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ABSTRACT 

Mechanical tension is an important regulator of cell proliferation, differentiation, 

migration and cell death. It is involved in the control of tissue architecture and wound 

repair and its improper sensing can contribute to cancer. The Hippo tumor suppressor 

pathway was recently shown to be involved in regulating cell proliferation in response to 

mechanical tension. The core of the pathway consists of the kinases MST1/2 and 

LATS1/2, which regulate the target of the pathway, the transcription co-activator YAP/ 

TAZ (hereafter referred to as YAP). When the Hippo pathway is inactive, YAP remains 

in the nucleus and promotes cell proliferation and stem cell maintenance. When the 

Hippo signaling pathway is turned on, MST1/2 phosphorylate and activates LATS1/2. 

LATS1/2 phosphorylates and inactivates YAP in the cytoplasm which is sequestered 

and degraded, stopping cell proliferation and promoting differentiation of stem cells. 

Mechanical forces are transmitted across cells and tissues through the cell-cell 

junctions and the actin cytoskeleton. However, the factors that connect cell-cell 

junctions to the Hippo signaling pathway were not clearly known. We identified a LIM 

domain protein called TRIP6 that functions at the adherens junctions to regulate the 

Hippo signaling pathway in a tension-dependent manner. TRIP6 responds to 

mechanical tension at adherens junctions and regulates LATS1/2 activity. Under high 

mechanical tension, TRIP6 sequesters and inhibits LATS1/2 at adherens junctions to 

promote YAP activity. Conditions that reduce tension at adherens junctions by inhibition 

of actin stress fibers or disruption of cell-cell junctions reduce TRIP6-LATS1/2 binding, 

which activates LATS1/2 to inhibit YAP. Vinculin has been shown to act as part of a 

mechanosensory complex at adherens junctions. We show that vinculin promotes 

TRIP6 inhibition of LATS1/2 in response to mechanical tension. Furthermore, we show 
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that TRIP6 competitively inhibits MOB1 (a known LATS1/2 activator) from binding and 

activating LATS1/2. Together these findings reveal TRIP6 responds to mechanical 

signals at adherens junctions to regulate the Hippo signaling pathway in mammalian 

cells. 
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CHAPTER 1 

INTRODUCTION 

The growth of multicellular organisms is regulated by intricate cellular processes during 

their development, which controls cell proliferation, stem cell maintenance and 

differentiation, and cell death. Dysfunction of these processes can lead to uncontrolled 

cell division and cancer. Inherent errors in DNA replication machinery, exposure to 

carcinogens and other environmental factors induce mutations in DNA. Such mutations 

can lead to hyperactivation of oncogenes and/or inactivation of tumor suppressor 

genes, which leads to uncontrolled cell proliferation causing malignancy and tumor 

formation. These tumors can evade apoptosis and spread throughout the body via 

metastasis, which can result in lethal interference with normal body functions. Various 

signaling pathways such as the TOR/TSC, the MAPK, and the Hippo pathway have 

been shown to regulate cell proliferation, organ growth, and development. Genes 

involved in these pathways are found to be mutated/misregulated in tumorigenic cells. 

The focus of this work is to understand the signals that control Hippo pathway signaling. 

1.1 The Hippo signaling pathway 

The Hippo signaling pathway (also known as the Salvador/Warts/Hippo pathway in 

Drosophila) is a highly conserved pathway in metazoans, such as Drosophila and 

mammals, which regulates cell proliferation, stem cell differentiation and cell death 

(Figure 1.1). This pathway was first discovered in a mutagenic screen in Drosophila to 

identify tumor suppressor genes (Kango-Singh and Singh, 2009; Pan, 2007; Saucedo 

and Edgar, 2007).  It was seen that mutation in a protein kinase gene leads to 

hippopotamus-like overgrowth phenotype in the head, eyes and imaginal discs (Harvey 
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et al., 2003; Wu et al., 2003). This protein kinase gene, later named as Hippo (Hpo), is a 

core kinase of the Hippo signaling cascade. Hpo belongs to the serine/threonine Ste-20 

kinase family of proteins (Harvey et al., 2003; Jia et al., 2003). Hpo binds to its adaptor 

protein called Salvador (Sav) to phosphorylate and activate another kinase called Warts 

(Wts), which belongs to the Dbf-2-related (NDR) family of kinases (Tapon et al., 2002; 

Kango-Singh, 2002; Xu et al., 1995; Justice et al., 1995). Wts forms a complex with 

Mats (MOB as a tumor suppressor), which is crucial for Wts to be activated by Hpo (Lai 

et al., 2005). Active Wts phosphorylates and restricts the function of a transcription 

coactivator called Yorkie (Yki) (Huang et al., 2005). Phosphorylated Yki translocates 

into the cytoplasm where it is sequestered and/or degraded, which stops tissue growth. 

Active Yki stays in the nucleus where it binds to various transcription factors such as 

Scalloped (Sd), Homothorax (Hth), and Teashirt (Tsh) (Oh and Irvine, 2011). This 

regulation promotes the expression of a plethora of genes that stimulate cell cycle 

progression (cyclin A, cyclin E, E2F1), cell survival (a micro RNA called bantam, myc), 

and apoptosis (diap1) that regulate cell proliferation, stem cell differentiation and tissue 

growth. Interestingly, Yki can upregulate certain genes within the Hippo signaling 

network (such as myc, crumbs, ex, merlin, four-jointed, and kibra) to eventually 

inactivate itself through a negative feedback loop (Pan, 2010; Neto-Silva et al., 2010; 

Zhu et al., 2015). 

The mammalian Hippo signaling pathway is similar to the Drosophila pathway and is 

mostly studied in mice and mammalian cell lines (see Figure 1.1 for comparison of the 

two hippo signaling pathways). MST1/2 (homolog of Hpo) in association with WW45 (a 

Sav homolog) phosphorylates and activates LATS1/2 (a homolog of Wts), which forms  
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Figure 1.1 The Hippo signaling pathway in Drosophila and in the mammalian 

system are conserved. 

Homologous proteins in Drosophila and mammals are indicated by matching colors. 

Proximity indicates direct biochemical interaction and direct/ indirect activation. 

Phosphorylation is indicated by P. 

 

a complex with MOB1 (a homolog of Mats). Structural studies have shed light on how 

MST1/2 and MOB1 collaborate to activate LATS1/2 (Ni et al., 2015). The catalytic 
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kinase domain of MST1/2 autophosphorylates itself to allow the docking of MOB1. 

Under normal circumstances, MOB1 remains in an autoinhibited state. Once MOB1 

binds the phospho-docking site on MST1/2, it is relieved of its autoinhibition. Thereafter 

LATS1/2 binds MOB1 and subsequently MST1/2 phosphorylates both MOB1 and 

LATS1/2 on its hydrophobic domain (HD). MOB1 phosphorylation by MST1/2 releases 

MOB-LATS complex which triggers LATS1/2 to autophosphorylate on its activation loop 

(AL) (Ni et al., 2015) (See Figure 1.2). These phosphorylations activates LATS1/2 which 

then phosphorylates and inactivates two transcription co-activators YAP and TAZ in the 

cytoplasm (homologs of Yki). Subsequently phosphorylated cytoplasmic YAP and TAZ 

are sequestered by various proteins (14-3-3 and Angiomotins) or degraded by the 

proteasomal degradation machinery (Mana-Capelli et al., 2014; Paramasivam et al., 

2011; Chan et al., 2011a; Zhao et al., 2011; Lei et al., 2008; Hao et al., 2008; Liu et al., 

2010b; Ren et al., 2010; Zhao et al., 2010b). Active YAP remains inside the nucleus, 

where it binds primarily to the TEAD family of transcription factors (homolog of Sd) and 

promotes cell survival, stem cell maintenance and organ growth (Zhao et al., 2008; 

Zhang et al., 2009). Similar to Drosophila, YAP promotes its own inactivation through 

negative feedback by upregulating certain upstream activators of the Hippo signaling 

pathway such as LATS1/2 and AMOTL2 (Dai et al., 2015; Moroishi et al., 2015). In 

mesothelial cells, LATS1/2, MST1, Sav1 and Merlin have shown to be nuclear (Li et al., 

2014). However, whether they can regulate YAP activity while inside the nucleus is not 

known and requires further investigation. 
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Figure 1.2 Structural basis for MOB1 dependent activation of LATS1/2. 

Autophosphorylation of MST1/2 creates a MOB1 docking site. MOB1 which remains 

in its autoinhibited state then binds MST1/2 and is relieved of autoinhibition. This 

promotes LATS1/2 to bind MOB1. MST1/2 then phosphorylates MOB1 and the 

hydrophobic motif (HM) on LATS1/2. The MOB1-LATS1/2 complex then dissociates 

from MST1/2 and phosphor-MOB1 triggers autophosphorylation of LATS1/2 on its 

activation loop (AL) to activate LATS1/2. 
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1.2 Regulators of the Hippo signaling pathway 

Studies have identified a complex and diverse upstream signaling system that regulates 

the Hippo signaling pathway and YAP activity. These signals can be both external and 

internal. They primarily affect the phosphorylation of the core Hippo pathway 

components such as LATS1/2 and YAP, although some of them directly affect YAP 

activity without influencing LATS1/2 activity (Yu and Guan, 2013). 

Soluble factors: Extracellular soluble factors are one of the major regulators of the 

Hippo signaling pathway. Soluble growth factors also regulate the Hippo signaling 

pathway through G-protein coupled receptors (GPCRs). Studies have shown that two 

serum components namely LPA and S1P activate YAP by binding to GPCRs and 

activating Rho kinase. Rho activation leads to actin stress fiber formation and 

stabilization. This inactivates LATS1/2 and promotes YAP activity. Another study shows 

that estrogen can activate its specific GPCRs to inhibit LATS1/2 and hyperactivate YAP 

which could signify a novel role for estrogen in breast cancer (Zhou et al., 2015). The 

mechanism by which Rho inactivates LATS1/2 is not known. On the other hand, 

glucagon and epinephrine activate other GPCRs to promote PKA mediated LATS1/2 

activation and YAP inhibition (Yu et al., 2012; Miller et al., 2012). Protein kinase A 

(PKA) promotes LATS1/2 activation through an unknown mechanism. Knockdown on 

MST1/2 has no effect on LATS1/2 activity suggesting that MST1/2 might not be the 

upstream kinase in this scenario. Therefore, it would be interesting to see whether PKA 

could activate other kinases which then could be responsible for LATS1/2 activation. 

Alternatively, PKA could also inhibit LATS1/2 inhibitory phosphatases. Wnt ligands 

(specifically Wnt5a/b) also that act through GPCRs bind to Frizzled receptors and 
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activate YAP by inactivating LATS1/2 through an unknown mechanism (Park et al., 

2015). It would be interesting to unravel the mechanism by which soluble factors could 

regulate the Hippo signaling pathway. 

Cell polarity: Studies in both Drosophila and mammals indicate a role of apical-basal 

cell polarity proteins in modulating Yki/YAP activity. These cell polarity proteins are 

found in complexes at the cell-cell junctions such as adherens junctions (AJ) and tight 

junctions (TJ). One important complex found in the apical regions in polarized epithelial 

cells in Drosophila is the Merlin/NF2-Expanded-Kibra complex that activates Hippo 

signaling. Mutations in Merlin and Expanded promote an overgrowth phenotype like that 

of Hpo mutants in Drosophila (Hamaratoglu et al., 2006). Further studies showed that 

Merlin associates with Hpo, Warts, and Kibra (Yu et al., 2010; Genevet et al., 2010) 

suggesting a possible localization of core hippo kinases to the apical region for 

activation. It has been shown that artificial myristoylation of MST1 promotes plasma 

membrane localization which enhances its activity (Hamaratoglu et al., 2006). 

There are two other membrane components, Fat/ Dachsous and Crumbs, which 

regulate the Hippo signaling pathway. Drosophila Crumbs (Crb), which is an important 

polarity factor, regulates the Hippo signaling pathway by interacting with Mer to 

modulate the Hippo signaling kinases to regulate Yki function (Robinson et al., 2010; 

Ling et al., 2010; Chen et al., 2010a). In mammals, Crb3 (one of the most abundant 

Crumbs isoform in epithelial cells) is shown to inhibit YAP by promoting its interaction 

with LATS1/2 or by recruiting other upstream Hippo signaling components such as 

Kibra or FRDM6 (Szymaniak et al., 2015; Mao et al., 2017). The Fat/ Dachsous (Ft/Ds) 

system in Drosophila, which is also involved in maintaining cell polarity in epithelial and 
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mesenchymal cells has been shown to regulate the Hippo signaling pathway. Loss of Ft 

activates Ex or hippo signaling kinase Wts resulting in Yki inactivation and thestopping 

of tissue growth. The orthologs of Fat in mammalian cells are Fat 1-4 (with Fat 4 being 

the closest homolog to Drosophila Ft) and orthologs of Dachs are Dchs 1-2. Mouse 

knockout of neither Fat4 nor Dchs1 had a significant effect on the Hippo signaling 

pathway; thus further studies are needed to understand their role (Cho et al., 2006; 

Reddy et al., 2008; Rogulja et al., 2008; Grusche et al., 2011; Rodrigues-Campos and 

Thompson, 2014; Vrabioiu and Struhl, 2015; Misra and Irvine, 2016). Together, the Fat/ 

Dachsous and Crumbs components act in parallel at the membranes to regulate Hippo 

pathway signaling.  

Recent studies have implicated the role of the mammalian tight junction protein NF2 

(Merlin in Drosophila) as an important regulator of the Hippo signaling pathway. In 

Drosophila, NF2 is responsible for taking LATS1/2 to junctions where it is activated by 

MST1/2 (Sav mediates MST1/2 junctional localization) (Yin et al., 2013). In mammalian 

cells, NF2 is also shown to be crucial for LATS1/2 activity and MST1/2 mediated 

LATS1/2 phosphorylation (Plouffe et al., 2016). Overexpression of NF2 promotes 

LATS1/2 activation by inhibiting its ubiquitination-mediated degradation to promote YAP 

inhibition (Zhao et al., 2007; Zhang et al., 2010; Li et al., 2014). In NF2 knockout cells, 

YAP remains dephosphorylated and hyperactive (Plouffe et al., 2016). NF2 knockout 

mice develop hepatocarcinoma and cataracts and could be rescued by deletion of YAP 

(Zhang et al., 2010). The angiomotin family of proteins (AMOTL1, AMOTL2 and AMOT 

p130) which maintains epithelial cell polarity has been shown to activate LATS1/2 

kinase and inhibit YAP in an F-actin-dependent manner (Chan et al., 2011a; Zhao et al., 
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2011; Paramasivam et al., 2011; Mana-Capelli et al., 2014). Angiomotins also bind NF2/ 

Merlin at tight junctions to regulate the Hippo signaling pathway and are required for 

NF2 mediated tumorigenesis (Yi et al., 2011). 

Cell cycle: Hippo pathway signaling components have been shown to be involved in 

cell cycle regulation. LATS1/2 can be phosphorylated by CDK1 and Aurora A kinase 

during mitosis (Toji et al., 2004; Morisaki et al., 2002; Yabuta et al., 2007). CDK1 also 

phosphorylates YAP during the G2/M checkpoint. LATS1/2 has also been shown to 

inhibit CDK2 mediated phosphorylation of BRCA2 (Yang et al., 2013; Zhao et al., 2014; 

Yang et al., 2015b; a). Abnormalities during cytokinesis failure lead to extra 

chromosomes that activate LATS1/2 and promotes p53 stabilization and YAP 

inactivation (Ganem et al., 2014). The role of the Hippo signaling pathway with respect 

to cell cycle needs further investigation to understand its physiological implication. 

Contact inhibition: One important controller of cell proliferation and tissue growth is 

contact inhibition (McClatchey and Yap, 2012; Fagotto and Gumbiner, 1996; Perrais et 

al., 2007). When cells growing in monolayer or tissues reach high density it is thought 

they undergo contact inhibition. This could happen because of various factors such as 

constraint of space, limited supply of growth factors and changes in mechanical tension. 

Studies have implicated the Hippo signaling pathway in contact inhibition of cell 

proliferation (Nishioka et al., 2009; McClatchey and Yap, 2012; Halder et al., 2012; 

Dupont et al., 2011; Aragona et al., 2013). It was seen that YAP and high cells density 

regulated gene expression in an opposite manner and overexpression of YAP-5SA (a 

constitutively active variant of YAP) inhibited contact inhibition and promoted 

overgrowth in cultured epithelial cells and fibroblasts (Zhao et al., 2007). Tumorigenic 
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tissues also have been shown to have elevated levels of YAP compared to normal ones 

(Zhao et al., 2007). YAP mediated contact inhibition has also been shown to be 

important in embryo development (Nishioka et al., 2009). It is hypothesized that as cells 

spread out they experience more tension by pulling on the ECM through their integrin 

mediated focal adhesions. This phenomenon also depends on how stiff the ECM is. The 

stiffer the ECM the more tension is experienced by the individual cells. As cells touch 

each other they generate more adherens junctions and tight junctions which leads to 

LATS1/2 activation and YAP inhibition (Zhao et al., 2007; Silvis et al., 2011). Space 

limitation restricts cell spreading and decrease in cell size which leads to change in cell 

geometry and F-actin regulation YAP localization and activity (Dupont et al., 2011; 

Driscoll et al., 2015). One report shows that attachment of cells to the ECM activate 

Rho-GTPases to promote YAP function (Zhao et al., 2012). Another report implicates 

the role of FAK-Src-PI3K signaling pathway in regulating YAP activity (Kim and 

Gumbiner, 2015). The physiological relevance of cell density and tension sensing has 

been shown in Drosophila where it is shown that younger tissues having low number of 

cells experience greater tension which trigger growth. LIM domain protein Jub was 

shown to sense tension at adherens junctions and regulate Wts and Yki activity 

(Rauskolb et al., 2014). The role of MST1/2 in contact inhibition is not known. The 

mechanism by which cells sense density and space around them is also not clearly 

understood and needs further investigation. 

1.3 Regulation of YAP/TAZ by the Hippo signaling pathway 

YAP is a transcription coactivator that associates with TEAD and other TFs to regulate 

genes that control cell proliferation, differentiation, and apoptosis. Activated LATS1/2 
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phosphorylate YAP on multiple sites (YAP on Ser61, Ser109, Ser127, Ser164, Ser381; 

TAZ on Ser66, Ser89, Ser117, Ser311) and inhibit its activity (Zhao et al., 2007; Hao et 

al., 2008; Dong et al., 2007; Oka et al., 2008; Zhao et al., 2010a; Lei et al., 2008; Kanai 

et al., 2000; Varelas et al., 2008; Liu et al., 2010b). Once YAP is phosphorylated on 

Ser127 (S89 on TAZ) 14-3-3 can bind and promote YAP nuclear exclusion and 

inactivation (Varelas et al., 2008; Kanai et al., 2000; Lei et al., 2008; Oka et al., 2008; 

Zhao et al., 2007; Dong et al., 2007). Angiomotins can also sequester and inactivate 

YAP in the cytoplasm (Zhao et al., 2011; Chan et al., 2011a; Mana-Capelli et al., 2014). 

LATS1/2 phosphorylation on S381 of YAP (S311 on TAZ) primes it for proteasomal 

degradation. S381 phosphorylation of YAP induces casein kinase 1 to phosphorylate 

YAP. This phosphorylation leads to recruitment of β-Transducin (β-TRCP; a subunit of 

the SCF ubiquitin E3 ligase) and leads to degradation of YAP (Zhao et al., 2010b; Liu et 

al., 2010b). 

YAP is implicated in maintaining stemness of cells and promoting stem cell renewal 

(Totaro et al., 2017; Hu et al., 2017; Sun et al., 2017; Noto et al., 2017; Henle and Link, 

2017; Escoll et al., 2017; Tang and Weiss, 2017). YAP is also important in tissue repair 

and wound healing in differentiated cells. The Hippo pathway is inactivated during tissue 

injury and YAP is activated leading to stem cell self-renewal, cell migration, and 

proliferation that leads to wound healing (Lee et al., 2014; Schlegelmilch et al., 2011; 

Cai et al., 2010). The function of YAP in suppressing apoptosis and promoting cell 

proliferation is often co-opted in cancer, raising the possibility that it could be used as a 

therapeutic target for different cancers (Zhao et al., 2014; Han et al., 2014; Yan et al., 
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2014; Jeong et al., 2013; Huang et al., 2013; Yang et al., 2012; Zhao et al., 2010b; Liu 

et al., 2010a; Chan et al., 2009). 

YAP has no DNA binding domain and therefore it acts through transcription factors such 

as TEAD, RUNX, Smads, p73, ERBB4, EGR-1, and TBX5 (Marzia et al., 2000; 

Murakami et al., 2005; Schuchardt et al., 2014; Vassilev et al., 2001; Ferrigno et al., 

2002; Yagi et al., 1999; Strano et al., 2001; Zagurovskaya et al., 2009; Kim et al., 2018). 

However, the TEAD proteins (TEAD1-4 in mammals) seem to be one of the most 

important factors through which YAP mediates its function (Santucci et al., 2015; 

Zanconato et al., 2015; Han et al., 2015; Hiemer et al., 2014; Diepenbruck et al., 2014; 

Shimomura et al., 2014; Hau et al., 2013; Pobbati and Hong, 2013; Chen et al., 2010b; 

Goulev et al., 2008; Wu et al., 2008; Zhang et al., 2008b; Chan et al., 2009). YAP 

functions both as a transcription co-activator and a co-repressor along with TEADs. 

YAP recruits the SWI/SNF (a chromatin remodeling protein complex) and/ or NCOA6 (a 

histone methyltransferase protein) to stimulate TEAD activity to act as co-activators of 

gene expression (Qing et al., 2014; Skibinski et al., 2014). On the other hand, the YAP-

TEAD can act as repressors by engaging deacetylase complexes (Valencia-Sama et 

al., 2015; Kim et al., 2015). Additional studies are required to understand the role of 

YAP and associated transcription factors in transcription regulation to control growth 

and development.  

1.4 Mechanosensory regulation of the Hippo signaling pathway 

Mechanical forces regulate important physiological events in organisms. These include 

pumping of the heart, dilation, and constriction of blood vessels, cell migration during 

development, stem cell differentiation, and wound healing. On a microscopic level, 
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metazoan cells organize themselves to form tissues and complex organs by adhering to 

both the proteinaceous extracellular matrix (ECM) through specialized junctions called 

focal adhesions (FA) and to other cells through cell-cell junctions called adherens 

junctions (AJ). It is through FAs and AJs that the cells perceive external forces to 

regulate their behavior. Abnormalities in sensing the environment can lead to various 

diseases. 

Focal adhesions: The ECM is composed of proteins (collagen and elastin), 

proteoglycans (perlecan and hyaluronan), and glycoproteins (fibronectins and laminins). 

Together these components confer tensile strength and elasticity and act as a basal 

layer for cell adhesion. Cells, on the other hand, have surface receptors such as 

integrins, syndecans, and CD44, which interact with the ECM for attachment. Integrin-

based adhesions are known to transmit actomyosin-generated forces to the ECM. 

Integrins are heterodimeric transmembrane proteins that connect ECM to the 

actomyosin filaments. On attachment to the ECM, the extracellular domain of integrins 

undergoes conformational changes to stably bind ECM components (Luo et al., 2007; 

Su et al., 2016). Then the cytoplasmic domains bind an important mechanosensory 

protein called talin, which connects them to actin filaments and leads to integrin 

activation (Calderwood et al., 2013; Hemmings et al., 1996). Integrin-bound talin 

undergoes mechanical strain induced conformational changes exposing binding sites 

for another key mechano-responsive protein called vinculin (Ziegler et al., 2008; del Rio 

et al., 2009). Subsequently, additional proteins are assembled at these focal adhesions 

that regulate important cellular behaviors such as cell migration, cell proliferation, and 

cell differentiation ((Ingber, 1997a; Wang et al., 1993; Ingber, 1997b; Shyy and Chien, 
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1997). These mechano-responsive integrin-actomyosin components in the focal 

adhesions can influence YAP activity. It has been shown that the rigidity of ECM leads 

to changes in F-actin/G-actin (F=filamentous, G=globular) ratio and alters actomyosin 

stress fiber formation (Das et al., 2016). Space restraint and soft ECM lowers the F/G 

actin ratio, which could be responsible for YAP inhibition. It has been shown reducing 

tension, either by inhibiting actomyosin formation (cytoskeletal inhibitory drugs) or by 

restricting space or by decreasing substrate stiffness, inhibit YAP activity (Cui et al., 

2015; Aragona et al., 2013; Dupont et al., 2011). Actin capping proteins such as cofilin, 

capZ, and the actin-severing protein gelsolin are also shown to regulate YAP activity 

(Aragona et al., 2013). One report suggests that this regulation of YAP through 

substrate rigidity and cell shape is independent of the Hippo signaling pathway 

(Aragona et al., 2013) whereas other reports implicate the role of Hippo pathway (Wada 

et al., 2011; Mana-Capelli et al., 2014). ECM components and soluble factors also 

regulate the Hippo signaling pathway by activation of Src kinase. It has been shown that 

ECM protein fibronectin activates focal adhesion kinase (FAK) to promote Src kinase 

activity which activates PI3K and PDK1 to inhibit LATS1/2 and promote YAP activity 

(Kim and Gumbiner, 2015). Active Src can directly phosphorylate LATS1/2 and 

decrease MOB binding to inactivate LATS1/2 (Si et al., 2017). Interestingly, Src can 

also phosphorylate and activate YAP (Y341, Y357, and Y394) in a non-canonical 

LATS1/2 independent manner (Li et al., 2016). Soluble components such as EGF and 

insulin also regulate LATS1/2 and YAP activity by activating Src and PI3K respectively 

(Fan et al., 2013; Straßburger et al., 2012). Serum components LPA and S1P also 

inhibit LATS1/2 and promote YAP activity by promoting by binding to GPCRs and 
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activating Rho kinase. Rho activation leads to actin stress fiber formation and 

stabilization. Rho activation inactivates LATS1/2 and promotes YAP activity. On the 

other hand, glucagon and epinephrine activate other GPCRs and acts as an antagonist 

of YAP (Miller et al., 2012; Yu et al., 2012). Another report implicates the role of an ECM 

proteoglycan called Agrin that transduces ECM stiffness through Lrp4-MuSK complex 

and regulate YAP activity (Chakraborty et al., 2017). 

Adherens junctions: Cell-cell contacts through adherens junctions are mediated by 

cadherins, which like integrins are transmembrane proteins consisting of an 

extracellular domain that interacts with the cadherins of adjacent cells and an 

intracellular domain that can directly bind actin and other actin-binding proteins such as 

α-catenin, β-catenin and vinculin (Niessen et al., 2011). Actomyosin filaments function 

together with the other components at adherens junctions to sense and transduce 

mechanical tension to regulate cell behavior (Hoffman and Yap, 2015). One well-studied 

protein complex that senses mechanical tension at the adherens junctions is the α-

catenin/vinculin complex. High mechanical tension promotes conformational changes in 

α-catenin that exposes vinculin binding sites thereby recruiting vinculin to adherens 

junctions (Hoffman and Yap, 2015). This conformational change in α-catenin is then 

stabilized by vinculin binding (Hoffman and Yap, 2015). Another α-catenin interacting 

protein at the zonula adherens called EPLIN has been shown to be important for 

mammalian cell reshaping by remodeling the zonula adherens in a tension-dependent 

manner (Taguchi et al., 2011). Similar to α-catenin, β-catenin can recruit vinculin to the 

adherens junctions and tension might be important in this process (Ray et al., 2013; 

Peng et al., 2010). LIM domain protein Zyxin has been studied with respect to force 
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transduction at adherens junctions. Under high mechanical tension Zyxin localizes to 

the adherens junctions and along with Ena/VASP it promotes F-actin bundling thus 

emerging as one of the central proteins in mechanotransduction (Hirata et al., 2008b; 

Oldenburg et al., 2015). Interestingly, Zyxin is implicated in regulation of the Hippo 

signaling kinase LATS1/2 (see below). Another LIM domain protein Jub also regulates 

LATS1/2 by sensing mechanical tension at adherens junctions (see below). 

Although these studies implicate YAP in responding to mechanical tension and 

regulating cell behavior, further investigation is required to understand the molecular 

mechanisms and the protein complexes involved in signal transduction. 

1.5 Role of LIM domain proteins in the Hippo pathway 

LIM domain proteins are a large family of proteins which have one or more LIM 

domains. Each LIM domain is cysteine-rich, and forms two zinc-fingers, and often 

functions as a protein-protein binding interface. These proteins modulate diverse 

cellular functions such as regulation of actin dynamics, integrin-dependent cell 

adhesion, determination of cell fate, regulation of gene expression and development. 

They have been shown to be overexpressed in breast, lung, blood and prostate cancer 

(Sang et al., 2014; Matthews et al., 2013; Kadrmas and Beckerle, 2004). 

Certain LIM domain proteins have been shown to be regulators of the Hippo signaling 

pathway. The Zyxin and Ajuba family of LIM domain proteins have been shown to be 

regulators of the Hippo signaling kinase LATS1/2. Drosophila has one member of each 

family (Zyxin and Jub) whereas mammals have three members of each family (Zyxin 

family: Zyxin, LPP, and TRIP6; Ajuba family: Ajuba, LIMD1, and WTIP).  Interestingly, 

various reports show that these proteins sense the mechanical tension in cells and 
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regulate the Hippo signaling pathway. The role of Zyxin, in particular, has been well 

studied with respect to the actin cytoskeleton and mechanotransduction. The N-

terminus of zyxin binds to FA proteins such as Ena/VASP and α-actinin (Niebuhr et al., 

1997; Golsteyn et al., 1997; Drees et al., 2000, 1999; Li and Trueb, 2001; Nix et al., 

2001). The C-terminus of Zyxin has 3 LIM domains which are important for its 

localization to FAs under high mechanical tension (Nix et al., 2001; Uemura et al., 

2011). Zyxin is shown to dissociate from FAs and relocate into the nucleus under cyclic 

stretch (Cattaruzza et al., 2004). It has also been shown that Zyxin promotes actin 

stress fiber formation in a tension dependent manner and induces thickening of actin 

stress fibers (Furman et al., 2007; Yoshigi et al., 2005; Hoffman et al., 2006; Hirata et 

al., 2008a). Zyxin is also a component of the adherens junctions and is responsible for 

linking actin stress fibers to the adherens junctions to regulate epithelial-mesenchymal 

transition (Sperry et al., 2010; Crawford and Beckerle, 1991). These findings implicate 

its role as a key mechanosensory protein in cells. Genetic screens in Drosophila 

identified zyxin as a negative regulator of the Hippo pathway (Rauskolb et al., 2011). 

Membrane protein Dachs stimulates Zyxin to bind to Warts and promote its degradation 

keeping Yorkie active (Rauskolb et al., 2011). Zyxin also antagonizes Expanded to 

promote Yki activity and tissue growth (Gaspar et al., 2015). Another report shows that 

Zyxin acts as a scaffold protein to recruit LATS2 and SIAH2 under the influence of TGF-

β and hypoxia. SIAH2 then promotes LATS2 ubiquitination and degradation which 

activates YAP (Gaspar et al., 2015). Another LIM domain protein Jub binds and inhibits 

Warts kinase when phosphorylated by the EGFR-Ras-MAPK signaling pathway 

activating Yki and promoting tissue growth in Drosophila. Similarly, in mammalian cells, 
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the EGFR-Ras-MAPK signaling pathway phosphorylates LIM domain protein WTIP to 

enhance its binding to LATS2 and WW45 (Reddy and Irvine, 2013). In Drosophila, the 

Ajuba family of LIM domain proteins called Jub inhibits Warts at adherens junctions in a 

tension-dependent manner to regulate the Hippo pathway and tissue growth (Rauskolb 

et al., 2014). Another report shows that cyclic stretch in mammalian cells activates JNK 

signaling pathways which results in LIMD1 phosphorylation and promotes its binding to 

and inhibition of LATS1/2 (Codelia et al., 2014). These findings raise key questions 

such as: (a) How do these LIM domain proteins sense mechanical tension and (b) What 

is the mechanism of LATS1/2 inhibition by LIM domain proteins. 

In my thesis, we wanted to understand how tension is sensed by mammalian cells to 

regulate the Hippo signaling pathway. Although it was known how tension regulates 

Hippo signaling in Drosophila, the factors important in the mammalian system were not 

well-studied. We identified LIM domain protein TRIP6 which acts as a sensor of 

mechanical tension at adherens junctions through vinculin and regulate LATS1/2 

activity. Our studies unravel a novel tension dependent regulation at the adherens 

junctions in mammalian cells that regulate the Hippo signaling pathway. 
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CHAPTER 2 

TRIP6 INHIBITS THE HIPPO SIGNALING PATHWAY IN RESPONSE TO TENSION 

AT ADHERENS JUNCTIONS 

2.1 Abstract 

The transcriptional co-activator YAP controls cell proliferation, survival, and tissue 

regeneration in response to changes in the mechanical environment. It is not known 

how mechanical stimuli such as tension are sensed and how the signal is transduced to 

control YAP activity. Here we show that the LIM domain protein TRIP6 acts as part of a 

mechanotransduction pathway at adherens junctions to promote YAP activity by 

inhibiting the LATS1/2 kinases. Previous studies showed that vinculin at adherens 

junctions becomes activated by mechanical tension. We show that vinculin inhibits 

Hippo signaling by recruiting TRIP6 to adherens junctions and stimulating its binding to 

and inhibition of LATS1/2 in response to tension. TRIP6 competes with MOB1 for 

binding to LATS1/2 thereby blocking MOB1 from recruiting the LATS1/2 activating 

kinases MST1/2. Together these findings reveal a novel pathway that responds to 

tension at adherens junctions to control Hippo pathway signaling.  

2.2 Introduction 

Tissue architecture and mechanical forces are major regulators of cell proliferation, and 

they play important roles during development, organ growth, and tissue regeneration 

(Heller and Fuchs, 2015; Mammoto et al., 2013; Huang and Ingber, 1999). The 

cytoskeleton, extracellular matrix, and cell-cell adhesion are critical for transmitting force 

between cells and across tissues (Vogel and Sheetz, 2006). The Hippo signaling 

pathway is a major regulator of cellular responses to mechanical inputs (Halder et al., 

2012; Sun and Irvine, 2016). The core Hippo pathway (Meng et al., 2016) consists of 
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two kinase modules: the first includes several Ste20-superfamily kinases (MST1/2 are 

the best characterized), which phosphorylate and activate the LATS1/2 kinases. 

MST1/2 phosphorylation of LATS1/2 is mediated by MOB1, which promotes association 

of MST1/2 with LATS1/2. LATS1/2 then phosphorylate and inhibit the transcriptional co-

activator YAP (and its homolog TAZ) by causing it to be sequestered in the cytoplasm 

or degraded. When in the nucleus, YAP associates with transcription factor TEAD to 

upregulate genes responsible for survival, proliferation, and stem cell maintenance. The 

growth promoting properties of YAP are frequently co-opted by cancer cells, in which 

YAP is often activated and overexpressed (Yu et al., 2015). Although the activity of both 

LATS1/2 and YAP are clearly regulated by mechanical inputs, how those inputs are 

sensed and the signals are transduced remain obscure. 

Experiments in Drosophila and mammalian cells revealed that Hippo pathway regulation 

of YAP is controlled by mechanical tension (Benham-Pyle et al., 2015; Codelia et al., 

2014; Rauskolb et al., 2014; Aragona et al., 2013). When cells experience high 

mechanical tension, YAP localizes to the nucleus and promotes cell proliferation. 

Conversely, low tension causes YAP to exit the nucleus and cells to arrest growth. 

Transmission of tension across tissues requires cell-cell adhesion such as that provided 

by cadherins (Mui et al., 2016). Tension experienced by cells can be generated by the 

cells themselves through actomyosin stress fibers or by externally imposed stretch or 

force (Halder et al., 2012). Studies in Drosophila indicate that tension within tissues 

decreases as cell density increases, and hence tension sensing could contribute to the 

density-dependent inhibition of cell growth, a property that is typically lost in cancer cells 

(Rauskolb et al., 2014). Perturbation of stress fibers, externally applied stretch, and cell 
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density all modulate LATS1/2 and YAP activity; however, the sensors and transduction 

pathways are not known. In Drosophila, the LIM domain protein Ajuba inhibits Warts 

(the LATS1/2 homolog) and recruits it to adherens junctions in a tension-dependent 

manner (Rauskolb et al., 2014). The mechanism by which Ajuba regulates Warts 

activity is not clearly understood. Although Zyxin and Ajuba LIM domain proteins have 

been shown to interact with LATS1/2 in mammalian cells (Das Thakur et al., 2010; Abe 

et al., 2006; Hirota et al., 2000), it is unclear whether Ajuba/Zyxin-related proteins 

function similarly in mammals (Sun and Irvine, 2013; Ma et al., 2016; Jagannathan et 

al., 2016; Codelia et al., 2014). Here we show that the human LIM domain protein 

TRIP6 acts as part of a mechanotransduction cascade at adherens junctions to regulate 

LATS1/2 in response to mechanical tension at cell-cell junctions.  

2.3 Results 

TRIP6 activates YAP through inhibition of LATS1/2 

Although TRIP6 is overexpressed in various cancers where it promotes proliferation and 

invasion (Chastre et al., 2009; Grunewald et al., 2013; Fei et al., 2013), prior studies 

had not connected TRIP6 to the Hippo signaling pathway. We previously identified 

TRIP6 along with several other LIM domain proteins as LATS2 binding partners using 

tandem affinity purification and mass spectrometry (Paramasivam et al., 2011). To 

determine which of these LIM domain proteins (TRIP6, FHL2 and WTIP) could regulate 

the YAP phosphorylation, we co-expressed MST2, LATS2 and YAP2 with or without 

TRIP6, FHL2 and WTIP and looked at LATS2 mediated YAP2 phosphorylation. We saw 

that TRIP6 expression reduced YAP phosphorylation compared to the control (Figure 

2.1A). To validate the LATS2-TRIP6 interaction, we performed co-immunoprecipitation 
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experiments. LATS2 was pulled down in TRIP6 immunoprecipitates when both proteins 

were overexpressed (Figure 2.1B). In addition, endogenous LATS1 was present in 

TRIP6 immune complexes isolated from MCF10A cells (Figure 2.1C). Like its related 

family members (Zyxin, LPP, Ajuba, WTIP, and LIMD1), the carboxy-terminal half of 

TRIP6 consists of 3 conserved LIM domains (Figure 2.1B). Truncation experiments 

showed that LATS2 binding maps to the C-terminal LIM domain half of TRIP6 (Figure 

2.1B). We next tested which parts of LATS2 interacted with TRIP6. TRIP6 bound to the 

N-terminal region of LATS2 and specifically interacted with two segments (amino acids 

376-397 and 625-644) (Figure 2.1D) previously identified to interact with Ajuba and 

Zyxin (Abe et al., 2006; Hirota et al., 2000).  

To determine whether TRIP6 regulates LATS1/2 activity, we examined the effects of 

TRIP6 overproduction and loss of function. Overexpression of TRIP6 in HEK293A cells 

reduced endogenous LATS1/2 activity as judged by probing the two sites of activating 

phosphorylation in LATS1, T1079 and S909 (which correspond to T1041 and S872 in 

LATS2) (Figure 2.1E & G) (note that T1079 is phosphorylated by MST1/2 and S909 is 

an autophosphorylation site). In contrast, TRIP6 overexpression did not affect MST2 

activating phosphorylation (Figure 2.1I), suggesting that TRIP6 may regulate the ability 

of LATS1/2 to be phosphorylated by MST1/2. CRISPR mediated deletion of TRIP6 

(TRIP6-KO) in HEK293A cells (Figure 2.1F & H) or shRNA mediated knockdown of 

TRIP6 in MCF10A cells (Figure 2.2A) increased LATS1/2 activating phosphorylation 

levels. Together these results show that TRIP6 acts to inhibit LATS1/2 activity. 

Because LATS1/2 phosphorylate and inhibit YAP nuclear localization, stability, and 

activity, we tested the effect of modulating TRIP6 levels on YAP. Overexpression of 
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TRIP6 in HEK293A cells inhibited LATS1/2 phosphorylation of YAP on S127 (Figure 

2.1E & G) and increased expression of YAP target genes (Figure 2.1J). In contrast, 

reduced levels of TRIP6 inhibited YAP function. Specifically, shRNA mediated 

knockdown of TRIP6 in MCF10A cells reduced expression of YAP target genes (Figure 

2.2B) and diminished YAP nuclear localization (Figure 2.2C). These cells also had 

reduced levels of YAP protein (Figure 2.2D), presumably caused by LATS1/2 

phosphorylation-dependent degradation (Liu et al., 2010b; Zhao et al., 2010b). TRIP6-

KO HEK293A cells showed increased YAP S127 phosphorylation (Figure 2.1F & H), 

reduced expression of YAP target genes (Figure 2.1K), and reduced YAP nuclear 

localization (Figure 2.1L). Consistent with TRIP6 acting through LATS1/2 to affect YAP 

localization, depletion of LATS1/2 by siRNA in TRIP6-KO cells restored YAP nuclear 

localization (Figure 2.2E-F). Our observation that MCF10A, but not HEK293A, cells had 

reduced levels of YAP when TRIP6 was depleted (or eliminated) may reflect cell type 

differences in YAP degradation in response to LATS1/2 dependent phosphorylation. 

The TRIP6-KO HEK293A cells also displayed a defect in cell-cell adhesion as judged by 

the presence of frequent gaps between cells even at high density that were not 

observed in parental HEK293A cells (Figure 2.1L, Figure 2.2G).  The cell-cell adhesion 

and YAP localization defect in TRIP6-KO HEK293A cells were rescued by re-

expression of TRIP6 (Figure 2.2G-H). MCF10A cells knocked down for TRIP6 with 

shRNA did not show obvious cell-cell adhesion defects or changes in E-cadherin 

staining (Figure 2.8C), perhaps due to cell type differences or the presence of residual 

TRIP6. Overall, these results show that TRIP6 inhibition of LATS1/2 promotes YAP 

activity. 
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Figure 2.1 TRIP6 promotes YAP activity by inhibiting LATS1/2. 

(A) MST2, LATS2 and YAP2 were co-expressed with or without TRIP6, FHL2 and WTIP 

in HEK293 cells and lysates were analyzed using western blotting for MST2, LATS2, 

YAP2 and YAP S127 inhibitory phosphorylation. YAP2 S127 phosphorylation was 

measured relative to YAP2 levels. (B) Full length (WT), the amino-terminal half (1-277), 

or the carboxy-terminal half (278-476) of TRIP6 were tested for binding to LATS2 by 

immunoprecipitation. FLAG-TRIP6 variants were co-expressed with LATS2-GFP in 

HEK293 cells, anti-FLAG or control (IgG) antibodies were used to isolate immune 

complexes. Immune complexes and lysates were probed by western blotting for LATS2-

GFP and FLAG-TRIP6. Schematic diagram depicts TRIP6 domains (NES: Nuclear 

Export Signal; LIM: LIM domain; PDZ: PDZ domain-binding motif). (C) Lysates from 

MCF10A cells were subjected to immunoprecipitation using anti-TRIP6 or control (IgG) 

antibodies, and immune complexes and lysates were probed for TRIP6 and LATS1. (D) 

FLAG-TRIP6 was tested for binding to various LATS2-GFP deletion mutants as 

described in part (B). Schematic diagram of LATS2 shows MOB1 binding domain and 

the autophosphorylation (S872) and MST1/2 phosphorylation sites (T1041) in the 

kinase domain. The regions marked in green depict TRIP6 binding sites on LATS2. (E) 

Lysates from HEK293A cells transfected with control or FLAG-TRIP6 plasmid was 

analyzed by western blotting using the indicated antibodies (quantification is shown in 

(G)). (F) Lysates from control (WT) or CRISPR generated TRIP6 null (TRIP6-KO) 

HEK293A cells were analyzed by western blotting using the indicated antibodies 

(quantification shown in (H)). (G) The relative levels of LATS1 activating 

phosphorylation (pLATS1-1079, 909) and YAP S127 inhibitory phosphorylation from (E) 
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were measured relative to LATS1 and YAP levels respectively. (Mean ± SD; n=3; 

**P≤0.01, ***P≤0.001, T-test). (H) The levels of LATS1 activating phosphorylation and 

YAP inactivating phosphorylation in part (F) were quantified (Mean ± SD; n=3; *P≤0.05, 

T-test). (I) GFP-MST2 was expressed with or without FLAG-TRIP6 in HEK293 cells and 

the levels of MST2, MST2 activating phosphorylation (pMST2-T180), and FLAG-TRIP6 

were measured by western blotting with the indicated antibodies. (Mean ± SD; n=3; 

n.s.≥0.05, T-test). (J) TRIP6 was overexpressed in HEK293A cells and the levels of 

TRIP6, and YAP target gene expression was analyzed using RT-qPCR. (Mean ± SD; 

n=3; *P≤0.05, **P≤0.01, ****P≤0.0001, T-test). (K) The levels of YAP target gene 

expression were analyzed using RT-qPCR in control (WT) and TRIP6-KO HEK293A 

cells. (Mean ± SD; n=3; ***P≤0.001, T-test). (L) Control (WT) and TRIP6-KO HEK293A 

cells were stained for YAP and TRIP6. Merged image shows YAP (green), TRIP6 (red), 

and DNA (blue). Quantification of at least 100 cells is shown (Mean ± SD; n=3; 

****P≤0.0001, Fisher’s test). Scale bar=20µm. 
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Figure 2.2 TRIP6 knockdown in MCF10A cells activates hippo signaling and 

TRIP6-KO knockout cells are rescued by FLAG-TRIP6 expression. 

(A) Lysates from MCF10A cells infected with lentivirus with a control shRNA 

(shEGFP) or a mix of two different shRNA against TRIP6 (shTRIP6-1 and shTRIP6-4) 

were analyzed by western blotting using the indicated antibodies, and the levels of 

LATS1 activating phosphorylation was quantified (Mean ± SD; n=3; **P≤0.01, T-test). 

(B) MCF10A cells were infected with lentivirus carrying control shRNA (shEGFP), or 

two different shRNA against TRIP6 (shTRIP6-1, shTRIP6-4) and the levels of TRIP6 

and YAP target gene expression was analyzed using RT-qPCR (Mean ± SD; n=3; 

**P≤0.01, ***P≤0.001, T-test). (C) MCF10A cells were infected with lentivirus carrying 

control shRNA (shEGFP), or a mix of two different shRNA against TRIP6 (shTRIP6-1 

and shTRIP6-4) and were stained for YAP and TRIP6. Merged image shows YAP 

(green), TRIP6 (red), and DNA (blue). Quantification of YAP nuclear localization at 

least 100 cells is shown. (Mean ± SD; n=3; ****P≤0.0001, Fisher’s test). Scale 

bar=20µm. (D) YAP, TRIP6, and tubulin levels were measured by western blotting in 

MCF10A cells infected with lentivirus carrying control shRNA (shEGFP), or shRNA 

against TRIP6 (shTRIP6-1) (Mean ± SD; n=3; **P≤0.01, T-test). (E) LATS1 and 

LATS2 were depleted from WT and TRIP6-KO 293A cells using siRNA as described 

(Figure 2.5B) and were stained for YAP. Merged image shows YAP (green) and DNA 

(blue). Quantification of YAP nuclear localization at least 100 cells is shown (Mean ± 

SD; n=3; ****P≤0.0001, Fisher’s test). (F) The lysates from Figure 2.2E were probed 

by western blotting with LATS1, LATS2, TRIP6, and tubulin antibodies to test 

knockdown efficacy. (G) Control (WT) and TRIP6-KO HEK293A cells were 
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transfected with 200ng of control and FLAG-TRIP6 plasmids. (Note that 200ng of 

FLAG-TRIP6 plasmid restores approximate wild-type levels (see Figure 2.2H) of 

TRIP6 expression). After 48 hours of transfection, cells were stained using anti-YAP 

and TRIP6 antibodies by immunofluorescence. Quantification of YAP nuclear 

localization is shown (Mean ± SD; n=3; ****P≤0.0001, Fisher’s test). Scale bar=20µm. 

We compare TRIP6-KO cells to TRIP6-KO cells rescued by FLAG-TRIP6 plasmid 

(rescue). (H) Different amounts (50, 100, 150, 200ng) of FLAG-TRIP6 plasmid were 

transfected into HEK293A TRIP6-KO cells and TRIP6 levels in lysates were analyzed 

by western blotting using anti-TRIP6 antibodies and compared to those in control 

HEK293A (WT) cells. 200ng of FLAG-TRIP6 plasmid (marked with an asterisk) was 

selected to perform the rescue experiment described in Figure 2.2G. 
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TRIP6 inhibits LATS1/2 by blocking binding to MOB1 

We next investigated the mechanism for how TRIP6 inhibits LATS1/2. TRIP6-related 

LIM domain proteins have been shown to bind and inhibit LATS (Reddy and Irvine, 

2013; Rauskolb et al., 2014; Hirota et al., 2000; Abe et al., 2006; Das Thakur et al., 

2010; Rauskolb et al., 2011), however, it is not clear how they regulate LATS1/2 activity. 

Although zyxin was shown to promote degradation of LATS1/2 in response to hypoxia 

(Jagannathan et al., 2016), we did not observe any changes in LATS1 levels when 

TRIP6 levels were altered suggesting that TRIP6 uses a different mechanism. Because 

one of the TRIP6 binding sites in LATS2 (amino acids 625-644) overlaps with the 

binding site for its activator MOB1 (amino acids 595-662) (Ni et al., 2015), we wondered 

if TRIP6 and MOB1 compete for binding to LATS1/2. This mechanism would be 

consistent with our observations that TRIP6 inhibits the ability of MST1/2 to 

phosphorylate LATS1/2 because MOB1 activates LATS1/2 by promoting its association 

with and phosphorylation by MST1/2 (Ni et al., 2015). We first examined if TRIP6 could 

inhibit LATS1/2-MOB1 binding in vivo. We found that overexpression of full-length 

TRIP6 (but not a version of TRIP6 (1-277) lacking the LATS1/2 binding LIM domains) 

reduced LATS2-MOB1A association in HEK293 cells (Figure 2.3A). To determine 

whether TRIP6 directly competes with MOB1A for binding to LATS2, competition 

experiments were carried out using purified recombinant proteins. Initial results 

demonstrated that GST-TRIP6 bound directly to MBP-LATS2 but not MBP alone (Figure 

2.3B, compare lanes 1 and 3). Competition experiments showed that MOB1A could 

compete with TRIP6 for binding to LATS2. 6HIS-MOB1A bound to MBP-LATS2 and 

inhibited GST-TRIP6 binding, with the highest levels of MOB1A reducing TRIP6-LATS2 
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binding to background levels (Figure 2.3B, lanes 3-6). Addition of non-specific 

competitor (BSA), at the same level as the highest amount of MOB1A used (Figure 2.4), 

did not cause any reduction in TRIP6-LATS2 binding (Figure 2.3B, lane 7). Together, 

these results show that that TRIP6 and MOB1 compete for binding to LATS2 and that 

TRIP6 likely inhibits LATS1/2 activity at least in part by blocking MOB1 binding. 
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Figure 2.3 TRIP6 competes with MOB1 for binding to LATS2. 

(A) LATS2-GFP and Myc-MOB1A were overexpressed in HEK293 cells with or without 

co-overexpression of full-length FLAG-TRIP6 and FLAG-TRIP6 1-277. Myc-MOB1A 

was immunoprecipitated using anti-Myc antibodies and immune complexes were 

assayed for Myc-MOB1A and LATS2-GFP levels. Levels of FLAG-TRIP6, FLAG-TRIP6 

1-277, Myc-MOB1A, and LATS2-GFP in the lysate are also shown. The levels of 
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LATS2-GFP in immune complexes relative to the level of Myc-MOB1A are shown in the 

graph (Mean ± SD; n=3; **P≤0.01, T-test). (B) Competitive binding experiments were 

done using purified recombinant MBP-LATS2, GST-TRIP6, and 6His-MOB1A. MBP-

LATS2 bound to maltose beads was incubated with GST-TRIP6 with or without 

increasing amounts of 6His-MOB1A, and the levels of each protein bound to MBP-

LATS2 on the beads at the end of the experiment was determined by western blotting. 

The levels of input proteins are shown (lysate). The binding of 6His-MOB1A and GST-

TRIP6 to MBP alone and the use BSA as a competitor instead of 6His-MOB1A are 

shown as controls. The numbers at the bottom are referred to in the text. 
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Figure 2.4 Coomassie-stained gel showing the amounts of BSA and highest 

amount of HIS-MOB1A used in Figure 2.3B. 
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TRIP6 modulates LATS1/2 activity and localization in response to tension at cell-

cell junctions 

To investigate what regulatory inputs might control TRIP6 inhibition of LATS1/2, we 

examined the localization of each protein. Endogenous TRIP6 and LATS1 co-localize to 

cell-cell junctions in MCF10A (Figure 2.5A, Figure 2.6A) and to a lesser extent in 

HEK293A (Figure 2.6B) cells. Although we have been unable to find LATS2 antibodies 

capable of detecting the endogenous protein, GFP-LATS2 fusions also localize to cell-

cell junctions (Paramasivam et al., 2011). TRIP6 has been previously reported to 

localize to both cell-cell junctions (adherens junctions) (Guo et al., 2014) and to focal 

adhesions (Zhao et al., 1999; Wang et al., 1999). Although we could faintly observe 

TRIP6 at focal adhesions in MCF10A cells at low density or at the edge of monolayers, 

at densities typically used in this study (confluent but still proliferating), TRIP6 was 

primarily at adherens junctions, and we saw little focal adhesion staining for TRIP6 or 

the focal adhesion marker FAK (Figure 2.6C). LATS1 was not observed at focal 

adhesions in MCF10A cells at any low cell density (Figure 2.6D). We next assessed the 

mutual dependence of LATS1 and TRIP6 localization. Knockdown of TRIP6 in MCF10A 

cells (Figure 2.5A; Figure 2.6E) reduced localization of LATS1 to cell junctions. Deletion 

of TRIP6 in HEK293A cells (Figure 2.6B) also caused reduced localization of LATS1 to 

cell-cell junctions, although because of the reduced cell-cell adhesion in these cells, it is 

possible that effects on LATS1 localization could be due to defects in cell-cell junctions. 

When LATS1/2 were knocked down in MCF10A cells, TRIP6 remained at cell-cell 

junctions (Figure 2.5B; Figure 2.6F), but its localization was more punctate and less 

smooth, possibly reflecting a transition to a more mesenchymal state (Zhang et al., 
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2008a). E-cadherin staining in TRIP6 and LATS1/2 knockdown cells looked similar to 

that in control cells (Figure 2.8C) suggesting that cell-cell adhesion remains intact, but 

we cannot rule out more subtle effects on junction architecture. Together these results 

show that TRIP6 is important for LATS1/2 localization to cell junctions. 

We next examined whether recruitment of TRIP6 and LATS1 to cell junctions is 

regulated by stimuli that control LATS1/2 activity. Both TRIP6 and LATS1 localized to 

cell-cell junctions in cells that were confluent but still proliferating. However, in highly 

dense non-proliferating cells TRIP6 and LATS1 no longer localized to cell-cell junctions 

(Figure 2.5C, Figure 2.6B), despite unchanged levels of both proteins (Figure 2.5D), 

and cell-cell junctions remaining intact as judged by E-cadherin staining (Figure 2.8B). 

Interestingly we also observed a reduction in TRIP6-LATS1 binding in MCF10A cells at 

high cell density (Figure 2.5D), consistent with the increased LATS1/2 activity observed 

under these conditions (Meng et al., 2015). How cell density controls TRIP6-LATS1/2 

binding and localization is not clear. However, a study in Drosophila tissue showed that 

tension at cell-cell junctions is reduced as cell density increases (Rauskolb et al., 2014). 

Therefore, we tested whether increasing tension at cell-cell junctions in dense cultures 

would restore localization of TRIP6 and LATS1 to cell-cell junctions. To do this, we 

examined TRIP6 and LATS1 localization in dense cultures grown on flexible PDMS 

substrates before and after a static stretch for 2 hours.  We observed that stretch 

increased TRIP6-LATS1 binding (Figure 2.5E), localization of both proteins to cell-cell 

junctions (Figure 2.5F), and YAP activity (Figure 2.6G). Both tension dependent 

recruitment of LATS1 to cell-cell junctions and YAP activation in dense monolayers 

following stretch depended on TRIP6 (Figure 2.5G-H). Together these results show that 
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tension can trigger YAP activation through TRIP6 by increasing TRIP6 recruitment to 

cell-cell junctions, and TRIP6 binding to LATS1.  

We also tested whether loss of tension across confluent (but not dense) monolayers of 

cells could trigger loss of LATS1-TRIP6 binding and co-localization at cell-cell junctions. 

Treatments that inhibit stress fibers such as type II myosin inhibition (Blebbistatin), Rho 

kinase inhibition (Y27632), or serum starvation are known to reduce tension at cell 

junctions (Yonemura et al., 2010). All of these treatments inhibited both LATS1-TRIP6 

binding and cell-cell junction localization, as did the complete elimination of F-actin 

using Latrunculin B (Figure 2.7A-C, Figure 2.8A). These treatments (with the exception 

of Latrunculin B) did not obviously affect cell-cell adhesion and E-cadherin localization 

(Figure 2.8B). To reduce tension at cell junctions by blocking force transmission 

between cells, we disrupted cadherin complexes by treating cells with EGTA and found 

that this treatment also inhibited LATS1-TRIP6 binding and localization to cell-cell 

junctions (Figure 2.7A-C, Figure 2.8A). Together these observations suggest that TRIP6 

responds to tension at cell-cell junctions to regulate LATS1 and YAP activity. 
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Figure 2.5 TRIP6-LATS binding and localization to cell-cell junctions is regulated 

by tension. 

(A) MCF10A cells were infected with lentivirus carrying control shRNA (shEGFP), or a 

mix of two different shRNA against TRIP6 (shTRIP6-1 and shTRIP6-4) and were 

stained for TRIP6 and LATS1. Merged images show LATS1 (green), TRIP6 (red) and 

DNA (blue) (quantification of LATS1 localization at cell-cell junctions is shown in Figure 

2.6E). Scale bar=20µm. (B) LATS1 and LATS2 were knocked down using siLATS1 and 

siLATS2 SMARTPools in MCF10A cells. MCF10A control cells were treated with control 

siRNA (siControl) against fire fly luciferase. Cells were stained with TRIP6 and LATS1 

as in (A) (quantification of TRIP6 localization at cell-cell junctions is shown in Figure 

2.6F). Scale bar=20µm. (C) MCF10A cells were grown to high density and were stained 

for TRIP6 and LATS1 as in (A). Scale bar=20µm. (D) Cells were grown as in (C), then 

lysed and anti-TRIP6 antibodies were used to isolate immune complexes. Immune 

complexes and lysates were probed by western blotting for LATS1 and TRIP6. 

Quantification is shown. (Mean ± SD; n=3; *P≤0.05, T-test). (E) MCF10A cells grown at 

high density on PDMS membranes and were stretched (or not) at 17% elongation for 2 

hours and lysed while under tension. Anti-TRIP6 antibodies were used to isolate 

immune complexes. Immune complexes and lysates were probed by western blotting 

for LATS1 and TRIP6. Quantification is shown. (Mean ± SD; n=3; *P≤0.05, T-test). (F) 

Cells were treated as in (E), fixed while under tension, and stained for TRIP6 and 

LATS1 as in (A). Scale bar=20µm. (G) MCF10A cells infected with lentivirus carrying 

control shRNA (shEGFP), or a mix of two different shRNA against TRIP6 (shTRIP6-1 

and shTRIP6-4), were grown at high density on PDMS membranes and were stretched 
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or not (only stretched cells shown) at 17% elongation for 2 hours, fixed while under 

tension, and were stained for TRIP6 and LATS1 as in (A). Scale bar=20µm. (H) Cells 

were treated as in (G) and YAP target gene (CTGF and Cyr61) and TRIP6 expression 

were analyzed using RT-qPCR. (Mean ± SD; n=3; *P≤0.05, **P≤0.01, T-test). (I) TRIP6 

expression levels in (H) in control (shEGFP) and TRIP6 (shTRIP6) knockdown cells just 

prior to stretch were analyzed using RT-qPCR. (Mean ± SD; n=3; *P≤0.05, T-test). 
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Figure 2.6 Regulation of TRIP6 and LATS1 localization and binding. 

(A) MCF10A cells were stained with TRIP6 and LATS1 and the image was acquired 

with a confocal microscope. Merged images show LATS1 (green), TRIP6 (red) and 

DNA (blue). Scale bar=20µm. The LATS1-TRIP6 colocalization was confirmed by line 

scan analysis of the pixel intensity in different fluorescent channels. (B) HEK293A cells 

(WT and TRIP6-KO) were grown and TRIP6 and LATS1 intracellular localization were 

determined by immunofluorescence using anti-TRIP6 and anti-LATS1 antibodies. 

HEK293A (WT) cells were also grown at high density (High density) and treated 

similarly. Scale bar=20µm. (C) MCF10A cells were grown at low density and until 

confluency and stained for TRIP6 and FAK. Merged images show FAK (green), TRIP6 

(red) and DNA (blue). (D)  MCF10A cells were grown at low density and stained for 

LATS1 and vinculin. Merged images show LATS1 (green), vinculin (red) and DNA 

(blue). (E) Quantification of LATS1 at cell-cell junctions in MCF10A cells depleted of 

TRIP6 (see Figure 2.5A). The intensity of LATS1 was measured at individual cell-cell 

junctions (n≥48) (Mean ± SD; n=3; **P≤0.01, T-test). (F) Quantification of TRIP6 at cell-

cell junctions in MCF10A cells depleted of LATS1 and LATS2 (see Figure 2.5B). The 

average intensity of TRIP6 was measured at individual cell-cell junctions (n≥48) (Mean 

± SD; n=3; n.s.≥0.05, T-test). (G) MCF10A cells grown at high density on PDMS 

membranes and were stretched (or not) at 17% elongation for 2 hours, RNA was 

isolated and YAP target gene expression was analyzed using RT-qPCR. (Mean ± SD; 

n=3; **P≤0.01, ****P≤0.0001, T-test). 
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Figure 2.7 Perturbations of junctions and f-actin reduce TRIP6-LATS1 binding 

and localization to cell-cell junctions. 

(A) MCF10A cells were either not treated or treated separately with Latrunculin B, 

Blebbistatin, EGTA, serum starvation, and Y27632, and were stained for TRIP6 and 

LATS1. Merged images show LATS1 (green), TRIP6 (red) and DNA (blue). Scale 

bar=20µm. (B) Cells were treated as in (A), then lysed and anti-TRIP6 antibodies 

were used to isolate immune complexes. Immune complexes and lysates were 

probed by western blotting for LATS1 and TRIP6. (C) Quantification of (B) is shown. 

(Mean ± SD; n=3; *P≤0.05, **P≤0.01, T-test). 
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Figure 2.8 Regulation of TRIP6 and LATS1 localization in HEK293A cells and E-

cadherin staining in MCF10A cells after various treatments, TRIP6, LATS1 and 

2, and vinculin knockdown. 

(A) HEK293A cells were either not treated (control) or treated separately by serum 

starvation (no serum), Latrunculin B, Blebbistatin, and EGTA, then TRIP6 and LATS1 

intracellular localization were determined by immunofluorescence using anti-TRIP6 

and anti-LATS1 antibodies. Scale bar=20µm. (B) MCF10A cells were either not 

treated (control) or treated separately by growth to high density, serum starvation, 

Latrunculin B, Blebbistatin, or Y27632 treatment, and stained using anti-E-cadherin 

antibodies by immunofluorescence. Scale bar=20µm. (C) TRIP6, vinculin and LATS1 

and LATS2 were depleted from MCF10A cells as described (Figure 2.2A,  Figure 

2.9D, and Figure 2.5B) and stained using anti-E-cadherin antibodies by 

immunofluorescence. Scale bar=20µm. (D) The lysates from Figure 2.8C were 

probed by western blotting for LATS1, TRIP6 and vinculin antibodies to test 

knockdown efficacy. 
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TRIP6 is a part of the mechanoresponsive complex at adherens junctions  

We next investigated whether TRIP6 could be part of a mechano-responsive complex at 

cadherin-catenin based adherens junctions (Huveneers and de Rooij, 2013). Previous 

studies showed that TRIP6 localizes to adherens junctions, and its association with the 

cadherin complex is dependent on engagement between the extracellular domains of 

cadherins on neighboring cells (Guo et al., 2014). How TRIP6 interacts with the 

cadherin complex is not known. Interestingly, two high throughput two-hybrid studies 

detected a binding interaction between TRIP6 and the adherens junction protein vinculin 

(Yu et al., 2011; Rual et al., 2005). Consistent with the high throughput studies, we 

detected vinculin in TRIP6 immune-complexes (Figure 2.9A). Vinculin and TRIP6 are 

known to respond to mechanical cues at focal adhesions (Schiller et al., 2011; Kuo et 

al., 2011; Bays and DeMali, 2017). In addition, vinculin localizes to adherens junctions 

in response to mechanical tension (Thomas et al., 2013; Leerberg et al., 2014; 

Huveneers et al., 2012; Yonemura et al., 2010). To test whether vinculin was involved 

with TRIP6 in tension dependent regulation of Hippo signaling, we examined whether 

vinculin localization to cell-cell junctions in MCF10A cells was tension dependent and 

whether vinculin regulated Hippo signaling. As with TRIP6, we observed vinculin at focal 

adhesions in MCF10A cells at low density or at the edge of monolayers, but at densities 

used in this study (confluent but still proliferating), vinculin was concentrated at 

adherens junctions (Figure 2.10A).  Thus, we infer that TRIP6 is primarily interacting 

with vinculin at adherens junctions under these conditions. At high cell density, vinculin 

localization to adherens junctions was lost but could be restored by stretch (Figure 

2.9B-C), as observed for TRIP6 and LATS1. Also, like TRIP6 and LATS1 treatments 
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that disrupt tension in confluent but proliferating MCF10A cells reduce vinculin 

localization to cell-cell junctions (Figure 2.9B). To test whether vinculin regulated Hippo 

signaling, we knocked down vinculin using siRNA in MCF10A cells. Depletion of vinculin 

resulted in increased LATS1 and YAP phosphorylation (Figure 2.9D) and reduced YAP 

nuclear localization (Figure 2.9E) and activity (Figure 2.9F) (as judged by a reduction in 

YAP target genes CTGF and Cyr61). This same effect on YAP was observed using two 

different siRNAs (Figure 2.10E-F). Like TRIP6, vinculin was required for stretch-induced 

YAP-dependent gene expression (Figure 2.9G). Knockdown of vinculin in HEK293A 

cells also reduced YAP activity (Figure 2.10G) and this reduction could be rescued by 

expression of chicken vinculin (Figure 2.10G-H). Together these results show that 

vinculin interacts with TRIP6 and, like TRIP6, participates in tension dependent 

regulation of Hippo signaling. 
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Figure 2.9 Vinculin interacts with TRIP6 and regulates LATS and YAP activity. 

(A) MCF10A cells were lysed and anti-TRIP6 or control (IgG) antibodies were used to 

isolate immune complexes. Immune complexes and lysates were probed by western 

blotting for vinculin and TRIP6. (B) MCF10A cells were either not treated (control) or 

treated separately by growth to high density, serum starvation, Latrunculin B, Blebbistatin, 

EGTA, or Y27632 treatment, and stained using anti-vinculin antibodies by 

immunofluorescence. Scale bar=20µm. (C) MCF10A cells grown at high density on 

PDMS membranes and were stretched (or not) at 17% elongation for 2 hours and fixed 

while under tension and stained for vinculin. Scale bar=20µm. (D) Vinculin was knocked 

down using two different siRNAs or control siRNA in MCF10A cells and the cell lysates 

were probed by western blotting for phospho-LATS1 (T1079 and S909), phospho-YAP 

(S127), LATS1, YAP, vinculin, and tubulin antibodies and the relative levels quantified 

(Mean ± SD; n=3; **P≤0.01, T-test). (E) Vinculin was knocked down as described in (D) 

and cells were stained for YAP and vinculin. Merged image shows YAP (green), vinculin 

(red), and DNA (blue). Quantification of at least 100 cells is shown (Mean ± SD; n=3; 

***P≤0.001, Fisher’s test). Scale bar=20µm. (F) Vinculin was knocked down as described 

in (D) and the levels of vinculin and YAP target gene expression was analyzed using RT-

qPCR (Mean ± SD; n=3; ***P≤0.001, ****P≤0.0001, T-test). (G) Vinculin was knocked 

down in MCF10A cells as described in (D), grown at high density on PDMS membranes 

and cells were stretched (or not) at 17% elongation for 2 hours and the levels of vinculin 

and YAP target gene expression was analyzed using RT-qPCR (Mean ± SD; n=3; 

***P≤0.001, ****P≤0.0001, T-test). 
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Figure 2.10 FAK and vinculin co-staining in MCF10A cells, vinculin knockdown 

efficacy, LATS1 and vinculin co-staining in MCF10A cells, the effect of TRIP6 

knockdown on vinculin, the effect of vinculin knockdown by single siRNAs on 

YAP activity and localization and rescue of siRNA knockdown. 

(A) MCF10A cells were grown at low density and until confluency and stained using 

FAK and vinculin antibodies by immunofluorescence. Scale bar=20µm. (B) Vinculin 

was knocked down using two different stealth siRNAs in MCF10A cells. MCF10A 

control cells were treated with control siRNA. Lysates were probed by western blotting 

for vinculin and tubulin. The levels of vinculin were determined. (Mean ± SD; n=3; 

***P≤0.001, T-test) (C) Vinculin was knocked down as described in (B) and cells were 

stained using vinculin and LATS1 antibody. Merged images show LATS1 (green), 

vinculin (red) and DNA (blue). Scale bar=20µm. (D) TRIP6 was depleted from 

MCF10A cells as described in Figure 2.2A and grown at high density on PDMS 

membranes and that was stretched (or not) at 17% elongation for 2 hours, fixed while 

under tension, and stained for vinculin. Merged images show vinculin (green) and 

DNA (blue). Scale bar=20µm. (E) Vinculin was knocked down by single stealth 

siRNAs (7662 and 1260) in MCF10A cells and stained using vinculin and YAP 

antibody. Merged images show YAP (green), vinculin (red) and DNA (blue). 

Quantification of YAP nuclear localization at least 100 cells is shown (Mean ± SD; 

n=3; **P≤0.01, ***P≤0.001, Fisher’s test). Scale bar=20µm. (F) Vinculin was knocked 

down as described in (E) and the levels of vinculin, and YAP target gene expression 

was analyzed using RT-qPCR. (Mean ± SD; n=3; **P≤0.01, ***P≤0.001, T-test). (G) 

Vinculin was knocked down as described (Figure 2.10E) in HEK293A cells. Control 
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and vinculin depleted HEK293A cells were transfected with 150ng of control and 

EGFP-vinculin (chicken) plasmids. (Note that 150ng of EGFP-vinculin plasmid 

restores approximate wild-type levels (see Figure 2.10H) of vinculin expression). After 

48 hours of transfection, the levels of vinculin, and YAP target gene expression was 

analyzed using RT-qPCR. We compare vinculin depleted cells to vinculin depleted 

cells rescued by EGFP-vinculin (rescue). (Mean ± SD; n=3; *P≤0.05, **P≤0.01, 

****P≤0.0001, T-test).  (H) Vinculin was knocked down as described in Figure 2.9D in 

HEK293A cells. Different amounts (50, 150, 250, 350ng) of EGFP-vinculin plasmid 

were transfected into the vinculin depleted cells and vinculin levels in lysates were 

analyzed by western blotting using vinculin antibody and compared to those in control 

HEK293A cells. 150ng of EGFP-vinculin plasmid (marked with an asterisk) was 

selected to perform the rescue experiment described (Figure 2.10G). 
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We then investigated whether vinculin and TRIP6 function together to regulate Hippo 

signaling in response to tension. Several lines of evidence suggested that vinculin acts 

upstream of TRIP6 and LATS1/2 in response to tension. First, when vinculin was 

depleted by siRNA, TRIP6 and LATS1 localization to cell-cell junctions was reduced 

(Figure 2.11A; Figure 2.10B-C), without an obvious effect on E-cadherin staining (Figure 

2.8C). In contrast, stretch-induced recruitment of vinculin to cell-cell junctions did not 

depend on TRIP6 (Figure 2.10D). Thus, vinculin is required to recruit TRIP6 and LATS1 

to cell-cell junctions. Vinculin also promotes TRIP6-LATS1 binding since reduced 

TRIP6-LATS1 binding was observed after vinculin depletion (Figure 2.11B). Vinculin 

binding to TRIP6 appears to be tension dependent because it is reduced by treatments 

that disrupt tension (Figure 2.11C-F). Tension-dependent binding of upstream 

molecules can trigger vinculin to become activated by inducing a more open 

conformation (Choi et al., 2012). The vinculin-T12 mutation (Cohen et al., 2005) is 

thought to mimic the active (open) conformation. Therefore, we tested whether vinculin-

T12 is better than wild-type vinculin at binding TRIP6 and promoting its association with 

LATS2.  We co-expressed TRIP6, LATS2, and either wild-type or vinculin-T12 and 

immunoprecipitated TRIP6. This experiment showed that vinculin-T12 bound better to 

TRIP6 but did not increase the amount of LATS2 binding to TRIP6 as compared to wild-

type vinculin (Figure 2.11G). These results indicate that TRIP6 binds better to the 

activated form of vinculin, but this binding alone is not sufficient to stimulate TRIP6-

LATS2 binding. The inability of vinculin-T12 to stimulate TRIP6-LATS2 binding is 

surprising because we found that depletion of vinculin resulted in reduced TRIP6-

LATS1 binding. These results could be explained if either vinculin-T12 does not fully 
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mimic the tension activated state of vinculin at adherens junctions, or other proteins at 

adherens junctions besides vinculin are required to promote TRIP6-LATS1/2 binding. A 

third possibility is that vinculin is necessary to generate tension, which could be 

sensed/transmitted to TRIP6-LATS1/2 by other proteins. To test this possibility, we 

stretched high-density cells that had been depleted of vinculin and stained them for 

TRIP6. These results showed that stretch was unable to trigger recruitment TRIP6 to 

cell-cell junctions when vinculin was depleted (Figure 2.11H), suggesting that vinculin 

does not solely affect TRIP6-LATS1/2 binding indirectly by promoting tension at 

junctions. Overall these results support a model where tension stimulates vinculin 

recruitment of TRIP6-LATS1/2 to adherens junctions to control YAP activity in response 

to changes in tension across tissues. 
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Figure 2.11 Vinculin regulates TRIP6-LATS1 interaction and localization. 

(A) Vinculin was knocked down as described (Figure 2.9D) in MCF10A cells and cells 

were stained for LATS1 and TRIP6. Merged images show LATS1 (green), TRIP6 (red) 

and DNA (blue). Scale bar=20µm. (B) Vinculin was knocked down as described (Figure 

2.9D) and TRIP6 immune complexes and lysates were probed by western blotting for 

LATS1, TRIP6, and vinculin and the relative levels quantified (Mean ± SD; n=3; **P≤0.01, 

T-test). (C) MCF10A cells were subjected to different treatments as described (Figure 

2.7A) and TRIP6 immune complexes and lysates were probed by western blotting for 

vinculin and TRIP6. (D) Quantification of TRIP6-vinculin binding from part (C) is shown. 

(Mean ± SD; n=3; *P≤0.05, **P≤0.01, ***P≤0.001, T-test). (E, F) MCF10A cells were 

treated separately (or not) with Latrunculin B (E) and by serum starvation (F) and LATS1 

immune complexes and lysates were probed by western blotting for vinculin, LATS1, and 

TRIP6. Quantification of LATS1-TRIP6-vinculin binding is shown. (Mean ± SD; n=3; 

*P≤0.05, **P≤0.01, ***P≤0.001, T-test). (G) Wild-type and T12 mutant of vinculin were co-

expressed with LATS2 and FLAG-TRIP6 and anti-FLAG antibody was used to isolate 

immune complexes. Immune complexes and lysates were probed by western blotting for 

vinculin, LATS2, and FLAG-TRIP6. Quantification of LATS2-TRIP6-vinculin (WT or T12) 

binding is shown. (Mean ± SD; n=3; *P≤0.05, **P≤0.01, ***P≤0.001, T-test). (H) Vinculin 

was knocked down as described (Figure 2.9D) in MCF10A cells grown at high density on 

PDMS membranes. The membranes were stretched at 17% elongation for 2 hours and 

fixed while under tension and stained for TRIP6. Merged images show TRIP6 (red) and 

DNA (blue). Scale bar=20µm. 
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2.4 Discussion 

This study provides new insight into the mechanism by which mechanical forces 

regulate cell growth and proliferation decisions via the Hippo signaling pathway. In 

particular, we report that the LIM domain protein TRIP6 functions as an intermediate 

between the LATS1/2 protein kinases, which transmit signals to YAP, and the mechano-

responsive protein vinculin at the adherens junctions. Previous studies have shown that 

YAP activity can be stimulated by tension (Aragona et al., 2013; Rauskolb et al., 2014; 

Codelia et al., 2014; Benham-Pyle et al., 2015). However, the upstream signaling 

pathways remained uncertain. We found that tension stimulates TRIP6 binding to 

LATS1/2, and, once bound, TRIP6 inhibits LATS1/2 activity, reminiscent of work in 

Drosophila showing that the Ajuba LIM domain protein activates Yki (the YAP homolog) 

by inhibiting Warts (the LATS1/2 homolog) in response to tension (Rauskolb et al., 

2014). Furthermore, we identified a specific molecular mechanism for how TRIP6 

inhibits LATS1/2. We discovered that TRIP6 competes with MOB1 for binding to 

LATS1/2. MOB1 promotes LATS1/2 activation by scaffolding interactions between the 

LATS1/2 activating kinase MST1/2 and LATS1/2. The competition we observe between 

TRIP6 and MOB1 for binding to      LATS1/2 is consistent with our other results showing 

TRIP6 interferes with MST1/2 phosphorylation of LATS1/2. This mechanism (explained 

in Figure 2.12) may be relevant for other LIM domain proteins that bind to a similar 

region of LATS1/2 (Abe et al., 2006; Hirota et al., 2000), and could function in 

conjunction with other proposed mechanisms of LATS1/2 inhibition by LIM domain 

proteins (Sun and Irvine, 2013; Jagannathan et al., 2016; Ma et al., 2016). 
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Our studies identified vinculin as acting upstream of TRIP6. Both TRIP6 and vinculin 

loss of function promotes LATS1/2 activity and inhibits YAP activity. Furthermore, 

vinculin can be co-immunoprecipitated with TRIP6 and is required to efficiently recruit 

TRIP6 and LATS1/2 to adherens junctions and to promote their binding to each other. It 

is not clear how vinculin promotes TRIP6-LATS binding, but one possibility is that 

vinculin directly or indirectly causes a conformational change in TRIP6 to allow it to bind 

LATS1/2. Vinculin itself responds to mechanical tension at adherens junctions since 

both vinculin localization to adherens junctions and the vinculin-TRIP6 association is 

dependent on mechanical tension. Previous studies have shown that vinculin is 

recruited to adherens junctions by α-catenin, which responds directly to mechanical 

tension. Alpha-catenin binding to vinculin stabilizes its open conformation, allowing it to 

bind actin and possibly other effectors like TRIP6 (Huveneers and de Rooij, 2013; Choi 

et al., 2012; Twiss et al., 2012; Yonemura et al., 2010). We found that the vinculin-T12 

mutant (Cohen et al., 2005), which is thought to mimic the open conformation of 

vinculin, associates more strongly with TRIP6 than wild-type vinculin suggesting that 

tension induced activation of vinculin may stimulate its binding to TRIP6. Surprisingly, 

vinculin-T12 did not increase the binding of co-expressed TRIP6 to LATS2 even though 

vinculin loss of function reduces TRIP6-LATS1 binding. Although we do not observe 

obvious differences in E-cadherin staining when vinculin (or TRIP6 or LATS1/2) is 

knocked down in MCF10A cells we cannot rule out the possibility that subtle effects on 

cell-cell junction architecture when vinculin is depleted affect TRIP6-LATS1/2 binding. 

Alternatively, it is possible that either vinculin-T12 does not fully mimic activation of 
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vinculin at adherens junctions or the ability of vinculin to activate TRIP6-LATS1/2 

binding requires additional proteins.  

Given that α-catenin is thought to act upstream of vinculin, one would expect α-catenin 

and vinculin loss of function to have similar effects on YAP activity. However, previous 

studies showed that α-catenin loss of function stimulates YAP activity (Schlegelmilch et 

al., 2011; Silvis et al., 2011), in contrast to the decreased YAP activity we observe when 

vinculin is knocked down. This apparent discrepancy could be resolved if adherens 

junctions and α-catenin had different functions in cells at lower density (higher tension) 

compared to cells at high density (low tension). It should be noted that the earlier 

studies showing α-catenin acting as an inhibitor of YAP were done at high cell density 

where tension would be low and vinculin and TRIP6 would not be at adherens junctions. 

At lower cell density, when cells are confluent but still proliferating (and presumably 

under more tension), α-catenin may recruit vinculin to adherens junctions to enhance 

YAP activity (via TRIP6 inhibition of LATS1/2) and drive cell proliferation. Thus, as cell 

density increases and tension decreases the vinculin-TRIP6 system turns off, and the 

YAP inhibitory function of adherens junctions could become dominant. It will be 

interesting in the future to determine how these two systems interact with each other to 

tune YAP regulation in response to changes in cell density and/or tension. In summary, 

we showed that TRIP6 acts as an intermediary connecting tension monitoring at 

adherens junctions to Hippo signaling, which has implications for how tension 

contributes to the growth of organs and tissues during development, tissue repair during 

injury and to pathological conditions such as cancer. 
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Figure 2.12 

 TRIP6 inhibits the Hippo signaling pathway in response to tension at adherens 

junctions. 

Under low tension, vinculin releases TRIP6 from adherens junctions. This inhibits 

TRIP6-LATS binding. LATS can then be activated by MOB1 which then 

phosphorylates and inhibits YAP. Under high mechanical tension, vinculin binds and 

sequesters TRIP6 at adherens junctions which promotes TRIP6-LATS binding. LATS 

no longer binds MOB and remains inactive which promotes YAP activity. 
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CHAPTER 3 

DISCUSSION 

Mechanical forces regulate cell proliferation and cell differentiation in vitro (Curtis and 

Seehar, 1978; Huang and Ingber, 1999) and have been implicated in the regulation of 

organ growth in vivo (Hufnagel et al., 2007; Aegerter-Wilmsen et al., 2007, 2012). They 

have also been shown to correlate with tumor progression (Butcher et al., 2009). The 

Hippo pathway and other growth regulatory pathways contribute to responses to 

mechanical stress (Halder et al., 2012; Samuel et al., 2011). Computational and 

experimental approaches show that transmission of mechanical forces across tissues 

involves cell-cell connections mediated by cadherins at adherens junctions, which then 

connect to actomyosin stress fibers via an α-catenin-vinculin complex (Ng et al., 2014). 

How these complexes at adherens junctions mediate the crosstalk between mechanical 

tension, cell junctions, actin and Hippo signaling is not well understood. 

We unravel a novel mechanism by which vinculin regulates the Hippo signaling pathway 

through TRIP6 in response to mechanical tension at adherens junctions. Two previous 

studies showed that vinculin regulates YAP localization and activity in response to 

mechanical tension at focal adhesions and one of them showed that the effect of 

vinculin on YAP is independent of LATS1/2 (Elosegui-Artola et al., 2016; Kuroda et al., 

2017). We show that at the adherens junctions vinculin is able to inhibit LATS1/2 by 

promoting TRIP6 binding to LATS1/2 under high mechanical tension, thereby activating 

YAP. Disruption of tension relieves TRIP6 inhibition of LATS1/2 preventing YAP 

function.  It was previously shown that LATS1/2 was activated at the cell membranes by 

NF2 (Yin et al., 2013). However, we and others show that LATS1/2 is also inhibited at 



62 
 

the membranes (Rauskolb et al., 2014; Dutta et al., 2017). Therefore, it would be 

interesting to understand under what conditions LATS1/2 is activated or inhibited at cell 

membranes. One explanation could be that these two opposing processes are 

compartmentalized where LATS1/2 activation by NF2, SAV and MOB could happen in 

one region on the membrane and LATS1/2 inhibition by vinculin and TRIP6 could 

happen in a different region on the membrane. Another explanation could be that 

different conditions could trigger these two opposite phenomena. We show tension 

promotes LATS1/2 inhibition by vinculin and TRIP6. It could happen that once tension is 

relieved and LATS1/2 no longer binds TRIP6, it could be free for NF2 to rapidly activate 

LATS1/2 at the cell membranes. Therefore, it would be interesting to study the 

localization and interaction of NF2 and LATS1/2 by modulating mechanical tension and 

also compare the membrane localization of vinculin-TRIP6 and NF2 to understand 

whether compartmentalization is important. 

Angiomotins (AMOTL1, AMOTL2 and AMOT p130) have also been shown to activate 

LATS1/2 under low mechanical tension (Zhao et al., 2011; Paramasivam et al., 2011; 

Chan et al., 2011a; Mana-Capelli et al., 2014). It is shown that under high mechanical 

tension angiomotins bind to F-actin stress fibres and when tension is reduced 

angiomotins dissociate from actin and activate LATS1/2 (Mana-Capelli et al., 2014). The 

mechanism by which angiomotins activate LATS1/2 is not clearly known. Since 

angiomotins bind both MST1/2 and LATS1/2, it could be hypothesized that angiomotins 

could act as a scaffold which brings MST1/2 and LATS1/2 closer to each other for 

MST1/2 mediated LATS1/2 activation. Previous reports have suggested that MOB1 acts 

as a scaffold similar to angiomotins and is crucial for MST2 mediated LATS1/2 
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activation where MOB1 brings MST1/2 and LATS1/2 closer for MST1/2 mediated 

LATS1/2 activation (Ni et al., 2015). Further studies are needed to determine whether 

MOB1 is crucial angiomotin mediated LATS1/2 activation and whether mechanical 

tension could regulate their activity. 

NF2 is important for LATS1/2 activation at the cell membranes and actin cytoskeleton 

disruption promotes the interaction between NF2-LATS1/2 (Yin et al., 2013). One report 

shows that NF2 interacts with angiomotins at tight junctions and regulate NF2’s function 

as a tumor suppressor (Yi et al., 2011). A recent report shows that angiomotins relieve 

NF2 of its autoinhibition and promote NF2-LATS1/2 interaction (Li et al., 2015). Since it 

is not clearly known how angiomotins activate LATS1/2 we could speculate that 

angiomotins might activate LATS1/2 in part by promoting NF2 activity at cell 

membranes and requires further investigations. It would be also interesting to examine 

under what conditions inhibitors (TRIP6, Ajuba, Zyxin) and activators (NF2, 

Angiomotins) of LATS1/2 regulate LATS1/2 activity at the adherens junctions to control 

YAP function. 

Previous studies have identified α-catenin and vinculin as force transducers at adherens 

junction. It was shown that under high mechanical tension conformational changes in α-

catenin expose vinculin binding sites thus recruiting vinculin. Subsequently, vinculin also 

undergoes conformational changes and this stabilizes their interaction and helps in actin 

stress fiber recruitment to the adherens junctions (Huveneers and de Rooij, 2013; 

Yonemura et al., 2010; Leerberg et al., 2014; Yao et al., 2014; Bays et al., 2014; 

Thomas et al., 2013; Bays and DeMali, 2017). We show that under high mechanical 

tension TRIP6 binds vinculin and disruption of tension releases TRIP6 from vinculin. 
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Interestingly, the constitutively active “open” form of vinculin called T12 (Marg et al., 

2010; Cohen et al., 2005) is able to bind more TRIP6 than the wild-type form. This 

suggests that tension induced conformational change of vinculin could open up cryptic 

TRIP6 binding sites on vinculin. Further studies to find out the TRIP6 binding domains 

on vinculin (and vice versa) can shed light on the mechanism of TRIP6-vinculin 

interaction under mechanical tension. Understanding the role of upstream factors such 

as α-catenin and β-catenin is also important to clearly define the role of vinculin and 

TRIP6 on how mechanical tension regulates the Hippo signaling pathway. 

The Ajuba and Zyxin family of LIM domain proteins are known to inhibit LATS1/2 in flies 

and mammalian cells (Rauskolb et al., 2011; Reddy and Irvine, 2013; Sun and Irvine, 

2013; Rauskolb et al., 2014). The mechanism by which these proteins inhibit 

Warts/LATS is not clearly understood. Based on localization experiments in flies, it was 

proposed that Ajuba inhibit Warts by sequestering it away from its activators (Rauskolb 

et al., 2014). Our results demonstrate that TRIP6 likely functions at least in part by 

competing with MOB1 for binding to LATS1/2. MOB1 is a scaffold protein that connects 

MST1/2 with its substrate LATS1/2 and is key to LATS1/2 activation (Rauskolb et al., 

2014; Ni et al., 2015; Lai et al., 2005). A competition between TRIP6 and MOB1 for 

binding to LATS1/2 is consistent with our results showing TRIP6 interferes with MST1/2 

phosphorylation of LATS1/2. Other LIM domain proteins such as Zyxin and Ajuba bind 

to a similar region of LATS1/2 (Rauskolb et al., 2011; Reddy and Irvine, 2013; Sun and 

Irvine, 2013). These proteins could also inhibit LATS1/2 in a similar fashion and it would 

be interesting to understand the mechanism. 
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One of our key findings is that tension dictates the interaction between LATS1/2 and 

TRIP6.  High mechanical tension increases TRIP6-LATS1/2 interaction and low tension 

reduces the interaction. In order to explain this phenomenon, we came up with a simple 

model where we speculate that tension could modulate the structural conformation of 

either TRIP6 and/ or LATS1/2 or both to regulate binding. Interestingly, it is seen that 

zyxin, a LIM domain protein closely related to TRIP6, undergoes autoinhibition in which 

the C-terminus LIM domains are masked by its N-terminus region (Moody et al., 2009; 

Hirota et al., 2000). So, it could be speculated that low tension keeps TRIP6 in its 

autoinhibited state and high tension triggers some unknown mechanism that relieves 

TRIP6 of its autoinhibition allowing LATS1/2 to bind its C-terminus LIM domain. One 

possibility is that its interaction with vinculin or some other unknown protein might 

trigger a conformational change in TRIP6 exposing its LIM domains for LATS1/2 

interaction. Since TRIP6 has also been shown to be phosphorylated by Src and AMPK 

(Solaz-Fuster et al., 2006; Chastre et al., 2009), another possibility is that 

phosphorylation by these kinases could relieve autoinhibition of TRIP6 promoting 

LATS1/2 binding. Further studies are required to understand these phenomena. 

In our studies we have used two epithelial cell lines namely Human Embryonic Kidney 

cell line or HEK 293A and Mammary epithelial cell line or MCF 10A. Previous reports 

have shown that fibroblasts cells also undergo contact inhibition and hyperactive YAP 

can cause overgrowth (Zhao et al., 2007). It is not known how these cells sense 

mechanical tension at adherens junction. The process by which other types of cell lines 

(such as endothelial and mesothelial cells lines) sense tension not clearly understood. 
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Further studies are required to address how tension is sensed by these cell lines and 

whether the role of TRIP6 is universal or restricted to only epithelial cells. 

Various studies have shown the importance of mechanical tension in development and 

cancer. Mechanical tension promotes morphological changes in the tissues and cells 

which not only regulates gene expression but also protein function (Mammoto and 

Ingber, 2010; Wozniak and Chen, 2009; Brouzés and Farge, 2004). In vitro studies on 

cultured cells and in vivo studies on embryonic cells shows how mechanotransduction 

of external forces regulate cell fate and differentiation (Engler et al., 2006; McBeath et 

al., 2004; Farge, 2003). Recent studies have also linked mechanical tension with cancer 

progression and malignancy. Cancer progression has been closely linked with 

remodeling of the microenvironment, extracellular matrix, and abnormal adherens 

junctions (Barriere et al., 2015). Epithelial-Mesenchymal transition (EMT) is another 

hallmark of cancer which leads to disruption of adherens junctions thus promoting 

integrin-mediated cell migration (Nguyen-Ngoc et al., 2012; Provenzano et al., 2009). 

Substrate stiffness also regulates tumorigenic cell migration where stiffer substrates 

promote cell migration and vice versa (Nguyen-Ngoc et al., 2012; Provenzano et al., 

2009). Interestingly, tumor growth alters the composition of the ECM to increase tissue 

stiffness which changes force balance to regulate metastasis (Levental et al., 2009; Lu 

et al., 2012). Over the years YAP and the Hippo pathway emerged as important 

intracellular factors that respond to changes in mechanical tension and regulate cell 

proliferation. Several studies have implicated their role in breast cancer, gastrointestinal 

tumors, thoracic tumors, melanomas, primary brain tumors and sarcomas (Maugeri-

Saccà and De Maria, 2018). Although pharmacological inhibitors of YAP such as 
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verteporfin (Wang et al., 2016; Liu-Chittenden et al., 2012), statins (Wang et al., 2014; 

Sorrentino et al., 2014), and VGLL4-mimicking peptides (Koontz et al., 2013; Zhang et 

al., 2009) have shown some promise against YAP mediated tumorigenesis, further 

studies are required to clearly understand the role of mechanical forces on cancer 

progression through YAP. We show for the first time the involvement of LIM domain 

protein TRIP6 in connecting junctional mechanosensors (vinculin) to the effectors 

(Hippo signaling components and YAP) in mammalian system. TRIP6 has already been 

shown to be involved in cell proliferation and tumorigenesis (Miao et al., 2016; Zhao et 

al., 2017; Shiozawa et al., 2018). However, whether TRIP6 functions through regulating 

LATS1/2 in vivo needs further investigation. Additionally, the function of other LIM 

domain proteins closely related to TRIP6 could also be studied with respect to 

mechanosensing and cancer progression. These studies may help explain how tension 

contributes to growth of organs and tissues during development, tissue repair during 

injury and how tension can contribute to pathological conditions such as cancer. 
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APPENDIX 

4.1 ROLE OF ANGIOMOTINS IN REGULATION OF THE HIPPO SIGNALING 

PATHWAY 

4.1.1 Introduction 

The Hippo signaling pathway plays an important role in organ growth regulation, contact 

inhibition and stem cell differentiation and maintenance (Halder and Johnson, 2011). 

The core kinases in the Hippo signaling pathway MST1/2 andLATS1/2 is important in 

regulating transcription co-activator YAP. YAP promotes cell proliferation, stem cell 

maintenance, and stem cell fate. A large number of mutagenic screens in Drosophila 

identified various upstream factors that regulate the Hippo signaling pathway. However, 

in the mammalian system the upstream components of the Hippo signaling pathway 

were not known. 

In order to identify the upstream regulators, LAP-tagged (Cheeseman and Desai, 2005) 

LATS2 was stably expressed in U20S cells and purified using immunoprecipitation. The 

isolated protein complexes were then identified using mass-spectroscopy. A large 

number of proteins were identified and subsequent experiments identified AMOTL2 (a 

member of the angiomotin family of proteins) as a potent activator of LATS2 

(Paramasivam et al., 2011). The angiomotin family consists of three proteins namely 

AMOTL1, AMOTL2 and AMOT (AMOT has two isoforms: a short isoform called AMOT 

p80 and a long isoform called AMOT p130; see Figure 4.1). Angiomotins associate with 

tight junctions and are involved in actin cytoskeleton remodeling, growth regulation and 

cell motility (Patrie, 2005; Gagné et al., 2009; Zheng et al., 2009; Ranahan et al., 2011). 

Angiomotins have been shown to bind and activate the hippo signaling kinase LATS to 

phosphorylate and inactivate YAP (Paramasivam et al., 2011). It is widely known that  
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cell density and actin cytoskeleton regulate YAP activity (Reddy et al., 2008; Dupont et 

al., 2011; Sansores-Garcia et al., 2011; Zhao et al., 2012). The Hippo signaling pathway 

is also controlled by GPCRs through the regulation of the actin cytoskeleton (Miller et 

al., 2012; Yu et al., 2012), but how the actin cytoskeleton regulates the Hippo signaling 

pathway was not clearly known. Interestingly, angiomotins also localize to actin stress 

fibers (Ernkvist et al., 2008; Gagné et al., 2009). As a result, we wanted to investigate 

whether angiomotins could be a missing link that connects the actin cytoskeleton and 

Hippo signaling. The results that will be discussed in this section are part of a paper 

published from our lab (Mana-Capelli et al., 2014). 

 

Figure 4.1 A diagram of AMOT80, AMOT130, AMOTL1, and AMOTL2. 

The LATS2 activation domain (green), the angiomotin domain (grey) and C-terminus 

PDZ domain (purple) are shown. The LATS2 activation domain is not found in AMOT80. 

 



70 
 

4.1.2 Results 

N-terminus of angiomotins activate LATS2 

Angiomotins bind and activate LATS2 which promotes YAP phosphorylation and 

inhibition (Chan et al., 2011b; Zhao et al., 2011; Paramasivam et al., 2011). However, it 

was not clearly known which domains on angiomotin are responsible for LATS2 

activation. To determine the LATS2 activation domain (LAD) we deleted various regions 

in the N-terminal half based on conserved domains that were determined by aligning all 

the three angiomotin proteins (AMOT p130, AMOTL1, AMOTL2) (Figure 4.2A). Then we 

co-expressed wild-type (WT) and the deletion constructs of angiomotin p130 with 

LATS2 and YAP and looked at YAP phosphorylation. We saw that YAP phosphorylation 

significantly decreased when AMOT p130 Δ13-27 (called as AMOT130- ΔLAD) was 

used compared to WT AMOT p130. LATS2 phosphorylation was also reduced when 

AMOT p130-ΔLAD was expressed compared to the WT (Figure 4.2B; this figure also 

shows AMOT130- ΔAB which is referred in Figure 4.3). These results are consistent 

with previous results from the lab showing that the first 100 amino acids of AMOTL2 

were sufficient to activate LATS2 (Paramasivam et al., 2011). 

Determination of the actin-binding domain (AB) on angiomotins 

Overexpression experiments with AMOT130 in U2OS cells show that it localizes to F-

actin and promotes their bundling. Specifically, the N-terminus of AMOT p130, AMOTL2 

and AMOTL1 localize to F-actin stress fibers (Figure 4.3). In order to determine the 

actin-binding domain (AB) of angiomotin p130, we used the deletion constructs 

described in Figure 4.2B. We saw that AMOT p130-AB (deletion of residues169-178) 
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did not localize to actin (Figure 4.3B). Deletion of the same region in the shorter form of 

AMOTL2 also had the same effect (Figure 4.3A). 

 

Figure 4.2 Determining conserved domains in angiomotins and testing their role 

in LATS2 activity 

(A) AMOT130, AMOTL1 and AMOTL2 were aligned and the conserved domains in their 

N-terminus are shown in red. LAD = LATS2 activation domain and AB = Actin binding 

domain are shown. (B) LATS2, YAP, and the indicated AMOT130 plasmids were 

transfected into HEK293 cells, and the levels of AMOT130, LATS2, YAP, and phospho-

YAP were analyzed by Western blotting. The experiment was done in triplicate, and 

error bars indicate the SD of the averages. 
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Figure 4.3 Mapping actin binding sites on angiomotins 

(A) U2OS cells were transfected with plasmids for expression of amino acids 185-320 of 

AMOTL1 or 100-220 of AMOTL2 with or without the ABD sequence. Cells were stained 

for the Myc-tagged AMOTL1 and AMOTL2 using anti-Myc antibodies and for F-actin 

using phalloidin. Merged images with DNA in blue are shown. In all cases, nuclei were 

visualized with DAPI. Bar: 20 um. (B) U2OS cells were transfected with plasmids for 

expression of Myc-tagged full-length AMOT130, amino acids 100–200 of AMOT130 

(AMOT130 (100-200)), AMOT130 with a deletion in the actin-binding region (AMOT130-

∆AB), or a fragment containing the actin-binding region fused to GFP (AMOT130-(157-

191)) and imaged at low densities. Cells were stained for AMOT130 using anti-GFP 

antibodies and for F-actin using phalloidin. DNA was stained with DAPI. Bar, 20 μm. 



73 
 

LATS2 regulate the actin binding of angiomotins 

The consensus LATS2 phosphorylation site is the HXRXXS motif. Interestingly, 

angiomotins have a HXRXXS site in the middle of the actin binding (AB) site for AMOT 

p130 (Figure 4.4A). LATS2 could phosphorylate WT AMOT p130 and AMOTL2 but not 

the S175A mutant version in vitro (Figure 4.4B). LATS2 phosphorylation of AMOT130 

prevents its actin localization whereas the kinase dead (KD) does not (Figure 4.4C). 

The alanine mutant localizes and bundles F-actin even in the presence of LATS2 

whereas the phosphomimetic glutamic acid mutation does not (Figure 4.4C). This data 

was entirely done by Sebastian Mana-Capelli (Mana-Capelli et al., 2014). 

Actin-binding deficient angiomotins inhibit YAP activity 

Disruption of F-actin inhibits YAP activity and promotes its cytoplasmic localization. 

AMOT p130 has 3 YAP binding L/PPxY domains flanking the AB. Therefore, a 

possibility could be that AMOT p130 would localize to intact F-actin, which would mask 

its L/PPxY domains, keeping YAP active. F-actin disruption would release AMOT p130 

unmasking L/PPxY domains which could now bind, sequester and inactivate YAP. To 

study the effect of AMOT p130 on YAP, we expressed WT, S175E, ΔAB, and ΔAB- 

ΔL/PPxY (double mutant) versions of AMOT p130 and looked at YAP location. We saw 

that WT AMOT p130 that binds f-actin only weakly affects YAP location and YAP is 

mostly nuclear (Figure 4.5). The actin-binding deficient versions of AMOT p130 (S175E 

and ΔAB) reduce YAP nuclear location since it is now free from actin to bind and 

sequester YAP in the cytoplasm (Figure 4.5). However, the ΔAB- ΔL/PPxY mutant that 

cannot bind both actin and YAP has no effect on YAP location (Figure 4.5). These 
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results suggest that the binding of AMOT p130 to actin fibers interferes with its binding 

and inhibition of YAP. (Please note: I made the deletion constructs). 

 

Figure 4.4 LATS2 regulates AMOT130 function 

(A) An alignment of the amino-terminal region of human AMOT130, AMOTL1, and 

AMOTL2 is shown. The region containing the actin-binding region (underlined) and 
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4.1.3 Discussion 

Studies have implicated the actin cytoskeleton as a major regulator of the Hippo 

signaling pathway. The actin cytoskeleton is regulated in turn by GPCRs, cell density 

and mechanical tension in the cellular microenvironment (Meng et al., 2016; Panciera et 

al., 2017). However, the factors that connect F-actin regulation of the Hippo pathway 

was not known. We showed that angiomotins mediate effects of the actin cytoskeleton 

on the Hippo signaling pathway and regulate LATS1/2 activity. High mechanical tension 

promotes F-actin stress fibers formation (Deshpande et al., 2006; Sugimoto et al., 

1991), which sequesters angiomotins keeping LATS1/2 inactive and YAP active. 

Disruption of mechanical tension (Latrunculin B, cytochalasin D, Blebbistatin and high 

cell density) activates LATS which phosphorylates angiomotins reducing their binding to 

F-actin and allowing them to bind and sequester YAP in the cytoplasm. Free 

phosphorylated angiomotins can alternatively activate LATS1/2 which in turn 

LATS phosphorylation site are indicated (box). (B) HEK293 cells were co-transfected 

with LATS2, its activators (MST1, MOB1, SAV) and Myc-tagged angiomotin constructs 

(AMOT130, AMOT130-(1-237), or AMOTL2-(1-307)) with or without the conserved 

LATS2 phosphorylation site mutated. LATS2 and each AMOT protein were 

immunoprecipitated on the same beads and immune-complex kinase assays were 

carried out (32P). The levels of angiomotin proteins (Myc) and LATS2 (GFP) are shown. 

(C) U2OS cells were transfected with the indicated AMOT130 and LATS2 plasmids and 

imaged at low densities. Cells were stained for AMOT130 (Myc), F-actin using 

phalloidin, and LATS2 or LATS2-KD (FLAG). DNA was stained with DAPI. Bar, 20 μm. 
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phosphorylate and inhibit YAP. Together these results show how F-actin is connected to 

the Hippo signaling pathway through angiomotins and regulates YAP in response to 

changes in mechanical tension in the cellular microenvironment. 

 
Figure 4.5 AMOT130 regulates YAP localization. 

(A, B) U2OS cells were transfected with either control plasmid or one of the indicated 

AMOT130 plasmids. The next day, cells were stained for endogenous YAP and scored 

for the percent of cells with more YAP in the nucleus than the cytoplasm (N > C), more 

in the cytoplasm than the nucleus (C > N), or equal signal in the cytoplasm and nucleus 

(C = N). (A) Example images. (B) Average from three experiments (n ≥ 100 each), and 

the error bars indicate SD of the averages. Brackets on top of bars represent statistical 

significance (Fisher test, *p < 0.00001, **p < 0.02). Bar, 20 μm. 
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4.2 MATERIALS AND METHODS 

Cell Lines 

Human Embryonic Kidney (HEK293, HEK293A, U2OS) cell lines were grown in 

Dulbecco’s modified Eagle medium (DMEM, GIBCO) supplemented with 10% (v/v) fetal 

bovine serum (FBS, GIBCO) and 1% (v/v) penicillin/streptomycin (Invitrogen). Human 

mammary epithelial cell line MCF10A was cultured in DMEM/F12 (1:1) media 

supplemented with 5% (v/v) fetal horse serum (GIBCO), 20ng/ml Epidermal Growth 

Factor (Peprotech), 0.5 mg/ml Hydrocortisone (Sigma), 100 ng/ml Cholera toxin 

(Sigma), 10μg/ml Insulin (Sigma) and 1% (v/v) penicillin/streptomycin (Invitrogen). Cell 

lines were cultured in a humidified incubator at 37°C with 5% CO2. 

Expression Plasmids and shRNAs 

The Flag-trip6 plasmid is obtained from Addgene (Plasmid #27255). shRNAs for TRIP6 

(shRNA1: TRCN0000061438, shRNA4: TRCN0000061441) and control shRNA 

(shEGFP) were obtained from the UMass RNAi core facility. 

CRISPR mediated deletion of TRIP6 in 293A cell line 

The target sequence to knock-out the TRIP6 gene was selected with the web tool 

developed by the Zhang lab (http://crispr.mit.edu/). Oligos complementary to the target 

sequence with appropriate overhangs (See Table 2) were annealed and cloned into a 

variant of the px330 plasmid with puromycin resistance (Hainer et al., 2015). HEK293A 

and HEK293 cells were transfected with Lipofectamine 2000 (Invitrogen) following the 

manufacturer directions and using 500 ng of plasmid per well of a 12-well plate. The 

next day, cells were placed under selection with 2 μg/ml of Puromycin (GIBCO) for 48 
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hours. Puromycin-resistant cells were then heavily diluted and plated on 10 cm plates 

for colony isolation. Colonies were picked 7-10 days later by depleting the media from 

the plate and using a P20 pipette loaded with 1 μl of media to dislodge the colony from 

the plate by rapid back and forth movements. Clonal lines were then expanded and the 

expression of TRIP6 was determined by Western blot. Clonal lines that lacked 

expression of TRIP6 were again expanded from single cells by dilution followed by 

colony isolation and tested by Western blot to ensure that they were true clonal lines. At 

least two independent clonal lines were kept for further analysis. HEK293A cells were 

maintained at low densities as much as possible to prevent morphological changes 

associated with cell crowding. 

Cell starvation and drug treatments 

MCF10A and HEK293A cells were starved overnight in DMEM/F12 (1:1) and DMEM 

respectively supplemented with 1% of penicillin and streptomycin (Invitrogen) before 

adding complete cell culture medium described above for 1 hour. Latrunculin B was 

used at 1 μM for 1 hour. Blebbistatin was used at 25 μM for 2 hours on MCF10A and 1 

hour on 293A. Both MCF10A and 293A cell lines were treated with 0.5mM EGTA for 30 

minutes. MCF10A cells were treated with 50µM of Y27632 for 1 hour. 

Stretching experiments 

MCF10A cells were cultured on collagen I coated bioflex plates (Flexcell International 

Corporation (# BF-3001C)) at high density before stretching them with a Flexcell FX-

4000 machine (Flexcell International, Burlington, NC) using 22mm diameter posts under 

maximum vacuum pressure, resulting in a 17% equibiaxial stretch for 2 hours in a 
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humidified incubator at 37°C with 5% CO2. Cells were either lysed for RNA preparation 

(see RT-qPCR), protein preparation (Cell lysis, Immunoprecipitation, and Western 

Blotting) or fixed while under stretch with 3.7% PFA for 10 minutes before performing 

immunofluorescence. Control plates were not stretched. For stretched plates, the 

stretch level was validated by measuring deformation before and after stretch using 

multiple fiduciary markers. 

Immunofluorescence 

HEK 293A and MCF10A cells were cultured on coverslips and fixed with 3.7% 

paraformaldehyde in PBS for 10 minutes, permeabilized in 0.5% Triton-X in UB (UB; 

150 mM NaCl, 50 mM Tris pH 7.6, 0.01% NaN3) for 3 minutes at 37°C, then blocked 

with 10% BSA in UB for 30 minutes at 37°C. Cells were then incubated for 1 hour at 

37°C with appropriate primary antibodies, washed three times in UB and incubated with 

Alexa Fluor-conjugated secondary antibodies (Molecular Probes) for 1 hour at 37°C.  

U2OS cells cultured on coverslips were fixed in phosphate-buffered saline (PBS)/4% 

paraformaldehyde for 10 min and permeabilized/blocked with 0.1% Triton X-100 and 

5% normal goat serum (Invitrogen) for 30 min. Cells were subsequently incubated with 

appropriate primary antibodies for 1–2 h at room temperature. They were washed three 

times in PBS with 0.1% Triton X-100 and incubated with Alexa Fluor-conjugated 

secondary antibodies (Molecular Probes, Grand Island, NY) for 1 h at room 

temperature. 4′,6-Diamidino-2-phenylindole (DAPI) staining and Alexa-conjugated 

phalloidin (488 or 568; Invitrogen) were also added to the secondary antibody solution 

when appropriate. 
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After three washes in UB, coverslips were mounted on glass slides using Prolong Gold 

Antifade reagent with DAPI (Invitrogen) and left at 4°C overnight. The next day slides 

were viewed using fluorescent microscopy (Nikon Eclipse E600) and images were 

acquired using a cooled charge-coupled device camera (ORCA-ER; Hamamatsu, 

Bridgewater, NJ). The confocal image was acquired using a Leica SP5 AOBS second 

generation laser scanning confocal microscope. Image processing and analysis were 

carried out with IPLab Spectrum software (Signal Analytics, Vienna, VA) and ImageJ 

software (Schneider et al., 2012). 

Cell lysis, Immunoprecipitation, and Western Blotting 

HEK293 and HEK293A cells were transfected using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s protocol. For the rescue assay, HEK293A (WT) and 

HEK293A TRIP6-KO knockout cells were transfected with empty plasmid and 

increasing amounts of FLAG-TRIP6 plasmid (50ng-200ng) respectively and vinculin 

depleted HEK293A cells were transfected with empty plasmid and increasing amounts 

of GFP-vinculin (chicken) plasmid (50ng-350ng) respectively, using FuGENE® HD 

Transfection Reagent (#E2311, Promega) according to manufacturer’s protocol. 200ng 

of the FLAG-TRIP6 and 150ng of GFP-vinculin (chicken) plasmid was used for the final 

rescue experiment. Cells were collected after 48 hours and lysed with lysis buffer (10% 

Glycerol (Invitrogen), 20mM Tris-HCl-pH 7.0, 137mM NaCl, 2mM EDTA, 1% NP-40 

(Invitrogen), 1mM PMSF(Sigma), 1mM Na3VO4 (Sigma) and 1x mammalian protease 

inhibitor cocktail (Sigma)). MCF10A cells were additionally passed through a 26G½ 

needle. Cells were then incubated for 10 minutes at 4°C and lysates were cleared by 
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centrifugation at 10,000 rpm for 10 min at 4°C. For immunoprecipitation, Dynabeads 

(Invitrogen) were used according to the manufacturer’s protocol. 

siRNA/shRNA transfection 

Knockdowns in MCF10A cells were performed using 30 nM of control siRNA (fire fly 

luciferase) or SMARTpool siRNA from Dharmacon (for LATS1 and 2) or stealth siRNA 

from Thermo-Fisher (for vinculin). RNAiMAX Lipofectamine (Invitrogen) was used 

according to the manufacturer’s protocol. After 48 hours cells were either used for 

western blotting or fixed for immunofluorescence. Stable knockdowns in MCF10A cells 

were done using lentiviral infection of shRNA and cells were selected with puromycin for 

3 days. Experiments were performed immediately after puromycin selection. Viral 

supernatants were generated by the shRNA Core Facility (UMASS) to target TRIP6.  

RT-qPCR 

RNA was prepared using Quick-RNA MiniPrep kit (Zymo Research) according to the 

manufacturer’s protocol.  cDNA was prepared using qScript cDNA super mix (Quanta 

Biosciences, Inc) according to the manufacturer’s protocol. RT-qPCR was performed 

using KAPA SYBR Fast- Master Mix Universal kit (Kapa Biosystems). Target mRNA 

levels were measured relative to GAPDH mRNA levels. Oligo sequences used are 

listed in Table 1. 

Recombinant protein expression and in vitro competition assays 

TRIP6 and LATS2 were cloned in pDEST-GST and pDEST-MBP respectively (provided 

by Dr. Marian Walhout’s lab) using Gateway (ThermoFisher Scientific) directions. 

MOB1A was cloned in pET28a through standard cloning.  GST-TRIP6, MOB1A-6xHis, 
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and MBP-LATS2 plasmids were transformed into BL21 DE3 cells and recombinant 

protein expression was induced with 1mM IPTG for 4 hours and 30 minutes at 25° C. 

Bacterial pellets were resuspended in lysis buffer (1.8 mM KH2PO4,10 mM Na2HPO4, 

150 mM NaCl, 10 mM β-mercapto-ethanol, 0.05% Triton X-100, 1 mg/ml of lysozyme, 5 

μg/ml of nuclease, and 1mM PMSF) and incubated for 30 minutes at 4° C. Cells were 

lysed on ice with 6 rounds of 10 sonications each using a VWR Sonifier 450 fitted with a 

microtip set to an output of 2 and a duty cycle of 80. Lysates were cleared by 

centrifugation at 21,000g for 10 minutes at 4° C. GST-TRIP6 was purified using 

Glutathione beads (GE) and eluted with 20 mM glutathione for 30 minutes at 4° C in 

elution buffer (1.8 mM KH2PO4,10 mM Na2HPO4, 150 mM NaCl, 0.05% Triton X-100, 

and 1mM PMSF). MOB1A-6His was purified using Ni-IDA beads (Biotool) and eluted 

with 300 mM Imidazole for 30 minutes at 4° C in the elution buffer. MBP-LATS2 was 

pulled down with magnetic maltose beads (NEB). For the in vitro competition assay, 

GST-TRIP6, MOB1A-6xHis, and control proteins were mixed as indicated in Figure 3B 

and then adjusted to a volume of 60μl using elution buffer. A constant amount of GST-

TRIP6 (approximately 0.7 μg) was used in each sample, and either 1, 4, or 10-fold 

molar ratios of MOB1A-6xHis were added as a competitor. The different protein 

solutions were then added with 20 μl of 10 mM Tris-HCl, pH 7.4 (to ensure an equal pH) 

to bead-bound MBP-LATS2, and incubated for 20 minutes at room temperature with 

mixing. MBP-LATS2 bound beads were separated using a magnetic stand, washed 3 

times in elution buffer, and boiled in SDS-PAGE sample buffer.  Protein samples were 

then subjected to SDS-PAGE and Western blotting with the specified antibodies. 

Quantification and Statistical Analysis 
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Data are presented as Mean ± SD. Each experiment was done in triplicate except 

where indicated. Students t-test (*P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001) 

were performed using Prism version 7.00 for Windows (GraphPad Software, La Jolla 

California USA, www.graphpad.com”). For YAP localization studies, we counted 100 

cells each from three different experiments and used Fisher’s test (* P ≤ 0.05, ** P ≤ 

0.01, *** P ≤ 0.001, **** P ≤ 0.0001) using GraphPad Quickcalcs 

(http://graphpad.com/quickcalcs/contingency1/) to calculate the significance. For TRIP6 

and LATS1 fluorescent intensity measurements at cell-cell junctions, the average 

intensity for each protein at individual cell-cell junctions (n=48) was measured using 

Image J. Intensity measurements for each junction were normalized to the total average 

fluorescence of the field of cells. For western blots, we performed background 

subtraction and densitometric analysis of respective bands using Image J (Schneider et 

al., 2012) and normalized to loading control (either actin or tubulin). 

  

file:///C:/Users/Shubham/AppData/Roaming/Microsoft/Word/www.graphpad.com
http://graphpad.com/quickcalcs/contingency1/
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4.3 TABLES 

Table 1: RT-qPCR primers 

 

 

 

 

 

 

 

 

 

 

 

Table 2: TRIP6 CRISPR primers (designed using http://crispr.mit.edu/) 

Oligo 1 CACCGGCGATCCCCCGCGGCACCC 

Oligo 2 AAACGGGTGCCGCGGGGGATCGCC 

 

Table 3: Reagent and resource table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

Mouse TRIP6 Santa Cruz Cat# sc-365122 
Rabbit YAP Santa Cruz Cat# sc-15407 
Mouse YAP Santa Cruz Cat# sc-101199 
Mouse GFP Santa Cruz Cat# sc-9996 
Mouse Myc Santa Cruz Cat# sc-40 

Rabbit Myc Santa Cruz Cat# sc-789 
Rabbit LATS1 Cell Signaling Cat# 3477S 
Rabbit LATS2 Cell Signaling Cat# 5888S 
Rabbit phospho LATS Ser 909 Cell Signaling Cat# 9157S 
Rabbit phospho LATS Thr 1079 Cell Signaling Cat# 8654S 
Rabbit phospho MST Cell Signaling Cat# 3681S 
Rabbit MOB1 Cell Signaling Cat# 13730S 

Rabbit phospho YAP Ser 127 Cell Signaling Cat# 4911S 
Rabbit LATS2 Proteintech Cat# 20276-1-AP 
Mouse MBP Proteintech Cat# 66003-1-Ig 

GAPDH-F CTCCTGCACCACCAACTGCT 
GAPDH-R GGGCCATCCACAGTCTTCTG 
CTGF-F AGGAGTGGGTGTGTGACGA 
CTGF-R CCAGGCAGTTGGCTCTAATC 
Cyr61-F GAGTGGGTCTGTGACGAGGAT 

Cyr61-R GGTTGTATAGGATGCGAGGCT 
TRIP6-F CCTTCACAGTGGATGCTACG 
TRIP6-R CTTGGGGCAAACTTCCTGT 
vinculin-F TCAGATGAGGTGACTCGGTTGG 

vinculin-R GGGTGCTTATGGTTGGGATTGG 
AMOT-F ACTACCACCACCTCCAGTCA 
AMOT-R ACAAGGTGACGACTCTCTGC 
AMOTL1-F GCAGACAGGAAAACTGAGGA 
AMOTL1-R AAATGTGGTGGGAACAGAGA 
AMOTL2-F GCTACTGGGGTAGCAACTGA 
AMOTL2-R GAAGGCAGTGAGGAACTGAA 

http://crispr.mit.edu/


85 
 

Rabbit GST Proteintech Cat# 10000-0-AP 
Mouse Tubulin Proteintech Cat# 66031-1-Ig 
Mouse E-cadherin BD Biosciences Cat# 610181 
Mouse FLAG Sigma Cat# F1804 
Mouse vinculin Sigma Cat# V9131, 

kindly provided 
by Beth Luna 

Bacterial and Virus Strains  

DH5α Competent Cells Thermo Fisher Cat# 18265017  
Rosetta™(DE3) Competent Cells - Novagen EMD Millipore Cat# 70954 

Chemicals, Peptides, and Recombinant Proteins 

Penicillin-Streptomycin Thermo Fisher Cat# 15140-122 

Epidermal Growth Factor Peprotech Cat# AF-100-15 

Hydrocortisone Sigma Cat# H-0888 
Cholera toxin Sigma Cat# C-8052 
Insulin Sigma Cat# I-1882 

Lipofectamine 2000 Thermo Fisher Cat# 11668019 

RNAiMAX Lipofectamine Thermo Fisher Cat# 13778150 

FuGENE HD Transfection Reagent Promega Cat# E2311 

Protease Inhibitor Cocktail Sigma Cat# P8340 

Dynabeads Protein G Thermo Fisher Cat# 10004D 

Collagen I Corning Cat# 354231 

Latrunculin B Sigma Cat# L5288 

Blebbistatin Sigma Cat# B0560 

Y27632 Tocris Cat# 1254 

Puromycin Thermo Fisher Cat# A1113803 

Critical Commercial Assays 

Quick RNA Mini Prep Kit Zymo Research Cat# R1054 
qScript cDNA super mix Quanta 

Biosciences 
Cat# 101414-102 

KAPA SYBR Fast- Master Mix Universal kit Kapa Biosystems Cat# KK4651 
Qiagen Plasmid Mini Prep Kit Qiagen Cat# 27104 

Experimental Models: Cell Lines 

MCF10A ATCC CRL-10317 
HEK 293 ATCC CRL-1573 
HEK 293A Thermo Fisher #R70507 
HEK 293A TRIP6 CRISPR mediated knockout 
line 

This study N/A 

Oligonucleotides 

control siRNA CGUACGCGGAAUACUUCGA GE Lifesciences D-001100-01-20 
SMARTpool: ON-TARGETplus LATS1 siRNA GE Lifesciences L-004632-00-

0005 
SMARTpool: ON-TARGETplus LATS2 siRNA GE Lifesciences L-003865-00-

0005 
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Vinculin siRNAs, oligo IDs: HSS111260 and 
HSS187662 

Invitrogen Cat# 1299001 

RT-qPCR primers, see table 1 N/A N/A 
TRIP6 CRISPR primers, see table 2 N/A N/A 

Recombinant DNA 

pDONR221 LATS2 This study N/A 

pDONR221 TRIP6 This study N/A 
pDEST-MBP LATS2 This study N/A 
pDEST-GST TRIP6 This study N/A 
pET28a MOB1A This study N/A 
pcDNA-FLAG-Hu-Trip6 Addgene Addgene #27255 
pcDNA-FLAG-Hu-Trip6 1-277 This study N/A 

pcDNA-FLAG-Hu-Trip6 278-476 This study N/A 
pCI113-LAP-GFP-LATS2 Paramsivam et al., 

2011 
N/A 

pCI113-LAP-GFP-LATS2 137-677 This study N/A 
pCI113-LAP-GFP-LATS2 668-947 This study N/A 
pCI113-LAP-GFP-LATS2 376-397 This study N/A 
pCI113-LAP-GFP-LATS2 376-568 This study N/A 

pCI113-LAP-GFP-LATS2 604-625 This study N/A 
pCI113-LAP-GFP-LATS2 625-644 This study N/A 
pcDNA3.1-Myc-MOB1 
 
 
  

MOB1 was cloned 
in pcDNA3.1 from 
pSIRN-HA-MOB1 
plasmid. 

pSIRN-HA-
MOB1 plasmid 
DNA was a gift of 
Thanos 
Halazonetis 
(University of 
Geneva, 
Geneva, 
Switzerland) 

pCDNA4-Myc-His AMOT130 Mana-Capelli et al. 
2014 

N/A 

pEGFP Vinculin Addgene Addgene# 46265 
pEGFP Vinculin T12 Addgene Addgene# 46266 
pGEX-4T-1 GE Lifesciences Cat# 28-9545-49 
TRIP6 shRNA1: 
GCTGCTTTGTATGTTCTACAT, shRNA4: 
GAAGCTGGTTCACGACATGAA 

shRNA Core 
Facility (UMASS) 

shRNA1:T 
TRCN000006143
8, shRNA4: 
TRCN000006144
1 

EGFP shRNA-Control shRNA Core 
Facility (UMASS) 

N/A 

Software and Algorithms 

Image J https://imagej.nih.g
ov/ij/ 

N/A 

https://www.addgene.org/27255/
https://www.addgene.org/27255/
https://www.addgene.org/27255/
https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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IPLab Spectrum software Signal Analytics, 
Vienna, VA 

N/A 

Leica Application Suite X Leica 
Microsystems 

N/A 
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