthesized from its precursor, tyrosine, through an 

enzymatic pathway that was initially described by Hermann Blaschko in 1939. In 

the first, rate-limiting step, tyrosine hydroxylase (TH) converts tyrosine to L-

DOPA. Next, aromatic L-amino acid decarboxylase converts L-DOPA to 

dopamine (Blaschko, 1952; Molinoff and Axelrod, 1971). DA was originally 

hypothesized to serve solely as a precursor to norepinephrine (NE). However, 

Arvid Carlsson and colleagues discovered that DA is in fact a neurotransmitter 

(Carlsson et al., 1957; Carlsson et al., 1958). They rescued reserpine-induced 

akinesia in mice and rabbits with a L-DOPA treatment. This resulted in an 

increase of DA without concomitant NE increase, demonstrating that DA is in fact 

a neurotransmitter. Carlsson also described DA’s profile throughout the brain and 

showed that it is concentrated in the basal ganglia (Carlsson, 1993).  
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Basal ganglia brain structures include the striatum, pallidum, subthalamic 

nucleus, substantia nigra, and ventral tegmental area (VTA) (Groenewegen, 

2003). The striatum is the largest basal ganglia nucleus, and it is subdivided into 

dorsal (caudate nucleus and putamen) and ventral (nucleus accumbens, NAc) 

regions. The dorsal striatum (DS) primarily receives DAergic innervation from the 

substantia nigra pars compacta (SNc). The SNc to DS pathway (nigrostriatal 

pathway) is commonly associated with motor planning and voluntary movement.  

NAc receives DAergic innervation from the VTA (mesolimbic pathway), and this 

pathway is commonly associated with reward-related learning and motivated 

behavior (Burke et al., 2017).  

 

The striatum is a heterogeneous hub of connections. In addition to DAergic 

inputs from VTA and SNc, it receives glutamatergic inputs from cortical, thalamic, 

and limbic regions (Burke et al., 2017). The principle striatal neurons are the 

medium spiny neurons (MSNs), which make up approximately 95% of total 

striatal neurons. The remaining striatal neurons are GABAergic and cholinergic 

interneurons. The MSNs are classically subdivided into two groups based upon 

the DA receptors they express (D1R vs. D2R) and structures to which they 

project. The D1-like receptors are Gs/olf coupled receptors and include D1 and D5, 

whereas the D2-like receptors are Gi/o coupled and include D2, D3, and D4 

(Gerfen and Surmeier, 2011). In a simplified model of MSN signaling, D1R- 
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expressing MSNs project through the basal ganglia’s “direct pathway” to 

disinhibit thalamic neurons to promote behavior. In contrast, the D2R expressing 

MSNs use the “indirect pathway” to inhibit basal ganglia output nuclei, and 

reduce behavioral output (Graybiel, 2000; Gerfen and Surmeier, 2011).  

 

Dopamine impacts both direct and indirect pathways by modulating MSN 

excitability and synaptic plasticity at glutamatergic terminals. MSNs are quiescent 

without glutamatergic input. DA receptor activation alters voltage-dependent ion 

channel properties in the MSN (Kreitzer and Malenka, 2008; Gerfen and 

Surmeier, 2011). This modulation is slow (order of seconds) compared to fast 

excitatory glutamatergic signaling. Additionally, DA acts upon afferent 

glutamatergic terminals that project to the striatum. D1R activity in glutamatergic 

terminals suppresses excitatory signaling onto the MSN (Nicola et al., 2000). 

Taken together, DA signaling within the striatum is critical to shape excitatory 

input onto MSNs, which signal through both direct and indirect pathways to 

regulate behaviors such as locomotor activity and reward. Therefore, 

mechanisms that alter DA signaling within the synapse can shape excitatory 

signaling at both pre- and post-synaptic sites. DAergic terminals express the 

cocaine- and amphetamine-sensitive DA transporter (DAT), which regulates 

extracellular DA levels through presynaptic reuptake. Here, I provide evidence 

suggesting that DAT is required for DAergic homeostasis. 
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I.B Dopamine transporter (DAT) 

Julius Axelrod first discovered catecholamine reuptake, by observing 

radiolabeled epinephrine and norepinephrine accumulation in rodent tissues 

(Axelrod et al., 1959; Whitby et al., 1961; Iversen, 2000). Snyder and Coyle 

demonstrated that distinct transporters exist for DA (DAT) and NE (NET) (Coyle 

and Snyder, 1969). However, the monoamine transporter field began to 

accelerate greatly when clones were isolated for DAT, NET, and SERT (5HT 

transporter) (Blakely et al., 1991; Giros et al., 1991; Kilty et al., 1991; Pacholczyk 

et al., 1991). DAT, NET, and SERT belong to the Solute Carrier 6 (SLC6) gene 

family, which also includes other Na+/Cl--coupled transporters for GABA and 

glycine, among others (Kristensen et al., 2011). These transporters use Na+ and 

Cl- co-transport down their concentration gradients to drive substrate transport. 

DAT transports DA into the presynaptic neuron using an alternating access 

mechanism, in which DAT cycles between outward facing to an inward facing 

states. DA binds to DAT in the outward facing state, and DAT undergoes 

conformational changes that expose DA to the intracellular milieu where it is 

released. (Forrest and Rudnick, 2009). 

 

SLC6 structural elements include twelve transmembrane spanning domains, a 

large, glycosylated extracellular loop (EL2), and intracellular N- and C-termini. 

While these elements were predicted topologically (Blakely et al., 1991; Kilty et 

al., 1991; Pacholczyk et al., 1991; Chen and Reith, 2000), structures for the 
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bacterial homolog leucine transporter (LeuT) (Yamashita et al., 2005) and 

Drosophila melanogaster DAT (dDAT) (Penmatsa et al., 2013) confirmed these 

findings. Moreover, dDAT structure revealed elements that are specific the 

eukaryotic monoamine transporter, such as a kink in the DAT C-terminus, next to 

the plasma membrane. This kink causes a C-terminal helical structure to create a 

“gate” along the intracellular face. Little is known about the N-terminal structure 

and the distal C-terminal structure due to their highly disordered nature. 

However, it is known that the intracellular N- and C-termini serve as sites for 

multiple posttranslational modifications and protein binding sites, and their 

importance in DAT regulation will be discussed in Chapters II and III. 

 

DAT Proteome 

As stated previously, DAT’s N- and C-termini serve as scaffolds for DAT-

associated proteins. These DAT-associated complexes are critical for regulating 

DAT function. While numerous studies have identified DAT-associated proteins, 

the functional implication resulting from each protein’s association with DAT has 

been characterized to varying extent. Table I-1 summarizes known DAT-

associated proteins, their DAT binding domains, and functional implications for 

the DAT-association. Taken as a whole, it demonstrates that DAT-associated 

molecules are required for membrane targeting, trafficking, and forward/reverse 

DA transport. This suggests that DAT function is tightly regulated through a DAT-

associated complex. Some DAT-associated molecules have been and/or will be 
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discussed further within this introduction including D2R (Bolan et al., 2007; Lee et 

al., 2007), Rin (Navaroli et al., 2011), CaMKIIa (Fog et al., 2006b; Rickhag et al., 

2013a), KOR (Kivell et al., 2014), Gbg (Garcia-Olivares et al., 2013; Garcia-

Olivares et al., 2017), PIP2 (Hamilton et al., 2014; Khelashvili et al., 2015a; 

Khelashvili et al., 2015b; Khelashvili and Weinstein, 2015), Syn1A (Lee et al., 

2004; Binda et al., 2008; Cartier et al., 2015), and Flot-1 (Cremona et al., 2011; 

Sorkina et al., 2013). Given that DAT N- and C-termini serve as sites for multiple 

protein interactions, it raises the hypothesis that these two terminal domains 

collectively create a DAT-binding scaffold. In Chapter III, I report tools for 

investigating DAT-associated proteins to further test how the N- and C-termini 

synergistically create a DAT associated regulatory complex.  
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Table I-1 
DAT-associated proteins/lipids 

Protein 
N-Terminus C-terminus Means of 

discovery 
Functional 
Implication Reference 

Association Residues Association Residues 

                

⍺- synuclein No - Yes 598-620 Y2H, Co-IP, 
FRET 

Increased Vmax, 
Increased AMPH-
stimulated efflux 

Lee 2001, 
Butler 2015 

14-3-3ζ N.D. - N.D. - Co-IP 
N.D., 14-3-3ζ mice 
have less DAT 
protein 

Ramshaw 
2013 

CaMKII⍺ No* - Yes 612-617 Y2H, Co-IP, GST-
pulldown 

Required for AMPH-
stimulated DA efflux, 
*N-terminus is 
CaMKIIa substrate 

Fog 2006, 
Rickhag 
2013 

Carboxypeptidase 
E No - Yes 583-620 Y2H, Co-IP, GST-

pulldown Increased Vmax Zhang 2009 

Ctr9 N.D. - Yes 577-579 Y2H, Co-IP, GST-
pulldown Increased Vmax 

De Gois 
2015 

D2R Yes1/No2 1-151/-2 No - 
Co-IP, GST-
pulldown1/FlagΔ1-
55 DAT, co-IP2 

Promote DAT PM 
insertion and 
increased DA uptake 

Lee 20071/ 
Bolan 20072 

DJ-1 No - No - Co-IP, GST-
pulldown 

Associates with DAT 
IL4, Increased DA 
uptake 

Luk 2015 

Epsin/Eps5 N.D. - N.D. - siRNA screen, 
Co-IP 

Required for PKC-
stimulated 
internalization 

Sorkina 2006 

Flot-1 N.D. - N.D. - Co-IP 

Required for PKC-
stimulated 
internalization and 
AMPH stimulated 
efflux3/Not required 
for PKC stimulated 
internalization4 

Cremona 
20113/ 
Sorkin 20134 

 

GPR37 N.D. - N.D. - Co-IP reduced Vmax 
Marazziti 
2007 

Gβγ No - Yes 582-596 
Co-IP, GST-
pulldown, Far 
Western 

Reduced Vmax, 
Promotes efflux 

Garcia-
Olivares 
2013, 2017 

Hic5 No - Yes 561-590 Y2H, Co-IP, GST-
pulldown Reduced Vmax 

Carneiro 
2002 

KOR N.D. - N.D. - Co-IP, FRET 
Increased Vmax, 
increased surface 
expression 

Kivell 2014 

NEDD4-2 N.D. - N.D. - siRNA screen, 
Co-IP 

Required for PKC-
stimulated 
internalization 

Sorkina 2006 

Parkin N.D. - Yes - Co-IP/Co-IP, 
GST-pulldown 

Increased Vmax and 
surface 
expression5/Reduced 
Vmax, competes with 
⍺- synuclein for 
binding6 

Jiang 20045/ 
Moszczynska 
20076 

PICK1 No - Yes 617-620 Y2H, Co-IP 
Increased Vmax, 
Required for PM 
insertion 

Torres 2001, 
Madsen 
2012,  
Wu 2017 
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PIP2 Yes 3,5,19,27,35,51 N.D. - 

PIP2 sensor, Co-
IP, GST-
pulldown, 
Molecular 
dynamic 
simulation 

Promotes AMPH-
stimulated DA efflux, 
Reduced AMPH-
stimulated locomotor 
activity in Drosophila 

Hamilton 
2014, 
Khelashvili 
2015 

PKCb N.D. - N.D. - Co-IP 
Increased AMPH-
stimulated efflux, 
Increased Vmax 

Johnson 
2005, Chen 
2009 

Rack1 Yes - N.D. - Y2H - 
Lee 2004, 
Franekova 
2008 

Rin N.D. - Yes 587-596 Y2H, FRET 
Required for PKC-
stimulated 
internalization 

Navaroli 
2011 

Syn1A Yes 1-33 N.D. - Y2H, Co-IP, GST-
pulldown 

Reduced Vmax, 
Increased AMPH 
stimulated efflux 

Binda 2008, 
Lee 2004, 
Cervinski 
2010 

Synaptogyrin-3 Yes - No - 
mbSUS, Co-IP, 
FRET, GST-
pulldown 

Increased Vmax Egana 2009 

1,2Discrepancy regarding D2R. 1Finding from Lee et al., 2007. 2Finding from Bolan et al., 2007. 

3,4Discrepancy regarding Flotillin. 3Finding from Cremona et al., 2011. 4Finding from Sorkina et al., 2013. 

5,6Discrepancy regarding Parkin. 5Finding from Jiang et al., 2004. 6Finding from Moszczynska et al., 2007.  
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DAT and psychostimulants 

DAT is the molecular target for psychostimulants and their analogs, therapeutic 

agents, and neurotoxins. Select DAT inhibitors and their respective Ki values are 

listed in Table II-1 (Sweeney et al., 2017). Cocaine was originally described as a 

DA reuptake inhibitor using radioligand binding assays (Ritz et al., 1987). 

Cocaine binds the monoamine transporters, DAT, NET, and SERT, with 

equimolar affinity, and at high doses, cocaine inhibits voltage gated sodium 

channels (Reith et al., 1986). Multiple cocaine analogs have been developed with 

enhanced affinity for specific monoamine transporters. For example, WIN35,428 

( b-CFT) binds DAT with approximately 15x higher potency than cocaine, and it 

displays slight selectivity for DAT and NET over SERT (Ki = 27, 33, and 133nM 

respectively) (Eshleman et al., 1999; Kristensen et al., 2011; Sweeney et al., 

2017).  

 

AMPH is a psychostimulant that disrupts DAT function at numerous levels 

(Sulzer et al., 2005b). First, AMPH is a competitive DAT substrate (Sitte et al., 

1998). It competes with extracellular DA for DAT binding sites, and is then 

translocated in the cytosol. AMPH is also a vesicular monoamine transporter 

(VMAT) substrate and, once in the cytosol, AMPH blocks DA repackaging into 

vesicles. Further, once translocated into vesicles, AMPH serves as a weak base, 

therefore disrupting the proton gradient necessary for DA vesicular reuptake 

(Sulzer and Rayport, 1990; Sulzer et al., 1993; Freyberg et al., 2016). Both direct 
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VMAT blockade and proton gradient disruption result in increased cytosolic DA 

accumulation, which promotes nonvesicular DA release, or efflux, through DAT. 

AMPH transitions DAT from an “efflux reluctant” state to an “efflux willing” state 

without interfering with forward transport mechanisms (Khoshbouei et al., 2004). 

The “willing” state requires AMPH-induced increases in intracellular Na+ and Ca2+ 

(Khoshbouei et al., 2003; Gnegy et al., 2004). Additionally, N-terminal DAT 

phosphorylation is required for AMPH-stimulated efflux (Khoshbouei et al., 2004). 

AMPH promotes active CaMKIIa binding to DAT’s C-terminus, which in turn 

results in phosphorylated N-terminal serines (Fog et al., 2006a; Rickhag et al., 

2013a). Additionally, AMPH-stimulated efflux requires PKCb activity as 

demonstrated with PKCb inhibitors and PKCb-/- mice. (Johnson et al., 2005; 

Zestos et al., 2016). AMPH also elicits DAT internalization in a PKC-independent 

mechanism (Saunders et al., 2000; Boudanova et al., 2008a). The Gnegy group 

reported that upon initial exposure to AMPH (<2min), DAT inserts into the plasma 

membrane; however, following longer treatments with AMPH, (10-30 min), DAT 

sequesters from the plasma membrane through rapid endocytosis (Chen et al., 

2009). Below, I will discuss AMPH-stimulated efflux mechanism in detail in 

addition to regulated DAT endocytic mechanisms.  

 

I.C Dopamine Transporter Endocytic Trafficking 
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Membrane trafficking is a central mechanism that exerts significant control over 

synaptic transmission in the CNS. It is required for signal transduction (Sorkin 

and Von Zastrow, 2002), AMPA receptor turnover and synaptic plasticity 

(Malinow and Malenka, 2002; Bredt and Nicoll, 2003; Kennedy and Ehlers, 

2006), and  synaptic vesicle biogenesis (Hannah et al., 1999; Buckley et al., 

2000). Much like receptors involved in synaptic transmission, DAT undergoes 

regulated trafficking. While we know much about regulated DAT trafficking 

mechanisms, the physiological importance of regulated DAT trafficking remains 

unknown. Here I present what is known about regulated DAT trafficking, and in 

Chapter IV, I will test the physiological importance behind a known trafficking 

mechanism.  

 

Constitutive DAT internalization 

At steady state, DAT internalizes and recycles to the plasma membrane. DAT 

expression in intracellular compartments at steady state was initially observed 

using electron microscopy in SN, VTA, striatum, and NAc (Nirenberg et al., 1996; 

Hersch et al., 1997; Nirenberg et al., 1997b; Nirenberg et al., 1997a). Further 

evidence for constitutive internalization came from Melikian and Buckley, using 

cellular fractionation techniques. They observed that, at steady state, DAT 

localizes to TfR-+ endosomes (Melikian and Buckley, 1999). To test whether 

significant basal DAT trafficking occurs, Loder and Melikian used a reversible 
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biotinylation assay or “internalization assay” to directly measure DAT 

internalization rates following both temperature-dependent recycling blockade 

and pharmacological recycling inhibition (Loder and Melikian, 2003). Basal DAT 

trafficking has since been demonstrated by many other studies in heterologous 

expression systems (Loder and Melikian, 2003; Li et al., 2004; Holton et al., 

2005; Sorkina et al., 2005; Boudanova et al., 2008b; Sorkina et al., 2009; 

Navaroli et al., 2011; Sakrikar et al., 2012; Chen et al., 2013; Gabriel et al., 2013; 

Hong and Amara, 2013; Wu et al., 2015; Vuorenpaa et al., 2016; Wu et al., 

2017), and in ex vivo preparations (Eriksen et al., 2009; Gabriel et al., 2013; 

Hong and Amara, 2013; Block et al., 2015). Hong and Amara, using an antibody 

feeding assay in rat midbrain cultures transduced with DAT, found that DAT 

constitutively internalized and recycled to the plasma membrane (Hong and 

Amara, 2013). However, this study relied upon DAT overexpression, rather than 

endogenously expressed DAT. The Gether group demonstrated constitutive 

endocytosis of endogenously expressed DAT in ventral midbrain cultures, using 

a fluorescent cocaine analog (JHC 1-64) (Eriksen et al., 2009). Additionally, the 

Sorkin group, using a knock-in mouse expressing HA-tagged DAT, reported 

intracellular HA-DAT in ventral midbrain slices (Block et al., 2015), consistent 

with findings from the Gether laboratory (Eriksen et al., 2009). However, little is 

known about constitutive DAT trafficking in striatal nerve terminals. Block et al. 

saw no intracellular DAT populations in striatal slices from HA-DAT knock-in 

mouse (Block et al., 2015). In contrast with these findings, Gabriel et al. reported 
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that recycling blockade and dynamin inhibition in ex vivo striatal slices reduced 

surface DAT populations, showing that DAT internalizes from and recycles to the 

plasma membrane under steady state conditions (Gabriel et al., 2013).  

 

Dopamine Transporter Endocytic Signals 

Canonical endocytic motifs include a dileucine motif ([D/E]XXXLI or DXXLL, 

where D/E is an acidic amino acid, X is any amino acid, L is leucine, and I is 

isoleucine) or a tyrosine-based motif (NPXY where N is asparagine, P is proline, 

X is any amino acid, and Y is tyrosine or YXXf, where f is a bulky hydrophobic 

residue) (Bonifacino and Traub, 2003). DAT has five dileucine-like motifs and two 

tyrosine based motifs; however, these sequences are not required for DAT 

endocytosis (Loland et al., 2002; Granas et al., 2003; Holton et al., 2005). Holton 

el al. used a gain-of-function approach to test whether DAT N- or C-terminus was 

sufficient to drive internalization of endocytic defective reporter proteins. They 

determined that DAT’s C-terminus, and more specifically, a ten amino acid motif, 

FREKLAYAIA (587-596), was necessary and sufficient for both constitutive and 

PKC-stimulated endocytosis. Within the FREKLAYAIA sequence there are 

overlapping sequences that are required for constitutive internalization (LAYAIA) 

and PKC-stimulated internalization (FREK, discussed below). Interestingly, when 

the FREK (587-590) sequence was mutated to alanines, DAT underwent 

enhanced basal endocytosis (Boudanova et al., 2008b). These data suggested 

that DAT endocytic rates are negatively regulated, and that the C-terminus is 
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required for the negative regulatory mechanism. Additional support for a C-

terminal role in negatively regulating DAT endocytosis came from an ADHD 

patient with a C-terminal point mutation distal to the FREKLAYAIA sequence 

(R615C) (Sakrikar et al., 2012). This mutation results in enhanced constitutive 

endocytic rates, consistent with negative regulation at the DAT C-terminus 

(Sakrikar et al., 2012; Wu et al., 2015). The Sorkin laboratory demonstrated that 

DAT’s N-terminus is also required for negatively regulating DAT endocytosis 

(Sorkina et al., 2009). They truncated DAT’s entire N-terminus, and replaced this 

sequence with YFP-tag (D1-65 DAT). Using an antibody-feeding assay, they 

observed that D1-65 DAT underwent enhanced constitutive endocytosis. Further, 

they determined that the most membrane proximal residues (60-65) mediate N-

terminal negative regulation. Whether these N- and C-terminal mechanisms 

function independently from one another or are synergistically required to 

maintain negative endocytic regulation for DAT remains an unanswered question 

in the field, and I will test this question in Chapter III. 

 

Protein Kinase C (PKC) stimulated trafficking 

Initial studies reporting DAT sequestration to intracellular compartments, 

following protein kinase C (PKC) activation, began in the late 1990’s using 

radioligand binding assays (Zhu et al., 1997; Pristupa et al., 1998) and 

immunofluorescently-tagged DAT (Pristupa et al., 1998). These findings, in 

conjunction with reports that both SERT (Qian et al., 1997) and NET 
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(Apparsundaram et al., 1998) downregulate in response to PKC in a trafficking 

dependent manner, raised the hypothesis that DAT undergoes enhanced 

internalization following PKC activation. Two independent reports in 1999 

demonstrated that DAT rapidly internalizes following PKC activation (Daniels and 

Amara, 1999; Melikian and Buckley, 1999). Melikian and Buckley used a 

biotinylation assay to demonstrate that PKC activation, via treatment with the 

phorbol ester PMA, reduced DAT surface expression (Melikian and Buckley, 

1999). Daniels and Amara also used PMA to activate PKC in cells 

overexpressing GFP-DAT and used immunocytochemistry to identify intracellular 

DAT populations (Daniels and Amara, 1999). Since these original findings, 

investigators have sought out the mechanisms underlying PKC-stimulated DAT 

endocytosis.  

 

The specific PKC isoforms required for PKC-stimulated DAT downregulation 

remains a critical unanswered question in the field. Protein kinase C is a cellular 

kinase that phosphorylates serines and threonines on target proteins. The ten 

PKC isoforms are subdivided into three classes, conventional PKC (cPKC), novel 

PKC (nPKC), and atypical (aPKC) (Steinberg, 2008). PKC a, bI, bII, and g make 

up the cPKC family.  They require Ca2+ and diacylglycerol (DAG) for activation. 

nPKCs (d, e, h, q, and µ) are Ca2+-independent and require only DAG for 

activation. aPKC (z, i, and l) require neither Ca2+ nor DAG for activation. It 
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should be noted that the phorbol ester, PMA, activates only cPKC and nPKC 

isoforms.  

 

Doolen and Zahniser reported that DAT downregulation required only cPKC 

based upon pharmacological inhibition (Doolen and Zahniser, 2002). However, 

this study was conducted Xenopus oocytes, which, presumably do not have the 

molecular factors contained in an intact DA nerve terminal. Fog et al., reported 

that PKCa used the DAT N-terminus as a substrate for phosphorylation (Fog et 

al., 2006b). It is known that PKC activation stimulates DAT phosphorylation; (Huff 

et al., 1997; Vaughan et al., 1997; Foster et al., 2002; Granas et al., 2003; Fog et 

al., 2006a); however, this phosphorylation is not required for PKC-stimulated 

endocytosis. Chen et al. mutated three putative PKC phosphorylation sites on 

DAT (S262, S586, and T613), and this mutant maintained PKC-stimulated 

downregulation (Chang et al., 2001). In addition to those three PKC consensus 

sites, DAT’s distal N-terminus contains five serines (S2, S4, S7, S12, S13) that 

are phosphorylated following PKC activation (Foster et al., 2002). However, the 

Gether group truncated the first 22 DAT residues, and showed that this domain is 

not required for PKC-stimulated DAT internalization either by PMA or activation 

of the Gq-coupled substance P receptor, NK1R (Granas et al., 2003). This finding 

demonstrated that the first 22 DAT residues, including these distal N-terminal 

serines, are not required for PKC stimulated DAT internalization. The 

Fleckenstein group identified PKCbI, bII, and g as DAT-associated in a co-IP from 
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rat striatal synaptosomes, however, they did not follow up on these studies with 

functional data (Hadlock et al., 2011). Work from the Gnegy group demonstrated 

that PKCb is required for DAT plasma membrane insertion rather than 

internalization (Chen et al., 2009; Chen et al., 2013). PKCb is activated by PMA, 

however, it is hypothesized that other PKC isoforms, activated by PMA, drive 

DAT internalization to a greater effect than PKCb DAT insertion, such that the net 

effect is the observed downregulation (Bermingham and Blakely, 2016). Taken 

as a whole, the PKC isoforms required for DAT internalization in terminals 

remains unknown, and in the absence of effective isoform-specific PKC 

activators and inhibitors, this question remains unanswered.  

 

PKC activation causes additional DAT posttranslational modifications. DAT is 

palmitoylated at its membrane-proximal C-terminus (Foster and Vaughan, 2011). 

PKC activation reduces palmitoylated DAT; however, PKC-induced 

palmitoylation reductions do not affect PKC-stimulated DAT endocytosis (Foster 

and Vaughan, 2011; Moritz et al., 2015). Ubiquitination is another PKC-induced 

DAT posttranslational modification. Miranda et al. first reported that PKC 

activation results in DAT ubiquitination at lysines 19, 35, and 599 (Miranda et al., 

2005). However, mutating these three ubiquitination sites did not block PKC-

stimulated DAT endocytosis, suggesting that these three residues, and the 

resulting ubiquitination at these sites, are not required for regulated endocytosis 

(Miranda et al., 2007). However, PKC-mediated endocytosis was blocked when 
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two of these sites, K19 and K35, were mutated in conjunction with an additional, 

putatively non-ubiquitinated lysine, K27 (Miranda et al., 2007). This DAT triple 

mutant (N3K) does not internalize in response to PKC activation. This finding 

correlates DAT ubiquitination with PKC-stimulated endocytosis. However, more 

directly, it demonstrates that lysines 19, 27, and 35 are required for PKC-

stimulated DAT endocytosis.  

 

In addition to three N-terminal lysines, DAT also has C-terminal domains required 

for PKC-stimulated DAT endocytosis. As discussed previously in this chapter, the 

Melikian laboratory showed a non-canonical endocytic motif, FREKLAYAIA, is 

both necessary and sufficient for PKC-stimulated DAT endocytosis (Holton et al., 

2005; Boudanova et al., 2008a). To identify putative DAT interacting proteins 

involved in regulated DAT endocytosis, a yeast 2-hybrid screen was performed 

using FREKLAYAIA as bait. This screen identified the small, neuronal Ras-like 

GTPase, Rin as a DAT binding protein (Navaroli et al., 2011). FRET microscopy 

studies demonstrate that Rin binds directly to DAT, and internalization assays in 

PC12 cells showed that Rin activity is required for PKC-stimulated endocytosis. 

 

Even though Rin binds DAT, and its activity is required for PKC-stimulated 

endocytosis, it is unknown how Rin drives DAT endocytosis. GTP-bound Rin is 

found in complex with Par6 and Cdc42 (Hoshino et al., 2005), which prompted 

the hypothesis that Cdc42 activity is required for regulated DAT endocytosis.  Wu 
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et al. showed that Cdc42 negatively regulates DAT endocytic rates (Wu et al., 

2015). This finding is consistent with the negative regulatory mechanism or 

“endocytic brake” that is associated with DAT’s N- or C-terminus (Boudanova et 

al., 2008b; Sorkina et al., 2009). Cdc42 activates the nonreceptor tyrosine 

kinase, Ack1, which Wu et al. demonstrated negatively regulates DAT 

endocytosis downstream of PKC and Cdc42 activation (Wu et al., 2015). 

Whether Rin sequesters Cdc42 such that it cannot activate Ack1, and therefore, 

cannot serve as a DAT endocytic brake remains untested. Ack1 contains a PPXY 

motif that is required for binding to the E3 ubiquitin ligase, Nedd4-2, and Nedd4-2 

activity downregulates Ack1 expression (Chan et al., 2009). Interestingly, Nedd4-

2, was identified in an siRNA screen as a required molecule for PKC-stimulated 

DAT endocytosis (Sorkina et al., 2006; Vina-Vilaseca and Sorkin, 2010). Whether 

Nedd4-2 mediated Ack1 downregulation is required to drive Ack1-dependent 

DAT endocytosis down stream of PKC activation remains unknown.  
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Figure I-1. PKC stimulated DAT endocytosis. DAT rapidly internalizes and 
displays reduced insertion rates following protein kinase C activation. PKC-
stimulated DAT endocytosis requires Ack1 inactivation, Rin activity, Nedd4-2, 
and Flot1. Future studies are required to test whether these mechanisms are 
distinct or part of a coordinated signaling cascade (Adapted from Wu et al., 
2015).  
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DAT mobility in membrane microdomains 

Multiple reports indicate that DAT localizes to distinct membrane microdomains 

(Adkins et al., 2007; Foster et al., 2008; Hong and Amara, 2010; Cremona et al., 

2011; Navaroli et al., 2011; Rahbek-Clemmensen et al., 2017). Membrane 

microdomains are small, heterogeneous, dynamic domains that can facilitate 

cellular functions by compartmentalizing cellular factors (Simons and Ikonen, 

1997; Pike, 2006). Flotillin (Flot-1) is an integral membrane protein involved in 

signaling, endocytosis, and cytoskeletal interactions (Otto and Nichols, 2011). 

Cremona et al. reported that Flot-1 is required for DAT localization to cholesterol-

rich domains, and that Flot-1 is required for PKC-stimulated DAT internalization 

(Cremona et al., 2011). However, the Sorkin group showed that while Flot-1 is 

required for DAT lateral mobility in the membrane; it is not required for PKC-

stimulated DAT endocytosis (Sorkina et al., 2013). While follow up studies are 

necessary to test whether Flot-1 is in fact required for PKC-stimulated 

endocytosis, Cremona et al.’s findings raise an interesting hypothesis that 

regulated DAT endocytosis requires DAT localization in discrete microdomains. 

In support of this hypothesis, the DAT/Rin interaction is enriched in membrane 

rafts as measured with CTxB labeling (Navaroli et al., 2011). Given that Rin is 

required for DAT internalization following PKC activation, these findings correlate 

DAT membrane localization and PKC-stimulated DAT endocytosis. Further, the 

ADHD associated DAT mutant, R615C, displays altered microdomain localization 

(Sakrikar et al., 2012). R615C is an endocytic gain-of-function mutant, as 
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demonstrated by increased basal internalization rates. Taken together, these 

data correlate R615C’s enhanced basal endocytosis with disrupted plasma 

membrane localization, further supporting the hypothesis that microdomain 

localization is required for regulated DAT endocytosis. 

 

Voltage-dependent DAT internalization 

Consistent with reports that DAT localizes to discrete microdomains, the Gether 

group recently used super-resolution microscopy to demonstrate that DAT 

localizes to cholesterol-rich domains in CAD cells and ex vivo preparations 

(Rahbek-Clemmensen et al., 2017). Further, they showed that DAT microdomain 

localization decreased following NMDA receptor activation, suggesting that DAT 

undergoes activity-dependent lateral diffusion. While this finding does not speak 

to whether DAT internalizes or recycles back to the plasma membrane following 

depolarization, reports from the Khoshbouei group support voltage dependent 

DAT internalization (Richardson et al., 2016). They used TIRF microscopy and 

surface biotinylation approaches to monitor fluorescently-tagged DAT during 

depolarization and hyperpolarization in HEK cells and cultured neurons. They 

observed DAT surface losses in response to depolarization, and enhanced 

surface expression following hyperpolarization. However, it should be noted that 

the only means of membrane depolarization used in this paper was KCl 

treatment. Whether this mechanism holds true under more physiological 

depolarization conditions remains untested.  
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Substrate-Mediated DAT Trafficking 

In addition to constitutive, PKC-stimulated, and voltage-dependent trafficking 

mechanisms, DAT undergoes rapid internalization following substrate 

translocation. As discussed previously, amphetamines are a potent, competitive 

DAT substrate. They increase extracellular levels by competing with DA for 

uptake into the presynaptic terminal, by promoting an “efflux willing” state that 

allows for reverse DA transport through DAT, and they cause rapid DAT 

endocytosis which results in less DAT at the plasma membrane for reuptake 

(Sulzer et al., 2005a). Initial reports, using Flag-DAT in EM4 cells showed that 

AMPH treatment increased intracellular DAT populations (Saunders et al., 2000). 

A surface biotinylation assay confirmed that AMPH-stimulated DAT sequestration 

was due to a loss of surface DAT populations (Kahlig et al., 2004). AMPH-

stimulated DAT internalization is inhibited by pretreatment with cocaine, 

suggesting that this process requires AMPH translocation through DAT to the 

cytosol intracellular AMPH. Consistent with this idea, introducing AMPH via patch 

pipette was sufficient to elicit enhanced DAT endocytosis (Kahlig et al., 2006). 

The Melikian group reported that AMPH-stimulated DAT trafficking uses 

pathways distinct from PKC-stimulated DAT internalization, given that the C-

terminal endocytic motif FREKLAYAIA is not required for AMPH-stimulated DAT 

internalization, and pharmacological PKC blockade did not affect AMPH-

stimulated DAT internalization in PC12 cells (Boudanova et al., 2008a).  
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As stated earlier, AMPH activates CaMKII, which results in CaMKII binding to 

DAT’s C-terminus (Fog et al., 2006a). Additionally, following AMPH exposure, 

CaMKII inactivates Akt, and Akt inactivation is required for DAT internalization 

(Garcia et al., 2005; Wei et al., 2007). These data demonstrate that following 

AMPH treatment, CaMKII’s association with DAT is required for two important 

DAT mechanisms – endocytosis and efflux. Further, these data demonstrate that 

Akt negatively regulates DAT surface expression, and following Akt inactivation, 

DAT rapidly internalizes. The notion of negatively regulating DAT surface 

expression is a recurrent theme within the DAT regulatory field (Boudanova et 

al., 2008b; Sorkina et al., 2009; Wu et al., 2015), suggesting that multiple factors 

stabilize DAT surface populations, and following a stimulus (PKC activation, 

AMPH treatment), an “endocytic brake” is released, allowing for rapid 

internalization. In addition to Akt-dependent AMPH-stimulated endocytosis, the 

Amara group showed that AMPH activates Rho GTPase, and Rho activity is 

required for AMPH-stimulated DAT internalization (Wheeler et al., 2015). 

However, how this Rho-dependent mechanism relates to the Akt-dependent 

mechanism remains unknown.  

 

In addition to AMPH, dopamine, the endogenous DAT substrate, causes DAT 

internalization. Chi and Reith reported dose-dependent DAT surface loss 

following pretreatment with DA. While others report DA-stimulated DAT 
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internalization (Saunders et al., 2000) with 100µM DA, Daniels and Amara saw 

no effect on DAT plasma membrane levels with DA treatment with 10µM DA 

(Daniels and Amara, 1999). The difference in their findings may be due to 

different cellular expression systems, or rather, a reflection of the dose-

dependence of DA-stimulated DAT internalization.  

 

Other DAT Trafficking Mechanisms 

Neurons have other mechanisms for acutely regulating DAT surface expression. 

The autoreceptor, D2R is expressed on DA nerve terminals. Multiple lines of 

evidence suggest that following D2R activation, DAT surface expression 

increases (Bolan et al., 2007; Lee et al., 2007; Chen et al., 2013). Lee et al, used 

Co-IP and GST-tagged N-terminal peptides to show that DAT associates with 

D2R at its N-terminus (Lee et al., 2007). Following D2R activation with 

quinperole, DAT functionally upregulates as measured by increased Vmax, which 

the authors attribute to increased surface expression. It should be noted that 

Bolan et al. also report that D2R activation increases DAT surface expression; 

however, they report that the N-terminus is not required for either DAT/D2R 

complex or for DAT upregulation (Bolan et al., 2007). Bolan et al., further 

demonstrated that D2R-dependent DAT upregulation requires ERK1/2. The 

Gnegy group provided additional support for increased DAT insertion following 

D2R activation (Chen et al., 2013). They treated striatal synaptosomes with 

quinperole, and measured increased DAT surface expression with a surface 
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biotinylation assay (Chen et al., 2013). Chen et al. further demonstrated that 

D2R-mediated DAT surface upregulation requires PKCb, for PKCb-/- mice did not 

display quinperole-induced DAT plasma membrane insertion. D2R is a Gai 

coupled receptor, which raises the question as to whether this mechanism is 

specific to the DAT/D2R interaction or more broadly attributed to Gai signaling 

cascades. Kivell et al. used Co-IP and FRET to show that DAT exists in complex 

with the kappa opioid receptor (KOR) (Kivell et al., 2014). KOR is expressed in 

DAT+ varicosities in the NAc (Svingos et al., 2001), suggesting that KOR 

activation and signaling via Gai cascades, could regulate DAT function and 

surface expression. Like D2R, KOR activation increased DAT function as a result 

of increased DAT surface expression (Kivell et al., 2014). They further reported 

that this increase requires ERK1/2 signaling downstream of KOR activation, 

consistent with the D2R-mediated mechanism reported by Bolan et al.  

 

Zhu et al. reported a novel DAT trafficking mechanism that is GDNF and Vav2 

dependent (Zhu et al., 2015). GDNF signals through the receptor tyrosine kinase, 

Ret. Downstream of Ret activation, Vav2 negatively regulates DAT surface 

expression. Further, they showed that both Ret+/- and Vav2-/- mice have 

increased DAT surface expression, and increased DAT transporter activity. 

Interestingly, this mechanism is specific to the NAc, as Ret+/- and Vav2-/- mice 

show no changes in DAT surface expression or transporter activity in the DS. 

Ret/Vav2 dependent DAT trafficking does not require PKC activity, suggesting a 
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novel mechanism for negatively regulating DAT surface expression.  Cocaine 

increases DAT surface expression (Daws et al., 2002; Little et al., 2002); 

however, in the NAc of Vav2-/- mice, cocaine decreased DAT surface expression. 

Vav2-/- mice are not hyperactive; however, they do not sensitize to the locomotor 

effects of cocaine. This finding is the first to link a DAergic behavior to an acute 

DAT trafficking mechanism. It is known that DAT maintains DAergic 

homeostasis, and DAT trafficking mechanisms regulate DAT availability. 

However, the physiological outcome of DAT trafficking events remains poorly 

understood. This finding in Vav2-/- mice correlates DAT surface expression 

regulation with locomotor sensitization to cocaine, suggesting that other acute 

DAT endocytic mechanisms can have profound consequences on DAergic 

behavior. I will be testing the physiological impact of PKC-stimulated DAT 

endocytosis in Chapter IV.  

 

I.D Animal Models of Dopamine Transporter 

Acute DAT trafficking mechanisms regulate DAT availability at the plasma 

membrane. It is hypothesized that acutely altering DAT availability will impact 

extracellular DA levels, and therefore impact DA signaling cascades; however, 

this hypothesis remains untested. DAT animal models support the hypothesis 

that altered DAT activity will have profound consequences on DAergic pathways 

and behaviors. DAT-/- mice demonstrate that DAT is required for maintaining 

homeostatic DA signaling. DAT-/- mice have increased extracellular DA; however, 
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reduced total DA stores and reduced DA release upon single pulse stimulation 

(Gainetdinov et al., 1998; Jones et al., 1998b; Benoit-Marand et al., 2000). DAT-/- 

mice have less striatal TH, but overall TH mRNA is not reduced. Further, TH 

activity is increased in DAT-/- mice, as indicated by increased L-DOPA levels and 

unchanged L-amino acid decarboxylase levels (Jones et al., 1998a). Additionally, 

D1R and D2R  are downregulated in DAT-/- mice (Giros et al., 1996). Taken as a 

whole, these data demonstrate that DAT is required for maintaining DA 

homeostasis at both pre- and postsynaptic neurons. Behaviorally, the broad 

disruption in DA homeostasis results in hyperactivity. However, DAT-/- mice still 

display conditioned place preference (CPP) to cocaine and self-administer 

cocaine (Rocha et al., 1998; Sora et al., 1998). These surprising results 

suggested that either DAT is not required for cocaine induced reward and 

motivation, or that DAT-/- mice have profound molecular compensation within 

their reward circuitry. A cocaine insensitive DAT KI (DAT-CI) mouse was critical 

in demonstrating that DAT is indeed required for cocaine’s rewarding properties 

(Chen et al., 2006). The Gu group used a chimeric protein approach, swapping 

out mouse DAT (mDAT) sequences with dDAT sequences because dDAT has 

10-fold lower affinity for cocaine than mDAT. This approach revealed three 

residues (L104V, F105C, A109V) required for DAT/cocaine binding (Wu and Gu, 

2003; Chen et al., 2005). DAT-CI mice do not display cocaine-induced 

hyperlocomotion nor CPP to cocaine (Chen et al., 2006). The Gu laboratory used 

the DAT-CI mice to test the minimal DAergic circuitry sufficient for cocaine’s 
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rewarding and locomotor effects (O'Neill et al., 2014; Wu et al., 2014). AAV-

mediated WT DAT delivery to DAT-CI mice in the rostrolateral striatum rescued 

cocaine-induced locomotion, whereas WT DAT expression in the DS and medial 

NAc did not restore cocaine-induced locomotion. Moreover, WT DAT expression 

in each of these brain regions failed to rescue CPP to cocaine (O'Neill et al., 

2014). However, WT DAT injection into ventral midbrain (VTA and SNc), rescued 

cocaine CPP (Wu et al., 2014). Taken together, these data demonstrate not only 

that cocaine’s rewarding properties require DAT, but also that DAT expression in 

both DS and NAc is required for cocaine reward.  

 

I.E DAT mutants in disease states 

As previously stated, DAT functions to clear synaptic DA, and therefore, 

regulates descending DA signaling cascades. DAergic dysfunction is implicated 

in numerous disease states including Parkinson’s Disease (PD), attention deficit 

hyperactivity disorder (ADHD), bipolar disorder (BPD), autism spectrum disorder 

(ASD), schizophrenia, and drug abuse. Therefore, dysfunctional DAT can alter 

synaptic homeostasis, and possibly lead to DA-related disease states. Here, I 

provide description of DAT coding variants associated with multiple DAergic 

disease states, to support the hypothesis that altered DAT function may 

contribute to pathophysiology of DAergic disease states.  
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Dopamine Transporter Deficiency Syndrome 

Dopamine transporter deficiency syndrome (DTDS) is an autosomal recessive 

disorder characterized by infantile/juvenile-onset parkinsonism dystonia (Kurian 

et al., 2009; Kurian et al., 2011; Ng et al., 2014). Patients express DAT point 

mutations (Leu368Gln, Pro395Leu, Val158Phe, Pro554Leu, Gly327Arg, 

Gln439X, Pro529Leu, Leu224Pro, Arg521Trp) that abolish DAT function due to 

reduced plasma membrane expression. Cellular studies revealed that loss of 

function arises from DAT mutant retention in the ER due to misfolding (Chiba et 

al., 2014; Beerepoot et al., 2016; Asjad et al., 2017). Recent studies using 

pharmacochaperoning provide insight as to possible therapeutics for these 

children. Pharmacochaperoning requires reversible, small molecule binding to 

folding intermediates, as a means to lower the free energy necessary to achieve 

the trajectory of a fully folded protein (Chiba et al., 2014). One such 

pharmacochaperone is noribogaine, which binds DAT in an inward facing 

conformation. In flies, expressing DTDS mutants causes reduced sleep; 

however, noribogaine treatment rescues this phenotype. These data suggest that 

molecular pharmacochaperoning approaches could serve as possible 

therapeutics for these patients (Beerepoot et al., 2016; Asjad et al., 2017).  

 

Adult Parkinsonism 

A patient, presenting with both early onset PD and ADHD, was identified as 

heterozygous for two distinct DAT missense alleles (I132F and D412N) (Hansen 
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et al., 2014). The Gether group performed kinetic analysis of both mutant 

transporters. I132F showed significantly reduced DA uptake compared to WT 

DAT, and D421N showed no measurable Vmax. The complete absence of DA 

uptake in D421N cannot be attributed to surface expression loss. Rather, D421N 

expresses significantly more protein compared to WT DAT controls. The authors 

attribute the lack of DA uptake to deficient Na+ binding. Indeed, the mutated 

aspartate is predicted to be critical for the Na+ binding site (Penmatsa et al., 

2013). Further, D421N mutant cells undergo anomalous dopamine efflux (ADE), 

meaning they display an outward DA current at steady state. Cellular studies 

describing ADE show that this DA current occurs through DAT and is blocked 

with cocaine and methylphenidate (Mazei-Robison et al., 2008; Bowton et al., 

2010; Bowton et al., 2014). Hansen et al. show that D421E ADE can be rescued 

with AMPH treatment. The I321F mutation occurs in DAT’s sixth transmembrane 

region (TM6). While TM6 is critical for substrate binding and translocation, the 

mutated isoleucine is not predicted as required for substrate binding. Consistent 

with this prediction, I312F DAT has equal affinity for the DAT inhibitor  b-CFT. 

Rather, the authors predict that substituting isoleucine for phenylalanine may 

impact substrate translocation mechanisms, resulting in the observed reduction 

in Vmax.  

 

A rare DAT coding variant (V24M) was discovered in a PD patient in a screen for 

genetic variants possessing altered blood metabolite levels (Long et al., 2017). 
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The authors note that this individual had increased blood levels of dopamine 

sulfate; however, they speculate whether altered dopamine sulfate levels are a 

consequence of the mutation or due to L-DOPA treatment for PD. This mutation 

occurs at DAT’s N-terminal domain, which is required for protein interactions, 

posttranslational modifications, DA reverse transport, and substrate translocation 

(Vaughan and Foster, 2013).  

 

Attention deficit hyperactivity disorder (ADHD) 

ADHD is characterized by hyperactivity, disorganization, inattentiveness, and/or 

impulsivity (American Psychiatric Association, 2013b). Common therapies for 

ADHD include methylphenidate (Ritalin), a competitive DAT antagonist, and 

amphetamine (Adderall), a competitive DAT substrate (Pliszka, 2007). 

Polymorphisms in the DAT gene were found in ADHD patients (Cook et al., 1995; 

Yang et al., 2007). Further, DAT-/- mice display a hyperactive phenotype (Giros et 

al., 1996). Taken together, these observations provide evidence DAT is a risk 

allele for ADHD, and disrupted DAT function may contribute to ADHD pathology. 

Several functional DAT coding variants were identified in ADHD patients 

including A559V, R615C, V24M, and L164F; however, the latter two mutants 

have not been characterized (Mergy et al., 2014a). Interestingly, as previously 

noted, the V24M mutant was identified in an adult PD patient (Long et al., 2017). 
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A559V 

A559V mutation was found in patients with ADHD, bipolar disorder (BD), and 

autism spectrum disorder (Grunhage et al., 2000; Mazei-Robison and Blakely, 

2005; Bowton et al., 2014). This mutant undergoes ADE. A559V DAT’s ADE is 

attributed to enhanced sensitivity to intracellular Na+ levels, which results in a 

voltage dependent DA leak (Mazei-Robison et al., 2008). Further, data suggests 

that mechanistically, ADE may also arise from increased D2R activity. Cells, 

overexpressing A559V DAT and endogenously expressing D2R, demonstrate 

reduced ADE following treatment with the D2R antagonist, raclopride (Bowton et 

al., 2010). Downstream of D2R, cells expressing A559V have increased CaMKII 

activity, PKCb activity, and DAT N-terminal phosphorylation (Bowton et al., 2010; 

Bowton et al., 2014). These findings are consistent with reports that DAT-

mediated DA efflux requires PKCb, CaMKII, and N-terminal phosphorylation 

(Kantor and Gnegy, 1998; Khoshbouei et al., 2004; Johnson et al., 2005; Fog et 

al., 2006a; Chen et al., 2013; Zestos et al., 2016). Interestingly, AMPH treatment, 

which promotes DAT-mediated DA efflux in WT DAT, rescues A559V DAT’s 

ADE. The authors propose this finding as a possible mechanism to explain the 

paradox of using psychostimulants to alleviate hyperactivity in ADHD patients 

(Mazei-Robison et al., 2008).  

 

Above, describes cellular experiments for the A559V mutant; however, they do 

not explain how this point mutation affects DAergic phenotypes in vivo. To test 
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this, the Blakely group generated an A559V DAT KI mouse (Mergy et al., 2014a; 

Mergy et al., 2014b; Davis et al., 2018). This mouse has increased extracellular 

DA levels, which the authors attribute to previously reported ADE. Increased 

extracellular DA result in tonically active D2R activity, which inhibits vesicular DA 

release at steady state. Further, increased extracellular DA increases the 

duration of D2R-mediated sIPSCs (Mergy et al., 2014b). Taken as a whole, these 

data demonstrate that this DAT point mutation alters DAergic signaling.  

 

Interestingly, A559V DAT mice are not hyperactive, despite having increased 

extracellular DA levels. However, their locomotor response to AMHP and MPH is 

blunted (Mergy et al., 2014b). In a recent report with A559V DAT mice, Davis et 

al. demonstrate that this mutation results in enhanced motivation for sucrose 

reward, and increased impulsivity, which the authors attribute to their enhanced 

desire for reward (Davis et al., 2018). Therefore, altered DA regulation resulting 

from a DAT point mutation results in DAergic phenotypes. 

 

R615C 

R615C is a rare DAT coding variant, originally discovered in a cohort of Irish 

patients with ADHD (Bellgrove et al., 2009; Sakrikar et al., 2012). The mutated 

arginine is located at DAT’s distal C-terminus. This mutant displays a gain-of-

function endocytic phenotype in cells. It internalizes significantly faster than WT 

DAT at steady state levels. Further, PKC activation and AMPH treatment 
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stimulate WT DAT endocytosis; however, they have no effect on R615C 

endocytic rates suggestive of a ceiling effect in transporter endocytic rates 

(Sakrikar et al., 2012).  

 

Additionally, this mutant displays increased CaMKII association and consistent 

with this finding, R615C has increased N-terminal phosphorylation. Further, this 

mutant shows less association with Flot-1. Consistent with disrupted Flot-1 

association, R615C DAT localizes to different membrane compartments than WT 

DAT (Sakrikar et al., 2012).  

 

DAT plasma membrane expression is negatively regulated. A negative endocytic 

regulatory mechanism or endocytic brake stabilizes DAT at the plasma 

membrane. As stated previously, Ack1 inactivation releases the endocytic brake, 

and results in enhanced DAT endocytosis (Wu et al., 2015). Given the gain-of-

function endocytic trafficking phenotype displayed by R615C DAT, Wu et al. 

hypothesized that imposing negative endocytic regulation upon this mutant would 

rescue the endocytic phenotype. Using a constitutively active Ack1 (S445P), they 

rescued enhanced R615C internalization rates back to WT DAT rates. This 

finding raised the possibility that regulating DAT endocytic rates could have 

implications for ADHD treatment. All mechanistic characterization of R615C 

mutant has been in cellular expression systems; however, they suggest that 

dysregulated DAT trafficking could have profound phenotypic consequences. An 
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in vivo model of this mutant is necessary to test how this mutation, and 

downstream disrupted regulation of DAT and DA signaling, contributes to ADHD-

like symptoms.  

 

Autism Spectrum Disorder 

Autism spectrum disorder (ASD) is characterized by deficits in social interaction 

or communication, and restrictive and/or repetitive behavioral patterns (American 

Psychiatric Association, 2013a). Altered DA signaling is reported in ASD-like 

behavior (Ernst et al., 1997; Gunaydin and Deisseroth, 2014; Lee et al., 2017; 

Paval, 2017). Consistent with this idea, rare genetic variants for DAT have been 

identified in probands with ASD, suggesting that DA clearance deficits can 

contribute to ASD presentation. T356M, R51W, and A559V point mutations have 

been identified in ASD patients. As described previously, A559V mutation was 

originally identified in patients with ADHD and BPD, and whole exome 

sequencing identified this rare allele in two unrelated males diagnosed with ASD 

(Bowton et al., 2014).  

 

T356M 

T356M is a de novo DAT coding variant found in an ASD patient (Neale et al., 

2012; Hamilton et al., 2013). T356 is located in DAT’s seventh transmembrane 

domain, and is conserved across species including mammals, Drosophila, and C. 



CHAPTER I 

	 37 

elegans. Hamilton et al. showed that the T356M mutation did not affect DA 

affinity, but significantly reduced Vmax, which is not due to loss of surface T356M 

DAT. They attribute Vmax reductions, in part, to the mutant’s ADE. Additionally, 

this mutant displayed reduced AMPH-stimulated DA efflux. Taken together with 

diminished uptake, these findings suggest that T356M has reduced capacity for 

transport in both forward and reverse directions. Additionally, Hamilton et al., 

showed that reduced uptake rates and blunted AMPH-stimulated efflux could be 

partially rescued with zinc (Hamilton et al., 2015). Zinc coordinates sidechains of 

extracellular DAT residues H193, H375, and E396, and it promotes an outward 

facing DAT conformation (Norregaard et al., 1998; Loland et al., 1999; Pifl et al., 

2009; Li et al., 2015). 

 

To assess the physiological impact of this mutation in vivo, they used the 

UAS/GAL4 system in Drosophila to express T356M DAT over a dDAT null 

background. Compared to flies overexpressing WT hDAT, the T356M flies are 

hyperactive, and they do not demonstrate increased locomotor activity following 

AMPH treatment. These data suggest that ADE results in a hyperactive state due 

to increased extracellular DA. Interestingly, A559V also displays ADE; however, 

in the KI mouse model, this mutant is not hyperactive (Mergy et al., 2014b). 

Taken together, these data suggest that increased extracellular DA resulting from 

ADE alone does not contribute to hyperactivity.  
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R51W 

Whole exome sequencing identified the rare DAT variant, R51W (Cartier et al., 

2015). The mutated arginine is located at the DAT N-terminus, which is a site for 

multiple protein-protein interactions. Syntaxin1a (Syn1A) associates with DAT’s 

N-terminus, and this interaction is required for AMPH-stimulated DA reverse 

transport (Binda et al., 2008). R51W reduces DAT/Syn1A interaction, and 

consistent with this finding, displays reduced AMPH-stimulated DA efflux. Cartier 

et al. used the UAS/GAL4 system in flies to express R51W in DA neurons over a 

dDAT null background. This fly shows normal baseline locomotor activity 

compared to flies expressing WT DAT; however, AMPH-stimulated increases in 

locomotor activity are blunted in R51W flies compared to hDAT controls (Cartier 

et al., 2015). This finding supports the hypothesis that AMPH-stimulated efflux is 

critical for AMPH-stimulated increases in locomotor activity, however, it does not 

point to the importance of this mutation in ASD-related behaviors.  

 

Taken as a whole, DAT mutants in DTDS, PD, ADHD, ASD, and BPD 

demonstrate DAT’s critical role in regulating DA signaling. While many of these 

mutations do not affect total DAT or surface DAT populations, the diminished 

DAT function and regulation significantly impact DA signaling and DAergic 

behavior. These mutants support the hypothesis that DAT regulation is required 

to maintain homeostatic DA signaling.  
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I.F Rin (Rit2) 

Our laboratory demonstrated that the small, neuronal Ras-like GTPase, Rin, 

binds directly to DAT and is required for PKC-stimulated DAT internalization 

(Navaroli et al., 2011). However, the following questions remain unanswered: 1) 

what is the physiological impact of PKC-stimulated DAT internalization? and 2) 

what is the significance of Rin signaling in vivo? In Chapter IV, I will test both of 

these questions. Here, I present what is known about Rin GTPase biology.  

 

Rin signaling 

The Ras GTPase superfamily is composed of small (~25 kD) proteins subdivided 

into families: Ras, Rho, Arf, Rab, Sar, and Ran (Colicelli, 2004). GTPases act as 

molecular switches that cycle between GTP-bound (active) and GDP-bound 

(inactive) states. In the GTP-bound state, they display high affinity for effector 

molecules. Following GTP hydrolysis, catalyzed by GTPase activating proteins 

(GAPs), they dissociate from effector molecules. GTPases are inactive in the 

GDP-bound state. The exchange of GDP for GTP is the rate limiting step in 

GTPase signaling cycle. A guanine nucleotide exchange factor (GEF) catalyzes 

the release of GDP, which allows for GTP loading, and downstream effector 

binding (Colicelli, 2004). Ras-like GTPases exert multiple functions in neurons, 

including axonal initiation, growth, guidance, and branching (Hall and Lalli, 2010).  
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Rin (Rit2), and its homolog, Rit, were initially identified in two independent 

screens. Lee et al., using degenerate primers for Ras-GTPases, screened retinal 

cDNA libraries for novel Ras-like GTPases (Lee et al., 1996). From this screen, 

they identified two novel GTPases, Rin and Rit. Rin (Ras-like in neurons) is 

expressed exclusively in brain and retina, whereas Rit (Ras-like in tissues) is 

expressed ubiquitously in all tissues. In an independent study, Wes et al. 

screened for calmodulin binding proteins in Drosophila retina (Wes et al., 1996). 

Their screen identified a novel GTPase, Ric (Ras-related protein which interacted 

with calmodulin), as a ubiquitously expressed Ras-like GTPase, which they 

identified as homologous to Rin and Rit.  

 

Rin, Rit, and Ric all lack the classical CAAX domain (where C is a cysteine, A is 

an aliphatic amino acid, and X is any amino acid) necessary for lipid modification 

(prenylation, myristoylation, and palmitoylation) and plasma membrane 

association. These three GTPases all contain a polybasic domain at their C-

termini which is believed to mediate plasma membrane association in the 

absence of lipid modification (Lee et al., 1996; Wes et al., 1996; Heo et al., 

2006).  

 

Both Lee et al. and Wes et al. identified Rin as a calmodulin (CaM) binding 

protein, and this finding was later confirmed in an in vitro binding assay 

performed by the Hoshino group (Lee et al., 1996; Wes et al., 1996; Hoshino and 
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Nakamura, 2003). CaM binds Ca2+, serving as an intermediate protein to mediate 

Ca2+ signaling in the cell. It is abundantly expressed in the neuron and is 

reported to bind over 100 proteins in the brain (Xia and Storm, 2005).  The 

physiological consequence of Rin-calmodulin interaction remains untested.   

 

Nerve growth factor (NGF) activates Rin (Spencer et al., 2002; Shi et al., 2005a). 

The Andres group showed that H-Ras is required for Rin activation downstream 

of NGF and EGF signaling. Further, they show that NGF-stimulated Rin 

activation occurs in neuronal expression systems (PC6 cells, a subline of the 

pheochromocytoma PC12 cells, and SK-N-MC-IXC, a subline of the parental SK-

N-MC cell) and not in non-neuronal systems (HEK and Vero cells) (Spencer et 

al., 2002). This finding suggests that neuronal specific factors are required for 

Rin activation, consistent with Rin localization limited to neurons.  

 

The neurotrophic peptide, pituitary adenylate cyclase (AC) activated polypeptide 

38 (PACAP38), activates Rin (Shi et al., 2008).  PACAP induces neurite 

outgrowth in PC12 cells (Somogyvari-Vigh and Reglodi, 2004; Vaudry et al., 

2009). This neuropeptide activates downstream signaling cascades required for 

survival, proliferation, neurite outgrowth, and trophic factor induction (Waschek, 

2002). Shi et al. demonstrated Gai -mediated PACAP signaling through Src 

kinase to activate Rin (Shi et al., 2008).  
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It should be noted that many studies investigating Rin activity relied heavily upon 

constitutively active and dominant negative Rin, Rit, and Ras mutants. Given the 

extensive homology in effector domains among these proteins, and among the 

superfamily of Ras-like GTPases, one cannot distinguish as to whether the 

results seen are indeed due to activated Rin-like proteins, or rather, due to 

sequestration of effectors proteins for other Ras-like GTPases necessary for 

queried signaling cascades. The specific GAPs and GEFs required for Rin and 

Rit GTPase activity remain unknown. The Hoshino group report that Rin binds to 

mSOS (GEF); however, they did not test whether mSOS exerts GEF activity on 

Rin either in vitro or in vivo (Hoshino and Nakamura, 2002). Gene silencing 

studies provide a more Rin-specific approach to ask questions regarding Rin-

related biology. The Andres group used Rin knockdown in PC6 cells to 

characterize the PACAP38-Src-Rin signaling cascade. Further, some Rin 

signaling studies were performed in non-neuronal heterologous expression 

systems. Spencer et al. reported NGF-induced Rin activation in neuronal 

expression systems but not in non-neuronal expression systems (Spencer et al., 

2002), necessitating the importance of  using in vivo systems to study 

endogenous Rin activity in situ. In unpublished data from our laboratory, I 

demonstrate that Rin-targeted shRNAs are efficacious for reducing Rin 

expression in heterologous expression systems and in mouse brain (Chapter IV). 

  

Rin in vivo 
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The gene that encodes Rin, RIT2, has been identified as a risk allele in 

numerous GWAS studies. RIT2 mutations or deletions have been identified in 

patients with Parkinson’s disease (Latourelle et al., 2012; Pankratz et al., 2012; 

Emamalizadeh et al., 2014; Labbe and Ross, 2014; Liu et al., 2015; Lu et al., 

2015; Nie et al., 2015; Wang et al., 2015a; Zhang et al., 2015; Emamalizadeh et 

al., 2017), schizophrenia (Glessner et al., 2010; Emamalizadeh et al., 2017), 

autism spectrum disorder (Liu et al., 2016; Emamalizadeh et al., 2017), bipolar 

disorder (Emamalizadeh et al., 2017), essential tremor (Emamalizadeh et al., 

2017), and speech delay (Bouquillon et al., 2011). As previously stated, Rin is 

required downstream of PACAP signaling in PC12 cells to induce neurite 

outgrowth, and reports show that that PACAP signaling is required for increased 

cell survival of midbrain DAergic neurons (Takei et al., 1998; Reglodi et al., 

2004). Whether Rin/RIT2 mediates this effect, and further, whether this pathway 

is disrupted in Rin-related neurodegenerative pathologies remains unknown.  

 

Rit2 was identified by the Nestler laboratory as having increased DFosB binding 

to its promotor in NAc from mice receiving chronic cocaine treatment (Renthal et 

al., 2009). Gene expression changes are a proposed mechanism for long-term 

changes in reward circuitry following chronic drug abuse (Hyman et al., 2006; 

Nestler, 2008). DFosB is a stable transcription factor that is upregulated following 

cocaine exposure, and its long lasting expression is hypothesized to mediate 

long-lasting effects of drugs of abuse (Nestler, 2008). Whether Rin is indeed 
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transcriptionally regulated through DFosB, and further, whether Rin activity is 

altered following chronic cocaine treatment, must be tested further. However, this 

study is the first to propose a link between Rin expression and drug abuse.  

 

Prior to unpublished work described in this thesis (Chapter IV), very little was 

known about Rin’s role in vivo. A published abstract by the Andres group reports 

that in Rin-/- mice, brain Akt signaling is increased, p38 MAPK signaling 

decreased, and these mice have improved outcomes in response to traumatic 

brain injury (Pannell et al., 2015). However, with the absence of published data to 

go on, we cannot ascertain what importance, if any, Rin plays in neurobiology. 

Additionally, a germline knockout is sensitive to compensatory mechanisms 

throughout development. Furthermore, multiple lines of evidence support that Rin 

activity may be critical in DAergic neurons, and a conditional Rin KD or KO is 

critical for investigating these DA-specific mechanisms. In Chapter IV I will test, 

for the first time, the physiological importance of Rin activity in DA neurons. 

 

Summary 

DA signaling cascades are tightly regulated to maintain homeostatic DAergic 

function. DAT regulates descending DA systems through DA reuptake, thereby 

spatially and temporally limiting DA signaling events. Small alterations in DAT 

function can critically impact DAergic systems. Single point mutations in DAT are 

associated with PD, ADHD, ASD, and BPD. DAT point mutations often do not 
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affect DA uptake rates (Vmax) or surface expression. However, having 

dysregulated function is sufficient to disrupt the DA network. DAergic neurons 

intrinsically regulate DAT availability through regulated trafficking events. 

However, the physiological consequences resulting from acute DAT endocytosis 

remains unknown. I hypothesize that disrupting regulated DAT endocytosis will 

impair DAT’s critical and delicate control on DA signaling events; therefore, 

disrupting DAergic homeostasis. Within this thesis, I will discuss DAT domains 

required for functional DA uptake (Chapter II) and regulated trafficking events 

(Chapter III). Further, I will test the hypothesis that regulated DAT trafficking is 

required for DAergic behavior (Chapter IV).  
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Chapter II 

Dopamine Transporter Amino and Carboxy Termini Synergistically 

Contribute to Substrate and Inhibitor Affinities 

 

Authors: Sweeney CG, Tremblay BP, Stockner T, Sitte HH, and Melikian HE 

 

II.A Summary 

Extracellular dopamine and serotonin concentrations are determined by the 

presynaptic dopamine (DAT) and serotonin (SERT) transporters, respectively. 

Numerous studies have investigated the DAT and SERT structural elements 

contributing to inhibitor and substrate binding. To date, crystallographic studies 

have focused on conserved transmembrane domains, where multiple substrate 

binding and translocation features are conserved. However, it is unknown what, if 

any, role the highly divergent intracellular amino and carboxy termini contribute to 

these processes. Here, we used chimeric proteins to test whether DAT and 

SERT amino and carboxy termini contribute to transporter substrate and inhibitor 

affinities. Replacing the DAT amino terminus with that of SERT had no effect on 

DA transport Vmax, but significantly decreased DAT substrate affinities for DA and 

amphetamine. Similar losses in uptake inhibition were observed for small DAT 

inhibitors, whereas substituting the DAT carboxy terminus with that of SERT 

affected neither substrate nor inhibitor affinities. In contrast, the N-terminal 
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substitution was completely tolerated by the larger DAT inhibitors, which 

exhibited no loss in apparent affinity. Remarkably, all affinity losses were rescued 

in DAT chimeras encoding both SERT amino and carboxy termini. The sensitivity 

to amino terminal substitution was specific for DAT, as replacing the SERT amino 

and/or carboxy termini affected neither substrate nor inhibitor affinities. Taken 

together, these findings provide compelling experimental evidence that DAT 

amino and carboxy termini synergistically contribute to substrate and inhibitor 

affinities. 

 

II.B Introduction 

Psychostimulant drugs include therapeutics for multiple psychiatric disorders, 

such as depression and ADHD, as well as drugs of abuse (Torres et al., 2003a; 

Kristensen et al., 2011; Vaughan and Foster, 2013; German et al., 2015). 

Determining how these drugs interact with their molecular targets is essential for 

understanding psychostimulant addiction as well as psychiatric treatment. The 

monoamine transporters DAT and SERT are the primary targets for a variety of 

psychostimulants, such as cocaine and amphetamines (AMPH, METH, MDMA), 

as well as the SSRI and NDRI classes of antidepressants (Kristensen et al., 

2011; Vaughan and Foster, 2013; Gaffaney et al., 2014; German et al., 2015). 

Cocaine and SSRI/NDRIs inhibit these transporters by directly blocking DA and 

5HT reuptake, whereas amphetamine and its congeners are competitive DAT 
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and SERT substrates. Once in the cytosol, amphetamines mediate monoamine 

release from vesicles in a VMAT-dependent manner (Freyberg et al., 2016) and 

drive their efflux via their respective plasma membrane transporters (Sitte and 

Freissmuth, 2015). 

 

DAT and SERT belong to the SLC6 family of Na+- and Cl--dependent solute 

carriers, which are topologically similar, having twelve transmembrane domains 

and intracellular N- and C-termini (Torres et al., 2003a; Kristensen et al., 2011; 

Vaughan and Foster, 2013; German et al., 2015). Crystal structures of the SLC6 

bacterial homologs LeuT (Yamashita et al., 2005), Drosophila DAT (dDAT) 

(Penmatsa et al., 2013), and more recently human SERT (Coleman et al., 2016) 

have confirmed the predicted topologies of SLC6 transporters, shed light on the 

mechanism of substrate translocation, and better mapped inhibitor/substrate 

binding sites. While critical in understanding transporter structure and function, 

these transporter crystallographic studies lack structural insights into the N-

terminus and much of the C-terminus, due to their highly disordered properties. 

Mutagenesis studies have revealed that DAT and SERT intracellular N- and C-

terminal domains contribute to transporter regulated internalization (Holton et al., 

2005; Miranda et al., 2007; Boudanova et al., 2008b; Sorkina et al., 2009; 

Rickhag et al., 2013b; Seimandi et al., 2013; Bermingham and Blakely, 2016), 

post-endocytic trafficking (Bermingham and Blakely, 2016; Vuorenpaa et al., 

2016), biosynthetic trafficking (Sitte et al., 2004; Farhan et al., 2007; Sucic et al., 
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2011; Sucic et al., 2013; Bermingham and Blakely, 2016), and amphetamine-

stimulated substrate efflux (Khoshbouei et al., 2004; Guptaroy et al., 2009; Sitte 

and Freissmuth, 2010; Sucic et al., 2010; Rickhag et al., 2013a). Moreover, DAT 

and SERT N- and C- terminal coding variants have been identified in ADHD and 

autism spectrum disorder patients (Prasad et al., 2005; Prasad et al., 2009; 

Sakrikar et al., 2012; Cartier et al., 2015; Wu et al., 2015), further implicating 

these regions as important for transporter function, and necessitating the need 

for greater understanding into how they may contribute to transporter 

mechanisms of action. Computational modeling of the DAT N-terminus 

(Khelashvili et al., 2015a; Khelashvili et al., 2015b) and both SERT N- and C-

termini (Fenollar-Ferrer et al., 2014) has shed light onto their secondary 

structure. Moreover, these studies have raised the possibility that these domains 

may interact with the plasma membrane and, potentially, each other. However, 

there remains a dearth of experimental data testing whether or not these 

domains contribute to substrate and inhibitor affinities. In the current study, we 

asked whether DAT and SERT N- and C-termini influenced substrate and 

inhibitor affinities. To address this question, we generated DAT/SERT chimeras 

in which the N-, C-, or both termini are exchanged between their respective DAT 

or SERT core proteins. DAT and SERT transmembrane cores share 52% 

sequence identity; however, their N- and C-termini are highly divergent (17% and 

27% sequence identity, respectively), thus providing an effective strategy to test 
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whether these intracellular domains differentially contribute to substrate or 

inhibitor affinities. 

 

II.C Materials and Methods 

Materials: Rat anti-DAT (MAB369) antibody was from Millipore and mouse anti-

SERT antibody was from MAb technologies. Horseradish peroxidase (HRP)-

conjugated anti-rat secondary and mouse anti-actin (SPM161) antibodies were 

from Santa Cruz and HRP-conjugated anti-mouse antibody was from Jackson 

Immunoresearch Laboratories (115-035-003). Sulfo-NHS-SS-biotin and 

streptavidin agarose were from Thermo Scientific. GBR12909, citalopram, and 

fluoxetine were from Tocris. All other chemicals and reagents were from Sigma-

Aldrich and Thermo Fisher Scientific and were of the highest grade available.  

 

cDNA constructs: Chimeric hDAT and hSERT cDNAs were generated using the 

PCR-Ligation-PCR (PLP) approach (Ali and Steinkasserer, 1995), using hDAT 

pcDNA3.1 (+) and/or hSERT pcDNA3.1 (+) as templates, corresponding to the 

following coding regions: N-SERT/DAT (hSERT[1-78]/hDAT[60-620], DAT/C-

SERT (hDAT[1-583]/hSERT[601-630]), SERT/DAT/SERT (hSERT[1-

78]/hDAT[60-583]/hSERT[601-630]), N-DAT/SERT (hDAT[1-59]/hSERT[79-

630]), SERT/C-DAT (hSERT[1-600]/hDAT[584-620]), DAT/SERT/DAT (hDAT[1-

59]/hSERT[79-600]/hDAT[584-620]). The resulting chimeric cDNAs were 
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digested and cloned back into their parental transporters at the following 

restriction sites: HindIII/PflMI (N-SERT/DAT, SERT/DAT/SERT), HindIII/AgeI (N-

DAT/SERT, DAT/SERT/DAT), or ClaI/XbaI (DAT/C-SERT, SERT/C-DAT, 

SERT/DAT/SERT, DAT/SERT/DAT). All chimeric constructs were confirmed by 

Sanger sequencing (Genewiz). 

 

Cell culture and generation of pooled stable cell lines: Human dopaminergic SK-

N-MC cells were obtained from American Type Culture Collection (Manassas, 

VA) and were maintained in MEM supplemented with 10% fetal bovine calf 

serum, 100 units/mL penicillin/streptomycin, 2 mM L-glutamine, 37°C, 5% CO2. 

Cells were transfected with wildtype or chimera cDNAs using Lipofectamine 2000 

according to manufacturer’s instructions with the following modifications: Cells 

were seeded into 6 well plates at a density of 1x106 one day prior to transfection, 

and were transfected with 3 µg plasmid DNA/well using a lipid:DNA ratio of 2:1. 

To generate stable cell lines, 48 hours following transfection, cells were selected 

using 0.5 mg/mL G418. Stably transfected cells were pooled and cell lines were 

maintained under selective pressure using 0.2 mg/mL G418.  

 

Uptake assays: [3H]DA and [3H]5HT uptake: 7.5x104 (DA uptake) or 5.0x104 

(5HT uptake) cells/well were seeded onto 96 well plates, one day prior to the 

assay. Cells were washed twice with room temperature Krebs-Ringers-HEPES 
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buffer (KRH: 120 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 2.2 

mM CaCl2, 10 mM HEPES, pH 7.4), and transport assays were conducted as 

described below. All transport reactions proceeded for 10 min, 37°C and were 

terminated by washing thrice with ice-cold KRH buffer. Cells were solubilized in 

scintillation fluid, 15 min, room temperature and [3H] accumulation was quantified 

using a Wallac Microbeta scintillation plate counter (Perkin Elmer). Triplicate 

points were measured for each data point and non-specific uptake was defined in 

the presence of either 10 µM GBR12909 (DA uptake) or 10 µM paroxetine (5HT 

uptake). Data were analyzed using Excel and GraphPad Prism software. Cocktail 

solutions were counted in parallel and accumulated [3H] was less than 10% of 

the total [3H] added for all assays. 

 

Kinetics: [3H]DA (dihydroxyphenylethylamine 3,4-[ring-2,5,6,-3H]; Perkin Elmer) 

and [3H]5HT (5-hydroxytryptamine [3H]-; Perkin Elmer) 10x cocktails were 

prepared by diluting a 1/20th volume radiolabeled substrate into 60 µM stock 

solutions of unlabeled DA or 5HT in KRH containing 0.18% glucose and 10 µM 

each pargyline and sodium ascorbate (KRH/g/p/a). 60 µM [3H]substrate solutions 

were serially diluted into KRH/g/p/a to generate [3H]DA or [3H]5HT cocktails at 

10X the indicated final substrate concentrations. Cells were preincubated (20 

min, 37°C) with KRH buffer supplemented with 0.18% glucose (KRH/g) and 

uptake was initiated by adding a 1/10th volume of 10x concentrated [3H] substrate 

cocktails.  
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Inhibitor dose response curves: Cells were pre-incubated in KRH/g (30 min, 

37°C) with the indicated drugs at the indicated concentrations. Uptake was 

initiated by adding a 1/10th volume of 500 nM [3H]DA or 250 nM [3H]5HT 10x 

cocktail, for final assay concentrations of 50 nM (DA) or 25 nM (5HT).  

 

AMPH and fenfluramine dose response: Cells were pre-incubated in 

KRH/glucose buffer (20 min, 37°C). Uptake was initiated by adding a 1/10th 

volume of either 500nM [3H]DA or 250 nM [3H]5HT 10x cocktails, containing 

AMPH or fenfluramine, respectively, at 10x the indicated final concentrations.  

 

Cell Surface biotinylation: Surface proteins were covalently labeled with sulfo-

NHS-SS-biotin as previously described (Loder and Melikian, 2003; Holton et al., 

2005). Briefly, cells were rapidly chilled by washing in ice-cold PBS, pH 7.4, 

supplemented with 1.0 mM MgCl2, 0.1 mM CaCl2 (PBS2+), and incubated with 1.0 

mg/ml sulfo-NHS-SS-biotin in ice-cold PBS2+, twice, for 15 min at 4°C. Residual 

reactive NHS groups were quenched by repeated washing and incubating twice 

in PBS2+/100 mM glycine, 15 min, 4°C. Cells were washed three times in ice-cold 

PBS2+, lysed in RIPA buffer containing protease inhibitors and protein 

concentrations were determined using the BCA protein assay (Pierce). 

Biotinylated proteins from equivalent amounts of cellular protein were isolated by 
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batch streptavidin chromatography (overnight, 4°C) and bound proteins were 

eluted in 2X SDS-PAGE sample buffer, 30 min, room temperature. Either 

supernatants (WT DAT, DAT/C-SERT) or total cellular lysates (N-SERT/DAT, 

SERT/DAT/SERT) were used to normalize surface levels. Blots were probed with 

actin for normalization (N-SERT/DAT, SERT/DAT/SERT). Samples were 

resolved by SDS-PAGE and specific proteins were detected by immunoblotting 

with the indicated antibodies. Immunoreactive bands were detected with 

SuperSignal West Dura (Pierce) and were captured using a VersaDoc Imaging 

station (Biorad). Non-saturating bands were quantified using Quantity One 

software (Biorad). Relative surface expression was quantified as percent surface 

protein (WT DAT, DAT/C-SERT, N-DAT/SERT, DAT/SERT/DAT). Data were 

normalized to percent WT DAT (DAT/C-SERT), N-SERT/DAT 

(SERT/DAT/SERT), or N-DAT/SERT (DAT/SERT/DAT). 

 

II.D RESULTS 

SLC6 crystallographic studies have shed considerable light on both substrate 

translocation mechanisms and inhibitor binding sites (Yamashita et al., 2005; 

Penmatsa et al., 2013; Wang et al., 2015b; Coleman et al., 2016). However, it 

remains uncertain whether transporter intracellular N- and C-termini contribute to 

these fundamental transporter properties. To test the hypothesis that these 

cytoplasmic domains influence the transport mechanism and inhibitor binding, we 
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created DAT/SERT chimeras which retained either DAT or SERT 

transmembrane domains (i.e. “cores”), but differentially replaced DAT and SERT 

N- and C-termini with their homologous counterparts (see schematic, Fig. II-1A). 

We chose these domains because although DAT and SERT are highly 

homologous within their transmembrane domains, their N- and C-termini diverge 

significantly (17% and 27% amino acid conservation, respectively, Fig. II-1B). We 

first asked whether these domains contributed to substrate uptake kinetics for the 

DAT core chimeras. Each DAT core chimera exhibited saturable DA uptake 

(Figure II-2A), indicative of functional protein expressed at the plasma 

membrane. However, Vmax values for DAT/C-SERT and SERT/DAT/SERT were 

significantly lower than either WT DAT or N-SERT/DAT (Table II-1). Vmax is 

affected by both transporter surface expression and substrate translocation rates. 

To test whether reduced Vmax values were due to attenuated transporter surface 

expression, we performed surface biotinylation experiments comparing either WT 

DAT to DAT/C-SERT, or N-SERT/DAT to SERT/DAT/SERT. Note that the DAT 

and SERT antibody epitopes are localized on their respective N-termini, therefore 

allowing only for direct comparisons between transporters with identical N-

termini. In addition, we found that the N-terminally directed anti-SERT antibody 

recognized a non-specific band in the supernatant (intracellular), but not surface, 

fraction recovered from SK-N-MC cell lysates, with similar mobility as SERT (not 

shown). This precluded using total or intracellular SERT signals for 

normalization. Therefore, for assays using the anti-SERT antibody, we 
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normalized chimera surface levels to actin as a loading control. The percent of 

DAT/C-SERT expressed at the surface, relative to its own total protein 

expression, was not significantly different than WT DAT (p = 0.72, Fig. II-2B). 

However, the absolute amount of DAT/C-SERT was significantly reduced, thus 

the absolute amount of DAT/C-SERT expressed at the cell surface was likewise 

significantly reduced compared to WT DAT (51.4 ± 6.0% WT levels, Fig. II-2C), 

which accounts for the observed Vmax decrease. We also observed that 

SERT/DAT/SERT was expressed at significantly lower levels at the cell surface 

than N-SERT/DAT (10.3 ± 2.7% of N-SERT/DAT levels; Fig. II-2D), fully 

accounting for its decreased Vmax, as opposed to compromised catalytic activity. 
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Figure II-1. A. DAT/SERT chimera schematic. DAT “core” and SERT “core” 
chimeric proteins were designed as depicted. DAT regions are indicated in 
red, SERT regions are indicated in cyan. B. DAT and SERT N- and C-termini 
are highly divergent. Sequence alignments of DAT and SERT N- and C-
termini. Conserved residues (by identity, charge, or size) are indicated in red. 
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Figure II-2. DAT core chimera uptake kinetics and surface expression.  
A. [3H]DA uptake assays. Saturation uptake kinetics were measured as 
described in Experimental Procedures, in SK-N-MC cells stably expressing 
either WT DAT (black), N-SERT/DAT (cyan), DAT/C-SERT (blue), or 
SERT/DAT/SERT (red). Average data are presented ±S.E.M., n = 11-16. B-D. 
Surface Biotinylation Assays. Surface levels for the indicated constructs were 
determined by surface biotinylation, as described in Experimental Procedures. 
B. WT DAT vs. DAT/C-SERT surface levels. Average data ± S.E.M. are 
presented, relative to the total amount of DAT chimera expressed, p = 0.72, 
Student’s t test, n = 3-4. C. WT DAT vs. DAT/C-SERT total expression levels, 
calculated as the sum of biotinylated (surface) and supernatant (intracellular) 
fractions, *Significantly different from WT DAT, p < 0.04, Student’s two-tailed t 
test, n = 3-4. Inset: Representative immunoblot for B and C. D. N-SERT/DAT 
and SERT/DAT/SERT surface expression, normalized to actin. ***Significantly 
different from N-SERT/DAT, p < 0.001, Student’s two-tailed t test, n = 3. Inset: 
Representative immunoblots (Note: boxed bands were digitally extracted from a 
single blot exposure, probed for both the chimeras and actin, in parallel). 
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To test whether DAT’s N- and C-termini contribute to DA apparent affinity, we 

compared the WT DAT Km value with those measured for the DAT core chimeras 

(Table II-1). Replacing the DAT N-terminus with the SERT N-terminus 

significantly decreased the apparent substrate affinity, as reflected by an 

increased Km for DA (WT DAT: 1.1 ± 0.1µM; N-SERT/DAT: 2.2 ± 0.4 µM, n = 11-

16, Table I), whereas substituting the DAT C-terminus with that of SERT (DAT/C-

SERT) had no effect on apparent DA affinity compared to WT DAT (Table II-1, p 

= 0.99). Surprisingly, replacing both DAT N- and C- termini with those of SERT 

restored the Km back to WT DAT levels, thereby rescuing the loss of apparent 

affinity induced by substituting the DAT N-terminus alone (Table II-1). We next 

asked whether the N-terminus contributes to apparent substrate affinity in 

general, or to apparent DA affinity specifically, by measuring each chimera’s 

sensitivity to AMPH, a competitive DAT substrate. As illustrated in Table II-1, 

similar to our findings with DA, N-SERT/DAT exhibited a significant increased Ki 

for AMPH, compared to WT DAT, indicating loss of apparent substrate affinity, 

whereas DAT/C-SERT showed no change in AMPH sensitivity compared to WT. 

Moreover, SERT/DAT/SERT exhibited a significant decrease in Ki for AMPH 

(52.1 nM ± 11.4 nM, n = 11, p < 0.05), indicating an increased apparent affinity. 

 

Given that DAT N- and C-termini differentially impacted apparent substrate 

affinity, we next extended our analyses to test whether these domains also 
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contribute to competitive inhibitor affinities. We first focused on cocaine and other 

tropane-derived congeners. Despite the impact that N-terminal substitution 

imposed upon apparent substrate affinity, none of the DAT core chimeras 

exhibited a significant difference in Ki values for cocaine, as compared to WT 

DAT (Table II-1). In contrast, similar to what we observed for DAT substrates, N-

SERT/DAT exhibited significantly lower apparent affinity than WT DAT for the 

high-affinity DAT inhibitor b-CFT (WIN35,428; n = 4). Moreover, substituting the 

SERT C-terminus had no effect on apparent b-CFT affinity, and substituting both 

the DAT N- and C- terminus rescued the loss in apparent affinity observed with 

the N-terminal substitution (Table II-1). We further tested whether the apparent 

affinity of another high affinity tropane, b-CIT (RTI-55), was similarly impacted by 

the DAT N-terminal substitution. Interestingly, despite the structural similarity 

between b-CIT and b-CFT, N-SERT/DAT exhibited no difference in apparent 

affinity for b-CIT as compared to WT DAT (Table I, Student’s two-tailed t-test, p = 

0.33, n = 3-7). Cocaine is a relatively low affinity inhibitor with equimolar potency 

across monoamine transporters, whereas both b-CFT and b-CIT are non-

selective, high affinity inhibitors for both DAT and SERT. Therefore, we next 

tested whether methylphenidate (MPH) and GBR12909, high affinity inhibitors 

with selectively for DAT over SERT, were similarly affected by DAT N- and C-

terminal substitutions. Similar to what we observed with DAT substrates, N-

SERT/DAT exhibited significantly decreased sensitivity to MPH, whereas MPH 

apparent affinities for DAT/C-SERT were not significantly different from WT DAT 
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(p = 0.99) and SERT/DAT/SERT rescued the loss in sensitivity observed for N-

SERT/DAT (Table II-1). In contrast, substituting DAT N- and C-termini with SERT 

termini had no effect on DAT core chimera sensitivity to the high affinity DAT 

inhibitor, GBR12909 (p = 0.37). 

 

We next tested whether reciprocal DAT substitutions onto the SERT core would 

similarly impact apparent substrate and inhibitor affinities. WT SERT and SERT 

core chimeras exhibited robust, saturable 5HT uptake when expressed in SK-N-

MC cells (Fig. II-3A) and no significant differences in Vmax values were observed 

among the chimeras as compared to WT SERT, although N-DAT/SERT exhibited 

a trend towards decreased 5HT transport Vmax (p = 0.07).  

 

Assessment of 5HT Km values revealed no differences between WT SERT and 

any of the SERT core chimeras (Table II-2), suggesting that, unlike DAT, the 

SERT N-terminus does not contribute to apparent substrate affinity. To test 

whether this is specific to 5HT, or applies to other SERT substrates, we 

measured the apparent affinity for fenfluramine, a SERT-selective amphetamine 

derivative. As seen in Table II-2, substituting the DAT N-, C-, or both termini had 

no effect on the SERT core chimera fenfluramine Ki values, as compared to WT 

SERT. We similarly tested a panel of chemically diverse SERT inhibitors, 

including the tropane compounds cocaine and b-CIT, the SSRI escitalopram, and 
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the tricyclic antidepressant, imipramine. Replacing the DAT N- and/or C-termini 

onto SERT had no effect on the potency of these compounds, as compared to 

WT SERT (Table II-2), suggesting that while the DAT N-terminus contributes to 

apparent substrate affinity and potency for a subclass of inhibitors, SERT can 

tolerate N-terminal substitutions without compromising either apparent substrate 

or inhibitor affinities. 
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Figure II-3. A. SERT-core chimera uptake kinetics. [3H]5HT uptake assays. 
Saturation uptake kinetics were measured as described in Experimental 
Procedures, in SK-N-MC cells stably expressing either WT SERT (black), N-
SERT/DAT (cyan), SERT/C-DAT (blue), and DAT/SERT/DAT (red). Average 
data are presented ±S.E.M., n = 5-6. B-C. DAT substrate and inhibitor 
chemical structures. Chemical structure of compounds whose affinities were 
(B) or were not (C) affected by DAT N-terminal substitution with the SERT N-
terminus. 
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II.E DISCUSSION 

Monoamine transporter N- and C-termini encode multiple motifs critical for 

biosynthesis (Sitte et al., 2004; Farhan et al., 2007; Sucic et al., 2011; Sucic et 

al., 2013; Koban et al., 2015), surface regulation (Holton et al., 2005; Boudanova 

et al., 2008b; Sorkina et al., 2009), and AMPH-stimulated substrate efflux 

(Khoshbouei et al., 2004; Guptaroy et al., 2009; Sitte and Freissmuth, 2010; 

Sucic et al., 2010; Rickhag et al., 2013a). Given that coding variants in both the 

DAT and SERT terminal domains have been independently reported in patients 

with neuropsychiatric disorders (Prasad et al., 2005; Prasad et al., 2009; Sakrikar 

et al., 2012; Cartier et al., 2015), understanding how these domains may also 

influence substrate and inhibitor binding is critical. DAT N-terminal residues 

interact with intracellular domains that contribute to an intracellular transport 

gating mechanism, which modulates substrate translocation (Yamashita et al., 

2005; Guptaroy et al., 2009; Sucic et al., 2010; Guptaroy et al., 2011; Khelashvili 

et al., 2015b). In particular, R60 (Kniazeff et al., 2008) T62 (Guptaroy et al., 

2009), and R51 (Khelashvili et al., 2015b) interact with intracellular loops to help 

stabilize the DAT outward (R60, T62) and inward (R51) facing conformations. 

R60 and T62 are maintained in our chimeras, as they are conserved between 

DAT and SERT. However, R51 is not conserved between DAT and SERT, and 

observed differences in substrate/inhibitor apparent affinities may be due to loss 

of R51 influence on gating. This putative change in gating may be translated to 

the substrate binding pocket, and thereby result in decreased apparent affinities 
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for certain DAT substrates and inhibitors. An R51W coding variant identified in 

autism spectrum patients was recently reported (Cartier et al., 2015), which 

results in reduced DA efflux capacity, consistent with a role for R51 in 

transitioning between inward and outward facing conformations. Such results 

further raise the possibility that altered N-terminal mobility may have broader 

functional implications in neuropsychiatric disorders. 

 

Our results using DAT/SERT chimeric proteins revealed that the DAT N-terminus 

influences the apparent affinity of substrates and a subset of DAT inhibitors, 

whereas SERT function and inhibition was insensitive to N- and C-terminal 

substitutions. N-SERT/DAT exhibited reduced apparent affinity for DAT 

substrates DA and AMPH, as well as the inhibitors MPH and b-CFT. 

Interestingly, the N-terminus did not contribute to apparent affinities for cocaine, 

GBR12909, or b-CIT. In contrast, a recent study using DAT/NET chimeras, found 

that replacing the DAT N-terminus with that of NET enhanced the DAT affinity for 

DA, whereas replacing the NET N-terminus with that of DAT reduced NET affinity 

for DA (Vuorenpaa et al., 2016). Consistent with our results, they also observed 

that C-terminal exchanges had no effect on DA affinity. Further, a study from 

Vaughan and colleagues found that N-terminal point mutations (S4A, C6A, S7A, 

S7D) in rat DAT exhibited reduced b-CFT binding (Moritz et al., 2013), further 

supporting that the DAT N-terminus contributes to the affinity of select inhibitors. 
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Taken together with our findings, these data are consistent with a model in which 

the DAT N-terminus may influence the stability of the ligand-bound conformation 

Interestingly, we observed that this occurred over a broad range of structurally 

diverse compounds (see chemical structures, Figs. II-3B, C). However, although 

cocaine, b-CFT and b-CIT are all tropane-derivatives, only b-CFT apparent 

affinity was affected by the DAT N-terminal substitution. A previous report 

identified a DAT point mutation (D345N) that is insensitive to b-CFT, but retains 

sensitivity to cocaine inhibition (Chen et al., 2001), suggesting that binding of 

tropanes derivatives within DAT is not identical. Moreover, a dDAT crystal 

structure encoding point mutations that mimic hDAT displayed enhanced cocaine 

and β-CFT, but not b-CIT binding (Wang et al., 2015b), consistent with a model 

in which these compounds have differential binding properties for DAT. Cocaine 

and b-CIT are larger molecules than b-CFT. Cocaine’s ester linkage (absent in b-

CIT and b-CFT) increases its size compared to b-CFT, while the substitution of 

the larger halide, iodide, in b-CIT increases its size compared to b-CFT. This 

raises the possibility that the molecular size of these compounds exerts a large 

influence on their ability to bind within the S1 binding pocket. Consistent with this 

premise, DA, AMPH, and MPH, which are all small DA-related compounds, were 

all sensitive to the N-terminal substitution, whereas GBR12909, which is a large, 

extended piperazine derivative, was not impacted by the DAT N-terminal 

substitution.  
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The potential explanation for the observed different shifts in inhibitory potency is 

an energy change for reaching the inhibitor-transporter complex state, which 

does not affect every inhibitor in the same way. Thus, the intracellular termini 

substitution may have caused structural changes in the outer vestibule or 

changed the free energy hypersurface of the translocation process. Most 

inhibitors bind competitively to DAT and prevent the transition from outward-

facing to inward-facing. It is conceivable that larger compounds interfere already 

in the initial part of the transition, while smaller inhibitors block the transporter 

movement along the transition path. The geometry of the outward facing 

conformation is most likely unchanged, as the Ki of the largest compounds did 

not change. More intensive structural and/or computational interrogations will be 

necessary to discern among these possibilities. 

 

How does the N-terminus influence the coordination of substrates and inhibitors 

in the DAT binding pocket? DAT’s adaptation to molecule size within its pocket 

was demonstrated by Gouaux and colleagues (Wang et al., 2015b) using the 

same dDAT crystal structures bound to substrates and inhibitors. In their study, 

they posit that the small substrates sit precisely within the pocket in appropriate 

position. The larger inhibitors, like tropanes and antidepressants, lock DAT in an 

outward facing conformation to exert their effects. A notable difference between 

their findings and ours is that, as stated previously, they do not find any 
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difference between inhibitor binding sites for cocaine and b-CFT; however, their 

study focused on dDAT whereas ours investigated hDAT. Although the binding 

sites of hDAT and dDAT share approximately 80% identity, dDAT exhibits ten-

fold lower affinity for cocaine than hDAT (Porzgen et al., 2001). Another potential 

difference between our findings and the previous results is that although their 

constructs bind DA and inhibitors, they lack DA uptake function. The dDAT 

crystal structures omit much of EL2 and the N-terminus. Complete N terminal 

truncation (residues 1-66) results in a loss of DA uptake (Sorkina et al., 2009), 

truncation of residues 1-60 results in marked loss of transporter uptake velocity 

(Torres et al., 2003b), and a previous DAT truncation mutant lacking residues 1-

59 exhibits some measurable uptake, although neither the kinetic constants nor 

expression levels were reported for D1-59 DAT mutant (Gu et al., 2001). Work 

from our laboratory likewise suggests that truncations within the N-terminus 

significantly impair transporter expression and function (data not shown). Our 

current study has the benefit of using N-and C-terminal substitutions on an 

otherwise complete WT background, such that DA uptake could be assessed in 

robustly expressing transporters.  

 

Another factor that may contribute to role of the DAT N-terminus in 

substrate/inhibitor affinities is the interaction of the DAT N-terminus with PIP2 and 

IL4 (Hamilton et al., 2014; Khelashvili et al., 2015b). A recent molecular 

dynamics study examining the hDAT N-terminus on the dDAT background 
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reported a PIP2-mediated interaction with hDAT N-terminal residues (K3, K5, and 

R51) with IL4 (Khelashvili et al., 2015b). This interaction appears to break salt 

bridges necessary for the conserved intracellular gate. These findings contrast 

with simulation studies examining hSERT, where the N-terminus moves further 

away from intracellular domains following transition to the inward-open state 

(Fenollar-Ferrer et al., 2014). It should be noted that PIP2 binds to SERT at its 

intracellular loops (Buchmayer et al., 2013), but whether PIP2 affects SERT N-

terminal mobility remains untested. We did not detect differences in 

substrate/inhibitor apparent affinities among the SERT-core chimeras. The 

reported differential trajectories for DAT and SERT N-terminal domains during 

transition to the inward-open state may result in differential effects on 

substrate/inhibitor binding sites. These opposing trajectories may explain why we 

see differences in effects between DAT-core and SERT-core chimeras. 

 

In summary, we have identified a putative role for the DAT N-terminus in 

influencing the substrate/inhibitor binding site, and a possible synergistic role for 

the DAT N- and C-termini to coordinate accessibility to the binding site. These 

findings will provide critical information to future structural studies that 

incorporate DAT intracellular domains in structural analyses.  
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Chapter III  

 Dopamine transporter amino- and carboxy-termini are synergistically 

required for Ack1-dependent endocytosis 

 

Sweeney CG, Alejandro B, and Melikian HE 

 

III.A Introduction 

DAT’s regulation over synaptic DA clearance is directly related to DAT availability 

at the plasma membrane, as evidenced by DAT genetic deletion with DAT-/- mice 

(Giros et al., 1996; Gainetdinov et al., 1998) and DAT pharmacological blockade 

with numerous drugs, including the psychostimulants cocaine and AMPH 

(Kristensen et al., 2011; Vaughan and Foster, 2013; German et al., 2015). DAT 

function and surface expression are acutely regulated by PKC. PKC activation 

results in rapid DAT internalization coupled with reduced recycling rates (Daniels 

and Amara, 1999; Melikian and Buckley, 1999). Multiple reports from our lab and 

others independently implicate domains within both DAT intracellular N- and C-

termini as required for constitutive and PKC-mediated DAT endocytosis (Holton 

et al., 2005; Boudanova et al., 2008b; Sorkina et al., 2009). Our laboratory 

reported that a C-terminal motif, FREKLAYAIA (587-596), is both necessary and 

sufficient for PKC-stimulated DAT endocytosis (Holton et al., 2005; Boudanova et 

al., 2008b). Alanine substitution of the FREK sequence, (4A mutant), 
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demonstrated enhanced basal internalization rates like those seen following PKC 

activation (Boudanova et al., 2008b). This study posed the idea that a negative 

regulatory mechanism, or “endocytic brake”, exists to stabilize DAT surface 

expression. Following PKC activation, the brake is released, and the transporter 

internalizes rapidly. The Sorkin laboratory reported that DAT’s N-terminal domain 

(residues 1-65) is required for negatively regulating DAT surface expression, and 

that the juxtamembrane residues (60-65) are most critical for maintaining DAT 

surface expression (Sorkina et al., 2009). Taken together, these studies 

demonstrate that both N- and C-termini are required for negatively regulating 

DAT surface expression. It remains unknown whether independent endocytic 

mechanisms exist at both termini or whether DAT uses one synergistic endocytic 

mechanism that requires both domains. To test the hypothesis that DAT N- and 

C-termini are synergistically required for regulated DAT endocytosis, I used 

DAT/SERT chimeras in which I replaced DAT N-, C-, or both termini with SERT 

terminal domains (Sweeney et al., 2017). These chimeras were previously used 

to demonstrate that DAT’s N- and C-termini synergistically mediate substrate and 

certain inhibitor affinities. DAT and SERT are homologous transporters, yet they 

share little sequence identity at their terminal domains. DAT and SERT N- and C-

termini contain multiple phosphorylation sites, and serve as domains for protein-

protein interactions (Eriksen et al., 2010; Zhong et al., 2012; Bermingham and 

Blakely, 2016). Both transporters undergo PKC-stimulated endocytosis, but only 

DAT requires Ack1 inhibition, downstream of PKC activation, for this process 
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(Wu et al., 2015). Additionally, our laboratory reported that the small, neuronal, 

Ras-like GTPase, Rin directly binds to DAT but not SERT, and it is required for 

regulated DAT endocytosis (Navaroli et al., 2011). Here, we tested internalization 

rates for each DAT-core chimera following PKC activation and Ack1 inhibition to 

test whether the N- and C-termini synergistically mediate PKC-stimulated 

endocytosis. Our findings demonstrate that both domains are collectively 

required for enhanced endocytosis following Ack1 inhibition. Further, our data 

suggest that DAT’s N-terminus mediates a functional step between PKC-

activation and Ack1-inactivation to drive regulated endocytosis. Additionally, we 

show that Rin acts downstream of PKC activation to mediate Ack1 

dephosphorylation, however neither DAT’s N- nor C-terminus is required for the 

DAT/Rin interaction. Further, we propose a novel strategy to identify proteins 

associated with DAT’s N- and C-termini. 

 

III.B Materials and Methods 

cDNA constructs: DAT/SERT chimeras were generated as previously described 

(Sweeney et al., 2017).  Bungarotoxin-binding site (BBS) DAT-core chimeras 

were generated as described in Wu et al. (Wu et al., 2017), with the following 

amino acid sequence inserted: GSSGSSGWRYYESSLEPYPDGSSGSSG. 

Underlined sequence refers to the BBS sequence, as flanked by linker sequence. 

All chimeric BBS-constructs were confirmed by Sanger sequencing (Genewiz). 
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Cell culture, transfection, and generation of pooled stable cell lines: Cells were 

maintained in either MEM (SK-N-MC cells) or DMEM (HEK293T and SK-N-DZ 

cells) supplemented with 10% fetal bovine calf serum, 100 units/mL 

penicillin/streptomycin, 2 mM L-glutamine, 1X non-essential amino acids (SK-N-

DZ cells), 37°C, 5% CO2.  Cells were transfected with WT, chimera, or BBS-DAT 

cDNAs using Lipofectamine 2000 according to manufacturer’s instructions with 

the following modifications: Cells were seeded into 6 well plates at a density of 

1x106 (SK-N-MC) or 5x105 (HEK293T) one day prior to transfection, and were 

transfected with 3 µg (SK-N-MC) or 2µg (HEK293T) plasmid DNA/well using a 

lipid:DNA ratio of 2:1. To generate stable cell lines, 48 hours following 

transfection, cells were selected using 0.5 mg/mL G418. Stably transfected cells 

were pooled and cell lines were maintained under selective pressure using 0.2 

mg/mL G418 (SK-N-MC).  

 

Uptake assays: [3H]DA uptake: All uptake assays were conducted as previously 

described in Chapter II (Sweeney et al., 2017).  

 

Internalization assay: Relative internalization rates were measured by reversible 

biotinylation as previously described (Loder and Melikian, 2003; Gabriel et al., 

2013; Wu et al., 2015).  Briefly, cells were rapidly chilled by washing in ice-cold 

PBS, pH 7.4, supplemented with 1.0 mM MgCl2, 0.1 mM CaCl2 (PBS2+), and 

incubated with 1.0 mg/ml sulfo-NHS-SS-biotin in ice-cold PBS2+, twice, for 15 min 
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at 4°C. Residual reactive NHS groups were quenched by repeated washing and 

incubating twice in PBS2+/100 mM glycine, 15 min, 4°C. Cells were washed four 

times with warmed PBS2+ supplemented with 0.18% glucose and 0.2% BSA 

±1µM PMA or 20µM AIM-100, and incubated 10min, 37oC to allow for 

internalization. Internalization was stopped by immediately moving the cells to ice 

and washing three times with ice cold NT buffer (150 mM NaCl, 20mM Tris, pH 

8.6, 1.0mM EDTA, pH 8.0, 0.2% BSA). Remaining surface biotin was stripped 

from internalization samples and strip controls with two incubations of 100mM 

TCEP in NT buffer, 25min, 4oC.  Cells were washed four times with PBS2+ and 

then lysed, and biotinylated proteins were isolated with streptavidin agarose 

beads and analyzed by SDS-PAGE followed by immunoblotting with anti-DAT 

(WT DAT and DAT/C-SERT) or anti-SERT (N-SERT/DAT and SERT/DAT/SERT) 

antibodies.  

 

BBS-DAT/chimera pulldowns: HEK cells transiently expressed BBS-DAT/chimera 

and HA-Rin at a ratio of 1:4. Cells were washed thrice with ice cold PBS and 

labeled with 120µM biotinylated α-bungarotoxin (BTX-b, Thermo Fisher), 2 hours, 

4oC. Bungarotoxin was removed from the cells and disposed of in the satellite 

accumulation area. Next, cells were washed thrice with ice cold PBS to remove 

any excess BTX-b. Cells were lysed with cold co-immunoprecipitation lysis 

buffer, also known as “Magic Lysis Buffer”, (50 mM Tris, pH 7.4, 100 mM NaCl, 

1% Triton X-100, 10% glycerol, and 1 mM EDTA) containing protease inhibitors 
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(1.0 mM PMSF and 1.0 g/ml each leupeptin, aprotinin, and pepstatin) and 

Phosphatase Inhibitor Mixture V (EMD Millipore). Following a 30min lysis, lysates 

were transferred to centrifuge tubes, and spun down at max speed for 10min in 

the cold room. Lysate protein concentrations were assessed with BCA assay 

(ThermoFisher), and equal amounts of BTX-b labeled protein were rotated 

overnight with streptavidin M280 dynabeads at 4°C. The next day, beads were 

washed, gently, with cold Magic Lysis Buffer. Pulled-down proteins were resolved 

by SDS-PAGE, and immunoblotted with antibodies for DAT, SERT, and HA.  

 

RT-qPCR: Total RNA was isolated using RNAqueous kit (Thermo) per 

manufacturers protocol. Following DNAase treatment (30 min, 37°C), cDNA was 

generated (Retroscript; Thermo) and mRNA levels were quantified by RT-qPCR, 

using an Applied Biosystems 7500 Real-Time System and TaqMan assays 

(Applied Biosystems). Each mRNA sample was analyzed in triplicate, and 

expression levels were normalized to glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) expression, using 2-ΔCt method (Schmittgen and Livak, 

2008).  

 

Materials: Rat anti-DAT (MAB369) antibody was from Millipore, mouse anti-

SERT antibody was from MAb technologies, and Rat anti-HA (3F10) was from 

Roche. Horseradish peroxidase (HRP)-conjugated anti-rat secondary and mouse 

anti-actin (SPM161) antibodies were from Santa Cruz and HRP-conjugated anti-
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mouse antibody was from Jackson Immunoresearch Laboratories (115-035-003). 

Biotinylated bungarotoxin and M280 dynabeads were from Thermo Scientific. 

PMA and AIM-100 were from Tocris.  All other chemicals and reagents were from 

Sigma-Aldrich and Thermo Fisher Scientific and were of the highest grade 

available.  

 

III.C Results 

To test whether DAT’s N- and C-termini synergistically mediate PKC-stimulated 

endocytosis, we measured endocytic rates in WT DAT and DAT-core chimeras 

(Sweeney et al., 2017) following PKC activation, using PMA, or downstream 

Ack1 inactivation using the Ack1-specific inhibitor AIM-100 (Fig. III-1). The DAT-

core chimeras have DAT’s N-, C-, or both termini replaced with SERT terminal 

domains. SERT is a homologous transporter, but shares little sequence identity 

with DAT at the intracellular terminal domains. We measured a significant 

increase in WT DAT internalization rates following PKC activation and Ack1 

inhibition (Fig. III-1A), consistent with previous studies (Wu et al., 2015). DAT/C-

SERT, where DAT’s C-terminus is replaced with SERT’s, displayed a significant 

increase in endocytic rates following both PKC activation and Ack1 inhibition, 

similar to WT DAT (Fig. III-1B). Surprisingly, substituting SERT’s N-terminus onto 

DAT (N-SERT/DAT, Fig. III-1C) abolished PKC-stimulated DAT endocytosis, but 

maintained enhanced endocytic rates following Ack1 inhibition. Replacing both 



CHAPTER III 

	 81 

intracellular termini with SERT’s (SERT/DAT/SERT, Fig. III-1D) abolished 

enhanced endocytosis following both PKC activation and Ack1 inhibition. Taken 

together, these data suggest that DAT’s N-terminus is required for PKC-

stimulated endocytosis and that both N- and C-termini synergistically coordinate 

enhanced endocytosis following Ack1 inhibition. This interpretation initially 

seemed counterintuitive, given that previous reports from our lab and others 

demonstrate that PKC activation leads to Ack1 dephosphorylation (Linseman et 

al., 2001; Wu et al., 2015), and that Ack1 dephosphorylation is required for 

regulated DAT endocytosis (Wu et al., 2015). These findings raised the 

hypothesis that there is a molecule, which associates with DAT’s N-terminus and 

acts downstream of PKC activation, to mediate Ack1 inactivation.  
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Figure III-1. DAT N-terminus is required for PKC-stimulated 
internalization and both N- and C-termini are required for the Ack1 
endocytic brake. A-D. Internalization assays. Stable SK-N-MC cells 
expressing (A)WT DAT, (B)DAT/C-SERT, (C)N-SERT/DAT, or 
(D)SERT/DAT/SERT. Relative internalization rates were measured by 
reversible biotinylation over 10 minutes ± 10µM PMA or ±20µM AIM-100, 37oC 
as described in III.B Materials and Methods.  Top, representative immunoblot 
showing total surface transporter at time 0 (T), strip control (S), internalized 
transporter under vehicle treated (V), PMA treated (P), and AIM-100 treated 
(A) conditions. Bottom, averaged internalization rates± S.E.M., normalized to 
transporter’s own vehicle treatment. **p<0.01, *p<0.05, significantly different 
from vehicle treated control, one way ANOVA, Dunnett’s multiple comparisons 
test, n=7-13.  
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Our laboratory previously reported that Rin GTPase is required for PKC 

stimulated DAT endocytosis (Navaroli et al., 2011) and the Hoshino laboratory 

reported that PKC activates Rin (Hoshino and Nakamura, 2002), posing Rin as a 

possible candidate for promoting Ack1 inactivation downstream of PKC 

activation. To test this hypothesis, we overexpressed empty vector, HA-Rin, 

constitutively active HA-Rin(Q78L), and dominant negative HA-Rin(S34N) in 

HEK293T cells. We treated them ±10µM PMA, 37oC, 30 minutes, and assayed 

Ack1 dephosphorylation (Fig. III-2). Dominant negative Rin significantly reduced 

PKC-stimulated Ack1 dephosphorylation compared to vector controls, indicating 

that Rin activity is required downstream of PKC to inactivate Ack1.  
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Figure III-2. Rin mediates Ack1 inactivation downstream of PKC 
activation. Ack1 inactivation. HEK293T cells were transiently transfected with 
Vector, HA Rin, HA Q78L Rin, or HA S34N Rin for 48 hours. Cells were 
treated ± 10µM PMA, 37°C, 30 minutes. (A) Representative blot. (B) Average 
pAck1 expression relative to actin ± S.E.M., normalized to own vehicle 
treatment.  *Significantly different from vector control, p<0.05, one way 
ANOVA, Dunnett’s multiple comparisons test, n=9.  
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Given our findings that DAT’s N-terminus is required for PKC-stimulated 

endocytosis, and that Rin acts downstream of PKC to mediate Ack1 

dephosphorylation, we hypothesized that Rin associates with DAT’s N-terminus. 

Previous studies investigating DAT binding proteins rely upon co-IPs using large 

antibodies targeted against DAT’s N- and C-terminus (Table I-1). These 

preparations isolate total cellular DAT populations, rather than specifically the 

surface population. To pulldown surface DAT protein, while keeping intracellular 

protein-protein interactions intact, we engineered WT DAT and DAT-core 

chimeras with a bungarotoxin binding site (BBS) in the second extracellular loop 

(EL2) (Fig. III-3A). The BBS-site was placed in EL2 because insertions into this 

domain do not disrupt DAT function and trafficking (Sorkina et al., 2006; Navaroli 

and Melikian, 2010; Wu et al., 2017). BBS-DAT displays functional [3H]DA 

uptake, and downregulates in response to PKC activation (Fig. III-3B), and BBS-

DAT binds to Rin (Fig III-3C,D). Next, we tested whether DAT’s N-terminus is 

required for the DAT-Rin interaction. Each BBS-DAT-core chimera expressed 

and came down following labeling with biotinylated bungarotoxin; albeit, BBS-

SERT/DAT/SERT did not express well, consistent with our previous report 

(Sweeney et al., 2017). Interestingly, each BBS-DAT-core chimera pulled down 

HA-Rin, indicating that neither DAT’s N- nor C-terminus is required for the DAT-

Rin association, or that homologous domains within the SERT termini are 

sufficient to maintain the DAT-Rin interaction.  
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Figure III-3.  Bungarotoxin binding site DAT (BBS-DAT) pulls down 
surface DAT and helps to maintain intracellular protein-protein 
interactions. (A) BBS-DAT schematic. Traditional DAT co-IP experiments use 
a large antibody targeted against DAT’s intracellular N-terminus, which may 
disrupt intracellular interactions (left). BBS-DAT (right) uses an bungarotoxin 
binding site (BBS) inserted into DAT’s second extracellular loop to exclusively 
pulls down surface DAT populations while keeping intracellular interactions 
intact. (B) BBS-DAT downregulates in response to PKC activation. [3H]DA 
uptake assay. SK-N-MC cells stably expressing BBS-DAT were treated 
±10µM PMA, 30 min, 37°C and uptake assay was performed as described in 
III.B Materials and Methods. PKC activation significantly reduced [3H]DA 
uptake compared to vehicle controls. **significantly different compared to 
vehicle control, p<0.01, t-test, n=3. (C) BBS-DAT specificity control. BBS-DAT 
pulldown. HEK293T cells transiently transfected with HA Rin and either BBS-
DAT or WT DAT as described in III.B Materials and Methods. BTX labeling 
pulls down HA Rin with BBS-DAT but not WT DAT. (D) DAT’s N- and C-
termini are not required for DAT-Rin interaction. BBS-DAT core chimera 
pulldown with cells transiently transfected with respective BBS-chimera and 
HA Rin as described in III.B Materials and Methods. Each BBS-chimera pulled 
down HA Rin. Neither DAT N- nor C-terminus is required for the DAT/Rin 
interaction.  
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It should be noted that over the course of these studies, we discovered that SK-

N-MC cells do not express endogenous Rin (Fig. III-4). While Navaroli et al., 

reported that every cell line they investigated contained Rin (Rit2) mRNA 

(Navaroli et al., 2011), this finding was in contrast with Zhang et al., who did not 

detect Rin mRNA in HEK293 or SK-N-MC cells. However, they did detect 

endogenous Rin mRNA expression in SK-N-DZ cells (Zhang et al., 2013). To test 

what cell lines contain endogenous Rin, we performed RT-qPCR using cDNAs 

isolated from human cell lines, HEK293T, SK-N-MC, and SK-N-DZ (Fig. III-4). 

We only detect Rin mRNA in SK-N-DZ cells, consistent with the findings of 

Zhang et al.  
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Figure III-4. SK-N-DZ but not HEK293 nor SK-N-MC cells express Rin. RT-
qPCR from cDNA isolated from HEK293, SK-N-MC, and SK-N-DZ cells as 
stated in III.B. Materials and Methods. Relative Rin (Rit2) mRNA expression 
normalized to GAPDH levels and represented as 2-DCt. HEK293 and SK-N-MC 
cells do not express endogenous Rin, whereas, SK-N-DZ cells express 
measureable quantities of Rin.  
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III.D Discussion 

Our laboratory reported that an “endocytic brake” negatively regulates DAT 

surface expression, and the DAT C-terminal domain, FREKLAYAIA (587-596), is 

both necessary and sufficient for PKC-stimulated endocytosis (Holton et al., 

2005). Further, the FREK sequence (587-590) is required for the endocytic brake 

(Boudanova et al., 2008b). The Sorkin laboratory also reported a DAT endocytic 

negative regulatory mechanism, that requires juxtamembrane residues (60-65) at 

the N-terminus (Sorkina et al., 2009). These data suggest that DAT’s N- and C-

termini each independently coordinate an endocytic brake or rather that both 

domains synergistically mediate the endocytic brake. In this chapter, I tested the 

hypothesis that both domains are synergistically required for regulating DAT 

surface expression.  

 

Reports from our laboratory and others support that N- and C-terminal synergy is 

required for DAT regulatory mechanisms. AMPH-stimulated DA efflux requires 

coordination between DAT N- and C-termini. CaMKII (calcium/calmodulin-

dependent protein kinase II) associates with the DAT C-terminus to mediate N-

terminal phosphorylation (Khoshbouei et al., 2004; Fog et al., 2006a). Our 

laboratory recently reported that DAT N- and C-termini synergistically contribute 

substrate and select inhibitor affinities using the same DAT/SERT chimeras 

utilized in this chapter (this topic is discussed in depth in Chapter II)  (Sweeney et 

al., 2017). Additionally, DAT is palmitoylated at its membrane-proximal C-
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terminus (Foster and Vaughan, 2011; Moritz et al., 2015). Following PKC 

activation, palmitoylation decreases and N-terminal phosphorylation increases, 

and there is a reciprocal relationship between these two events. Taken together, 

these studies demonstrate that N- and C-terminal domains are synergistically 

required for AMPH-stimulated efflux, substrate affinity, and functional regulation; 

therefore, suggesting that other DAT functional mechanisms may require 

terminal synergy as well.  

 

In this chapter, we demonstrate that DAT N- and C-termini synergistically 

coordinate regulated endocytosis. While N-SERT/DAT and DAT/C-SERT both 

showed enhanced endocytosis following Ack1 inhibition, swapping both DAT 

intracellular termini for SERT domains abolished enhanced endocytosis following 

PKC activation and Ack1 inactivation (Fig III-1D). This finding demonstrates that 

DAT uses both N- and C-termini for Ack1-dependent endocytosis.  

 

WT SERT undergoes PKC-stimulated endocytosis (Qian et al., 1997; Samuvel et 

al., 2005), and its mechanism is distinct from DAT regulated endocytosis 

(Navaroli et al., 2011; Wu et al., 2015). When both SERT intracellular domains 

were swapped onto DAT, we abolished PKC-stimulated endocytosis. Although it 

is known that WT SERT undergoes PKC-stimulated endocytosis (Qian et al., 

1997), having two “matching” SERT intracellular domains was not sufficient to 

drive PKC-stimulated endocytosis in a putatively SERT-dependent manner. 
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Rather, it appears that the SERT terminal domains may require intact SERT 

protein in order to drive PKC-stimulated internalization. Future studies using 

SERT-core chimeras may shed light as to the role of these domains in SERT 

endocytic mechanisms.  

 

Interestingly, our N-SERT/DAT chimera did not internalize rapidly in response to 

PKC activation; however, it demonstrated significantly enhanced endocytic rates 

following Ack1 inhibition. We found this result surprising in light of reports from 

our group and others demonstrating that PKC activation inactivates Ack1, and 

Ack1 inactivation is required for PKC-stimulated DAT endocytosis (Linseman et 

al., 2001; Wu et al., 2015). How is the DAT N-terminus required for PKC-

stimulated endocytosis but not enhanced endocytosis following the downstream 

Ack1 inactivation? We hypothesize that a molecule associated with the DAT N-

terminus is required for PKC-stimulated Ack1 inactivation, and that it accelerates 

Ack1 dephosphorylation. We tested whether Rin, a protein which 1) associates 

with DAT but not SERT, 2) is activated by PKC, and 3) whose activity is required 

for PKC-stimulated DAT endocytosis, is required for Ack1 inactivation 

downstream of PKC. HEK293 cells overexpressing dominant negative Rin 

displayed significantly less Ack1 inactivation following PKC activation compared 

to vector controls. This result suggests that Rin activity is required downstream of 

PKC to inactivate Ack1.  
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Additionally, we found that neither the DAT N- nor C-terminus was required for 

Rin association with DAT. The most likely explanation for this finding is that 

DAT’s intracellular loops are sufficient for the DAT/Rin interaction. However, Rin 

was initially discovered to be a DAT binding protein through a yeast 2-hybrid 

screen using the C-terminal sequence, FREKLAYAIA, as bait (Navaroli et al., 

2011). Taken together, these data suggest that the DAT C-terminus is sufficient 

but not necessary for the DAT/Rin interaction. However, a limitation to the BBS-

DAT pulldown is that it isolates DAT associated protein complexes rather than 

solely proteins directly interacting with DAT. Using this method, we cannot rule 

out the possibility that Rin, which binds to the plasma membranes via a polybasic 

domain (Heo et al., 2006), remains part of a DAT-associated complex even if 

potential direct interactions with N- or C-terminal domains is disrupted. Future 

FRET studies using CFP-tagged DAT-core chimeras will test this hypothesis. 

Further, additional studies, using the BBS-DAT chimeras will test additional 

candidates for N-terminally associated proteins required for Ack1 inactivation 

downstream of PKC activation. One such candidate is RACK1 (Receptor of 

activated protein kinase C 1). RACK1 associates with DAT’s N-terminus (Lee et 

al., 2004; Franekova et al., 2008), and acts as an adapter protein to link PKC 

with its substrates (Adams et al., 2011). While RACK1 association with DAT was 

reported by two independent groups, the functional implications remain untested.  

 



CHAPTER III 

	 93 

Our new BBS-DAT construct demonstrated that neither the DAT N- nor the C-

terminus is required for the DAT/Rin interaction. However, in spite of this 

negative result, BBS-DAT will be a critical tool in identifying novel DAT binding 

partners. Previous studies testing DAT-associated proteins rely upon DAT co-

immunoprecipitation using large antibodies targeted against the DAT N- or C-

terminus. A limitation to this approach is that it requires bulky antibodies that can 

disrupt sensitive and dynamic protein-protein interactions. Additionally, these 

approaches investigate entire cellular DAT populations. Here, we are interested 

in proteins that interact with DAT specifically at the plasma membrane, and BBS-

DAT will only pull down the surface DAT population. These studies are not the 

first to insert a bungarotoxin binding site in the DAT’s EL2 (Hong and Amara, 

2013). However, a notable difference between our construct and the Amara 

laboratory’s construct is the use of our previously published linker sequence (Wu 

et al., 2015), which allows for epitope access at a wide range of temperatures. 

This access at 4°C is an important difference between our BBS-DAT and HA-

EL2-DAT, which has the HA-tag only accessible at temperatures above 18°C 

(Sorkina et al., 2006).  

 

Upon completion of our studies, we discovered that our SK-N-MC cells do not 

express endogenous Rin (Fig. III-4). While this finding suggests that Rin may not 

be in fact required for PKC-stimulated DAT internalization, we report that in intact 

DA nerve terminals, Rin is absolutely required for this process (Chapter IV, 
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Fig.IV-9). Therefore, we predict that another protein, perhaps the homologous 

GTPase Rit, compensates in the absence of Rin in certain heterologous 

expression systems; however, this remains untested. Future studies using 

heterologous expression systems to test DAT endocytic mechanisms should 

utilize cells that express endogenous Rin, such as the SK-N-DZ human 

neuroblastoma line. 

 

In this chapter, we identified that DAT N- and C-termini synergistically mediate 

regulated endocytosis following Ack1 inactivation, Rin activity is required 

downstream of PKC to inactivate Ack1, and DAT’s N-terminus mediates PKC 

inactivation of Ack1, but not through association with Rin. Further, we 

demonstrated use of a new BBS-DAT construct which can be used to test for 

future DAT interacting protein. 
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Preface to Chapter IV 

Conditional, inducible gene silencing in dopamine neurons  

reveals a critical role for Rin GTPase in anxiety, presynaptic  

dopaminergic function, and response to cocaine 
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Chapter IV 

Conditional, inducible gene silencing in dopamine neurons  

reveals a critical role for Rin GTPase in anxiety, presynaptic  

dopaminergic function, and response to cocaine 

 

Authors: Sweeney CG, Kearney PK, Rivera IV, Kolpakova J, Xie J,  

Guangping G, Tapper AR, Martin GE, and Melikian HE 

 

IV.A Introduction 

Dopamine (DA) is a critical modulatory neurotransmitter required for learning, 

motivation, movement, anxiety, and rewarding behaviors (Wise, 2004; Russo and 

Nestler, 2013). DA signaling dysfunction has profound clinical consequences, as 

evidenced by multiple neurological and neuropsychiatric disorders, including 

Parkinson’s disease, ADHD, schizophrenia, and anxiety (Calhoon and Tye, 2015; 

Faraone et al., 2015; Grace, 2016; Poewe et al., 2017). The neuronal, Ras-like 

GTPase, Rin (Rit2) is highly enriched in DA neurons (Zhou et al., 2011); 

however, its role in DAergic signaling remains entirely unknown. GWAS studies 

implicate Rin as a risk allele for Parkinson’s disease, autism spectrum disorder, 

essential tremor, schizophrenia, and bipolar disorder (Emamalizadeh et al., 

2017). Rin is required for neurotrophic signaling and causes neurite outgrowth in 

PC6 cells (Shi et al., 2005b). Rin binds directly to the presynaptic, cocaine- and 
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AMPH-sensitive DA transporter (DAT), and Rin activity is required for regulated 

DAT endocytic trafficking in PC12 cells (Navaroli et al., 2011). Despite the 

putative linkage between Rin and DAergic activity, it is currently unknown 

whether Rin activity directly impacts DAergic physiology. To test the hypothesis 

that Rin expression in DA neurons is required for DAergic function, we used 

conditional, inducible Rin knockdown in DA neurons of adult mice, and assessed 

locomotor, anxiety, and cocaine-induced behavior.  

 

IV.B Materials and Methods 

Mice. Pitx3IRES-tTA/+ were the generous gift of Dr. Huaibin Cai (National Institute 

on Aging), and were continually backcrossed to C57Bl/6(Lin et al., 2012). Mice 

were maintained in 12hr light/dark cycle at constant temperature and humidity. 

Food and water was available ad libitum, and mice were maintained on either 

standard or doxycycline-supplemented chows (S3888, BioServ). Studies were 

conducted in accordance with UMASS Medical School IACUC Protocol A-1506 

(H.E.M). 

 

Stereotaxic viral delivery. Adult mice (minimum 5 weeks old) were anesthetized 

with an i.p. injection of 100mg/kg ketamine (Vedco Inc.) and 10mg/kg xylazine 

(Akorn Inc.). 20% mannitol (NeogenVet) was administered i.p. 15 minutes 

(minimum) prior to viral delivery, to increase viral spread (Burger et al., 2005). 
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Mice heads were shaved and placed in the stereotaxic frame (Stoelting Inc.). 

Heads were disinfected by washing three times with betadine followed by 70% 

ethanol. A small incision was cut to expose the skull, and a 30%H2O2 solution 

was used to clean the skull surface and visualize Bregma. 1µl indicated viruses 

were administered bilaterally into the VTA (Bregma: anterior/posterior: -3.08mm, 

medial/lateral: ±0.5mm, dorsal/ventral: -4.7mm) at a rate of 0.2µL/min over 5 

minutes. Syringes were left in place for a minimum of 3 minutes post-infusion 

prior to removal. Mice were individually housed, for a minimum of six weeks 

before experiments were performed. Dox-treated mice were placed on dox-

supplemented chow at minimum 4 days prior to stereotaxic injection and were 

maintained on +dox chow throughout recovery and experimental procedures.  

 

Mouse Behavior. Open field test. Male and female mice were habituated to 

experimental room for a minimum of 30 minutes before conducting experiment. 

The room was kept in dim light, and white noise was used to maintain constant 

ambient sound. During test, a single mouse was placed in a 38.5x40cm box. 

Activity was recorded using a video camera for ten minutes. EthoVision software 

(Noldux) was used to determine total distance traveled and time spent in center 

versus periphery of the arena. Two-way ANOVA revealed no gender differences 

detected for either total distance (p=0.94) or time in center p=0.81, therefore data 

from both sexes were pooled. Elevated Plus Maze (EPM). Male and female mice 

were habituated to experimental room for a minimum of 30 minutes before 
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conducting the experiment. The room was kept in dim light throughout 

habituation and experimental procedures. The EPM apparatus consists of four 

arms- two open and two closed- 45cm above the floor. During the test, a single 

mouse was placed in the center of apparatus. The animal was allowed to explore 

open and closed arms of apparatus for 5 minutes. Time spent in open and closed 

arms and total number of entries into both sets of arms was recorded by MED-

PC IV software (MED Associates, Inc.). Two-way ANOVA revealed no gender 

differences detected for time in open arms (p=0.63), therefore data from both 

sexes were pooled. Cocaine induced locomotor activity. Animals were placed in 

locomotor activity chamber (San Diego Instruments), and locomotor activity was 

recorded during a 45 minute habituation period. Next, each animal received a 

saline injection (10mL/kg), and locomotor activity was recorded for 90 minutes. 

This initial test served as a baseline for each mouse. Two days later, mice 

habituated to test chamber 45 mins, during which their locomotor activity was 

recorded. Next, each mouse received cocaine injection at either 15mg/kg or 

30mg/kg, and we recorded their activity for 90 minutes.  

 

Immunohistochemistry. Mice were transcardially perfused with ice-cold 

phosphate-buffered saline, pH 7.4 (PBS), followed by ice cold 4% 

paraformaldehyde/PBS (w/v). Brains were removed and dehydrated in 30% 

sucrose/PBS (w/v), 3-7 days, and 25µm sections were prepared using 

microtome. Tissue was blocked and permeabilized in IHC blocking solution (5% 
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normal goat serum, 1% H2O2, 0.1% Triton-X 100 in PBS), 1 hour, at RT. All 

antibodies were diluted in IHC blocking solution. Slices were incubated in 

indicated primary antibodies, 1 hr, RT, washed and incubated with the indicated 

secondary antibodies, 45 minutes, RT. Slices were washed, mounted on glass 

slides and allowed to air dry prior to mounting on glass coverslips using Prolong 

Gold Anti-fade with DAPI (Invitrogen). Slides dried overnight and widefield 

epifluorescent images were captured with a Zeiss Axiovert 200M scope using 

Retiga-R1 CCD camera (QImaging) and Slidebook 6 software (Intelligent 

Imaging Innovations).  

 

Midbrain tissue isolation and RT-qPCR. Animals were sacrificed, brains were 

rapidly removed and either flash frozen on dry ice or sectioned (200µm) fresh on 

a Vibratome in ice cold cutting solution (2.5mM KCl, 1.25mM NaH2PO4, 20mM 

HEPES, 2mM thiourea, 5mM sodium ascorbate, 3mM sodium pyruvate, 92mM 

N-methyl-D-glucamine, 30mM NaHCO3, 25mM D-glucose). 1mm diameter tissue 

punches were made in VTA/SNc or SNr, under magnification. For frozen tissue, 

10µm coronal sections were made using cryostat (Leica Microsystems Inc.). A 

Veritas Microdissection System Model 704 (Arcturus Bioscience) was used to 

microdissect SNc/VTA- or SNr-enriched regions. Total RNA was isolated using 

RNAqueous kit (Thermo) per manufacturers protocol. Following DNAase 

treatment (30 min, 37°C), cDNA was generated (Retroscript; Thermo) and mRNA 

levels were quantified by RT-qPCR, using an Applied Biosystems 7500 Real-
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Time System and TaqMan assays (Applied Biosystems). Each mRNA sample 

was analyzed in triplicate, and expression levels were normalized to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression, using 2-ΔCt 

method(Schmittgen and Livak, 2008).  

 

Western blot. Protein was solubilized in RIPA (10mM Tris base pH 7.4, 150mM 

NaCl, 1mM EDTA, 0.1% (v/v) SDS, 1% (v/v) Triton-X 100, 1% (w/v) sodium 

deoxycholate) with protease inhibitors (1mM PMSF, 1µg/mL leupeptin, 1µg/mL 

pepstatin, 1µg/mL aprotinin) for a minimum of 30 minutes at 4°C. Protein 

concentrations were determined by Pierce BCA protein assay. Indicated amounts 

of protein were incubated with sample buffer (1.0M Tris, pH 6.8, 5%SDS, 10% 

glycerol, 1% bromophenol blue, 50mM DTT) and rotated, 30 minutes at RT. 

Samples were analyzed by SDS-Page and immunoblot using indicated 

antibodies. Immunoreactive bands were quantified using Quantity One software 

(BioRad).  

 

Cell transfection and cDNA. 5x105 HEK293T cells/well were seeded one night 

prior to transfection in 6 well plates. Cells were transfected with Lipofectamine 

2000 (Thermo Fisher) per manufacturers protocols. Briefly, we used 4µg 

Lipofectamine/well at a ratio of 2:1 lipid to cDNA. For Rin knockdown 

experiments we used 0.66µg shRNA containing cDNA and 0.33µg RFP-mRin 



CHAPTER IV 
	

	 102 

reporter cDNA, and 1 µg rtTA plasmid. Mouse Rin in pGEX2T was a gift from 

Julian Downward (Addgene plasmid #55663)(Fritsch et al., 2013). It was PCR 

amplified and subcloned into TagRFP vector using HindIII and XbaI. Rin shRNAs 

and pGIPZ controls were obtained from Dharmacon. Mature antisense 

sequences for each shRNA are as follows: mRin837 (clone V3LMM_441839) 

TTATCTTCTTCCACAGGCT and mRin794 (clone V3LMM_441840) 

TCATAGGTGTGACGGACCT. pscAAV-TRE-eGFP and pscAAV-TRE-miR33-

shRNA-eGFP plasmids. pTre3G promoter was isolated from pTre3G (Clone 

tech) plasmid using EcoRI and SalI. The CB6 promoter in the pscAAV-CB6-

eGFP was removed by MluI and BstXI digestion and replaced with the pTre3G 

promoter to generate pscAAV-TRE3g-eGFP plasmid. pscAAV-TRE3g-eGFP 

plasmid was digested with BglII and PstI as backbone, miR-33-shRNA was 

synthesized as insert to generate pscAAV-TRE3g-miR33-shRin-eGFP. 

 

Slice preparation: Three-week-old male Pitx3IRES-tTA/+ mice or Pitx3IRES-tTA/ 

D1r.Td-tomato mice were given bilateral VTA injections of either AAV9-TRE-

eGFP or AAV9-TRE-shRin-eGFP and allowed 3-4 weeks to recover and for viral 

expression. Mice were deeply anesthetized with isoflurane, and killed by 

decapitation. To cut 200 µm (electrophysiology) or 300 µm (slice biotinylation)-

thick coronal slices with a Vibroslicer (VT1200, Leica MicroInstrutments; 

Germany), we rapidly removed and transferred the brain in a cold (~ +0.5oC) 

oxygenated (95% O2 and 5% CO2) cutting solution of the following composition: 
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92 mM NMDG, 2.5 mM KCl, 1.25 mM NaH2PO4 , 30 mM NaHCO3 , 20 mM 

HEPES, 25 mM glucose,  2 mM thiourea, 5 mM Na-ascorbate, 3 mM Na-

pyruvate, 0.5 mM CaCl2·4H2O, and 10 mM MgSO4·7H2O. Then, slices were 

immediately transferred in an incubation chamber containing aCSF (in mM): 119 

mM NaCl, 2.5 mM KCl, 1.25 mM, NaH2PO4 , 24 mM NaHCO3 , 12.5 mM 

glucose, 2 mM CaCl2·4H2O, and 2 mM MgSO4·7H2O. Electrophysiology:  

Following a minimum recovery time of 1 hr at room temperature, we transferred 

slices to a recording chamber where they were submerged and perfused with a 

carbogenated aCSF, at a constant rate of 1–2 mL/min. We visualized nucleus 

accumbens medium spiny neurons in infrared differential interference contrast 

video microscopy using a fully motorized microscope (Scientifica, Uckfield, UK) 

mounted with Olympus objectives (10x and 60x; Olympus Microscopy, Japan). 

Slice biotinylation: Striatal slices were collected and hemisected along the 

midline before recovering 40min at 31°C in oxygenated ACSF.  

 

Electrophysiology. When recording spontaneous excitatory postsynaptic 

potentials (sEPSPs), we acquired 2 min gap-free current and voltage traces 

using borosilicate glass electrodes (1.5 mm OD, 4–6 MΩ resistance) filled with an 

internal solution containing (in mM): 120 Cs-methanesulfonate, 20 KCl, 10 

HEPES, 2 K2ATP, 2 K2GTP, and 12 phosphocreatine. We acquired and filtered 

EPSPs at 10 kHz and 2 kHz, respectively, with an EPC-10 amplifier and 

Patchmaster, an acquisition software (HEKA, Elektronik, Germany). We analyzed 
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sEPSPs amplitude and frequency with Mini 6.0 software (Synaptosoft Inc, USA). 

The threshold was determined by the formula � rms x 3 (~ 0.4 mV). We 

monitored series resistance by comparing EPSCs decay time before and after 

induction. We rejected recordings with changes of resting potential larger than 1 

mV.  

 

Slice biotinylation. Hemislices were treated ±1μM PMA or 10μM AMPH in ACSF 

for 30min at 37°C with constant oxygenation, using contralateral hemisections as 

controls. Following drug treatment, slices were moved to ice and biotinylated with 

membrane-impermeant sulfo-NHS-SS-biotin (1mg/ml) for 45min. Residual biotin 

was quenched with two washes of ice-cold ACSF supplemented with 100mM 

glycine for 20min. Slices were then washed with ice-cold ACSF and lysed in 

RIPA buffer containing protease inhibitors by triturating sequentially through a 

200μL pipet tip, 22G and 26G tech-tips and rotating 30min at 4°C. Protein 

concentrations were determined using a BCA protein assay. Biotinylated proteins 

were isolated by pull down of 20μg lysate with 30μL of streptavidin agarose 

beads overnight. A total 20μg lysate fraction of each lysate was also reserved. 

Isolated proteins were eluted from beads in denaturing SDS/PAGE sample buffer 

for 30min at room temperature with rotation. Samples were analyzed by 

SDS/PAGE and DAT was detected by immunobloting. Surface DAT levels were 

determined by comparing biotinylated DAT to total DAT fractions. 
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Viral production. pscAAV-TRE-shRin-eGFP and pscAAV-TRE-eGFP were 

packaged into AAV9 viral particles by the University of Massachusetts Medical 

School Viral Vector Core.  

 

Antibodies. Rat anti-DAT 1:2000 (MAB369, Millipore), mouse anti-actin 1:5000 

(Santa Cruz), mouse anti-RFP 1:2000 (Thermo), rabbit anti-TH 1:500 (Millipore), 

goat anti-rat HRP 1:5000 (Santa Cruz), goat anti-mouse HRP 1:5000 (Jackson 

Laboratories).  

 

IV.C Results 

Conditional and inducible Rin knockdown with the Tet-OFF/ON system. 

Conditional and inducible, rAAV-mediated gene delivery has proven an 

indispensable tool for pinpointing molecular mechanisms that operate within 

specific neuronal circuits. However, AAV-mediated gene-silencing studies have 

not progressed as rapidly as have transgene overexpression and gene ablation 

studies. Short, inverted repeat DNA sequences cause instability within the viral 

genome (Xie et al., 2017). This precludes effectively using Cre-lox technology 

due to the inverted sequences in both the shRNA and within lox sites. AAV 

packaging size constraints further eliminate many large, neuronal promoters to 

conditionally drive shRNAs (Wu et al., 2010). This obstacle is particularly difficult 

to circumvent in DA neurons, which are phenotypically distinguished by TH and 
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DAT, both of which have large promoters that are incompatible with AAV. Here, 

we circumvented these obstacles, by designing an rAAV vector that expresses 

an shRNA under the TRE promoter, facilitating use of the TET-OFF system (Das 

et al., 2016) to drive conditional Rin-directed shRNA expression in tetracycline 

transactivator (tTA)-expressing cell populations (Fig. IV-1).  

 

First, we tested commercially available mouse Rin (mRin)-targeted shRNAs. We 

identified two mouse-specific, Rin-directed shRNA candidates (shRin#1 and 

shRin#2) using an RFP-mRin reporter in transfected HEK293T cells (Fig. IV-2A). 

Both shRNAs significantly knocked down RFP-Rin levels, and we continued our 

studies with the more efficacious shRNA (shRin#1, further referred to as shRin). 

shRin was cloned into pscAAV-TRE-eGFP vector. To test that shRin is 

efficacious in this vector, we coexpressed RFP-mRin, TRE-shRin, and rtTA 

(TET-ON) in HEK cells ±doxycycline. In this system, shRin significantly reduced 

RFP-mRin levels in a dox-dependent manner (Fig. IV-2B), thus shRNAs cloned 

into the pscAAV-TRE-eGFP vector are both efficacious and inducible. 
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Figure IV-1. Tet-OFF/ON system for conditional and inducible shRNA 
expression. rAAV (TET-OFF/ON) vector uses a tetracycline responsive 
element (TRE) to drive Rin-targeted shRNA expression selectively in cells 
expressing the Tet transactivator (tTA). (A) For in vivo experiments, we drive 
TRE-shRIN-eGFP expression in Pitx3IRES-tTA/+ mice (TET-OFF). shRNA 
expression was suppressed by maintaining mice on a doxycycline (dox) diet. 
(B) For in vitro cell experiments, we use rtTA-expressing vector to drive 
expression of TRE-shRin-eGFP (TET-ON). shRNA expression was driven in 
the presence of dox in cell media.  
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Figure IV-2. Testing Rin-targeted shRNAs. (A) Screen for efficacious mRin-
directed shRNA. HEK293T cells were transiently transfected with RFP-Rin 
reporter and either vector (pGIPZ) or Rin-directed shRNAs and RFP-Rin 
protein levels were assessed 48 hours post-transfection by immunoblot, 
normalized to actin. Both shRin#1 and shRin#2 significantly reduced Rin 
expression as compared to vector controls. *Significantly different from vector 
control, P<0.04, one way ANOVA, Dunnett’s multiple comparisons test, n=3. 
(B) Test for inducible shRNA expression. Cells were co-transfected with RFP-
Rin reporter, rtTA, and TRE-shRIN#1 cDNAs, and were treated ±500ng/mL 
dox for 48 hours. RFP-mRin expression was assessed by immunoblot, 
normalized to actin. The TRE-shRin construct exhibited significant inducibility. 
*Significantly different from (-)dox control, P=0.02, one tailed t test, n=4. 
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Rin expression increases throughout postnatal development and stabilizes 

around 3-4 weeks post birth (Lee et al., 1996; Spencer et al., 2002). We did not 

want Rin knockdown to interfere with Rin development. Therefore, we tested Rin 

mRNA expression in WT mice at 4, 7, and 11 weeks old. We saw no significant 

difference in Rin expression in mice from 4-11 weeks in age, (Fig, IV-3, p=0.79, 

One way ANOVA, n=4-6) indicating that midbrain Rin expression is stable in 

adolescent and adult mice, and that knockdown experiments should not interfere 

with the reported Rin developmental period 

  

 
  

Figure IV-3. Midbrain Rin mRNA levels do not change after 4 weeks of 
age. (qPCR Analysis. Mouse midbrain was isolated and Rin expression was 
measured by qPCR, normalized to GAPDH internal controls. We saw no 
significant difference in Rin expression at 4, 7, and 11 weeks of age. One way 
ANOVA, P=0.78, n=4-6.  
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AAV-mediated Rin knockdown in Pitx3IRES-tTA/+ mouse dopaminergic 

neurons. Pitx3 is a transcription factor exclusively expressed in postnatal DA 

neurons (Smidt et al., 1997; Maxwell et al., 2005). Pitx3IRES2-tTA/+ mice were 

previously demonstrated to express a tetracycline transactivator (tTA) in TH+ 

VTA and SNc midbrain neurons (Lin et al., 2012). We bilaterally injected AAV9-

TRE-shRin-eGFP into Pitx3IRES2-tTA/+ VTA, and maintained mice ±200mg/kg 

doxycycline for 6 weeks post-injection. GFP reporter expression was clearly 

visible in TH+ cell bodies in the VTA and SNc in (-)dox mice (Fig. IV-4). GFP 

expression was noticeably higher in VTA compared to SNc, consistent with 

reports that Pitx3 expression is 6X greater in VTA than in SNc (Korotkova et al., 

2005). In contrast, GFP expression was markedly suppressed in mice kept on 

(+)dox diet (Fig. IV-4). Rin mRNA expression was significantly decreased in SNc-

enriched tissue from (-)dox mice, as compared to (+)dox mice (Fig. IV-5A), and 

no change in Rin expression was detected in  the neighboring, non-DAergic SNr 

(Fig. IV-5B, p=.92). Decreased Rin expression was not likely due to 

compromised DA neuron viability, as there was no significant change in TH or 

DAT mRNA expression in SNc enriched tissue (Fig. IV-5C,D, p=0.86 and 0.53 

respectively). 
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Figure IV-4. Conditional gene expression in Pitx3IRES-tTA/+ DA neurons. 
Pitx3IRES-tTA/+ mouse VTA was bilaterally injected with AAV9-TRE-GFP and 
mice were maintained ±dox. Brains were sectioned 6 weeks post-injection, 
stained for TH (red) and imaged for TH and GFP (green) co-localization. Dox 
diet suppressed GFP expression in TH+ cells. Intrachannel exposure times 
and post hoc image manipulations are identical. 
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Figure IV-5. Rin knockdown in SNc does not impair DAT or TH 
expression. qPCR Analysis. AAV9-TRE-miR33-shRin was bilaterally injected 
into Pitx3IRES2-tTA/+ VTA, and mice were maintained ±dox diet, 6 weeks. 
The indicated brain regions were harvested by tissue punch and laser capture 
microscopy, and Rin expression was measured by qPCR, normalized to 
GAPDH internal controls. Note significant Rin knockdown in SNc (A), but not 
in the neighboring, non-DAergic, substantia nigra pars reticulata (SNr) (B), 
one tailed t-test, P=0.92. Rin knockdown had no effect on (C)TH (TH-SNc, 
one tailed t-test, P=0.87) or (D)DAT (DAT-SNc, one tailed t-test, P=0.52). 
*Significantly different from (+)dox control, P<0.02, one tailed t test, n=10-12. 
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DAergic Rin expression impacts baseline anxiety, but not locomotion. The 

DAergic system is central to a variety of rodent behaviors including locomotion 

(Beninger, 1983). To test whether Rin expression in DAergic neurons impacts 

baseline locomotor behavior, we used an open field test (OFT) in which mice 

explore a novel arena for ten minutes. We measured total distance traveled in 

male and female mice injected with AAV9-TRE-shRIN-eGFP ±dox. There was no 

significant effect on sex (Two way ANOVA, sex effect, F1,26=0.058, P=0.94) 

therefore we grouped both sexes together for analysis. Rin KD in DA neurons did 

not affect total distance traveled (Fig. IV-6A, t-test, P=0.67); however, Rin KD 

mice spent significantly more time in the field center (Fig. IV-6B). Mice avoid 

open spaces, and increased time spent in an open field is indicative of reduced 

anxiety, suggesting that Rin KD in DAergic neurons results in an anxiolytic 

phenotype. As a complementary approach to the OFT, we used the elevated plus 

maze (EPM) to test whether Rin KD in DAergic neurons reduces baseline 

anxiety. The elevated plus maze is the gold standard for studying anxiety-related 

phenotypes in rodents. Mice are free to explore two opposing open arms or two 

opposing closed arms. Mice prefer to spend time in closed arms; therefore, an 

increase in time spent in open arms is indicative of an anxiolytic-like response in 

the animal. Once again, sex had no effect on time spent in open arms (Two way 

ANOVA, sex effect, F1,26=0.24, P=0.63); therefore, we grouped the two sexes 

together for analysis. Rin KD mice spent significantly more time in the open arms 

as compared to (+)dox controls (Fig. IV-6C), consistent with an anxiolytic-like 



CHAPTER IV 
	

	 114 

phenotype. To test whether the dox diet increases anxiety in mice, Pitx3IRES2-tTA/+ 

mice were maintained ±dox for four weeks prior to test in the elevated plus maze. 

Once again, we saw no effect on sex (Two way ANOVA, sex effect, F1,28=2.60, 

P=0.13) so we grouped males and females together. We saw no significant 

difference in time spent in open arms between (+)dox and (-)dox mice (data not 

shown, t-test, n=14-16, P=0.75), demonstrating that our observed anxiety effects 

are not due to the dox diet. Taken together, these data demonstrate that Rin 

expression in DA neurons influences baseline anxiety-like behaviors, but does 

not impact baseline locomotor activity. 
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Figure IV-6. Rin knockdown in DA neurons does not affect baseline 
locomotor activity but reduces generalized anxiety. AAV9-TRE-miR-
shRin-eGFP was injected into Pitx3IRES2-tTA/+ VTA, and mice were maintained 
±dox diet, 6 weeks. Locomotor behavior and anxiety were assessed in males 
and females equivalently. Open field test. (A) Total distance traveled was not 
impacted by Rin KD, two tailed t-test, P=0.67, n=15. (B) Mice spent 
significantly more time in the center of the field following Rin KD as compared 
to (+)dox controls. *Significantly different from (+)dox control, two tailed t-test, 
P=0.02, n=15. (C) Elevated plus maze. Rin KD mice spent more time in open 
arms compared to (+)dox controls. *Significantly different from (+)dox mice, 
two tailed t-test, p<0.01, n=15. 
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DAergic Rin expression differentially impacts male and female locomotor 

response to acute cocaine injection. Cocaine is a potent DAT inhibitor, and 

acute cocaine treatment increases extracellular DA levels. Additionally, the 

Nestler laboratory found increased DFosB binding to the Rin promotor in mouse 

NAc following chronic cocaine treatment, suggesting that cocaine may impact 

Rin expression levels and/or signaling (Renthal et al., 2009). To test the 

hypothesis that Rin expression in DA neurons impacts locomotor response to 

acute cocaine injection, we tested male and female mouse locomotor activity in a 

beam break assay. On day one, mice habituated to the locomotor chamber for 45 

minutes, and then received a saline injection (10mL/kg). Two days later, mice 

habituated to the locomotor chamber for 45 minutes and then received either 

15mg/kg or 30mg/kg cocaine injection, and locomotor activity was recorded for 

90 minutes. In (+)dox control male mice, a 15mg/kg injection was subthreshold, 

but they displayed significantly increased locomotor activity following a 30mg/kg 

cocaine dose (Fig. IV-7A,C). In contrast, following DAergic Rin KD, male mice 

displayed significantly increased locomotor activity following 15mg/kg and 

30mg/kg cocaine injection (Fig. IV-7B,C). These data indicate that in male mice, 

Rin KD in DA neurons enhances sensitivity to cocaine. Female (+)dox control 

mice showed significant increase in locomotor activity at both 15 and 30mg/kg 

cocaine injection (Fig. IV-8A,C). This finding is consistent with previous reports 

that females are more sensitive to cocaine than males (Becker and Koob, 2016). 

Following Rin KD in DA neurons, female mice did not display enhanced 
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locomotor activity to either 15 or 30mg/kg cocaine (Fig. IV-8B,C). To test whether 

the observed effects are not due to the dox diet alone, Pitx3IRES2-tTA/+ were 

maintained on ±dox for four weeks, and were tested at 15mg/kg cocaine. We 

saw no significant difference between males ±dox (Two tailed t-test, P=0.82) and 

females ±dox (Two tailed t-test, P=0,85). Therefore, the dox diet does not 

contribute to the observed effects on cocaine-induced locomotor activity. These 

data indicate that DAergic Rin KD in female mice abolished locomotor response 

to acute cocaine injection.  
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Figure IV-7. Rin KD in DA neurons enhances sensitivity to cocaine 
locomotor effects in males. AAV9-TRE-shRin-eGFP was bilaterally injected 
into male Pitx3IRES2-tTA/+ VTA, and mice were maintained ±dox diet, 6 weeks. 
(A,B) Locomotor activity time course. Mice, maintained (A) (+)dox and (B) (-
)dox, habituated to locomotor chambers for 45min before injection with saline, 
and then activity was recorded for 90min. The assay was repeated two days 
later and mice received either (C) 15mg/kg cocaine, or (D) 30mg/kg cocaine 
during the test period. Rin knockdown in DA neurons (-dox) significantly 
increased sensitivity to 15mg/kg cocaine (Two way ANOVA, drug effect, 
F(1,13)=25, Bonferroni’s multiple comparisons test, ***P<0.001) while both 
groups (+dox and -dox) had increases in locomotor activity following injection 
with 30mg/kg cocaine (Two way ANOVA, drug effect, F(1,12)=19.61, 
**P<0.01). 
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Figure IV-8. Rin KD in DA neurons reduces cocaine locomotor effects in 
females. AAV9-TRE-shRin-eGFP was bilaterally injected into female 
Pitx3IRES2-tTA/+ VTA, and mice were maintained ±dox diet, 6 weeks. (A,B) 
Locomotor activity time course. Mice, maintained (A) (+)dox and (B) (-)dox, 
habituated to locomotor chambers for 45min before injection with saline, and 
then activity was recorded for 90min. The assay was repeated two days later 
and mice received either (C) 15mg/kg cocaine, or (D) 30mg/kg cocaine during 
the test period. 15mg/kg cocaine significantly increased locomotor activity in 
control (+dox) (Two way ANOVA, drug effect, F(1,14)=5.54, Bonferroni’s 
multiple comparisons test, *P<0.05) as did 30mg/kg (Two way ANOVA, drug 
effect, F(1,14)=9.09, Bonferroni’s multiple comparisons test, *P<0.05). Rin KD 
in DA neurons reduced female cocaine-induced locomotor response at 
15mg/kg (Two way ANOVA, drug effect, F(1,14)=5.54, Bonferroni’s multiple 
comparison test, P=0.94) and 30mg/kg (Two way ANOVA, drug effect, 
F(1,14)=9.09, Bonferroni’s multiple comparisons test, P=0.36).  
 



CHAPTER IV 
	

	 120 

Rin knockdown in DA neurons blocks protein kinase C stimulated DAT 

endocytosis, and reduces total DAT content. We found that Rin knockdown in 

DA neurons reduces baseline anxiety in male and female mice, and it produces 

dimorphic phenotypes in response to acute cocaine treatment. We wanted to test 

what mechanisms are required for these observed effects. Our laboratory 

previously reported that Rin binds to DAT, and its activity is required for PKC 

stimulated DAT endocytosis in PC12 cells. To test whether Rin is required for 

PKC-stimulated DAT endocytosis in bona fide DA nerve terminals, we expressed 

AAV9-TRE-shRin-eGFP or AAV9-TRE-eGFP control in Pitx3IRES2-tTA/+ mice. We 

performed a slice biotinylation assay in acute, coronal striatal slices ±PKC 

activation with PMA. In NAc, DAergic Rin KD blocked PKC-stimulated DAT 

internalization compared to eGFP controls (Fig. IV-9A). DAT rapidly internalizes 

following AMPH exposure; however, it is unknown whether this mechanism 

requires Rin activity. Following Rin knockdown in DA neurons, both eGFP control 

and Rin knockdown mice demonstrate AMPH-stimulated DAT internalization in 

NAc, indicating both that Rin is not required for AMPH-stimulated DAT 

internalization, and that Rin KD in DA neurons does not globally block all 

endocytic mechanisms (Fig. IV-9A). In DS, we see a trend (t-test, p=0.08) for 

blocked PKC-stimulated internalization following Rin knockdown in DAergic 

terminals; however, the effect is not significant (Fig. IV-9B). Consistent with our 

findings in the NAc, Rin KD had no effect on AMPH-stimulated DAT endocytosis 
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(Fig. IV-9B). Taken together, Rin in DA neurons is required for PKC-stimulated 

endocytosis but not AMPH stimulated endocytosis in NAc. 

 

We next asked how blocking PKC-stimulated DAT endocytosis affects total DAT 

populations. We hypothesized that while PKC-stimulated DAT trafficking was 

blocked during a six-week Rin KD, the neuron might compensate for loss of 

regulated trafficking by altering total DAT levels in a post-transcriptional 

mechanism. To test this hypothesis, we isolated the striatum from male mice 

expressing AAV9-TRE-shRin-eGFP, (±)dox, and probed for total DAT content. 

Following DAergic Rin KD, we observed significantly less DAT in striatal tissue 

(Fig. IV-10). Given that we observed no change in DAT mRNA levels in mouse 

midbrain following Rin knockdown, these data suggest that loss of total DAT in 

Rin knockdown animals happens post transcriptionally, and may indicate a 

compensatory mechanism in the absence of PKC-stimulated DAT endocytosis. 
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Figure IV-9. Rin KD in DA neurons blocks PKC-stimulated DAT 
endocytosis in NAc. Striatal slice biotinylation assay. Acute striatal slices 
were made from mice expressing AAV9-TRE-eGFP or AAV-TRE-shRin-eGFP 
for 4 weeks. (A) NAc. Above, representative blots from slices treated ±1µM 
PMA or 10µM AMPH. Below, quantification of NAc data. (B) Dorsal Striatum. 
Above, representative blots from PMA or AMPH treated slices. Below, 
quantification of dorsal striatum data. Rin expression in DAergic nerve 
terminals is required for PKC- stimulated internalization but not AMPH-
stimulated DAT trafficking in NAc. *p<0.05, Student’s t test, n=2-7. 
 



CHAPTER IV 
	

	 123 

  

Figure IV-10. Rin KD in DA neurons reduces total striatal DAT. Total 
striatal DAT. Mice expressed AAV9-TRE-shRin-eGFP for a minimum 6 weeks 
±dox. Total striatal protein was isolated and assayed by SDS-PAGE followed 
by quantitative immunoblot. Rin KD mice (-dox) expresses less DAT in the 
striatum. *p<0.05, Student’s t test, n=5. 
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DAergic Rin KD reduces spontaneous EPSP in NAc. We next asked what is 

the physiological output following Rin KD in DA terminals. DAT expression is 

required for regulating extracellular DA levels, and further, spontaneous 

glutamatergic activity in the striatum is modulated by DA (Cepeda et al., 1993; 

Nicola and Malenka, 1998). We hypothesized that Rin KD and loss of PKC-

stimulated DAT endocytosis impacts excitatory transmission in the NAc. We 

measured sEPSP in MSNs in current clamp from mice injected with either AAV9-

TRE-eGFP or AAV9-TRE-shRin-eGFP in VTA. Cocaine did not affect the sEPEP 

amplitude following cocaine treatment in either control or Rin KD mice (Fig. IV-

11A). However, in eGFP control mice, cocaine significantly increased the sEPSP 

interevent interval following cocaine exposure. Rin KD mice displayed no 

difference in sEPSP interevent interval following cocaine exposure (Fig. IV-11B). 

When examining the cumulative distribution of interevent intervals from eGFP 

animals and Rin KD mice, we observed a rightward shift in measurements from 

Rin KD mice (Fig. IV-11C). This finding suggests that Rin KD in DA nerve 

terminals reduces the sEPSP frequency.  
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Figure IV-11. Rin KD in DA neurons reduces spontaneous excitatory 
postsynaptic potentials (sEPSP) frequency in NAc. Pitx3IRES-tTA/Drd1a-
tdTomato mice expressed AAV9-TRE-eGFP or AAV9-TRE-shRin-eGFP for 4 
weeks. MSNs were kept in current clamp, and sEPSPs were measured 
±10µM cocaine. (A) Amplitude of sEPSPs. (B) Interevent interval of sEPSPs. 
(C) Cumulative distribution of sEPSP frequency from eGFP controls vs. Rin 
KD mice. *P<0.05, Wilcoxon test, n=5-7.  
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IV.D Discussion 

DAergic transmission is integral to locomotor behavior both in rodents (Marshall 

and Berrios, 1979; Starr and Starr, 1986), and in humans, where DA neuronal 

death underlies the movement anomalies in PD (Lotharius and Brundin, 2002). 

Moreover, a recent report revealed that NMDA-mediated DA neuron phasic 

bursting is required to elicit anxiety in response to aversive conditioning (Zweifel 

et al., 2011). Rin was reported as a risk allele for several DA-associated 

disorders, including PD, ET, ASD, schizophrenia, and bipolar disorder 

(Emamalizadeh et al., 2017), many of which have a significant anxiety 

component. However, whether Rin impacts DAergic function and contributes to 

disease pathogenesis remains completely unknown. We found that Rin 

expression in DA neurons is involved in baseline anxiety-related behavior, but 

had no effect on baseline locomotor activity (Fig. IV-6). Additionally, we report 

that Rin KD in DA neurons enhances cocaine’s locomotor effects in males (Fig. 

IV-7) but eliminates cocaine’s locomotor effects in females (Fig. IV-8) Although 

Rin is required for NGF-mediated signaling via MAP kinase (Shi et al., 2005b), it 

is unlikely that the observed phenotypes were due to changes in DA neuron 

viability, as TH and DAT expression were unaffected by Rin KD (Fig. IV-5). DA 

neurons are heterogeneous, and have distinct target areas that drive these 

behaviors (Parker et al., 2016). Thus, Rin knockdown may preferentially impact a 

DA neuron subpopulation, leading to the differential phenotypes we observed.  
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Rin is required for PKC-stimulated DAT endocytosis in PC12 cells (Navaroli et 

al., 2011), and here we demonstrate that it is also required for regulated DAT 

endocytosis in intact DAergic nerve terminals in NAc, however not in DS (Fig. IV-

9). This result suggests that these two DAergic nuclei have distinct regulatory 

DAT trafficking mechanisms. This hypothesis is consistent with the differential 

DAT trafficking regulation in NAc vs DS, reported in Vav2-/- mice (Zhu et al., 

2015). AMPH stimulated DAT trafficking was unaffected following Rin KD in 

DAergic terminals (Fig. IV-9). This finding demonstrates that Rin is not required 

for AMPH-stimulated DAT endocytosis, which is consistent with previous reports 

that PKC-stimulated and AMPH-stimulated DAT endocytosis are distinct 

mechanisms (Saunders et al., 2000; Boudanova et al., 2008a). Moreover, this 

result demonstrates that Rin KD did not broadly disrupt all endocytic mechanisms 

within the neuron.  

 

Rin KD and loss of regulated DAT endocytosis resulted in reduced total DAT 

within the striatum of male mice (Fig. IV-10). Increased cocaine sensitivity is 

correlated with reduced DAT availability at the plasma membrane (Nelson et al., 

2009), suggesting that increased cocaine hyperactivity at a 15mg/kg dose in Rin 

KD mice may result from reduced DAT availability. Interestingly, we observed 

that in female mice, Rin KD reduced hyperactivity following both 15 and 30mg/kg 

cocaine (Fig. IV-8). It is unknown whether Rin KD reduced DAT levels in female 
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striatum. Females are more sensitive to cocaine (Calipari et al., 2017). Further, 

female mice in estrous are more sensitive to cocaine’s rewarding effects and 

have increased DAT N-terminal phosphorylation compared to females in 

dioestrous (Calipari et al., 2017). This finding suggests that hormonal signaling in 

females not only contributes to increased cocaine sensitivity, but also that this 

sex hormone effect impacts DAT regulation. Therefore, loss of DAT regulation in 

Rin KD mice might account for the differences we observed cocaine-induced 

hyperlocomotion between males and females (Fig. IV-7,8). It is unknown whether 

females undergo regulated DAT endocytosis. Future studies testing PKC-

stimulated trafficking in female mice will test whether DAT endocytic mechanisms 

differ between males and females.  

 

We observed that Rin KD resulted in decreased sEPSP frequency with no 

change in amplitude (Fig. IV-11), suggesting that Rin KD in DAergic neurons 

modulates presynaptic excitatory signaling. Given that Rin KD was restricted to 

DA neurons, I predict that the changes in excitatory signaling arise from changes 

in DA signaling within the NAc. Both D1 and D2-like receptor activation 

decreases glutamate release onto MSNs within the NAc (Tritsch and Sabatini, 

2012). Therefore, I hypothesize that reduced sEPSP frequency arises from 

increased extracellular DA. In support of this hypothesis, Rin KD mice express 

reduced DAT levels (Fig. IV-10), which may result in reduced DA reuptake. 



CHAPTER IV 
	

	 129 

Future studies using FSCV will test whether Rin KD impacts DA release and 

clearance. 

 

Additionally, control mice show increased sEPSP interevent interval following 

cocaine treatment, but Rin KD mice show no change in interevent interval 

following cocaine exposure (Fig. IV-11). Interestingly, a similar trend was seen in 

a previous report using DAT KD mice, which express 90% less DAT (Wu et al., 

2007). DAT KD mice show no change in sEPSC frequency following cocaine 

treatment, whereas WT mice showed decreased sEPSC frequency with cocaine 

treatment. These studies provide further support that reduced DAT expression 

impacts excitatory signaling in NAc following cocaine treatment. Additional 

parallels between Rin KD mice and DAT KD mice is observed following acute 

cocaine injection. DAT KD mice display increase hyperactivity in response to 

cocaine injection, consistent with our Rin KD mice (Tilley et al., 2007).  In 

contrast to the hypothesis that our observed behaviors arise from increased 

extracellular DA in the NAc, we observed that Rin KD resulted in reduced anxiety 

in male and female mice (Fig. IV-6). Increased DA signaling and reduced 

glutamatergic firing within the NAc is associated with increased anxiety (Russo 

and Nestler, 2013). How can we observe increased cocaine sensitivity and 

reduced anxiety in Rin KD mice? I predict that the effect we observe on anxiety 

arises from a brain region other than the NAc. The VTA projects to multiple brain 

regions including the amygdala, which is commonly associated with anxiety-
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related behaviors (Calhoon and Tye, 2015; Zarrindast and Khakpai, 2015). 

Future studies using retrograde AAV serotypes will be informative in isolating 

VTA-NAc pathway dependent behaviors versus amygdala-VTA behaviors.  

 

Conditional and inducible gene expression control has proved an indispensable 

approach to interrogate the nervous system, and to elucidate the neuronal basis 

for normal and pathological physiology and behavior. Our successful application 

of TET-OFF technology, in combination with higher integrity shRNA-encoding 

AAV, is likely to have broad utility in neurobiological studies, and there are 

multiple conditional tTA mice available with which to apply this approach. 

Although we observed a striking and significant ability to suppress Rin 

expression in DA neurons, it should be noted that we occasionally observed GFP 

reporter expression in TH+ cells of dox-treated mice (not shown). This is 

reflected in the significantly more variable Rin expression values obtained by 

qPCR (Fig. IV-5A) compared to (-)dox mice, and may be due to the short half-life 

of dox, and inability to control mouse dox dosing via ad libitum route. 

Alternatively, it may reflect a longer GFP protein half-life, in comparison to Rin 

mRNA. Nevertheless, the dox regimen was sufficient to suppress the observed 

anxiolytic phenotypes and acute cocaine responses. 
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Taken as a whole, these studies are the first to demonstrate Rin GTPase’s role in 

vivo. Further, we confirm that in bona fide DA neurons, Rin is required for PKC-

stimulated DAT endocytosis. This finding correlates PKC-stimulated DAT 

trafficking with baseline anxiety and locomotor response to cocaine, making this 

study the first to investigate the physiological impact of PKC-stimulated DAT 

endocytosis.  
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Chapter V 

Discussion and Future Direction 

DA neurotransmission is critical for movement, reward, cognition, and anxiety 

(Wise, 2004; Schultz, 2007; Russo and Nestler, 2013). DAergic dysregulation 

results in numerous neuropsychiatric diseases such as PD, ADHD, and ASD. 

Therefore, understanding DAergic regulation is necessary to understand complex 

behaviors and to create novel therapeutics for neuropsychiatric disease. DA 

reuptake through DAT is the primary mechanism for terminating DA signaling 

events. Therefore, DAT is a critical regulator of DAergic signaling cascades. DAT 

availability at the plasma membrane is required for DA reuptake and is tightly 

regulated through presynaptic signaling pathways, which affect DAT function and 

surface expression through endocytic regulation. DAT is the molecular target for 

AMPH and cocaine. Further, point mutations in DAT are linked to DTDS, PD, 

ADHD, BPD, and ASD, suggesting that changes within DAT function can have 

profound consequences in DAergic behavior. Within this thesis I discuss how 

DAT terminal domains regulate DA uptake (Chapter II) and regulatory trafficking 

pathways (Chapter III). Further, taking advantage a known DAT endocytic 

mechanism, I blocked PKC-mediated DAT endocytosis in vivo to test the 

physiological impact of regulated endocytosis.  
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V.A DAT N-terminus is required for substrate and small inhibitor affinity 

Multiple lines of evidence demonstrate that DAT’s N-terminus is required for 

many DAT mechanisms including AMPH-stimulated efflux (Khoshbouei et al., 

2004), regulated phosphorylation (Bermingham and Blakely, 2016), negative 

endocytic regulation (Sorkina et al., 2009), and protein binding (Table I-1). 

Further, a point mutation in DAT’s N-terminus (R51W) was identified in a patient 

with ASD (Cartier et al., 2015). Therefore, the DAT N-terminus is critical for DAT 

regulation, and may play an important role in DAergic behavior. We identified that 

the DAT N-terminus is required for substrate (DA, AMPH) and certain inhibitor 

(bCFT, MPH) affinities but not affinity for cocaine, GBR12909, or bCIT (Table II-

1). These data point to the N-terminus’ role in shaping the substrate/inhibitor 

binding pocket. The DAT N-terminus serves as an intracellular gate, which 

moves in relation to DAT intracellular loops during the translocation process, to 

expose the translocated DA to the cytosol (Cheng and Bahar, 2015). The 

juxtamembrane N-terminal domain required for N-terminal gating (RETWK, 60-

65) is conserved between DAT and SERT, and therefore conserved in our N-

SERT/DAT chimera (Fig. II-1). Therefore, affinity loss from N-terminal 

substitution is not due to changes in the N-terminal intracellular gate. 

Additionally, when we replaced both SERT intracellular domains onto DAT 

(SERT/DAT/SERT), we rescued the affinity losses displayed by N-SERT/DAT. 

These data suggest that DAT and SERT N- and C-termini may “recognize” one 

another within the cytoplasm, and therefore work together to stabilize the DA 
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binding pocket. DAT and SERT’s N-terminal domains are mobile during the 

substrate translocation process (Fenollar-Ferrer et al., 2014; Khelashvili et al., 

2015a; Khelashvili et al., 2015b); however, it is unknown how DAT’s N- and C-

termini interact with one another during this process. Molecular dynamic 

simulations and intramolecular FRET were used to determine how the SERT N- 

and C-termini move with respect to one another during the substrate 

translocation process (Fenollar-Ferrer et al., 2014). Whether DAT’s terminal 

domains interact with one another when DAT is in an open conformation, as is 

predicted for SERT, remains untested. Future studies modeling both terminal 

domains together will be informative in asking this question, and will reveal DA 

translocation mechanisms, and perhaps provide mechanistic insight into other N- 

and C-terminal synergistic mechanisms such as substrate efflux.  

  

V.B DAT N-terminus is required for PKC-stimulated DAT endocytosis 

As stated previously, DAT’s N- and C-termini are required for negative endocytic 

regulation (Holton et al., 2005; Boudanova et al., 2008b; Sorkina et al., 2009). 

Reports from our lab and others independently implicate DAT’s N- and C-termini 

as required for stabilizing DAT surface expression. Therefore, I wanted to test 

whether these two domains synergistically work together to support regulated 

DAT endocytosis. It is known that DAT rapidly internalizes following PKC 

activation, and Ack1 inactivation is required downstream of PKC to stimulate 
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enhanced DAT endocytosis (Wu et al., 2015). Using DAT/SERT chimeras (Fig. I-

1) (Sweeney et al., 2017), I tested endocytic rates following PKC activation and 

Ack1 inhibition. WT DAT, N-SERT/DAT, and DAT/C-SERT all showed increased 

endocytic rates following Ack1 inhibition; however, SERT/DAT/SERT did not. 

These data demonstrate that individually, neither DAT’s N- nor C-terminus is 

required for rapid endocytosis following Ack1 inhibition. This raises two 

hypotheses: 1) that Ack1 inactivation independently stimulates mechanisms 

associated with N- and C-termini for rapid endocytosis or 2) that Ack1 

inactivation stimulates a molecule(s) that associates with both N- and C-termini 

to stimulate rapid endocytosis. Given that N- and C-termini synergistically 

mediate substrate affinity (Sweeney et al., 2017), AMPH-stimulated efflux (Fog et 

al., 2006b), and the reciprocal relationship between palmitoylation and 

phosphorylation (Moritz et al., 2015), I hypothesize that both terminal domains 

synergistically work together to mediate enhanced endocytic rates following Ack1 

inhibition. An intriguing hypothesis is that Ack1 itself mediates N- and C-terminal 

synergy, and once dephosphorylated, it disassociates from DAT. However, 

preliminary results from our lab refute this hypothesis. Ack1 does not co-IP with 

DAT (Sweeney and Melikian, unpublished data), and Ack1 and DAT do not 

colocalize as measured through immunocytochemistry (Marshall and Melikian, 

unpublished data). Therefore, I predict that another molecule mediates this N- 

and C-terminal synergy. I tested whether Rin is the mediating molecule. Given 

the fact that 1) Rin is required for PKC-stimulated DAT endocytosis, 2) Rin is 
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activated by PKC, and 3) Rin activity is required for PKC-stimulated Ack1 

dephosphorylation, it appeared to be a strong candidate to mediate N- and C-

terminal synergy. However, Rin associated with each DAT-core chimera (Fig. III-

3), demonstrating that neither DAT’s N- nor C-terminus is required for DAT/Rin 

interaction. However, we did not test whether Rin’s association with DAT-core 

chimeras is differentially affected by PKC activation or Ack1 inhibition. It may be 

that at steady state, Rin associates with each DAT-core chimera, and that 

stimulating regulated endocytosis affects the association. Future studies testing 

DAT/Rin association in the presence of PMA or AIM-100 will provide further 

mechanistic insight to the DAT/Rin interaction. Additionally, other factors may 

mediate the hypothesized DAT terminal synergy. BBS-DAT-core chimeras will 

serve as an excellent tool to screen for DAT N- and C-terminal binding proteins 

at the cell surface. Previous studies screening for DAT associated proteins have 

relied upon GST-tagged peptides or yeast 2-hybrid screens with DAT terminal 

peptides as bait (Table I-1). While these approaches have been critical for 

identifying DAT associated proteins, they do not take into account the entire DAT 

protein. Further, they preclude the possible identification of proteins that require 

both N- and C-termini for DAT association. BBS-DAT can be used both in cellular 

systems and in vivo to identify novel DAT binding partners in the future.  

 

V.C DAT microdomain localization and regulated endocytosis 
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DAT localizes to distinct microdomains within the plasma membrane. Further, 

localization to these domains and/or mechanisms associated with DAT 

microdomain targeting correlate with mechanisms associated with regulated 

endocytosis. Our lab previously reported that DAT interacts with Rin, and that 

DAT/Rin colocalization is enhanced in lipid rafts (Navaroli et al., 2011). 

Additionally, Rin is required for PKC-stimulated DAT downregulation (Fig. IV-9, 

Navaroli et al., 2011). These findings raise two questions: 1) Does Rin target 

DAT to lipid raft microdomains? and 2) is DAT’s presence within these 

microdomains domains required for PKC-stimulated internalization? To test the 

former, one can compare DAT localization within lipid rafts in mice ±Rin KD. A 

loss of DAT localization to lipid rafts in Rin KD mice would suggest that Rin is 

required to target DAT to these domains. Data from the Yamomoto lab correlate 

DAT microdomain localization to regulated DAT endocytosis. They showed that 

DAT associates with the lipid raft-enriched, integral membrane protein, Flot-1, 

and that Flot-1 is required to maintain DAT within membrane microdomains. 

Further, they demonstrated that Flot-1 is required for PKC-stimulated 

endocytosis (Cremona et al., 2011). These findings support the hypothesis that 

PKC-stimulated DAT internalization requires DAT to be localized within lipid raft 

domains. Additional support linking membrane localization to DAT trafficking 

mechanisms comes from studies with the ADHD-associated DAT mutant, 

R615C. 615C DAT is enriched in non-raft compartments, and it does not undergo 

PKC-stimulated internalization (Sakrikar et al., 2012). It should be noted that the 
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absence of PKC-stimulated internalization is due to increased basal endocytic 

rates. In fact, our lab reported that a constitutively active Ack1 mutant, S445P, 

can rescue the enhanced basal endocytic rates associated with the 615C mutant, 

and therefore restores PKC-stimulated internalization. Does S445P-Ack1 restore 

basal DAT endocytic rates by restoring 615C DAT localization to lipid rafts? This 

hypothesis remains untested.  

 

In Chapter III, I demonstrate that N-SERT/DAT does not undergo PKC-stimulated 

endocytosis, but maintains Ack1-dependent endocytosis. Further, I predicted that 

a molecule associated with the DAT N-terminus must mediate this effect. 

However, given what we know about DAT localization to lipid rafts, it raises the 

alternative hypothesis that N-SERT/DAT is mislocalized, and expression in 

different compartments within the plasma membrane may result in the loss of 

PKC-stimulated endocytosis. To test this hypothesis, one can first test whether 

N-SERT/DAT colocalize with a lipid raft marker, such as CTxB, and whether is 

localization is different from WT DAT.  

 

Ultimately, the studies linking DAT membrane localization to regulated 

endocytosis are correlations. It remains unknown whether loss of regulated 

endocytosis following Rin KD or Flot-1 KD arise due to loss of direct interaction 

with these proteins, or rather due to loss of localization. Does DAT need to be in 

the right place at the right time to undergo regulated endocytosis, or rather, does 
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it need to directly interact with raft-associated proteins for regulated endocytosis? 

These two ideas are not mutually exclusive, and further studies linking known 

DAT regulatory mechanisms to DAT membrane localization will provide further 

insight regarding how membrane localization impacts DAT function and 

regulation.  

 

V.D Rin is not expressed in certain heterologous expression systems – 

Implications for data interpretation 

Our laboratory previously reported that Rin directly binds to DAT, and that Rin is 

required for PKC-stimulated DAT endocytosis (Navaroli et al., 2011). This study 

used RT-PCR to demonstrate that Rin is expressed in multiple heterologous 

expression systems, including non-neuronal cell lines, which was surprising 

given that Rin is only expressed in neuronal tissue. However, throughout the 

course of my graduate work, I found that 1) I could not detect Rin in SK-N-MC 

cells and HEK293T cells using RT-qPCR and 2) the Rin antibody we were using 

(27G2 clone) detected an immunoreactive band that is not Rin. These findings 

raised questions regarding Rin’s putative role in DAT endocytic regulation. When 

reevaluating Navaroli et al.’s work, several findings remain true in light of this 

new information. 1) Rin binds to DAT but not SERT. Rin was originally identified 

as a DAT binding protein through a yeast 2-hybrid screen using FREKLAYAIA 

(587-596) as bait. Additionally, FRET analysis using YFP-Rin and CFP-DAT 
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showed significant interaction between the two proteins, but no interaction 

between Rin and SERT nor Rin and GAT1. 2) Rin activity is required for PKC-

stimulated DAT endocytosis. Internalization assays in PC12 cells expressing 

constitutively active and dominant negative Rin mutants showed that Rin activity 

is required for PKC-stimulated DAT internalization. However, Rin is a Ras-like 

GTPase, and within this family, there is significant homology within effector 

domains. Therefore, we cannot rule out that a dominant negative Rin sequesters 

effectors necessary for other GTPases that are required for DAT endocytic 

regulation. Ultimately, we are interested in DAT endocytic mechanisms in 

DAergic terminals rather than cellular expression systems. When we knockdown 

Rin in DAergic nerve terminals, we block PKC-stimulated DAT endocytosis (Fig 

IV-9). Therefore, Rin is absolutely required for PKC-stimulated DAT endocytosis. 

However, if Rin is not expressed in all cell systems, how can we say that it is truly 

required? Rin shares significant homology with the ubiquitously expressed Rit. 

We do not know whether Rit is required for PKC-stimulated internalization, or that 

Rit can compensate for Rin in cellular systems. Our laboratory has efficacious 

Rit-targeted shRNAs (Sweeney and Melikian, unpublished data), which can be 

used to test this possibility. Alternatively, DAT may use different regulatory 

endocytic pathways in different neuronal populations. In our studies, Rin KD 

blocked PKC-stimulated DAT internalization in NAc but not DS (Fig. IV-9). 

Similarly, Vav2 is required for regulating DAT surface expression in NAc but not 

DS (Zhu et al., 2015). Taken together, these data demonstrate that DAT requires 
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different endocytic regulatory mechanisms in nigrostriatal pathways than in 

mesolimbic pathways. Therefore, more studies are needed to study DAT 

regulatory mechanisms in DA terminals to test the hypothesis that different forms 

of regulation exist within different DAergic neuronal populations. 

 

V.E PKC-stimulated DAT endocytosis in vivo 

Initial reports that DAT functionally downregulates in response to PKC activation 

were published over 20 years ago (Bermingham and Blakely, 2016). This led to 

numerous papers investigating the functional downregulation and endocytic 

trafficking mechanisms following PKC activation. However, to date, the 

endogenous source of PKC activation in DA terminals remains unknown. 

Previous studies relied heavily upon direct PKC activation with phorbol ester 

treatment (PMA). However, this approach directly bypasses endogenous 

receptor activation, and therefore bypasses other secondary messenger 

cascades associated with receptor activation. PKC is activated by Gq-coupled 

receptor activation. Gq signaling activates phospholipase C (PLC), which in turn 

cleaves PIP2 to generate DAG and IP3, which respectively activate PKC and 

increase intracellular Ca2+. What are the endogenous Gq-coupled receptors on 

DAergic terminals and does their activity regulate DAT surface expression? 

Muscarinic acetylcholine receptors (mAChRs, M1-M5) are distributed throughout 

the striatum. Both M1, M3, and M5 subtypes are Gq-coupled; however, only M5 is 

expressed on DAergic terminals (Vilaro et al., 1990; Weiner et al., 1990; Shin et 
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al., 2015), making it a strong candidate for endogenous PKC activation to drive 

DAT endocytosis. Preliminary data from our laboratory, using a nonselective 

mAChR activator at a subthreshold concentration in conjunction with an M5 

positive allosteric modulator, suggest that M5 activation stimulates regulated 

DAT trafficking in DAergic terminals (Kearney and Melikian, unpublished data). 

mGluR5 is another Gq-coupled candidate to activate DAT endocytic signaling. 

mGluR5 is a Group I metabotropic glutamate receptor. Page et al. nonselectively 

activated Group I mGluRs in striatal synaptosomes, which caused decreased DA 

uptake, and this effect was blocked with co-incubation with a mGluR5 specific 

antagonist (Page et al., 2001). These data demonstrate that DA uptake velocity 

is sensitive to mGluR5 activation. While these data must be repeated in intact 

striatal preparations, it points to an mGluR5-dependent mechanism for reducing 

DA uptake.  

 

If M5 and mGluR5 are the endogenous sources of regulated DAT endocytosis, it 

raises interesting hypotheses regarding the physiological importance of PKC-

stimulated DAT endocytosis. For example, M5-induced DAT trafficking would 

suggest that DAT is critical for regulating DAergic tone during cholinergic 

signaling events in the striatum. To this same extent, mGluR5-stimulated DAT 

endocytosis would point to DAT’s importance in regulating homeostatic DA levels 

during glutamatergic signaling. Both cholinergic and glutamatergic DAT 

regulation can be tested using channelrhodopsin conditionally expressed in 
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cholinergic neurons or glutamatergic terminals in the striatum. Using blue light to 

stimulate either ACh or Glu release, we can test whether cholinergic or 

glutamatergic stimulation stimulates DAT surface redistribution. Moreover, if 

these studies point to M5- and mGluR5-mediated regulated DAT endocytosis, I 

propose blocking this pathway with our Rin KD model to further test the 

physiological pathway and impact behind PKC-stimulated DAT endocytosis.  

 

V.F What is the physiological importance of 

PKC-stimulated DAT endocytosis? 

DAergic signaling is critical for key brain functions including movement initiation, 

learning, and reward. DAT regulates DA signaling events through reuptake into 

the presynaptic neuron. DAT must be available at the plasma membrane in order 

to regulate DA signaling. PKC-stimulated DAT endocytosis dynamically regulates 

DAT surface expression, and therefore regulates DAT availability at the plasma 

membrane. However, the physiological consequence of PKC-stimulated DAT 

endocytosis remains entirely unknown. To test the hypothesis that PKC-

stimulated DAT endocytosis is required for DAergic behavior, we knocked down 

Rin conditionally in adult DA neurons. Our laboratory previously identified Rin as 

a DAT binding protein that is required for PKC stimulated endocytosis (Navaroli 

et al., 2011), and here we demonstrated that Rin is required for PKC-stimulated 

endocytosis in NAc DAergic terminals (Fig. IV-9). We also demonstrated that 
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PKC-stimulated DAT endocytosis is not required for baseline locomotor behavior 

(Fig. IV-6A); however, it contributes to baseline anxiety as measured by EPM 

and OFT (Fig. IV-6B,C). Additionally, we showed that PKC-stimulated DAT 

endocytosis differentially affects male and female locomotor response to acute 

cocaine injection. Blocking regulated DAT internalization enhanced sensitivity to 

cocaine in males (Fig. IV-7); however, it eliminated cocaine-induced locomotor 

response in females (Fig. IV-8). This study design relies on Rin knockdown to 

block PKC-stimulated DAT endocytosis. While I can correlate regulated DAT-

trafficking to the observed behaviors, I cannot say that it is absolutely causative. 

To directly assess the physiological importance of PKC-stimulated DAT 

endocytosis in vivo, we require knock in mice expressing regulated DAT 

trafficking deficient mutants. N-SERT/DAT does not internalize rapidly in 

response to PKC activation (Fig. III-1), lending itself as an interesting endocytic 

loss-of-function mutant. Additionally, R615C DAT displays and endocytic gain-of-

function phenotype in cells. It internalizes rapidly in the absence of PKC 

activation (Sakrikar et al., 2012). These two mutants will provide the opportunity 

to test the physiological impact of DAT endocytosis on DAergic behaviors. I 

predict that if these mutants phenocopy our behavioral data following Rin KD, it 

will help to support the conclusion that regulated DAT endocytosis is required for 

locomotor response to acute cocaine injection and generalized anxiety.  
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V.G Rin and Behavior 

Rin is a Ras-like GTPase expressed solely in neurons (Lee et al., 1996; Wes et 

al., 1996). It is activated in response to growth factor signaling, and it binds CaM 

(Lee et al., 1996; Wes et al., 1996; Shi et al., 2005b). We know very little about 

Rin function, and all Rin functional studies have been performed in vitro or in 

heterologous expression systems. Rin signaling in vivo remains untested, and 

the physiological importance of Rin signaling in the brain is entirely unknown. 

Multiple lines of evidence suggest that Rin activity is key in DAergic neurons. 

GWAS studies implicate Rin as a risk allele for DAergic neurological disorders 

(PD, schizophrenia, ASD, essential tremor, BPD, and speech delay) 

(Emamalizadeh et al., 2017). Further, Rin expression is enriched in DAergic brain 

regions (Zhou et al., 2011). Finally, our laboratory identified that Rin binds to 

DAT, and is required for regulated DAT endocytosis. Therefore, we conditionally 

knocked down Rin in DAergic neurons to test whether Rin is required for DAergic 

behavior.  

 

Rin KD and anxiety 

Anxiety is characterized by apprehension, sustained arousal, and risk avoidance 

(Tovote et al., 2015). In rodents it is often measured in avoidance assays, in 

which more anxious animals avoid open spaces (Carola et al., 2002). To test 

whether Rin KD in DAergic neurons affected anxiety-related behavior, we used 
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the EPM and OFT. We saw that Rin KD in male and female DAergic neurons 

produced an anxiolytic phenotype (Fig. IV-6). While amygdala, BNST, 

hippocampal, and cortical regions are classically associated with anxiety related 

behavior, increasing evidence demonstrates that midbrain DAergic neurons are 

key in modulating anxiety responses (Calhoon and Tye, 2015; Zarrindast and 

Khakpai, 2015). Optogenetic stimulation of DAergic VTA neurons causes animals 

to spend less time in open arms in EPM (Gunaydin et al., 2014). This effect was 

also seen by activating DAergic terminals within the PFC, suggesting that 

increased activity in VTA-PFC projections has an anxiogenic effect. Conditional 

NMDAR KO in DAergic neurons revealed that NMDA-mediated DA neuron firing 

is required to elicit anxiety in response to aversive conditioning (Zweifel et al., 

2011). Leptin receptor is expressed in VTA DAergic neurons. Conditional leptin 

receptor (Lepr) KO in DAT-Cre mice reduced open arm entries in EPM, and 

increased DA neuron burst firing (Liu et al., 2011). Further, microinjection of D1 

antagonist in amygdala attenuated this phenotype, demonstrating that a DAergic 

VTA-amygdala pathway contributes to anxiety behavior.  

 

VTA DAergic neurons express M5 mAChRs (Vilaro et al., 1990), which are Gq- 

coupled, and therefore activate PKC signaling cascades. Potentiating cholinergic 

signaling in the VTA by local physostigmine infusion resulted in anxiogenic 

response in rats (Small et al., 2016). It is tempting to hypothesize that cholinergic 

activation of PKC signaling in DA neurons causes both regulated DAT trafficking 
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and anxiogenic response. In Rin KD mice, PKC-stimulated DAT trafficking is 

blocked and these mice have an anxiolytic response. These data provide a 

correlation between DAT trafficking in midbrain DAergic neurons and anxiety 

related behavior. KOR is expressed in DAergic neurons, and KOR signaling 

increases DAT surface expression (Kivell et al., 2014). Interestingly, conditional 

KOR KO in DAT-cre mice has an anxiolytic effect as measured by increased time 

in the center during OFT and reduced latency to enter the lit compartment in a 

light/dark box (Van't Veer et al., 2013). These data further correlate a known DAT 

trafficking mechanism with an anxiety-related phenotype. Whether our observed 

anxiolytic phenotype following Rin KD is due to impaired DAT trafficking, and 

therefore impaired homeostatic DA regulation or, rather, due to other changes 

related to loss of Rin signaling remains unknown. As discussed previously, future 

studies with DAT trafficking-defective mutants will help to test whether regulated 

DAT trafficking is required for anxiety-response in mice.  

 

In our studies, we knocked down Rin in VTA and SNc DAergic neurons. These 

nuclei send projections throughout the basal ganglia and cortical regions. 

Therefore, we cannot determine the circuitry required for reduced anxiety in our 

Rin KD mice. To test whether Rin KD in DAergic VTA or SNc nuclei is required 

for anxiolytic response, I propose using AAV2 to infect specifically VTA or SNc. 

This viral serotype results in a more focal infection with reduced viral spread 

compared to the AAV9 used in our studies. Further, both VTA and SNc send 
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projections to multiple brain regions. I propose that future studies using 

retrograde viruses to infect the projection sites, such as NAc, PFC, amygdala, or 

hippocampus will be critical to interpret the brain circuitry mediating our findings.  

Rin and cocaine 

Sexual dimorphism within the DAergic system has been well documented 

(Becker et al., 2012). Cocaine is a powerful psychostimulant, and it affects 

females differently than males. Females binge more, escalate drug use more 

quickly, and progress to addictive behavior more rapidly (Becker et al., 2012). In 

our study, control females were sensitive to an acute 15mg/kg cocaine injection, 

whereas in males, this dose was subthreshold (Fig IV-7, IV-8). Further, Rin KD 

differentially affected male and female locomotor response to cocaine. In male 

mice, we observed enhanced sensitivity to cocaine-induced locomotor response 

at 15mg/kg (Fig. IV-7). In female mice, Rin KD abolished locomotor response to 

cocaine (Fig. IV-8). These data raise interesting questions as to how Rin 

regulates DAergic neuronal firing, and how this effect is different in male versus 

female mice. It is known that DA neuron firing rates fluctuate over the course of 

the estrous cycle, with increased firing in estrous and dioestrous females 

compared to proestrous (Becker et al., 2012). It should be noted, that we did not 

control for estrous cycle in our female mice. Further, we do not know how 

DAergic Rin KD impacts DA neuron firing. Future studies will test how Rin KD 

affects DA neuronal firing in both male and female mice.  
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Given that Rin KD blocked PKC-stimulated DAT endocytosis, and that cocaine is 

a potent DAT inhibitor, it raises the hypothesis that cocaine-dependent 

phenotypes may arise from loss of regulated DAT trafficking. Further, given the 

differential effect in cocaine response following Rin KD in males and females, I 

hypothesize that DAT endocytosis may be differentially regulated in males and 

females. The Nestler group recently reported increased DAT N-terminal 

phosphorylation in estrous females compared to males and dioestrous females, 

supporting the hypothesis that sex-dependent DAT regulatory mechanisms exist 

(Calipari et al., 2017). Here, we demonstrate that Rin is required for PKC-

stimulated DAT endocytosis in male NAc; however, we do not know if it is 

required for regulated DAT endocytosis in females. Future studies in females 

testing regulated DAT endocytosis ±Rin expression using our Rin KD model will 

provide insight as to whether DAT is regulated differently in males and females.  

 

Rin in NAc DAergic terminals 

Our electrophysiological studies demonstrate DAergic Rin signaling modulates 

excitatory transmission in NAc. We observed that DAergic Rin KD in NAc 

terminals resulted in reduced sEPSP frequency but not amplitude suggesting a 

presynaptic response (Fig. IV-11). It is known that DA modulates excitatory 

signaling from NAc glutamatergic terminals (Tritsch and Sabatini, 2012). 
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Therefore, I hypothesize that DAergic Rin KD impacts extracellular DA levels, 

and therefore, impacts DAergic modulation at glutamatergic presynaptic sites. 

Whether the hypothesized changes in extracellular DA result from loss of DAT 

availability resulting from impaired PKC-stimulated DAT endocytosis remains 

unknown. Ex vivo studies using fast scan cyclic voltammetry (FSCV) will directly 

test extracellular DA concentrations and clearance rates. Alternatively, alterations 

in DA signaling may result from changes in DA neuron firing following Rin KD. 

Studies testing the DAergic neuron firing properties in Rin KD mice will answer 

this question. Taken as a whole, we know that DAergic Rin KD blocks PKC-

stimulated endocytosis, and impacts spontaneous excitatory transmission. These 

findings support our original hypothesis that blocking PKC-stimulated 

endocytosis will prevent maintenance of DA homeostasis, and will impact striatal 

neurotransmission.  
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Appendix VI 

Is PKC-stimulated DAT internalization required for  

locomotor sensitization to amphetamine? 

 

VI.A Introduction 

DAT dynamically traffics to and from the plasma membrane. Following PKC 

activation, DAT’s internalization significantly increases, resulting in less DAT at 

the plasma membrane. PKC-stimulated DAT internalization requires Rin activity 

and Ack1 dephosphorylation (Navaroli et al., 2011; Wu et al., 2015); however, 

the physiological impact of this mechanism remains unknown. Work previously 

described in this thesis correlates PKC-stimulated DAT internalization with 

cocaine induced hyperlocomotion and anxiety-related behavior (Fig IV-6, 7, 8). 

While these studies implicate PKC-stimulated DAT internalization in regulating 

psychostimulant-induced behavior and anxiety, it is unknown whether PKC-

stimulated DAT internalization is required for locomotor sensitization to 

psychostimulants. Repeated exposure to drugs of abuse results in augmented 

motor effects. This effect is known as locomotor sensitization (Steketee and 

Kalivas, 2011) 

VI.B Materials and Methods 
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Stereotaxic viral delivery. DAT-cre mice were bilaterally injected with AAV2 as 

described in Chapter IV. Virus was allowed to express for four weeks before 

behavioral analysis.  

 

Virus and cDNAs. Ack1-HA (WT and S445P) were cloned into pcDNA3.1+ as 

described previously (Wu et al., 2015). To flank the sequence with loxP and 

lox2722 sites, they were subcloned into pAAV-EF1a-DIO-hChR2(H134R)-EYFP 

(gift of Karl Deisseroth. Addgene plasmid #20298) using AscI and NheI. Next, 

double floxed WT and S445P Ack1 were cut using AccI and EcoRI and blunted. 

They were then ligated into pAAV-CB6, which was blunted following linearization 

with EcoRI. These viral vectors were packaged into AAV2 by the University of 

Massachusetts Medical School viral vector core.  

 

Locomotor sensitization to amphetamine. Mice received daily injections of 

2mg/kg AMPH for 10 days. On days 1, 4, 7, and 10, the mice first habituated to a 

locomotor activity chamber for 45 mins before receiving AMPH injection. Upon 

receiving the AMPH injection, their locomotor activity was recorded for 90 

minutes. The mice the underwent a wash out period for two weeks. On day 25, 

we recorded the mice’s locomotor activity and injected them with saline as done 

previously on days 1, 4, 7, and 10. Typically, this assay would have saline 

controls run in parallel; however, this data set does not include saline controls 

(Fig. VI-1).  
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To test the hypothesis that PKC-stimulated DAT internalization is required for 

induction of locomotor sensitization to AMPH, I overexpressed constitutively 

Ack1 in NAc of DAT-cre mice. We et al. previously demonstrated that Ack1 

dephosphorylation is required for PKC-stimulated DAT internalization, and 

overexpression of a constitutively Ack1 (S445P) blocks PKC-stimulated DAT 

internalization (Wu et al., 2015). I bilaterally injected AAV2 expressing double 

floxed, inverted WT-Ack1, S445P-Ack1, or GFP control into VTA of DAT-cre 

mice. Following four weeks of viral expression, I tested mice for LMS to AMPH.  

 

VI.C Results and Discussion 

DAT-cre mice were bilaterally injected in the VTA with AAV2 expressing double-

floxed, inverted WT- or S445P-Ack1 or GFP, the virus expressed for 4 weeks 

before starting locomotor sensitization experiments. Mice received daily AMPH 

injections (2mg/kg) for ten days, and we measured their locomotor activity on 

days 1, 4, 7, and 10 as described in Fig VI-1. On day 25, the mice received a 

challenge AMPH dose. GFP, WT-Ack1, and S445P-Ack1 overexpressing 

showed no differences in locomotor activity during LMS induction on days 1, 4, 7, 

and 10 (Fig. VI-2). However, on day 25, following the two week washout, WT-

Ack1 overexpressing mice showed significantly reduced locomotor activity during 

the last thirty minutes of the locomotor assay (Two way ANOVA, Ack1 effect, 

F(2,297)=47.45). This finding raises an interesting possibility regarding Ack1 
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expression in DA neurons during maintenance of LMS. WT-Ack1 overexpression 

was significantly reduced in the final 30 minutes following AMPH injection 

compared to GFP infected mice. Therefore, WT-Ack1 overexpression alone, 

alters AMPH-stimulated locomotor activity following a sanitization protocol. 

Therefore, the Ack1 overexpression serves as a baseline for interpreting Ack1 

mutant overexpression. Constitutively active S445P-Ack1 showed significantly 

increased locomotor activity in the final 30 minutes following AMPH injection 

compared to WT-Ack1. These data suggest that Ack1 activity increases 

locomotor AMPH-stimulated locomotor effects following LMS. AMPH is a potent, 

competitive DAT substrate. As discussed in Chapter I, AMPH affects dopamine 

transporter activity in multiple ways including blocking DA reuptake, increasing 

DAT endocytic rates, and inducing DA reverse transport via DAT. Our lab 

previously reported that Ack1 inactivation is required for PKC-stimulated 

internalization, and that a constitutively active Ack1 (S445P) blocks PKC-

stimulated DAT internalization. Further, this Ack1 mutant rescues a gain-of-

function trafficking dysregulated DAT mutant (R615C). The data presented here 

suggest that blocking regulated DAT trafficking through S445P-Ack1 

overexpression amplifies locomotor activity following sensitization. Taken 

together with the findings in Chapter IV, it suggests that PKC-stimulated DAT 

trafficking is required for responding to psychostimulant induced behavior. It 

should be noted that the studies presented within this appendix are preliminary. 

Animal groups are small (n=5-7), and there may be additional AMPH-dependent 
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behavioral effects that are not reported due to lack of power. Further, saline 

controls were not conducted as depicted in Fig. VI-1. While additional 

experiments are necessary to complete this data set, it provides rationale for 

investigating the role of regulated DAT endocytosis in the sensitizing effects of 

psychostimulants.  
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Figure VI-1 Locomotor sensitization to AMPH paradigm. Animals receive 
daily injections of either AMPH (2mg/kg) or saline (10mL/kg) for ten days. Their 
locomotor activity is recorded on days 1, 4, 7, and 10. Then the animals 
undergo a two week washout period, after which all animals receive a single 
2mg/kg AMPH injection. An animal is considered sensitized to AMPH if it 
moves significantly more during day 25 compared to day 1. 
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Figure VI-2. Ack1 overexpression amplifies locomotor sensitization to 
AMPH. DAT-cre mice bilaterally injected with AAV2 expressing GFP or double 
floxed, inverted WT-Ack1 or S445P-Ack1 in the VTA. Mice underwent LMS 
AMPH protocol as described in Materials and Methods. On Day 25, WT-Ack1 
mice demonstrate significantly reduced AMPH-stimulated locomotor activity 
compared to GFP and S445P-Ack1 (Two way ANOVA, Ack1 effect, 
F(2,297)=47.45, Dunnett’s multiple comparison test, #P<0.05, ##P<0.01, GFP 
significantly different from WT-Ack1. *P<0.05, **P<0.01, ***P<0.001, S445P-
Ack1 significantly different from WT-Ack1. 



REFERENCES 
	

	 159 

REFERENCES 

Adams	 DR,	 Ron	 D,	 Kiely	 PA	 (2011)	 RACK1,	 A	 multifaceted	 scaffolding	 protein:	
Structure	and	function.	Cell	communication	and	signaling	:	CCS	9:22.	

Adkins	EM,	Samuvel	DJ,	Fog	JU,	Eriksen	J,	Jayanthi	LD,	Vaegter	CB,	Ramamoorthy	S,	
Gether	 U	 (2007)	 Membrane	 mobility	 and	 microdomain	 association	 of	 the	
dopamine	 transporter	 studied	 with	 fluorescence	 correlation	 spectroscopy	
and	 fluorescence	 recovery	 after	 photobleaching.	 Biochemistry	 46:10484-
10497.	

Ali	 SA,	 Steinkasserer	 A	 (1995)	 PCR-ligation-PCR	 mutagenesis:	 a	 protocol	 for	
creating	gene	fusions	and	mutations.	Biotechniques	18:746-750.	

American	 Psychiatric	 Association	 (2013a)	 Diagnostic	 and	 statistical	 manual	 of	
mental	disorders,	5th	Edition.	Washington,	D.C.	

American	Psychiatric	Association	(2013b)	Attention-Deficit/Hyperactivity	Disorder,	
5th	Edition.	Washington,	DC.	

Apparsundaram	S,	Schroeter	S,	Giovanetti	E,	Blakely	RD	(1998)	Acute	regulation	of	
norepinephrine	 transport:	 II.	 PKC-modulated	 surface	 expression	 of	 human	
norepinephrine	transporter	proteins.	J	Pharmacol	Exp	Ther	287:744-751.	

Asjad	 HMM,	 Kasture	 A,	 El-Kasaby	 A,	 Sackel	 M,	 Hummel	 T,	 Freissmuth	M,	 Sucic	 S	
(2017)	Pharmacochaperoning	in	a	Drosophila	model	system	rescues	human	
dopamine	 transporter	 variants	 associated	 with	 infantile/juvenile	
parkinsonism.	J	Biol	Chem	292:19250-19265.	

Axelrod	J,	Weil-Malherbe	H,	Tomchick	R	(1959)	The	physiological	disposition	of	H3-
epinephrine	 and	 its	 metabolite	 metanephrine.	 J	 Pharmacol	 Exp	 Ther	
127:251-256.	

Becker	 JB,	Koob	GF	 (2016)	Sex	Differences	 in	Animal	Models:	Focus	on	Addiction.	
Pharmacol	Rev	68:242-263.	

Becker	 JB,	 Perry	 AN,	 Westenbroek	 C	 (2012)	 Sex	 differences	 in	 the	 neural	
mechanisms	mediating	addiction:	a	new	synthesis	and	hypothesis.	Biology	of	
sex	differences	3:14.	

Beerepoot	 P,	 Lam	 VM,	 Salahpour	 A	 (2016)	 Pharmacological	 Chaperones	 of	 the	
Dopamine	Transporter	Rescue	Dopamine	Transporter	Deficiency	Syndrome	
Mutations	in	Heterologous	Cells.	J	Biol	Chem	291:22053-22062.	

Bellgrove	 MA,	 Johnson	 KA,	 Barry	 E,	 Mulligan	 A,	 Hawi	 Z,	 Gill	 M,	 Robertson	 I,	
Chambers	 CD	 (2009)	 Dopaminergic	 haplotype	 as	 a	 predictor	 of	 spatial	
inattention	 in	 children	 with	 attention-deficit/hyperactivity	 disorder.	
Archives	of	general	psychiatry	66:1135-1142.	

Beninger	RJ	(1983)	The	role	of	dopamine	in	locomotor	activity	and	learning.	Brain	
Res	287:173-196.	

Benoit-Marand	M,	Jaber	M,	Gonon	F	(2000)	Release	and	elimination	of	dopamine	in	
vivo	in	mice	lacking	the	dopamine	transporter:	functional	consequences.	Eur	
J	Neurosci	12:2985-2992.	



REFERENCES 
	

	 160 

Bermingham	 DP,	 Blakely	 RD	 (2016)	 Kinase-dependent	 Regulation	 of	 Monoamine	
Neurotransmitter	Transporters.	Pharmacol	Rev	68:888-953.	

Binda	F,	Dipace	C,	Bowton	E,	Robertson	SD,	Lute	BJ,	Fog	JU,	Zhang	M,	Sen	N,	Colbran	
RJ,	 Gnegy	 ME,	 Gether	 U,	 Javitch	 JA,	 Erreger	 K,	 Galli	 A	 (2008)	 Syntaxin	 1A	
interaction	with	 the	dopamine	transporter	promotes	amphetamine-induced	
dopamine	efflux.	Mol	Pharmacol	74:1101-1108.	

Blakely	RD,	Berson	HE,	Fremeau	RT,	Jr.,	Caron	MG,	Peek	MM,	Prince	HK,	Bradley	CC	
(1991)	Cloning	and	expression	of	a	functional	serotonin	transporter	from	rat	
brain.	Nature	354:66-70.	

Blaschko	 H	 (1952)	 Amine	 oxidase	 and	 amine	metabolism.	 Pharmacol	 Rev	 4:415-
458.	

Block	ER,	Nuttle	J,	Balcita-Pedicino	JJ,	Caltagarone	J,	Watkins	SC,	Sesack	SR,	Sorkin	A	
(2015)	 Brain	 Region-Specific	 Trafficking	 of	 the	 Dopamine	 Transporter.	 J	
Neurosci	35:12845-12858.	

Bolan	EA,	Kivell	B,	Jaligam	V,	Oz	M,	Jayanthi	LD,	Han	Y,	Sen	N,	Urizar	E,	Gomes	I,	Devi	
LA,	 Ramamoorthy	 S,	 Javitch	 JA,	 Zapata	 A,	 Shippenberg	 TS	 (2007)	 D2	
receptors	regulate	dopamine	transporter	function	via	an	extracellular	signal-
regulated	 kinases	 1	 and	 2-dependent	 and	 phosphoinositide	 3	 kinase-
independent	mechanism.	Mol	Pharmacol	71:1222-1232.	

Bonifacino	 JS,	Traub	LM	(2003)	Signals	 for	Sorting	of	Transmembrane	Proteins	 to	
Endosomes	and	Lysosomes.	Annual	review	of	biochemistry.	

Boudanova	E,	Navaroli	DM,	Melikian	HE	(2008a)	Amphetamine-induced	decreases	
in	 dopamine	 transporter	 surface	 expression	 are	 protein	 kinase	 C-
independent.	Neuropharmacology	54:605-612.	

Boudanova	E,	Navaroli	DM,	Stevens	Z,	Melikian	HE	(2008b)	Dopamine	transporter	
endocytic	determinants:	carboxy	terminal	residues	critical	for	basal	and	PKC-
stimulated	internalization.	Mol	Cell	Neurosci	39:211-217.	

Bouquillon	S,	Andrieux	J,	Landais	E,	Duban-Bedu	B,	Boidein	F,	Lenne	B,	Vallee	L,	Leal	
T,	Doco-Fenzy	M,	Delobel	B	(2011)	A	5.3Mb	deletion	in	chromosome	18q12.3	
as	 the	 smallest	 region	 of	 overlap	 in	 two	 patients	 with	 expressive	 speech	
delay.	Eur	J	Med	Genet	54:194-197.	

Bowton	E,	Saunders	C,	Erreger	K,	Sakrikar	D,	Matthies	HJ,	Sen	N,	Jessen	T,	Colbran	
RJ,	 Caron	 MG,	 Javitch	 JA,	 Blakely	 RD,	 Galli	 A	 (2010)	 Dysregulation	 of	
dopamine	 transporters	 via	 dopamine	D2	 autoreceptors	 triggers	 anomalous	
dopamine	 efflux	 associated	 with	 attention-deficit	 hyperactivity	 disorder.	 J	
Neurosci	30:6048-6057.	

Bowton	 E,	 Saunders	 C,	 Reddy	 IA,	 Campbell	 NG,	 Hamilton	 PJ,	 Henry	 LK,	 Coon	 H,	
Sakrikar	 D,	 Veenstra-VanderWeele	 JM,	 Blakely	 RD,	 Sutcliffe	 J,	 Matthies	 HJ,	
Erreger	 K,	 Galli	 A	 (2014)	 SLC6A3	 coding	 variant	 Ala559Val	 found	 in	 two	
autism	 probands	 alters	 dopamine	 transporter	 function	 and	 trafficking.	
Translational	psychiatry	4:e464.	

Bredt	 DS,	 Nicoll	 RA	 (2003)	 AMPA	 receptor	 trafficking	 at	 excitatory	 synapses.	
Neuron	40:361-379.	



REFERENCES 
	

	 161 

Buchmayer	F,	 Schicker	K,	 Steinkellner	T,	Geier	P,	 Stubiger	G,	Hamilton	PJ,	 Jurik	A,	
Stockner	 T,	 Yang	 JW,	 Montgomery	 T,	 Holy	 M,	 Hofmaier	 T,	 Kudlacek	 O,	
Matthies	 HJ,	 Ecker	 GF,	 Bochkov	 V,	 Galli	 A,	 Boehm	 S,	 Sitte	 HH	 (2013)	
Amphetamine	actions	at	the	serotonin	transporter	rely	on	the	availability	of	
phosphatidylinositol-4,5-bisphosphate.	Proc	Natl	Acad	Sci	U	S	A	110:11642-
11647.	

Buckley	 KM,	Melikian	 HE,	 Provoda	 CJ,	Waring	MT	 (2000)	 Regulation	 of	 neuronal	
function	by	protein	 trafficking:	a	 role	 for	 the	endosomal	pathway.	 J	Physiol	
525	Pt	1:11-19.	

Burger	 C,	 Nguyen	 FN,	 Deng	 J,	 Mandel	 RJ	 (2005)	 Systemic	 mannitol-induced	
hyperosmolality	amplifies	rAAV2-mediated	striatal	transduction	to	a	greater	
extent	than	local	co-infusion.	Mol	Ther	11:327-331.	

Burke	 DA,	 Rotstein	 HG,	 Alvarez	 VA	 (2017)	 Striatal	 Local	 Circuitry:	 A	 New	
Framework	for	Lateral	Inhibition.	Neuron	96:267-284.	

Butler	B,	Saha	K,	Rana	T,	Becker	JP,	Sambo	D,	Davari	P,	Goodwin	JS,	Khoshbouei	H	
(2015)	 Dopamine	 Transporter	 Activity	 Is	 Modulated	 by	 alpha-Synuclein.	 J	
Biol	Chem	290:29542-29554.	

Calhoon	GG,	Tye	KM	(2015)	Resolving	 the	neural	 circuits	of	 anxiety.	Nat	Neurosci	
18:1394-1404.	

Calipari	 ES,	 Juarez	 B,	 Morel	 C,	 Walker	 DM,	 Cahill	 ME,	 Ribeiro	 E,	 Roman-Ortiz	 C,	
Ramakrishnan	 C,	 Deisseroth	 K,	 Han	 MH,	 Nestler	 EJ	 (2017)	 Dopaminergic	
dynamics	underlying	sex-specific	cocaine	reward.	Nat	Commun	8:13877.	

Carlsson	A	(1993)	Thirty	years	of	dopamine	research.	Adv	Neurol	60:1-10.	
Carlsson	 A,	 Lindqvist	M,	Magnusson	 T	 (1957)	 3,4-Dihydroxyphenylalanine	 and	 5-

hydroxytryptophan	as	reserpine	antagonists.	Nature	180:1200.	
Carlsson	 A,	 Lindqvist	 M,	 Magnusson	 T,	 Waldeck	 B	 (1958)	 On	 the	 presence	 of	 3-

hydroxytyramine	in	brain.	Science	127:471.	
Carneiro	AM,	Ingram	SL,	Beaulieu	JM,	Sweeney	A,	Amara	SG,	Thomas	SM,	Caron	MG,	

Torres	GE	(2002)	The	multiple	LIM	domain-containing	adaptor	protein	Hic-5	
synaptically	 colocalizes	 and	 interacts	 with	 the	 dopamine	 transporter.	 J	
Neurosci	22:7045-7054.	

Carola	 V,	 D'Olimpio	 F,	 Brunamonti	 E,	Mangia	 F,	 Renzi	 P	 (2002)	 Evaluation	 of	 the	
elevated	plus-maze	and	open-field	tests	for	the	assessment	of	anxiety-related	
behaviour	in	inbred	mice.	Behav	Brain	Res	134:49-57.	

Cartier	E,	Hamilton	PJ,	Belovich	AN,	Shekar	A,	Campbell	NG,	Saunders	C,	Andreassen	
TF,	 Gether	 U,	 Veenstra-Vanderweele	 J,	 Sutcliffe	 JS,	 Ulery-Reynolds	 PG,	
Erreger	 K,	 Matthies	 HJ,	 Galli	 A	 (2015)	 Rare	 autism-associated	 variants	
implicate	 syntaxin	 1	 (STX1	 R26Q)	 phosphorylation	 and	 the	 dopamine	
transporter	 (hDAT	 R51W)	 in	 dopamine	 neurotransmission	 and	 behaviors.	
EBioMedicine	2:135-146.	

Cepeda	C,	Buchwald	NA,	Levine	MS	(1993)	Neuromodulatory	actions	of	dopamine	in	
the	 neostriatum	 are	 dependent	 upon	 the	 excitatory	 amino	 acid	 receptor	
subtypes	activated.	Proc	Natl	Acad	Sci	U	S	A	90:9576-9580.	



REFERENCES 
	

	 162 

Cervinski	 MA,	 Foster	 JD,	 Vaughan	 RA	 (2010)	 Syntaxin	 1A	 regulates	 dopamine	
transporter	 activity,	 phosphorylation	 and	 surface	 expression.	 Neuroscience	
170:408-416.	

Chan	W,	Tian	R,	Lee	YF,	Sit	ST,	Lim	L,	Manser	E	 (2009)	Down-regulation	of	active	
ACK1	is	mediated	by	association	with	the	E3	ubiquitin	ligase	Nedd4-2.	J	Biol	
Chem	284:8185-8194.	

Chang	MY,	Lee	SH,	Kim	JH,	Lee	KH,	Kim	YS,	Son	H,	Lee	YS	(2001)	Protein	kinase	C-
mediated	 functional	 regulation	of	 dopamine	 transporter	 is	 not	 achieved	by	
direct	 phosphorylation	 of	 the	 dopamine	 transporter	 protein.	 J	 Neurochem	
77:754-761.	

Chen	N,	Reith	ME	(2000)	Structure	and	function	of	the	dopamine	transporter.	Eur	J	
Pharmacol	405:329-339.	

Chen	N,	Vaughan	RA,	Reith	ME	(2001)	The	role	of	conserved	tryptophan	and	acidic	
residues	 in	 the	 human	 dopamine	 transporter	 as	 characterized	 by	 site-
directed	mutagenesis.	J	Neurochem	77:1116-1127.	

Chen	 R,	 Han	 DD,	 Gu	 HH	 (2005)	 A	 triple	 mutation	 in	 the	 second	 transmembrane	
domain	 of	 mouse	 dopamine	 transporter	 markedly	 decreases	 sensitivity	 to	
cocaine	and	methylphenidate.	J	Neurochem	94:352-359.	

Chen	R,	 Furman	CA,	 Zhang	M,	Kim	MN,	Gereau	RWt,	 Leitges	M,	Gnegy	ME	 (2009)	
Protein	 kinase	 Cbeta	 is	 a	 critical	 regulator	 of	 dopamine	 transporter	
trafficking	and	regulates	the	behavioral	response	to	amphetamine	in	mice.	J	
Pharmacol	Exp	Ther	328:912-920.	

Chen	R,	Daining	CP,	Sun	H,	Fraser	R,	Stokes	SL,	Leitges	M,	Gnegy	ME	(2013)	Protein	
kinase	 Cbeta	 is	 a	 modulator	 of	 the	 dopamine	 D2	 autoreceptor-activated	
trafficking	of	the	dopamine	transporter.	J	Neurochem	125:663-672.	

Chen	R,	Tilley	MR,	Wei	H,	Zhou	F,	Zhou	FM,	Ching	S,	Quan	N,	Stephens	RL,	Hill	ER,	
Nottoli	T,	Han	DD,	Gu	HH	 (2006)	Abolished	 cocaine	 reward	 in	mice	with	 a	
cocaine-insensitive	 dopamine	 transporter.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A	
103:9333-9338.	

Cheng	MH,	Bahar	I	(2015)	Molecular	Mechanism	of	Dopamine	Transport	by	Human	
Dopamine	Transporter.	Structure	23:2171-2181.	

Chiba	 P,	 Freissmuth	 M,	 Stockner	 T	 (2014)	 Defining	 the	 blanks--
pharmacochaperoning	 of	 SLC6	 transporters	 and	 ABC	 transporters.	
Pharmacol	Res	83:63-73.	

Coleman	 JA,	 Green	 EM,	 Gouaux	 E	 (2016)	 X-ray	 structures	 and	mechanism	 of	 the	
human	serotonin	transporter.	Nature	532:334-339.	

Colicelli	 J	 (2004)	Human	RAS	 superfamily	proteins	 and	 related	GTPases.	 Science's	
STKE	:	signal	transduction	knowledge	environment	2004:Re13.	

Cook	EH,	 Jr.,	 Stein	MA,	Krasowski	MD,	 Cox	NJ,	Olkon	DM,	Kieffer	 JE,	 Leventhal	BL	
(1995)	 Association	 of	 attention-deficit	 disorder	 and	 the	 dopamine	
transporter	gene.	Am	J	Hum	Genet	56:993-998.	



REFERENCES 
	

	 163 

Coyle	JT,	Snyder	SH	(1969)	Catecholamine	uptake	by	synaptosomes	in	homogenates	
of	 rat	 brain:	 stereospecificity	 in	 different	 areas.	 J	 Pharmacol	 Exp	 Ther	
170:221-231.	

Cremona	ML,	Matthies	HJ,	Pau	K,	Bowton	E,	Speed	N,	Lute	BJ,	Anderson	M,	Sen	N,	
Robertson	 SD,	 Vaughan	 RA,	 Rothman	 JE,	 Galli	 A,	 Javitch	 JA,	 Yamamoto	 A	
(2011)	Flotillin-1	 is	essential	 for	PKC-triggered	endocytosis	and	membrane	
microdomain	localization	of	DAT.	Nat	Neurosci	14:469-477.	

Daniels	 GM,	 Amara	 SG	 (1999)	 Regulated	 trafficking	 of	 the	 human	 dopamine	
transporter.	Clathrin-mediated	internalization	and	lysosomal	degradation	in	
response	to	phorbol	esters.	J	Biol	Chem	274:35794-35801.	

Das	 AT,	 Tenenbaum	 L,	 Berkhout	 B	 (2016)	 Tet-On	 Systems	 For	 Doxycycline-
inducible	Gene	Expression.	Current	gene	therapy	16:156-167.	

Davis	GL,	 Stewart	A,	 Stanwood	GD,	Gowrishankar	R,	Hahn	MK,	Blakely	RD	 (2018)	
Functional	 coding	 variation	 in	 the	 presynaptic	 dopamine	 transporter	
associated	with	neuropsychiatric	disorders	drives	enhanced	motivation	and	
context-dependent	impulsivity	in	mice.	Behav	Brain	Res	337:61-69.	

Daws	 LC,	 Callaghan	 PD,	 Moron	 JA,	 Kahlig	 KM,	 Shippenberg	 TS,	 Javitch	 JA,	 Galli	 A	
(2002)	 Cocaine	 increases	 dopamine	 uptake	 and	 cell	 surface	 expression	 of	
dopamine	transporters.	Biochem	Biophys	Res	Commun	290:1545-1550.	

De	Gois	S,	Slama	P,	Pietrancosta	N,	Erdozain	AM,	Louis	F,	Bouvrais-Veret	C,	Daviet	L,	
Giros	B	(2015)	Ctr9,	a	Protein	in	the	Transcription	Complex	Paf1,	Regulates	
Dopamine	 Transporter	 Activity	 at	 the	 Plasma	 Membrane.	 J	 Biol	 Chem	
290:17848-17862.	

Doolen	 S,	 Zahniser	 NR	 (2002)	 Conventional	 protein	 kinase	 C	 isoforms	 regulate	
human	 dopamine	 transporter	 activity	 in	 Xenopus	 oocytes.	 FEBS	 Lett	
516:187-190.	

Egana	LA,	Cuevas	RA,	Baust	TB,	Parra	LA,	Leak	RK,	Hochendoner	S,	Pena	K,	Quiroz	
M,	Hong	WC,	Dorostkar	MM,	Janz	R,	Sitte	HH,	Torres	GE	(2009)	Physical	and	
functional	 interaction	 between	 the	 dopamine	 transporter	 and	 the	 synaptic	
vesicle	protein	synaptogyrin-3.	J	Neurosci	29:4592-4604.	

Emamalizadeh	 B,	 Movafagh	 A,	 Akbari	 M,	 Kazeminasab	 S,	 Fazeli	 A,	 Motallebi	 M,	
Shahidi	 GA,	 Petramfar	 P,	 Mirfakhraie	 R,	 Darvish	 H	 (2014)	 RIT2,	 a	
susceptibility	gene	 for	Parkinson's	disease	 in	 Iranian	population.	Neurobiol	
Aging	35:e27-28.	

Emamalizadeh	 B	 et	 al.	 (2017)	 RIT2	 Polymorphisms:	 Is	 There	 a	 Differential	
Association?	Mol	Neurobiol	54:2234-2240.	

Eriksen	 J,	 Jorgensen	 TN,	 Gether	 U	 (2010)	 Regulation	 of	 dopamine	 transporter	
function	 by	 protein-protein	 interactions:	 new	 discoveries	 and	
methodological	challenges.	J	Neurochem	113:27-41.	

Eriksen	J,	Rasmussen	SG,	Rasmussen	TN,	Vaegter	CB,	Cha	JH,	Zou	MF,	Newman	AH,	
Gether	 U	 (2009)	 Visualization	 of	 dopamine	 transporter	 trafficking	 in	 live	
neurons	by	use	of	fluorescent	cocaine	analogs.	J	Neurosci	29:6794-6808.	



REFERENCES 
	

	 164 

Ernst	M,	 Zametkin	 AJ,	Matochik	 JA,	 Pascualvaca	 D,	 Cohen	 RM	 (1997)	 Low	medial	
prefrontal	dopaminergic	activity	in	autistic	children.	Lancet	350:638.	

Eshleman	 AJ,	 Carmolli	 M,	 Cumbay	 M,	 Martens	 CR,	 Neve	 KA,	 Janowsky	 A	 (1999)	
Characteristics	 of	 drug	 interactions	 with	 recombinant	 biogenic	 amine	
transporters	expressed	in	the	same	cell	type.	J	Pharmacol	Exp	Ther	289:877-
885.	

Faraone	SV,	Asherson	P,	Banaschewski	T,	Biederman	J,	Buitelaar	JK,	Ramos-Quiroga	
JA,	 Rohde	 LA,	 Sonuga-Barke	 EJ,	 Tannock	 R,	 Franke	 B	 (2015)	 Attention-
deficit/hyperactivity	disorder.	Nature	reviews	Disease	primers	1:15020.	

Farhan	 H,	 Reiterer	 V,	 Korkhov	 VM,	 Schmid	 JA,	 Freissmuth	 M,	 Sitte	 HH	 (2007)	
Concentrative	 export	 from	 the	 endoplasmic	 reticulum	 of	 the	 gamma-
aminobutyric	 acid	 transporter	 1	 requires	 binding	 to	 SEC24D.	 J	 Biol	 Chem	
282:7679-7689.	

Fenollar-Ferrer	C,	Stockner	T,	Schwarz	TC,	Pal	A,	Gotovina	J,	Hofmaier	T,	Jayaraman	
K,	Adhikary	S,	Kudlacek	O,	Mehdipour	AR,	Tavoulari	S,	Rudnick	G,	Singh	SK,	
Konrat	R,	Sitte	HH,	Forrest	LR	(2014)	Structure	and	regulatory	 interactions	
of	the	cytoplasmic	terminal	domains	of	serotonin	transporter.	Biochemistry	
53:5444-5460.	

Fog	JU,	Khoshbouei	H,	Holy	M,	Owens	WA,	Vaegter	CB,	Sen	N,	Nikandrova	Y,	Bowton	
E,	McMahon	DG,	Colbran	RJ	(2006a)	Calmodulin	Kinase	II	Interacts	with	the	
Dopamine	 Transporter	 C	 Terminus	 to	 Regulate	 Amphetamine-Induced	
Reverse	Transport.	Neuron	51:417-429.	

Fog	JU,	Khoshbouei	H,	Holy	M,	Owens	WA,	Vaegter	CB,	Sen	N,	Nikandrova	Y,	Bowton	
E,	McMahon	DG,	Colbran	RJ,	Daws	LC,	Sitte	HH,	 Javitch	 JA,	Galli	A,	Gether	U	
(2006b)	 Calmodulin	 kinase	 II	 interacts	 with	 the	 dopamine	 transporter	 C	
terminus	 to	 regulate	 amphetamine-induced	 reverse	 transport.	 Neuron	
51:417-429.	

Forrest	 LR,	 Rudnick	 G	 (2009)	 The	 rocking	 bundle:	 a	 mechanism	 for	 ion-coupled	
solute	flux	by	symmetrical	transporters.	Physiology	(Bethesda,	Md)	24:377-
386.	

Foster	 JD,	 Vaughan	 RA	 (2011)	 Palmitoylation	 controls	 dopamine	 transporter	
kinetics,	degradation,	and	protein	kinase	C-dependent	regulation.	J	Biol	Chem	
286:5175-5186.	

Foster	 JD,	 Pananusorn	 B,	 Vaughan	 RA	 (2002)	 Dopamine	 transporters	 are	
phosphorylated	 on	 N-terminal	 serines	 in	 rat	 striatum.	 J	 Biol	
Chem:M200294200.	

Foster	 JD,	 Adkins	 SD,	 Lever	 JR,	 Vaughan	 RA	 (2008)	 Phorbol	 ester	 induced	
trafficking-independent	 regulation	 and	 enhanced	 phosphorylation	 of	 the	
dopamine	 transporter	 associated	 with	 membrane	 rafts	 and	 cholesterol.	 J	
Neurochem	105:1683-1699.	

Franekova	 V,	 Baliova	 M,	 Jursky	 F	 (2008)	 Truncation	 of	 human	 dopamine	
transporter	by	protease	calpain.	Neurochem	Int	52:1436-1441.	



REFERENCES 
	

	 165 

Freyberg	 Z	 et	 al.	 (2016)	Mechanisms	 of	 amphetamine	 action	 illuminated	 through	
optical	 monitoring	 of	 dopamine	 synaptic	 vesicles	 in	 Drosophila	 brain.	 Nat	
Commun	7:10652.	

Fritsch	R,	 de	Krijger	 I,	 Fritsch	K,	George	R,	Reason	B,	Kumar	MS,	Diefenbacher	M,	
Stamp	 G,	 Downward	 J	 (2013)	 RAS	 and	 RHO	 families	 of	 GTPases	 directly	
regulate	distinct	phosphoinositide	3-kinase	isoforms.	Cell	153:1050-1063.	

Gabriel	LR,	Wu	S,	Kearney	P,	Bellve	KD,	Standley	C,	Fogarty	KE,	Melikian	HE	(2013)	
Dopamine	 transporter	 endocytic	 trafficking	 in	 striatal	 dopaminergic	
neurons:	 differential	 dependence	 on	 dynamin	 and	 the	 actin	 cytoskeleton.	 J	
Neurosci	33:17836-17846.	

Gaffaney	JD,	Shetty	M,	Felts	B,	Pramod	AB,	Foster	JD,	Henry	LK,	Vaughan	RA	(2014)	
Antagonist-induced	 conformational	 changes	 in	 dopamine	 transporter	
extracellular	loop	two	involve	residues	in	a	potential	salt	bridge.	Neurochem	
Int	73:16-26.	

Gainetdinov	 RR,	 Jones	 SR,	 Fumagalli	 F,	 Wightman	 RM,	 Caron	 MG	 (1998)	 Re-
evaluation	 of	 the	 role	 of	 the	 dopamine	 transporter	 in	 dopamine	 system	
homeostasis.	Brain	Res	Brain	Res	Rev	26:148-153.	

Garcia	 BG,	Wei	 Y,	Moron	 JA,	 Lin	 RZ,	 Javitch	 JA,	 Galli	 A	 (2005)	 Akt	 is	 essential	 for	
insulin	 modulation	 of	 amphetamine-induced	 human	 dopamine	 transporter	
cell-surface	redistribution.	Mol	Pharmacol	68:102-109.	

Garcia-Olivares	J,	Baust	T,	Harris	S,	Hamilton	P,	Galli	A,	Amara	SG,	Torres	GE	(2017)	
Gbetagamma	 subunit	 activation	 promotes	 dopamine	 efflux	 through	 the	
dopamine	transporter.	Molecular	psychiatry	22:1673-1679.	

Garcia-Olivares	 J,	Torres-Salazar	D,	Owens	WA,	Baust	T,	 Siderovski	DP,	Amara	SG,	
Zhu	J,	Daws	LC,	Torres	GE	(2013)	Inhibition	of	dopamine	transporter	activity	
by	G	protein	betagamma	subunits.	PLoS	One	8:e59788.	

Gerfen	 CR,	 Surmeier	 DJ	 (2011)	 Modulation	 of	 striatal	 projection	 systems	 by	
dopamine.	Annual	review	of	neuroscience	34:441-466.	

German	 CL,	 Baladi	 MG,	 McFadden	 LM,	 Hanson	 GR,	 Fleckenstein	 AE	 (2015)	
Regulation	 of	 the	 Dopamine	 and	 Vesicular	 Monoamine	 Transporters:	
Pharmacological	 Targets	 and	 Implications	 for	 Disease.	 Pharmacol	 Rev	
67:1005-1024.	

Giros	 B,	 el	 Mestikawy	 S,	 Bertrand	 L,	 Caron	 MG	 (1991)	 Cloning	 and	 functional	
characterization	 of	 a	 cocaine-sensitive	 dopamine	 transporter.	 FEBS	 Lett	
295:149-154.	

Giros	B,	 Jaber	M,	 Jones	SR,	Wightman	RM,	Caron	MG	(1996)	Hyperlocomotion	and	
indifference	 to	 cocaine	 and	 amphetamine	 in	 mice	 lacking	 the	 dopamine	
transporter.	Nature	379:606-612.	

Glessner	 JT	 et	 al.	 (2010)	 Strong	 synaptic	 transmission	 impact	 by	 copy	 number	
variations	in	schizophrenia.	Proc	Natl	Acad	Sci	U	S	A	107:10584-10589.	

Gnegy	ME,	Khoshbouei	H,	Berg	KA,	 Javitch	 JA,	Clarke	WP,	Zhang	M,	Galli	A	 (2004)	
Intracellular	 Ca2+	 regulates	 amphetamine-induced	 dopamine	 efflux	 and	



REFERENCES 
	

	 166 

currents	 mediated	 by	 the	 human	 dopamine	 transporter.	 Mol	 Pharmacol	
66:137-143.	

Grace	AA	(2016)	Dysregulation	of	 the	dopamine	system	 in	 the	pathophysiology	of	
schizophrenia	and	depression.	Nat	Rev	Neurosci	17:524-532.	

Granas	C,	Ferrer	 J,	 Loland	CJ,	 Javitch	 JA,	Gether	U	 (2003)	N-terminal	 truncation	of	
the	dopamine	transporter	abolishes	phorbol	ester-	and	substance	P	receptor-
stimulated	phosphorylation	without	 impairing	 transporter	 internalization.	 J	
Biol	Chem	278:4990-5000.	

Graybiel	AM	(2000)	The	basal	ganglia.	Curr	Biol	10:R509-511.	
Groenewegen	 HJ	 (2003)	 The	 basal	 ganglia	 and	 motor	 control.	 Neural	 plasticity	

10:107-120.	
Grunhage	 F,	 Schulze	 TG,	 Muller	 DJ,	 Lanczik	 M,	 Franzek	 E,	 Albus	 M,	 Borrmann-

Hassenbach	M,	Knapp	M,	Cichon	S,	Maier	W,	Rietschel	M,	Propping	P,	Nothen	
MM	(2000)	 Systematic	 screening	 for	DNA	sequence	variation	 in	 the	 coding	
region	 of	 the	 human	 dopamine	 transporter	 gene	 (DAT1).	 Molecular	
psychiatry	5:275-282.	

Gu	HH,	Wu	X,	Giros	B,	Caron	MG,	Caplan	MJ,	Rudnick	G	(2001)	The	NH(2)-terminus	
of	Norepinephrine	Transporter	Contains	a	Basolateral	Localization	Signal	for	
Epithelial	Cells.	Mol	Biol	Cell	12:3797-3807.	

Gunaydin	 LA,	 Deisseroth	K	 (2014)	Dopaminergic	Dynamics	 Contributing	 to	 Social	
Behavior.	Cold	Spring	Harbor	symposia	on	quantitative	biology	79:221-227.	

Gunaydin	LA,	Grosenick	L,	Finkelstein	JC,	Kauvar	IV,	Fenno	LE,	Adhikari	A,	Lammel	
S,	Mirzabekov	 JJ,	Airan	RD,	Zalocusky	KA,	Tye	KM,	Anikeeva	P,	Malenka	RC,	
Deisseroth	 K	 (2014)	 Natural	 neural	 projection	 dynamics	 underlying	 social	
behavior.	Cell	157:1535-1551.	

Guptaroy	B,	Fraser	R,	Desai	A,	Zhang	M,	Gnegy	ME	(2011)	Site-directed	mutations	
near	 transmembrane	 domain	 1	 alter	 conformation	 and	 function	 of	
norepinephrine	and	dopamine	transporters.	Mol	Pharmacol	79:520-532.	

Guptaroy	 B,	 Zhang	 M,	 Bowton	 E,	 Binda	 F,	 Shi	 L,	 Weinstein	 H,	 Galli	 A,	 Javitch	 JA,	
Neubig	RR,	Gnegy	ME	(2009)	A	juxtamembrane	mutation	in	the	N	terminus	
of	 the	 dopamine	 transporter	 induces	 preference	 for	 an	 inward-facing	
conformation.	Mol	Pharmacol	75:514-524.	

Hadlock	GC,	Nelson	CC,	Baucum	AJ,	2nd,	Hanson	GR,	Fleckenstein	AE	(2011)	Ex	vivo	
identification	 of	 protein-protein	 interactions	 involving	 the	 dopamine	
transporter.	J	Neurosci	Methods	196:303-307.	

Hall	A,	Lalli	G	(2010)	Rho	and	Ras	GTPases	in	axon	growth,	guidance,	and	branching.	
Cold	Spring	Harbor	perspectives	in	biology	2:a001818.	

Hamilton	PJ,	Shekar	A,	Belovich	AN,	Christianson	NB,	Campbell	NG,	Sutcliffe	JS,	Galli	
A,	Matthies	HJ,	Erreger	K	(2015)	Zn(2+)	reverses	 functional	deficits	 in	a	de	
novo	 dopamine	 transporter	 variant	 associated	 with	 autism	 spectrum	
disorder.	Molecular	autism	6:8.	

Hamilton	PJ,	Belovich	AN,	Khelashvili	G,	Saunders	C,	Erreger	K,	Javitch	JA,	Sitte	HH,	
Weinstein	 H,	 Matthies	 HJ,	 Galli	 A	 (2014)	 PIP2	 regulates	 psychostimulant	



REFERENCES 
	

	 167 

behaviors	 through	 its	 interaction	with	 a	membrane	protein.	Nat	Chem	Biol	
10:582-589.	

Hamilton	 PJ,	 Campbell	 NG,	 Sharma	 S,	 Erreger	 K,	 Herborg	 Hansen	 F,	 Saunders	 C,	
Belovich	 AN,	 Sahai	 MA,	 Cook	 EH,	 Gether	 U,	 McHaourab	 HS,	 Matthies	 HJ,	
Sutcliffe	 JS,	 Galli	 A	 (2013)	 De	 novo	mutation	 in	 the	 dopamine	 transporter	
gene	 associates	 dopamine	 dysfunction	 with	 autism	 spectrum	 disorder.	
Molecular	psychiatry	18:1315-1323.	

Hannah	 MJ,	 Schmidt	 AA,	 Huttner	 WB	 (1999)	 Synaptic	 vesicle	 biogenesis.	 Annual	
review	of	cell	and	developmental	biology	15:733-798.	

Hansen	FH	et	 al.	 (2014)	Missense	dopamine	 transporter	mutations	associate	with	
adult	parkinsonism	and	ADHD.	J	Clin	Invest	124:3107-3120.	

Heo	 WD,	 Inoue	 T,	 Park	 WS,	 Kim	 ML,	 Park	 BO,	 Wandless	 TJ,	 Meyer	 T	 (2006)	
PI(3,4,5)P3	and	PI(4,5)P2	lipids	target	proteins	with	polybasic	clusters	to	the	
plasma	membrane.	Science	314:1458-1461.	

Hersch	SM,	Yi	H,	Heilman	CJ,	Edwards	RH,	Levey	AI	(1997)	Subcellular	localization	
and	 molecular	 topology	 of	 the	 dopamine	 transporter	 in	 the	 striatum	 and	
substantia	nigra.	J	Comp	Neurol	388:211-227.	

Holton	 KL,	 Loder	MK,	Melikian	 HE	 (2005)	 Nonclassical,	 distinct	 endocytic	 signals	
dictate	 constitutive	 and	 PKC-regulated	 neurotransmitter	 transporter	
internalization.	Nat	Neurosci	8:881-888.	

Hong	WC,	 Amara	 SG	 (2010)	Membrane	 cholesterol	modulates	 the	 outward	 facing	
conformation	of	the	dopamine	transporter	and	alters	cocaine	binding.	J	Biol	
Chem	285:32616-32626.	

Hong	WC,	 Amara	 SG	 (2013)	Differential	 targeting	 of	 the	 dopamine	 transporter	 to	
recycling	 or	 degradative	 pathways	 during	 amphetamine-	 or	 PKC-regulated	
endocytosis	in	dopamine	neurons.	Faseb	J.	

Hoshino	 M,	 Nakamura	 S	 (2002)	 The	 Ras-like	 small	 GTP-binding	 protein	 Rin	 is	
activated	 by	 growth	 factor	 stimulation.	 Biochem	 Biophys	 Res	 Commun	
295:651-656.	

Hoshino	 M,	 Nakamura	 S	 (2003)	 Small	 GTPase	 Rin	 induces	 neurite	 outgrowth	
through	Rac/Cdc42	and	calmodulin	in	PC12	cells.	J	Cell	Biol	163:1067-1076.	

Hoshino	 M,	 Yoshimori	 T,	 Nakamura	 S	 (2005)	 Small	 GTPase	 proteins	 Rin	 and	 Rit	
Bind	to	PAR6	GTP-dependently	and	regulate	cell	transformation.	J	Biol	Chem	
280:22868-22874.	

Huff	RA,	Vaughan	RA,	Kuhar	MJ,	Uhl	GR	(1997)	Phorbol	esters	 increase	dopamine	
transporter	 phosphorylation	 and	 decrease	 transport	 Vmax.	 J	 Neurochem	
68:225-232.	

Hyman	SE,	Malenka	RC,	Nestler	EJ	(2006)	Neural	mechanisms	of	addiction:	the	role	
of	 reward-related	 learning	 and	 memory.	 Annual	 review	 of	 neuroscience	
29:565-598.	

Iversen	 L	 (2000)	 Neurotransmitter	 transporters:	 fruitful	 targets	 for	 CNS	 drug	
discovery.	Molecular	psychiatry	5:357-362.	



REFERENCES 
	

	 168 

Iversen	 SD,	 Iversen	 LL	 (2007)	 Dopamine:	 50	 years	 in	 perspective.	 Trends	 in	
neurosciences	30:188-193.	

Jiang	H,	Jiang	Q,	Feng	J	(2004)	Parkin	increases	dopamine	uptake	by	enhancing	the	
cell	 surface	 expression	 of	 dopamine	 transporter.	 J	 Biol	 Chem	 279:54380-
54386.	

Johnson	 LA,	 Guptaroy	 B,	 Lund	 D,	 Shamban	 S,	 Gnegy	 ME	 (2005)	 Regulation	 of	
amphetamine-stimulated	 dopamine	 efflux	 by	 protein	 kinase	 C	 beta.	 J	 Biol	
Chem	280:10914-10919.	

Jones	 SR,	 Gainetdinov	 RR,	 Wightman	 RM,	 Caron	 MG	 (1998a)	 Mechanisms	 of	
amphetamine	 action	 revealed	 in	 mice	 lacking	 the	 dopamine	 transporter.	 J	
Neurosci	18:1979-1986.	

Jones	 SR,	 Gainetdinov	 RR,	 Jaber	 M,	 Giros	 B,	 Wightman	 RM,	 Caron	 MG	 (1998b)	
Profound	 neuronal	 plasticity	 in	 response	 to	 inactivation	 of	 the	 dopamine	
transporter.	Proc	Natl	Acad	Sci	U	S	A	95:4029-4034.	

Kahlig	 KM,	 Javitch	 JA,	 Galli	 A	 (2004)	 Amphetamine	 regulation	 of	 dopamine	
transport.	Combined	measurements	of	transporter	currents	and	transporter	
imaging	support	the	endocytosis	of	an	active	carrier.	J	Biol	Chem	279:8966-
8975.	

Kahlig	KM,	Lute	BJ,	Wei	Y,	Loland	CJ,	Gether	U,	Javitch	JA,	Galli	A	(2006)	Regulation	
of	 dopamine	 transporter	 trafficking	 by	 intracellular	 amphetamine.	 Mol	
Pharmacol	70:542-548.	

Kantor	 L,	 Gnegy	 ME	 (1998)	 Protein	 kinase	 C	 inhibitors	 block	 amphetamine-
mediated	 dopamine	 release	 in	 rat	 striatal	 slices.	 J	 Pharmacol	 Exp	 Ther	
284:592-598.	

Kennedy	 MJ,	 Ehlers	 MD	 (2006)	 Organelles	 and	 trafficking	 machinery	 for	
postsynaptic	plasticity.	Annual	review	of	neuroscience	29:325-362.	

Khelashvili	 G,	 Weinstein	 H	 (2015)	 Functional	 mechanisms	 of	 neurotransmitter	
transporters	 regulated	by	 lipid-protein	 interactions	of	 their	 terminal	 loops.	
Biochim	Biophys	Acta	1848:1765-1774.	

Khelashvili	 G,	 Doktorova	 M,	 Sahai	 MA,	 Johner	 N,	 Shi	 L,	 Weinstein	 H	 (2015a)	
Computational	 modeling	 of	 the	 N-terminus	 of	 the	 human	 dopamine	
transporter	 and	 its	 interaction	with	 PIP2	 -containing	membranes.	 Proteins	
83:952-969.	

Khelashvili	 G,	 Stanley	 N,	 Sahai	 MA,	 Medina	 J,	 LeVine	 MV,	 Shi	 L,	 De	 Fabritiis	 G,	
Weinstein	 H	 (2015b)	 Spontaneous	 inward	 opening	 of	 the	 dopamine	
transporter	is	triggered	by	PIP2-regulated	dynamics	of	the	N-terminus.	ACS	
Chem	Neurosci	6:1825-1837.	

Khoshbouei	 H,	 Wang	 H,	 Lechleiter	 JD,	 Javitch	 JA,	 Galli	 A	 (2003)	 Amphetamine-
induced	 dopamine	 efflux.	 A	 voltage-sensitive	 and	 intracellular	 Na+-
dependent	mechanism.	J	Biol	Chem	278:12070-12077.	

Khoshbouei	H,	Sen	N,	Guptaroy	B,	Johnson	LA,	Lund	D,	Gnegy	ME,	Galli	A,	Javitch	JA	
(2004)	 N-Terminal	 Phosphorylation	 of	 the	 Dopamine	 Transporter	 Is	
Required	for	Amphetamine-Induced	Efflux.	PLoS	Biology	2:e78.	



REFERENCES 
	

	 169 

Kilty	 JE,	Lorang	D,	Amara	SG	(1991)	Cloning	and	expression	of	a	cocaine-sensitive	
rat	dopamine	transporter.	Science	254:578-579.	

Kivell	B,	Uzelac	Z,	Sundaramurthy	S,	Rajamanickam	J,	Ewald	A,	Chefer	V,	Jaligam	V,	
Bolan	E,	 Simonson	B,	Annamalai	B,	Mannangatti	P,	 Prisinzano	TE,	Gomes	 I,	
Devi	 LA,	 Jayanthi	 LD,	 Sitte	 HH,	 Ramamoorthy	 S,	 Shippenberg	 TS	 (2014)	
Salvinorin	 A	 regulates	 dopamine	 transporter	 function	 via	 a	 kappa	 opioid	
receptor	 and	 ERK1/2-dependent	 mechanism.	 Neuropharmacology	 86:228-
240.	

Kniazeff	J,	Shi	L,	Loland	CJ,	Javitch	JA,	Weinstein	H,	Gether	U	(2008)	An	intracellular	
interaction	 network	 regulates	 conformational	 transitions	 in	 the	 dopamine	
transporter.	J	Biol	Chem	283:17691-17701.	

Koban	F,	El-Kasaby	A,	Hausler	C,	Stockner	T,	Simbrunner	BM,	Sitte	HH,	Freissmuth	
M,	Sucic	S	(2015)	A	salt	bridge	linking	the	first	intracellular	loop	with	the	C-
terminus	facilitates	the	folding	of	the	serotonin	transporter.	J	Biol	Chem.	

Korotkova	 TM,	 Ponomarenko	 AA,	 Haas	 HL,	 Sergeeva	 OA	 (2005)	 Differential	
expression	of	 the	homeobox	gene	Pitx3	 in	midbrain	dopaminergic	neurons.	
Eur	J	Neurosci	22:1287-1293.	

Kreitzer	AC,	Malenka	RC	(2008)	Striatal	plasticity	and	basal	ganglia	circuit	function.	
Neuron	60:543-554.	

Kristensen	 AS,	 Andersen	 J,	 Jorgensen	 TN,	 Sorensen	 L,	 Eriksen	 J,	 Loland	 CJ,	
Stromgaard	 K,	 Gether	 U	 (2011)	 SLC6	 neurotransmitter	 transporters:	
structure,	function,	and	regulation.	Pharmacol	Rev	63:585-640.	

Kurian	MA,	Zhen	J,	Cheng	SY,	Li	Y,	Mordekar	SR,	Jardine	P,	Morgan	NV,	Meyer	E,	Tee	
L,	 Pasha	 S,	 Wassmer	 E,	 Heales	 SJ,	 Gissen	 P,	 Reith	 ME,	 Maher	 ER	 (2009)	
Homozygous	 loss-of-function	mutations	 in	 the	gene	encoding	the	dopamine	
transporter	are	associated	with	infantile	parkinsonism-dystonia.	J	Clin	Invest	
119:1595-1603.	

Kurian	 MA	 et	 al.	 (2011)	 Clinical	 and	 molecular	 characterisation	 of	 hereditary	
dopamine	 transporter	 deficiency	 syndrome:	 an	 observational	 cohort	 and	
experimental	study.	Lancet	Neurol	10:54-62.	

Labbe	C,	Ross	OA	(2014)	Association	studies	of	sporadic	Parkinson's	disease	in	the	
genomic	era.	Curr	Genomics	15:2-10.	

Latourelle	 JC,	 Dumitriu	 A,	 Hadzi	 TC,	 Beach	 TG,	 Myers	 RH	 (2012)	 Evaluation	 of	
Parkinson	Disease	Risk	Variants	as	Expression-QTLs.	PLoS	One	7:e46199.	

Lee	CH,	Della	NG,	Chew	CE,	Zack	DJ	(1996)	Rin,	a	neuron-specific	and	calmodulin-
binding	 small	 G-protein,	 and	Rit	 define	 a	 novel	 subfamily	 of	 ras	 proteins.	 J	
Neurosci	16:6784-6794.	

Lee	FJ,	Liu	F,	Pristupa	ZB,	Niznik	HB	(2001)	Direct	binding	and	functional	coupling	
of	 alpha-synuclein	 to	 the	 dopamine	 transporters	 accelerate	 dopamine-
induced	apoptosis.	Faseb	j	15:916-926.	

Lee	 FJ,	 Pei	 L,	 Moszczynska	 A,	 Vukusic	 B,	 Fletcher	 PJ,	 Liu	 F	 (2007)	 Dopamine	
transporter	 cell	 surface	 localization	 facilitated	 by	 a	 direct	 interaction	 with	
the	dopamine	D2	receptor.	Embo	j	26:2127-2136.	



REFERENCES 
	

	 170 

Lee	KH,	Kim	MY,	Kim	DH,	Lee	YS	(2004)	Syntaxin	1A	and	receptor	 for	activated	C	
kinase	 interact	with	the	N-terminal	region	of	human	dopamine	transporter.	
Neurochem	Res	29:1405-1409.	

Lee	Y,	Kim	H,	Kim	 JE,	Park	 JY,	Choi	 J,	Lee	 JE,	Lee	EH,	Han	PL	 (2017)	Excessive	D1	
Dopamine	Receptor	Activation	in	the	Dorsal	Striatum	Promotes	Autistic-Like	
Behaviors.	Mol	Neurobiol.	

Li	LB,	Chen	N,	Ramamoorthy	S,	Chi	L,	Cui	XN,	Wang	LC,	Reith	ME	(2004)	The	role	of	
N-glycosylation	 in	 function	 and	 surface	 trafficking	 of	 the	 human	 dopamine	
transporter.	J	Biol	Chem	279:21012-21020.	

Li	 Y,	Hasenhuetl	 PS,	 Schicker	K,	 Sitte	HH,	 Freissmuth	M,	 Sandtner	W	 (2015)	Dual	
Action	of	Zn2+	on	 the	Transport	Cycle	of	 the	Dopamine	Transporter.	 J	Biol	
Chem	290:31069-31076.	

Lin	X,	Parisiadou	L,	Sgobio	C,	Liu	G,	Yu	J,	Sun	L,	Shim	H,	Gu	XL,	Luo	J,	Long	CX,	Ding	J,	
Mateo	 Y,	 Sullivan	 PH,	 Wu	 LG,	 Goldstein	 DS,	 Lovinger	 D,	 Cai	 H	 (2012)	
Conditional	 expression	 of	 Parkinson's	 disease-related	 mutant	 alpha-
synuclein	 in	 the	 midbrain	 dopaminergic	 neurons	 causes	 progressive	
neurodegeneration	and	degradation	of	transcription	factor	nuclear	receptor	
related	1.	J	Neurosci	32:9248-9264.	

Linseman	 DA,	 Heidenreich	 KA,	 Fisher	 SK	 (2001)	 Stimulation	 of	 M3	 muscarinic	
receptors	induces	phosphorylation	of	the	Cdc42	effector	activated	Cdc42Hs-
associated	kinase-1	via	a	Fyn	tyrosine	kinase	signaling	pathway.	J	Biol	Chem	
276:5622-5628.	

Little	 KY,	 Elmer	 LW,	 Zhong	 H,	 Scheys	 JO,	 Zhang	 L	 (2002)	 Cocaine	 induction	 of	
dopamine	 transporter	 trafficking	 to	 the	 plasma	membrane.	Mol	 Pharmacol	
61:436-445.	

Liu	 J,	 Perez	 SM,	 Zhang	W,	 Lodge	DJ,	 Lu	 XY	 (2011)	 Selective	 deletion	 of	 the	 leptin	
receptor	 in	 dopamine	 neurons	 produces	 anxiogenic-like	 behavior	 and	
increases	dopaminergic	activity	in	amygdala.	Molecular	psychiatry	16:1024-
1038.	

Liu	X	et	al.	(2016)	Genome-wide	Association	Study	of	Autism	Spectrum	Disorder	in	
the	 East	 Asian	 Populations.	 Autism	 research	 :	 official	 journal	 of	 the	
International	Society	for	Autism	Research	9:340-349.	

Liu	 ZH,	 Guo	 JF,	 Wang	 YQ,	 Li	 K,	 Sun	 QY,	 Xu	 Q,	 Yan	 XX,	 Xu	 CS,	 Tang	 BS	 (2015)	
Assessment	 of	 RIT2	 rs12456492	 association	 with	 Parkinson's	 disease	 in	
Mainland	China.	Neurobiol	Aging	36:1600.e1609-1611.	

Loder	MK,	Melikian	HE	(2003)	The	dopamine	transporter	constitutively	internalizes	
and	 recycles	 in	 a	 protein	 kinase	 C-regulated	 manner	 in	 stably	 transfected	
PC12	cell	lines.	J	Biol	Chem	278:22168-22174.	

Loland	 CJ,	 Norregaard	 L,	 Gether	 U	 (1999)	 Defining	 proximity	 relationships	 in	 the	
tertiary	structure	of	the	dopamine	transporter.	Identification	of	a	conserved	
glutamic	acid	as	a	third	coordinate	in	the	endogenous	Zn(2+)-binding	site.	 J	
Biol	Chem	274:36928-36934.	



REFERENCES 
	

	 171 

Loland	 CJ,	 Norregaard	 L,	 Litman	 T,	 Gether	 U	 (2002)	 Generation	 of	 an	 activating	
Zn(2+)	 switch	 in	 the	 dopamine	 transporter:	 mutation	 of	 an	 intracellular	
tyrosine	constitutively	alters	the	conformational	equilibrium	of	the	transport	
cycle.	Proc	Natl	Acad	Sci	U	S	A	99:1683-1688.	

Long	T	et	al.	(2017)	Whole-genome	sequencing	identifies	common-to-rare	variants	
associated	with	human	blood	metabolites.	Nature	genetics	49:568-578.	

Lotharius	 J,	 Brundin	 P	 (2002)	 Pathogenesis	 of	 Parkinson's	 disease:	 dopamine,	
vesicles	and	alpha-synuclein.	Nat	Rev	Neurosci	3:932-942.	

Lu	 Y,	 Liu	 W,	 Tan	 K,	 Peng	 J,	 Zhu	 Y,	 Wang	 X	 (2015)	 Genetic	 association	 of	 RIT2	
rs12456492	 polymorphism	 and	 Parkinson's	 disease	 susceptibility	 in	 Asian	
populations:	a	meta-analysis.	Sci	Rep	5:13805.	

Luk	 B,	 Mohammed	 M,	 Liu	 F,	 Lee	 FJ	 (2015)	 A	 Physical	 Interaction	 between	 the	
Dopamine	 Transporter	 and	 DJ-1	 Facilitates	 Increased	 Dopamine	 Reuptake.	
PLoS	One	10:e0136641.	

Madsen	KL,	Thorsen	TS,	Rahbek-Clemmensen	T,	Eriksen	J,	Gether	U	(2012)	Protein	
interacting	with	C	kinase	1	(PICK1)	reduces	reinsertion	rates	of	 interaction	
partners	 sorted	 to	 Rab11-dependent	 slow	 recycling	 pathway.	 J	 Biol	 Chem	
287:12293-12308.	

Malinow	R,	Malenka	RC	 (2002)	AMPA	 receptor	 trafficking	 and	 synaptic	 plasticity.	
Annual	review	of	neuroscience	25:103-126.	

Marazziti	 D,	 Mandillo	 S,	 Di	 Pietro	 C,	 Golini	 E,	 Matteoni	 R,	 Tocchini-Valentini	 GP	
(2007)	 GPR37	 associates	 with	 the	 dopamine	 transporter	 to	 modulate	
dopamine	uptake	and	behavioral	responses	to	dopaminergic	drugs.	Proc	Natl	
Acad	Sci	U	S	A	104:9846-9851.	

Marshall	 JF,	 Berrios	 N	 (1979)	 Movement	 disorders	 of	 aged	 rats:	 reversal	 by	
dopamine	receptor	stimulation.	Science	206:477-479.	

Maxwell	 SL,	 Ho	 HY,	 Kuehner	 E,	 Zhao	 S,	 Li	 M	 (2005)	 Pitx3	 regulates	 tyrosine	
hydroxylase	expression	 in	 the	substantia	nigra	and	 identifies	a	subgroup	of	
mesencephalic	 dopaminergic	 progenitor	 neurons	 during	 mouse	
development.	Dev	Biol	282:467-479.	

Mazei-Robison	 MS,	 Blakely	 RD	 (2005)	 Expression	 studies	 of	 naturally	 occurring	
human	dopamine	transporter	variants	identifies	a	novel	state	of	transporter	
inactivation	associated	with	Val382Ala.	Neuropharmacology	49:737-749.	

Mazei-Robison	MS,	Bowton	E,	Holy	M,	 Schmudermaier	M,	Freissmuth	M,	 Sitte	HH,	
Galli	 A,	 Blakely	 RD	 (2008)	 Anomalous	 dopamine	 release	 associated	with	 a	
human	dopamine	transporter	coding	variant.	J	Neurosci	28:7040-7046.	

Melikian	HE,	Buckley	KM	(1999)	Membrane	trafficking	regulates	the	activity	of	the	
human	dopamine	transporter.	J	Neurosci	19:7699-7710.	

Mergy	MA,	Gowrishankar	R,	Davis	GL,	Jessen	TN,	Wright	J,	Stanwood	GD,	Hahn	MK,	
Blakely	 RD	 (2014a)	 Genetic	 targeting	 of	 the	 amphetamine	 and	
methylphenidate-sensitive	 dopamine	 transporter:	 on	 the	path	 to	 an	 animal	
model	of	attention-deficit	hyperactivity	disorder.	Neurochem	Int	73:56-70.	



REFERENCES 
	

	 172 

Mergy	MA,	Gowrishankar	R,	Gresch	PJ,	Gantz	SC,	Williams	J,	Davis	GL,	Wheeler	CA,	
Stanwood	 GD,	 Hahn	MK,	 Blakely	 RD	 (2014b)	 The	 rare	 DAT	 coding	 variant	
Val559	 perturbs	 DA	 neuron	 function,	 changes	 behavior,	 and	 alters	 in	 vivo	
responses	to	psychostimulants.	Proc	Natl	Acad	Sci	U	S	A	111:E4779-4788.	

Miranda	M,	Dionne	KR,	Sorkina	T,	Sorkin	A	(2007)	Three	ubiquitin	conjugation	sites	
in	the	amino	terminus	of	the	dopamine	transporter	mediate	protein	kinase	C-
dependent	endocytosis	of	the	transporter.	Mol	Biol	Cell	18:313-323.	

Miranda	 M,	 Wu	 CC,	 Sorkina	 T,	 Korstjens	 DR,	 Sorkin	 A	 (2005)	 Enhanced	
ubiquitylation	 and	 accelerated	 degradation	 of	 the	 dopamine	 transporter	
mediated	by	protein	kinase	C.	J	Biol	Chem	280:35617-35624.	

Molinoff	 PB,	 Axelrod	 J	 (1971)	 Biochemistry	 of	 catecholamines.	 Annual	 review	 of	
biochemistry	40:465-500.	

Moritz	AE,	Rastedt	DE,	Stanislowski	DJ,	Shetty	M,	Smith	MA,	Vaughan	RA,	Foster	JD	
(2015)	 Reciprocal	 Phosphorylation	 and	 Palmitoylation	 Control	 Dopamine	
Transporter	Kinetics.	J	Biol	Chem	290:29095-29105.	

Moritz	AE,	Foster	JD,	Gorentla	BK,	Mazei-Robison	MS,	Yang	JW,	Sitte	HH,	Blakely	RD,	
Vaughan	 RA	 (2013)	 Phosphorylation	 of	 dopamine	 transporter	 serine	 7	
modulates	cocaine	analog	binding.	J	Biol	Chem	288:20-32.	

Moszczynska	A,	Saleh	J,	Zhang	H,	Vukusic	B,	Lee	FJ,	Liu	F	(2007)	Parkin	disrupts	the	
alpha-synuclein/dopamine	 transporter	 interaction:	 consequences	 toward	
dopamine-induced	toxicity.	J	Mol	Neurosci	32:217-227.	

Navaroli	 DM,	Melikian	HE	 (2010)	 Insertion	 of	 tetracysteine	motifs	 into	 dopamine	
transporter	extracellular	domains.	PLoS	One	5:e9113.	

Navaroli	DM,	Stevens	ZH,	Uzelac	Z,	Gabriel	L,	King	MJ,	Lifshitz	LM,	Sitte	HH,	Melikian	
HE	(2011)	The	plasma	membrane-associated	GTPase	Rin	 interacts	with	the	
dopamine	 transporter	 and	 is	 required	 for	 protein	 kinase	 C-regulated	
dopamine	transporter	trafficking.	J	Neurosci	31:13758-13770.	

Neale	 BM	 et	 al.	 (2012)	 Patterns	 and	 rates	 of	 exonic	 de	 novo	mutations	 in	 autism	
spectrum	disorders.	Nature	485:242-245.	

Nelson	 AM,	 Larson	 GA,	 Zahniser	 NR	 (2009)	 Low	 or	 high	 cocaine	 responding	 rats	
differ	 in	 striatal	 extracellular	 dopamine	 levels	 and	 dopamine	 transporter	
number.	J	Pharmacol	Exp	Ther	331:985-997.	

Nestler	 EJ	 (2008)	 Review.	 Transcriptional	 mechanisms	 of	 addiction:	 role	 of	
DeltaFosB.	Philos	Trans	R	Soc	Lond	B	Biol	Sci	363:3245-3255.	

Ng	J	et	al.	(2014)	Dopamine	transporter	deficiency	syndrome:	phenotypic	spectrum	
from	infancy	to	adulthood.	Brain	137:1107-1119.	

Nicola	 SM,	Malenka	 RC	 (1998)	Modulation	 of	 synaptic	 transmission	 by	 dopamine	
and	 norepinephrine	 in	 ventral	 but	 not	 dorsal	 striatum.	 J	 Neurophysiol	
79:1768-1776.	

Nicola	 SM,	 Surmeier	 J,	 Malenka	 RC	 (2000)	 Dopaminergic	modulation	 of	 neuronal	
excitability	 in	 the	 striatum	 and	 nucleus	 accumbens.	 Annual	 review	 of	
neuroscience	23:185-215.	



REFERENCES 
	

	 173 

Nie	K,	Feng	SJ,	Tang	HM,	Ma	GX,	Gan	R,	Zhao	X,	Zhao	JH,	Wang	LM,	Huang	ZH,	Huang	
J,	 Gao	 L,	 Zhang	 YW,	 Zhu	 RM,	 Duan	 ZP,	 Zhang	 YH,	 Wang	 LJ	 (2015)	 RIT2	
polymorphism	 is	 associated	 with	 Parkinson's	 disease	 in	 a	 Han	 Chinese	
population.	Neurobiol	Aging	36:1603.e1615-1607.	

Nirenberg	 MJ,	 Vaughan	 RA,	 Uhl	 GR,	 Kuhar	 MJ,	 Pickel	 VM	 (1996)	 The	 dopamine	
transporter	 is	 localized	 to	 dendritic	 and	 axonal	 plasma	 membranes	 of	
nigrostriatal	dopaminergic	neurons.	J	Neurosci	16:436-447.	

Nirenberg	 MJ,	 Chan	 J,	 Vaughan	 RA,	 Uhl	 GR,	 Kuhar	 MJ,	 Pickel	 VM	 (1997a)	
Immunogold	 localization	 of	 the	 dopamine	 transporter:	 an	 ultrastructural	
study	of	the	rat	ventral	tegmental	area.	J	Neurosci	17:4037-4044.	

Nirenberg	MJ,	Chan	J,	Pohorille	A,	Vaughan	RA,	Uhl	GR,	Kuhar	MJ,	Pickel	VM	(1997b)	
The	 dopamine	 transporter:	 comparative	 ultrastructure	 of	 dopaminergic	
axons	 in	 limbic	 and	 motor	 compartments	 of	 the	 nucleus	 accumbens.	 J	
Neurosci	17:6899-6907.	

Norregaard	 L,	 Frederiksen	 D,	 Nielsen	 EO,	 Gether	 U	 (1998)	 Delineation	 of	 an	
endogenous	 zinc-binding	 site	 in	 the	 human	 dopamine	 transporter.	 Embo	 J	
17:4266-4273.	

O'Neill	B,	Tilley	MR,	Han	DD,	Thirtamara-Rajamani	K,	Hill	ER,	Bishop	GA,	Zhou	FM,	
During	 MJ,	 Gu	 HH	 (2014)	 Behavior	 of	 knock-in	 mice	 with	 a	 cocaine-
insensitive	 dopamine	 transporter	 after	 virogenetic	 restoration	 of	 cocaine	
sensitivity	in	the	striatum.	Neuropharmacology	79:626-633.	

Otto	 GP,	 Nichols	 BJ	 (2011)	 The	 roles	 of	 flotillin	 microdomains--endocytosis	 and	
beyond.	J	Cell	Sci	124:3933-3940.	

Pacholczyk	 T,	 Blakely	 RD,	 Amara	 SG	 (1991)	 Expression	 cloning	 of	 a	 cocaine-	 and	
antidepressant-sensitive	human	noradrenaline	transporter.	Nature	350:350-
354.	

Page	G,	 Peeters	M,	Najimi	M,	Maloteaux	 JM,	Hermans	 E	 (2001)	Modulation	 of	 the	
neuronal	 dopamine	 transporter	 activity	 by	 the	 metabotropic	 glutamate	
receptor	 mGluR5	 in	 rat	 striatal	 synaptosomes	 through	 phosphorylation	
mediated	processes.	J	Neurochem	76:1282-1290.	

Pankratz	 N	 et	 al.	 (2012)	 Meta-analysis	 of	 Parkinson's	 disease:	 identification	 of	 a	
novel	locus,	RIT2.	Ann	Neurol	71:370-384.	

Pannell	M,	Cai	W,	Brelsfoard	J,	Carlson	S,	Littlejohn	E,	Stewart	T,	Saatman	K,	Andres	
D	 (2015)	 Rin	 GTPase	 deficiency	 promotes	 neuroprotection	 following	
traumatic	brain	injury.	The	FASEB	Journal	29.	

Parker	NF,	Cameron	CM,	Taliaferro	JP,	Lee	J,	Choi	JY,	Davidson	TJ,	Daw	ND,	Witten	IB	
(2016)	 Reward	 and	 choice	 encoding	 in	 terminals	 of	 midbrain	 dopamine	
neurons	depends	on	striatal	target.	Nat	Neurosci	19:845-854.	

Paval	 D	 (2017)	 A	 Dopamine	 Hypothesis	 of	 Autism	 Spectrum	 Disorder.	
Developmental	neuroscience	39:355-360.	

Penmatsa	A,	Wang	KH,	Gouaux	E	 (2013)	X-ray	 structure	of	 dopamine	 transporter	
elucidates	antidepressant	mechanism.	Nature	503:85-90.	



REFERENCES 
	

	 174 

Pifl	C,	Wolf	A,	Rebernik	P,	Reither	H,	Berger	ML	(2009)	Zinc	regulates	the	dopamine	
transporter	 in	 a	 membrane	 potential	 and	 chloride	 dependent	 manner.	
Neuropharmacology	56:531-540.	

Pike	LJ	 (2006)	Rafts	defined:	 a	 report	 on	 the	Keystone	Symposium	on	Lipid	Rafts	
and	Cell	Function.	J	Lipid	Res	47:1597-1598.	

Pliszka	 SR	 (2007)	 Pharmacologic	 treatment	 of	 attention-deficit/hyperactivity	
disorder:	efficacy,	safety	and	mechanisms	of	action.	Neuropsychology	review	
17:61-72.	

Poewe	W,	Seppi	K,	Tanner	CM,	Halliday	GM,	Brundin	P,	Volkmann	J,	Schrag	AE,	Lang	
AE	(2017)	Parkinson	disease.	Nature	reviews	Disease	primers	3:17013.	

Porzgen	 P,	 Park	 SK,	 Hirsh	 J,	 Sonders	 MS,	 Amara	 SG	 (2001)	 The	 antidepressant-
sensitive	 dopamine	 transporter	 in	 drosophila	 melanogaster:	 A	 primordial	
carrier	for	catecholamines	[In	Process	Citation].	Mol	Pharmacol	59:83-95.	

Prasad	HC,	 Steiner	 JA,	 Sutcliffe	 JS,	 Blakely	RD	 (2009)	 Enhanced	 activity	 of	 human	
serotonin	 transporter	 variants	 associated	 with	 autism.	 Philos	 Trans	 R	 Soc	
Lond	B	Biol	Sci	364:163-173.	

Prasad	HC,	Zhu	CB,	McCauley	JL,	Samuvel	DJ,	Ramamoorthy	S,	Shelton	RC,	Hewlett	
WA,	 Sutcliffe	 JS,	 Blakely	 RD	 (2005)	 Human	 serotonin	 transporter	 variants	
display	 altered	 sensitivity	 to	 protein	 kinase	 G	 and	 p38	 mitogen-activated	
protein	kinase.	Proc	Natl	Acad	Sci	U	S	A	102:11545-11550.	

Pristupa	ZB,	McConkey	F,	Liu	F,	Man	HY,	Lee	FJ,	Wang	YT,	Niznik	HB	(1998)	Protein	
kinase-mediated	 bidirectional	 trafficking	 and	 functional	 regulation	 of	 the	
human	dopamine	transporter.	Synapse	(New	York,	NY)	30:79-87.	

Qian	 Y,	 Galli	 A,	 Ramamoorthy	 S,	 Risso	 S,	 DeFelice	 LJ,	 Blakely	 RD	 (1997)	 Protein	
kinase	C	activation	regulates	human	serotonin	transporters	in	HEK-293	cells	
via	altered	cell	surface	expression.	J	Neurosci	17:45-57.	

Rahbek-Clemmensen	T,	Lycas	MD,	Erlendsson	S,	Eriksen	J,	Apuschkin	M,	Vilhardt	F,	
Jorgensen	 TN,	 Hansen	 FH,	 Gether	 U	 (2017)	 Super-resolution	 microscopy	
reveals	 functional	 organization	 of	 dopamine	 transporters	 into	 cholesterol	
and	neuronal	activity-dependent	nanodomains.	Nat	Commun	8:740.	

Ramshaw	 H,	 Xu	 X,	 Jaehne	 EJ,	 McCarthy	 P,	 Greenberg	 Z,	 Saleh	 E,	 McClure	 B,	
Woodcock	 J,	 Kabbara	 S,	Wiszniak	 S,	Wang	 TY,	 Parish	 C,	 van	 den	 Buuse	M,	
Baune	BT,	Lopez	A,	Schwarz	Q	(2013)	Locomotor	hyperactivity	in	14-3-3zeta	
KO	mice	is	associated	with	dopamine	transporter	dysfunction.	Translational	
psychiatry	3:e327.	

Reglodi	 D,	 Lubics	 A,	 Tamas	 A,	 Szalontay	 L,	 Lengvari	 I	 (2004)	 Pituitary	 adenylate	
cyclase	activating	polypeptide	protects	dopaminergic	neurons	and	improves	
behavioral	 deficits	 in	 a	 rat	 model	 of	 Parkinson's	 disease.	 Behav	 Brain	 Res	
151:303-312.	

Reith	ME,	Kim	SS,	Lajtha	A	(1986)	Structural	requirements	for	cocaine	congeners	to	
interact	 with	 [3H]batrachotoxinin	 A	 20-alpha-benzoate	 binding	 sites	 on	
sodium	channels	in	mouse	brain	synaptosomes.	J	Biol	Chem	261:7300-7305.	



REFERENCES 
	

	 175 

Renthal	 W,	 Kumar	 A,	 Xiao	 G,	 Wilkinson	 M,	 Covington	 HE,	 3rd,	 Maze	 I,	 Sikder	 D,	
Robison	AJ,	LaPlant	Q,	Dietz	DM,	Russo	SJ,	Vialou	V,	Chakravarty	S,	Kodadek	
TJ,	Stack	A,	Kabbaj	M,	Nestler	EJ	(2009)	Genome-wide	analysis	of	chromatin	
regulation	by	cocaine	reveals	a	role	for	sirtuins.	Neuron	62:335-348.	

Richardson	 BD,	 Saha	 K,	 Krout	 D,	 Cabrera	 E,	 Felts	 B,	 Henry	 LK,	 Swant	 J,	 Zou	 MF,	
Newman	AH,	Khoshbouei	H	(2016)	Membrane	potential	shapes	regulation	of	
dopamine	 transporter	 trafficking	 at	 the	 plasma	 membrane.	 Nat	 Commun	
7:10423.	

Rickhag	M,	Owens	WA,	Winkler	MT,	Strandfelt	KN,	Rathje	M,	Sorensen	G,	Andresen	
B,	 Madsen	 KL,	 Jorgensen	 TN,	 Wortwein	 G,	 Woldbye	 DP,	 Sitte	 H,	 Daws	 LC,	
Gether	 U	 (2013a)	 Membrane-permeable	 C-terminal	 dopamine	 transporter	
peptides	 attenuate	 amphetamine-evoked	 dopamine	 release.	 J	 Biol	 Chem	
288:27534-27544.	

Rickhag	M,	Hansen	FH,	Sorensen	G,	 Strandfelt	KN,	Andresen	B,	Gotfryd	K,	Madsen	
KL,	 Vestergaard-Klewe	 I,	 Ammendrup-Johnsen	 I,	 Eriksen	 J,	 Newman	 AH,	
Fuchtbauer	EM,	Gomeza	J,	Woldbye	DP,	Wortwein	G,	Gether	U	(2013b)	A	C-
terminal	PDZ	domain-binding	sequence	is	required	for	striatal	distribution	of	
the	dopamine	transporter.	Nat	Commun	4:1580.	

Ritz	MC,	 Lamb	RJ,	 Goldberg	 SR,	 Kuhar	MJ	 (1987)	 Cocaine	 receptors	 on	 dopamine	
transporters	are	related	to	self-administration	of	cocaine.	Science	237:1219-
1223.	

Rocha	BA,	Fumagalli	F,	Gainetdinov	RR,	Jones	SR,	Ator	R,	Giros	B,	Miller	GW,	Caron	
MG	 (1998)	 Cocaine	 self-administration	 in	 dopamine-transporter	 knockout	
mice	 [see	 comments]	 [published	 erratum	 appears	 in	 Nat	 Neurosci	 1998	
Aug;1(4):330].	Nat	Neurosci	1:132-137.	

Russo	SJ,	Nestler	EJ	(2013)	The	brain	reward	circuitry	in	mood	disorders.	Nat	Rev	
Neurosci	14:609-625.	

Sakrikar	D,	Mazei-Robison	MS,	Mergy	MA,	Richtand	NW,	Han	Q,	Hamilton	PJ,	Bowton	
E,	 Galli	 A,	 Veenstra-Vanderweele	 J,	 Gill	 M,	 Blakely	 RD	 (2012)	 Attention	
deficit/hyperactivity	 disorder-derived	 coding	 variation	 in	 the	 dopamine	
transporter	 disrupts	 microdomain	 targeting	 and	 trafficking	 regulation.	 J	
Neurosci	32:5385-5397.	

Samuvel	DJ,	 Jayanthi	LD,	Bhat	NR,	Ramamoorthy	S	(2005)	A	role	 for	p38	mitogen-
activated	 protein	 kinase	 in	 the	 regulation	 of	 the	 serotonin	 transporter:	
evidence	 for	 distinct	 cellular	 mechanisms	 involved	 in	 transporter	 surface	
expression.	J	Neurosci	25:29-41.	

Saunders	C,	Ferrer	JV,	Shi	L,	Chen	J,	Merrill	G,	Lamb	ME,	Leeb-Lundberg	LM,	Carvelli	
L,	 Javitch	JA,	Galli	A	(2000)	Amphetamine-induced	loss	of	human	dopamine	
transporter	 activity:	 an	 internalization-dependent	 and	 cocaine-sensitive	
mechanism.	Proc	Natl	Acad	Sci	U	S	A	97:6850-6855.	

Schmittgen	TD,	 Livak	KJ	 (2008)	Analyzing	 real-time	PCR	data	 by	 the	 comparative	
C(T)	method.	Nat	Protoc	3:1101-1108.	



REFERENCES 
	

	 176 

Schultz	W	 (2007)	 Behavioral	 dopamine	 signals.	 Trends	 in	 neurosciences	 30:203-
210.	

Seimandi	M,	Seyer	P,	Park	CS,	Vandermoere	F,	Chanrion	B,	Bockaert	 J,	Mansuy	IM,	
Marin	 P	 (2013)	 Calcineurin	 interacts	 with	 the	 serotonin	 transporter	 C-
terminus	 to	 modulate	 its	 plasma	 membrane	 expression	 and	 serotonin	
uptake.	J	Neurosci	33:16189-16199.	

Shi	 G-X,	 Han	 J,	 Andres	 DA	 (2005a)	 Rin	 GTPase	 Couples	 Nerve	 Growth	 Factor	
Signaling	 to	 p38	 and	 b-Raf/ERK	 Pathways	 to	 Promote	 Neuronal	
Differentiation.	J	Biol	Chem	280:37599-37609.	

Shi	GX,	Han	J,	Andres	DA	(2005b)	Rin	GTPase	couples	nerve	growth	factor	signaling	
to	p38	and	b-Raf/ERK	pathways	 to	promote	neuronal	differentiation.	 J	Biol	
Chem	280:37599-37609.	

Shi	GX,	 Jin	L,	Andres	DA	 (2008)	Pituitary	adenylate	 cyclase-activating	polypeptide	
38-mediated	Rin	activation	requires	Src	and	contributes	to	the	regulation	of	
HSP27	signaling	during	neuronal	differentiation.	Mol	Cell	Biol	28:4940-4951.	

Shin	JH,	Adrover	MF,	Wess	J,	Alvarez	VA	(2015)	Muscarinic	regulation	of	dopamine	
and	glutamate	transmission	in	the	nucleus	accumbens.	Proc	Natl	Acad	Sci	U	S	
A	112:8124-8129.	

Simons	K,	Ikonen	E	(1997)	Functional	rafts	in	cell	membranes.	Nature	387:569-572.	
Sitte	 HH,	 Freissmuth	 M	 (2010)	 The	 reverse	 operation	 of	 Na(+)/Cl(-)-coupled	

neurotransmitter	 transporters--why	 amphetamines	 take	 two	 to	 tango.	 J	
Neurochem	112:340-355.	

Sitte	 HH,	 Freissmuth	 M	 (2015)	 Amphetamines,	 new	 psychoactive	 drugs	 and	 the	
monoamine	transporter	cycle.	Trends	Pharmacol	Sci	36:41-50.	

Sitte	 HH,	 Farhan	 H,	 Javitch	 JA	 (2004)	 Sodium-dependent	 neurotransmitter	
transporters:	 oligomerization	 as	 a	 determinant	 of	 transporter	 function	 and	
trafficking.	Mol	Interv	4:38-47.	

Sitte	 HH,	 Huck	 S,	 Reither	 H,	 Boehm	 S,	 Singer	 EA,	 Pifl	 C	 (1998)	 Carrier-mediated	
release,	 transport	 rates,	 and	 charge	 transfer	 induced	 by	 amphetamine,	
tyramine,	 and	 dopamine	 in	 mammalian	 cells	 transfected	 with	 the	 human	
dopamine	transporter.	J	Neurochem	71:1289-1297.	

Small	KM,	Nunes	E,	Hughley	S,	Addy	NA	(2016)	Ventral	tegmental	area	muscarinic	
receptors	 modulate	 depression	 and	 anxiety-related	 behaviors	 in	 rats.	
Neurosci	Lett	616:80-85.	

Smidt	MP,	van	Schaick	HS,	Lanctot	C,	Tremblay	JJ,	Cox	JJ,	van	der	Kleij	AA,	Wolterink	
G,	 Drouin	 J,	 Burbach	 JP	 (1997)	 A	 homeodomain	 gene	 Ptx3	 has	 highly	
restricted	 brain	 expression	 in	 mesencephalic	 dopaminergic	 neurons.	 Proc	
Natl	Acad	Sci	U	S	A	94:13305-13310.	

Somogyvari-Vigh	 A,	 Reglodi	 D	 (2004)	 Pituitary	 adenylate	 cyclase	 activating	
polypeptide:	 a	 potential	 neuroprotective	 peptide.	 Current	 pharmaceutical	
design	10:2861-2889.	

Sora	I,	Wichems	C,	Takahashi	N,	Li	XF,	Zeng	Z,	Revay	R,	Lesch	KP,	Murphy	DL,	Uhl	GR	
(1998)	 Cocaine	 reward	 models:	 conditioned	 place	 preference	 can	 be	



REFERENCES 
	

	 177 

established	 in	dopamine-	and	 in	serotonin-transporter	knockout	mice.	Proc	
Natl	Acad	Sci	U	S	A	95:7699-7704.	

Sorkin	 A,	 Von	 Zastrow	 M	 (2002)	 Signal	 transduction	 and	 endocytosis:	 close	
encounters	of	many	kinds.	Nature	reviews	Molecular	cell	biology	3:600-614.	

Sorkina	T,	Caltagarone	J,	Sorkin	A	(2013)	Flotillins	regulate	membrane	mobility	of	
the	 dopamine	 transporter	 but	 are	 not	 required	 for	 its	 protein	 kinase	 C	
dependent	endocytosis.	Traffic	14:709-724.	

Sorkina	T,	Hoover	BR,	Zahniser	NR,	Sorkin	A	(2005)	Constitutive	and	protein	kinase	
C-induced	 internalization	 of	 the	 dopamine	 transporter	 is	 mediated	 by	 a	
clathrin-dependent	mechanism.	Traffic	6:157-170.	

Sorkina	T,	Richards	TL,	Rao	A,	Zahniser	NR,	Sorkin	A	(2009)	Negative	regulation	of	
dopamine	 transporter	 endocytosis	 by	 membrane-proximal	 N-terminal	
residues.	J	Neurosci	29:1361-1374.	

Sorkina	T,	Miranda	M,	Dionne	KR,	Hoover	BR,	 Zahniser	NR,	 Sorkin	A	 (2006)	RNA	
interference	 screen	 reveals	 an	 essential	 role	 of	 Nedd4-2	 in	 dopamine	
transporter	ubiquitination	and	endocytosis.	J	Neurosci	26:8195-8205.	

Spencer	ML,	Shao	H,	Tucker	HM,	Andres	DA	(2002)	Nerve	growth	factor-dependent	
activation	of	the	small	GTPase	Rin.	J	Biol	Chem	277:17605-17615.	

Starr	BS,	Starr	MS	(1986)	Differential	effects	of	dopamine	D1	and	D2	agonists	and	
antagonists	 on	 velocity	 of	 movement,	 rearing	 and	 grooming	 in	 the	mouse.	
Implications	 for	 the	 roles	 of	 D1	 and	 D2	 receptors.	 Neuropharmacology	
25:455-463.	

Steinberg	 SF	 (2008)	 Structural	 basis	 of	 protein	 kinase	 C	 isoform	 function.	
Physiological	reviews	88:1341-1378.	

Steketee	JD,	Kalivas	PW	(2011)	Drug	wanting:	behavioral	sensitization	and	relapse	
to	drug-seeking	behavior.	Pharmacol	Rev	63:348-365.	

Sucic	S,	El-Kasaby	A,	Kudlacek	O,	Sarker	S,	Sitte	HH,	Marin	P,	Freissmuth	M	(2011)	
The	serotonin	transporter	is	an	exclusive	client	of	the	coat	protein	complex	II	
(COPII)	component	SEC24C.	J	Biol	Chem	286:16482-16490.	

Sucic	 S,	 Koban	 F,	 El-Kasaby	 A,	 Kudlacek	 O,	 Stockner	 T,	 Sitte	 HH,	 Freissmuth	 M	
(2013)	 Switching	 the	 clientele:	 a	 lysine	 residing	 in	 the	 C	 terminus	 of	 the	
serotonin	transporter	specifies	its	preference	for	the	coat	protein	complex	II	
component	SEC24C.	J	Biol	Chem	288:5330-5341.	

Sucic	S,	Dallinger	S,	Zdrazil	B,	Weissensteiner	R,	Jorgensen	TN,	Holy	M,	Kudlacek	O,	
Seidel	 S,	 Cha	 JH,	 Gether	 U,	 Newman	 AH,	 Ecker	 GF,	 Freissmuth	M,	 Sitte	 HH	
(2010)	The	N	terminus	of	monoamine	transporters	is	a	lever	required	for	the	
action	of	amphetamines.	J	Biol	Chem	285:10924-10938.	

Sulzer	 D	 (2011)	 How	 addictive	 drugs	 disrupt	 presynaptic	 dopamine	
neurotransmission.	Neuron	69:628-649.	

Sulzer	 D,	 Rayport	 S	 (1990)	 Amphetamine	 and	 other	 psychostimulants	 reduce	 pH	
gradients	 in	 midbrain	 dopaminergic	 neurons	 and	 chromaffin	 granules:	 a	
mechanism	of	action.	Neuron	5:797-808.	



REFERENCES 
	

	 178 

Sulzer	D,	Maidment	NT,	Rayport	S	(1993)	Amphetamine	and	other	weak	bases	act	to	
promote	 reverse	 transport	 of	 dopamine	 in	 ventral	 midbrain	 neurons.	 J	
Neurochem	60:527-535.	

Sulzer	D,	Sonders	MS,	Poulsen	NW,	Galli	A	(2005a)	Mechanisms	of	neurotransmitter	
release	by	amphetamines:	a	review.	Progress	in	neurobiology	75:406-433.	

Sulzer	D,	Sonders	MS,	Poulsen	NW,	Galli	A	(2005b)	Mechanisms	of	neurotransmitter	
release	by	amphetamines:	A	review.	Progress	in	neurobiology	75:406-433.	

Svingos	AL,	Chavkin	C,	Colago	EE,	Pickel	VM	(2001)	Major	coexpression	of	kappa-
opioid	receptors	and	the	dopamine	transporter	in	nucleus	accumbens	axonal	
profiles.	Synapse	(New	York,	NY)	42:185-192.	

Sweeney	 CG,	 Tremblay	 BP,	 Stockner	 T,	 Sitte	 HH,	 Melikian	 HE	 (2017)	 Dopamine	
Transporter	 Amino	 and	 Carboxyl	 Termini	 Synergistically	 Contribute	 to	
Substrate	and	Inhibitor	Affinities.	J	Biol	Chem	292:1302-1309.	

Takei	N,	Skoglosa	Y,	Lindholm	D	(1998)	Neurotrophic	and	neuroprotective	effects	of	
pituitary	 adenylate	 cyclase-activating	 polypeptide	 (PACAP)	 on	
mesencephalic	dopaminergic	neurons.	J	Neurosci	Res	54:698-706.	

Tilley	MR,	Cagniard	B,	Zhuang	X,	Han	DD,	Tiao	N,	Gu	HH	(2007)	Cocaine	reward	and	
locomotion	 stimulation	 in	 mice	 with	 reduced	 dopamine	 transporter	
expression.	BMC	Neurosci	8:42.	

Torres	 GE,	 Gainetdinov	 RR,	 Caron	 MG	 (2003a)	 Plasma	 membrane	 monoamine	
transporters:	structure,	regulation	and	function.	Nat	Rev	Neurosci	4:13-25.	

Torres	 GE,	 Carneiro	 A,	 Seamans	 K,	 Fiorentini	 C,	 Sweeney	 A,	 Yao	 WD,	 Caron	 MG	
(2003b)	Oligomerization	and	trafficking	of	the	human	dopamine	transporter.	
Mutational	 analysis	 identifies	 critical	 domains	 important	 for	 the	 functional	
expression	of	the	transporter.	J	Biol	Chem	278:2731-2739.	

Torres	GE,	Yao	WD,	Mohn	AR,	Quan	H,	Kim	KM,	Levey	AI,	 Staudinger	 J,	Caron	MG	
(2001)	 Functional	 interaction	 between	 monoamine	 plasma	 membrane	
transporters	and	the	synaptic	PDZ	domain-containing	protein	PICK1.	Neuron	
30:121-134.	

Tovote	P,	Fadok	 JP,	Luthi	A	(2015)	Neuronal	circuits	 for	 fear	and	anxiety.	Nat	Rev	
Neurosci	16:317-331.	

Tritsch	NX,	Sabatini	BL	(2012)	Dopaminergic	modulation	of	synaptic	 transmission	
in	cortex	and	striatum.	Neuron	76:33-50.	

Van't	 Veer	 A,	 Bechtholt	 AJ,	 Onvani	 S,	 Potter	 D,	 Wang	 Y,	 Liu-Chen	 LY,	 Schutz	 G,	
Chartoff	 EH,	 Rudolph	 U,	 Cohen	 BM,	 Carlezon	 WA,	 Jr.	 (2013)	 Ablation	 of	
kappa-opioid	 receptors	 from	 brain	 dopamine	 neurons	 has	 anxiolytic-like	
effects	 and	enhances	 cocaine-induced	plasticity.	Neuropsychopharmacology	
38:1585-1597.	

Vaudry	 D,	 Falluel-Morel	 A,	 Bourgault	 S,	 Basille	 M,	 Burel	 D,	 Wurtz	 O,	 Fournier	 A,	
Chow	BK,	Hashimoto	H,	Galas	L,	Vaudry	H	(2009)	Pituitary	adenylate	cyclase-
activating	 polypeptide	 and	 its	 receptors:	 20	 years	 after	 the	 discovery.	
Pharmacol	Rev	61:283-357.	



REFERENCES 
	

	 179 

Vaughan	RA,	 Foster	 JD	 (2013)	Mechanisms	of	dopamine	 transporter	 regulation	 in	
normal	and	disease	states.	Trends	Pharmacol	Sci	34:489-496.	

Vaughan	 RA,	 Huff	 RA,	 Uhl	 GR,	 Kuhar	 MJ	 (1997)	 Protein	 Kinase	 C-mediated	
Phosphorylation	 and	 Functional	 Regulation	 of	 Dopamine	 Transporters	 in	
Striatal	Synaptosomes.	J	Biol	Chem	272:15541-15546.	

Vilaro	MT,	 Palacios	 JM,	Mengod	 G	 (1990)	 Localization	 of	m5	muscarinic	 receptor	
mRNA	 in	 rat	 brain	 examined	 by	 in	 situ	 hybridization	 histochemistry.	
Neurosci	Lett	114:154-159.	

Vina-Vilaseca	 A,	 Sorkin	 A	 (2010)	 Lysine	 63-linked	 polyubiquitination	 of	 the	
dopamine	 transporter	 requires	 WW3	 and	 WW4	 domains	 of	 Nedd4-2	 and	
UBE2D	ubiquitin-conjugating	enzymes.	J	Biol	Chem	285:7645-7656.	

Vuorenpaa	A,	Jorgensen	TN,	Newman	AH,	Madsen	KL,	Scheinin	M,	Gether	U	(2016)	
Differential	 Internalization	 Rates	 and	 Postendocytic	 Sorting	 of	 the	
Norepinephrine	 and	 Dopamine	 Transporters	 Are	 Controlled	 by	 Structural	
Elements	in	the	N	Termini.	J	Biol	Chem	291:5634-5651.	

Wang	JY,	Gong	MY,	Ye	YL,	Ye	JM,	Lin	GL,	Zhuang	QQ,	Zhang	X,	Zhu	JH	(2015a)	The	
RIT2	 and	 STX1B	 polymorphisms	 are	 associated	 with	 Parkinson's	 disease.	
Parkinsonism	Relat	Disord	21:300-302.	

Wang	 KH,	 Penmatsa	 A,	 Gouaux	 E	 (2015b)	 Neurotransmitter	 and	 psychostimulant	
recognition	by	the	dopamine	transporter.	Nature	521:322-327.	

Waschek	JA	(2002)	Multiple	actions	of	pituitary	adenylyl	cyclase	activating	peptide	
in	 nervous	 system	 development	 and	 regeneration.	 Developmental	
neuroscience	24:14-23.	

Wei	 Y,	 Williams	 JM,	 Dipace	 C,	 Sung	 U,	 Javitch	 JA,	 Galli	 A,	 Saunders	 C	 (2007)	
Dopamine	transporter	activity	mediates	amphetamine-induced	inhibition	of	
Akt	through	a	Ca2+/calmodulin-dependent	kinase	II-dependent	mechanism.	
Mol	Pharmacol	71:835-842.	

Weiner	DM,	Levey	AI,	Brann	MR	(1990)	Expression	of	muscarinic	acetylcholine	and	
dopamine	 receptor	 mRNAs	 in	 rat	 basal	 ganglia.	 Proc	 Natl	 Acad	 Sci	 U	 S	 A	
87:7050-7054.	

Wes	PD,	Yu	M,	Montell	C	(1996)	RIC,	a	calmodulin-binding	Ras-like	GTPase.	Embo	J	
15:5839-5848.	

Wheeler	 DS,	 Underhill	 SM,	 Stolz	 DB,	Murdoch	 GH,	 Thiels	 E,	 Romero	 G,	 Amara	 SG	
(2015)	Amphetamine	 activates	Rho	GTPase	 signaling	 to	mediate	 dopamine	
transporter	 internalization	 and	 acute	 behavioral	 effects	 of	 amphetamine.	
Proc	Natl	Acad	Sci	U	S	A	112:E7138-7147.	

Whitby	 LG,	 Axelrod	 J,	 Weil-Malherbe	 H	 (1961)	 The	 fate	 of	 H3-norepinephrine	 in	
animals.	J	Pharmacol	Exp	Ther	132:193-201.	

Wise	RA	(2004)	Dopamine,	learning	and	motivation.	Nat	Rev	Neurosci	5:483-494.	
Wu	 H,	 O'Neill	 B,	 Han	 DD,	 Thirtamara-Rajamani	 K,	 Wang	 Y,	 Gu	 HH	 (2014)	

Restoration	 of	 cocaine	 stimulation	 and	 reward	 by	 reintroducing	 wild	 type	
dopamine	 transporter	 in	 adult	 knock-in	 mice	 with	 a	 cocaine-insensitive	
dopamine	transporter.	Neuropharmacology	86:31-37.	



REFERENCES 
	

	 180 

Wu	 N,	 Cepeda	 C,	 Zhuang	 X,	 Levine	 MS	 (2007)	 Altered	 corticostriatal	
neurotransmission	 and	 modulation	 in	 dopamine	 transporter	 knock-down	
mice.	J	Neurophysiol	98:423-432.	

Wu	S,	Bellve	KD,	Fogarty	KE,	Melikian	HE	 (2015)	Ack1	 is	 a	dopamine	 transporter	
endocytic	brake	that	rescues	a	trafficking-dysregulated	ADHD	coding	variant.	
Proc	Natl	Acad	Sci	U	S	A	112:15480-15485.	

Wu	 S,	 Fagan	 RR,	 Uttamapinant	 C,	 Lifshitz	 LM,	 Fogarty	 KE,	 Ting	 AY,	 Melikian	 HE	
(2017)	 The	 Dopamine	 Transporter	 Recycles	 via	 a	 Retromer-Dependent	
Postendocytic	 Mechanism:	 Tracking	 Studies	 Using	 a	 Novel	 Fluorophore-
Coupling	Approach.	J	Neurosci	37:9438-9452.	

Wu	X,	Gu	HH	 (2003)	Cocaine	 affinity	 decreased	by	mutations	 of	 aromatic	 residue	
phenylalanine	105	in	the	transmembrane	domain	2	of	dopamine	transporter.	
Mol	Pharmacol	63:653-658.	

Wu	Z,	Yang	H,	Colosi	P	(2010)	Effect	of	genome	size	on	AAV	vector	packaging.	Mol	
Ther	18:80-86.	

Xia	 Z,	 Storm	DR	 (2005)	The	 role	 of	 calmodulin	 as	 a	 signal	 integrator	 for	 synaptic	
plasticity.	Nat	Rev	Neurosci	6:267-276.	

Xie	J,	Mao	Q,	Tai	PWL,	He	R,	Ai	J,	Su	Q,	Zhu	Y,	Ma	H,	Li	J,	Gong	S,	Wang	D,	Gao	Z,	Li	M,	
Zhong	 L,	 Zhou	 H,	 Gao	 G	 (2017)	 Short	 DNA	 Hairpins	 Compromise	
Recombinant	 Adeno-Associated	 Virus	 Genome	 Homogeneity.	 Mol	 Ther	
25:1363-1374.	

Yamashita	 A,	 Singh	 SK,	 Kawate	 T,	 Jin	 Y,	 Gouaux	 E	 (2005)	 Crystal	 structure	 of	 a	
bacterial	 homologue	 of	 Na+/Cl--dependent	 neurotransmitter	 transporters.	
437:215-223.	

Yang	B,	Chan	RC,	Jing	J,	Li	T,	Sham	P,	Chen	RY	(2007)	A	meta-analysis	of	association	
studies	between	the	10-repeat	allele	of	a	VNTR	polymorphism	in	the	3'-UTR	
of	 dopamine	 transporter	 gene	 and	 attention	 deficit	 hyperactivity	 disorder.	
American	journal	of	medical	genetics	Part	B,	Neuropsychiatric	genetics	:	the	
official	 publication	 of	 the	 International	 Society	 of	 Psychiatric	 Genetics	
144b:541-550.	

Zarrindast	MR,	Khakpai	F	(2015)	The	Modulatory	Role	of	Dopamine	in	Anxiety-like	
Behavior.	Archives	of	Iranian	medicine	18:591-603.	

Zestos	 AG,	 Mikelman	 SR,	 Kennedy	 RT,	 Gnegy	 ME	 (2016)	 PKCbeta	 Inhibitors	
Attenuate	 Amphetamine-Stimulated	 Dopamine	 Efflux.	 ACS	 Chem	 Neurosci	
7:757-766.	

Zhang	H,	Li	S,	Wang	M,	Vukusic	B,	Pristupa	ZB,	Liu	F	(2009)	Regulation	of	dopamine	
transporter	activity	by	carboxypeptidase	E.	Mol	Brain	2:10.	

Zhang	L,	Wahlin	K,	Li	Y,	Masuda	T,	Yang	Z,	Zack	DJ,	Esumi	N	(2013)	RIT2,	a	neuron-
specific	small	guanosine	triphosphatase,	is	expressed	in	retinal	neuronal	cells	
and	 its	 promoter	 is	 modulated	 by	 the	 POU4	 transcription	 factors.	 Mol	 Vis	
19:1371-1386.	

Zhang	X,	Niu	M,	Li	H,	Xie	A	(2015)	RIT2	rs12456492	polymorphism	and	the	risk	of	
Parkinson's	disease:	A	meta-analysis.	Neurosci	Lett	602:167-171.	



REFERENCES 
	

	 181 

Zhong	H,	Sanchez	C,	Caron	MG	(2012)	Consideration	of	allosterism	and	interacting	
proteins	in	the	physiological	functions	of	the	serotonin	transporter.	Biochem	
Pharmacol	83:435-442.	

Zhou	 Q,	 Li	 J,	 Wang	 H,	 Yin	 Y,	 Zhou	 J	 (2011)	 Identification	 of	 nigral	 dopaminergic	
neuron-enriched	genes	in	adult	rats.	Neurobiol	Aging	32:313-326.	

Zhu	S,	Zhao	C,	Wu	Y,	Yang	Q,	Shao	A,	Wang	T,	Wu	J,	Yin	Y,	Li	Y,	Hou	J,	Zhang	X,	Zhou	
G,	 Gu	 X,	 Wang	 X,	 Bustelo	 XR,	 Zhou	 J	 (2015)	 Identification	 of	 a	 Vav2-
dependent	mechanism	for	GDNF/Ret	control	of	mesolimbic	DAT	trafficking.	
Nat	Neurosci	18:1084-1093.	

Zhu	 SJ,	 Kavanaugh	MP,	 Sonders	MS,	 Amara	 SG,	 Zahniser	 NR	 (1997)	 Activation	 of	
protein	 kinase	 C	 inhibits	 uptake,	 currents	 and	 binding	 associated	with	 the	
human	 dopamine	 transporter	 expressed	 in	 Xenopus	 oocytes.	 J	 Pharmacol	
Exp	Ther	282:1358-1365.	

Zweifel	 LS,	 Fadok	 JP,	 Argilli	 E,	 Garelick	 MG,	 Jones	 GL,	 Dickerson	 TM,	 Allen	 JM,	
Mizumori	SJ,	Bonci	A,	Palmiter	RD	(2011)	Activation	of	dopamine	neurons	is	
critical	 for	aversive	conditioning	and	prevention	of	generalized	anxiety.	Nat	
Neurosci	14:620-626.	


	Mechanisms Regulating the Dopamine Transporter and Their Impact on Behavior
	Let us know how access to this document benefits you.
	Repository Citation

	Microsoft Word - Sweeney Thesis_CGS_revisions.docx

