
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Open Access Articles Open Access Publications by UMMS Authors 

2017-11-20 

Protocol for analyzing protein ensemble structures from chemical Protocol for analyzing protein ensemble structures from chemical 

cross-links using DynaXL cross-links using DynaXL 

Zhou Gong 
Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/oapubs 

 Part of the Amino Acids, Peptides, and Proteins Commons, Biophysics Commons, Investigative 

Techniques Commons, Research Methods in Life Sciences Commons, and the Structural Biology 

Commons 

Repository Citation Repository Citation 
Gong Z, Liu Z, Dong X, Ding Y, Dong M, Tang C. (2017). Protocol for analyzing protein ensemble structures 
from chemical cross-links using DynaXL. Open Access Articles. https://doi.org/10.1007/
s41048-017-0044-9. Retrieved from https://escholarship.umassmed.edu/oapubs/3318 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles 
by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by eScholarship@UMMS

https://core.ac.uk/display/213101993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/oapubs
https://escholarship.umassmed.edu/oa
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/oapubs?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/954?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/922?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1385?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1007/s41048-017-0044-9
https://doi.org/10.1007/s41048-017-0044-9
https://escholarship.umassmed.edu/oapubs/3318?utm_source=escholarship.umassmed.edu%2Foapubs%2F3318&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


PROTOCOL

Protocol for analyzing protein ensemble structures
from chemical cross-links using DynaXL

Zhou Gong1,2&, Zhu Liu3, Xu Dong1,2, Yue-He Ding4, Meng-Qiu Dong5, Chun Tang1,2&

1 CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and
Atomic Molecular Physics, and National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and
Mathematics of the Chinese Academy of Sciences, Wuhan 430071, China

2 National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese
Academy of Sciences, Wuhan 430071, China

3 Department of Pharmacology, Institute of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of
Health of China, Zhejiang University School of Medicine, Hangzhou 310057, China

4 RNA Therapeutics Institute, University of Massachusetts Medical School, 368 Plantation Street, Worcester,
MA 01605, USA

5 National Institute of Biological Sciences, Beijing 102206, China

Received: 19 July 2017 / Accepted: 18 September 2017 / Published online: 20 November 2017

Abstract Chemical cross-linking coupled with mass spectroscopy (CXMS) is a powerful technique for investi-
gating protein structures. CXMS has been mostly used to characterize the predominant structure for a
protein, whereas cross-links incompatible with a unique structure of a protein or a protein complex are
often discarded. We have recently shown that the so-called over-length cross-links actually contain
protein dynamics information. We have thus established a method called DynaXL, which allow us to
extract the information from the over-length cross-links and to visualize protein ensemble structures. In
this protocol, we present the detailed procedure for using DynaXL, which comprises five steps. They are
identification of highly confident cross-links, delineation of protein domains/subunits, ensemble rigid-
body refinement, and final validation/assessment. The DynaXL method is generally applicable for
analyzing the ensemble structures of multi-domain proteins and protein–protein complexes, and is
freely available at www.tanglab.org/resources.

Keywords Chemical cross-linking, DynaXL, Ensemble refinement, Solvent accessible surface distance, Multi-domain
protein, Protein–protein complex

INTRODUCTION

Chemical cross-linking coupled with mass spectroscopy
(CXMS) has been used to characterize protein structures

(Lasker et al. 2012; Walzthoeni et al. 2013; Politis et al.
2014). Different cross-linkers with various lengths and
chemical properties are widely used in CXMS experi-
ments. The commonly used cross-linking reagents
include bis-sulfosuccinimidyl suberate (BS3), bis-
sulfosuccinimidyl glutarate (BS2G), pimelic acid dihy-
drazide (PDH), and Leiker. (Leitner et al. 2014; Ding
et al. 2016; Tan et al. 2016). Cross-linking reagents can
react with specific amino acids in a protein, and two
amino acids separated by a distance shorter than the
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length of the cross-linker can be theoretically cross-
linked (Fig. 1). Mass spectrometry analysis is used to
identify the cross-linked residues, which can be trans-
lated to inter-residue distance (Kahraman et al. 2013;
Lossl et al. 2014). In addition, the protein does not have
to be isotopically labeled, modified, or crystallized in
CXMS experiments. The CXMS can also be used in con-
junction with other methods, such as cryo-EM for
characterizing the structures of protein machinery
(Cheng et al. 2015a, b; Liu et al. 2015a, b).

Multi-domain proteins and protein–protein complexes
often undergo conformational fluctuations (Liu et al.
2015a, b). As a result, the ensemble structures corre-
sponding tomultiple conformational states are required to
fully depict protein dynamics. Protein structural charac-
terization has been mostly focused on the predominant
structure of a protein. Recently we and others have shown
that the so-called over-length cross-links actually contain
information about the alternative and often lowly popu-
lated conformational states of the protein (Shore et al.
2016). Based on the over-length cross-links, we have
developed a computational approach called DynaXL to
visualize protein dynamics. Using DynaXL,wewere able to
characterize the ensemble structures of protein–protein
complexes, with the dissociation constant ranging from
nanomolar to millimolar (Gong et al. 2015). We were also
able to visualize open-to-closed movement of multi-
domain proteins (Ding et al. 2017).

An important feature of DynaXL is the use of solvent
accessible surface distance (SASD) to describe the spa-
tial relationship between cross-linked residues. As
illustrated in Fig. 2A, the Euclidean straight-line dis-
tance between Ca atoms of Lys29 and Lys6 of Ubiquitin
is 15.1 Å, while at 31.4 Å the SASD is much longer. As
the cross-linker cannot penetrate through the protein
and can only be at the protein surface, the SASD is a
more realistic representation of the cross-linker and
affords more stringent distance restraint. Explicit

modeling of the cross-linker is incorporated into the
software DynaXL with graphical interface (Fig. 2B).
Here we will explain how to use DynaXL step by step.

OVERVIEW OF DYNAXL ALGORITHM DESIGN

The DynaXL method contains four parts, as illustrated in
Fig. 3.

(1) Obtaining highly reliable cross-links using pLink
(Yang et al. 2012). The acceptance criteria are the
following: each spectrum should have an E value
\ 10-3, each cross-link must be identified by at
least two spectra, and one of them should have an
E value\ 10-8.

(2) Evaluating the conformational dynamics based on
the CXMS data. The domains are defined based on
the known structure of a protein and are treated as
rigid bodies. For protein complexes, the monomers
in the complex are treated as rigid bodies. The
protein may solely exist in a single conformation if
the known structure can already satisfy all experi-
mental cross-links. Otherwise, there likely exist
some alternative conformational states of the pro-
tein that give rise to the ‘‘over-length’’ cross-links.

(3) Performing ensemble rigid-body refinement. One of
the rigid bodies is kept fixed, and the other rigid body
is subjected to translation and rotation. The number
of structures in the ensemble is gradually increased
if an N = 2 ensemble still cannot satisfy all cross-
links. The optimal ensemble size is reachedwhen all
CXMS restraints are satisfied. There can be addi-
tional conformational state present for the protein
system, which however is not captured and mani-
fested by over-length cross-links.

(4) Assessment of the ensemble structures, either by
cross-validation or by corroboration from other
experimental data.
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Fig. 1 Chemical structure for
the BS3 cross-link of two
lysine residues in peptides A
and B. The straight-line
distance is less than 24 Å
between the Ca atoms, and
less than 24 Å between the Nf
atoms. Note that the lysine
side-chain amine group
switches from sp3
hybridization to sp2
hybridization
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MATERIALS AND EQUIPMENT

Software for cross-link identification

pLink (Yang et al. 2012) is the program used for
querying a database containing the protein sequence
and for identifying the cross-linked peptides.

Software for protein structure modeling

Xplor-NIH (Schwieters et al. 2003), the software pack-
age for biomolecular structure refinement against
experimental and knowledge-based restraints, is used
here to identify an optimal ensemble structure that can
account for all CXMS restraints.

AMBER 14 (Case et al. 2014),the molecular dynamic
simulation package, is used here to refine the local con-
formation before ensemble refinement using Xplor-NIH.

Two programs, DynDom (Hayward et al. 1997; Hay-
ward and Berendsen 1998) and ThreaDom (Xue et al.
2013; Wang et al. 2017), are used to define domain
boundaries of multi-domain proteins.

PyMOL (the PyMOL Molecular Graphics System) is
the software for illustrating and rendering protein
structures.

SUMMARIZED PROCEDURE

(1) To identify high-confidence cross-links from
CXMS experiment;

(2) To obtain the known structure from the PDB
database;

(3) To define domain boundaries;
(4) To validate domain definition and evaluate local

flexibility;
(5) To classify and identify the cross-links (intra-

domain vs. inter-domain, intramolecular vs. inter-
molecular cross-links), and prepare the CXMS
restraints table;

(6) To prepare the starting structure files for Xplor-
NIH;

(7) To patch the cross-linker to the protein structure;
(8) Ensemble rigid-body refinement against the CXMS

restraints;
(9) Cross-validation with a subset of cross-links;

(10) To analyze and validate with other types of data.

PROCEDURE

Here, we use Ca2?-loaded calmodulin as an example to
illustrate how DynaXL is used to account for all CXMS
data and to afford the ensemble structures.

Identification of cross-links

Intramolecular and inter-molecular cross-links can be
differentiated by performing CXMS experiments on the
sample containing equal molar amounts of unlabeled
natural isotope abundance (light) and 15N-labeled

SAS distance
31.4 Å

BA

SAS dista
31.4 Å

Euclidean distance
15.1 Å

29

48

11

6

63

Fig. 2 Key features of DynaXL program. A Comparison of Euclidean distance (denoted with yellow dashed line) and solvent accessible
surface distance (denoted with cyan sphere) for Cb atoms of the two Lys residues in the protein. B The graphical user interface for
DynaXL, in which one residue can be cross-linked to multiple residues with different cross-linking reagents
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proteins (heavy) (Ding et al. 2017). In this way, any cross-
links arising fromprotein homodimerwould contain both
light and heavy peptides. Alternatively, the protein band
corresponding to dimer (or monomer) can be excised
from protein gel for mass spectrometry analysis. The
intramolecular cross-links are further filtered with the
following criteria using the software pLink.

(1) False discovery rate cutoff of 0.05 is applied and
followed by an E value cutoff rate (Yang et al. 2012)
of 10-3 at the spectrum level;

(2) Spectral count C 2 and the best E value\ 10-8 for
each pair of cross-link.

The cross-link spectra that pass the false discovery
rate (FDR) cutoff are further filtered with these
requirements: (A) each spectrum should have an E value
of\ 10-3, and (B) each cross-link should be identified
in at least two spectra.

Assessment of the predominant structure
of the protein

The structure of the predominant conformational state
of the protein under investigation can be downloaded
from the PDB. For proteins without known structure,
the structure can be modeled from homology modeling

Evaluation satisfaction for cross-

links with ground state

Proteins mainly exist 

in ground state

Introduce alternative domain conformation

Cross validation

further integrate with other method

Dynamic ensemble 

structure of proteins

Yes

Yes

No

No

Fig. 3 The overall flowchart for the refinement of protein ensemble structures using DynaXL

CXMS analysis of protein ensemble structures PROTOCOL

� The Author(s) 2017. This article is an open access publication 103 | December 2017 | Volume 3 | Issues 4–6



(Marti-Renom et al. 2000), domain threading (Yang et al.
2015), or fragment splicing (Rohl et al. 2004).

The definition of protein domain boundary is per-
formed with protein domain motion analysis (Hayward
et al. 1997; Hayward and Berendsen 1998), multi-
threading alignment (Xue et al. 2013; Belsom et al.
2016), or the assessment of evolutionary relationships
(Cheng et al. 2014, 2015a, b). It should be noted that the
definition of protein domain is not immutable, but will
be amended based on further calculation and analysis
(see below). For protein complexes, each subunit in the
complex is treated as an individual rigid body.

Evaluation of protein local flexibility

(1) Structure completion. The atomic information is
often missing in the PDB file, which is especially
true for the X-ray structure. The missing parts
include flexible loops and N- and C-terminal tails.
In addition, hydrogen atoms are usually absent in
relatively low-resolution structures. To complete
the missing residues, e.g., the first three amino
acids in calmodulin PDB structure 1CLL, the build-
residue function in PyMOL software is used. To
complete the missing atoms, e.g., side-chain atoms
or hydrogen atoms, either PyMOL build-residue
module or MD simulation software AMBER can be
used.

(2) Flexibility evaluation. MD simulation using soft-
ware AMBER can provide local flexibility for
different parts of the protein upon assessing the
fluctuation over time. The flexibility can also be
assessed from crystal B-factors (Shore et al. 2016)
and from NMR heteronuclear NOE values (Shore
et al. 2016).

Identification and classification of the cross-links

Based on the known structure and domain definitions,
the intramolecular cross-links can be classified into two
categories including intra-domain and inter-domain
ones. The intra-domain cross-links can also be used to
confirm the definition of domains. For a protein com-
plex, the cross-links are categorized as intramolecular
and inter-molecular cross-links. If the known structure
cannot satisfy all intramolecular inter-domain cross-
links, there can be two possibilities:

(1) The discrepancy between the theoretical solvent-
accessible inter-residue surface distance and the
maximum length of the cross-linker is small, and
the over-length cross-links can be attributed to
local dynamic of the protein.

(2) The discrepancy between the theoretical solvent-
accessible inter-residue surface distance and the
maximum length of the cross-linker is large. Local
dynamics alone cannot account for all the over-
length cross-links. Therefore, the protein has to
undergo collective domain movement, and further
computational analysis is warranted.

Ensemble rigid-body refinement against CXMS
restraints

The ensemble rigid-body refinement against CXMS
restraints is performed when the predominant confor-
mation or the known structure of the protein cannot
satisfy all intramolecular inter-domain cross-links
identified with high confidence. The protein domains
are treated as rigid bodies, and their relative orienta-
tions are optimized on the basis of explicitly repre-
sented CXMS distance restraints. Similar approach is
used to optimize the ensemble structures of protein–
protein complexes. The details of the process are as
follows.

Prepare the initial structure for Xplor-NIH

The structure refinement process against the CXMS
restraints is conducted with the use of Xplor-NIH soft-
ware. The Xplor-NIH requires a PDB file (providing
atomic coordinate information) and a PSF file (provid-
ing structural connection information and other
parameters) as the initial input. The user should pay
attention to the following when preparing the input
files:

(A) Different programs may have different atomic
naming rules (especially for hydrogen atoms).
Therefore, one should first remove all the hydrogen
atoms, and use the Xplor-NIH script to re-protonate
the protein.

(B) For assessment of protein local dynamics and
domain boundaries, it may be necessary to re-
number the residues of the protein. The first
residue handled by AMBER software is always 1.
Please refer to the respective manual for the
software used.

(C) The Xplor-NIH will add an extra oxygen atom for
the last residue and rename the last two oxygen
atoms as OT1 and OT2 in the PSF file. As a result,
the PSF file may be inconsistent with the PDB file
provided. A quick solution is to duplicate the last
line in the PDB file and to name the last two atoms
as OT1 and OT2 as follows:

PROTOCOL Z. Gong et al.
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Patch the cross-linker to protein

In DynaXL, the cross-linker is explicitly modeled onto
the protein structure. For a pair of cross-linked lysine
residues, the cross-linker is patched to one of the resi-
dues with the formation of an isopeptide bond. Similar
approach can also be used to patch other cross-linking
reagent with different reactivity to different types of
protein residues. The patching process is done in these
steps:

(A) Presented in this Protocol, we use two common
cross-linkers BS2G and BS3, whose PDB and PSF
files are provided in ‘‘Supplementary material.’’ For
other types of cross-linking reagents, the PDB files
can be generated using the build function in
PyMOL, and the corresponding parameter file can
be obtained from online servers like HIC-Up
(Kleywegt 2007) or PRODRG (Schuttelkopf and
van Aalten 2004).

(B) For subsequent structure optimization, the cross-
linker is only patched to one of the two cross-
linked residues or to one of the protein domains.
We have found that patching the cross-linker to
either domain affords essentially the same results.
The peptide bonds are formed between the side-
chain of the protein and the cross-linkers, thus
requiring the modification of the corresponding
atoms. For example, as the nitrogen atom (Nf) of
Lys side-chain is connected with three hydrogen
atoms, it is necessary to remove the two extra
hydrogen atoms, and the atom types for the
remaining nitrogen ant hydrogen atoms are mod-
ified accordingly.

(C) The segment ID is another important distinguisher
in Xplor-NIH in addition to the residue ID, i.e.,
residues with the same residue ID values (residue
number) and with different segment ID values
correspond to different residues. It happens when
a residue can be cross-linked to different residues
in the opposite domain. Thus, we assign the cross-
links at the same residue with different segment ID
values. Physically, the multiple cross-links involving
same residues should take place one at a time, and
accordingly the iso-residue cross-links can overlap
with each other without incurring van der Waals
clashes during the refinement.

Preparation of the CXMS restraints table

With the cross-linker patched to one domain (or one
subunit), the cross-linking process is simulated by
enforcing a distance restraint between the end of the
cross-linker and the reactive group of the other cross-
linked residue. Specifically, it is achieved by constraining
the distance between the carbonyl atom in the cross-
linker and Lys Nf atom ranging from 1.3 Å (covalent
bond length) to 5 Å (the sum of the VDW radius of both
the carbon atom and the nitrogen).

Simulated annealing refinement

When all the input files and constraint files are pre-
pared, a user can start the ensemble rigid-body refine-
ment against the CXMS restraints. As mentioned above,
when the given structure cannot satisfy all experimental
high-confidence cross-links, the ensemble refinement
based on CXMS restraints can be performed. The over-
length cross-links capture one or more alternative
conformational states. The ensemble refinement process
starts with an N = 2 ensemble that comprises the
predominant conformation and the alternative one. An
additional conformer is included if the N = 2 ensemble
cannot satisfy all the cross-links. The process is repe-
ated until the experimental data are fully accounted for.

Here, we treat the different domains of the protein as
rigid bodies, and the local conformational changes
within each domain are not considered. The connecting
loop residues between the domains are given full tor-
sion angle freedom. As the domain movement is relative,
one domain is kept fixed, and the other domain(s) are
grouped together and are allowed to freely rotate and to
translate with respect to the fixed domain. The fix-
ing/grouping is implemented using the following script
in Xplor-NIH.

dyn.fix (‘‘‘‘‘‘ segid ‘‘ ‘‘ and resi 1:77 ‘‘‘‘‘‘)
dyn.group (‘‘‘‘‘‘ segid ALT0 and resi 82:148 ‘‘‘‘‘‘)
dyn.group (‘‘‘‘‘‘ segid ALT1 and resi 82:148 ‘‘‘‘‘‘)

Here, the N-terminal domain including residues 1–77
of the calmodulin is fixed, and the C-terminal domain
including residues 82–148 moves as a rigid body. In
addition, the flexible loop region between the including
residues 78–81 has full torsional freedom. In the Xplor-
NIH script shown above, note that there are two dif-
ferent conformers for the C-terminal domain, marked
with segment ID ALT0 and ALT1. The two conformers
correspond to the two conformational states of
calmodulin. To speed up the computation, the non-
bonded van der Waals interactions within each rigid

ATOM 2261 C LYS 148 12.612 14.659 - 4.066 1.00 0.00

ATOM 2262 OT1 LYS 148 12.190 15.449 - 4.923 1.00 0.00

ATOM 2263 OT2 LYS 148 12.190 15.449 - 4.923 1.00 0.00
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body are not considered and calculated. This is imple-
mented using the following statement.
Constraints:

inter = (segid ‘‘ ‘‘) (segid ALT0 or resi 82:148)
inter = (segid ‘‘ ‘‘) (segid ALT1 or resi 82:148)
inter = (segid ALT0 and resi 78:82) (segid ‘‘ ‘‘ and
segid ALT0)
inter = (segid ALT1 and resi 78:82) (segid ‘‘ ‘‘ and
segid ALT1)
weights * 1 end end

In the ensemble refinement, ambiguous distance
restraints are employed, and the back-calculated dis-
tance R is defined as

R ¼
XN

k¼1

r�6
k

 !�1=6

:

In which rk is the distance between the two atoms (ni-
trogen atom from the lysine residue and carbonyl atom
from the cross-linker as discussed before) in conformer
k, and N is the number of conformers in the ensemble.
An exponential factor of - 6 is used here, and as a
result the \ r-6[ averaged distance is heavily biased
towards the shortest distance.

The ensemble refinement is carried out by simulated
annealing. The system is heated to a relatively high
temperature and then slowly cooled down. The struc-
ture is refined against the CXMS restraints during the
cooling process. The computational process is repeated
many times for effective sampling. Finally, the structures
with no CXMS violation (satisfying all cross-links) and
low energy (no atomic overlap) are selected for further
analysis.

We have found that the explicit representation of
cross-linker not only provides more realistic and strin-
gent restraints, but also allows better convergence for
the ensemble structures, as compared to straight-line
Euclidean distance restraints.

Cross-validation with a subset of cross-links

The cross-validation process is performed to verify the
accuracy of the ensemble structures. In detail, a subset
of CXMS restraints is removed, and the remaining
cross-links are used for the ensemble refinement as
described above. The ensemble structures generated
with a subset of the restraints are evaluated and the
CXMS restraints excluded in the refinement should be
cross-validated.

Analysis and validation with other types
of experimental data

The over-length cross-links capture protein alternative
conformations in solution. The ensemble structures
obtained by refining against the CXMS restraints may be
compared to those obtained from other biochemical and
biophysical methods, such as paramagnetic relaxation
enhancement (Tang et al. 2006) and small-angle X-ray
scattering (Schneidman-Duhovny et al. 2012; Kikhney
and Svergun 2015).

LIMITATIONS OF THE DYNAXL METHOD

The ensemble structures obtained based on the CXMS
restraints may suffer from certain limitations as
described below.

False identifications

Due to the quality of the mass spectra, false identifica-
tion of the cross-links may occur. In other words, the
experiment may identify incorrect cross-links, even
though stringent criteria are applied when selecting
high-confidence cross-links. Multiple technical and bio-
logical repeats are necessary to minimize false
identifications.

Insufficient number of restraints

There may not be a large number cross-links identified
with high confidence that can be used as the restraints.
Certainly more restraints would enable a researcher to
better refine the structure and to discover discrepancy
within the restraints. However, it has been shown that
the structural model of a protein complex can be
obtained from just a single inter-molecular cross-linking
restraint (Gong et al. 2015). Thus, the DynaXL approach
may only identify the minimum number of ensemble
structures that can account for all available CXMS
restraints. Should there are more conformational states
that elude cross-linking reactions, DynaXL cannot
uncover.

Over-fitting problem

The ensemble size may have to be increased to account
for all the cross-links. Additional conformers introduce
additional parameters, which may lead to over-fitting. It
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is also possible that some over-length cross-links can be
satisfied by intra-domain dynamics without the invo-
cation of domain movement. Thus, cross-validation is
important.

FUTURE PERSPECTIVE

CXMS has been increasingly used for protein structure
modeling. Here, we present the detailed protocol
using DynaXL for explicitly modeling the cross-links
and characterization of protein ensemble structures.
The chemical cross-linking as well photo-cross-linking
are rapidly evolving (Chiang et al. 2016), and new
types of cross-linking reagents (Brodie et al. 2016)
with various linker lengths and reactivity are becom-
ing increasingly available, which can afford more
spatial information between protein residues. In the
age of integrative structural biology, protein ensemble
structures can be better visualized with the joint
refinement against multiple types of experimental
inputs including but not limited to NMR, cryo-EM, and
FRET.
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Kovalenko A, Lee TS, LeGrand S, Luchko T, Luo R, Madej B,
Merz KM, Paesani F, Roe DR, Roitberg A, Sagui C, Salomon-
Ferrer R, Seabra G, Simmerling CL, Smith W, Swails J, Walker
RC, Wang J, Wolf RM, Wu X, Kollman PA (2014) AMBER 14.
University of California, San Francisco

Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim BH,
Grishin NV (2014) ECOD: an evolutionary classification of
protein domains. PLoS computational biol 10:e1003926

Cheng H, Liao Y, Schaeffer RD, Grishin NV (2015a) Manual
classification strategies in the ECOD database. Proteins
83:1238–1251

Cheng Y, Grigorieff N, Penczek PA, Walz T (2015b) A primer to
single-particle cryo-electron microscopy. Cell 161:438–449

Chiang MY, Hsu YW, Hsieh HY, Chen SY, Fan SK (2016) Construct-
ing 3D heterogeneous hydrogels from electrically manipu-
lated prepolymer droplets and crosslinked microgels. Sci Adv
2:e1600964

Ding YH, Fan SB, Li S, Feng BY, Gao N, Ye K, He SM, Dong MQ
(2016) Increasing the depth of mass-spectrometry-based
structural analysis of protein complexes through the use of
multiple cross-linkers. Anal Chem 88:4461–4469

Ding YH, Gong Z, Dong X, Liu K, Liu Z, Liu C, He SM, Dong MQ, Tang
C (2017) Modeling protein excited-state structures from
‘‘over-length’’ chemical cross-links. J Biol Chem
292:1187–1196

Gong Z, Ding Y-H, Dong X, Liu N, Zhang EE, Dong M-Q, Tang C
(2015) Visualizing the ensemble structures of protein com-
plexes using chemical cross-linking coupled with mass
spectrometry. Biophys Rep 1:127–138

Hayward S, Berendsen HJC (1998) Systematic analysis of domain
motions in proteins from conformational change: new results
on citrate synthase and T4 lysozyme. Prot-Struct Funct Genet
30:144–154

Hayward S, Kitao A, Berendsen HJC (1997) Model-free methods of
analyzing domain motions in proteins from simulation: a
comparison of normal mode analysis and molecular dynamics
simulation of lysozyme. Prot-Struct Funct Genet 27:425–437

Kahraman A, Herzog F, Leitner A, Rosenberger G, Aebersold R,
Malmstrom L (2013) Cross-link guided molecular modeling
with ROSETTA. PLoS ONE 8:e73411

Kikhney AG, Svergun DI (2015) A practical guide to small angle
X-ray scattering (SAXS) of flexible and intrinsically disordered
proteins. FEBS Lett 589:2570–2577

Kleywegt GJ (2007) Crystallographic refinement of ligand com-
plexes. Acta Crystallogr Sect D: Biol Crystallogr 63:94–100

Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P,
Beck F, Aebersold R, Sali A, Baumeister W (2012) Molecular
architecture of the 26S proteasome holocomplex determined
by an integrative approach. In: Proceedings of the National
Academy of Sciences of the United States of America 109:
1380–1387

Leitner A, Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J,
Forster F, Aebersold R (2014) Chemical cross-linking/mass
spectrometry targeting acidic residues in proteins and
protein complexes. In: Proceedings of the National Academy
of Sciences of the United States of America 111: 9455–9460

Liu F, Rijkers DT, Post H, Heck AJ (2015a) Proteome-wide profiling
of protein assemblies by cross-linking mass spectrometry.
Nat Method 12:1179–1184

Liu Z, Gong Z, Jiang WX, Yang J, Zhu WK, Guo DC, Zhang WP, Liu
ML, Tang C (2015b) Lys63-linked ubiquitin chain adopts
multiple conformational states for specific target recognition.
Elife 4:e05767

CXMS analysis of protein ensemble structures PROTOCOL

� The Author(s) 2017. This article is an open access publication 107 | December 2017 | Volume 3 | Issues 4–6

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Lossl P, Kolbel K, Tanzler D, Nannemann D, Ihling CH, Keller MV,
Schneider M, Zaucke F, Meiler J, Sinz A (2014) Analysis of
nidogen-1/laminin gamma1 interaction by cross-linking,
mass spectrometry, and computational modeling reveals
multiple binding modes. PLoS ONE 9:e112886

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali A
(2000) Comparative protein structure modeling of genes and
genomes. Annu Rev Biophys Biomol Struct 29:291–325

Politis A, Stengel F, Hall Z, Hernandez H, Leitner A, Walzthoeni T,
Robinson CV, Aebersold R (2014) A mass spectrometry-based
hybrid method for structural modeling of protein complexes.
Nat Method 11:403–406

Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein
structure prediction using rosetta. Numer Comput Method, Pt
D 383:66–93

Schneidman-Duhovny D, Kim SJ, Sali A (2012) Integrative struc-
tural modeling with small angle X-ray scattering profiles.
BMC Struct Biol 12:17

Schuttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-
throughput crystallography of protein-ligand complexes. Acta
Crystallogr Sect D: Biol Crystallogr 60:1355–1363

Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The
Xplor-NIH NMR molecular structure determination package.
J Magn Reson 160:65–73

Shore S, Henderson JM, Lebedev A, Salcedo MP, Zon G, McCaffrey
AP, Paul N, Hogrefe RI (2016) Small RNA library preparation
method for next-generation sequencing using chemical mod-
ifications to prevent adapter dimer formation. PLoS ONE
11:e0167009

Tan D, Li Q, Zhang MJ, Liu C, Ma C, Zhang P, Ding YH, Fan SB, Tao L,
Yang B, Li X, Ma S, Liu J, Feng B, Liu X, Wang HW, He SM, Gao
N, Ye K, Dong MQ, Lei X (2016) Trifunctional cross-linker for
mapping protein-protein interaction networks and compar-
ing protein conformational states. Elife 5:e12509

Tang C, Iwahara J, Clore GM (2006) Visualization of transient
encounter complexes in protein-protein association. Nature
444:383–386

The PyMOL Molecular Graphics System, Version 1.8 Schrödinger,
LLC

Walzthoeni T, Leitner A, Stengel F, Aebersold R (2013) Mass
spectrometry supported determination of protein complex
structure. Curr Opin Struct Biol 23:252–260

Wang Y, Wang J, Li R, Shi Q, Xue Z, Zhang Y (2017) ThreaDomEx: a
unified platform for predicting continuous and discontinuous
protein domains by multiple-threading and segment assem-
bly. Nucl acids res 45:400–407

Xue ZD, Xu D, Wang Y, Zhang Y (2013) ThreaDom: extracting
protein domain boundary information from multiple thread-
ing alignments. Bioinformatics 29:247–256

Yang B, Wu YJ, Zhu M, Fan SB, Lin J, Zhang K, Li S, Chi H, Li YX,
Chen HF, Luo SK, Ding YH, Wang LH, Hao Z, Xiu LY, Chen S, Ye
K, He SM, Dong MQ (2012) Identification of cross-linked
peptides from complex samples. Nat Method 9:904–906

Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER
Suite: protein structure and function prediction. Nat Method
12:7–8

PROTOCOL Z. Gong et al.

108 | December 2017 | Volume 3 | Issues 4–6 � The Author(s) 2017. This article is an open access publication


	Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL
	Let us know how access to this document benefits you.
	Repository Citation

	Protocol for analyzing protein ensemble structures from chemical cross-links using DynaXL
	Abstract
	Introduction
	Overview of DynaXL Algorithm Design
	Materials and Equipment
	Software for cross-link identification
	Software for protein structure modeling

	Summarized Procedure
	Procedure
	Identification of cross-links
	Assessment of the predominant structure of the protein
	Evaluation of protein local flexibility
	Identification and classification of the cross-links
	Ensemble rigid-body refinement against CXMS restraints
	Prepare the initial structure for Xplor-NIH
	Patch the cross-linker to protein
	Preparation of the CXMS restraints table
	Simulated annealing refinement

	Cross-validation with a subset of cross-links
	Analysis and validation with other types of experimental data

	Limitations of the DynaXL Method
	False identifications
	Insufficient number of restraints
	Over-fitting problem

	Future Perspective
	Acknowledgements
	References


