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Abstract 
Astrocytes are emerging as important regulators of neural circuit function and 

behavior in the healthy and diseased nervous system. In a screen for astrocyte 

molecules that modulate neuronal hyperexcitability we identified multiple 

components of focal adhesion complexes (FAs) as potent suppressors of 

genetically- or pharmacologically-induced seizure-like activity. Depletion of 

astrocytic Tensin, β-integrin, Talin, Focal adhesion kinase (FAK), or matrix 

metalloproteinase 1 (Mmp1), which degrades extracellular matrix to activate β-

integrin receptors, resulted in enhanced recovery from, or resistance to seizure 

activity. Reciprocally, promoting FA signaling by overexpression of Mmp1 in 

astrocytes led to enhanced-seizure severity. Blockade of FA signaling in 

astrocytes led to reduced-astrocytic coverage of the synaptic neuropil and 

reduced expression of the excitatory amino acid transporter EAAT1. However, 

upon seizure induction, depletion of FA signaling components resulted in 

enhanced astrocyte coverage of the synaptic neuropil and a ~2-fold increase in 

EAAT1 levels compared to controls. Our data indicate that FAs promote 

astrocyte coverage in neuropil and EAAT1 expression under normal 

physiological conditions, but in the context of hyperexcitability, FAs negatively 

regulate the extent of astrocytic processes within neuropil and EAAT1 expression, 

thereby inhibiting a more rapid recovery from conditions of excessive neuronal 

activity. 
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Chapter 1: Introduction 
The nervous system requires intricate connections between cells and the 

constant communication between them governs network activity and function of 

the brain. Neurons are one of the main residents in the nervous system and they 

are connected to one other through synapses. Transmitting electrical signals is a 

unique property of neurons and understanding how signals from different 

neurons work together to generate circuit output has been a great interest in our 

efforts to understand the cellular and molecular basis of information processing in 

the brain.  

 The two main types of neurons are excitatory and inhibitory, whose firing 

rates help establish the excitatory and inhibitory (E/I) balance in the brain.  The 

maintenance of a balanced (E/I) state in neuronal networks throughout the 

lifetime of an organism is essential: deregulation of the E/I balance is associated 

with a variety of disorders including epilepsy, autism, schizophrenia, and 

Alzheimer’s disease (Belforte et al., 2009; Heinemann, 2004; Rubenstein, 2010; 

Yizhar et al., 2011). 

However, understanding neuronal contributions to E/I balance is only part 

of the puzzle.  Glia, another resident brain cell type, adds a new dimension to the 

regulation of brain physiology, including E/I balance.  Glial cells, which take up 

more than half of the volume of the human brain (Eroglu and Barres, 2010), used 

to be thought of as “Nervenkitt” (the German word for nerve glue) (Jäkel and 
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Dimou, 2017).  Unlike the name suggests, they are now known to be 

indispensible for the structural and functional development as well as 

maintenance of a healthy state of the nervous system (Freeman et al., 2003; 

Zuchero and Barres, 2015).  An explosion of research on glial function in the 

nervous system over the past decade has greatly enlightened us about the 

importance of glial cell functions in the orchestration of proper neuronal network 

activity.   

 There are different primary subtypes of glia in the mammalian brain, and 

each has their own unique properties.  Oligodendrocytes and Schwann cells are 

myelinating glia that electrically insulate axons to control conduction velocity and 

provide trophic support for the axons.  Thus they regulate how fast and/or 

efficient neuronal signal transmission occurs over long distances in the nervous 

system.  Microglia, the resident immune cells in the CNS function as regulators of 

activity-dependent pruning of neuronal synapses on top of their traditional roles 

regarding immune responses during inflammation and diseases (Schafer and 

Stevens, 2015; Stevens et al., 2007).  Finally, astrocytes, also known as a third 

component of synapses (to compose tripartite synapse), have tight coupling with 

neuronal synapses and they execute a wide range of functions to sculpt neuronal 

network activity (Chung et al., 2015; Halassa and Haydon, 2010).  The precise 

roles that astrocytes play in regulating neuronal activity are not clear.  Astrocyte 

membranes are filled with ion channels, receptors, and transporters for 

neurotransmitters, suggesting diverse mechanisms for circuit modulation, but 
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functions for very few of these astrocytic molecules have been defined in vivo.  

Considering this intimate structural and functional relationship between 

astrocytes and neuronal synapses, it is not surprising that astrocytes have a 

strong presence in neural circuit function and behavior.  Below I provide a brief 

overview of the mechanisms by which astrocytes regulate neuronal activity and 

synaptic function, and other aspects of brain physiology.  

 

Astrocyte regulation of neuronal metabolism, connectivity and 

function 

 

The blood-brain barrier (BBB) 

Exchange of ions and molecules between the brain and the blood vessels is 

tightly regulated by the blood-brain barrier (BBB).  This physical barrier is critical 

for proper neuronal function allowing the brain maintain the ionic homeostasis, 

supply nutrients, and keep out toxins and pathogens (Daneman and Prat, 2015).  

Three cell types compose the BBB including endothelial cells, pericytes, and 

astrocytes.  Astrocytes form cellular extensions, called endfeet, that make 

contact with and together coat almost the entire outer surface of the vasculature 

through the dystroglycan-dystrophin complex (Noell et al., 2011).  This point of 

contact is thought to be the site of exchange of materials between astrocytes and 

the vasculature, which allows the remainder of the astrocyte tree of cellular 

processes to exchange materials with neurons.  Studies from brain acute slices 
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and isolated retina provide strong evidence that astrocytes can regulate blood 

flow in response to neuronal activity through prostaglandins and 

epoxyeicosatrienoic acids, which can dilate blood vessels (Metea, 2006; Zonta et 

al., 2002).  The obvious implication is that increased activity requires increased 

energy, with vasodilation increasing rates of exchange.  While there is 

controversy over astrocyte roles in the initial formation of the BBB, it is clear that 

astrocytes perform critical roles in BBB functions such as regulating the blood 

flux and maintaining proper barrier for the homeostasis.  Implications of BBB 

dysfunction during pathological conditions and diseases like cerebral ischemia, 

brain trauma, glioblastoma, stroke, multiple sclerosis, epilepsy, Alzheimer and 

Parkinson’s diseases highlight astrocytes as a key component of this barrier to 

maintain a healthy and functional brain (Barreto, 2014).  

 

Metabolic support 

Astrocytes are ubiquitous in the nervous system and associate with nearly all 

types of neurons, at the same time they are tightly associated with the 

vasculature, and astrocytes form extensive gap junctions with each other, 

thereby allowing rapid exchange of ions and metabolic intermediates throughout 

the astrocyte population and, in turn, the brain.  One of the first roles of 

astrocytes that was recognized is their capability for maintaining energy 

homeostasis in the brain, and this ability depends heavily on their morphology. 

The brain only represents 2% of the human body mass, but it utilizes about 20% 
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of the oxygen and glucose in our systems.  Neurons are believed to receive their 

energy supplies through the lactate shuttle, a key proposed operational model to 

keep up with such a high-energy requirement in the nervous system (Magistretti, 

2006). Briefly, the endfeet of astrocytes, which line cerebral microvessels, take 

up glucose through astrocyte-specific transporters. Glucose taken up by 

astrocytes is then stored in the form of glycogen via glycogenesis or shuttled 

back to the neurons as lactic acid after glycolysis (Tsacopoulos and Magistretti, 

1996).  Astrocytes aid in this diffusion of glucose due to their extensive coupling 

through gap junctions.  Gap junctions are specialized intercellular conduits that 

allow the diffusion of glucose (and ions) to neighboring astrocytes. Genetic 

ablation studies shows connexins, gap junction proteins in astrocytes are 

required for activity-dependent changes in synaptic transmission and neuronal 

metabolism (Rouach et al., 2008).  Because of the highly networked properties of 

astrocytes in the brain, glucose taken up by a few astrocytes can rapidly diffuse 

throughout the brain (Kacem et al., 1998; Signaling at the Gliovascular Interface, 

2003; Theis et al., 2005), and thus allow the brain to keep up with metabolic 

demand in neurons.   

 Although glucose metabolism has been studied most extensively, it is 

believed that astrocyte networks function in similar ways throughout the brain to 

drive the central/peripheral exchange of additional bioenergetics intermediates, 

metabolic byproducts, and gases (O2/CO2).  The extent of exchange remains 

unclear, but astrocytes membranes are equipped with a range of transporters 
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and channels (Minelli et al., 1996; Rothstein et al., 1994; Seifert et al., 2016; 

Theis et al., 2005), suggesting a broad array of substrates can be mobilized to 

and from neurons. 

 

Ion and pH balance 

In the nervous system, changes in pH are caused by neuronal activity and 

directly modulate neuronal excitability and synaptic transmission by affecting the 

release of neurotransmitters, conductance of voltage-gated channels and ligand-

gated channels, K+ and Ca2+ channels, proton gated channels as well as 

glutamate receptors (Obara et al., 2008).  While there are multiple barrier 

mechanisms to keep the proper pH balance in the brain, astrocytes serve a key 

role, as they are equipped with several molecules by which they can regulate pH.  

For instance, astrocytes membranes are decorated with the Na+/H+ exchanger, 

bicarbonate transporters, monocarboxylic acid transporters, and the vacuolar-

type proton ATPase, all of which are directly involved in transporting H+ ions 

(Sofroniew and Vinters, 2009).  The presence of these mechanisms for H+ 

regulation render astrocytes sensitive to pH fluctuations, and provide a means for 

astrocytic regulation of extracellular pH (Chesler, 2003).   

 

Astrocyte control of synapse formation and maturation 

The synapse is the basic functional unit for communication in the brain and there 

is significant interest in understanding how synapses form and exhibit plasticity.  
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Over the past decade, significant evidence has been mounting that demonstrates 

a central role for astrocytes in nearly every aspect of synapse formation and 

physiology.   

Synapse formations are the initial stage of their development and there is 

strong evidence from various studies to show astrocytes are required for this 

process.  Elegant studies from the Barres laboratory first revealed that astrocyte-

secreted factors are potent modulators of synapse formation.  Using an in vitro 

culture system Barres and colleagues attempted to identify factors in astrocyte-

conditioned medium that would enhance synapse formation or efficacy, and this 

was extremely successful (Buard et al., 2009; Diniz et al., 2012; Hughes et al., 

2010; Pfrieger and Barres, 1997; Ullian et al., 2004; Xu et al., 2009).  

 Thrombospondins (TSPs) are secreted by astrocytes to control synapse 

formation, and their expression in astrocytes is observed in vivo (Christopherson 

et al., 2005).  In particular, TSP1 and TSP2 expression coincide with the timing of 

synaptogenesis and genetic depletion of both TSP1 and TSP2 show impairment 

of synapse formation in the mouse.  TSPs exert their pro-synaptogenic effects 

through binding and activation of α2δ receptors that are expressed in neurons 

(Eroglu et al., 2009).  Additional factors secreted from astrocytes that control 

synapse number are hevin and SPARC.  While hevin can promote 

synaptogenesis, SPARC negatively regulates synapse formation by antagonizing 

the function of hevin (Kucukdereli et al., 2011).  In addition to secreted factors , 

contact-dependent regulation of synapse formation by astrocytes has also been 
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proposed (Hama et al., 2004).  This contact-mediated signaling activates 

neuronal integrin receptors resulting in the activation of protein kinase C 

signaling pathway in hippocampal neurons (Hama et al., 2004), and developing 

retina ganglion cells are suggested to utilize different contact-mediated signals to 

promote synapse formation (Barker et al., 2008).  It appears that the regulation of 

synaptogenesis by astrocytes is conserved in invertebrates as recent genetic 

ablation studies in Drosophila melanogaster provide direct evidence of astrocytic 

involvement of synapse formation during the development of fly brain 

(Muthukumar et al., 2014). 

 Synapse formation occurs through the stepwise process of assembly of 

structural synapses (i.e. silent synapses), followed by activation of signaling 

properties.  TSPs are sufficient to induce the formation of silent synapses, but not 

functionally active ones (Xu et al., 2009).  In a subsequent analysis of pro-

synaptogenic factors in astrocyte-conditioned medium, Allen and colleagues 

discovered a number of molecules capable of inducing fully mature synapses.  

Using a similar in vitro biochemical approach they identified glypicans, a family of 

heparin sulphate proteoglycans as necessary and sufficient for synapse 

maturation (Allen et al., 2012).  Glypicans are tethered to the cell plasma 

membrane by glycosyl-phosphatidylinositol linkages and endogenous 

phospholipases can cleave to release the proteins (Clarke and Barres, 2013).  

Mouse astrocytes express glypican 4 and 6 in vivo and mice with glypican 4 

depletion have a defects in synapse formation, and function: the amplitude of 
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excitatory postsynaptic currents is dramatically decreased with an impaired 

recruitment of AMPA receptors (Allen et al., 2012).  The glypicans are well-

conserved molecules throughout different species.  Drosophila melanogaster has 

a homologue of glypican 4 called Dally-like which binds to the protein tyrosine 

phosphatase receptor leukocyte antigen-related receptor (LAR) in neurons to 

regulate the maturation of synapses (Johnson et al., 2006).  Another study in 

mammalian hippocampal neurons also suggests LAR signaling is required for 

recruitment of AMPA receptors to synapses (Dunah et al., 2005).  With these 

interesting insights, further studies will provide underlying mechanisms of how 

astrocyte glypicans act on neuronal receptors to induce synapse maturation.  

 Maintenance of proper synapse number requires removal of excess 

synaptic connections during nervous system development (Kano and Hashimoto, 

2009) and the failure of synapse eliminations alters synaptic connectivity and is 

associated with devastating neurological disorders including autism and 

schizophrenia (Boksa, 2012; Zoghbi and Bear, 2012).  Mounting evidence shows 

microglia, the resident immune cells in the brain, are major players in synapse 

elimination and pruning in the mouse retinogeniculate system (Schafer et al., 

2012).  Briefly, microglia express the complement receptor CR3, through which 

they recognize and phagocytose C1q-tagged weaker “loser” synapses (Schafer 

et al., 2012).  At the same time, astrocytes also help prune synapses in the 

retinogeniculate system: astrocytes express MEGF10 (mouse Draper) and 

MERTK, and these receptors act in a partially redundant fashion to engulf 
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synapses destined for elimination (Chung et al., 2014).  Interestingly, C1q has 

recently been proposed to be the ligand for MEGF10 (Iram et al., 2016), which 

might explain how CR3-bearing microglia and MEGF10/MERTK-bearing 

astrocytes recognize common synaptic targets.  Drosophila astrocytes also 

efficiently phagocytose pruned synapses during neuronal remodeling (Hakim et 

al., 2014; Tasdemir-Yilmaz and Freeman, 2014), and this is where the Draper 

signaling cascade was first implicated in synaptic pruning (Awasaki et al., 2006).  

Interestingly, Mcr, the sole compmlement-like molecule in Drosophila appears to 

act genetically upstream of and potentially as a ligand for Draper in the activation 

of autophagy (Lin et al., 2017), and therefore Mcr/C1q tagging of engulfment 

targets for internalization by Draper/MEGF10 may be an additional conserved 

feature in phagocytic functions in the brain.   

 

Astrocyte regulation of neuronal activity  

Synaptic signaling to astrocytes 

Do astrocytes receive signaling information from synapses?  This is a central 

question in the field but has remained quite controversial.  Astrocytes express 

numerous receptors for neurotransmitters and stimulation of astrocytes with 

neurotransmitters trigger increases in intracellular second messengers such as 

calcium and cyclic AMP (Fiacco and McCarthy, 2006).  Calcium transients in 

astrocytes in response to neuronal activity were initially thought to be too slow to 

be regulating fast synaptic transmission and it seemed that only sustained and 
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intense neuronal activity could increase astrocyte calcium signaling (Perea, 

2005; Wang et al., 2006).  This slower response appears to act on a time scale 

more consistent with neuromodulation (seconds to minutes), and indeed recent 

studies have shown that astrocytic calcium signaling in Drosophila and mouse 

can be activated by octopamine/tyramine and norepinephrine, respectively (Ding 

et al., 2013; Duffy and MacVicar, 1995; Ma et al., 2016; Paukert et al., 2014; 

Salm and McCarthy, 1990).  In the Drosophila CNS, astrocytes have been shown 

to express the receptor for Oct/Tyr-R, activate calcium signaling in response to 

Oct/Tyr application, and be required for execution of neuromodulation in a 

dopaminergic circuit at both the electrophysiological and behavioral levels (Ma et 

al., 2016). 

 The role of faster time course microdomain calcium imaging events are 

less clear, although they are mediated by calcium release from mitochondria in 

some way (Agarwal et al., 2017).  Some evidence exists for their regulation by 

activity: two-photon imaging allowed for observation of astrocyte calcium 

transients that occur on a similar timescale to synaptic activity upon single-

synapse stimulation.  This type of astrocyte activation involves metabotropic 

glutamate subtype 5 receptors (Clarke and Barres, 2013; Panatier et al., 2011), 

but its physiological relevance remains unclear.  Finally, astrocytes have also 

been reported to detect the inhibitory neurotransmitter γ-aminobutyric acid 

(GABA) via metabotropic GABA receptor (GABABR1/2), with signaling through 
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this pathway modulate GABA transporter (GAT) expression and therefore GABA 

uptake rates in neural circuits (Muthukumar et al., 2014).  

Gliotransmitters 

One of the qualities that enable astrocytes to be active participants in the neural 

circuit behavior is their ability to release chemical transmitters called 

gliotransmitters.  Neurotransmitters released from presynaptic terminals can 

activate astrocytes to release various gliotransmitters including glutamate, D-

serine, ATP, and neuropeptide Y (Henneberger et al., 2010; Jourdain et al., 

2007; Mothet et al., 2005; Parpura et al., 1994; Pascual et al., 2005b; Schwarz et 

al., 2017), although in vivo evidence for release of any of these compounds is 

scarce.  Several studies suggest astrocytes release glutamate in a Ca2+-

dependent manner that is mediated by the soluble N-ethylmaleimide-sensitive 

factor attachment protein receptor (SNARE) proteins including vesicle-associated 

membrane proteins-2 (VAMP2), syntaxin-1, synaptosome-associated protein-23, 

and synaptobrevin II (Harada et al., 2016; Montana et al., 2006; Schwarz et al., 

2017).  While other release mechanisms, including reverse operation of plasma 

membrane glutamate transporters, cell swelling-induced anion transporter 

opening, release via P2X7 receptors, and gap junction-mediated extrusion have 

been reported (Harada et al., 2016).  D-serine in astrocytes has been proposed 

to be stored in the synaptic-like vesicles and released also in a Ca2+-dependent 

manner (Martineau et al., 2013).  Perhaps the best characterized potential 

gliotransmitter is ATP.  While the ATP release mechanisms still remain 



 13 

controversial, several studies suggested a gap junction channel, connexin 43 

(Torres et al., 2012) and secretory lysosomes (Verderio et al., 2012) as potential 

release mechanisms for ATP in astrocytes. 

 

Neurotransmitter clearance 

The major excitatory and inhibitory neurotransmitters in the mammalian brain are 

glutamate and GABA, respectively.  Their concentrations at synapses determine 

the extent of postsynaptic receptor activation.  Maintaining an appropriate 

extracellular concentration of these neurotransmitters is critical to maintain a high 

signal to noise ratio in synaptic and extrasynaptic modes of neurotransmission 

(Danbolt, 2001; Danbolt, 2013).  Cellular uptake is the only known mechanism by 

which cells can maintain Glu or GABA concentrations in the extracellular space, 

and there is thought to be no extracellular breakdown of either GABA or 

glutamate in the CNS.  Astrocytes express transporters for both Glu and GABA, 

and are the primary cell type in the brain that clears them from the extracellular 

space (Iversen and Johnston, 1971; Iversen and Kelly, 1975; Logan and Snyder, 

1971).  

 Glutamate uptake by glutamate transporters (Excitatory amino acid 

transporters, EAATs) is driven by the ion gradients of K+ and Na+ and the uptake 

of GABA by its transporters (GATs) is driven by the gradients of Na+ and Cl-.  

There are five high-affinity glutamate transporters in mammals, EAAT1 through 5 

and they belong to the slc1-family.  EAAT2 also known as GLT-1 was the first 
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one to be purified and characterized and it immediately became clear that they 

are highly expressed in astrocytes (Chaudhry et al., 1995; Danbolt et al., 2002).  

Both transporter activity blockade and knockout studies show that EAAT2 is 

responsible for 95 % of the total glutamate uptake activity (Danbolt et al., 1992; 

Tanaka et al., 1997).  EAAT2 knockout animals further implicated EAAT2 in 

preventing excitotoxicity, without its action, increased glutamate levels induce 

epilepsy and cell death (Tanaka et al., 1997).  Furthermore, depletion of EAAT1 

and EAAT2 in mice perturbed overall brain development including stem cell 

proliferation, radial migration of neurons, neuronal differentiation, and neuronal 

survival, presumably because of the buildup in extracellular glutamate 

(Matsugami et al., 2006).  These studies clearly suggest critical roles of astrocyte 

glutamate transporters in normal network activity, which directly correlates with 

brain development and health. 

 The first identified neurotransmitter transporter was the GABA transporter 

in mammals: GAT1, (slc6a1), and this was followed by the identification of 

another three members of the GABA transporters family (GAT2, GAT3, and 

BGT1) (Danbolt, 2013; Liu et al., 1993; López-Corcuera et al., 1992).  GAT3 is 

selectively expressed in astrocytes throughout the brain while GAT1 expression 

is both astrocytic and neuronal (Conti, 2014; Minelli et al., 1996; Ribak et al., 

1996; Yadav et al., 2015).  GAT1 deletion leads to reduced aggression, 

hypoalgesia, reduced anxiety, and depression-like behavior possibly because of 

increased extracellular GABA levels and enhanced inhibitory signaling (Danbolt, 
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2013).  While remaining astrocytic expression of GAT3 might complicate the 

interpretation of the above studies, recent studies in Drosophila melanogaster 

highlight critical roles of astrocytic GABA transporters in the function of the 

nervous system in vivo.  Gat encodes the sole slc6-family GABA transporter 

family member in Drosophila (Neckameyer and Cooper, 1998; Thimgan et al., 

2006) and its expression is exclusively astrocytic throughout development (Stork 

et al., 2014).  Flies with Gat deletion are embryonic lethal, but re-expression of 

Gat in astrocytes rescues these animals to adulthood.  Further support for the 

notion that balancing levels of GAT are critical for neurophysiology come from 

studies of GAT expression during development.  During Drosophila 

metamorphosis Gat expression in astrocytes is activated through GABABR1/2 

signaling pathway.  Decreases in GABABR1/2 signaling led to reduced astrocytic 

Gat expression resulting in suppression of seizure-like behavior.  These 

observations imply that GABA transporters play a central role in regulation of 

excitatory/inhibitory balance in the fly nervous system (Muthukumar et al., 2014). 

 

Astrocyte morphology 

Astrocyte’ fine processes are intimately associated with synapses. Ultrastructural 

studies in mammalian hippocampus showed about 60 % of synapses are in 

contact with astrocyte processes (Ventura and Harris, 1999).  Just like neuronal 

synapses, astrocyte processes undergo rapid morphological remodeling.  One of 

the striking observations supporting important roles for dynamic changes in 
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astrocyte processes comes from the studies of the hypothalamic supraoptic 

nucleus (SON)(Oliet et al., 2001).  In this study, researchers take advantage of 

the massive neurological remodeling that occurs in this system in response to 

specific physiological stimulations like lactation and dehydration.  Under these 

conditions, most of the astrocyte processes are moved away from synapses 

allowing enhanced synaptic communications.  Astrocytes resume their close 

association with synapses once the stimulation has been removed (Montagnese 

et al., 1990; Theodosis, 2002).  This structural plasticity in astrocytes upon 

synaptic remodeling changes the proximity between astrocytes and neighboring 

synapses to bring alterations in circuit behavior (Benediktsson et al., 2005; 

Haber, 2006; Hirrlinger et al., 2004).  Furthermore the correlation between 

dendritic spine stability and astrocyte contacts suggests important roles in 

astrocyte process motility and synapse maintenance (Haber, 2006).  

Regulation of astrocytes’ fine processes in association with synapse proximity 

also has a great impact on buffering of the glutamate released at the synapse.  

Astrocyte glutamate transporters expressed in their fine processes are the major 

mechanism for clearance of glutamate during synaptic transmission (Danbolt, 

2001).  Therefore, changes in the proximity to the synapses from astrocyte 

processes likely influence the concentration of glutamate, which can directly 

modify synaptic transmission.  In fact, reduced astrocyte contact with dendritic 

spines was observed during spine head remodeling and pharmacological 

blockade of astrocyte glutamate transporters prevented spine remodeling in 
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mouse hippocampal slices (Verbich et al., 2012).  Despite the importance of 

astrocyte association with synapses for CNS function, we know almost nothing 

about how astrocytes regulate morphological changes in response to neural 

activity or changes in circuit needs. 

 

Astrocytes and epilepsy 

Brain network activity maintains the balance between excitation and inhibition to 

precisely encode and deliver information.  Epilepsy is a prevalent neurological 

disorder that is characterized by the unpredictable and spontaneous seizures 

(Thurman et al., 2011).  Seizures are caused by an imbalance between 

excitatory and inhibitory synaptic activity resulting in neuronal network 

hyperexcitability (Jefferys, 1990; Pinto, 2005; Robel et al., 2015).  Therapeutic 

effort has been made to control epileptiform activity by directly targeting neuronal 

activity using general CNS depressants (Binder and Steinhäuser, 2017).  

However one third of patients become medically refractory and often their 

cognition is affected by current therapeutic approaches that are neuron centric 

(Binder and Steinhäuser, 2017; Wahab et al., 2010).  Therefore, there is a need 

for the development of more specific therapeutics, which requires better 

understanding of the cellular and molecular mechanisms underlying epileptic 

seizures. 

 Alterations in astrocytic structure and function in epilepsy have been well 

characterized (Bedner et al., 2015; Bordey and Sontheimer, 1998; de Lanerolle 
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et al., 2010; Robel et al., 2015; Ye et al., 1999).  These alterations include 

distinct changes in astrocytic morphology, expression, subcellular localization 

and function of K+ and water channels, glutamate transporters and glutamine 

synthetase (GS) in the epileptic brain (Seifert and Steinhäuser, 2013).  

Accordingly, astrocytes need to be included in the equation to understand 

neuronal hyperexcitability in seizure.  

 Maintenance of proper extracellular [K+] is crucial to shape neuronal 

activity and maintain network balance and it heavily depends on astrocytic K+ 

and water channels (Kofuji and Newman, 2004).  Studies in epileptic human 

hippocampus suggest that altered expression in astrocytic Kir channels resulted 

in the impaired K+ buffering and enhanced seizure susceptibility (Hinterkeuser et 

al., 2000; Kivi et al., 2000).  These Kir channels show spatial overlap with the 

water channel, aquaporin 4 (AQP4) in astrocytes (Nielsen et al., 1997) and AQP4 

knockout mice are impaired in K+ buffering and prolong seizure duration (Binder 

et al., 2006).  These findings indicate that impaired water channels together with 

decreased expression of Kir channels in astrocytes are responsible for loss of K+ 

buffering and increase in seizure susceptibility.  

 Another key mechanism to balance network activity is proper clearance of 

neurotransmitters at the synaptic cleft.  In particular removing excess glutamate 

by glutamate transporters in astrocytes is a fundamental mechanism to terminate 

excitatory synaptic signal and keep the balance between excitation and inhibition 

(Seifert and Steinhäuser, 2013).  Impaired activity of the astrocytic transporters, 



 19 

EAAT1 and EAAT2 and a consequent increase in extracellular glutamate are 

common features of epilepsy (Glass and Dragunow, 1995; Seifert et al., 2006).  

Studies using inhibitors of glutamate transporters suggested that astrocytic 

control of ambient glutamate is critical for the genesis and maintenance of 

seizure activity (Nyitrai et al., 2010; Seifert and Steinhäuser, 2013).  In addition to 

glutamate transporters, glutamine synthetase (GS) in astrocytes plays an 

important role in glutamate clearance.  This astrocyte specific enzyme converts 

glutamate into glutamine that is glutamate receptor-inactive.  Its alteration that is 

accompanied by increased extracellular glutamate levels is observed in epilepsy 

(Eid et al., 2008; Hammer et al., 2008; Seifert and Steinhäuser, 2013).  

Glutamate to glutamine conversion by GS is also essential for GABA synthesis 

and its synaptic release to regulate inhibitory synaptic activity (Liang et al., 2006).  

Decreased inhibitory tone by impaired GS expression resulted in hyperactivity 

and seizure (Ortinski et al., 2010).  

 Mounting evidence demonstrates altered astrocyte function in human and 

rodent models of epilepsy.  However, a lack of available tools in mammalian 

systems for precisely manipulating astrocytic function makes it challenging to 

answer critical questions including whether these alterations are causative or not 

and mechanisms underlying these alterations.   

 

Drosophila as a model system to study astrocytes 
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Astrocytes contribute to virtually every aspect of nervous system development 

and function.  Despite this notion, our understanding of how and why astrocytes 

do what they do is nowhere near complete.  To accelerate our understanding of 

astrocytes the field needs to embrace model organisms like Drosophila.  Over 

the last two decades it has become clear that astrocyte biology changes 

dramatically when these cells are removed from their in vivo context 

(Balasubramanian et al., 2016; Foo et al., 2011; Götz et al., 2015).  Studying 

these cells in intact circuits in vivo will therefore be essential if we wish to unravel 

the nature of astrocyte-neuron and astrocyte-vasculature interactions. 

 

Advantages of Drosophila as a model organism 

Foundational reasons to use Drosophila to study the biology of astrocytes in the 

context of circuit behavior include full access to their annotated genome 

sequence and substantial gene conservation with humans (Adams et al., 2000).  

In addition, it has been estimated that about 75% of human disease related 

genes have conserved orthologs in flies (Lloyd and Taylor, 2010; Reiter et al., 

2001).  A comparison of conserved functional domains between a fly and a 

human in a given gene suggests that the homology is in fact even higher, 

approaching 80 to 90 % (Pandey and Nichols, 2011).  A simplified genome 

compared to humans also gives less redundancy, reducing complications in data 

interpretation during genetic analysis (Adams et al., 2000). 
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Over 100 years of history in using Drosophila melanogaster in modern 

biological sciences have accumulated resources for easy genetic manipulations. 

By far, the most appreciated milestone for genetics is the introduction of the 

GAL4/UAS system by Brand and Perrimon (1993).  It utilizes the yeast 

transcriptional activator GAL4 that is flanked by a defined promoter to activate a 

transgene of interest under the control of the upstream activation sequence 

(UAS), the target of GAL4. This cell type–specific molecular genetics, along with 

the development of reliable GAL4 driver lines for subsets of glia (Stork et al., 

2011) allows for a new level of examination in astrocytic contribution to brain 

function in vivo.  A further expansion has been made in terms of reverse genetic 

analysis since the development of transgenic fly lines carrying a UAS-regulated 

transgene expressing RNAi for almost every single gene in Drosophila genome 

(Dietzl et al., 2007; Ojelade et al., 2014).  These resources not only allow for 

rapid testing of any genes involved in a given biological process but also give a 

chance to perform a large-scale screen, which can be a powerful approach to 

find novel genes mediating a pathway of interest.  

The rapid life cycle of flies cannot be overlooked. A single reproductive 

pair can generate hundreds of eggs and it takes 10 to 12 days for these offspring 

become reproductive adults. Compared to rodent models that only produce a 

handful of offspring every 3 to 4 months, this is a great advantage to facilitate a 

study (Pandey and Nichols, 2011). Defined developmental stages of Drosophila 

include the embryo, the larva, the pupa, and the adult and each stage provides 
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unique experimental advantages.  The embryo has been a great platform to 

study cell fate determination, cellular development, and organogenesis.  The 

larva, the wandering third instar larva in particular has been popular to study 

developmental and physiological processes.  Furthermore easy tissue extraction 

and simple behavioral patterns will invite even more studies of circuit level 

questions.  Researchers have already recognized the great advantage of using 

the pupa to investigate glial roles in neural circuit remodeling (Muthukumar et al., 

2014; Tasdemir-Yilmaz and Freeman, 2014).  Finally the discreet circuits in adult 

flies mediate complex behaviors including circadian rhythms, learning and 

memory, courtship, feeding, aggression, grooming, and flight navigation and they 

are suggested to be a great potential platform for drug screening (Pandey and 

Nichols, 2011). 

 

Drosophila CNS glia  

The Drosophila nervous system is relatively simple, but houses excitatory and 

inhibitory neurons that are remarkably similar to their mammalian counterparts in 

terms of their development, mechanisms of synaptic release, and major 

neurotransmitter systems used (Freeman, 2015).  The glia to neuron ratio in 

mouse is ~55% glia to ~45% neurons (averaged across the entire brain), while in 

Drosophila glia make up only ~10-15% of all the cells in the nervous system 

(Awasaki et al., 2008; Ito et al., 1995; Pfrieger and Barres, 1995).  The 

Drosophila CNS can be divided into two parts: the neuronal cell cortex where all 
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the cell bodies sit, and the neuropil where axons and dendrites form synapses 

(Freeman, 2015).  Glial cells in Drosophila are characterized according to their 

position, morphology and association with neurons.  The outermost layer of the 

CNS is surrounded by perineural glia (PG) that function as a chemical and 

physical barrier for the CNS (Carlson et al., 2000).  Beneath the PG is the layer 

of subperineural glia (SPG), which form pleated septate junctions with one 

another to establish and maintain the blood-brain barrier (BBB) (Freeman, 2015; 

Stork et al., 2011).  Within the domain of the BBB there are three major glial cell 

types that form intimate associations with neurons and mediate neural circuit 

assembly, function, plasticity, and behavior.  Cortex glia infiltrate the cortex 

region to surround all neuronal cell bodies and the proximal regions of neuronal 

processes (Coutinho-Budd et al., 2017; Ito et al., 1995).  Ensheathing glia reside 

right along the boundary between the cortex and neuropil to help separate these 

discrete anatomical compartments (Dumstrei et al., 2003).  One of the most 

recognized functions of ensheathing glia is the injury induced response they 

exhibit after axotomy, which is mediated the Draper/Src-family kinase signaling 

cascade (Awasaki et al., 2006; Doherty et al., 2009; MacDonald et al., 2006; 

Ziegenfuss et al., 2012).  Together with cortex glia, ensheathing glia are also 

critical for CNS development, in particular for proper positioning and survival of 

neuronal cell bodies and formation of major axon tracts (Dumstrei et al., 2003; 

Spindler et al., 2009).  
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 Astrocytes are found within the synaptic neuropil and have direct 

association with neuronal processes and synapses.  Their tufted morphology and 

tiling behavior is highly reminiscent of mammalian protoplasmic astrocytes 

(Awasaki et al., 2008; Doherty et al., 2009; Stork et al., 2014; Tasdemir-Yilmaz 

and Freeman, 2014), and they serve very similar functional roles.  During 

metamorphosis, larval neural circuits undergo major remodeling.  After 

deconstruction and clearance of the circuits, adult CNS starts to be formed by 

massive synaptogenesis which is coordinated by astrocytes (Freeman, 2015; 

Muthukumar et al., 2014).  These results strongly suggest that just like their 

mammalian counterparts, Drosophila astrocytes play a crucial role in synapse 

formation during CNS development.  During this dramatic remodeling in the larval 

CNS, astrocytes become highly phagocytic by increasing the expression of 

engulfment receptor, Draper and engulf pruned axons, dendrites, and synapses 

(Hakim et al., 2014; Tasdemir-Yilmaz and Freeman, 2014).  Interestingly, pruning 

in the mammalian retinogeniculate system is activated during remodeling by 

astrocyte secretion of TGF-β (Bialas and Stevens, 2013), and astrocyte secretion 

of TGF-β (Myoglianin, Myo) is necessary and sufficient to initiate neuronal 

pruning in Drosophila mushroom body (Awasaki et al., 2011).  

 Drosophila astrocytes also play important roles in neurotransmitter 

clearance at synaptic cleft to modulate network activity and behavior.  They 

express transporters to take up glutamate (EAAT1), GABA (Gat), and enzymes 

(glutamine synthetase and GABA transaminase) to metabolize them once they 
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are taken up (Freeman et al., 2003; Rival et al., 2004; Stacey et al., 2010; Stork 

et al., 2014).  Genetic depletion of EAAT1 in glia leads to impaired synaptic 

transmission and locomotion in larvae (Stacey et al., 2010) and excitotoxicity-

induced neurodegeneration in adult flies (Rival et al., 2004).  Knockdown of Gat 

expression in astrocytes causes severe locomotion defects in larvae and adults 

and complete removal of Gat leads to animal lethality (Stork et al., 2014).  These 

data suggest neurotransmitter transporters in Drosophila, like mammals, play 

critical roles in E/I balance, but mechanisms regulating their expression and 

function remain poorly defined. 

The field has achieved remarkable progress in identifying astrocytes as 

dynamic signaling elements that have impact on neuronal circuit formation and 

maintenance.  However, the detailed cellular and molecular mechanisms of such 

regulations during different conditions like physiological or pathological conditions 

are still elusive.  In this thesis, through in vivo behavioral screen, we identified 

astrocytic genes governing astrocyte functions in regulating neuronal network 

activity. 
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Chapter 2: In vivo RNAi screen for astrocytic factors to 
regulate neuronal activity using a genetic model of 
seizure 
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Introduction 
Astrocytes are now a well-recognized cell type in the nervous system for their 

critical roles in neuronal network homeostasis.  Astrocytes give metabolic support 

to neurons, buffer ions and pH, and removal of neurotransmitters.(Kimelberg and 

Nedergaard, 2010).  Their tufted morphology has been determined to be 

important for many of their functions.  Especially, the distal fine processes of 

astrocytes compose 80% of their membrane and are filled with ion channels, 

neurotransmitter receptors, and transporters.  They infiltrate into the neuropil, 

where synapses are and communicate with neurons and modulate synaptic 

activity (Chung et al., 2015; Halassa and Haydon, 2010; Stork et al., 2014).  

Astrocytes alter their structural organization and functions in response to 

neuronal activity to accommodate and participate in a changing network 

environment (Theodosis et al., 2008).  However, the precise mechanisms 

through which astrocytes change their morphological and functional features and 

the molecules required in astrocyte-neuron crosstalk have only started to be 

discovered.  In vivo observation in particular, remains to be a major challenge in 

decoding the roles of astrocytes in brain function (Haydon and Nedergaard, 

2014).  

Drosophila is a great model system to overcome the limitations and 

challenges of studying astrocyte function in vivo and accelerate the growth of the 

field.  The Drosophila nervous system is relatively simple compared to 

mammalian counterparts yet they share a number of glial characteristics 
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including molecular basis, functions, and morphology (Doherty et al., 2009; 

Freeman et al., 2003; Murai and van Meyel, 2007; Muthukumar et al., 2014; 

Stork et al., 2014).  A phalanx of genetic tools available in the fly will allow us to 

specifically label and manipulate astrocytes in vivo and decipher their roles within 

the neuronal network in an intact brain.  

To first identify astrocyte genes required for modulating neuronal activity 

using Drosophila, we performed an in vivo candidate screen in adult flies with 

RNA interference (RNAi).  Considering that astrocyte functions heavily rely on 

their transmembrane proteins including channels, receptors, and transporters 

(Araque et al., 1999), we selected about 2,000 Drosophila transgenic UAS-RNAi 

lines from Vienna Drosophila Resource Center (VDRC) targeting mostly genes 

coding for secreted, transmembrane or membrane associated proteins (Dietzl et 

al., 2007).  Then, to achieve astrocyte-specific RNAi expression, we used an 

astrocyte-specific Gal4 line, alrm-Gal4 (Doherty et al., 2009), to drive UAS-RNAi 

from the chosen library.  

As a tool to manipulate neuronal activity in vivo, we took advantage of a 

sensitized genetic background in which neuronal hyperexcitability-mediated 

seizure can be induced by simple mechanical shock (Pavlidis et al., 1994).  A 

bang-sensitive mutation, easily-shocked (easPC80) is a well-established model to 

study neuronal hyperexcitability and seizure in the Drosophila nervous system 

(Parker et al., 2011; Pavlidis et al., 1994).  The loss-of-function of ethanolamine 
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kinase disrupts the metabolism of phosphatidylethanolamine which is one of the 

prevalent membrane lipids (Lim et al., 2011; Pavlidis et al., 1994).  

These mutant flies display seizure-like behaviors characterized by initial seizure, 

temporary paralysis, and recovery seizure when electrical or mechanical shock, 

“bang” is introduced (Benzer, 1971; Ganetzky and Wu, 1982) and this Drosophila 

model of seizure has a significant similarities with human seizures (Parker et al., 

2011).  Electrophysiological recordings on the mutant flies show 5 times lower in 

their seizure threshold compared to wild-type flies suggesting hyperexcitability in 

their neuronal network (Kuebler and Tanouye, 2000).  In addition, this fly strain 

carrying a mutation in ethanolamine kinase suffers from hyperexcitability and 

paralysis resulting in loss of postural control, being unable to right themselves 

when exposed to a brief mechanical shock (e.g. 10 sec of vigorous vortexing).  

Following the mechanical bang, mutant flies require recovery time around 110 

seconds while control flies need no recovery time to right themselves up and 

resume their normal activities like grooming and climbing on the culture vials 

(Parker et al., 2011; Pavlidis et al., 1994).  

Ethanolamine kinase is suggested to play an important role in nervous 

system development since easPC80 impairs proper development of mushroom 

body α/β lobes (Pascual et al., 2005a).  However, later studies elaborated that 

these developmental changes were not indicative of seizure sensitivity but 

increased ratio of excitatory and inhibitory activity was suggested as a seizure 

inducing mechanism (Kroll and Tanouye, 2013a).  Thus, assaying for this distinct 
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behavioral phenotype in easPC80 can provide a robust platform to define genes 

that modify seizure sensitivity when they are depleted in astrocytes.   

We identified 100 RNAi lines that suppress hyperexcitability induced 

seizure-like behavior when they are expressed in astrocytes and 87 lines 

enhanced seizures in the easPC80 genetic background. 

 

Results 
An in vivo RNAi screen identifies potential astrocyte-expressed regulators 

of seizure-like behavior 

To identify novel astrocyte genes capable of modulating neural circuit activity, we 

performed an in vivo RNAi screen in adult Drosophila to identify astrocyte genes 

that enhance or suppress seizure when they are knocked down.  We took 

advantage of the easily shocked (easPC80) mutant, a well-studied seizure model 

that belongs to the bang-sensitive (BS) paralytic class.  It provides a sensitized 

genetic background in which neuronal hyperexcitability and ultimately seizure 

activity can be induced by simple application of mechanical force (Pavlidis et al., 

1994) providing a convenient platform for the screen.  Out of three BS mutants 

that have been the most utilized as experimental representatives (The 

Slamdance, the easily shocked, and tha bang senseless1 ),  easily shocked 

mutant shows moderate seizure sensitivity which allows us to define both 

suppressors and enhancers for seizure sensitivity during the screen.  Our target 

collection of RNAi lines consisted of ~2,000 constructs that targeted genes 
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encoding the majority of secreted, transmembrane, or membrane-associated 

molecules in the fly genome (Dietzl et al., 2007).  Astrocyte-specific knockdown 

of each gene was accomplished using the alrmGal4 driver (Doherty et al., 

2009)(Fig2 b).  Application of mechanical shock (i.e. vortexing of animals in 

culture vials for 10 seconds) has no effect on control animals, which means they 

immediately resume normal motor activity after the shock.  In contrast, the same 

stimuli resulted in easPC80 mutants experiencing broad neuronal hyperexcitability 

and paralysis, and they exhibit a mean recovery time of approximately 110 

seconds (Pavlidis et al., 1994)(Fig 2A).  We crossed individual males from UAS-

RNAi lines to virgin easPC80, alrmGal4 females, and collected up to 15 male 

progenies that are 1 to 5 days old post eclosion in a clean vial (i.e. easPC80/y; 

alrm-Gal4/+ and also contained a single copy of the UAS-RNAi construct being 

assayed).  The next day, collected flies were transferred to a clean empty vial 

and recover for at least 2 hrs from any mechanical shock that may have 

introduced during transfer.  Animals were then vortexed for 10 seconds and the 

percent of animals that righted themselves were scored at 1, 1.5, 2, 3, and 4 

minutes (Fig. 2A).  Since easPC80 animals required about 110 sec to reach 100 % 

recovery from bang-induced seizure-like behavior, 4 min of total assay time 

allowed us collect suppressors as well as enhancers for this behavior. 

We scored suppressors as UAS-RNAi lines that led to strong recovery 

within 1.5 minutes, and enhancers as UAS-RNAi lines that had less than 90 % 

recovery until after 4 min.  Then, only the ones that had at least 10 flies as a total 
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number of animals tested made it to the final list of hits. In total, we identified 100 

RNAi lines (4.6 % out of all the lines tested) that suppressed seizure activity and 

87 lines (4.0 %) that enhanced seizures in the easPC80 genetic background when 

expressed in astrocytes (Fig. 2B).  

The lists of potential suppressors and enhancers (Table 1 and 2) were 

subjected for protein functional categorization using PANTHER classification 

system (Mi et al., 2013).  91 genes out of 100 scored as suppressors and 78 out 

of 87 genes scored as enhancers had defined molecular functions based on the 

database.  From both suppressors and enhancers, major portions of genes were 

suggested to function as transporters (34.5 % of suppressors and 24.6 % of 

enhancers)(Fig 2C, D).  Further validation is necessary to confirm the effect of 

RNAi perhaps using second RNAi that targets different sequences since a 

handful of RNAi lines are predicted to have off-targets. 
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Figure 2: Schematics of the screen and summary of the results 

A, Schematics of the behavioral assay using Drosophila bang-sensitive mutant, 

easPC80 for RNAi based screen.  B, Astrocyte specific knockdown utilizing 

GAL4/UAS system and summary of screen results.  C, Pie charts represent 

candidate genes categorized based on their protein function.  100 suppressors 

were identified as genes that cause flies recover 100 % from the 
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hyperexcitability-induced seizure by 90 seconds when RNAi for target gene is 

expressed in astrocytes.  Protein functional categorization was done by the 

PANTHER classification system (Mi et al., 2013).  91 genes that have defined 

function were subjected for categorizations.  D. Enhancers are defined when flies 

with a RNAi showed less than 90 % recovery by 4 minutes which is the total 

length of assay.  78 genes out of 87 genes were subjected for categorizations. 

 

Discussion 
We identified astrocyte-expressed genes that regulate CNS physiology in the 

context of hyperexcitability by assaying for modification of seizure-like behavior 

using the well-characterized bang-sensitive mutants (Pavlidis et al., 1994).  While 

the precise mechanism to induce network hyperexcitability by the genetic seizure 

model (easPC80) used in our screen is not completely understood, studies with 

cell-type specific rescues suggests a role for eas+ in excitatory rather than 

inhibitory transmission (Kroll and Tanouye, 2013b).  Therefore, the imbalance of 

the network activity supposedly comes from enhanced excitation rather than 

decreased inhibition and the hits from our screen would act either by decreasing 

excitation or increasing inhibition to ameliorate network imbalance.  Our 

collection of RNAi lines targeted the vast majority of transmembrane, secreted, 

and signaling molecules encoded in the Drosophila genome.  While we focused 

our further analysis on FA molecules (see Chapter 3), a few additional classes of 

molecules were found repeatedly in our collection of enhancers or suppressors 
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(Fig 2, Table 1, 2).  For instance, ~40% of the suppressors of seizure activity 

were transporters or transfer/carrier proteins, while ~9% were transmembrane 

receptors.  Similarly, ~25% of the enhancers fell into the transporter class, and 

~12% were transmembrane receptors (Fig 2C, D).  In many species astrocytes 

have been found to express a wide array of transporters (Amara and Kuhar, 

1993; Aroeira et al., 2013; Doherty et al., 2009; Hanu et al., 2000; Malynn et al., 

2013; Martin and Krantz, 2014; Raiteri et al., 2008; Stork et al., 2014; Suzuki et 

al., 2011), but the in vivo activity and role of these molecules has not been 

explored in detail, perhaps with the exception of Excitatory amino acid 

transporters (EAATs) and γ-aminobutyric acid transporters (GATs).  

Transmembrane receptors, particularly those that bind neurotransmitters, have 

been the focus of a number of recent studies exploring how astrocytes directly 

respond to neurotransmitters.  Our work suggests a deeper analysis of this class 

of molecules could shed important new light on how astrocytes modulate central 

nervous system (CNS) excitability and signaling.   
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Materials and Methods 
Fly strains.  The following Drosophila strains were used: w1118 Canton S, alrm-

GAL4(Doherty et al., 2009), easPC80(Pavlidis et al., 1994).  

UAS-RNAi lines were from Vienna Drosophila Resource Center (Vienna, 

Austria). 

 

Bang-sensitive behavioral assay.  The behavioral assay was modified from 

Song et al. (2008) and described in Muthukumar et al. (2014).  Adult male flies 

after 3-7 days of eclosion were collected in fresh food vials the night before 

experiments.  Vials containing 10 – 15 flies were subjected to mechanical 

stimulus using a VWR Vortex Mixer (VWR International, West Chester, PA) at 

maximum speed for 10 sec to induce paralysis and seizure in bang-sensitive 

mutant, easPC80.  The numbers of flies standing and resuming normal behavior 

was noted at 10 s intervals for 4 min.  Mean recovery time was calculated as the 

average time taken by an individual fly to recover from paralysis. 
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CHAPTER 3: Tensin and other focal adhesion 
associated molecules as a regulator of seizure-like 
behavior 
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Introduction 
Astrocytes are highly branched non-neuronal cells that tile with one another and 

densely infiltrate nearly all synapse rich regions of the brain.  The fine 

membranes of astrocytes form close contacts with neuronal cell bodies and 

synapses, where they support and modulate neuronal activity.  Astrocytes 

provide metabolic support to neurons to meet the high energy demands of neural 

activity, and buffer ions and pH to maintain brain homeostasis (Kimelberg and 

Nedergaard, 2010).  Through dynamic changes in calcium signaling, astrocytes 

act as important regulators of neural activity (Khakh and McCarthy, 2015; Ma et 

al., 2016) and neuro-vascular coupling (Daneman and Prat, 2015).  Despite our 

growing appreciation for the importance of astrocytes in neural circuit function 

and maintenance (Chung et al., 2015; Halassa and Haydon, 2010), we know 

surprisingly little about the signaling pathways regulating astrocyte associations 

with synapses or how they are modulated by dynamic changes in activity. 

A major mechanism by which astrocytes impact synaptic physiology is 

through the regulation of extracellular levels of excitatory and inhibitory 

neurotransmitters.  Following neuronal release of glutamate or GABA, excitatory 

amino acid transporters (EAATs) or GABA transporters (GATs), respectively, on 

astrocyte membranes remove these NTs from the synaptic and extra-synaptic 

space (Danbolt, 2013).  Efficient astrocyte clearance of NTs is important for 

proper termination of synaptic signaling to avoid, for instance, chronic receptor 

desensitization at synpases (Pita-Almenar et al., 2012; Rothstein et al., 1996; 
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Stacey et al., 2010), regulation of the spillover of neurotransmitters between 

synapses (Danbolt, 2013; Kersanté et al., 2013; Pál, 2015), and for setting 

proper basal excitatory/inhibitory (E/I) tone (Muthukumar et al., 2014; Tanaka et 

al., 1997; Zeng et al., 2010).  Conditional elimination of EAATs from astrocytes in 

mouse results in fatal epilepsy (Petr et al., 2015), and mutations in human 

EAATs cause episodic ataxia and seizure (de Vries et al., 2009). 

EAATs on astrocyte membranes appear to be subject to diverse modes of 

regulation.  EAAT levels change in response to factors secreted from neurons 

including glutamate (Gegelashvili et al., 1996) , neuronal contact (Swanson et al., 

1997), or neuronal activity (Genoud et al., 2006; Pannasch et al., 2014; Perego 

et al., 2000).  Pathological changes in EAATs have been associated with disease 

including epilepsy and seizure (Tanaka et al., 1997), neurodevelopmental 

disorders (Higashimori et al., 2016), ataxia (de Vries et al., 2009; Parinejad et al., 

2016) and ALS (Rothstein et al., 1995), where dysregulation of EAATs is thought 

to drive changes in E/I balance.  Treatments that upregulate GLT1 (the astrocyte 

EAAT2 in human) expression in vitro show neuroprotective effects (Rothstein et 

al., 2005), arguing that rebalancing EAAT levels may be a valuable therapeutic 

approach to reestablish normal E/I balance.  However, precision in tuning EAATs 

will be essential: for example, increasing GLT1 expression in vivo, through 

application of β-lactam, ceftriaxone, or interfering with neuroglia EphA signaling, 

had no effect on basal excitatory synaptic transmission, but resulted in impaired 

long-term plasticity and learning and memory performance (Carmona et al., 
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2009; Omrani et al., 2009; Rothstein et al., 2005), presumably because 

glutamate levels were not sufficiently high to drive synaptic strengthening.  

From our comprehensive in vivo RNAi screen in Drosophila to identify astrocyte-

expressed genes that could phenotypically modify a genetically induced seizure 

model, focal adhesion molecule called tensin has emerged as a strong 

suppressor.   

 Focal adhesions are multi-protein complexes in which integrins have a 

central role in linking the extracellular matrix (ECM) with the actin cytoskeleton.  

The cytoplasmic side of focal adhesions is composed of multiple adaptor 

proteins, which connect the cytosolic tail of β-Integrin to the actin cytoskeleton 

(Lo, 2006).  Studies in mice fibroblasts show that the dynamic nature of focal 

adhesions enables them to mediate cell motility and membrane protrusion by 

rearranging the actin cytoskeleton (Le Clainche and Carlier, 2008; Lin et al., 

1994).  In response to extracellular stimuli, a trigger of actin signaling is mediated 

by focal adhesions to drive changes in cell shape and membrane protrusion.  

Dynamic formation of focal adhesions would be expected to account for actin-

dependent cellular processes (Jovceva et al., 2007).  In cultured astrocytes, 

activation of Eph receptor tyrosine kinases increases the number of focal 

adhesions along with cytoskeletal reaarangement (Puschmann and Turnley, 

2010).  Another study suggests treatment of the thyroid hormone, thyroxine (T4) 

which has an essential role in the growth and development of the mammalian 

brain increases the number and length of focal adhesions by promoting integrin 
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clustering in astrocytes (Siegrist-Kaiser et al., 1990).  While focal adhesions have 

been analyzed in cultured astrocytes it is not known if focal adhesions play 

important roles for the establishment or maintenance of the complex morphology 

of astrocytes and their functions in relation to neuronal activity in vivo.  

With a further analysis, we found that astrocyte-specific depletion of other 

components of focal adhesion complexes (FAs) and a matrix metalloproteinase 

potently suppressed seizure activity, and this suppression further expanded to a 

pharmacologically induced model of seizure (i.e. picrotoxin exposure).  We 

provide evidence that under normal physiological conditions FAs are required for 

proper establishment of astrocyte coverage of the synaptic neuropil and 

expression of EAAT1, but they do not regulate the sole Drosophila GAT 

molecule.  Interestingly, in the context of hyperexcitability, FAs negatively 

regulated EAAT1 levels and astrocyte coverage, and their elimination led to 

enhanced EAAT1 expression, increased astrocyte coverage of the synaptic 

neuropil, and more rapid recovery from seizure.   

 

Results 
An in vivo RNAi screen identifies tensin as an astrocyte-expressed 

regulator of seizure activity 

In our primary screen we found that astrocyte-specific knockdown of tensin, an 

essential component of focal adhesion complexes (FAs) and regulator of cell-

extracellular matrix interactions, led to mean recovery times of less than 1.5 min.  
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We repeated the easPC80 seizure assay with multiple tensinRNAi lines, in this case 

recording recovery rates at 10 sec intervals.  We noticed a dramatic shift of 

recovery curve with astrocyte-specific expression of tensinRNAi compared to 

controls (Fig 3.1A) and a decrease in mean recovery time with astrocyte 

tensinRNAi (Fig 3.1A’). 

 To determine the pattern of Tensin localization in astrocytes we visualized 

Tensin using an endogenously GFP-tagged tensin line, and labeled astrocyte 

membranes with anti-Gat antibodies in 3rd instar larva ventral nerve cords (Fig 

3.1B).  We found that Tensin-GFP was localized in punctate structures in 

astrocyte cell bodies and astrocyte processes as they projected into the neuropil 

area among neuronal circuits.  To determine whether our tensinRNAi lines were 

indeed targeting tensin, we quantified Tensin-GFP levels in astrocytes in controls 

and animals expressing UAS-tensinRNAi under the control of alrmGAL4.  To 

selectively examine astrocyte Tensin-GFP we focused on the quantification of 

Tensin-GFP that fell within the domains of anti-Gat immunoreactivity (i.e. the 

Tensin within astrocytes).  We found that Tensin-GFP levels were decreased by 

38 percent in tensinRNAi animals compared to its control (Fig 3.1B’).  Furthermore, 

when we expressed UAS-tensinRNAi under the control of tubulin-GAL4, Tensin-

GFP punctae were not detectable (Fig 3.1C).  These data demonstrated that 

Tensin is expressed in astrocytes, localized to punctate structures within 

astrocytes, and that our RNAi lines successfully targeted tensin expression.  We 
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conclude that Tensin is a novel astrocyte molecule that can modulate seizure-like 

behavior in vivo.   
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Figure 3.1: Tensin, a focal adhesion molecule potently suppresses seizure-

like behavior when knocked down in astrocytes 

A, Percent of recovery is measured every 10 sec following 10 sec of mechanical 

shock.  Wide-type flies are not affected by the shock so their recovery is 100 % in 

10 sec while easPC80 displays seizure-like behavior requiring time to recover.  

Knockdown of astrocyte focal adhesion molecule, tensin suppresses seizure-like 

behavior in bang-sensitive mutant.  Two RNAi lines that are targeting different 

sequences were tested.  A’, Mean recovery time is measured based on data 

shown in A.  Error bars represent SEM.  **P<0.005, ****P<0.0001; one-way 

ANOVA and Dunnett’s multiple comparisons.  N > 100 flies quantified for all 

genotypes.  B, Tensin signal is visualized with GFP that is genetically tagged and 

astrocyte membrane is labeled using α-Gat antibody in control and astrocyte 

tensin knockdown.  B’, Knockdown efficiency by RNAi is quantified by measuring 

the intensity of tensin::GFP signal in astrocyte membrane.  Error bars represent 

SEM.  **P<0.01; unpaired t test.  alrmGAL4/+, N = 8; alrmGAL4>UAS-tensin 

RNAi, N = 6 animals quantified.  C, Expressing tensin RNAi with TubGAL4 driver 

removed Tensin::GFP punctae throughout the ventral nerve cord of 3rd instar 

larvae.  TubGAL4/+, N = 8; TubGAL4>UAS-tensin RNAi, N = 7 aniamls.  

Scale bars represent 10 µm in B and C. 
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Multiple components of focal adhesion complexes function in astrocytes to 

modulate seizure activity 

Tensin is a component of FAs, which are large multi-protein complexes that 

include heterodimeric integrin receptors that interact with ECM, and adaptor 

proteins that connect integrin receptors to the actin cytoskeleton (Fig 3.2A).  We 

sought to determine whether additional known FA molecules functioned in 

astrocytes to modulate hyperexcitability-induced seizure behavior. 

Integrins are the central players of focal adhesions and composed of 

heterodimeric α- and β- subunits.  The cytosolic tail of β-integrin serves as an 

anchor to multiple adaptor proteins in the focal adhesions (Le Clainche and 

Carlier, 2008).  In Drosophila, there is only one βintegrin called βPS as opposed 

to αintegrin with five different subunits and βintegrin is sufficient to initiate a 

signaling pathway in the developing embryo (Martín-Bermudo and Brown, 1999).  

To address roles of integrins as a focal adhesion in astrocytes and their functions 

in seizure-like behavior, we choose to look at βintegrin that is unlikely to 

complicate the interpretation of data with redundancy.  Immunofluorescent 

labeling with anti-βintegrin antibodies revealed that βintegrin colocalized with 

Tensin-GFP+ punctae within ventral nerve cord (Fig 3.2B), which supports the 

notion that Tensin protein is largely associated with βintegrin containing FAs.   
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We next screened well defined FA components in the adult easPC80 assay 

and found that RNAi knockdown of adaptor protein, Talin or focal adhesion 

kinase (FAK), as well as βintegrin in astrocytes strongly suppressed seizure 

behavior at levels similar to tensinRNAi (Fig 3.2C, C’).  These results further 

support the notion that FAs in astrocytes regulate nervous system 

hyperexcitability and seizure behavior. 
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Figure 3.2: Multiple components of focal adhesion complexes function in 

astrocytes to modulate seizure-like behavior 

A, Schematics of focal adhesions (only components that are discussed in this 

study are shown).  B, Confocal image shows colocalization of tensin and 

βintegrin in the ventral nerve cord of 3rd instar larvae.  Tensin signal is genetically 

tagged with GFP and βintegrin signal is detected by α-βPS antibody.  N = 19 

animals.  C, Mutiple components of focal adhesions including βintegri, talin, and 

FAK showed similar suppression tensin in the adult behavioral assay when they 

are depleted in astrocytes using RNAi.  C’, Quantification of mean recovery time 



 49 

from data C.  Error bars represent SEM. ****P<0.0001; one-way ANOVA and 

Dunnett’s multiple comparisons.  N > 100 flies quantified for all genotypes.  
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Seizures induced by pharmacological blockade of GABA-A receptors are 

modulated by astrocyte focal adhesions 

To complement our studies using the easPC80 genetic model of seizure we turned 

to pharmacological blockade of GABA-A receptor signaling.  Exposure of larvae 

to food containing the GABA-A receptor inhibitor picrotoxin (PTX) results in 

widespread CNS disinhibition, an overall increase in neuronal activity, and larval 

nervous system hyperexcitability (Stilwell et al., 2006).  This pharmacological 

model of seizure has a precise mechanism of action because of the specificity of 

the inhibitor and an easy in vivo delivery in Drosophila larvae gives us a great 

advantage to control the action of drug in terms of concentration and exposure 

time (Stilwell et al., 2006).  We collected 3rd instar larvae and allowed them to 

consume PTX-laced or control food for a period of 9 hrs, and we compared sham 

animals to animals treated with two different doses of PTX (0.5 or 1.5 mg/ml).  

We observed no changes in baseline motility in animals that were sham treated, 

and no alterations in baseline motor function after astrocyte-specific knockdown 

of tensin, βintegrin, talin, or FAK (Fig 3.3A, B).  Therefore depletion of FA 

signaling components in astrocytes did not appear to alter baseline motor 

behavior in crawling assays.  We observed a dose-dependent decrease in 

motility in control animals, with velocity (mm/min) being decreased by 65% after 

exposure to 0.5 mg/ml PTX, and further decreased by 83% after exposure to 1.5 

mg/ml PTX (Fig 3.3A, B).  In contrast, PTX-induced decreases in larval motility 

were partially but significantly suppressed at both doses in animals with 
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astrocyte-specific RNAi depletion of tensin, βintegrin, talin, or FAK (Fig 3.3A, B).  

Since PTX was delivered with food, the possibility of impairment of animal 

feeding behavior by RNAi was explored.  Using food coloring, when larvae were 

subjected to 9hr of food consumption, the relative food intake measured by 

spectrophotometry was comparable across genotypes (Fig 3.4A) suggesting the 

amount of PTX delivered into the system is not accountable for the RNAi effect 

on the behavior.  When we only expressed UAS-RNAis to control the insertion of 

UAS-RNAi construct, the suppression effect on PTX-induced decrease in larval 

locomotion was absent (Fig 3.4B).  To overcome the concerns for expressing two 

UAS-RNAi at the same time, we utilized the tensin null animal (by33C), which 

showed the same suppression in the PTX induced seizure as tensinRNAi along 

with a defect in normal locomotion (Fig 3.5).  Finally, RNAi effects were validated 

by utilizing non-overlapping RNAi lines for tensin, βintegrin, talin, or FAK (Fig 

3.4C). 

The strength of suppression was not further enhanced by simultaneous 

expression of RNAi constructs for βintegrin and tensin (Fig 3.3C), which is 

consistent with these molecules functioning in the same genetic pathway.  These 

data indicate that astrocyte FA molecules modulate changes in neural 

excitation/inhibition balance at multiple developmental stages, and in response to 

both genetic and pharmacological induction of hyperexcitability.   
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Figure 3.3: Seizure induced by pharmacological blockade of GABA-A 

receptors are modulated by astrocyte focal adhesions  
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A, Raw traces of 3rd instar larval locomotion with and without picrotoxin treatment 

in control and RNAis for focal adhesion components.  Scale bars represent 1 cm.  

B, A distance traveled within one minute is measured to quantify locomotion 

speed for each RNAi.  Error bars represent SEM.  ****P<0.0001; two-way 

ANOVA and Tukey’s multiple comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 

18; alrmGAL4/+ (0.5 mg/ml PTX), N = 96; alrmGAL4/+ (1.5 mg/ml PTX), N = 66; 

alrmGAL4>UAS-tensin RNAi (0.0 mg/ml PTX), N = 15; alrmGAL4>UAS-tensin 

RNAi (0.5 mg/ml PTX), N = 33; alrmGAL4>UAS-tensin RNAi (1.5 mg/ml PTX), N 

= 24; alrmGAL4>UAS-βintegrin RNAi (0.0 mg/ml PTX), N = 4; alrmGAL4>UAS-

βintegrin RNAi (0.5 mg/ml PTX), N = 58; alrmGAL4>UAS-βintegrin RNAi (1.5 

mg/ml PTX), N = 45; alrmGAL4>UAS-talin RNAi (0.0 mg/ml PTX), N = 9; 

alrmGAL4>UAS-talin RNAi (0.5 mg/ml PTX), N = 55; alrmGAL4>UAS-talin RNAi 

(1.5 mg/ml PTX), N = 22; alrmGAL4>UAS-FAK RNAi (0.0 mg/ml PTX), N = 17; 

alrmGAL4>UAS-FAK RNAi (0.5 mg/ml PTX), N = 21; alrmGAL4>UAS-FAK RNAi 

(1.5 mg/ml PTX), N = 54 animals quantified.  C, Knockdown of βintegrin and 

tensin in astrocytes simultaneously had no additive effect on suppression 

phenotype.  Error bars represent SEM.  **P<0.005; two-way ANOVA and Tukey’s 

multiple comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 6; alrmGAL4/+ (1.5 

mg/ml PTX), N = 17; alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP (0.0 

mg/ml PTX), N = 12; alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP (1.5 

mg/ml PTX), N = 19; alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi (0.0 
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mg/ml PTX), N = 5; alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi (1.5 mg/ml 

PTX), N = 13 animals quantified. 

Full statistical details are provided in Table 3.   
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Astrocyte matrix metalloproteinase 1 (Mmp1) activity dynamically regulates 

seizure activity  

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that can 

degrade components of extracellular matrix (ECM), which then activate integrin 

signaling (Michaluk et al., 2009; Park and Goda, 2016)(Fig 3.2A).  Interestingly, 

increased neural activity or glutamate signaling has been found to elevate MMP 

activity and/or expression (Huntley, 2012; Nagy et al., 2006; Wilczynski et al., 

2008).  We explored the possibility that Drosophila MMPs might modulate 

nervous system excitability through FA signaling pathways using both loss- and 

gain-of-function approaches.  We first expressed RNAi lines targeting mmp1 in 

astrocytes in the easPC80 background and assayed sensitivity to bang-induced 

seizure.  We found depletion of mmp1 by RNAi suppressed hyperexcitability-

induced seizure behavior by decreasing recovery time (Fig 3.6A, A’).  

Reciprocally, astrocyte overexpression of MMP1 had the opposite effect and 

strongly enhanced seizure-like behavior (Fig 3.6A, A’).  We further found that 

Mmp1RNAi partially suppressed PTX-induced decreases in larval crawling 

behavior, (Fig 3.6B), and the same suppression was observed when PTX-treated 

animals were co-fed the MMP inhibitor, GM 6001 (Fig 3.6C).  We demonstrated 

that expressing UAS-Mmp1 RNAi under the control of the pan-neuronal driver 

elav-GAL4 resulted in no significant suppression of PTX-induced seizure 

behavior (Fig 3.7), arguing for an astrocyte-specific role for Mmp1.   
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Since MMPs are secreted as a pro-MMP form requiring extracellular 

activation to become enzymatically active form (Vandenbroucke and Libert, 

2014), the simplest model would be that Mmp1 activates integrin receptors 

extracellularly, which then signals through focal adhesion complex to modulate 

excitability.  To test this model we assayed for phenotypic interactions between 

Mmp1, βintegrin, and Talin in PTX-induced seizure assays.  We found addition of 

the MMP inhibitor did not enhance the rescuing effect of integrinRNAi, arguing 

Mmp1 and βintegrin are in the same genetic pathway in astrocyte regulation of 

excitability (Fig 3.8A).  Talin is a cytosolic adaptor protein and its expression is 

not required for the presence of integrins on the cell surface (Brown et al., 2002), 

we found the rescuing effect of talinRNAi in astrocytes was suppressed by Mmp1 

overexpression (Fig 3.8C).  Finally, we found that Mmp1 overexpression could 

not suppress the seizure suppression afforded by integrinRNAi (Fig 3.8B).  The 

simplest interpretation of these data is that Mmp1 exerts its effects through 

βintegrin-mediated FA signaling.  
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Figure 3.4: Confirmation of RNAi effects 

A, Relative food intake was comparable across genotypes.  Error bars represent 

SEM.  One-way ANOVA.  N = 3.  B, Expressing RNAi alone in astrocytes had no 

effect on PTX based behavioral assay.  Error bars represent SEM.  Two-way 

ANOVA and Tukey’s multiple comparisons.  W1118 (0.0 mg/ml PTX), N = 4; W1118 

(1.5 mg/ml PTX), N = 11; UAS-tensin RNAi /+ (0.0 mg/ml PTX), N = 13; UAS-
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tensin RNAi/+ (1.5 mg/ml PTX), N = 46; UAS-βintegrin RNAi /+ (0.0 mg/ml PTX), 

N = 11; N = 58; UAS-βintegrin RNAi/+ (1.5 mg/ml PTX), N = 46; UAS-talin 

RNAi/+ (0.0 mg/ml PTX), N = 10; UAS-talin RNAi/+ (1.5 mg/ml PTX), N = 16; 

UAS-FAK RNAi/+ (0.0 mg/ml PTX), N = 10; UAS-FAK RNAi/+ (1.5 mg/ml PTX), 

N = 37 animals quantified.  C, RNAi lines that are independent from the ones 

used in rest of the study displayed the same suppression effect on PTX assay.  

Error bars represent SEM.  ****P<0.0001; two-way ANOVA and Tukey’s multiple 

comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 15; alrmGAL4/+ (1.5 mg/ml 

PTX), N = 46; alrmGAL4>UAS-tensin RNAi (0.0 mg/ml PTX), N = 42; 

alrmGAL4>UAS-tensin RNAi (1.5 mg/ml PTX), N = 54; alrmGAL4>UAS-βintegrin 

RNAi (0.0 mg/ml PTX), N = 24; alrmGAL4>UAS-βintegrin RNAi (1.5 mg/ml PTX), 

N = 27; alrmGAL4>UAS-talin RNAi (0.0 mg/ml PTX), N = 32; alrmGAL4>UAS-

talin RNAi (1.5 mg/ml PTX), N = 46; alrmGAL4>UAS-FAK RNAi (0.0 mg/ml PTX), 

N = 25; alrmGAL4>UAS-FAK RNAi (1.5 mg/ml PTX), N = 35 animals quantified. 

Full statistical details are provided in Table 3. 
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Figure 3.5: tensin null, by33c phenocopies RNAi results 

tensin null animals (by33c) showed significant suppression in locomotion defect by 

PTX administration.  Error bars represent SEM.  ****P<0.0001; two-way ANOVA 

and Tukey’s multiple comparisons.  W1118 (0.0 mg/ml PTX), N = 17; W1118 (1.5 

mg/ml PTX), N = 20; by33c (0.0 mg/ml PTX), N = 21; by33c (1.5 mg/ml PTX), N = 

32 animals quantified.  Full statistical details are provided in Table 3. 

 

 

 

 

 

 

**** 

**** 



 60 

 

Figure 3.6: Astrocyte matrix metalloproteinase 1 (MMP1) dynamically 

regulates seizure activity in genetic and pharmacological models 

A, Opposite effects of astrocyte MMP over-expression and knockdown on 

hyperexcitability induced behavior.  A’, Mean recovery time is measured based 

on data shown in A.  Error bars represent SEM.  ****P<0.0001; one-way ANOVA 

and Dunnett’s multiple comparisons.  N > 100 flies quantified for all genotypes.  

B, Genetically knocking down astrocyte Mmp1 suppressed PTX-induced 

locomotion defect.  Error bars represent SEM.  ****P<0.0001; two-way ANOVA 

and Tukey’s multiple comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 4; 
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alrmGAL4/+ (1.5 mg/ml PTX), N = 50; alrmGAL4>UAS-Mmp1 RNAi (0.0 mg/ml 

PTX), N = 15; alrmGAL4>UAS-Mmp1 RNAi (1.5 mg/ml PTX), N = 43 animals 

quantified.  C, Pharmacological inhibition of MMPs during PTX feeding showed 

locomotion defect suppression.  Error bars represent SEM.  *P<0.05; one-way 

ANOVA and Dunnett’s multiple comparisons.  W1118 (0.0 mg/ml PTX), N = 5; 

W1118 (0.0 mg/ml PTX, 50 µM inhibitor), N = 4; W1118 (1.5 mg/ml PTX), N = 19; 

W1118 (1.5 mg/ml PTX, 50 µM inhibitor), N = 19 animals quantified.  Full statistical 

details are provided in Table 3. 
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Figure 3.7: Neuronal knockdown of MMP1 has no effect on PTX-induced 

locomotion defect 

Genetically knocking down neuronal Mmp1 does not alter PTX-induced 

locomotion defect.  Error bars represent SEM.  Two-way ANOVA and Tukey’s 

multiple comparisons.  elavGAL4/+ (0.0 mg/ml PTX), N = 6; elavGAL4/+ (1.5 

mg/ml PTX), N = 15; elavGAL4>UAS-Mmp1 RNAi (0.0 mg/ml PTX), N = 6; 

elavGAL4>UAS-Mmp1 RNAi (1.5 mg/ml PTX), N = 12 animals quantified.  Full 

statistical details are provided in Table 3. 
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Figure 3.8: Matrix metalloproteinase1 (Mmp1) is a potential component of 

focal adhesion signaling pathway in astrocytes 

A, MMP inhibitor had no additive effect on βintegrin knockdown phenotype.  Error 

bars represent SEM.  *P<0.05; two-way ANOVA and Bonferroni’s multiple 

comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 7; alrmGAL4/+ (0.0 mg/ml PTX, 

50 µM inhibitor), N = 9; alrmGAL4/+ (1.5 mg/ml PTX), N = 14; alrmGAL4/+ (1.5 

mg/ml PTX, 50 µM inhibitor), N = 11; alrmGAL4>UAS-βintegrin RNAi (0.0 mg/ml 

PTX), N = 6; alrmGAL4>UAS-βintegrin RNAi (0.0 mg/ml PTX, 50 µM inhibitor), N 

= 8; alrmGAL4>UAS-βintegrin RNAi (1.5 mg/ml PTX), N = 15; alrmGAL4>UAS-
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βintegrin RNAi (1.5 mg/ml PTX, 50 µM inhibitor), N = 13 animals quantified.  B, 

The suppression level by βintegrin depletion in astrocytes in PTX assay had no 

change with overexpression of Mmp1.  Error bars represent SEM.  ****P<0.0001; 

two-way ANOVA and Dunnett’s multiple comparisons.  alrmGAL4/+ (0.0 mg/ml 

PTX), N = 12; alrmGAL4/+ (1.5 mg/ml PTX), N = 30; alrmGAL4>UAS-Mmp1 (0.0 

mg/ml PTX), N = 10; alrmGAL4>UAS-Mmp1 (1.5 mg/ml PTX), N = 12; 

alrmGAL4>UAS-βintegrin RNAi (0.0 mg/ml PTX), N = 18; alrmGAL4>UAS-

βintegrin RNAi (1.5 mg/ml PTX), N = 60; alrmGAL4>UAS-βintegrin RNAi; UAS-

Mmp1 (0.0 mg/ml PTX), N = 12; alrmGAL4>UAS-βintegrin RNAi; UAS-Mmp1 

(1.5 mg/ml PTX), N = 33 animals quantified.  C, Mmp1 over-expression in 

astrocytes reversed the effect of talin knockdown in PTX induced behavior.  Error 

bars represent SEM.  *P<0.05; two-way ANOVA and Bonferroni’s multiple 

comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 11; alrmGAL4/+ (1.5 mg/ml 

PTX), N = 7; alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi (0.0 mg/ml PTX), N = 

11; alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi (1.5 mg/ml PTX), N = 12 

animals quantified.  Full statistical details are provided in Table 3. 
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Focal adhesion signaling regulates astrocyte membrane coverage of the 

synaptic neuropil  

Focal adhesions serve critical roles in cell migration and tissue development and 

integrin mediated focal adhesion signaling in astrocytes is known to govern 

astrocyte cell spreading and morphology in vitro (Kong et al., 2013; Leyton et al., 

2001).  To determine whether our manipulations of astrocyte FA molecules 

altered astrocyte morphology, we examined astrocyte processes in the CNS by 

transmission electron microscopy.  We prepared 3rd instar larval brains from 

control and βintegrinRNAi animals, and focused our analysis on ventral nerve cord 

where astrocyte morphology has been well-described (Stork et al., 2014).  

Astrocyte processes were identified by their electron-dense cytoplasm.  

Compared to controls, astrocyte βintegrinRNAi animals exhibited a reduction in the 

total area covered by the processes under normal physiological conditions (Fig 

3.9A, B).  Consistent with our observations by light microscopy and Western 

blots (data performed by Allie Muthukumar not presented here), we found no 

change in the number of synapses in βintegrinRNAi animals compared to controls 

(Fig 3.9D).  Thus, βintegrin is essential for the establishment of normal coverage 

of the synaptic neuropil by fine astrocyte processes.  

We next sought to explore how FA molecules like βintegrin would regulate 

astrocyte membrane responses to hyperexcitability.  While exposure of control 

animals to PTX did not change astrocyte coverage of the synaptic neuropil, 

astrocyte βintegrinRNAi animals exhibited a marked increase in neuropil coverage 
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by astrocyte profiles and a decrease in the distance between astrocyte 

membranes and synapses (Fig 3.9A, B, C), and this was in the absence of 

changes in the total number of synapses in the neuropil (Fig 3.9A, D). 
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Figure 3.9: Focal adhesions regulate astrocyte morphology and synapse 

coverage 

A, Ultrastructure of neuropil area from Drosophila 3rd instar ventral nerve cord by 

transmission electron microscopy.  Putative astrocyte processes are pseudo 

colored in yellow.  Three different animals were analyzed for each group.  B, 

Quantification of percent area covered by astrocyte processes.   C, Quantification 

of the distance from a synapse to the nearest astrocyte process.  D, 
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Quantification of number of synapses.  Error bars represent SEM.  *P<0.05, 

**P<0.005, ***P<0.001, ****P<0.0001; two-way ANOVA and Tukey’s multiple 

comparisons.  18 VNC sections from three different animals were quantified for 

each group. 
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Astrocyte focal adhesion signaling regulates levels of the excitatory amino 

acid transporter EAAT1  

In addition to changes in astrocyte coverage of the synaptic neuropil, changes in 

excitatory or inhibitory neurotransmitter transporters on astrocytes could also 

significantly impact physiological responses to hyperexcitability.  Consistent with 

previous studies in the adult brain, EAAT1 showed prevalent expression in 

astrocytes in ventral nerve cord of 3rd instar larvae (Fig 3.10A).  Astrocyte-

specific knockdown of EAAT1 significantly impaired larval locomotion, which 

implies astrocytic EAAT1 plays an important role in regulating glutamate 

transmission that is required for proper movement of the animal (Fig 3.10C).  The 

above observations prompted us to investigate the possibility of changes in 

astrocytic EAAT1 as a potential mechanism for the suppression behavior in PTX-

induced locomotion defect in focal adhesion molecule knockdowns.   

We found that depletion of either βintegrin or Tensin from astrocytes by 

RNAi resulted in a decrease in EAAT1, the sole high-affinity glutamate 

transporter in Drosophila (Besson et al., 2000), under normal physiological 

conditions (Fig 3.11A, B).  In contrast, Western blot analysis revealed that 

astrocytic GABA transporter (Gat) levels were not altered when we compared 

astrocyte tensinRNAi animals to controls (data performed by Allie Muthukumar not 

presented here).  These are consistent with our findings above that FA molecules 

are required in astrocytes to promote normal coverage of the synaptic neuropil by 

fine processes of astrocytes.  Surprisingly, we found that treatment of animals 
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with picrotoxin to induce seizure had the opposite effect:  it led to a roughly 2-fold 

increase in EAAT1 levels in both astrocyte βintegrinRNAi and tensinRNAi animals 

(Fig 3.11A, C).  This observation indicates that FA regulation of EAAT1 is 

different under normal physiological conditions compared to hyperexcitability, 

and implies that increases in EAAT1 levels may be responsible for the 

suppression of seizure activity we see in these animals.  Consistent with this 

interpretation, we found that feeding larvae the EAAT1 inhibitor DHK suppressed 

the ability of βintegrinRNAi or tensinRNAi to rescue animals from seizure-induced 

immobility while the administration of DHK alone did not affect the locomotion 

behavior (Fig 3.10B and Fig 3.12A).  Likewise, application of dihydrokainic acid 

(DHK) blocked the ability of mmp1RNAi to suppress seizure phenotypes in larval 

crawling (Fig 3.12B).  Overexpression of EAAT1 in astrocytes was not able to 

phenocopy the effect of the focal adhesion knockdowns in the PTX assay (Fig 

3.13), which suggests there might be differences between acute versus chronic 

upregulation of EAAT1.  Overall, these data argue that under normal conditions 

FA molecules are required to establish appropriate levels of EAAT1 on astrocyte 

membranes, but under conditions of hyperexcitability, FAs negatively regulate 

EAAT1 expression, and their depletion allows for a more robust increase in 

astrocyte EAAT1 and rescue of seizure-like behavior. 
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Figure 3.10: Glutamate transporter, EAAT1 function in astrocytes 

A, EAAT1-GAL4 driver with UAS-mCD8GFP to show the localization of EAAT1 in 

astrocytes.  EAAT1 expressing cells are labeled with membrane tethered GFP 

and astrocyte membrane is labeled by α-Gat antibody.  B. Locomotion speed 

quantification from larvae fed either with vehicle or 500 µM DHK.  Error bars 

represent SEM.  Unpaired t test.  W1118 (0.0 µM inhibitor), N = 11; W1118 (500 µM 

inhibitor), N = 29 animals quantified.  C, Larval locomotion was impaired when 
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EAAT1 was depleted in astrocytes.  Error bars represent SEM.  ****P<0.0001; 

unpaired t test.  alrmGAL4/+, N = 16; alrmGAL4>UAS-Eaat1 RNAi, N = 9 

animals quantified.   
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Figure 3.11: Astrocyte focal adhesion signaling regulates levels of the 

excitatory amino acid transporter EAAT1 

A, Western blot analysis on 3rd instar larval CNS lysates probed with anti-EAAT1.  

B, Quantification of Eaat1 levels in western blot normalized to Tubulin signal and 

to the control lane (N = 6).  Error bars represent SEM.  **P<0.005, ****<P0.0001; 

one-way ANOVA and Dunnett’s multiple comparisons.  C, Quantification of Eaat1 
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levels in western blot normalized to Tubulin signal and to the control lane (N ≥ 6).  

Error bars represent SEM.  **P<0.005, ***<P0.001; Unpaired t test. 
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Figure 3.12: Glutamate transporter inhibitor reverses the behavioral effect 

of astrocyte depletion of focal adhesion genes or Mmp1   

A, Pharmacological inhibition of EAAT function blocked βintegrin or tensin 

knockdown effect on PTX induced locomotion behavior.  Dihydrokainic acid 

(DHK) was applied along with PTX and feeding period was 9 hr.  Error bars 

represent SEM.  ****P<0.0001; two-way ANOVA and Tukey’s multiple 

comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 13; alrmGAL4/+ (1.5 mg/ml 

PTX), N = 25; alrmGAL4/+ (1.5 mg/ml PTX, 500 µM inhibitor), N = 16; 

alrmGAL4>UAS-βintegrin RNAi (0.0 mg/ml PTX), N = 12; alrmGAL4>UAS-
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βintegrin RNAi (1.5 mg/ml PTX), N = 25; alrmGAL4>UAS-βintegrin RNAi (1.5 

mg/ml PTX, 500 µM inhibitor), N = 18; alrmGAL4>UAS-tensin RNAi (0.0 mg/ml 

PTX), N = 8; alrmGAL4>UAS-tensin RNAi (1.5 mg/ml PTX), N = 17; 

alrmGAL4>UAS-tensin RNAi (1.5 mg/ml PTX, 500 µM inhibitor), N = 10 animals 

quantified.  B, EAAT inhibitor also prevented suppression of PTX induced 

locomotion defect by astrocyte specific knockdown of Mmp1.  Error bars 

represent SEM.  *P<0.05; two-way ANOVA and Bonferroni’s multiple 

comparisons.  alrmGAL4/+ (0.0 mg/ml PTX), N = 8; alrmGAL4/+ (1.5 mg/ml 

PTX), N = 18; alrmGAL4/+ (1.5 mg/ml PTX, 500 µM inhibitor), N = 20; 

alrmGAL4>UAS-Mmp1 RNAi (0.0 mg/ml PTX), N = 10; alrmGAL4>UAS-Mmp1 

RNAi (1.5 mg/ml PTX), N = 21; alrmGAL4>UAS-Mmp1 RNAi (1.5 mg/ml PTX, 

500 µM inhibitor), N = 28 animals quantified.  Full statistical details are provided 

in Table 3. 
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Figure 3.13: Genetic overexpression of Eaat1 in astrocytes affects normal 

locomotion and fails to suppress locomotion defect by PTX administration 

Overexpression of EAAT1 in astrocytes altered normal locomotion and did not 

suppress PTX-induced locomotion defect.  Error bars represent SEM.  

**P<0.005; two-way ANOVA and Tukey’s multiple comparisons.  alrmGAL4/+ 

(0.0 mg/ml PTX), N = 10; alrmGAL4/+ (1.5 mg/ml PTX), N = 19; alrmGAL4>UAS-

Eaat1 (0.0 mg/ml PTX), N = 6; alrmGAL4>UAS-Eaat1 (1.5 mg/ml PTX), N = 5 

animals quantified.  Full statistical details are provided in Table 3. 
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Figure 3.14: Working model 

A model suggesting how focal adhesions in astrocytes might modulate 

glutamatergic synapses to regulate the balance between excitation and inhibition 

by altering their morphologies and EAAT1 expression during network 

hyperexcitability.  A, Our data suggest that Mmp1 works upstream of the focal 

adhesion signaling in astrocytes to regulate seizure-like behavior that is induced 

genetically or pharmacologically.  B, blockade of focal adhesion signaling in 

E I E I 
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astrocytes at basal levels of CNS excitability resulted in reduced astrocytic 

coverage of the neuropil and reduced expression of the excitatory amino acid 

transporter EAAT1.  C, induction of hyperexcitability after depletion of focal 

adhesion signaling components resulted in enhanced astrocyte coverage of the 

neuropil and significant increase in EAAT1 levels, which might directly affect 

excitatory glutamatergic synapses to show the suppression of seizure-like 

behavior. 

 

Discussion 
We provide multiple lines of evidence that FA molecules regulate seizure 

behavior in vivo.  Astrocyte-specific depletion of FA signaling molecules led to 

significant suppression of seizure behavior in the bang-sensitive model of 

hyperexcitability in adults and picrotoxin-induced hyperexcitability in larvae.  A 

deeper analysis of astrocyte markers and morphology revealed that blockade of 

FA signaling under normal physiological conditions led to reduced coverage of 

the neuropil by astrocytes’ fine processes and reduced levels of EAAT1 

expression.  This modulatory effect of FAs appears to be specific to EAAT1, as 

levels of the sole Drosophila GABA transporter GAT appeared unchanged in FA 

knockdown animals.  These findings are consistent with a mammalian study 

showing astrocyte knockout of β1integrin leads to impaired glutamate uptake by 

astrocytes with decreased GLT-1 levels resulting in reactive astrogliosis and 

spontaneous seizures (Robel et al., 2015).  However, decreased levels of EAAT1 
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by βintegrin or tensin knockdowns displayed normal locomotion, while EAAT1 

depletion in astrocytes by RNAi caused significant defect in crawling behavior 

(Fig 3.3B, Fig 3.10C).  There might be a delayed effect on changes in EAAT1 

levels by focal adhesion knockdowns, which enables animals to bypass 

developmental defects.  In fact, GLT-1 downregulation started to appear when 

β1integrin knockout mice were 6 months old (Robel et al., 2015).  Nevertheless, 

our data suggest under normal physiological conditions FAs promote expression 

of EAAT1 in astrocytes and normal astrocyte coverage of the neuropil.  

Under conditions of hyperexcitability FAs appear to negatively regulate EAAT1 

expression and astrocyte infiltration of the neuropil.  FA knockdown increased 

EAAT1 levels ~2-fold and led to greater coverage of the neuropil by astrocyte 

processes.  EAAT1 does not appear to be regulated directly by picrotoxin-

induced hyperexcitability, as picrotoxin exposure alone did not alter EAAT1 

levels.  We suspect that the simultaneous increase of astrocytic coverage of 

synapses and EAAT1 together underlie the enhanced recovery from seizure 

behavior.  For instance, overexpression of EAAT1 alone did not block the ability 

of picrotoxin to induce seizure behavior (Fig 3.13).  Therefore increased EAAT1 

in astrocytes alone is not sufficient to account for the phenotypic rescue we 

observe in FA knockdown animals.  EAAT1 function is certainly important for 

modulating seizure activity; given that blockade of EAAT1 with the inhibitor DHK 

suppressed the rescuing effects of astrocytic FA knockdown on seizure-like 

behavior.  In mammals, alteration of GLT-1 alone was sufficient promote 
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changes in long-term synaptic plasticity, but not basal synaptic activity (Filosa et 

al., 2009; Omrani et al., 2009).  Interestingly, under conditions where there was a 

simultaneous increase in EAAT and astrocyte synaptic coverage, significant 

changes in basal synaptic activity were observed (Pannasch et al., 2014).  

Moreover, astrocyte coverage was modulated by changes in cell adhesion 

(Pannasch et al., 2014).  We suspect the combined effect of increased EAAT1 

with closer association with synapses leads to the suppression of seizure we 

observe, and that this is likely due to enhanced clearance of extracellular 

glutamate. 

Precisely how FAs modulate astrocyte process extension and EAAT1 

expression is an important next question.  It is possible that activation of EAAT1 

expression and genes required for astrocyte growth are downstream of FA 

activation.  FAK is certainly a well-known regulator of transcriptional activity 

(Parsons, 2003).  It is also possible that the decreased adhesive properties of 

cells in which FA signaling molecules have been depleted can respond more 

dynamically with process extension in response to pathological changes in 

neuronal activity.  Connexin30 is a key modulator of cell adhesion in astrocytes 

and is required for astrocyte process extension (Pannasch et al., 2014), but 

whether this is regulated by FAs or neuronal activity remains an open question.   
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Materials and Methods 
Fly strains.  The following Drosophila strains were used: w1118 Canton S, alrm-

GAL4 (Doherty et al., 2009), Eaat1-GAL4 (Doherty et al., 2009), UAS-

mCD8::GFP (Lee et al., 1999), easPC80 (Pavlidis et al., 1994), by33c (Torgler et al., 

2004), tensin-GFP (Torgler et al., 2004). 

The following UAS-RNAi lines were from Vienna Drosophila Resource Center 

(Vienna, Austria): UAS-byRNAi#22823, UAS-mysRNAi#103704, UAS-rheaRNAi#40399, 

UAS-FAKRNAi#108608.  The following lines were from Bloomington Drosophila 

Stock Center (Bloomington, IN): UAS-Mmp1#58700, UAS-Mmp1RNAi#31489, UAS-

Mmp2RNAi#31371, UAS-byRNAi#38288, UAS-mysRNAi#33642, UAS-rheaRNAi#33913, 

UAS-FAKRNAi#29323. 

 

Immunohistochemistry and confocal microscopy.  Drosophila larval CNSs 

were dissected in PBS and fixed for 25 min at room temperature.  4 % 

paraformaldehyde was used for a routine fixation and Bouin’s fixative was used 

to prepare samples for anti-Eaat1 immunohistochemistry.  The following primary 

antibodies were used: rabbit anti-Eaat1 ((Peco et al., 2016)1:4000), rabbit anti-

Gat ((Stork et al., 2014)1:2000), mouse anti-Bruchpilot (Developmental Studies 

Hybridoma Bank: nc82,1:20), mouse anti-Repo (Developmental Studies 

Hybridoma Bank: 8D12, 1:10), mouse anti-myospheroid (Developmental Studies 

Hybridoma Bank: CF.6G11, 1:50). 
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Immunoblotting.  Drosophila CNSs were dissected in PBS and homogenized in 

SDS loading buffer (60 mM Tris pH 6.8, 10% glycerol, 2% SDS, 1% β-

mercaptoethanol, 0.01% bromophenol blue).  Samples were centrifuged at 

16,000g for 10 min at 4 °C to collect supernatants. After boiling at 95 °C for 5 

min, each samples were run on SDS-PAGE gels and transferred to nitrocellulose 

membranes.  Appropriate primary antibody was diluted in blocking buffer (5% 

non-fat dry milk, 0.01 % Tween 20 in PBS) to incubate membranes overnight at 4 

°C. Following with three 10-min washes, membranes were incubated with 

appropriate HRP-conjugated secondary antibody at room temperature for 1 hr.  

Chemiluminescence detection (ECL Plus Amersham) system was used to image 

signal with Fujifilm Luminescent Image Analyzer LAS-4000.  Blots were analyzed 

using ImageJ Software.  The following antibodies were used: 1:8,000 rabbit anti-

Eaat1 (Peco et al., 2016); 1:10,000 rabbit anti-Gat (Stork et al., 2014); 1:50,000 

mouse anti-tubulin (Sigma T9026); 1:6,000 sheep HRP-conjugated anti–mouse 

IgG (Abcam ab6808); 1:6,000 goat HRP-conjugated anti-rabbit IgG (Abcam 

ab6721). 

 

Bang-sensitive behavioral assay.  The behavioral assay was modified from 

Song et al. (2008) and described in Muthukumar et al. (2014).  Adult male flies 

after 3-7 days of eclosion were collected in fresh food vials the night before 

experiments.  Vials containing 10 – 15 flies were subjected to mechanical 

stimulus using a VWR Vortex Mixer (VWR International, West Chester, PA) at a 
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maximum speed for 10 sec to induce paralysis and seizure in bang-sensitive 

mutant, easPC80.  The numbers of flies standing and resuming normal behavior 

was noted at 10 s intervals for 4 min.  Mean recovery time was calculated as the 

average time taken by an individual fly to recover from paralysis. 

 

Picrotoxin feeding.  Picrotoxin was dissolved in acetone and added to 

microwaved standard cornmeal agar to mix and make final concentrations of 0.5 

and 1.5 mg/ml.  Broad spectrum MMP inhibitor, GM6001 and EAAT2 (GLT-1) 

inhibitor, dihydrokainic acid were each prepared in DMSO and water respectively 

to mix in with food.  The food with appropriate drugs was prepared the night 

before experiments.  Early third instar larvae were collected to place in prepared 

drug containing food and 9 hr of feeding was allowed. 

 

Larval locomotion behavior.  Locomotion behavior was analyzed using FTIR-

based Imaging Method (FIM) (Risse et al., 2013).  Third instar larvae were 

collected and washed gently with water before placed on arena made of 0.8 % 

agar.  Larval behavior was filmed with 10 frames per second for one minute.  

Crawling trajectory was analyzed with FIMTrack Software and the speed of 

locomotion was quantified using NeuronJ, ImageJ plugin. 

 

Transmission electron microscopy.  Experiments were conducted at the 

University of Massachusetts Medical School Electron Microscopy core facility.  
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For each condition, at least three animals were prepared for TEM procedure and 

analysis.  Larval CNSs were dissected in PBS and immediately fixed in 2.5% 

gluteraldehyde in 0.1 M Sodium Cacodylate buffer pH 7.2. Briefly, fixed samples 

were moved into fresh 2.5% gluteraldehyde in 0.1 M Sodium Cacodylate buffer 

and left overnight at 4oC.  The samples were then rinsed twice in the same 

fixation buffer and post-fixed with 1% osmium tetroxide for 1h at room 

temperature.  Samples were then washed twice with DH2O for 5 minutes and 

then dehydrated through a graded ethanol series of 20% increments, before two 

changes in 100% ethanol.  Samples were then infiltrated first with two changes of 

100% Propylene Oxide and then with a 50%/50% propylene oxide / SPI-Pon 812 

resin mixture.  The following day three changes of fresh 100% SPI-Pon 812 resin 

were done before the samples were polymerized at 68oC in plastic capsules.  

The samples were then reoriented, and thin sections were taken at 

approximately 100 microns from the posterior tip of the ventral nerve cord.  The 

thin sections (approx. 70 nm) were placed on copper support grids, and 

contrasted with Lead citrate and Uranyl acetate.  Sections were examined using 

the FEI Tecani 12 BT with 100Kv accelerating voltage, and images were 

captured using a Gatan TEM CCD camera. 

 

Statistical analysis.  Graphpad Prism software was used to perform statistical 

analysis.  Two-tailed Student’s t-test or two-way ANOVA with either Dunnett’s or 
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Tukey’s post hoc test was performed and P < 0.05 was considered significant.  

Error bars in bar graphs indicate SEM.  
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CHAPTER 4: Discussion 
Astrocyte processes infiltrate all synapse-rich regions of the brains of complex 

metazoans and are poised to globally regulate synaptic activity.  In this study we 

explored how astrocyte-expressed molecules regulate nervous system 

physiology in response to neuronal hyperactivation, using genetic and 

pharmacological models of seizure in Drosophila.  We found that astrocyte 

depletion of focal adhesion (FA) molecules strongly suppressed seizure-like 

behavior at both larval and adult stages.  Astrocyte depletion of Mmp-1, a matrix 

metalloproteinase known to regulate β-integrin activation, also suppressed 

seizure activity, while overexpression of Mmp-1 had the opposite effect and 

enhanced seizures.  Blockade of FA signaling under normal physiological 

conditions led to decreased coverage of the neuropil by astrocyte processes and 

reduced expression of EAAT1.  However, upon induction of neuronal 

hyperactivity, depletion of FAs led to enhanced coverage of the neuropil by 

astrocyte processes and a 2-fold increase in EAAT1.  Given that the rescuing 

effect of FA depletion after seizure was suppressed by pharmacological blockade 

of EAAT1, we propose the elevated levels of EAAT1 in FA knockdown animals, 

together with enhanced astrocyte coverage of the neuropil, is responsible for the 

behavioral rescue in seizure assays.   

 

Astrocyte focal adhesion signaling during periods of hyperexcitability 
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Based on our RNAi screen in Drosophila adults with a mutation causing 

hyperexcitability induced seizure-like behavior, Tensin, an adaptor protein in a 

focal adhesion complex emerged as a candidate to suppress seizure when 

knocked down in astrocytes (Fig 3.1A).  To confirm the specificity of the 

behavioral effect by tensin RNAi, a second RNAi line was tested and resulted in 

similar suppression (Fig 3.1A).  When RNAi-mediated tensin knockdown 

efficiency in astrocytes was analyzed under confocal microscopy, we observed 

about a 40 % decrease in tensin level compared to control (Fig3.1B,B’).  We 

suspect the actual efficiency of RNAi knockdown might be greater because we 

focused on the quantification of Tensin-GFP that fell within the domains of anti-

Gat immunoreactivity, which only labels the membrane.  In fact, when we 

express tensin RNAi under the control of tubulin-GAL4, a distinct pattern of 

tensin::GFP punctae was not detectable (Fig 3.1C). 

 Other components of focal adhesions including βintegrin, talin, and FAK 

phenocopied the behavioral effect by tensinRNAi suggesting astrocyte focal 

adhesion signaling plays an important role in regulating hyperexcitability induced 

behavior (Fig 3.2).  Characterization of seizure behavior induced by picrotoxin 

(PTX) in 3rd instar larvae corroborates the effect of astrocyte specific knockdown 

of FA molecules in the context of general network hyperexcitability (Fig 3.3A, B). 

Finally, the strength of suppression was not further enhanced by simultaneous 

expression of RNAi for β-integrin and tensin suggesting these molecules might 

function in the same genetic pathway.  Though we would lose cell-type specificity 
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in that manipulation, in the future we could test if astrocyte depletion of βintegrin 

in tensin null mutant backgrounds had an additional suppression compared to 

βintegrinRNAi alone. 

 Studies in rodents with conditional knock-out of β1integrin in ependymal 

zone stem cells have shown increased expression of Glial fibrillary acidic protein 

(GFAP) and astrocytic differentiation without altering oligodendrocyte or neuronal 

differentiation (North et al., 2015), which argues a somewhat specific role for 

integrin signaling in astrocytes rather than other glia.  Indeed, another study 

found more direct linkage between integrin and astrocyte function in regulation of 

neuronal network (Robel et al., 2015).  Using a GFAP-cre line, researchers 

knocked out β1integrin in astrocytes to induce astrogliosis and then investigated 

the effect of activated astrocytes on spontaneous seizure.  While the genetic 

deletion of β1integrin was not entirely astrocyte-specific, the authors showed a 

strong correlation between the conditional knockout of β1integrin and 

development of seizure by neuronal hyperexcitability (Robel et al., 2015).  

Although we see no evidence that βintegrin depletion leads to reactive gliosis in 

Drosophila astrocytes, our data along with mammalian studies provide a strong 

argument that integrin associated focal adhesion in astrocytes plays an important 

role in a context of seizure and hyperexcitability. 

 

How might focal adhesions signal in astrocytes? 
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Focal adhesions are macromolecular complexes at the cell-matrix interface to 

link actin-containing microfilaments and extracellular environment (Hotulainen, 

2006).  They change assembly and turnover rates rapidly in response to 

environmental cues, including gradients of chemokines, growth factors, or 

extracellular matrix (ECM) molecules to adapt cell shape and function (Le 

Clainche and Carlier, 2008; Lele et al., 2008; Lin et al., 1994; Lo, 2006; Ridley et 

al., 2003). 

Adhesion is mediated by transmembrane receptors called integrins, a 

family of heterodimeric proteins consisting of α- and β-integrins. Upon integrin 

receptor activation, actin binding proteins, also known as adaptor proteins such 

as vinculin, talin, and tensin, are recruited to form adhesions and tightly link to 

control actin assembly and disassembly (Le Clainche and Carlier, 2008; Lin et 

al., 1994).  Dynamic structural reorganization or remodeling of actin filaments 

governs a variety of cellular processes, such as cell motility, membrane 

dynamics, cell cycle control, cellular structure and cell signaling in various cell 

types including astrocytes (Farwell et al., 1995; Nicchia et al., 2008; Oberheim et 

al., 2008; Siegrist-Kaiser et al., 1990; Zhu, 2005). 

 Actin is a major cytoskeletal component that is essential to maintain and 

sculpt cell shape, and dynamic changes of actin cytoskeleton drive a variety of 

processes such as cell motility, cell division, and intracellular protein trafficking.  

Because of their dynamic nature, actin molecules in dendritic spines are 

intensively studied in the context of spine morphology and synaptic plasticity.  In 



 93 

addition to their functions in morphological changes, actins also play a critical 

role in providing a scaffold for neurotransmitter receptors and facilitating the 

trafficking of synaptic machinery (Cingolani and Goda, 2008).  Actins are 

enriched in astrocytes, especially in distal fine processes, where they can 

mediate rapid shape changes (Lau et al., 2011; Lavialle et al., 2011; Stork et al., 

2014).  Do changes in activity alter actin dynamics and in turn morphology of 

astrocytes?  In vitro studies have shown that treatment with the excitatory 

neurotransmitter glutamate can induce filopodia formation in astrocytes and 

increase actin cytoskeleton-based motility (Cornell-Bell et al., 1990; Lavialle et 

al., 2011).  Long-term potentiation in the hippocampus significantly changed the 

ramification of astrocyte processes by increasing surface area (Wenzel et al., 

1991) and an in vivo study shows motor skill learning induces an increase in 

astrocytic volume in the cerebellar cortex (Kleim et al., 2007).  Given that focal 

adhesions provide a direct link between the extracellular space and actin, I 

propose that changes in the actin cytoskeleton downstream of focal adhesion 

signaling drives morphological changes of astrocytes, which in turn modify their 

physiological interactions with synpases (e.g. increased Glu buffering).  The 

dynamic nature of actin cytoskeleton is also associated with changes in the 

surface exposure of membrane proteins.  In a variety of settings, reorganization 

of actin cytoskeleton increases membrane protein expression and trafficking to 

the surface (Chen et al., 2013; Gu et al., 2010; Lau et al., 2011).  For instance, 

actin remodeling in cultured astrocytes by the Rho kinase inhibitor increases 
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astrocyte glutamate transporter (EAAT1 and EAAT2) levels and activity (Lau et 

al., 2011).  Since changes of neurotransmitter transporter levels in astrocyte 

membranes directly shape synaptic activities (Murphy-Royal et al., 2015; 

Muthukumar et al., 2014), this implies changes in astrocyte morphology could 

have a strong association with astrocytic regulation of synapses.  Finally, since 

integrin-mediated focal adhesions have diverse signaling functions based on 

their molecular components and cellular context, especially during development 

of the nervous system and synaptogenesis, activation of glia, or stabilization of 

the endothelium and blood-brain barrier (Milner and Campbell, 2002), our 

findings opens up a number of avenues for exploration to define the precise 

mechanisms by which FAs alter animal responses to hyperexcitability. 

 

MMP as a potential activator of FA signaling in astrocytes 

Integrins, heterodimeric cell surface receptors from focal adhesion complexes, 

receive signaling from the extracellular matrix (ECM).  ECMs are the substrates 

for the matrix metalloproteinases (MMPs), extracellular zinc-dependent 

endopeptidases and their enzymatic activity leads to the cleavage of ECM 

proteins which then activate integrin signaling (Lukashev and Werb, 1998; Werb, 

1997).  

Interestingly, there is a strong correlation between neuronal activity and 

MMP expression and/or activity.  Under normal physiological conditions, the 

expression of MMP9 in particular has been reported to be essential to form 
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neuronal activity-dependent plasticity in rodent cortices as well as hippocampus 

(Kaliszewska et al., 2012; Nagy et al., 2006; Spolidoro et al., 2011).  In addition, 

increased expression and enzymatic activity of MMPs are known to be a critical 

element in the development of seizure and cocaine relapse and relapse-

associated synaptic plasticity (Smith et al., 2014; Wilczynski et al., 2008).  Finally 

it has been suggested that chronic elevation of network activity can increase 

activation of MMPs (Huntley, 2012).  These observations argue that increased 

activity leads to increased MMP signaling, which could in turn regulate integrin 

receptor-mediated focal adhesion signaling in astrocytes in a hyperexcitable 

network.  Consistent with this interpretation, by depleting Mmp1 expression in 

astrocytes, we were able to observe the same suppression effect as focal 

adhesion knockdowns on both genetically and pharmacologically induced seizure 

assays (Fig 3.6).  When we conversely overexpressed astrocyte Mmp1, 

enhancement of seizure phenotype was observed in the genetic seizure model 

(Fig 3.6A, A’).  These data provide a strong in vivo link between the level of MMP 

expression and animal responses to hyperexcitability.  Based on the preliminary 

data from the Freeman lab comparing translating mRNA transcripts between 

neurons and astrocytes using a technique called Translating Ribosome Affinity 

Purification (TRAP), Mmp1 mRNA showed 7-fold enrichment in astrocytes 

compared to neurons in 3rd instar larval brains.  Thus, astrocytes appear to be 

the major Mmp1 expressing cell type in the CNS and attempting to deplete 

Mmp1 from a minor source of the protein might have resulted in insufficient 
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knockdown.  This hypothesis is also supported by the fact that the degree of 

suppression we observed with pharmacological inhibitor of MMP in the PTX 

assay (Fig 3.6C) was comparable with the result from the expression of Mmp1 

RNAi in astrocytes (Fig 3.6B).  From our assays for phenotypic interactions 

between Mmp1 and focal adhesion molecules in PTX-induced seizure-like 

behavior, we found that addition of the MMP inhibitor had no enhanced rescuing 

effect on animals expressing βintegrin RNAi suggesting Mmp1 and βintegrin 

work in the same genetic pathway in astrocytes to regulate this behavior (Fig 

3.8A).  Further pathway analysis utilizing genetic overexpression of Mmp1 in 

astrocytes with integrin receptor knockdown showed that Mmp1 may exert its 

effects through βintegrin-mediated focal adhesion signaling to regulate 

hyperexcitability induced behavior (Fig 3.8B).  The simplest interpretation is that 

Mmp1 is secreted by astrocytes, where it acts outside the cells—it is secreted as 

a pro-MMP form and requires extracellular activation to become enzymatically 

active (Vandenbroucke and Libert, 2014)—to break down ECM and activate FA 

signaling.  Consistent with this notion Mmp1 overexpression was able to reverse 

the effect of talin RNAi in the same behavioral assay, but not that of the receptor 

knockdown.  One possible explanation is that expression of talin is not absolutely 

required for integrin expression and signaling (Brown et al., 2002; Conti et al., 

2009; Liu et al., 2011).  Thus, even with significant depletion of expression of 

talin in astrocytes, increased Mmp1 may overcome this loss due to redundancy 

with other FA molecules, or partial Talin knockdown, while loss of the βintegrin 
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receptor cannot be overcome because it is absolutely essential for Mmp1 to exert 

its effects. 

 A number of questions remain regarding the interactions between MMPs 

and the focal adhesion signaling in a context of hyperexcitability.  First, is there 

elevated expression or activity of Mmp1 in response to PTX treatment?  Oral 

consumption of PTX induces a global stimulation of neuronal activity resulting in 

seizure in Drosophila 3rd instar larvae (Stilwell et al., 2006).  Electrophysiological 

recordings on body wall muscles of larval preparations with preserved CNS 

showed seizure activity with PTX application.  The PTX effect was abolished 

when motor neurons are severed from the nerve cord, suggesting PTX affects 

the excitability in the CNS to elicit seizure-like behavior (Stilwell et al., 2006).  

Thus, our method to induce network hyperexcitability is likely robust.  In rodents, 

astrocytes constitutively express MMPs in vitro as well as in vivo and their 

expression becomes upregulated when synaptic activity is heightened with 

administration of kainate, an agonist for non-NMDA glutamate ionotropic 

receptors (Szklarczyk et al., 2002).  Therefore we hypothesize there is elevated 

expression and/or activity of Mmp1 with PTX administration in Drosophila 3rd 

instar larvae which leads to increased βintegrin signaling as MMPs degrade 

extracellular matrix that are ligands for integrin receptors.  Based on previous 

reports, we would speculate that the time course of MMP activation and 

termination would be relatively fast (1 – 2 hours after intense stimulation) 

(Huntley, 2012; Nagy et al., 2006).  An experiment where one examined the time 
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course of Mmp1 activation after PTX feeding will be required to determine the 

precise effects.    

 The primary source of MMPs (which we propose is astrocytes) and their 

mechanism of activation is another important area requiring clarification.  MMPs 

can be activated by each other (Huntley, 2012) or free radicals like nitric oxide 

(NO) (Huntley, 2012).  Increased synaptic stimuli such as long-term potentiation 

activates postsynaptic NMDA receptor upon presynaptic glutamate release which 

in turn triggers rapid release of nitric oxide (NO) into the perisynaptic 

environment (Huntley, 2012; Schuman and Madison, 1991).  In the future it will 

be important to find the source that kindles the initial activation of MMPs to 

determine more efficient ways to regulate focal adhesion signaling in vivo. 

 Finally, what is the mechanism of integrin receptor activation by Mmp1?  

Is it through a specific ECM protein that is enzymatically processed by Mmp1?  

Or is it a direct action of Mmp1 on integrins?  Degradation of ECM by MMPs 

activates integrin receptors (Stefanidakis and Koivunen, 2006; Werb, 1997).  

Studies have also shown direct enzymatic action of MMPs on integrin receptors, 

integrin β1 itself is shown to be a substrate for MMP2 (Kryczka et al., 2012).  

Thus, both direct and indirect effects of MMP activity on integrin receptors could 

contribute to the activation of focal adhesion signaling in astrocytes. 

 

Astrocyte morphological changes in association with neuronal activity 
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Astrocytes have highly ramified morphologies to infiltrate synaptic regions.  This 

structural characteristic enables one astrocyte contact with more than 100,000 

synapses in rodents and ~1,000,000 synapses in the human brain (Oberheim et 

al., 2006; Singh et al., 2015).  Distal processes of astrocytes are thought to be 

the main compartments that are responsible for astrocyte-neuron interaction.  

These very thin filopodia-like processes (often 50 -100 nm wide) that are actin 

rich were first visualized by Derouiche and colleagues in 2001 with 

immunolabeling of actin binding protein, ezrin (Derouiche and Frotscher, 2001).  

Like any other cellular processes that are actin rich, these fine processes can be 

rapidly extended or withdrawn from synapses in response to neuronal activity 

(Lavialle et al., 2011).  Understanding how astrocytes develop and maintain their 

dynamic morphology has been a great interest because these fine processes not 

only position themselves close to synapses but also their membranes are 

densely occupied by ion channels, neurotransmitter receptors, and transporters 

(Vernadakis, 1996; Walz, 1989).  Thus these morphological and functional 

characteristics of astrocyte membranes are essential components to investigate 

astrocytic contribution on neuronal activity and circuit behavior. 

 Initial observations of the dynamics of astrocyte processes in response to 

neuronal signaling were in cultured hippocampal astrocytes.  With brief 30 sec 

exposure to the neurotransmitter glutamate in a culture dish where primary 

neurons and astrocytes sit, researchers observed formation and extension of 

filopodia along the edge of astrocyte membrane (Cornell-Bell et al., 1990).  
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These plastic changes of astrocyte processes also exist in the intact brain.  In the 

hypothalamic supraoptic nucleus, while neurons undergo substantial remodeling 

during lactation, astrocytes also alter their morphologies to regulate glutamate 

concentration at synapses.  This striking structural remodeling is highly plastic 

(Oliet et al., 2001).  A later study, where mouse somatosensory cortex was used 

to investigate structural and functional plasticity of astrocytes upon neuronal 

activity, revealed whisker stimulation elicited increased astrocyte coverage as 

well as enhanced expression of GLT1 and GLAST (astrocyte specific glutamate 

transporters) in the cortex (Genoud et al., 2006).  An additional in vivo study in 

the mouse cerebellum corroborated the notion that astrocytes alter the extent of 

their processes in response to neuronal stimuli: motor skill learning through 

consecutive training induced the hypertrophy of astrocyte processes and again 

the change was reversed when training was terminated (Kleim et al., 2007).  

Despite increasing evidence supporting the existence of plastic changes in 

astrocyte processes in association with altered neuronal activity, we know almost 

nothing about the molecular cascades regulating the morphology of fine 

astrocyte membranes. 

 We investigated changes of astrocyte processes and their association with 

synapses at the ultrastructural level using electron microscopy.  Our 

ultrastructural analysis revealed that astrocyte processes undergo significant 

alterations in their morphological parameters by astrocyte specific depletion of 

βintegrin or in response to increased neuronal activity.  This is the first 
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experiment, to my knowledge, to show morphological plasticity in mature 

Drosophila astrocytes in response to altered neuronal activity.  By comparing 

control animals to animals expressing βintegrin RNAi in astrocytes, we found that 

percent of coverage by astrocyte processes in neuropil of Drosophila 3rd instar 

ventral nerve cord was decreased by ~20% suggesting βintegrin containing focal 

adhesion signaling regulates the extent of astrocytic processes in the neuropil 

(Fig 3.9 A, B).  It is important to note that when we visualized astrocytes with 

expression of membrane-tethered GFP under confocal light microscopy, gross 

morphology and positioning of astrocytes was unchanged (Data not shown. Data 

generated by Allie K Muthukumar).  In all likelihood, the fine processes of 

astrocytes that infiltrate deep into neuropil cannot be entirely captured by light 

microscopy due to resolution limitations.  Interestingly, when βintegrin 

knockdown animals were subjected to increased neuronal activity by PTX 

treatment, we were able to see a significant increase in the extent of astrocyte 

processes compared to mock treatment while control animals showed no 

alterations in astrocyte coverage (Fig 3.9 A, B).  These data strongly suggest that 

inhibition of focal adhesion signaling allows for more dramatic changes of 

astrocyte morphology, in other words focal adhesion signaling negatively 

regulates astrocyte coverage during elevated neuronal activity.  Furthermore, this 

morphological change in βintegrin RNAi expressing animals allows astrocytes to 

position their membrane closer to synapses thereby enhancing astrocyte 

coverage of synaptic elements (Fig 3.9C).  To elaborate, by changing the 
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distribution of astrocytic processes toward synapses, neurotransmitter 

transporters in astrocyte membranes are placed more closely to the 

neurotransmitter release sites and can more directly shape synaptic transmission.

 Also worth noting, we did not observe complete wrapping of synapses by 

astrocyte processes as reported in certain mammalian brain regions (Genoud et 

al., 2006) and this is consistent with observation from another EM study in 

Drosophila 3rd instar larvae (MacNamee et al., 2016; Stork et al., 2014).  We can 

only speculate but we do not think that this comes from differences in organisms 

because even in mammalian brain, the cortical region has less than 10 % of 

synapses ensheathed by astrocytes (Genoud et al., 2006). 

 An important consideration regarding our EM study is that within our 

sampled volumes, it is possible that the measurement comes from the astrocyte 

processes that belong to as few as one astrocyte.  Even though a previous study 

suggested it is unlikely that Drosophila astrocytes have heterogeneity in terms of 

genetic programming (Stork et al., 2014), it still remains a possibility that each 

astrocyte responds differently with their morphology to neuronal activity 

depending on their neighboring neuronal cell types and molecular environment.  

With this in mind, it is possible that we may have missed capturing heterogeneity 

in terms of morphological changes that could exist between different segments or 

different positioning within the VNC.  In the future, one could use the more high-

throughput approach of super-resolution microscopy, which can give us twice the 

resolution (~100 nm) of regular confocal microscopy, potentially resolving 
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astrocyte fine processes.  Combined with genetic tools to label astrocyte 

membrane in a clonal manner, this could allow us analyze the morphology of 

single astrocytes from different segments and positions (e.g. thoracic vs 

abdominal or dorsal vs ventral). 

 How can restricted expression of cell adhesion molecules permit structural 

plasticity in astrocytes in response to altered neuronal activity?  One possibility is 

that βintegrin depleted astrocytes can more readily expand their processes upon 

PTX treatment, perhaps due to reduced adhesiveness or they simply have more 

room to expand since they are hypotrophic compared to wild-type astrocytes in 

control conditions.  Astrocytes certainly appear capable of significant expansion 

in the Drosophila CNS in response to certain conditions.  For instance, astrocytes 

organize their spatial domains not to intrude in each other’s space and this so 

called “tiling” behavior is well conserved in Drosophila astrocytes (Stork et al., 

2014).  However, if a neighboring astrocyte is removed by genetic ablation, the 

remaining astrocytes extend their domain into the open neuropilar space.  Having 

reduced cell adhesion molecules on astrocyte membranes could also enhance 

morphological alterations upon hyperexcitability.  It is well defined that cell 

morphology is strongly dependent on adhesive properties and integrin containing 

focal adhesion complexes are the major force for the cell adhesion (Parsons et 

al., 2010).  Previous studies on how connexin 30 in astrocytes can elongate their 

processes and enhance ramification through its cell adhesion regulatory behavior 

complement this hypothesis (Pannasch et al., 2014).  Our findings certainly leave 
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many open questions.  Could this morphological change be preferential towards 

certain types of synapses (glutamatergic, GABAergic, or cholinergic to name a 

few)?  If so, are there other astrocytic molecules involved in the process other 

than focal adhesions?  This could potentially be answered by exploring some of 

the remaining hits from our screen.  Are there direct changes we could observe 

in astrocyte motilities by genetic alterations and/or neuronal activity using higher 

resolution microscopy methods?  Astrocyte processes are capable of rapid 

extension and retraction via actin cytoskeleton remodeling which can be more 

dynamic than dendritic spines (Haber, 2006).  Since focal adhesions are the 

main regulator of actin cytoskeleton, one can easily imagine how altering focal 

adhesions in astrocytes can affect motilities of their processes. 

 Finally, although we observed no significant changes in overall synapse 

number in our study by manipulation of activity or βintegrin signaling, this does 

not necessarily mean there are no alterations in composition of different types of 

synapses.  For example, there maybe increased numbers of inhibitory synapses 

and decreased excitatory synapses so that they have hypoactive network with 

βintegrin knockdown in astrocytes that leads to elevated threshold for the 

seizure-like behaviors.  Future work defining the precise synaptic changes that 

occur in response to astrocyte-specific alteration of FA signaling will be essential 

for us to answer these questions.  Additionally, changes in intrinsic properties of 

neurons can be another factor to consider in terms of synaptic activity.  

Homeostatic plasticity is a cell-autonomous mechanism in neurons to balance 
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between excitation and inhibition by scaling up or down the postsynaptic AMPA 

receptor levels (Sun and Turrigiano, 2011; Turrigiano et al., 1998).  Treatment of 

pictoroxin for 24 hr to induce chronic changes in neuronal activity leads to 

homeostatic adjustments of synaptic AMPA receptors resulting in reduced 

excitatory action (Turrigiano et al., 1998).  While 9 hr of picrotoxin treatment 

might not be long enough to induce homeostatic changes, it might be an 

interesting avenue for future studies since homeostatic plasticity in Drosophila 

CNS has not been explored.  

 

Glutamatergic signaling and EAAT1 regulation 

Glutamate is the primary excitatory neurotransmitter in the vertebrate nervous 

system. Being such an essential component of the nervous system, 

understanding development and maintenance of glutamatergic synapses and 

mechanisms underneath their signaling cascades has been one of the main 

focuses in the field of neuroscience.  On top of the intensive focus on 

understanding the physiology of glutamatergic synapses from a neuron-centric 

perspective, significant efforts have been put into studying glial regulation of 

glutamate-mediated signaling, and here astrocytes play a critical role.  Once 

glutamate is released from presynaptic neurons, it is critical that extracellular 

glutamate is properly cleared from the extracellular space to terminate activation 

of postsynaptic receptors and prevent an excitotoxic environment.  Because of 

the lack of degradative enzymes for glutamate at the synapses, transporter-
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mediated uptake is the only known mechanism of the neurotransmitter clearance.  

Among five different subtypes that are identified in mammals, EAAT1 (GLAST) 

and EAAT2 (GLT-1) have been characterized as functionally prevalent glutamate 

transporter subtypes with selective expression in astrocytes (Chaudhry et al., 

1995; Danbolt, 2001).  Along with concentrated expression pattern near 

glutamatergic synapses, direct implication of the glial glutamate transporter GLT-

1 and extracellular glutamate levels has been shown with genetic deletion of the 

transporters (Rothstein et al., 1996).  

 Drosophila also utilize glutamate as a major neurotransmitter and 

glutamatergic synapses are abundant both in CNS and PNS (Daniels et al., 

2008).  Drosophila neuromuscular junctions (NMJs) have served as an excellent 

system to study development and function of glutamatergic signaling because of 

their easy access using techniques like electrophysiology, dye labeling, and Ca2+ 

imaging.  Furthermore the fly molecular genetic toolkit empowers the system by 

allowing rapid generation of genetic mutants with high temporal and spatial 

control (Collins and DiAntonio, 2007).  

 In the Drosophila CNS, abundant expression of vesicular glutamate 

transporters (VGLUT) in neurons and enrichment of glutamate transporter 

(EAATs) in neuropil glia strongly suggest an important contribution of glia to 

regulation of glutamatergic signaling in invertebrates (Daniels et al., 2008; Stacey 

et al., 2010).  Recent studies unraveled critical functions of Drosophila glial 

glutamate transporter (EAAT1) in glutamate buffering and neuronal circuit 
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function as well as behavior (Rival et al., 2004; Stacey et al., 2010).  Drosophila 

EAAT1 is highly conserved in terms of amino acid identity compared to human 

EAAT1 and EAAT2 and it is less likely to complicate studies of EAAT1 loss of 

function since it is a sole high-affinity glutamate transporter in Drosophila 

(Besson et al., 2000).  In addition, it is selectively expressed in a subpopulation 

of CNS glial cells (Freeman et al., 2003; Soustelle et al., 2002).  While other glial 

subtypes express EAAT1 in the fly CNS, its expression in astrocytes is prominent 

(Doherty et al., 2009; Peco et al., 2016) (Fig 3.10A).  Previous studies have also 

shown that EAAT1 expression is in close proximity to VGlut synaptic punctae, 

which strongly imply potential modulation in glutamatergic neurotransmission by 

glial EAAT1 (Daniels et al., 2008; Stacey et al., 2010).  Loss-of-function mutation 

data provide direct evidence that EAAT1 acts on glutamatergic 

neurotransmission regulating the rhythmic patterning of motor neuron activity to 

control locomotor behavior (Stacey et al., 2010).  Also, inactivation of EAAT1 by 

RNA interference led to various neurological defects including oxidative stress, 

neurodegeneration, and shortened life span implying glutamate buffering by 

EAAT1 is required for maintenance of healthy brain (Rival et al., 2004).  

 We know very little about how EAATs are regulated in glia.  Fringe-

mediated neuron-glia communication has been implicated as a regulative 

mechanism of Drosophila EAAT1 expression within a glial subtype called 

longitudinal glia during development of the nervous system (Stacey et al., 2010).  
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However, how their expression level is controlled, particularly by astrocytes, in 

response to neuronal activity has not been explored much. 

  While EAAT1 protein expression in the whole brain from wild-type 

animals does not appear to be changed upon 9 hr of PTX application, there was 

about two-fold increase in EAAT1 level by knocking down either βintegrin or 

tensin in astrocytes when we compare with or without PTX treatment (Fig 3.11A, 

C).  These findings strongly suggest during network hyperexcitability, EAAT1 

expression is increased, presumably to allow for better glutamate clearance at 

synapses in RNAi groups resulting in suppression of seizure-like behavior.  

 While we did not observe any alterations in EAAT1 level in wild-type with 

increased neuronal activity, previous work in rodents showed increasing neuronal 

activity by whisker stimulation results in enhanced expression of astrocyte 

glutamate transporters (GLT-1 and GLAST) suggesting neuronal activity is linked 

to EAAT regulation (Genoud et al., 2006).  This discrepancy may be explained by 

the differences in time scale of the experimental settings.  We only waited for 9 hr 

after PTX administration before we performed quantitative western blot analysis, 

while Genoud et al. observed an increase in the transporters after 24 hr of 

whisker stimulation.  In fact, 1 hr after longer-term potentiation (LTP) stimulation 

or contextual fear conditioning does not lead to any changes in protein 

expression of GLT-1 and GLAST in rat hippocampus (Levenson et al., 2002).  

We also observed a significant down regulation of EAAT1 in astrocyte 

knockdown of focal adhesion molecules compared to wild-type.  These findings 
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are consistent with a mammalian study (Robel et al., 2015) showing astrocyte 

knockout of β1integrin leads to impaired glutamate uptake by astrocytes with 

decreased GLT-1 levels.  However, decreased level of EAAT1 by βintegrin or 

tensin knockdowns displayed normal locomotion when EAAT1 depletion in 

astrocytes by RNAi caused significant defect in crawling behavior (Fig 3.10C).  

The reason for this difference is unclear, but may result from a delayed effect on 

changes in EAAT1 levels by focal adhesion knockdowns (i.e. RNAi), which might 

enable animals bypass any developmental defects.  In fact, GLT-1 

downregulation started to appear when β1integrin knockout mice were 6 months 

old (Robel et al., 2015).  

 To further explore the functional contribution of EAAT1 to the behavioral 

phenotype in focal adhesion knockdowns, we utilized pharmacological inhibitor 

for glutamate transporter, dihydrokainate (DHK) in our PTX-induced behavioral 

assay.  We found that the suppression phenotype in animals expressing either 

βintegrin or tensin RNAi in astrocytes was significantly rescued with co-

application of DHK with PTX (Fig 3.12A).  Likewise, DHK application also 

reversed the effect of Mmp1 RNAi in the behavioral assay (Fig 3.12B).  These 

data strongly argue that the suppression of seizure-like behavior in animals with 

astrocyte focal adhesion knockdown is due, at least in part, to increased EAAT1 

expression that could relieve hyperexcitability by regulating extracellular 

glutamate concentrations.  Administration of DHK itself did not affect the 

locomotion behavior of 3rd instar larvae (Fig 3.10B).  This is not surprising 
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because studies in mouse neocortex have shown that glutamate uptake inhibition 

by pharmacological inhibitors, including the same inhibitor used in this study, 

does not affect the amplitude or decay kinetics of AMPA-mediated EPSCs in 

layer II/III pyramidal neurons (Campbell and Hablitz, 2004).  However, in the 

presence of bicuculline, another GABAA receptor blocker lowered the threshold 

for evoking seizure activity and prolonged the duration of seizure activity 

(Campbell and Hablitz, 2004).  This implies that glutamate clearance at synapses 

becomes more critical for the network excitability when a substantial number of 

neurons are activated. 

 Further work will be necessary to dissect which glial subtype contributes 

most significantly to the alteration of EAAT1 level in the larval CNS, if it is not 

solely astrocytes.  Nevertheless, our data highlight that glial EAAT1 expression 

and function is regulated by focal adhesion signaling in astrocytes during network 

hyperexcitability. 

 Currently we can only speculate why overexpression of EAAT1 in 

astrocytes shows no effect on PTX-induced locomotion defect (Fig 3.13).  It could 

reflect differences between acute versus chronic upregulation of EAAT1.  In fact, 

genetic overexpression of EAAT1 in astrocytes alone has impaired larval 

locomotion significantly, which could mean proper regulation of extracellular 

glutamate is critical for controlling motor function in vivo; ectopic expression of 

this protein over the course of development could lead to compensatory changes 

in the network; or levels of membrane exposure are regulated post-translationally 
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(Schlag et al., 1998).  To bypass developmental changes by EAAT1 

overexpression, we could utilize temperature-sensitive GAL80 molecule to 

control the timing of protein overexpression or pharmacological approach with 

antibiotics called β-lactam.  β-lactam has been shown to increase GLT1 

expression in rodents to modulate neuronal plasticity, neuroprotection and 

behavior (Bellesi et al., 2009; Omrani et al., 2009; Rothstein et al., 2005).  These 

alternative approaches would allow us to eliminate potential developmental 

compensation by chronic overexpression of EAAT1.  Lastly, our favored 

hypothesis to explain EAAT1 overexpression data is that increasing EAAT1 

without changes of astrocytic processes is not sufficient for the necessary levels 

glutamate clearance during intense neuronal activity to rescue behavioral 

defects.  In fact, recent studies have shown that increasing GLT1 density on 

astrocytes without their protrusions toward synaptic clefts made no changes on 

AMPA receptor currents (Pannasch et al., 2014).  To test whether both increased 

EAAT1 level and astrocyte coverage of the neuropil are required to suppress 

seizure-like behavior in the animals with focal adhesion knockdowns, we can 

block protein synthesis using cycloheximide during PTX feeding to see if it still 

suppresses the behavior.  In parallel, withdraw cycloheximide afterward and 

examine if the suppression of the behavior comes back.  If indeed both 

modifications in astrocytes, increased neuropil coverage and EAAT1 level are 

required to ameliorate the imbalance between excitation and inhibition, it is even 
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more plausible to think excitatory glutamatergic synapses are the most affected 

by astrocytes to suppress seizure-like behavior.  

 Going forward, significant work will be required to determine detailed 

mechanisms underlying EAAT1 regulation by astrocyte focal adhesion signaling.  

To determine whether the changes in EAAT1 protein levels are mediated by 

transcriptional or post-transcriptional modification, we could perform quantitative 

PCR to compare EAAT1 mRNA levels between genotypes (wilde-type vs 

astrocyte focal adhesion RNAi) and treatments (control food vs PTX containing 

food).  Transcriptional regulators downstream of βintegrin could be involved in 

regulation of EAAT1 expression.  The link between astrocyte glutamate 

transporter expression and the nuclear transcription factor nuclear factor-κB (NF-

κB) has been reported previously(Lee et al., 2008; Sitcheran et al., 2005) and 

later it was defined that NF-κB binds directly to GLT1 promoter regions to 

regulate the transcript, which requires neuronal signaling (Ghosh et al., 2011).  

Other downstream effectors of focal adhesion signaling and their potential roles 

are discussed in Appendix1. 

 In addition, there are many levels of crosstalk between mentioned 

intracellular signaling pathways (Ben Haim et al., 2015) which means we need to 

develop more careful and elegant approaches on studying regulatory 

mechanisms of EAAT1 for future studies. 

Beyond changes in protein expression, another mechanism to modulate 

transporter function is alteration of membrane surface exposure dynamics (e.g. 
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insertion, surface diffusion and membrane trafficking).  Neuronal glutamate 

transporters have revealed that trafficking of the transporters from cytosol to the 

membrane is important mechanism by which synapses maintain appropriate 

synaptic strength during LTP and fear conditioning (Levenson et al., 2002).  A 

recent study using a single nanoparticle (quantum dot,QD) tracking technique 

found that surface diffusion of astrocyte glutamate transporter, GLT1 was a key 

mechanism to maintain synaptic glutamate homeostasis in vitro (Murphy-Royal et 

al., 2015).  Thus, to further improve our knowledge of the transporter contribution 

on regulating glutamate concentration at synapses, understanding their 

membrane dynamics is a necessary avenue. 

 

Concluding remarks 

The balance between excitatory/inhibitory inputs in the central nervous system 

has to be in a certain range to maintain normal and healthy brain function.  This 

balance is compromised in many neurological disorders, in which neurons 

experience chronically elevated activity (Heinemann, 2004; Rubenstein, 2010; 

Yizhar et al., 2011).   

 Astrocytes have tight coupling with neuronal synapses and their membranes are 

equipped with molecules to regulate network activity.  My thesis work has 

contributed to understanding of how astrocytes regulate neuronal activity to 

eventually adjust excitatory/inhibitory balance in the brain network.  My work 

demonstrated that focal adhesion signaling in astrocytes is a critical pathway for 
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their association with synapses and expression of glutamate transporters in 

response to changing network environment.  Especially the alterations of 

glutamate transporters can result in direct modulation of excitatory synaptic 

signals, which ultimately influence the balance between excitation/inhibition.  

Additionally, our comprehensive screen suggests a deeper analysis of astrocyte 

molecules to understand how astrocytes modulate CNS excitability and signaling. 
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Appendix 

Potential downstream targets of astrocyte focal adhesion 
signaling 
Activation of the c-jun N-terminal kinase (JNK) cascade upon integrin activation 

has been well documented (Jeffrey et al., 2007).  Thus we expressed two 

different RNAis for JNK in astrocytes to test if PTX-induced seizure behavior is 

modified.  While only one of the RNAi lines showed a significant suppression of 

the behavior, both RNAi lines resulted in a severe defect in basal locomotion 

when they were expressed in astrocytes (Fig A.1A).  Given that JNK/c-Jun 

signaling pathway regulates such a wide range of cellular processes; it is not 

surprising that JNK signaling is required for normal locomotion (Figure A.1A).  

There is a close association between activation of focal adhesion signaling and 

ROCK (Rho-associated, coiled-coil containing protein kinase) signaling (Goetsch 

et al., 2014; Wozniak et al., 2004).  In addition, ROCK regulation of astrocyte 

morphology and EAAT expression has been documented in vitro cell culture 

system (Lau et al., 2011).  However, when we altered ROCK expression or 

activity with genetic and pharmacological approaches, no changes in seizure-like 

behavior by PTX treatment was observed (Fig A1B, C, D). 

Lastly, our preliminary data suggested a possible contribution of ERK to 

the suppression of PTX-induced seizure (Fig A1E).  While positive regulation of 

ERK activity by focal adhesion signaling has been widely observed (Lambert et 

al., 2012), the opposite mode of action has also been suggested in more non-
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canonical signaling between ERK and focal adhesion signaling in Drosophila 

neuromuscular junction (Tsai et al., 2008).  In our hands, both ERK 

overexpression and ERK RNAi resulted in suppression of the seizure behavior 

(though we note overexpression had much greater degree of suppression than 

RNAi) (Fig A.1E).  Future work will be required to clarify the nature of FA/ERK 

signaling interactions in E/I balance and hyperexcitability in the Drosophila 

nervous system, but the strong phenotypes observed with both manipulations 

argue for an important role for ERK in this context.   
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Figure A.1: Tests of potential downstream molecules of astrocyte focal 

adhesions  
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A, Depletion of JNK in astrocytes by RNAi impaired basal locomotion of larvae 

compared to control genotype but showed no changes in PTX induced seizure.   

Error bars represent SEM.  **P<0.005, ****P<0.0001; two-way ANOVA and 

Dunnett’s multiple comparisons test.  B, Genetic alteration of ROK either by RNAi 

or overexpression of constitutively active ROK in astrocytes made no difference 

in both basal locomotion and PTX induced seizure compared to wilde-type.  Error 

bars represent SEM.  Two-way ANOVA and Dunnett’s multiple comparisons test.  

C, Pharmacological inhibition of ROCK with Fasudil during PTX feeding showed 

no changes in locomotion defect suppression.  Two-way ANOVA and Dunnett’s 

multiple comparisons test.  D, 6 hr of pretreatment of Fasudil does not affect PTX 

induced behavior.  Error bars represent SEM.  Two-way ANOVA and Dunnett’s 

multiple comparisons test.  E, Either overexpression or knockdown of ERK in 

astrocytes significantly suppresses seizure behavior by PTX while 

overexpression of constitutively active form of ERK had no effect.  Error bars 

represent SEM.  *P<0.005, ****P<0.0001; two-way ANOVA and Dunnett’s 

multiple comparisons test. 
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Potential applications for FA signaling in disease 
Molecular mechanisms by which one could alter E/I balance and hyperexcitability 

of high interest.  Here we identified astrocyte focal adhesions through their 

regulation of EAAT as a new potential therapeutic interventions.  Neurological 

disorders like Fragile X Syndrome (FXS) and seizure that present with 

phenotypes including E/I imbalance and excitotoxicity might be excellent targets.  

Recent studies on GLT1 and Fragile X Syndrome (Higashimori et al., 2016) have 

provided a strong evidence that dysregulation of astrocyte specific glutamate 

transporter, GLT1 is underlying pathophysiology in mouse model of FXS.  To 

explore this potential link to the pathology of FXS, we utilized Drosophila FXS 

model with loss-of-function mutations in the Drosophila fragile X-related 1(dfmr1) 

that shows larval crawling defect (Siller and Broadie, 2011; Xu et al., 2004)(Fig 

A.2C, D).  Interestingly, we observed the same phenomenon as in the mouse 

model of FXS where glial EAAT expression decreases dramatically in the 

disease state (Fig A.2A, B)(Higashimori et al., 2016).  We then wondered if 

alterations of focal adhesions in astrocytes would rescue any of this 

pathophysiology.  Surprisingly, when we deplete astrocyte βintegrin in the dfmr1 

mutant background (fmr150M), we were able to see a significant rescue of the 

locomotion defect compared to the driver control (alrmGAL4; fmr150M)(Fig A.2G, 

H).  However, in our attempt to test if the underlying mechanism for the 

behavioral rescue is alteration of EAAT1 levels, we observed no changes of 

EAAT1 in our driver control nor in βintegrin RNAi in the mutant background in 
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comparison to wild-type (Fig A.2E, F).  While this might suggest no correlation 

between the behavioral rescue by βintegrin knockdown and EAAT1 levels, one 

needs to proceed in the interpretation with caution: I found the alrm-GAL4 driver 

itself had an effect on EAAT1 level in the mutant background, which complicates 

the matter. 
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Figure A.2: Potential application for a disease (Fragile X syndrome fly 

model) 
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A, Western blot samples were prepared from 3rd instar larval CNS from W1118 and 

Fmr150M .  Blots were probed with anti-EAAT1 antibody.  B, Quantification of 

EAAT1 levels from Western blot analysis shown in A (n = 5 experiments).  Error 

bars represent SEM.  **P<0.005; Unpaired t test.  C, Raw traces of 3rd instar 

larval locomotion in W1118 and Fmr150M.  D, Quantitative of the larval locomotion 

shown in C shows significant impairment of the locomotion speed in Fmr150M 

compared to W1118.  Error bars represent SEM.  ****P<0.0001; Unpaired t test.  

E, Western blot samples were prepared from 3rd instar larval CNS from 

alrmGAL4, alrmGAL4; Fmr150M, and alrmGAL4/UAS-βintegrin; Fmr150M.  F, 

Quantification of EAAT1 levels from Western blot analysis shown in E (n = 4 

experiments).  Error bars represent SEM.  Two-way ANOVA and Dunnett’s 

multiple comparisons test.  G, Raw traces of 3rd instar larval locomotion in 

alrmGAL4, alrmGAL4; Fmr150M, and alrmGAL4/UAS-βintegrin; Fmr150M.  H, 

Quantitative of the larval locomotion shown in G shows a significant rescue of the 

behavioral defect in alrmGAL4; Fmr150M compared to alrmGAL4/UAS-βintegrin; 

Fmr150M.  Error bars represent SEM.  **P<0.05; two-way ANOVA and Dunnett’s 

multiple comparisons test. 
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Table 2.1: List of genes that scored as suppressors in the screen 

 

 

Table S1. List of genes that scored as suppressors at the screen
Gene symbol CG number VDRC ID Library off-target Number of files 
Ten-a CG42338 105037 KK 0 23
by CG9379 22823 GD 0 24
CG17839 CG17839 100149 KK 1 23
drl CG17348 100039 KK 1 28
14-3-3epsilon CG31196 108129 KK 0 17
CG17124 CG17124 19078 GD 1 25
Tsp47F CG9033 44288 GD 0 30
Klp31E CG5300 34983 GD 0 25
Lmpt CG42679 42892 GD 0 25
Tsp42Eq CG12832 30329 GD 2 19
P5cr CG6009 46892 GD 0 24
plexB CG17245 27220 GD 0 10
Hem CG5837 103380 KK 0 26
CG32792 CG32792 47047 GD 0 22
CG1801 CG1801 8655 GD 0 26
CG9864 CG9864 103970 KK 1 29
tsl CG6705 14429 GD 0 19
CG33253 CG33253 6178 GD 1 32
a CG6741 16826 GD 410 26
in CG16993 103407 KK 0 32
Smvt CG2191 102662 KK 0 24
SerT CG4545 11346 GD 0 21
CG2616 CG2616 102630 KK 0 20
CG4797 CG4797 10598 GD 0 26
NepYr CG5811 103973 KK 0 19
pros CG17228 101477 KK 0 21
klg CG6669 102502 KK 0 18
fry CG32045 40309 GD 633 14
tomboy40 CG8330 105557 KK 0 22
E23 CG3327 105055 KK 1 26
CG8116 CG8116 39218 NA NA 17
CG12818 CG12818 31898 GD 0 16
scramb2 CG1893 104647 KK 1 29
ninaC CG5125 110702 KK 1 17
prc CG5700 100357 KK 1 13
GluRIIE CG31201 49547 GD 0 29
Tbh CG1543 51667 GD 0 43
PGRP-LD CG33717 5038 GD 1 37
Zip3 CG6898 37358 GD 2 39
kek5 CG12199 47768 GD 5 35
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fdl CG8824 4637 GD 0 34
babo CG8224 3825 GD 0 21
Nplp4 CG15361 104662 KK 0 22
Pdfr CG13758 106381 KK 0 13
Snmp1 CG7000 104210 KK 0 19
mgl CG42611 103661 KK 0 13
mthl8 CG32475 100246 KK 0 17
ppk25 CG33349 101808 KK 0 14
PGRP-SC2 CG14745 104578 KK 0 28
brp CG42344 104630 KK 0 12
CG4465 CG4465 100202 KK 0 15
Ir31a CG31718 100345 KK 0 10
trk CG5619 51240 GD 0 10
Sld5 CG14549 43588 GD 0 12
CG9095 CG9095 23158 GD 2 21
tipE CG1232 4482 GD 1 26
HLH106 CG8522 37640 GD 0 25
SsRbeta CG5474 12101 GD 0 17
phyl CG10108 35469 GD 0 29
sdk CG5227 9437 GD 0 21
bcd CG1034 48966 GD 0 20
trn CG11280 107883 KK 0 34
CG31103 CG31103 2657 GD 0 12
Nup358 CG11856 38583 GD 3 12
kek2 CG4977 42450 GD 1 19
CG13743 CG13743 40974 GD 540 26
CG12341 CG12341 7391 GD 0 23
CG42514 CG42514 45643 GD 0 10
l(2)01289 CG9432 107350 KK 1 24
chas CG32556 109841 KK 1 23
CG14299 CG14299 110420 KK 0 16
Drak CG32666 107263 KK 1 22
CG10486 CG10486 107903 KK 0 17
Ir67c CG32058 107921 KK 0 20
ppk21 CG12048 107892 KK 0 15
Tpc2 CG2857 107215 KK 0 20
pst CG8588 107243 KK 0 10
Gp150 CG5820 100134 KK 1 11
cos CG1708 108914 KK 0 19
KCNQ CG33135 106655 KK 0 18
CG1703 CG1703 105998 KK 0 21
Snap24 CG9474 108209 KK 0 33
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bou CG14430 107102 KK 0 22
Ptp99A CG11516 27207 GD 0 20
CG5888 CG5888 12413 GD 0 17
Gbp CG15917 108755 KK 0 27
lox2 CG4402 108217 KK 0 21
btl CG32134 110277 KK 0 16
mfas CG3359 103621 KK 1 25
CG14238 CG14238 2673 GD 0 26
gcl CG8411 28897 GD 1 17
rab3-GAP CG7061 106905 KK 0 11
Pdk1 CG1210 109812 KK 0 13
shf CG3135 14803 GD 11 16
Rala CG2849 105296 KK 0 12
CG13278 CG13278 109927 KK 0 15
CG8142 CG8142 108452 KK 1 15
jagn CG10978 108991 KK 0 11
boss CG8285 4365 GD 0 11
CG9903 CG9903 42689 GD 0 28
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Table 2.2: List of genes that scored as enhancers in the screen 

  

Table S2. List of genes that scored as enahncers at the screen
Gene symbol CG number VDRC ID Library off-target Number of files 
alphaPS5 CG5372 100120 KK 0 27
Ipp CG12843 101044 KK 0 15
CSN7 CG2038 40690 GD 0 28
Eaat1 CG3747 109401 KK 0 18
ATPsyn-Cf6 CG4412 107826 KK 0 15
Pkc98E CG31743 105821 KK 0 16
CG31743 CG12484 104814 KK 0 12
CG12484 CG9012 103383 KK 0 16
Ir10a CG34143 100181 KK 0 22
slo CG30265 106618 KK 1 14
CG30265 CG10693 104421 KK 0 14
CG33270 CG33270 109109 KK 4 19
spin CG8428 105462 KK 0 15
CG6845 CG6845 107719 KK 0 10
Gprk2 CG17998 101463 KK 0 11
nAcRbeta-21C CG11822 42742 GD 0 11
ATP7 CG1886 108159 KK 0 11
TBPH CG10327 104401 KK 0 17
Ccn CG32183 101518 KK 0 12
betaTub60D CG3401 102052 KK 0 12
Dyb CG8529 104485 KK 1 12
RYamide CG40733 109267 KK 0 12
kz CG3228 104253 KK 0 19
Nf-YA CG3891 106132 KK 0 19
Tip60 CG6121 110617 KK 0 19
CCHa1 CG14358 104974 KK 2 19
spen CG18497 108828 KK 2 19
spz6 CG9196 100897 KK 0 13
shakB CG34358 24578 GD 0 13
Gdi CG4422 108693 KK 1 20
Vha13 CG6213 106536 KK 0 14
CaMKII CG18069 100265 KK 0 22
Takr99D CG7887 43329 GD 0 15
Cap CG9802 101501 KK 2 15
Mdh1 CG5362 110604 KK 0 15
Mcm2 CG7538 103619 KK 2 15
rdo CG15151 107213 KK 5 15
nrm CG43079 104295 KK 0 23
Girdin CG12734 103615 KK 0 23
Ccn CG32183 101520 KK 1 16
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gfA CG32538 100756 KK 0 16
CG8468 CG8468 6452 GD 0 24
sog CG9224 105853 KK 3 16
T48 CG5507 100334 KK 0 32
CG5398 CG5398 109717 KK 0 16
CG14646 CG14646 103770 KK 0 25
CG11147 CG11147 101601 KK 0 17
mam CG8118 102091 KK 0 17
nimC4 CG16876 101915 KK 0 17
CG8908 CG8908 100472 KK 1 17
CG9104 CG9104 110579 KK 0 17
CG8925 CG8925 101128 KK 0 17
Lac CG12369 107450 KK 0 26
jub CG11063 101993 KK 0 18
CG16718 CG16718 108953 KK 0 27
Synd CG33094 104580 KK 0 19
pnr CG3978 101522 KK 0 19
Ir7b CG15326 100498 KK 1 19
ppk6 CG11209 101091 KK 1 19
CG34120 CG34120 101700 KK 0 19
Tapdelta CG9035 8759 GD 0 10
Mpcp CG4994 101316 KK 1 10
Osi4 CG10303 102619 KK 0 10
Vha55 CG17369 46554 GD 1 10
VhaM9.7-a CG1268 104315 KK 0 10
dome CG14226 36355 GD 0 10
kon CG10275 106680 KK 1 10
Snmp2 CG7422 101136 KK 0 20
CG8026 CG8026 105681 KK 0 10
Bap CG12532 7721 GD 0 10
qtc CG14039 17349 GD 13 10
vlc CG8390 46230 GD 0 10
CG33298 CG33298 42776 GD 2 10
Nup44A CG8722 106489 KK 2 10
CG1090 CG1090 26783 GD 0 10
AdoR CG9753 1385 GD 0 10
Npc1b CG12092 108054 KK 0 10
Osi10 CG15593 105915 KK 0 10
Atg18 CG7986 105366 KK 0 10
Pvf1 CG7103 102699 KK 0 10
endos CG6513 106825 KK 0 10
CG30345 CG30345 103652 KK 0 10
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NtR CG6698 108234 KK 0 10
Roc1a CG16982 106315 KK 0 10
Caps CG33653 110055 KK 0 31
Toll-7 CG8595 39176 GD 2 21
cm CG3035 110746 KK 0 21
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Table 3: Summary of statistical analysises 

 

Table 3: Summary of statistical analysises
Figure 3.3B
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-talin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
0.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-talin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-FAK RNAi ****
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-talin RNAi *
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-talin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-talin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-FAK RNAi ****
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-talin RNAi vs. alrmGAL4>UAS-FAK RNAi ns

Figure 3.3C
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi ns
alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP vs. alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP **
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi **
alrmGAL4>UAS-βintegrin RNAi; UAS-mCD8GFP vs. alrmGAL4>UAS-βintegrin RNAi; UAS-tensin RNAi ns

Figure 3.4B
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
W1118 vs. UAS-tensin RNAi ns
W1118 vs. UAS-βintegrin RNAi ns
W1118 vs. UAS-talin RNAi ns
W1118 vs. UAS-FAK RNAi ns
UAS-tensin RNAi vs. UAS-βintegrin RNAi ns
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UAS-tensin RNAi vs. UAS-talin RNAi ns
UAS-tensin RNAi vs. UAS-FAK RNAi ns
UAS-βintegrin RNAi vs. UAS-talin RNAi ns
UAS-βintegrin RNAi vs. UAS-FAK RNAi ns
UAS-talin RNAi vs. UAS-FAK RNAi ns
1.5 mg/ml PTX
W1118 vs. UAS-tensin RNAi ns
W1118 vs. UAS-βintegrin RNAi ns
W1118 vs. UAS-talin RNAi ns
W1118 vs. UAS-FAK RNAi ns
UAS-tensin RNAi vs. UAS-βintegrin RNAi ns
UAS-tensin RNAi vs. UAS-talin RNAi ns
UAS-tensin RNAi vs. UAS-FAK RNAi ns
UAS-βintegrin RNAi vs. UAS-talin RNAi ns
UAS-βintegrin RNAi vs. UAS-FAK RNAi ns
UAS-talin RNAi vs. UAS-FAK RNAi ns

Figure 3.4C
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-talin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-talin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-FAK RNAi ****
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-tensin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-talin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-FAK RNAi ns
alrmGAL4>UAS-talin RNAi vs. alrmGAL4>UAS-FAK RNAi ns

Figure 3.5
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX:W1118 vs. 0.0 mg/ml PTX:by33c ****
0.0 mg/ml PTX:W1118 vs. 1.5 mg/ml PTX:W1118 ****
0.0 mg/ml PTX:W1118 vs. 1.5 mg/ml PTX:by33c ****
0.0 mg/ml PTX:by33c vs. 1.5 mg/ml PTX:W1118 ****
0.0 mg/ml PTX:by33c vs. 1.5 mg/ml PTX:by33c ****
1.5 mg/ml PTX:W1118 vs. 1.5 mg/ml PTX:by33c ****

Figure 3.6B
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX:alrmGal4/+ vs. 0.0 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi ns
0.0 mg/ml PTX:alrmGal4/+ vs. 1.5 mg/ml PTX:alrmGal4/+ ****
0.0 mg/ml PTX:alrmGal4/+ vs. 1.5 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi ****
0.0 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi vs. 1.5 mg/ml PTX:alrmGal4/+ ****
0.0 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi vs. 1.5 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi ****
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1.5 mg/ml PTX:alrmGal4/+ vs. 1.5 mg/ml PTX:alrmGal4/UAS-Mmp1 RNAi ****
Figure 3.6C
Test used two-way ANOVA; Dunnett’s multiple comparisons
Post hoc test Summary

1.5 mg/ml PTX vs. W1118 acetone ****
1.5 mg/ml PTX vs. W1118 50µM inhibitor ****
1.5 mg/ml PTX vs. 1.5 mg/ml PTX + 50µM inhibitor *

Figure 3.6C
Test used two-way ANOVA; Dunnett’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX:elavGAL4 vs. 0.0 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi ns
0.0 mg/ml PTX:elavGAL4 vs. 1.5 mg/ml PTX:elavGAL4 ****
0.0 mg/ml PTX:elavGAL4 vs. 1.5 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi ****
0.0 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi vs. 1.5 mg/ml PTX:elavGAL4 ****
0.0 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi vs. 1.5 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi ****
1.5 mg/ml PTX:elavGAL4 vs. 1.5 mg/ml PTX:elavGAL4>UAS-Mmp1 RNAi ns

Figure 3.8A
Test used two-way ANOVA; Bonferroni’s multiple comparisons
Post hoc test Summary

alrmGAL4 - alrmGAL4>UAS-βintegrin RNAi
0.0 mg/ml PTX ns
50 mm inhibitor ns
1.5 mg/ml PTX *
1.5 mg/ml PTX + 50 mM inhibitor ns

Figure 3.8B
Test used two-way ANOVA; Dunnett’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-Mmp1 ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-Mmp1 ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-Mmp1 ns
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi; UAS-Mmp1 ****

Figure 3.8C
Test used two-way ANOVA; Bonferroni’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-Mmp1; UAS-talin RNAi ns
alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi vs. alrmGAL4>UAS-Mmp1; UAS-talin RNAi ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi *
alrmGAL4 vs. alrmGAL4>UAS-Mmp1; UAS-talin RNAi ns
alrmGAL4>UAS-mCD8GFP; UAS-talin RNAi vs. alrmGAL4>UAS-Mmp1; UAS-talin RNAi *

Figure 3.10D
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX:alrmGAL4 vs. 0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 *
0.0 mg/ml PTX:alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4 ****
0.0 mg/ml PTX:alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ****
0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 vs. 1.5 mg/ml PTX :alrmGAL4 ****
0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ****
1.5 mg/ml PTX :alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ns

Figure 3.12A
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary
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0.0 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-tensin RNAi ns
1.5 mg/ml PTX
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ****
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ****
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-tensin RNAi ns
1.5 mg/ml PTX + 500 mM DHK
alrmGAL4 vs. alrmGAL4>UAS-βintegrin RNAi ns
alrmGAL4 vs. alrmGAL4>UAS-tensin RNAi ns
alrmGAL4>UAS-βintegrin RNAi vs. alrmGAL4>UAS-tensin RNAi ns

Figure 3.12A
Test used two-way ANOVA; Bonferroni’s multiple comparisons
Post hoc test Summary

alrmGAL4 - alrmGAL4>UAS-Mmp1 RNAi
0.0 mg/ml PTX ns
1.5 mg/ml PTX *
1.5 mg/ml PTX + 50 mM DHK ns

Figure 3.12A
Test used two-way ANOVA; Tukey’s multiple comparisons
Post hoc test Summary

0.0 mg/ml PTX:alrmGAL4 vs. 0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 *
0.0 mg/ml PTX:alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4 ****
0.0 mg/ml PTX:alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ****
0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 vs. 1.5 mg/ml PTX :alrmGAL4 ****
0.0 mg/ml PTX:alrmGAL4>UAS-Eaat1 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ****
1.5 mg/ml PTX :alrmGAL4 vs. 1.5 mg/ml PTX :alrmGAL4>UAS-Eaat1 ns
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