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Original Article

Transcriptome Profiling of Neovascularized
Corneas Reveals miR-204 as a Multi-target
Biotherapy Deliverable by rAAVs
Yi Lu,1,2,3,4 Phillip W.L. Tai,4,5,6 Jianzhong Ai,4,5,6,7 Dominic J. Gessler,4,5,6 Qin Su,4,5 Xieyi Yao,1,2,3 Qiang Zheng,8

Phillip D. Zamore,9 Xun Xu,1,2,3 and Guangping Gao4,5,6,7

1Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China; 2Shanghai Key Laboratory of Ocular Fundus Diseases,

Shanghai 200080, China; 3Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China; 4Horae Gene Therapy Center, UMass Medical

School, Worcester, MA 01605, USA; 5Li Weibo Institute for Rare Diseases Research, UMass Medical School, Worcester, MA 01605, USA; 6Department of Microbiology

and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; 7Department of Urology, Institute for Urology, West China

Hospital, Sichuan University, Chengdu, Sichuan 610041, China; 8Research and Development Center, Chengdu Kanghong Pharmaceuticals Group Co., Chengdu,

Sichuan 610036, China; 9RNA Therapeutics Institute, UMass Medical School, Worcester, MA 01605, USA

Corneal neovascularization (NV) is the major sight-threat-
ening pathology caused by angiogenic stimuli. Current drugs
that directly target pro-angiogenic factors to inhibit or reverse
the disease require multiple rounds of administration and have
limited efficacies. Here, we identify potential anti-angiogenic
corneal microRNAs (miRNAs) and demonstrate a framework
that employs discovered miRNAs as biotherapies deliverable
by recombinant adeno-associated viruses (rAAVs). By
querying differentially expressed miRNAs in neovascularized
mouse corneas induced by alkali burn, we have revealed 39
miRNAs that are predicted to target more than 5,500 differen-
tially expressed corneal mRNAs. Among these, we selected
miR-204 and assessed its efficacy and therapeutic benefit for
treating injured corneas. Our results show that delivery of
miR-204 by rAAV normalizes multiple novel target genes
and biological pathways to attenuate vascularization of injured
mouse cornea. Importantly, this gene therapy treatment
alternative is efficacious and safe for mitigating corneal NV.
Overall, our work demonstrates the discovery of potential
therapeutic miRNAs in corneal disorders and their translation
into viable treatment alternatives.

INTRODUCTION
Forty million patients worldwide are afflicted by corneal diseases that
result in vision impairment or blindness.1 Corneal neovascularization
(NV), the growth of blood vessels into the translucent cornea due to
unchecked angiogenesis,2 is one of the most common pathological
changes correlated with the loss of visual acuity.3 Angiogenesis, in
general, is stimulated by several growth factors that are involved in
multiple signaling pathways; chief among these is vascular endothelial
growth factor (VEGF) signaling.4 Current anti-VEGF therapeutic
strategies to treat corneal NV have been extensively tested in animal
models,5,6 but result in limited efficacies in clinical trials.7 Small
interfering RNAs (siRNAs) against VEGF have been demonstrated
to reduce corneal NV in vivo. However, these effects are only transient

and require multiple rounds of administration.2 These treatment
options inherently fall short because they only target one aspect of
angiogenesis as a monotherapy. For example, bevacizumab is a ther-
apeutic antibody that only blocks one isoform of VEGF (VEGF-A)
and can only prevent the growth of actively growing blood vessels.
Even combinatorial delivery of siRNAs to target multiple isoforms
of VEGF (1:1:1 mixture of siRNAs targeting VEGF-A, VEGFR-1,
and VEGFR-2) still only regulates one pathway that controls angio-
genesis.2 The development of strategies that target multiple pathways
driving NV could theoretically circumvent the need for combinatorial
therapies.

MicroRNAs (miRNAs) are a class of small non-coding RNAs that
function to silence gene expression. miRNAs are involved in nearly
every developmental and pathological process, including those
involved with angiogenesis.8,9 Importantly, the control of multiple
genes belonging to single or multiple molecular pathways can be
regulated by a single miRNA.10 When delivered and expressed
via viral vectors as biotherapies, miRNAs or their precursor forms
(pri-miRNAs) may act as “magic bullets” by targeting multiple over-
lapping or redundant genes that drive a pathological state.

The potential formiRNAs tomitigate angiogenesis in the eye has been
explored in many studies. For instance, overexpressing miR-150 was
found to have inhibitory effects on mouse retinal NV.11 More
recently, the treatment of corneal NV by an miR-184 mimic was
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demonstrated in a suture-induced NV model, proving that the deliv-
ery of anti-angiogenic miRNAs is a promising means to treat corneal
NV.12 The overall ease of administering viral vectors to the eye makes
this type of treatment for corneal diseases an attractive alterna-
tive.13,14 Accordingly, a variety of vectors, techniques, and strategies
have been extensively explored.15 Among these, recombinant
adeno-associated viruses (rAAVs) have shown great promise because
of their low immunogenicity and genotoxicity profiles, broad tropism,
high in vivo transduction capacities, and long-term efficacies.16,17

We aimed to identify potent therapeutic miRNAs that can be deliv-
ered via rAAVs into injured corneas to block angiogenesis. We found
that among differentially expressed miRNAs in alkali-burn-induced
neovascularized mouse corneas, miR-204 is reduced more than
10-fold in response to alkali-burn injury. Whole-transcriptome ana-
lyses and miRNA target prediction identified more than 200 corneal
genes that are upregulated in response to alkali-burn treatment and
are predicted to be regulated by miR-204. We show that overexpres-
sion of pri-miR-204 in injured corneas inhibited vascularization into
the cornea via multi-gene targeting. Importantly, we demonstrate that
bioinformatic selection of miRNAs expressed in diseased tissues is a
promising means of discovering potent genetic regulators of patho-
logical states that can be delivered by safe and efficacious rAAV
vectors.

RESULTS
miR-204 Is Significantly Downregulated in Neovascularized

Mouse Corneas

We first aimed to identify candidate therapeutic miRNAs that may
function to inhibit or reverse corneal NV when overexpressed. We
began by characterizing neovascularized mouse corneas induced by
alkali-burn treatment. Vascularization into the cornea was observed

for 15 days following injury (Figure 1A). Notably, corneal NV was
observed to originate in the limbus by day 5 and fully expand into
the cornea by days 10 and 15. Untreated corneas and those following
5, 10, and 15 days after alkali-burn treatment were subjected to
miRNA profiling using NanoString nCounter analysis. We discov-
ered 36 highly upregulated and 3 strongly downregulated miRNAs
in alkali-burn-treated corneas (corneal NV miRNAs) compared
with non-treated controls (Figure 1A).

We next aimed to define angiogenesis-related genes that might be
directly regulatedby cornealNVmiRNAs. TargetScan andmiRTarBase
target prediction yielded a list of 5,520 target genes (Table S1). For this
study, we selected miR-204 as the candidate therapeutic miRNAs with
the highest potential for inhibiting angiogenesis in the cornea. This
reasoning is based on our finding that miR-204 exhibited a >10-fold
reduction in neovascularized corneas. Reduction of miR-204 expres-
sion was also verified by real-time qPCR (Figure 1B). miR-204 is also
conserved across several vertebrate species,18 making it an ideal candi-
date for translation into humans. Furthermore, previous studies have
shown that miR-204 is downregulated during corneal wound healing19

and was shown to target Angiopoietin-1 (angpt1) during spontaneous
corneal NV in the KLEIP-deficient mouse model.20

Differential Expression of Predicted miR-204 Target Genes in

Alkali-Burn-Treated Corneas Suggests that Multiple Pathways

May Promote Corneal NV

We next asked whether miR-204 displays characteristics of a potent
therapeutic miRNA for corneal NV. TargetScan and miRTarBase
analysis revealed that miR-204 is predicted to target 1,729 genes.
Likely, many of these predicted genes may not be expressed in the
cornea. Furthermore, only predicted targets that are upregulated in
the cornea during alkali-burn treatment would reflect a direct role

Figure 1. miR-204 Is Significantly Downregulated

in Alkali-Burn-Induced Neovascularized Mouse

Corneas

(A) miRNA profiling of alkali-burn-induced corneal

neovascularization (NV) using NanoString nCounter

analysis. Two groups of four pooled corneas were

analyzed (eight corneas total). Corneal NV was

observed for 15 days after alkali-burn treatment, and

corneas from four time points (no treatment [day 0],

5 days, 10 days, and 15 days after treatment) were

harvested for RNA extraction. The top 39 differentially

expressed miRNAs (see Materials and Methods)

are displayed as a heatmap. The color scale is

displayed to the right and reflects the fold-change

in miRNA expression in alkali-burn-treated corneas

compared with untreated corneas. (B) Expression

levels (log10 scale) of miR-204 following alkali-burn

treatment by NanoString nCounter and real-time qPCR

analysis. Red arrows at day 0 represent no treatment

(harvest before alkali burn). ****p < 0.0001 compared

with day 0 (n = 8/group).
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Figure 2. Upregulated miR-204 Predicted Targets Are Associated with Multiple Biological Processes and Pathways

(A) Heatmap of fold-change in expression of miR-204 predicted genes in corneas 5 and 15 days post-alkali-burn treatment. The color scale is displayed to the right. Fold-

change is shown as log2 difference over day 0 values [log2(fragments per kilobase of transcript per million mapped reads [FPKM]/day 0)]. (B) K-means clustering of miR-204

(legend continued on next page)
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for miR-204 in regulating corneal NV. To address this, we performed
whole-transcriptome analysis of alkali-burn-treated corneas by RNA
sequencing (RNA-seq) analysis. Untreated corneas (day 0) and
corneas 5 and 15 days post-treatment (days 5 and 15, respectively)
were analyzed. Themajority of gene expression changes due to injury,
including angiogenesis-related transcripts, occur within the first
5 days of treatment (Figures S1 and S2A). These data suggest that
the window for potential intervention is within the first week of
injury. We observed that among the 1,729 predicted miR-204 gene
targets, 1,232 are differentially expressed in the cornea (Figure 2A).
Notably, of the total 448 ontologically annotated angiogenesis-related
genes, a subset of the 47 genes is predicted or known to be targets of
miR-204 (Figures S2B and S2C). Among these, a few are upregulated
upon corneal injury, suggesting that miR-204 may regulate multiple
genes in the cornea.

The observation that multiple miR-204 predicted targets were altered
during corneal injury prompted us to ask whether miR-204 can
impact multiple biological processes in response to alkali burn.
Because we were specifically interested in whether downregulation
of miR-204 during corneal NV may relieve inhibition of protein-
coding genes in response to injury, we focused on the set of genes
that were upregulated upon alkali-burn treatment. To this end, we
performed k-means clustering and identified 208 genes that were
exclusively upregulated in corneas 5 and 15 days post-alkali-burn
treatment (Figure 2B). To demonstrate whether these 208 predicted
miR-204 target genes might impact multiple genes crucial for mech-
anisms that are beyond angiogenesis, we subjected these putative tar-
gets to gene ontology (GO) term enrichment analysis. By selecting on
KEGG pathway and ontological terms closely related to proliferation,
for example, wound healing, apoptosis, cell morphogenesis, as well as
vasculogenesis, we identified several upregulated miR-204 predicted
targets that demonstrate miR-204 as a potent anti-angiogenic effector
(Figure 2C; Table S2). Specifically, the vasculogenesis-related genes
were identified: Hey2, Gjc1, Angpt1, Has2, Rasip1, and Amot
(Figure S3). Interestingly, Angpt1, Has2, and Hey2 also enrich for
epithelial cell- or keratinocyte-related ontology terms (Figure 2C),
suggesting that miR-204 directly regulates key genes with diverse
roles in angiogenesis and cell proliferation in the cornea.

Both Intrastromal and Subconjunctival Delivery of rAAVrh.10

Efficiently Transduces Normal and Alkali-Burn-Treated Corneas

We next aimed to deliver miR-204 into corneal tissues as a
biotherapy. At present, rAAVs are the most efficacious and safe vehi-
cles for providing long-term therapeutic transgene expression in the
cornea.21 Thus, we aimed to establish the parameters for potent
rAAV transduction in the corneas of normal and alkali-burn-treated
eyes. Our previous findings indicated that among a large panel of
rAAV serotypes, rAAVrh.10 exhibited the highest transduction

efficiency in the corneal stroma by intrastromal injection.22 Based
on these results, we first compared the efficacy of rAAVrh.10 delivery
by two different routes of administration: intrastromal and subcon-
junctival. Both methods are proven routes for rAAV transduction
to the cornea, where keratocytes are targeted by rAAV8 with
high efficiency.21 However, because NV originates from the limbus,
administration to the subconjunctiva of the eye immediately
following injury may be preferred. Notably, subconjunctival
injections of bevacizumab results in better prognoses for corneal
transplantation by preventing corneal NV-related graft failure.23

Assessment of rAAVrh.10 transduction efficiency in normal mouse
corneas by either intrastromal or subconjunctival injections suggests
that both injection methods to deliver rAAVrh.10 EGFP vectors can
efficiently transduce the entire cornea (Figures 3A and 3B).

We next evaluated the effects of alkali burn on the efficacy of corneal
transduction by rAAVrh.10 vectors (schematized in Figure 3C).
Because transgene expression reaches peak levels 2 weeks after intra-
stromal injection,22 treatments were performed 2 weeks prior to
alkali-burn induction. Subconjunctival injections were performed
directly following alkali burn. Whole flat-mount immunofluorescence
analyses of eyes harvested 1 or 2 weeks after alkali burn show that
EGFP transgene expression in non-alkali-burn-treated corneas
(control group) is strongly detected at weeks 1 and 2 with little change
in expression for both intrastromal and subconjunctival vector
injections (Figure 3D). However, alkali-burn-treated corneas showed
robust EGFP expression at week 1 following alkali-burn treatment,
but exhibited an extreme loss ofEGFP expressionatweek 2 (Figure 3D).

Quantitative analysis of vector genomes delivered by either intrastro-
mal or subconjunctival injection indicated that rAAV genome copies
in alkali-burn-treated corneas were significantly lower than uninjured
corneas (Figure 3E). Strikingly, quantification of EGFP mRNA
expression showed that there was no significant difference between
alkali-burn and control groups at post-alkali-burn week 1; however,
EGFP expression in alkali-burn-treated corneas after 2 weeks were
significantly lower than control corneas (Figure 3F). Our findings
demonstrate that alkali burn severely compromises the expression
of rAAVrh.10-delivered transgenes by 2 weeks. Nevertheless, what
remains promising for this delivery approach is that differences in
transgene expression between normal corneas and treated corneas
are negligible for at least 1 week after alkali burn following only a
single treatment. This time frame is within the therapeutic window
as suggested by our transcriptome data (Figure S1).

rAAVrh.10-Mediated miR-204 and miR-184 Overexpression by

Subconjunctival Injection Inhibits Corneal NV

The administration scheme by subconjunctival delivery following
corneal injury is more therapeutically relevant. Thus, pri-miR-204

predicted target gene expression profiles in alkali-burn-treated corneas. Three distinct groups were defined: genes with little or no change (left plot, group 1), downregulated

genes (center plot, group 2), and upregulated genes (right plot, group 3). (C) Gene ontology (GO) network map for the group 3 genes. Genes that enrich for selected terms are

displayed as small nodes that connect to the larger GO-term nodes. The relative sizes of the GO-term nodes also reflect their significance levels. Genes of particular interest

that are related to vasculogenesis (Angpt1, Hey2, and Has2; asterisks) are also related to epithelial cell or keratinocyte terms.
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was constructed into rAAVrh.10 vectors and injected into the sub-
conjunctiva of mouse eyes (Figure 4A). In vivo tracking of corneal
NV progression indicated an inhibition of NV areas after 7 days of
mock (vector backbone) and pri-miR-204 treatments (Figure 4B).
The NV area in the mock treatment group recovered to those of
PBS treatments by day 10, while pri-miR-204 treatments resulted in
significantly less NV. Differences in corneal NV after 15 days of treat-
ment with pri-miR-204 as assessed by immunofluorescence analyses
in flat-mounts were more definitive (Figures 4C and 4D). Corneas
immune-stained with anti-CD31 demonstrated that new blood
vessels grew robustly in PBS and mock control groups, while corneas
treated with pri-miR-204 vectors effectively inhibited corneal NV.
Gross in vivo observation and histopathological analysis of corneas
and retinas showed no obvious abnormalities or inflammatory

Figure 3. Both Intrastromally and Subconjunctivally

Delivered rAAVrh.10 Vectors Efficiently Transduce

Normal and Alkali-Burn-Treated Corneas

(A) Diagram of the experimental design to inject rAAVrh.10

EGFP into normal mouse cornea by intrastromal or

subconjunctival delivery. (B) Both intrastromal and

subconjunctival injections of rAAVrh.10 EGFP show high

EGFP expression in mouse corneas. Original magnifica-

tion�25; scale bars, 250 mm. Insets: images of the central

cornea at �100 original magnification. (C) The experi-

mental design of intrastromal or subconjunctival injection

of rAAVrh.10 EGFP into mouse cornea with alkali burn.

(D) Immunofluorescence analysis of mouse corneal flat-

mounts. The corneas of control and alkali-burn groups

were harvested at weeks 1 and 2 after alkali burn. Green:

EGFP; red: CD31 (cell marker of vascular endothelial

cells); magenta: keratocan (cell marker of keratocytes).

Panels of merged immunofluorescent (IF) images highlight

EGFP expression overlapping keratocan-stained cells

and not CD31+ cells, showing that EGFP was mainly ex-

pressed in keratocytes and not in vascular endothelial

cells. Left panels: original magnification �25; scale bars,

500 mm. Right panels: original magnification �200; scale

bars, 50 mm. (E) Droplet digital PCR (ddPCR) assessment

of rAAV genome copy number. (F) The EGFP mRNA

expression analysis between alkali-burn-treated and

control groups at weeks 1 and 2. n = 8/group. IS, intra-

stromal injection; n.s., no significant difference; SC,

subconjunctival injection. ***p < 0.001; ****p < 0.0001.

response 1 and 2 weeks following injection
when compared with control groups (Figure 5).

Delivery of the Anti-angiogenic miR-204

Transgene Targets the Angpt1/Tie2/PI3K/

Akt Pathway in the Cornea

We next aimed to demonstrate that blockage of
corneal NV by rAAV delivery of pri-miR-204
directly impinges on NV by inhibiting
gene pathways known to drive angiogenesis.
Alkali-burn-treated mice were injected with
rAAVrh.10 pri-miR-204 vectors subconjuncti-

vally as described above. Analysis of miR-204 expression in NV
corneas showed that levels were significantly upregulated in the pri-
miR-204 treatment group compared with the PBS treatment group
in both intrastromal and subconjunctival delivery routes (Figure 6A).
The levels of exogenousmiR-204 after vector injection and alkali burn
alone were still below those of normal control levels. As stated before,
Angpt1 has established roles in angiogenesis and wound healing in
the cornea via activation of the phosphatidylinositol 3-kinase
(PI3K)/AKT signaling pathway.20,24 Our results indicate that angpt1
and vegf (downstream target gene of PI3K/Akt pathway) messages
were significantly downregulated with rAAVrh.10-pri-miR-204
treatments compared with the PBS group (Figure 6B). Western blot
analysis confirms that ANGPT-1 and VEGF are significantly reduced
by exogenous expression of miR-204, while TIE2 (receptor for

www.moleculartherapy.org
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ANGPT1), PI3K, and AKT demonstrated a loss of phosphorylation
without significant reduction in protein expression (Figure 6C).

Delivery of Pri-miR-204 Represses Multiple Genes that Are

Upregulated during Corneal NV

To demonstrate the ability for miR-204 to act upon multiple
pathways that impact corneal NV, we performed qPCR analysis to
assess whether treatment with rAAV-pri-miR-204 can normalize
gene targets that were differentially expressed upon corneal injury.
As mentioned above, RNA-seq analysis and miR target prediction
identified hey2, gjc1, has2, rasip1, and amot as significantly upregu-
lated during the NV of corneas (Figures 2C and S3). Aside from
hey2, qPCR analyses of these transcripts in corneas injured by alkali
burn (PBS and mock conditions) consistently showed increases in
expression at 5, 10, and 15 days post-treatment (Figure 7). Animals
that were treated with rAAV-pri-miR-204, on the other hand, showed
normalization of transcript levels that returned expression levels to
those observed in untreated corneas (Figure 7).

DISCUSSION
Current therapeutic strategies that directly target VEGF to inhibit
angiogenesis in corneal NV have yet to show efficacious reversal
of the pathology. This challenge is mainly due to the fact that
multiple molecular pathways are known to induce angiogenesis.
Because current drugs can only target single genes, combinatory
therapies may be required for these approaches. Furthermore,
pre-existing strategies require repeated administration for complete
beneficial outcome, burden the patient, and may become costly with
repeated treatments.

Figure 4. Subconjunctival Injection of rAAVrh.10

Vectors Expressing Pri-miR-204 Inhibits Corneal NV

(A) Diagram of the experimental design. (B) Corneal NV

was observed and measured at days 3, 5, 7, 10, and 14

following alkali-burn treatments. (C) Quantification anal-

ysis of NV area percentages among CD31-stained whole

corneal flat-mounts comparing PBS, mock, and pri-miR-

204 treatment groups. Mock: vector backbone without

the pri-miR-204. (D) CD31-stained whole corneal flat-

mounts harvested 15 days following alkali burn. Blood

vessels (CD31-positive) in corneal stroma are stained red.

Yellow dashed circles roughly mark the edges of avas-

cularized areas. Original magnification �25. Scale bar,

1 mm. n = 10/group. *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001, compared with PBS group.

In this study, we have aimed to reveal candidate
therapeutic miRNAs with strong anti-angio-
genic properties. To this end, we have profiled
for the first time the global expression of
miRNAs in neovascularized mouse corneas
induced by alkali-burn treatment, and have
performed RNA-seq to identify differentially
expressed genes in these tissues. By profiling
only those differentially expressed genes that

are predicted targets of corneal NV miRs, we now provide a resource
for the further discovery of therapeutic miRs that can directly regulate
gene expression in the injured mammalian cornea.

Additionally, we show that miR-204 is effective in targeting newly
discovered transcripts that are upregulated in vascularized corneas.
Of particular note, Has2 showed a several-fold increase after alkali-
burn treatment. This gene is known to be involved in vasculogenesis,
keratinocyte proliferation, and epithelial cell proliferation, as indi-
cated by ontological enrichment analysis. Incidentally, it was reported
that overexpression of miR-204 could also inhibit corneal epithelial
cell proliferation by an unreported mechanism.19 The capacity for
rAAV-pri-miR-204 to return has2 levels and others back to those
of normal corneas suggests that miR-204 can act not only on multiple
genes during NV, but also intervene in multiple biological pathways.
This ability demonstrates miRNAs as potent and favorable gene
therapy alternatives for corneal NV that specifically overcomes the
need for multiple treatment strategies required for anti-VEGF thera-
pies. At the time of our findings, a study had demonstrated the effect
of miR-184 mimics on corneal NV.12 We also identified miR-184 to
be strongly downregulated upon corneal alkali burn (Figures 1A
and S4A). When delivered by rAAVrh.10, miR-184 also has the
capacity to attenuate corneal NV. These experiments were carried
out in parallel to rAAV-pri-miR-204 experiments and are presented
as Figures S4 and S5.

We were able to achieve substantial miRNA expression in injured cor-
neas for 1 week after only a single treatment. Although levels were still
lower than those observed in non-damaged corneas (Figures 6A and
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S5A), significant anti-angiogenic effects were observed. Despite these
less than perfect findings, the results are still clinically meaningful,
because transgene products delivered by rAAVs have prolonged
outcomes.21 This feature circumvents the need for repeated drug
administrations required by alternative strategies. Furthermore, we
show that transgene expression in the cornea is not indefinite. It is
plausible that the keratocytes, which are exclusively transduced by
rAAVrh.10 in the cornea (Figure 3D), are turned over upon alkali-
burn treatment, causing eventual loss of episomal rAAV genomes.
This finding highlights a distinct advantage for rAAV-mediated
gene therapy; the episomal nature of rAAVs makes them ideal for
transiently treating acute corneal diseases.22 Whether overexpression
of exogenous miR-204 by rAAV delivery may negatively impact other
cellular processes in non-corneal tissues has yet to be explored.
Indeed, the angiogenesis-related gene Hif-1a is known to stimulate
miR-204 expression, which in turn leads to the downregulation of
the apoptotic protein BCL-2 in neuronal cells.25 Any cytotoxic out-
comes due to rAAV-miR-204 treatment in the surrounding site of
injection warrant future exploration. We have shown evidence that
at least in the fundus/retina and the cornea, there were no clear tissue
abnormalities following injection of rAAV (Figure 5). These data
show that the treatment regimen described in our study did not result
in noticeable cellular toxicity.

Despite the striking decrease in Akt and b-catenin pathways
following pri-miR-204 treatment, as well as normalization of genes
involved in vasculogenesis and cell proliferation in the cornea, we
did not observe a full reversal or prevention of NV. This partial
inhibitory effect might indicate that miR-204 overexpression alone
is not sufficient to entirely block NV in the cornea. By comparison,
our demonstration of pri-miRs to reverse NV or block NV onset as
a prophylactic (Figure S6) underperforms compared with anti-
VEGF strategies as demonstrated by Papathanassiou et al.,6 where
subconjunctival injections into rabbits 1 day after alkali burn results
in 4.7% NV of the cornea. In that study, however, vascular regression
was confined tominor vessels, and blockage of NV occurred only with
new vessels. In addition, 2 weeks following treatment, NV into the
cornea still developed to a degree, suggesting that multiple adminis-

Figure 5. Subconjunctival Injection of rAAVrh.10

Pri-miR-204 Vectors Is Safe for Ocular Tissues

(A) In vivo observation of mouse eyes 1 and 2 weeks

following PBS or vector injection. (B) Histopathological

analysis of corneas and retinas at 2 weeks following PBS

or vector injections showed no obvious abnormalities.

tration of drug is required. Importantly, in the
same study, scarring of the cornea was not
reversed. During the course of our own investi-
gation, we anecdotally observed that some
mouse corneas exhibited less fibrotic tissue after
treatment of pri-miR-204, but these numbers
were not robust enough to conclusively demon-
strate reduction of fibrosis. Whether miR-204 or

other corneal miRNAs are capable of attenuating corneal scarring
merits further investigation. Notably, multiple genes related to wound
healing and apoptosis were observed to be upregulated (Table S2).
Future studies to validate these as causative targets in rAAV-miR-
204 treatments would provide proof for miR-204’s utility as the ideal
therapeutic miR for treating corneal NV. Candidate genes such as
Has2, which we showed was upregulated upon corneal injury, is
related to keratinocyte and epithelial cell proliferation, and can be
normalized by rAAV-miR-204 (Figure 7), might be key therapeutic
targets for reversing fibrosis. Nevertheless, by profiling differentially
expressed miRNAs and protein coding transcripts in corneal tissue
following alkali-burn-induced NV, we have opened the possibility
for the discovery of additional therapeutic transgene strategies via
single or even mixed-vector strategies to further boost therapeutic
potential for mitigating the development of corneal NV.

MATERIALS AND METHODS
Animals

Six- to eight-week-old female C57BL/6J mice (Charles River Labora-
tories) were maintained and used according to the guidelines of the
Institutional Animal Care and Use Committee (IACUC) of the
University of Massachusetts Medical School. All animal experiments
conformed to the Association for Research in Vision and Ophthal-
mology (ARVO) Statement for the Use of Animals in Ophthalmic
and Vision Research. Prior to experimental procedures, all animals
were anesthetized by intraperitoneal injection of a ketamine-xylazine
mixture (100 and 10 mg/kg, respectively).

Mouse Corneal NV Induced by Alkali Burn

Alkali-burn treatments were conducted following previously
published methods.26 Only the right eyes of mice were treated to
conform to animal welfare standards required by IACUC and
ARVO. Filter-paper discs (3-mm diameter) were pre-soaked in
1 M NaOH for 15 s and applied to eyes in experimental groups
for 20 s. The ocular surface was then washed with 15 mL of normal
saline for 1 min. A single investigator performed all of the described
procedures to ensure reproducibility. Mouse corneas of anesthetized
animals were imaged and acquired with a Micron III camera
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(Phoenix Research Labs, Pleasanton, CA, USA). The area of corneal
NV was calculated by using the following formula modified from
Liu et al.27 Area (mm2) = CN/12 � 3.1416 � [R2 � (R � VL)2],
where CN is the clock-hours of NV (1 clock-hour equals 30 degrees
of arc); R is the radius of the cornea; and VL is the maximal vessel
length, extending from the limbal vasculature. Measurements of
corneas in live animals were performed five times each under a
Micron III microscope, and the area of corneal NV was calculated
accordingly.

NanoString nCounter miRNA Assay for miRNA Profiling

A total of 100 ng of RNA was extracted from whole mouse corneas.
Four corneas were pooled into one sample. Two samples for each
time point (eight corneas each) were profiled for miRNA expression
using the nCounter miRNA Expression Assay Kit (NanoString Tech-
nologies, Seattle, WA, USA). The assay was performed according to
the manufacturer’s instructions, querying 578 mouse miRNA targets,

33 mouse-associated viral miRNA targets, and 6 negative control
targets. The mean expression values of each miRNA were calculated
by normalizing across our cohort to filter for expressed miRNAs. The
six internal negative control probes served as the background
threshold cutoff point (set to 1.0).

RNA-Seq

Mouse corneas representing three treatment groups were treated as
above: non-treated (day 0), post-operative (day 5), and regression
post-operative (day 15). Whole corneal tissues were sent on dry ice
to Otogenetics (Atlanta, GA, USA). Total RNA was extracted from
tissues and processed for RNA-seq library preparation and high-
throughput sequencing on a HiSeq2500 platform following Otoge-
netics’ standard pipelines. Four corneas were pooled to represent a
single sample library, and two libraries represent each treatment con-
dition. Each biological condition therefore reflects eight individual
mouse corneas. This strategy was employed to compensate for the

Figure 6. The Anti-angiogenic Effect of Overexpressing miR-204 Is Due in Part to Targeting the Angpt1/Tie2/PI3K/Akt Pathway

(A) Real-time qPCR analysis of miR-204 expression in mouse corneas by intrastromal or subconjunctival injection. (B) Real-time qPCR analysis of angpt1 and vegf mRNA

expression. (C) Western blot analysis of ANGPT1 and VEGF expression, and the phosphorylation states of key factors in the Tie2/PI3K/Akt pathway. n = 6/group. Error bars

are ± SD. The notably large SD values observed are due to the variability inherent to in vivo experiments and the relatively small quantity of protein and mRNA obtained from

mouse corneas. n.s., no significant difference. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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low abundance of total RNA in an individual mouse cornea and
to limit the number of animals used for each condition. Primary
bioinformatics analysis (Tophat/Cufflinks workflows,28 differential
expression, and ontology enrichment analysis) was performed by
ContigExpress (New York, NY, USA). Predicted miRNA target genes
were selected from differentially expressed genes and analyzed with
the CummeRbund (v2.12.1) software package.28

Bioinformatics Analysis

Hierarchical Cluster Analysis

Hierarchical clustering was performed with average linkage using
Cluster 3.0 (Eisen Lab, University of California at Berkeley, CA,
USA). The clustered heatmap was visualized using the interactive
graphical software, TreeView (Eisen Lab). A limma algorithm was
applied to filter the differentially expressed miRNAs from different
experimental groups.29 After performing significance (p < 0.05) and
false discovery rate analysis (FDR < 0.05), we selected differentially
expressed miRNAs with a ±2-fold change cutoff. Selected miRNAs
were ranked by fold-change.

miRNA Target Gene Prediction and GO/Pathway Analysis

Differentially expressed miRNAs identified by nCounter Analysis
were subjected to target gene prediction analysis using TargetScan

Figure 7. Predicted Corneal NV miR-204 Gene

Targets Are Normalized following Treatment with

rAAVrh.10 Pri-miR-204

Alkali-burn-treated mouse eyes were subconjunctivally

injected with PBS, mock, or pri-miR-204. After 5, 10,

or 15 days following treatment, corneas were obtained

for qPCR analysis. At least five eyes per group

were analyzed (3 days with four treatment conditions,

12 groups total). qPCR analysis of target transcripts in

triplicate were conducted. The mean fold-change

of message levels as compared with the normal

groups ± SD is displayed. The notably large SD values

observed are due to the variability inherent to in vivo

experiments and the relatively small quantity of protein

and mRNA obtained from mouse corneas. *p < 0.05;

**p < 0.01; ***p < 0.001; ****p < 0.0001, two-way

ANOVA.

and miRTarBase definitions.30,31 GO network
maps and term enrichment analyses were
performed using Cytoscape_v3.3.0 plug-in
tools and ClueGO v2.2.332 with terms defined
by GO_BiologicalProcess-GOA_07.12.2015
and KEGG pathways. Significance was
defined by a Kappa score threshold of 0.4,
with p value cutoffs of 0.05 for pathway
reporting. For reasons of practicality, only
genes and miRNAs enriching for terms
related to vasculogenesis, JAK-STAT
signaling, Ephrin signaling, eye development,
epithelial cell homeostasis, bone morpho-

genetic protein (BMP) signaling, wound healing, and cell growth
were reported.

Data Reporting

ThenCounter andRNA-seqdatadiscussed in thispublicationhavebeen
deposited in NCBI’s GEO and are accessible through GEO: GSE89538
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE89538).

rAAV Vector Production

pri-miR-184 and pri-miR-204 were amplified using the PrimeSTAR
Max DNA Polymerase kit (Takara, Japan) with the following primers:
pri-miR-184, sense 50-ccggaattctgtgcagaaacataagtgactctccaggtg-30,
antisense 50-atcggcggccgcgcagagagcacattttgaataagcaaagtg-30; pri-miR-
204, sense 50-ccggaattctttacccacaggacagggtgatggagagga-30, antisense
50-atcggcggccgcgtcacatggtttggacccagaactattagt-30.

PCR products were sub-cloned into the self-complementary (sc)
pAAV-CB-PI-GaussiaLuc plasmid by conventional means using NotI
and EcoRI restriction sites. The sc-pAAV-CB-PI-EGFP plasmid and
sc-pAAV-CB-PI-pri-miR184/204-GaussiaLucplasmidswere packaged
with rAAVrh.10 capsids by triple-plasmid transfection of HEK293
cells.22,33 Viruses were purified with CsCl gradient ultracentrifugation
and titered by both qPCR and silver staining of SDS-PAGE gels.33
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rAAV Transduction by Intrastromal or Subconjunctival Injection

Intrastromal injections were performed following previously
published methods.22 In brief, a 1.0-mm-long incision using the tip
of a 26-gauge needle was first created through the corneal epithelium,
equidistant between the cornea-scleral junction and the corneal
center. Then, 3.6 � 1010 genomic copies (GCs) of vector in 4 mL of
PBS were injected through the incision into the corneal stroma using
a 33-gauge needle and a 5-mL Hamilton syringe (Hamilton, Reno,
NV, USA). Subconjunctival injections were performed using a 5-mL
Hamilton syringe to deliver 3.6 � 1010 GCs of vector in 4 mL of
PBS. Antibiotic ointment was applied after injections.

Real-Time qPCR for miRNA and mRNA Expression Analyses

RNA extraction and real-time qPCR for miRNA (TaqMan miRNA
assay; miR-184, miR-204; Life Technologies, Carlsbad, CA, USA) and
mRNAs were performed as described previously.34 Primer sequences
for fzd4, vegf-a, and angpt1 are reported in Table 1. Primer sets for
hey2, gjc1, angpt1, has2, rasip1, amot, and b-actin used in Figure 7
were designed and synthesized by BioTNT (http://www.biotnt.us).
U6 and b-actin were used as normalization transcripts for miRNAs
and mRNAs, respectively.

Droplet Digital PCR for rAAV Genome Copy Number and RNA

Expression Analyses

Mouse cornea genomic DNA was isolated using the QIAamp DNA
kit (QIAGEN, Hilden, Germany) following manufacturer’s instruc-
tions and then digested with >10 U/mg SalI (New England Biolabs,
Ipswich, MA, USA) at 37�C for 1 hr. There are two SalI sites in the
rAAV genome, and SalI digestion ensures single copy emulsion for
droplet digital PCR (ddPCR) quantification. Multiplexed ddPCR
was performed on a QX200 ddPCR system (Bio-Rad Laboratories,
Hercules, CA, USA) using TaqMan reagents targeting EGFP (catalog
no. 4400293; Life Technologies) and the reference gene, transferrin
receptor (Tfrc) (catalog no. 4458367; Invitrogen, Waltham, MA,
USA). rAAV genome copy numbers per diploid genome were calcu-
lated as EGFP transgene copy numbers per two Tfrc gene copies.

Total RNA was extracted using the RNeasy 96 QIAcube HT kit with
on-column DNase I digestion (QIAGEN, Valencia, CA, USA),
reverse-transcribed into cDNA, and subjected to multiplexed ddPCR
using TaqMan reagents targeting EGFP and Glyceraldehyde-3-Phos-
phate Dehydrogenase (gapdh) (catalog no. 4352339E; Life Technolo-
gies). The quantity of EGFP was normalized to gapdh levels.

Western Blot

Total protein from corneas was extracted on ice with RIPA lysis buffer
in the presence of freshly added protease and phosphatase inhibitors
(Thermo Fisher Scientific, Waltham, MA, USA). A total of 10 mg/lane
protein extract was loaded onto a 4%–20% gradient SDS-polyacryl-
amide gel and transferred to nitrocellulose membranes (Bio-Rad
Laboratories). Nonspecific binding was blocked with 5% nonfat
milk or 5% BSA in Tris-buffered saline with Tween20 (TBST) as rec-
ommended for each antibody. The membrane was incubated with
rabbit anti-VEGF (ab46154; Abcam, Cambridge, MA, USA), anti-
Angpt1 (ab95230; Abcam), anti-Tie2 (catalog [Cat.] no. 7403; Cell
Signaling, Danvers, MA, USA), anti-phospho-Tie2 (AF2720-SP;
R&D Systems, Minneapolis, MN, USA), anti-PI3K (p85) (Cat. no.
4292; Cell Signaling), anti-phospho-PI3K (p85) (Cat. no. 4228;
Cell Signaling), anti-Akt (ab8805; Abcam), anti-phospho-Akt1
(ab81283; Abcam), anti-Fzd4 (ab83042; Abcam), anti-LRP6 (Cat.
no. 3395S; Cell Signaling), anti-phospho-LRP6 (Cat. no. 2568S; Cell
Signaling), anti-N-p-b-catenin (Cat. no. 4270; Cell Signaling), or
anti-b-catenin (Cat. no. 8480S; Cell Signaling) antibodies overnight
at 4�C. IRDye 800CW goat anti-rabbit IgG (Cat. no. 926-32211;
LI-COR, Lincoln, NE, USA) was used as the secondary antibody,
and mouse anti-GAPDH antibody (ab8245; Abcam) was used as an
internal standard.

Histological and Immunofluorescence-Histochemical Analyses

For rAAV transduction efficiency analysis, mouse eyes were enucleated
and fixed in 4% paraformaldehyde. Corneas with limbi were then har-
vested for corneal flat-mounts and blocked in 5% goat serum in PBS.

Table 1. Primer Sequences in This Study

Gene Forward Primer Sequence (50-30) Reverse Primer Sequence (50-30)

fzd4 TGCCAGAACCTCGGCTACA ATGAGCGGCGTGAAAGTTGT

vegf-a GCCAGCACATAGAGAGAATGAGC CAAGGCTCACAGTGATTTTCTGG

angpt1 CACATAGGGTGCAGCAACCA CGTCGTGTTCTGGAAGAATGA

hey2 CACTGGGACAAACAATAAAC TCTGTATGACTACCTTCAGG

gjc1 TGAGGTGGGCTTTCTAATAG TATGAGGGCAAGGAAGTCTG

angpt1* GGTGCTCTGCCAGTATTAGA TGACATAACCACTTGCTGCT

has2 GACGGTGGGATGATGTCTT ACAAACACTGTCAGGCAGAT

Rasip1 GACCTCGTGTCCCAGACTT GACCTCGTTCCATCAGTGAG

Amot CGTCCACTAGATTGCCTCCT CGAAAGAAGATGCTGCTGAT

b-actin CCTCTATGCCAACACAGT AGCCACCAATCCACACAG

amot, Angiomotin; angpt1, angiopoitein-1; angpt1*, alternative primer set for angpt1 used in Figure 7; b-actin, Beta-actin; fzd4, frizzled receptor-4; gjc1, Gap junction gamma-1 protein;
has2, Hyaluronan synthase 2; hey2, Hes-Related Family BHLH Transcription Factor With YRPWMotif 2; rasip1, Ras-interacting protein 1; vegf-a, vascular endothelial growth factor-a.
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For detecting EGFP expression in normal mouse corneas, flat-mounts
were stained with rabbit anti-mouse GFP primary antibody (1:1,000;
Life Technologies), followed by goat anti-rabbit IgG-Alexa Fluor 488
secondary antibody (1:1,500; Life Technologies). For corneas treated
by alkali burn, flat-mounts were stained with rat anti-mouse CD31
(1:500; Abcam) and rabbit anti-mouse keratocan (1:50; Santa Cruz
Biotechnology, Dallas, TX, USA) primary antibodies, followed by
goat anti-rat IgG-Alexa Fluor 568 and goat anti-rabbit IgG-Alexa Fluor
694 secondary antibodies (1:1,500; Life Technologies). Corneal whole
mounts were set with VECTASHIELD anti-fade mounting medium
with DAPI (Vector Laboratories, Burlingame, CA, USA) for observa-
tion and imaging analysis. For corneal NV detection after alkali-
burn treatment, flat-mounts were stained with the rat anti-mouse
CD31 primary antibody (1:5,00; Abcam), followed by goat anti-rat
IgG-Alexa Fluor 568 secondary antibody (1:1,500).

To evaluate the safety of pri-miRNA vectors, we fixed mouse eyes
from each group in 10% formalin, embedded in paraffin, sectioned
at a thickness of 4 mm, and stained with H&E for histological analysis.
Images were obtained using a Leica DMC2900 microscope (Leica
Microsystems, Buffalo Grove, IL, USA).

Statistical Analysis

Results are expressed as mean ± SD. Analysis was performed with
one-way or two-way ANOVA formultiple variables, and Bonferroni’s
post hoc multiple-comparison test was used for inter-group
differences using GraphPad Prism 6.0 (GraphPad Software, La Jolla,
CA, USA). p < 0.05 was considered significant in all cases. p values
for Figures 6 and 7 are included in the Supplemental Information
as Tables S3 and S4, respectively.
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