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A deep sequencing approach 
to estimate Plasmodium falciparum complexity 
of infection (COI) and explore apical membrane 
antigen 1 diversity
Robin H. Miller1, Nicholas J. Hathaway2, Oksana Kharabora3, Kashamuka Mwandagalirwa4, Antoinette Tshefu4, 
Steven R. Meshnick3, Steve M. Taylor5, Jonathan J. Juliano3, V. Ann Stewart1 and Jeffrey A. Bailey2*

Abstract 

Background:  Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain 
infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplo-
types identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this 
study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 
1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore 
the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 
2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection 
pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and 
Mali.

Results:  A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both 
individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 
haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on 
the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence 
as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype 
diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between 
parasite populations in the DRC and Mali.

Conclusions:  Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can 
aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of 
malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse 
markers under balancing selection may perform well for understanding COI, they may offer little geographic or tem-
poral discrimination between parasite populations.

Keywords:  Plasmodium falciparum, Complexity of infection, Amplicon-based deep sequencing, Apical membrane 
antigen 1
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Background
Malaria caused an estimated 429,000 deaths worldwide 
in 2015, with the overwhelming majority of deaths occur-
ring in sub-Saharan Africa [1]. In regions of holoendemic 
malaria transmission, individuals are routinely exposed 
to malaria parasites and subsequently develop naturally 
acquired partial immunity to malaria clinical disease 
despite harbouring malaria parasites [2–10]. Individuals 
with asymptomatic or chronic malaria have been identi-
fied as important reservoirs for malaria transmission and 
represent a major challenge for malaria control and elim-
ination strategies [11–15].

Early molecular studies revealed that genetically 
diverse Plasmodium falciparum strains circulate in 
malaria endemic regions and that this genetic heteroge-
neity contributes to the ability of P. falciparum to evade 
the host immune response and develop resistance to anti-
malarial drugs [16–22]. It has been suggested that multi-
clonal malaria infections can influence clinical outcomes 
in a manner that is dependent on transmission intensity 
[23], and may negatively impact an individual’s response 
to anti-malarial drug treatment [24]. Further, multiclonal 
P. falciparum infections increase the likelihood of inter-
strain genetic recombination during the sexual stage 
in the anopheline vector, resulting in the generation of 
genetically diverse P. falciparum strains and facilitating 
parasite evolution [25–29]. Multiclonal P. falciparum 
infections can occur either via multiple mosquito bites 
each with a different strain of P. falciparum or via a single 
mosquito bite containing multiple P. falciparum strains 
[4, 30, 31]. The number of distinct P. falciparum strains 
present within a single individual is defined as the com-
plexity of infection (COI) [32]. The relationship between 
COI and malaria transmission intensity is complex. On 
one hand, recent studies have shown a positive correla-
tion between the intensity of malaria transmission and P. 
falciparum COI, with malaria holoendemic regions typi-
cally experiencing higher P. falciparum COIs compared 
to areas with seasonal or low malaria endemicity [6, 33–
39]. Thus, COI has been proposed as a method for meas-
uring changes in malaria transmission intensity after the 
implementation of malaria control programmes [33, 35, 
40–42]. Conversely, other studies have demonstrated a 
lack of correlation between malaria transmission inten-
sity and P. falciparum COI [43–45]. Additional stud-
ies into the relationship between malaria transmission 
intensity and P. falciparum COI are, therefore, needed to 
better understand the relationship between malaria para-
site genetic diversity and transmission dynamics and the 
potential utility of COI as a measure of change in malaria 
prevalence.

Several genetic tools and strategies have been 
employed to detect multiclonal P. falciparum infections, 
including targeting size polymorphisms of the merozoite 
surface proteins (MSP1, MSP2) and GLURP [5, 8, 46–49]. 
Some PCR based methods rely on DNA sequence length 
polymorphisms, which can be visualized via gel or capil-
lary electrophoresis and the COI defined as the number 
of distinct bands present. However, these methods lack 
the sensitivity to identify distinct P. falciparum strains 
that differ by only a few nucleotides in length or that 
contain single nucleotide polymorphisms (SNPs). Also, 
these methods have poor sensitivity in terms of detecting 
less abundant strains [50–53], and differing methods can 
result in high variability in the number of strains detected 
between laboratories [54]. Novel approaches based on 
DNA deep sequencing technologies provide increased 
capabilities to detect minor variant P. falciparum strains 
as well as discriminate SNPs and small indels. These deep 
sequencing technologies provide a more accurate deter-
mination of the COI within an individual or population 
thereby improving subsequent population genetic analy-
ses [4, 6, 34, 50, 55, 56].

In the Democratic Republic of Congo, malaria is a lead-
ing cause of morbidity and mortality with over 95% of 
malaria infections due to P. falciparum [57]. The DRC 
Ministry of Health estimates that 97% of the popula-
tion in the DRC live in areas where malaria transmis-
sion occurs 8–12 months out of the year [57]. The 2007 
DRC demographic and Health Survey (DHS) and subse-
quent studies reported over one-third (33.5%) of adults 
(15–59 years) were positive for malaria by real-time PCR 
(qPCR) [58, 59]. Several studies have explored the com-
plex malaria spatial epidemiology and population genet-
ics in the DRC [59–67]. For instance, a recent spatial and 
genetic analysis revealed P. falciparum parasite popu-
lations are dispersed across seven geographical areas, 
likely due to movement of human populations between 
provinces in the DRC and the region [61]. Additionally, 
Taylor et  al. report spatial and genetic clustering of P. 
falciparum sulfadoxine drug resistance between western 
and eastern DRC [65]. Further studies to examine P. fal-
ciparum haplotype diversity are, therefore, warranted to 
inform malaria control strategies and to monitor changes 
in malaria parasite population structure in response to 
malaria control efforts in the DRC.

In this study, a PCR amplicon-based deep sequenc-
ing approach was utilized to target the extensive allelic 
diversity of the P. falciparum apical membrane antigen 
1 (pfama1) gene in order to (1) examine the relationship 
between P. falciparum COI and P. falciparum prevalence 
as determined previously by real-time PCR [59], (2) to 
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investigate the P. falciparum population genetic structure 
at both the individual and population level in the DRC, 
and (3) to explore AMA1 amino acid frequencies and 
potential selection pressures between geographically dis-
tinct malaria parasite populations in the DRC and Mali. 
The authors hypothesized that P. falciparum COI would 
be positively correlated with P. falciparum prevalence in 
a region, and that similar pfama1 haplotypes would be 
identified at the individual and population level in the 
DRC and Mali. In order to investigate pfama1 diversity at 
both the individual and population level, individual sam-
ples (representing a malaria infection in a single person), 
and pooled samples (representing  population cluster 
samples) were targeted in this study. Pooling samples is a 
cost-effective approach to amplicon-based deep sequenc-
ing as it reduces the number of PCR reactions and library 
preparations, and this pooled approach has been utilized 
in several malaria population genetic studies [68–71]. 
This dual sample type (individual and population clus-
ter) approach allows for the examination of COI using 
the individual samples and also powers spatial population 
genetic analyses combining the individual samples and 
the pooled population cluster samples.

Overall, a total of 77 unique pfama1 haplotypes were 
identified across DRC provinces. The vast majority of 
individual malaria infections were polyclonal (COI  >  1), 
and no correlation was found between COI and malaria 
prevalence at sites/regions. Population genetic analy-
ses revealed extensive genetic diversity of P. falciparum 
parasites based on the pfama1 gene and similar amino 
acid frequencies between malaria parasite populations 
in the DRC and Mali. Herein, this manuscript highlights 
the utility of combining individual and pooled amplicon-
based deep sequencing methods for population genetic 
analyses layered onto the infrastructure and sample col-
lection process of a routine Demographic and Health Sur-
vey. This manuscript also describes the spatial and genetic 
diversity of pfama1 haplotypes circulating in the DRC 
and Mali to improve the understanding of malaria trans-
mission dynamics that could potentially inform future 
malaria control and elimination efforts in the region.

Methods
Ethics statement
Participants included in the Demographic and Health 
Survey (DHS) provided verbal informed consent as 
described previously [59]. Study enrollment and blood 
sample collection protocols were approved by the Eth-
ics Committees of the institutions involved in the DHS 
and sample collection including Macro International, the 
School of Public Health of the University of Kinshasa, 
and the Institutional Review Board of the University of 
North Carolina.

Democratic Republic of Congo Demographic Health 
Survey Sample Collection
The 2007 Democratic Republic of the Congo Demo-
graphic and Health Survey (DHS) was conducted to col-
lect health indicator data from across the DRC. Within 
300 clusters, survey teams went from house to house and 
enrolled women aged 15–49 years, and men aged 15–59. 
The age distribution was constant across sites. The survey 
in urban Kinshasa occurred during the rainy season (Jan-
uary 31–March 8, 2007). The remainder of the country 
was surveyed during the dry season (May–August, 2007) 
[58, 60]. Genomic DNA was extracted from dried blood 
spot (DBS) samples on filter paper for malaria species-
specific 18S ribosomal RNA based qPCR detection of P. 
falciparum, Plasmodium ovale, and Plasmodium malar-
iae parasites [59]. The samples used herein were ran-
domly selected from samples obtained during the 2007 
DHS.

In the present study, 115 individual samples positive 
for asymptomatic P. falciparum infection were identi-
fied based on the following criteria: (1) positive for P. 
falciparum and negative for P. ovale and P. malariae by 
species-specific qPCR and (2) geographically representa-
tive of the eleven DRC provinces. Eighty-four population 
cluster samples that represented pooled asymptomatic P. 
falciparum samples of 2–25 individuals were also chosen 
based on geographical proximity to the individual sam-
ples (Additional file 1). Individual and population cluster 
samples were selected in order to compare parasite hap-
lotypes from individual people (Fig. 1a) and the parasite 
population at large (Fig. 1b) from all DRC provinces. The 
presence of P. falciparum parasites was further confirmed 
for all individual samples based on the detection of P. fal-
ciparum lactate dehydrogenase (pfldh) gene by qPCR as 
described [72].

Amplicon‑based deep sequencing of the P. falciparum 
apical membrane antigen 1 (pfama1) gene
To increase assay sensitivity, heminested primers were 
designed using Primer3 [73] to amplify a region of the 
pfama1 gene (GenBank Reference XM_001347979.1) 
(Fig.  2). The first round PCR primers, Ama1OF and 
Ama1R, and the second round PCR primers, Ama1F 
and Ama1R primers, amplify a 266 base pair (bp) and 
236 bp region, respectively (Additional file 2). In order to 
pool PCR amplicons during sequencing library prepara-
tion, a 10-nucleotide Multiplex Identifier (MID) barcode 
sequence was added to the 5′ end of the Ama1F primer 
[74] (Additional file 2). PCR amplicons were visualized on 
1% agarose gels stained with ethidium bromide and puri-
fied via the PureLink Pro 96 PCR Purification Kit (Invit-
rogen, Carlsbad, CA). PCR amplicon concentration was 
determined in duplicate and averaged using the Quant-iT 
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PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA) 
according to manufacturer’s instructions.

Purified PCR amplicons  containing barcodes were 
pooled into sets (up 24 amplicons each based on the 24 
unique MIDs) at equal concentration. Each pool was 
then used to generate a sequencing library with a unique 
index to allow for the unambiguous identification of the 
sequences for every amplicon. Specifically, ten nano-
grams of pooled purified PCR amplicons was ligated 
with the appropriate index and the DNA concentration 
of each indexed amplicon pool was determined using the 
Agilent High Sensitivity D1000 ScreenTape Assay on the 
2200 TapeStation (Agilent Technologies, Santa Clara, 
CA) according to manufacturer’s instruction in order to 
confirm equal DNA concentrations across the 18 indexed 
amplicon pools. Six sequencing control samples were run 
as template in duplicate with the pfama1 PCR assay and 
included in downstream sequencing library preparations. 
Sequencing control samples contained P. falciparum 
DNA from V1S, RO33, Dd2, 7g8, and K1 strains at 5, 10, 

15, 30, and 40 percent, respectively (BEI Resources/MR4, 
Manassas, VA).

Ion Torrent library preparation was conducted fol-
lowing the “Preparing Short Amplicon (< 350) Libraries 
Using the Ion Plus Fragment Library Kit” manual (Life 
Technologies, MAN0006846, revision 3.0) for each of 
the 18 indexed PCR pools. DNA concentrations of the 
18 resulting libraries were determined using the Agi-
lent High Sensitivity D1000 ScreenTape Assay accord-
ing to manufacturer’s protocol. Equal concentrations of 
each library were pooled and split across two Ion 318 
Chips (Life Technologies, Carlsbad, CA) utilizing 400 bp 
chemistry on the Ion Torrent PGM platform (Life Tech-
nologies) at the University of North Carolina Chapel Hill 
Microbiome Core Facility. Deep sequence data extrac-
tion, processing, and analyses were performed using 
the SeekDeep targeted amplicon bioinformatics pipe-
line [75–79]. A workflow diagram is provided to outline 
the methods and provide additional details (Additional 
file 3).

Fig. 1  Individual (a) and population cluster (b) samples with analysable sequence reads locations. Blood samples were collected from all seven 
provinces including Kinshasa (box inset). Individual samples (blue circles, n = 79) represent genomic DNA isolated from a single person and popula-
tion cluster samples (green circles, n = 73) are pooled genomic DNA samples from multiple (2–25) people

Fig. 2  Schematic of the Plasmodium falciparum apical membrane antigen 1 (pfama1) gene. The first 72 nucleotides contain the signal sequence (ss) 
followed by Domain I (nucleotide 73–960), Domain II (nucleotide 961–1326), Domain III (nucleotide 1327–1638), and the transmembrane domain 
(tm, nucleotide 1639–1869). The heminested primer binding sites (OF = Ama1OF, F = Ama1F, R = Ama1R) are indicated by arrows located in 
Domain I. Nucleotide sites are based on the 3D7 reference strain (GenBank XM_001347979.1)
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In order to compare AMA1 amino acid frequen-
cies between the DRC and Mali, 506 pfama1 sequences 
(GenBank FJ898536–FJ899041) previously published by 
Takala et al. were retrieved [80]. Pfama1 sequences from 
Mali were trimmed and aligned to pfama1 sequences 
from the DRC using Geneious (v 9.1.5) [81].

Population genetics analyses
Molecular population genetic analyses were conducted 
using MEGA version 7 [82] and DnaSP (v5.10.1) [83, 84]. 
Standard nucleotide and haplotype diversity calculations 
weighting pools by the number of contained individuals 
[85] were performed in Python. Population pairwise (FST) 
comparisons were calculated between DRC provinces 
using the Analysis of Molecular Variance (AMOVA) tool 
in the Arlequin (v3.5.2.2) population genetics data analy-
sis program [86]. Network (v5.0.0.1), DNA Alignment 
(v1.3.3.2), and Network Publisher (v2.1.1.2) add-ons were 
used to generate a median-joining (MJ) network diagram 
in order to visualize phylogenetic relationships between 
pfama1 haplotypes [87]. Isolation by Distance (IBD) anal-
ysis was performed using the Mantel Test in GenAlEx 
(v.6.503) [88, 89].

Statistical analyses and data visualization
Statistical analyses were performed in GraphPad Prism 
(v6), SPSS (v22), R [90], and Microsoft Excel. ArcGIS 
(ESRI, v.10.4.1.5686) was used to generate maps and the 
DRC province boundary map was obtained from the 
DHS Programme Spatial Data Repository [91]. All per-
mutation testing used 10,000 replicates.

Results
Amplicon‑based deep sequencing of individual 
and population cluster samples
Real-time PCR (qPCR) was performed for all 115 indi-
vidual samples to confirm the presence of P. falciparum 
based on the lactate dehydrogenase (pfldh) gene. Conven-
tional PCR based on the pfama1 gene was performed on 
all individual samples regardless of pfldh qPCR results 
and on all geographical cluster samples (n = 84). Table 1 
summarizes the results of the pfldh qPCR and pfama1 
PCR for both sample types.

A total of 11,511,315 pfama1 deep sequencing reads 
were obtained using the Ion Torrent PGM platform. 
Using the SeekDeep targeted amplicon analysis pipeline, 
reads with missing barcodes, short reads (< 50 bp), poor 
quality, and chimeric reads were filtered out, resulting in 
4,879,911 remaining reads. The IonTorrent PGM plat-
form is based on the “sequencing by synthesis” principle 
(detecting H ion release on a semiconductor matrix when 
a base is added during synthesis), which can result in 
variable quality reads particularly within homopolymer 
repeats. Thus, sequencing read quality varies in the pro-
portion of reads that are poor quality or truncated and 
is mainly dependent on the quality of the input library 
as well as the specific run rather than one sequencing 
platform over another. These sequencing reads were 
subsequently de-multiplexed (separated by input ampli-
con based on index and MID), clustered according to 
samples and replicates, and haplotypes estimated using 
a 2.5% minimum haplotype frequency cutoff. Based on 
these criteria, a total of 3,754,497  reads was obtained 
for downstream haplotype analysis.  Analysable deep 
sequencing reads of the target pfama1 region were gener-
ated for 79 (68.7%) of the individual samples, 73 (86.9%) 
of the population cluster samples, and six sequencing 
control samples. Analysis of the six sequencing control 
samples revealed similar haplotype frequencies between 
the expected haplotype percentage and the actual hap-
lotype percentage determined by the SeekDeep targeted 
amplicon analysis pipeline (Additional file  4), demon-
strating the sensitivity of a targeted amplicon based deep 
sequencing approach to detect mixed haplotype infec-
tions. No false haplotypes (i.e. haplotypes that were not 
included in the control template) were detected from the 
control sample sequencing reads.

Overall, a total of 77 unique pfama1 haplotypes from 
both the individual samples and population cluster sam-
ples were identified (Table  2; Additional files 5, 6). A 
total of 60 pfama1 haplotypes were identified in indi-
vidual samples and 55 haplotypes were identified in the 
population cluster samples (Table  2; Additional file  6). 
Thirty-eight pfama1 haplotypes were shared between the 
individual and population cluster samples and 25 most 
frequent haplotypes were detected in both confirming 

Table 1  Summary of DRC individual samples and population cluster samples PCR and amplicon deep sequencing results

a  Concentrations of pfldh based on qPCR standard curve analysis ranged from less than 0.1 ng/ml to over 1000 ng/ml for individual samples
b  The number of samples with analysable deep sequence reads was determined using the SeekDeep targeted amplicon analysis pipeline criteria and a 2.5% 
minimum haplotype frequency cutoff requirement for inclusion in analysis. The SeekDeep analysis pipeline excludes reads based on missing barcodes, short reads 
(< 50 bp), and poor quality/chimeric reads

Sample type Number of samples No. of pfldh qPCR  
positive samples (%)a

No. of pfama1 PCR  
positive samples (%)

No. of samples with analysable 
deep sequence reads (%)b

Individual 115 99 (86.1) 81 (70.4) 79 (68.7)

Population cluster 84 – 79 (94.0) 73 (86.9)
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their general equivalence (R =  0.71) (Additional file  6). 
Twenty-two and seventeen pfama1 haplotypes were 
unique to the individual samples and population clus-
ter samples, respectively. Only relatively low frequency 
haplotypes in the population were not detected in both 
individual and pooled samples (frequency average 0.1%; 
maximum 1.0%) (Additional file 6).

The majority of P. falciparum infections in individual 
samples were polyclonal (64.5%) defined as a COI  >  1 
(Fig. 3a). The mean COI for individual samples was 2.38 
and ranged from 1 to 9 haplotypes (Table  2). Not sur-
prisingly, given they represent multiple patient samples, 
84.9% of the population cluster samples were polyclonal 
(Fig.  3b). Comparison of the demographic characteris-
tics between the sample types with analysable sequence 
reads revealed the pooled subjects tended to be slightly 

younger, to live in rural areas, and to be male than the 
subjects tested individually (Additional file 7). In order to 
explore the relationship between COI and malaria trans-
mission intensity in the DRC, COI from individual sam-
ples were compared to P. falciparum prevalence obtained 
via real-time PCR from the 2007 DHS samples reported 
in a separate study [59]. As shown in Fig. 4, there was a 
non-significant weak linear trend of increasing COI with 
prevalence but the overall variance was high with little 
accounted for by this model (Pearson coefficient of corre-
lation, r = 0.168, p = 0.139 by permutation) (Fig. 4, grey). 
A nonparametric Spearman rank correlation was also 
performed and demonstrated no significant relationship 
between observed COI and P. falciparum prevalence by 
qPCR (rs = 0.126, p = 0.268 by permutation). Difference 
in observed COI and bifurcated prevalence based on the 

Table 2  Summary DRC population genetic data based on sample type

COI: Complexity of infection
a  Number of individual samples within the population cluster samples

Number of  
samples

Number of  
haplotypes

Mean  
COI

# Polymorphic  
sites (S)

Nucleotide  
diversity (π)

Haplotype 
diversity (Hd)

Total 152 77 – 33 0.04458 0.9552

Individual samples 79 60 2.38 32 0.04378 0.9550

Population cluster  
samples (#Ind./pop)a

73 (821) 55 – 20 0.04456 0.9536

Fig. 3  Haplotype frequencies in individuals (a) and population clusters (b) based on geographical location. Circle size represents the number of 
unique pfama1 haplotypes in a particular location. Georeferencing data was unavailable for four individual samples and three population cluster 
samples
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mean (0.4413) was also tested. These high and low preva-
lence groups had a mean of 2.75 and 2.00, respectively, 
with suggestive significance (Wilcoxon two sample test, 
p = 0.0861 and p = 0.0353 by permutation). 

Pfama1 amplicon deep sequencing, like all single locus 
methods, will underestimate the true COI when strains 
share the same haplotype. A permutation model was 
utilized to correct for COI when strains share the same 
pfama1 haplotype. Based on the observed pfama1 hap-
lotype frequencies, the probability of true COI of 2, 3, 
4, 5, 6, 7, 8, 9, and 10 being undercalled (missing one or 
more strains) is 4.5, 12.7, 24, 37, 50, 62, 73, 82 and 88 per-
cent, respectively. While these values demonstrate that 
the highest COIs are usually underestimated, these high 
COIs represent a low proportion of the observed samples 
in this study. Using both the probability of undercalling 
and the observed distribution, the corrected COIs were 
simulated and the average correction plotted (Fig. 4, red). 
Compared to the original uncorrected COI, there was 
minimal change in the parametric correlation (Pearson 
coefficient of correlation, r = 0.169, p = 0.135 by permu-
tation) and no change in the nonparametric correlation 
(Spearman, r =  0.126, p =  0.268 by permutation). The 
mean corrected COI showed an increased spread of 2.98 
versus 2.12 between the high and low prevalence groups, 
respectively. Despite this increased difference, the p value 
increased slightly (p  =  0.0398 by permutation) due to 
increased variance resulting from modeling the impreci-
sion of the COI measurements.

Population genetic analyses
Population genetics analysis methods were utilized to 
explore pfama1 haplotypes from all sample types as well 
as between individual samples and population cluster 
samples (Table 2). Overall, 33 polymorphic sites (S) from 
77 pfama1 haplotypes and high haplotype diversity (Hd) 
were found in both sample types (Table 2). Comparison 
between individual and population cluster samples show 
similar haplotype diversity (Hd) and nucleotide diversity 
(π). This was supported by the lack of a statistical differ-
ence between the two types of sampling at the province 
level (Wilcoxon Rank Sign Test, p = 0.16 for Hd; p = 0.60 
for π). However, there were fewer polymorphic sites (S) 
in the population cluster samples compared to the indi-
vidual samples (Table 2) and these additional sites repre-
sent low prevalence rare variants within the population. 
This emphasizes that pooled samples should not be uti-
lized for analyses that target or depend on the assessment 
of low frequency variants.

The population genetic data were examined based on 
DRC province for both individual and population clus-
ter samples (Table 3). Both sample types showed similar 
numbers of polymorphic sites, nucleotide diversity, and 
haplotype diversity across the 11 provinces. However, 
Bas Congo appeared to differ from other provinces with 
the lowest haplotype diversity (0.568) and nucleotide 
diversity (0.0277). The overall frequencies were tested for 
significant outliers. Bas Congo was identified as an out-
lier in terms of haplotype diversity (p =  0.004; Dixon’s 
Q-test) but not in terms of nucleotide diversity (p = 0.6). 
However, this overall deviation was only supported by 
the pooled samples (n = 30; p = 0.004) and not the indi-
viduals (n =  4; p =  0.6). Given this difference and that 
this province was less deeply sampled than on average it 
is not clear if this is a significant deviation.

To further explore haplotype diversity between 
DRC provinces, population fixation index (FST) was 
determined between DRC provinces from haplo-
types identified in both sample types (Table 4). Over-
all, the average FST value is 0.0008, ranging from 0 to 
0.011656. Low FST values between provinces indicate 
pfama1 haplotypes are panmictic and, therefore, not 
isolated based on province in the DRC. Isolation by 
distance (IBD) analysis of individual samples showed 
no correlation of genetic distance and spatial distance 
(R2 =  7.7 ×  10−5), indicating that genetically similar 
pfama1 haplotypes are not found closer together spa-
tially. A Median-Joining Network Diagram was also 
constructed using the 60 haplotypes found in individ-
ual samples to examine whether related haplotypes are 
spatially clustered in the DRC (Fig.  5). There was no 
clustering of related pfama1 sequences based on DRC 
province, suggesting that genetically related pfama1 

Fig. 4  Comparison of Plasmodium falciparum complexity of Infec-
tion (COI) and prevalence. The relationship between the observed 
(uncorrected, in grey) P. falciparum COI from individual samples and 
P. falciparum prevalence by qPCR showed a small positive correlation 
that was not significant (Pearson coefficient of correlation, r = 0.168; 
p = 0.139). A permutation model was used to account for strains that 
share the same pfama1 haplotype and average corrected COI values 
(red) are shown. No significant correlation between corrected COI 
and P. falciparum prevalence by qPCR was observed (Pearson coef-
ficient of correlation, r = 0.169, p = 0.135)
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haplotypes do not appear to be spatially restricted in 
the DRC.

Comparison of pfama1 amino acid frequencies 
between geographically divergent malaria populations 
in the DRC and Mali
In order to explore the heterogeneity in amino acid 
frequencies between malaria populations from dispa-
rate geographical locations, the 77 pfama1 amino acid 
sequences from the DRC were compared to 506 previ-
ously published pfama1 sequences from Mali (FJ898536–
FJ899028) [92]. Trimming the Mali pfama1 sequences 
to match the 162 bp region sequenced in the DRC sam-
ples resulted in 58 distinct Mali pfama1 sequences. The 
trimmed sequences were then aligned with the DRC 
pfama1 sequences and 32 (55%) of the DRC pfama1 
sequences were found to be 100% identical over a 162 bp 
region to the Mali pfama1 sequences previously identi-
fied. Nucleic acid sequence identity between the DRC 
and Mali pfama1 sequences ranged from 91.4 to 100%. 
Analysis of the DRC and Mali pfama1 sequence hetero-
geneity at the amino acid level (Fig.  6) revealed highly 
similar amino acid frequencies between the two para-
site populations despite both geographical and temporal 
separation suggesting balancing selection at a continental 
scale.

Discussion
In this study, an amplicon-based deep sequencing was 
utilized to investigate the diversity of pfama1 genes from 
asymptomatic malaria infections at both the individual 
and population cluster level from across the DRC and 

in Mali. Overall, a total of 77 unique pfama1 haplotypes 
were identified and the majority of individual infections 
in the DRC were polyclonal (64.5%). Population genetic 
analyses revealed pfama1 haplotypes are not isolated 
based on distance or province within the DRC. These 
results align with a previous study in the DRC, which 
found a lack of spatial restriction of malaria parasite pop-
ulations. This diversity, however, may not be due to the 
extensive movement of P. falciparum parasites with their 
human hosts between provinces and neighbouring coun-
tries [61]. Rather, more likely, potential explanations for 
the extensive pfama1 haplotype diversity identified in the 
DRC in this study include human host immune selection 
that maintains the antigenic diversity of pfama1 (balanc-
ing selection) and spatially restrictive protein–protein 
interactions [92, 93].

In order to more fully explore pfama1 diversity between 
geographically divergent malaria endemic regions, haplo-
type frequencies were compared at the amino acid level 
in parasite populations from the DRC and Mali. Highly 
similar amino acid frequencies were observed between 
parasite populations in the DRC and Mali (Fig.  6), sug-
gesting analogous selective pressures could be maintain-
ing pfama1 haplotype diversity between the two regions 
across the continent more so than parasite movement. 
A previous study to investigate the diversity of the cir-
cumsporozoite protein (CS), another hypervariable sur-
face antigen, also showed shared amino acid frequencies 
between two geographically separated malaria parasite 
populations [93]. Highly diverse regions under balanc-
ing selection, such as AMA1, while excellent markers 
for COI, may therefore be poorly suited to discriminate 

Table 3  Summary population genetic data based on sample type and province

a  Individual samples
b  Number of population cluster samples in the province
c  Number of individual samples that make up the pooled population cluster samples

Number of samples Number of  
haplotypes

# Polymorphic 
sites (S)

Nucleotide Diversity (π) Haplotype diversity 
(Hd)

All Ind.a Popb (#Ind./pop)c All Ind. Pop. All Ind. Pop. All Ind. Pop. All Ind. Pop.

Bandundu 23 11 12 (177) 35 20 29 20 19 18 0.0404 0.0401 0.0402 0.925 0.884 0.922

Bas-Congo 8 4 4 (30) 15 7 10 18 17 17 0.0278 0.0306 0.0197 0.569 0.769 0.451

Equateur 19 11 8 (112) 35 21 23 22 21 19 0.0434 0.0434 0.0429 0.921 0.913 0.908

Kasai-Occidental 13 9 4 (38) 25 14 16 20 18 17 0.0405 0.0396 0.0400 0.909 0.876 0.886

Kasai-Oriental 16 8 8 (107) 30 19 20 20 20 18 0.0457 0.0437 0.0455 0.8740 0.842 0.866

Katanga 10 4 6 (69) 22 6 19 20 13 19 0.0396 0.0344 0.0392 0.906 0.724 0.899

Kinshasa 13 7 6 (39) 28 13 23 21 18 18 0.0419 0.0388 0.0411 0.888 0.836 0.86

Maniema 10 4 6 (54) 21 6 16 21 14 18 0.0341 0.0319 0.0335 0.879 0.758 0.863

Nord-Kivu 5 2 3 (15) 12 5 10 18 14 17 0.0386 0.0389 0.0364 0.750 0.714 0.701

Orientale 26 14 12 (147) 40 27 27 21 21 19 0.0440 0.0403 0.0442 0.9202 0.909 0.91

Sud-Kivu 9 5 4 (33) 19 6 16 19 15 18 0.0315 0.0348 0.0291 0.834 0.731 0.791
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Fig. 5  Median-joining Network Diagrams of pfama1 haplotypes from individual samples. Each circle represents a different haplotype, the size of the 
circle reflects the number of individual samples with that haplotype, and the colors indicate province

Fig. 6  Comparison of AMA1 amino acid frequencies at variable sites between malaria populations in the DRC and Mali. The reference 3D7 amino 
acid sequence and corresponding amino acid position number are shown on the x-axis (GenBank XP_001348015.1). For each amino acid residue, 
the first bar represents the amino acid frequencies from the DRC pfama1 haplotypes and the second bar represents the amino acid frequencies 
from pfama1 haplotypes in Mali [92]. The amino acid frequency within this region of AMA1 is similar between the two geographical locations
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geographically distinct malaria parasite populations or 
serve as a marker for malaria parasite diversity.

In contrast to several recent studies [6, 33–36], this 
study found a minimal positive correlation between COI 
and malaria prevalence that was not significant (Fig.  4). 
While additional samples could have increased the power 
in this study, other studies have also reported no correla-
tion between COI and P. falciparum prevalence [43–45]. 
Potential explanations for these discrepancies include 
differing methodologies for detection of P. falciparum 
strains and varying malaria transmission intensity by 
region. Previous studies that reported significant correla-
tions between COI and malaria prevalence typically com-
pare low and high malaria transmission areas [34–37, 
39]. This study was conducted in the DRC, which expe-
riences high malaria transmission year round. Therefore, 
the lack of a significant association between COI and P. 
falciparum prevalence in this study compared to other 
studies could be because due to the high stable malaria 
transmission across the DRC. Additional research stud-
ies including larger sample sizes and additional markers 
are needed to further explore the potential relationship 
between COI and malaria prevalence and how popu-
lation diversity indices could be utilized to monitor 
changes in malaria transmission intensity in the DRC and 
other malaria endemic regions. However, given the wide 
variance observed in the correlation between COI and 
prevalence, it may not be a reliable surrogate in differen-
tiating malaria transmission levels within the DRC.

Deep sequencing technologies have enhanced abil-
ity to detect low frequency, minor variant P. falciparum 
haplotypes and characterize malaria COI from a variety 
of sample types including dried blood spots [4, 6, 34, 50, 
55, 56]. Amplicon-based deep sequencing was utilized 
in this study  to detect polyclonal P. falciparum infec-
tions for several reasons, including its cost-effectiveness 
compared to whole genome sequencing and the ability to 
utilize barcoding and pool several dozen samples thereby 
increasing sample size. The SeekDeep bioinformatics 
pipeline is designed for analysis of haplotype frequency 
from amplicon-based deep sequencing data and has been 
used successfully in several studies investigating malaria 
population genetics globally [76, 78, 79].

Pfama1 was chosen for amplicon-based deep sequenc-
ing based on several factors. First, pfama1 is a highly 
polymorphic gene, containing several single nucleo-
tide polymorphisms (SNPs), likely maintained via bal-
ancing selection due to immune pressure in the human 
host [80, 94–96]. Previous studies in malaria endemic 
regions have identified over 60 polymorphic sites within 
pfama1 [96–99]. Similarly, sequencing of human samples 
from a malaria endemic region in Mali identified over 

200 unique pfama1 haplotypes [80]. The P. falciparum 
AMA1 antigen is also a highly-studied malaria vaccine 
antigen candidate. Vaccine studies have demonstrated 
that AMA1 based vaccine protection against clinical 
malaria is extremely strain-specific and, therefore, a clear 
understanding of AMA1 diversity is critical to develop an 
effective malaria vaccine based on this polymorphic anti-
gen [100–105]. The results from this study provide fur-
ther evidence of the extensive heterogeneity of pfama1 
haplotypes in the DRC and surrounding malaria endemic 
regions.

This study has several important limitations that may 
have restricted the ability to detect minor variants and 
calculate COI in the malaria parasite population cir-
culating in the DRC. These limitations include: possi-
ble pfama1 sequence polymorphisms in primer binding 
sites, malaria parasite nucleic acid degradation stored 
on dried blood spots, and pfama1 haplotype frequency 
below the limit of detection of the PCR assay or 2.5% 
cut off for sequencing analysis. In addition, this study 
focused on a subset of asymptomatic malaria samples 
collected as part of the 2007 DHS in the DRC. The inclu-
sion of more malaria positive samples, including sympto-
matic as well as asymptomatic malaria infections, would 
provide a more comprehensive description of the P. falci-
parum population genetic structure in the DRC. Another 
potential limitation is that this study targeted a region in 
the highly polymorphic pfama1 gene as surrogate for the 
entire P. falciparum genome. As such, the true genetic 
heterogeneity of P. falciparum parasites circulating in the 
DRC is underestimated. Further, as the number of poly-
morphic sites (S) was unexpectedly higher in the individ-
ual samples compared to the pooled population cluster 
samples, it is important to note that pooled sampling 
likely missed some variants occurring at low frequency 
within one or a few individuals within the population 
(Table 2). As such, it is critical to consider whether sam-
ples were pooled prior to amplicon-deep sequencing 
when designing studies to detect low frequency variants 
and for cross comparisons between individuals and pools 
while choosing statistics minimally influenced by rare 
variants or haplotypes, particularly in low malaria prev-
alence areas. However, targeted deep sequencing shows 
great improvement in COI estimates over traditional 
methods [50], particularly for pfama1 given its high 0.95 
haplotype diversity. To account for the chance of strains 
sharing the same AMA1 haplotype, a permutation-based 
model incorporating undercall probability was used to 
simulate corrected COIs (Fig.  4). Given the high het-
erozygosity of pfama1 and the observed COIs, the cor-
rections showed minimal differences compared to the 
observed (uncorrected) COI results (Fig.  4). This would 
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not be the case if the average COIs in this study were 
higher, as COIs > 5 were estimated to be undercalled for 
the majority of observed measures. As deep sequencing 
technologies become increasingly more cost effective 
and less labour-intensive, future studies targeting P. falci-
parum strain diversity in malaria endemic regions could 
include whole genome deep sequencing.

Conclusion
This study describes the use of amplicon-based deep 
sequencing for the detection and relative quantification 
of P. falciparum haplotypes and characterization of COI 
in the DRC and the spatial epidemiology and population 
genetic structure of malaria parasites from both indi-
vidual and population cluster samples across eleven DRC 
provinces. Highly similar AMA1 amino acid frequencies 
between parasite populations were identified in the DRC 
and Mali, suggesting analogous selective pressures main-
tain pfama1 diversity in geographically divergent loca-
tions and therefore limit the use of pfama1 as a marker 
to discriminate parasite populations (or other markers 
known to be under balancing selection). Given the  P. 
falciparum recent speciation bottleneck and limited 
diversity compared to other species, selection of more 
appropriate genetic markers of diversity may be a chal-
lenge. Sensitive detection methods, such as amplicon-
based deep sequencing, can improve the understanding 
of malaria strain diversity as it relates to potential malaria 
vaccine antigen candidates and monitor for changes in 
parasite genetic diversity.
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