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ABSTRACT 

A list of genes have been identified to carry mutations causing familial ALS such 

as SOD1, TARDBP, C9orf72. But for sporadic ALS, which is 90% of all ALS cas-

es, the underlying genetic variants are still largely unknown. There are multiple 

genome-wide association study (GWAS) for sporadic ALS, but usually a large 

number nominated SNP can hardly be replicated in larger cohort analysis. Also 

majority of GWAS SNP lie within noncoding region of genome, imposing a huge 

challenge to study their biological role in ALS pathology. With the rapid develop-

ment of next-generation sequencing technology, we are able to sequence exome 

and whole-genome of a large number of ALS patients to search for novel genetic 

variants and their potential biological function. Here by analyzing exam data, we 

discovered two novel or extremely rare missense mutations of DPP6 from a Mes-

tizo Mexican ALS family. We showed the two mutations could exert loss-of-func-

tion effect by affecting electrophysiological properties of Potassium channels as 

well as the membrane localization of DPP6. To our knowledge this is the first re-

port of DPP6 nonsynonymous mutations in familial ALS patients. In addition, by 

analyzing whole-genome data, we discovered strong linkage disequilibrium be-

tween SNP rs12608932, a repeatedly significant ALS GWAS signal, and one 

polymorphic TGGA tetra-nucleotide tandem repeat, which is further flanked by 

large TGGA repetitive sequences. We also demonstrated rs12608932 risk allele 

is associated with reduced UNC13A expression level in human cerebellum and 
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UNC13A knockout could lead to shorter survival in SOD1-G93A ALS mice. Thus 

the TGGA repeat might be the real underlying genetic variation that confer risk to 

sporadic ALS.  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Chapter 1. Introduction 

Chapter 1.1 Introduction of ALS 

Amyotrophic lateral sclerosis (ALS) is a progressive, devastating neurodegenera-

tive disorder caused by motor neuron death of upper motor neurons in cortex and 

lower motor neurons in spinal cord and brainstem. This will lead to paralysis and 

eventual respiratory failure with an average survival of 3 years from symptom on-

set. The mean onset age is 55-60 years old and world-wide incidence is approx-

imately 2 per 100000 individuals (1). Around 10% of ALS cases are familial while 

the remaining sporadic cases are generally considered multifactorial with both 

genetic factors and environmental risks conferring susceptibility (2). ALS was tra-

ditionally regarded as a pure motor neuron disease, but recent findings about the 

sensory and spinocerebellar pathways in ALS, as well as the pleiotropy of ALS-

associated genes in other syndromes (3), have implied that ALS is a multisystem 

disorder in which motor neurons tend to be affected most severely.  

The pathology underlying ALS still remains largely elusive. Genetics studies indi-

cate an extremely complicated etiology which may involve multiple pathways, 

such as oxidative stress, mitochondrial dysfunction (1), protein aggregation (4), 

excitotoxicity, axonal transport impairment and dysregulated RNA processing (5). 

There's also a growing evidence that the disrupted communication with surround-
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ing glial cells may contribute to motor neuron injury (6). Besides genetics, envi-

ronmental factors such as smoking, diet and toxic exposure may also put individ-

uals at a higher risk for ALS (7). The identification of an RNA-binding protein 

TDP-43 as a major constituent of ubiquitinated protein inclusions in ALS has be-

come the hallmark for the study of ALS pathology (8). Normally TDP-43 are pre-

dominantly localized within the nucleus, but will be ubiquitinated and shuffled into 

cytoplasm for most cases of FALS and SALS. The mutations in TARDBP, the 

TDP-43 coding gene, were discovered in several FALS pedigrees, further consol-

idating the role TDP-43 may play in ALS (9). However, for most cases, we don't 

know the genetic variants which lead to TDP-43 translocation. The knowledge for 

biological role of TDP-43 is still evolving, with recent research indicating it may 

involve in self-regulation or binding to other ALS-related proteins like FUS (10).  

Chapter 1.2 FALS genetics 

The genetic cause study of ALS has proved quite difficult mostly due to late-on-

set, short survival time and incomplete penetrance. Mendelian patterns, mostly 

dominant inheritance, have been recognized by linkage study in a few large fa-

milial ALS pedigrees.  

SOD1 is the first gene identified to be associated with ALS. The gene encodes 

153 evolutionarily conserved amino acids and catalyzes the reduction of super-
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oxide to protect cell from harmful free radicals. 166 ALS-associated SOD1 muta-

tions have been found, 147 of which are missense type (1). However, around 

20% of individuals carrying SOD1 mutations won't show ALS symptoms even at 

very old age, indicating penetrance of autosomal dominant mutations in ALS can 

be incomplete.  

The cytoplasmic inclusion of TDP-43 led to the discovery of mutations of 

TARDBP which encodes this protein. The mutations result in redistribution of 

TDP-43 from nucleus to cytoplasm. Mutations have also been identified in FUS 

gene (12), whose function resembles TDP-43. The recessive mutations in ALS2 

gene, which produces Alsin protein, can cause juvenile-onset ALS (1). Ataxin 2 

(ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 

2 emerges as a potential risk factor (13). The intermediate- length polyQ expan-

sions (27–33 glutamines) in ATXN2 are reported to significantly associated with 

ALS. Moreover, mutations in UBQLN2, which encodes a ubiquitin-like protein, 

have been found to cause dominant X-linked ALS (14).  

For a long time, linkage study has pointed to 9p21 as a potential locus for SALS. 

Very recently, it was identified that causal variant is hexanucleotide expansion, 

(GGGGCC)n, between the first noncoding exons of unknown gene C9ORF72 

(15,16). And this expansion can account for a large number of cases of FALS, 

SALS and FTD, replacing SOD1 as the most common genetic abnormality of 

ALS patients (17,18).  
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Chapter 1.3 SALS genetics 

As for sporadic ALS, although almost all FALS mutations can be found in SALS, 

the majority of SALS cannot be explained. However, a number of observations 

suggest genetic factor role in SALS. Twin studies give an estimate of SALS heri-

tability of 0.6 by comparing monozygotic and dizygotic twins (19). And some 

analysis showed first-degree relatives of SALS patients have larger risk for de-

veloping ALS. Genome-wide association studies (GWAS) have been conducted 

for ALS samples.  

FGGY (FGGY carbohydrate kinase domain containing) is one of the very first pu-

tative genes implicated by GWAS using 386 white SALS patients and 542 neuro-

logically normal white controls followed by two independent replications (20). 

Around the same time, another group from the Netherland reported that ITPR2 

(inositol 1,4,5-trisphosphate receptor type 2) may be associated with ALS in three 

European populations (21). However, when the same Dutch team extended their 

analysis to include more samples, they found DPP6 (dipeptidyl peptidase like 6) 

rather than ITPR2 was strongly associated with ALS for European populations 

(22). Facing the conflicting results, one Irish group tried to conduct GWAS on a 

more homogeneous population which exhibits extended linkage disequilibrium 

and lower allelic heterogeneity. They used 221 cases and 211 controls all from 

Ireland, and found the strongest signal also came from variant in DPP6 (23). 

However, all the previous identified genes FGGY, ITPR2 and DPP6 cannot be 
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replicated in other later studies (24). Other candidate genes from GWAS include 

UNC13A (25) which encodes presynaptic proteins found in neuromuscular 

synapses and KIFAP3 (26), which encodes a kinesin-associated protein.  

In contrast to the conflicts and uncertainty above, chromosome 9p21 has been 

identified in several independent large GWAS of both ALS and FTD (25,27,28, 

29), implicating the genetic defect at chromosome 9 in SALS. And it was recently 

unveiled that the defect is noncoding hexanucleotide repeat expansion in the 

gene C9ORF72. And in a large-scale population study involving 386 apparently 

sporadic cases, 19 (5%) cases of apparently sporadic ALS had the C9orf72 re-

peat expansion (18).  

Chapter 1.4 Complex disease and missing heritability of GWAS 

ALS is very complex disease related to multiple types of factors. The classical 

model for complex disease is “threshold liability model”, in which, multiple genetic 

variants, combined with environmental risks all contribute to the liability of dis-

ease. Such liability is normally distributed in the population and disease will only 

occur for those whose burden is above a particular threshold.  

GWAS has been extensively used to discover variants which may confer disease 

susceptibility and elucidate the architecture of complex traits. Initially GWAS was 

based on the simple common disease–common variant hypothesis, which has 



�6

been refuted due to “missing heritability problem”: Only a very small proportion of 

heritability of complex traits can be explained by variants from GWAS (30).  

There's a heated debate about where the missing heritability can be found. The 

potential sources of missing heritability can be:  

1.The rich indels and large structural variants in human genome. The discovery 

and genotyping of such variants are far lagged behind the SNP study (30).  

2.Rare variants may play an important role in disease etiology (31,32), while cur-

rent methodologies are underpowered for the detection of rare variants due to 

low allele frequency and allelic heterogeneity (33).  

3.Gene-environment interactions (34). For example, people carry genetic factors 

that confer susceptibility or resistance to a certain disorder only in a particular 

environment.  

4.The epigenetic effects, such as parent-of-origin genetic information and DNA 

methylation patterns (35), and gene-gene interaction or epistasis (36). 

Chapter 1.5 Structural variation 

The structural variants (SV) of human genome include deletion, insertion, dupli-

cation, inversion, copy-number variation, short tandem repeats, and chromoso-
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mal translocation. SV play an important role in human complex disease (37, 38, 

39).  Copy number variation (CNV) is one type of SV (37). Specifically, recent 

studies have established that rare and de novo SV/CNV contribute to the genetic 

risk of a wide range of neurological and neuropsychiatric diseases including 

autism, schizophrenia and bipolar disorder (40, 41, 42, 43, 44, 45, 46).  In addi-

tion, short tandem repeat expansion is common for neurological disorder, such 

as Huntington’s disease. And C9orf72 is the most exciting discovery of structural 

variants for ALS. Hundreds or even thousands of GGGGCC hexanucleotide re-

peats were found in ALS patients, though it is not clear exactly how these hexa-

nucleotide repeats cause the disease (15). 

Genome-wide CNV study has also been applied to ALS samples. One study car-

ried out SNP array for 406 patients with sporadic ALS and 404 controls, and 

found no loci statistically significant after Bonferroni correction in the association 

test (47). Similarly, another study around the same time which focused on 408 

Irish individuals and 868 Dutch individuals (48), detected 26 copy number gains 

and 58 copy number losses that showed nominal association with ALS at p value 

< 0.05, but all of them failed to reach the significance by Bonferroni correction. 

Later in a genome-wide screen of 1875 cases and 8731 controls, no evidence 

was found for the difference in global CNV burden between cases and controls. 

And in the gene-based association study, two genes DPP6 and NIPA1 were high-

lighted (49).  
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Chapter 1.6 Next-generation sequencing 

Genetic variants study by GWAS heavily relies on linkage with disease-causing 

variants and barely reports the exact length and breakpoints of structural vari-

ants. The availability of next-generation sequencing (NGS) technology are poised 

to fundamentally change the variant mapping landscape by providing full se-

quence information. Many computational algorithms have been developed to 

identify variants using NGS data (50). For example, the two most popular SNP 

genotype tools are Samtools and the Genome Analysis Toolkit Unified Genotyper 

(GATK) (51).  

The dramatic cost reduction of NGS has enabled whole-genome sequencing of a 

couple of human genome. However, it still remains unaffordable to sequence the 

whole genome of a large number of individuals even at a low coverage. Thus ex-

ome sequencing becomes an effective alternative approach to capture function-

ally important exons at a reasonable cost. At present the main application of ex-

ome sequencing is to determine SNP and indels, and has enabled the discovery 

of causal variants of several Mendelian diseases (52, 53, 54), including finding a 

new gene (valosin-containing protein) from an Italian family with FALS (54). Also, 

recent trio-based studies using exome sequencing have demonstrated highly dis-

ruptive de novo exonic mutations may contribute substantially to the etiology of 

autism spectrum disorders (55, 56, 57). In addition, algorithms and softwares 
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have been developed to identify SV/CNV based on exome (58, 59, 60) and 

whole-genome (61, 62) sequencing data. 

Chapter 1.7 DPP6 introduction 

Dipeptidyl peptidase-like protein 6 (DPP6) is one of the putative ALS genes 

implicated by SALS GWAS. SNP rs10260404 in DPP6 shows strong association 

with susceptibility to ALS in several independent studies (22) but fails the 

replication in large joint analysis (24). DPP6 is an auxiliary subunit of Kv4 family 

of voltage-gated potassium channels, which underlies the transient subthreshold-

activating  A-type current in neurons (63, 64). DPP6 knockdown in heterologous 

expression system shows that DPP6 enhances Kv4 surface expression and 

accelerates channel activation and inactivation (65). Recent reports also reveal 

DPP6 has important impact on formation and stability of dendritic filopodia during 

early neuronal development (66). 

Chapter 1.8 UNC13A introduction 

UNC13A participates in vesicle maturation during exocytosis as a target of the 

diacylglycerol second messenger pathway. UNC13A plays a crucial role in 

neurotransmitter release at synapse by priming synaptic vesicles to fuse with 
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plasma membrane (67). Thus biologically UNC13A is also an attractive candidate 

for ALS. rs12608932, an intronic SNP within UNC13A is one of the very few risk 

loci supported by multiple ALS GWAS (24). It’s also identified as the shared risk 

locus for ALS and FTD-TDP in one meta-analysis. Also multiple ALS GWAS for 

European population have all demonstrated rs12608932 risk allele is associated 

with shorter survival of ALS, indicating a potential genetic modifier role of 

UNC13A in ALS (68, 69).  

UNC13A protein is composed of one C1 domain, one MUN domain and three C2 

domain including RIM-binding C2A domain and calcium-binding C2B domain 

(70). In addition, UNC13A belongs to UNC13 family where UNC13B, UNC13C 

and UNC13D which all play certain roles in endocytosis, exocytosis and protein 

secretion. Also, UNC13A-deficient mice show morphological defects in spinal 

cord motor neurons, muscle and neuromuscular synapses (71). For transgenic 

C. elegans expressing mutant TDP-43, UNC13A is required for inducing innate 

immunity, and deletion of UNC13A could suppress motor neuron degeneration 

(72). 
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Chapter 2. Material and methods 

Chapter 2.1 Sequencing samples 

For DPP6 project, blood samples are collected from a Mexican Mestizo family, 

where two patients of aunt and niece relationship were identified (Supplementary 

Figure 1). Interestingly, the mother of the niece is a obligate carrier but didn’t 

develop ALS. For UNC13A project, we used genomic DNA prepared from blood 

samples of familial and sporadic ALS patients in 96-well plate, as well as brain 

DNA of Alzheimer's Disease Research Center (ADRC) Brain Research Program. 

Chapter 2.2 NGS library preparation 

Around 5 ug of genomic DNA was first diluted in EB buffer and sent for Covaris 

shearing. DNA fragments were blunted by DNA repair kit (# ER0720 Epicentre), 

followed by “A tailing” of fragments using Klenow Exo-minus (#KL0810250 

Epicentre). Adapters were then added (NEXTflexTM ligation mix and barcodes). 

The ligation mix was then amplified by PCR for 9 cycles. The PCR product was 

run on 2% gels and cut for desired size around 350~400bp. The cut gel was then 

purified to obtain DNA library. We analyzed the library on Agilent Bioanalyzer. 

Chapter 2.3 Bioinformatics pipeline for SNP calling 
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1. SNP calling 

We first aligned the 100bp short reads using BWA (Burrows-Wheeler Aligner), 

generating bam files for each sequencing lane. Each lane-level bam file was 

processed by indel realignment and base quality recalibrator under GATK 

package. Then lane-level bam files were merged for both 10282 and 7800 library. 

We then removed PCR duplicates by Picard’s MarkDuplicates. SNP and indels 

were then called by GATK UnifiedGenotyper. The results were then refined using 

GATK variants quality recalibrator.  

2. Deleterious mutation prioritization 

The SNP and indels were first filtered for novel or rare variants with minor allele 

frequency (MAF) <= 0.1% according to both NHLBI Exome (6500 version) (73) 

and 1000 Genome Project (2015Aug version) (74) databases. Then we picked 

up those variants only shared by the two patients. Then by Annovar (75) we tried 

to annotate the variants and looked for those that are either nonsynonymous or 

affecting splicing sites. 

Chapter 2.4 PCR sequencing 

We first pulled out exon or gene sequences according to RefSeq annotation in 

UCSC Genome Browser. We then designed primers for all sequence fragments 

of interest by using Primer 3.0. Around 10~15ng patient genomic DNA were used 
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for PCR for sequencing one mutation. AmpliTaq Gold 360 Master mix were used 

for general PCR; for GC-rich region, we applied Advantage GC Genomic LA PCR 

kit. Single SNP or indel were identified using novoSNP based on ab1 files. For 

UNC13A project, we manually checked all sequencing data to get the genotypes 

for repeat polymorphism.  

Chapter 2.5 Fluorescence microscopy 

Inserts of DPP6 mRNA sequences were first prepared by PCR using plasmids 

used in electrophysiology study as template, then sub-cloned into the XhoI and 

Pst1 sites of pAcGFP1-N1 Vector. The plasmids were confirmed by Sanger 

sequencing. HEK-293 cells were seeded on glass bottom dish and transfected 

with the DPP6-GFP constructs and Mem-mCherry marker (76). After 24 hours, 

live image were captured by a Nikon fluorescence microscopy. The pictures were 

processed by ImageJ.  

Chapter 2.6 Short tandem repeat analysis of online NGS data 

SNP information was directly retrieved from VCF files for both 1000 Genome 

Project and Simon Genome Diversity Project. For tandem repeat polymorphism 

calling, raw bam files were downloaded for both datasets, and lobSTR (77) with 

default parameters were used to call short tandem repeat (STR) polymorphism. 
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Then r2 score was calculated based on SNP and STR calling using PLINK (78). 

Also because of low-coverage of 1000 Genome data, the r2 score accuracy was 

then improved by setting threshold for quality score of lobSTR callings to 0.5. 

Chapter 2.7 G-quadruplex identification in vitro 

IDT oligo, 200bp Ultramar oligo were ordered for both alleles containing 5 copies 

of TGGA (5-copy) and containing 9 copies of TGGA (9-copy), centering on the 

TGGA tetra-repeats sequences (See Supplementary Table 1). The samples were 

annealed by heating at 95 degree for 10min and slowly cooled overnight to room 

temperature in the presence or absence of KCl. KCL could allow the tandem 

repeats of guanines to fold into the G-quadruplex (79). The samples were then 

tested using circular dichroism (CD) with default parameters and CD spectral 

features indicative of G-quadruplex were analyzed. 

Chapter 2.8 Genome-wide TGGA enrichment study 

In order to find all repeats that resemble UNC13A repeats across the whole 

genome, we applied Bedtools (80) to intersect/cluster all TGGA or TCCA tandem 

repeats in RepeatMasker less than 150bp away from each other, but with total 

length greater than 500bp. By such standard, we identified 640 such TGGA/

TCCA repeat cluster genome-wide, and 350 of them are within 297 genes. Then 



�15

we tried to search for gene enrichment for these repeat clusters using software 

GREAT (81).  

Chapter 2.9 eQTL study for cerebellums 

We sequenced ~800 ADRC brain DNA and selected 30 samples homozygous for 

rs12608932 non-risk allele (AA) and 20 cerebellum samples homozygous for risk 

allele (CC) after controlling for age, gender, diagnosis and tissue specificity. We 

then extracted total RNA from the cerebellums, checked for RNA quality, and 

prepared cDNA. Then we applied TaqMan qPCR assay (assay ID: 

Hs01000584_m1) to measure expression level of UNC13A using GAPDH as 

control. 



�16

Chapter 3. Results 

Chapter 3.1 Bioinformatics analysis of NGS data 

We carried out whole-genome Illumina sequencing for two patients (RB_10282 

and RB_7800) of aunt-niece relationship from a Mexican ALS family. These two 

samples have been tested and shown negative for all major known ALS muta-

tions including SOD1, FUS, TARDBP and C9orf72. High-quality sequences were 

achieved by Illumina HiSeq 2000 for the two patients with average whole-

genome coverage 23.7 and 11 (See Methods). 

We then conducted bioinformatics analysis for the two whole-genome sequenc-

ing data. The pipeline is shown in Figure 1. We first aligned the short reads to 

hg19 human reference genome using BWA, then called SNPs and indels using 

UnifiedGenotyper of GATK (51). We filtered out common variations with minor 

allele frequency (MAF) > 0.001 according to both NHLBI Exome and 1000 

Genome Project databases (73, 74), then picked up those shared by the two pa-

tients, followed by functional annotation to prioritize for deleterious variants which 

are either nonsynonymous or affecting splicing sites (75) (See Methods). Finally 

we manually checked the list to remove obvious artifacts (for example caused by 

low read-depth). This led to discovery of 72 possibly deleterious mutations 

shared by the two patients (Supplementary Table 2). PCR sequencing verified all 

of them. We also calculated evolutionary conservation score as well as functional 
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effects score to predict deleteriousness of mutations using multiple programs  

(data not shown). It’s interesting that among 72 genes we see several channel-

related genes such as CACNA2D1, TRPM2, DPP6, which are all related to 

channel activity. 

Figure 1. Bioinformatic pipeline for mutation identification. Left panel is about 

generating high-quality SNP/indel callings while the right panel shows 

procedures to prioritize for potential deleterious or disease-causing mutations. 

Chapter 3.2 Two DPP6 mutations identified for the two Mexican 
patients. 

Among the 76 rare or novel verified mutations, two are within DPP6 gene (V343E 

and A716V, see Figure 2). DPP6 has been shown associated with SALS in 

several GWAS and acts as a transmembrane protein with a large extracellular C-
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terminal domain. Functionally DPP6 is mostly studied as a part of A-type 

Potassium channel complex consisting of pore-forming Kv4 channel, Kv channel-

interacting protein (KChIP) and DPP6. The mutated amino acids are both located 

on the large extracellular domain. The mutation V343E is predicted as very 

deleterious by Polyphen2 (82) while A716V is predicted as possibly-damaging. 

Also, V343E is only one amino acid downstream a N-glycosylation locus and 

Valine to Glutamate change is very likely to repress N-glycosylation efficiency 

(83,84). Sequencing of other family members confirmed these two mutations are 

on the same haplotype. Sequencing of 90 Mexican controls found neither of the 

two mutations (Table 1). We also sequenced 75 familial and 190 sporadic ALS 

samples without any known ALS mutations, but we didn’t find these two 

mutations. 

Figure 2. Two DPP6 missense mutations. (A) The structures (65) of Kv4-KChIP-

DPP6 complex and the position of two mutated amino acids on the huge 
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extracellular domain of DPP6 (Panel A picture was created by Dr. Robert Brown).  

(B) Sanger sequencing conformation of the two missense mutations. Left panel: 

V343E; right panel: A716V.  (C) V343E might change N-linked glycosylation 

efficiency. N-linked glycosylation generally occurs at the sequon Asn-X-Ser/Thr, 

where oligosaccharide is attached to the nitrogen atom of Asparagine. V343E is 

next to a Asparagine and likely to repress the glycosylation efficiency.  

 

Table 1.  The Minor allele frequency (MAF) of two missions mutations. The 

coordinate is based on hg19 version of human genome. The mutation V343E is 

not seen in any of the control populations including NHLBI (73), 1000 Genome 

Project (74) and our in-house Mexican controls, while A716V is seen at a 

frequency of 0.02% in NHLBI project. Neither mutation is seen in our further 

screen of ALS patients without known ALS mutations. 

In order to search for more DPP6 nonsynonymous mutations, we designed 

primers and sequenced all exons of DPP6 (including different isoforms) for 75 

familial Caucasian ALS patients without any known ALS mutations to look for 



�20

novel DPP6 mutations. We didn’t find any more DPP6 mutations that are 

nonsynonymous or changing splicing sites. To our knowledge, no other DPP6 

nonsynonymous mutations have been found for ALS patients except for one 

mutation 883G>A found for one sporadic patient (85).  

Chapter 3.3 V343E disrupts DPP6 localization. 

One possibility of DPP6 poor expression is its membrane localization is 

disrupted. To investigate if the two mutations affect DPP6 localization, We first 

tried to sub-clone the rat DPP6 into pEGFP-N1 vectors and generated three 

mutants: V343E-DPP6-GFP, A716V-DPP6-GFP and V343E-A716V-DPP6-GFP. 

The constructs were then co-transfected to HEK-WT cells with membrane marker 

Mem-mCherry, and live images were captured by fluorescence microscope. We 

found that V343E obviously disrupts DPP6 membrane localization resulting in a 

diffused localization pattern in cytoplasm, while A716V shows similar results as in 

WT-DPP6 (Figure 3). And V343E-A716V double mutant, not surprisingly, 

disrupted DPP6 membrane localization, but also demonstrated punctate. Further 

experiments are needed to verify the punctate and the possible additive effects 

by double mutants. In summary, the above data are quite consistent with 

electrophysiology study that DPP6 is not expressing well, indicating loss-of-

function effect of V343E. 
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Figure 3. DPP6 membrane localization is affected by the patient mutations. 

Membrane marker Mem-mCherry was co-expressed with DPP6-GFP fusion 

protein in HEK-293 cells. An intensity plot along the white straight line is also 

shown. (A) WT-DPP6-GFP fusion protein is exclusively expressed on the plasma 

membrane, co-localizing with Mem-mCherry marker in around 50% HEK-293 

cells. (B) V343E-DPP6-GFP fusion protein is diffused in cytoplasm in almost 
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100% HEK-293 cells, indicating mutation V343E disrupts DPP6 membrane 

localization. (C) A716V-DPP6-GFP fusion protein shows similar localization 

pattern to WT-DPP6-GFP, that is, exclusively expressed on the plasma 

membrane in around 50% HEK-293 cells. (D) V343E-A716V-DPP6-GFP double 

mutant is expressed in cytoplasm in almost 100% HEK-293 cells, and 

interestingly we could also see some punctate. 

Chapter 3.4 Discovery of TGGA tandem repeats of UNC13A 

For regions surrounding rs12608932, we first tried to search for any functional 

annotation including transcription level, histone modification, DNaseI 

hypersensitivity clusters as well as transcription factor binding from ENCODE 

project database. Also rs12608932 falls into intron-19 that lacks of functional 

annotation. However, the whole intron-19 is highly conserved in primates and to 

some extent conserved in other distant species, suggesting possible biological 

function of this intron. 

We then set out to look at the genomic sequences surrounding rs12608932. We 

discovered there’s a possible perfect linkage disequilibrium between rs12608932 

and one TGGA tetranucleotide tandem repeat around 200bp downstream the 

SNP by manually investigating 20 available whole-genome sequences 

(Supplementary Figure 2). The sequencing depth is sufficient enough for calling 
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indels. We inferred from the sequencing data that rs12608932 non-risk allele is 

linked with 5- or 7-copy TGGA repeat; while risk allele is linked with 9-copy TGGA 

repeat or beyond (Figure 4). We then confirmed this linkage by sequencing 

rs12608932 and microsatellite analysis of TGGA repeat copy number in 

additional 380 Caucasian ALS DNA samples as well as 550 Caucasian control 

DNA samples (Supplementary Table 3), as well as online NGS data from 1000 

Genome Project and Simon Genome Diversity Project (Supplementary Table 4). 

 

Figure 4. There’s strong linkage disequilibrium between rs12608932 and TGGA/

TCCA tandem repeats. The figure here shows the TCCA repeats (opposite strand 

of TGGA repeats) in consistent with human genome reference. rs12608932 is 

located in the middle of gene, and in perfect association with only two other 

SNPs (Supplementary Table 5). TCCA tandem repeats (red rectangle) and 
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rs12608932 (blue rectangle) are further flanked by TCCA simple repeats. And 

allele A is linked with either 5 or 7 copies of TCCA, while risk allele C is always 

linked with 9 copies of TCCA. 

Linkage disequilibrium block analysis (data not shown) based on 1000 Genome 

Project data by Haploview showed region surrounding rs12608932 lacks strong 

linkage disequilibrium. Only two neighboring SNPs achieved an r2 score >= 0.8 

with rs12608932 and they are all within middle of intron without obvious function 

(Supplementary Table 5). We sequence several neighboring SNPs in control and 

ALS samples and none of them achieved a higher odds ratio than rs12608932. 

This strengthens the likelihood of tetranucleotide repeats as causal variants. 

Most tandem repeats studied in literature are flanked by unique sequences. 

However, in our case we found the TGGA tetranucleotide tandem repeats and 

rs12608932 are further flanked by larger TGGA simple sequence cluster, which 

are annotated as aggregation of closely spaced smaller TGGA simple sequence 

region by RepeatMasker (Figure 4). The simple sequence cluster in intron-19 is 

around 1.4 kb long, with only 3% sequences as guanine. Interestingly there are 

three introns within UNC13A containing such TGGA simple sequence cluster 

(Supplementary Figure 3). We then tried to search such TGGA/TCCA simple se-



�25

quence clusters genome-wide (See methods). We identified 640 such cluster, 

with 350 of them located within 297 genes. Gene enrichment analysis by GREAT  

(81) showed these 297 genes are enriched for channel and membrane genes 

(Supplementary Table 6). This may indicate the specific role of such TGGA sim-

ple sequence cluster in neuronal genes and functions. 

Chapter 3.5 Potential biophysical properties of TGGA repeats. 

Then what’s the biological function of such repeats? The intron containing TGGA 

repeats are highly conserved among primates, and conserved to some extent 

among other mammals according to UCSC Genome Browser. Surprisingly, 

mouse UNC13A gene also contains similar repetitive sequences in the 

corresponding intron (defined by two conserved adjacent exons). 

We then hypothesized that such repeats many have distinct functions due to its 

unique repetitive nature, for example, TGGA repeats serve as binding motif of 

certain protein or protein complex. We searched all possible online ChIP-seq or 

RIP-seq database such as ENCODE Project database (86), however, we didn’t 

find any potential transcription factor or splicing factor that specifically bind such 

sequences. Then we switched to Epigenome Roadmap Project database (87), 

and interestingly discovered two ChIP-seq datasets where TGGA simple 
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sequence clusters are specifically bound. One is CBP (Creb-binding protein) in 

K562 line (Supplementary Figure 4) and the other is H3K56ac and H3K23me2 in 

H1 line. Both H3K56ac and H3K23me2 are strongly associated with DNA 

replication, damage and repair processes.  

Also, it’s reasonable to hypothesize the possible G-quadruplex structures for 

TGGA repeats due to the two consecutive guanines in the repeats. This can be 

easily predicted by G-quadruplex predicting software such as QGRS (79). We 

then tested both 5-copy and 9-copy IDT oligos (~200bp) in circular dichroism and 

indeed observed curve indicative of G-quadruplex and addition of Potassium 

could further induce G-quadruplex structures (79). Also, 9-copy sequence might 

have a stronger G-quadruplex structure than 5-copy (Figure 5).  
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Figure 5. Circular dichroism on 200bp oligos verified the G-quadruplex structures 

in vitro. Addition of KCl cause a slight leftward shift of peaks for both 5-copy and 

9-copy oligos, but also cause a big increase in CD value of 9-copy oligos, 

suggesting the presence of a strong G-quadruplex structure. 

(5C : 5-copy oligo, 9C : 9-copy oligo) 

Chapter 3.6 Influence of rs12608932 on UNC13A gene expres-
sion 

We are interested in if rs12608932 haplotype (including TGGA tetra nucleotide 

polymorphism) may affect UNC13A gene expression. We first constructed two 

clones where we inserted each rs12608932 haplotype (the whole intron-19 plus 

partial flanking exon) into the dual luciferase system. We then transfected the 

plasmid into Hela cell, and later measured mRNA expression. We observed the 

splicing efficiency in risk-allele plasmid is decreased significantly (data not 

shown). However, we later found cloning is very challenging and cannot 

guarantee the unstable repeats sequences are always correct in our construct 

thus we don’t trust the results of this luciferase assay. 

We then started to test if rs12608932 affects UNC13A expression in neuronal 

tissues. We genotyped and cut 44 human cerebellums homozygous for 

rs12608932 non-risk allele (AA) and 24 cerebellums homozygous for risk allele 

(CC), prepared RNA and measured UNC13A expression level by qPCR using 
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Taqman probe. We found that UNC13A expression is slightly yet significantly 

reduced in risk-allele samples (Figure 6). We pulled out cerebellum RNA 

expression data from Braineac project and found their data shared similar trend 

though not significant. Interestingly, Braineac data (88) identified a significant 

association between rs12608932 risk allele and expression of KCNN1, a voltage-

independent calcium-activated potassium channel gene. We also used the same 

sets of samples to compare splicing efficiency between AA and CC genotypes, 

but found no significant difference (data not shown). Then in order to test the loss-

of-function hypothesis of UNC13A in ALS, we acquired UNC13A knockout mice 

from Professor Nils Brose, crossed with SOD1-G93A mice and discovered that 

UNC13A knockout could lead to a slight yet significant shorter survival of ALS 

mice (Figure 7).  
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Figure 6. Left panel: Homozygous risk allele(CC) of rs12608932 is significantly 

yet slightly associated with reduced overall expression of UNC13A in 

cerebellums (T-test p-value = 0.013). Here UNC13A expression level is 

normalized by GAPDH. Right panel: Cerebellum data pulled from Braineac 

Project show the same trend but not significant (T-test P-value = 0.08). The RNA 

expression data from Braineac is based on exon array platform and already 

normalized. 

 

Figure 7. (A) Genotyping of UNC13A knockout mice. Double band indicates one 

copy of the gene has been knocked out. (B) UNC13A knockout SOD1 ALS mice 

show a slightly yet significantly shorter survival compared to the wild-type. (Log 

rank test p-value = 0.023) 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Chapter 4. DISCUSSIONS 

Genome-wide association study (GWAS) has identified DPP6 as a candidate 

ALS gene for sporadic patients. So other groups have already done sequencing 

for DPP6 but barely find any mutation except for one missense mutation from a 

sporadic patient. Here we carried out whole-genome sequencing and discovered 

two missense mutations from a Mexican ALS family. V343E is totally novel while 

A716V has an extremely low all frequency at 0.02%. Both mutations are 

predicted deleterious bioinformatically. V343E is upon an N-linked glysosylation 

sequon and possibly affect glycosylation efficiency. Given the mutation database 

we used for filter do not contain information for Mestizo  Mexicans, we screened 

Mestizo controls and didn’t find either mutation. We then set out to study the 

biological effect of these two mutations. For mutation V343E, the 

electrophysiological data is quite consistent with membrane localization 

disruption, both suggesting poor expression of DPP6 caused by the loss-of-

function effect of V343E. As for A716V, the membrane location is not affected, 

indicating other mechanism or function contribute to the depolarizing shift in 

electrophysiological study. According to our knowledge, this is the first report of 

discovering DPP6 nonsynonymous mutations from familial ALS family and 

showing biological effects of the mutations.  
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But obviously we cannot conclude such DPP6 mutations directly cause ALS in 

this family pedigree because first, still multiple nonsynonymous mutations were 

discovered from whole-genome sequencing and we cannot rule out the 

possibility that other mutations cause or contribute to the disease; second, this 

Mexican family pedigree has one obligate carrier mother, indicating the 

penetrance of disease-causing mutations is not complete. However, when we set 

out to look for more DPP6 mutations in familial ALS patients, we couldn’t find any 

more just like other groups. This may indicate such ALS-related DPP6 mutations 

are extremely rare, or play a minor genetics role contributing to the disease. 

There’s another explanation that DPP6 mutation serves as a genetics factor 

specific for Mexican population. We may need to sequence more patient samples 

in order to look for more evidence for DPP6 in ALS.  

UNC13A is an extremely attractive candidate for sporadic ALS genetics, because 

it’s one of the very few GWAS signals that could be replicated in joint studies and 

also associated with patient survival in addition to susceptibility. The discovery of 

TGGA tandem repeats is very encouraging because: 1. the repeat is located 

within a LD-lacking genomic region, but  in almost perfect linkage equilibrium with 

GWAS SNP interestingly only in Caucasian population; 2. we’ve already learned 

a huge lesson from C9ORF72 story that repetitive sequences could be the real 

cause to explain ALS GWAS signal. Then the huge question is what’s the 

biological function of such repeats?  
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We’ve accumulated the following direct or indirect evidences or observations 

about the TGGA repeats: First, such sequences are well conserved and show up 

three times in UNC13A introns and carried by lots of channel-related genes, 

suggesting functionality of the repeats possibly in neuroscience and neurology. 

Second, the potential G-quadruplex with sequences resembling telomere 

sequences, the super unstable sequence nature, the possible binding to 

chromatin protein and H3K56ac (DNA damage histone marker) all suggest a 

possible role of TGGA large repeats in epigenetic level regulation, especially 

DNA damage-related processes.  However, here we only verified potential G-

quadruplex in vitro, and speculated super unstable nature of TGGA repeats from 

our failure of molecular cloning, and still need to verify the reliability of histone 

ChIP-seq data. So lots of work should be done further to study the potential 

biological function of TGGA repeats here.  

Another perspective of function study is, regardless of what TGGA is doing, we 

could simply measure if UNC13A gene expression is different given two 

genotypes (eQTL study). We first tried to insert the sequence into luciferase for a 

reporter system, but molecular cloning of this whole-length TGGA repeats turned 

out extremely challenging. But what’s encouraging is we see a slight yet 

significant reduction in UNC13A expression in cerebellums homozygous for risk 

alleles. Most importantly, this trend is consistent with our later mice work that 

UNC13A knockout mice have shorter survival compared to control. These data 
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suggest that UNC13A could play a loss-of-function role in affecting sporadic ALS 

patient survival. However, all the above need to be further verified, and the 

followup work is pathology study for our mice, for instance, to compare the 

difference for ventral horn neuron count and innervation of neuromuscular 

junction between UNC13A knockout and control mice. 

Appendices 

 

Supplementary Figure 1. Pedigree for the Mexican Mestizo ALS family, including 

patients of aunt and niece relationship and a obligate carrier mother. 
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Supplementary Figure 2. Example of haplotype inference from whole-genome 

sequencing. The pile-up of 100bp NGS sequences of four ALS patients (P1, P2, 

P3 and P4) were aligned to human reference genome and shown in IGV (Inte-

grative Genomic Viewer). The colors for CC individual at TCCA sites are caused 

by misalignment of 9-copy TCCA reads onto 5-copy reference genome. 
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Supplementary Figure 3. There are two additional similar TGGA repeats. The up-

per part is gene structure of UNC13A including multiple exons and introns, and 

the lower part is the repeats annotation by RepeatMasker in the corresponding 

genomic region.  

 

Supplementary Figure 4. ChIP-seq of Creb-binding protein in K562 lines. TGGA/

TCCA repeats are specifically bound by this chromatin regulator. For the two 

ChIP-seq datasets, reads are uniquely mapped for the repeats despite the 

repetitive nature of the sequence. 
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Supplementary Table 1. Sequence of the two Ultramer oligos used in CD experi-

ment. 

Chr # Coordinate ref-AA alt-AA Gene Name

1 36638199 R W MAP7D1

1 40322975 D N TRIT1

1 160305045 T M COPA

1 165218846 E Q LMX1A

1 206858647 T P MAPKAPK2

10 73475767 V I C10orf105

10 91143330 A D IFIT1B

11 1277993 Q P MUC5B

UNC13A-
ssODN-5copy 

ATGGGATGGATGGAAGTGTGGTTGAGTTATTAGAAGGAAG
ATTGAGTAGATAGGTGAATTTGTTGATAGTCAGATGGGTAG
ATAGGTAGATGGATGGATGGATGGATGGATGTATAGGCAGA
TGGACAAATGGATGAATGGGTGGGTGGATGAATGGAAGGA
TGTGTGGTTGAACT

UNC13A-
ssODN-9copy 

ATGGGATGGATGGAAGTGTGGTTGAGTTATTAGAAGGAAG
ATTGAGTAGATAGGTGAATTTGTTGATAGTCAGATGGGTAG
ATAGGTAGATGGATGGATGGATGGATGGATGGATGGATGG
ATGGATGTATAGGCAGATGGACAAATGGATGAATGGGTGG
GTGGATGAATGGAAGGATGTGTGGTTGAACT



�37

11 3242950 L S C11orf36

11 21581854 H Y NELL1

11 62292219 L M AHNAK

11 66114821 A T B3GNT1

11 66473307 G D SPTBN2

11 124180278 P S OR8D1

12 55794446 M T OR6C65

12 56642623 D N ANKRD52

12 97073483 I T C12orf63

12 131456080 Y D GPR133

13 102047650 M V NALCN

14 67664955 P L FAM71D

14 73640432 R K PSEN1

16 10783873 E K TEKT5

16 30980680 P L SETD1A

16 31150508 P L PRSS36

16 58075631 G S MMP15

17 37099080 V A FBXO47

17 43318948 P R FMNL1

17 73620469 L R MYO15B

17 77705134 C S ENPP7

17 81006592 D N B3GNTL1

18 18975500 D E GREB1L

Chr # Coordinate ref-AA alt-AA Gene Name
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19 1754783 E D ONECUT3

19 2226285 K N DOT1L

19 6707282 G S C3

19 18700492 T M C19orf60

19 36530245 R C THAP8

19 51607669 V A CTU1

19 51815108 P A IGLON5

19 52090222 G V ZNF175

19 52272549 P L FPR2

19 58234590 A V ZNF671

2 131520942 P A FAM123C

2 152470809 A V NEB

2 183095749 R H PDE1A

2 183291314 P L PDE1A

2 202412312 E D ALS2CR11

2 228144563 G E COL4A3

2 237276914 R H IQCA1

2 242674703 G R D2HGDH

21 45845642 R W TRPM2

21 45953710 R C TSPEAR

21 47666562 V A MCM3AP

22 36902393 S L FOXRED2

3 130159607 I T COL6A5

Chr # Coordinate ref-AA alt-AA Gene Name
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Supplementary Table 2. List of mutations identified from DPP6 NGS bioinformat-

ics analysis. 

5 80409656 E G RASGRF2

6 26056620 P S HIST1H1C

6 41774685 A P USP49

6 117246727 T K RFX6

7 81714123 V G CACNA2D1

7 126173250 R Q GRM8

7 140221738 R H DENND2A

7 154585866 V E DPP6

7 154681010 A V DPP6

8 21768204 R W DOK2

8 42693170 V I THAP1

8 144943082 A V EPPK1

8 145608403 V L ADCK5

9 13121859 V L MPDZ

9 78796352 A V PCSK5

9 88937978 D G ZCCHC6

X 2407163 M T ZBED1

X 16965094 C Y REPS2

Chr # Coordinate ref-AA alt-AA Gene Name
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Supplementary Table 3. Information of samples used for Sanger sequencing to 

verify LD. Linkage disequilibrium score (r2) between rs12608932 and TGGA tan-

dem repeats based on Sanger sequencing data for different samples. All sam-

ples are from Caucasian population. We could see rs1260892 is strongly linked 

with TGGA repeats. 

 

Supplementary Table 4.  LD score (r2) for three ethnicities based on next-

generation sequencing data from both Simon Project (high-depth) and 1000 

Genome project (low-depth). We could see such strong LD only exists for 

Caucasian population. 
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Supplementary Table 5. Only two SNP rs78549703 and rs12973192 are in strong 

LD (r2 >= 0.8) with rs12608932. According to 1000 Genome Project data, LD 

score and minor allele frequency of these three SNPs are shown here  (EUR: 

European, ASN : Asian, AFR : African). 

 

Supplementary Table 6. Gene enrichment analysis by GREAT (82), which first 

annotates noncoding genomic region and then calculates statistical enrichments 

for association between the genomic region and annotation.  
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