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Abstract 

 Several types of cell death including apoptosis, necroptosis and autophagic cell 

death play diverse roles in different biological processes. In addition to its 

essential roles in development and metabolism, programmed cell death is 

indispensable for host immunity. Interestingly, current research shows that these 

processes are connected but the nature and extent of the crosstalk between host 

defense and programmed cell death still remains an area of great interest. 

The NFκB factor Relish is best characterized as a crucial component of 

Drosophila Imd pathway, which generates immune responses by producing 

antimicrobial peptides following Gram-negative bacterial infection. In this 

dissertation, I demonstrate a novel role of Relish in developmentally programmed 

cell death. During metamorphosis, Drosophila salivary glands are degraded by 

the collective actions of caspase-dependent and autophagic cell death. Here I 

show that Relish mutants displayed improper salivary gland degradation and the 

persistence of salivary gland cell fragments. Expression of Relish in salivary 

glands rescued this phenomenon. Among the upstream components of the Imd 

pathway, mutants in the bacterial peptidoglycan receptors, PGRP-LC and-LE 

also exhibited similar defects in gland degradation, but surprisingly none of the 

other Imd pathway components examined had any such effect. As both Relish 

and PGRPs are critical for host defense against bacterial infection, our next 

concern was the role of host microflora in salivary gland degradation. However, 

observation of normal salivary gland cell death in axenic flies ruled out possible 
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involvement of microbiota. Robust genetic analyses proved that Relish-mediated 

cell death occurs in caspase-independent but autophagy-dependent manner. 

Moreover, expressions of either active version of Relish or PGRP-LC resulted in 

the premature gland degradation and induction of autophagy. Finally, I show that 

Relish controls autophagy by regulating the expression of Atg1, a core 

component of the autophagy pathway. Together these findings suggest the 

existence of a novel pathway, which connects immune response factors to 

developmentally programmed cell death.  
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CHAPTER 1. 

 

Introduction 

Cell death is a natural and essential process that occurs from birth to death in all 

metazoans. Together with cell multiplication and survival, cell death is needed to 

ensure the proper development and homeostasis of organisms. Dysregulation in 

the balance among the pathways that facilitate cell death leads to abnormal 

conditions, ranging from different diseases to death. So, it is crucial to learn the 

intricacies of cell death and how this balance is maintained.  

Cell death is induced by means of varied stimuli, such as nutrient deprivation; 

production of excess cells, or cellular damage or infection (Jacobson et al., 

1997). Nutrient sensing is critical for survival of cells as starvation leads to 

developmental delays and potentially death in the case of prolonged nutrient 

deprivation. Cell death is also essential in the elimination of damaged cells 

(Krammer, 2000). Persistence of damaged cells may result in different 

abnormalities including uncontrolled growth. During the course of infection, cells 

with severe pathogen load are often eliminated by cell death to guarantee 

organism safety (Huang et al., 2015; Miao et al., 2010). Finally, during 

development, proper tissue and organ structure formation is dependent on 

various forms of programmed cell death (Zakeri et al., 1994) (Vaux and 

Korsmeyer, 1999). 
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Depending on the morphological characteristics, cell death is classified into 

different categories, including apoptosis, necrosis and autophagic cell death 

(Kroemer et al., 2009). However, recently it has also been classified as 

enzymatic and non-enzymatic, immunogenic or non-immunogenic, and 

programmed or accidental.  

 

Part I. Apoptosis 

The most prevalent form of cell death is termed ”apoptosis”. Apoptotic cell death 

was discovered in the early seventies (Kerr et al., 1972) .Subsequently, Bob 

Horvitz and colleagues used the nematode Caenorhabtiditis elegans to 

demonstrate that this form of cell death is genetically programmed (Horvitz, 

1999). In animals, apoptosis is common during development (Meier et al., 2000). 

It is necessary for the maintenance of some cell populations and the removal of 

obsolete tissues (Kiess and Gallaher, 1998). Apoptosis is also necessary for the 

host defense as this form of cell death gets induced upon pathogen infection 

(Kepp et al., 2009; Zhang et al., 2012). Lastly cells that incur damage via cell 

division or by some mutagens are also eliminated through apoptosis (Brodsky et 

al., 2000). 

 

Part I.A. Morphological Features 

During apoptosis, cells undergo drastic morphological changes. The most 

stereotypic morphological phenotype associated with apoptosis is condensation 
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of chromatin, also known as “pyknosis”. This is followed by karyorrhexis, or 

fragmentation of the chromatin. In addition to the nucleus, the golgi, endoplasmic 

reticulum and mitochondria also undergo fragmentation (Kerr et al., 1972; 

Kuwana et al., 2005; Lane et al., 2005; Williams et al., 1974; Wyllie, 1980). 

Another distinctive feature of apoptosis is blebbing of the plasma membrane and 

the packaging of cellular material into apoptotic bodies, which separate from the 

cells in a process called “budding” (Orlando et al., 2006). Subsequently, these 

apoptotic bodies are phagocytosed, which enables the cellular contents to be 

degraded without triggering inflammatory responses (Kurosaka et al., 2003). 

 

Part I.B. Mechanism 

The mechanism of apoptosis is quite complex, as it involves a series of events 

and numerous components, particularly the cysteinyl-aspartate specific 

proteases (caspases) (Thornberry and Lazebnik, 1998). Careful dissection of the 

factors and events involved in apoptosis revealed that both an intrinsic and 

extrinsic pathway are responsible for activation and execution of this process. 

 

IB.a. Intrinsic Pathway 

The intrinsic pathway is activated within a cell as a result of stressful conditions, 

such as hypoxia, infection, and radiation. These cytotoxic insults result in the 

activation of Bcl-2 homology (BH3) domain containing proteins, which inhibits the 

anti-apoptotic factors and promote the activation of the pro-apoptotic proteins, 
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Bak and Bax. Subsequently, activated Bax and Bak oligomerize and cause pore 

formation in mitochondria (Newmeyer et al., 1994). The leakage of Cytochrome 

C proteins from mitochondria into the cytosol triggers the formation of the 

“apoptosome” complex, which consists of Cytochrome C, ATP and Apoptotic 

protease activating factor 1 (Apaf-1) (Chinnaiyan, 1999; Saelens et al., 2004; 

Youle and Strasser, 2008). The apoptosome then recruits and activates pro-

caspase 9. Subsequently downstream caspases, -3, -6, and -7 are cleaved and 

activated. In addition to this particular complex formation, loss of mitochondrial 

permeability releases several other proteins, including SMAC/DIABLO, which aid 

in the apoptosis process by inhibiting the IAP (inhibitor of Apoptosis) proteins, 

such as XIAP. Under normal conditions, IAPs sequester and block the activation 

of caspases, -9, -3, and -7, this IAP inhibition enables caspase induction and 

promotes apoptosis (Duckett et al., 1996; van Loo et al., 2002). 

 

IB.b. Extrinsic Pathway 

The extrinsic pathway is activated upon interaction between certain death 

inducing ligands and receptors, such as TNFR1, Fas and TRAIL-R (Trauth et al., 

1989; Yonehara et al., 1989). Upon ligand binding receptor oligomerization 

occurs, which leads to the formation of receptor specific signaling complexes 

such as complex II or the Death inducing signaling complex (DISC). This 

complex also includes the protein Fas Associated Death Domain (FADD) or 

TNFR-associated death domain (TRADD) which are essential for the recruitment 
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of caspase-8 via its Death Effector Domain (DED) (Hsu et al., 1995; Kischkel et 

al., 1995; Sprick et al., 2000). The executioner caspases, -3 and -7 are cleaved 

and activated upon dimerization and subsequent activation of caspase-8.  

However, the activated caspase-8 can also stimulate the intrinsic pathway via 

cleavage and activation of the BH3 only protein Bid. Bid subsequently activates 

Bax and Bak, thereby engaging the intrinsic pathway (Li et al., 1998).  

 

Part II Necrosis 

Compared to apoptosis, necrosis has been considered an unregulated, 

accidental form of cell death. Necrotic cell death occurs following extreme trauma 

to the cells, such as rapid temperature change, osmotic shock, mechanical 

stress, hypoxia or infection.  

 

Part II.A. Morphological Features 

During necrosis, the cellular contents swell and plasma membrane deformities 

are observed early. This is followed by the loss of plasma membrane integrity 

and in the formation of pyknotic nuclei by chromatin condensation. Irregular 

degradation of chromatin follows and the cytoplasmic contents of the cells are 

released into the extracellular environment (Laster et al., 1988). This rupture of 

the plasma membrane causes the leakage of Damage Associated Molecular 

Pattern (DAMP) molecules, which are potent stimulants of the inflammatory 

pathways (Scaffidi et al., 2002). 
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Part II.B Necroptosis 

Early discoveries and pathophysiological evidences suggested that necrosis is a 

disorderly cell death pathway, which can only occur after traumatic injury to the 

cells. However, recent scientific work proved that necrosis type of cell death 

could also be programmed and more recently multiple necrosis-regulating 

pathways are discovered (Degterev et al., 2005). This genetically programmed 

form of necrotic cell death is termed as “necroptosis”.   

 

Part II.C Necroptosis: Mechanism 

Necroptosis is generally induced when apoptosis is inhibited in the cells. Various 

death receptors such as TNFR1, Fas, TRAIL-R and Toll-like receptors including 

TLR3 and TLR4 are involved in necroptosis (He et al., 2011; Holler et al., 2000; 

Jouan-Lanhouet et al., 2012). Necroptosis is activated by proapoptotic ligands 

such as TNFα, FasL, and TRAIL in the absence of apoptosis or by different 

pathogen components such as bacterial lipopolysaccharide and viral nucleic 

acids (Upton et al., 2012). TNFα initiated necroptosis is the most well understood 

induction mechanism of this process. Stimulation of TNFR1 by TNFα leads to the 

formation of complex II, which consists of FADD and RIPK1.Caspase-8 

recruitment to this complex and activation results in apoptosis. However, when 

apoptosis is inhibited, RIPK1 and the ser/thr kinase RIPK3 are stabilized and 

they interact through the common RIP homotypic interaction motif (RHIM) (He et 
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al., 2009). RIPK1 and RIPK3 engagement forms a fibrillar structure, called a 

necrosome (Vanden Berghe et al., 2010). In the necrosome RIPK1 

phosphorylates RIPK3, which recruits the protein mixed lineage kinase domain-

like (MLKL) (Li et al., 2012). RIPK3 then phosphorylates MLKL and that leads to 

the oligomerization and translocation of MLKL to the plasma membrane(Sun et 

al., 2012). Here, MLKL damages the plasma membrane through a currently 

unknown mechanism. The current hypothesis is that MLKL upon localization to 

the plasma membrane induces ion influx either directly by pore formation or 

indirectly by influencing the ion channels (Dondelinger et al., 2014).  

 

Part III Pyroptosis 

Pyroptosis is another form of programed cell death that occurs exclusively in the 

context of infection. Pyroptosis was first detected in macrophages infected with 

Shigella flexneri. To date, it has only been observed in macrophages and 

dendritic cells (Zychlinsky et al., 1992). Although it is a caspase dependent cell 

death, pyroptosis is different from apoptosis in the distinct morphological features 

observed and the alternate mechanism involved.  
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Part III.A. Morphological Features 

The most distinct feature of pyroptosis is the rupturing of the plasma membrane. 

During pyroptosis DNA damage occurs but unlike apoptosis pyknosis does not 

happen. Cytoplasmic swelling of pyroptotic cells causes formation of protrusions, 

which eventually rupture and enables the cellular contents to leak into the 

extracellular milieu (Fink and Cookson, 2006). 

 

Part III.B. Mechanism 

Pyroptosis is essential against intracellular infection. Different components of the 

pathogen such as bacterial LPS, toxin or cytosolic DNA induce the formation of a 

platform, called the Inflammasome. This multicomponent platform is necessary 

for the process inflammation, which is responsible for the production of the 

inflammatory cytokines, interleukin-1β (IL-1β) and interleukin-18 (IL-18) (Martinon 

et al., 2002). During this canonical inflammation process, caspase-1 is activated, 

which drives the cleavage and subsequent activation of cytokines (Bergsbaken 

and Cookson, 2007). However it has recently been found that caspase-1 also 

cleaves Gasdermin-D and this event is necessary for pyroptosis (Shi et al., 

2015). Specifically, cleaved Gasdermin-D associates with the plasma membrane 

and possibly other membrane bound organelles, oligomerizes and induces 

membrane permealization, which ultimately leads to cell lysis and cell death 

(Ding et al., 2016; Liu et al., 2016). 
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Part IV Autophagy 

Autophagy is a catabolic process, which encompasses sequestration and 

degradation of cytoplasmic contents of cells. The term autophagy originated from 

a Greek word, meaning, “self-eating”. Novikoff showed the first structural proof of 

an autophagic structure in 1959 in the epithelial cells of the kidneys. Shortly after, 

in 1962 Ashford and Potter confirmed the existence of vesicles that contain 

cytoplasmic material in rat hepatic cells (Ashford and Porter, 1962; Novikoff and 

Essner, 1962). Cell biologist Yoshinori Ohsumi identified many genes in the 

autophagy pathway by studying the process in Saccharomyces cerevisiae, which 

won him the Nobel Prize in 2016.  

There are mainly three different main forms of autophagy, namely (1) chaperone-

mediated autophagy (2) microautophagy and (3) macroautophagy. Chaperone-

mediated autophagy involves shuttling of a particular set of proteins, containing 

the KFERQ amino acid sequence to lysosomes through channels made-up 

mostly of LAMP2A proteins (Terlecky and Dice, 1993). During Microautophagy 

small portions of cytoplasm are engulfed by lysosomal invaginations, followed by 

degradation within the lysosomes. This process and its components are still not 

defined properly (Ahlberg et al., 1982). The process macroautophagy involves 

encapsulation of cytoplasmic material into a double membrane structure, called 

autophagosomes. The ensuing fusion of autophagomes and lysosomes 

facilitates the degradation of the encapsulated cytoplasmic material. 

Macroautophagy is the most studied and well-documented autophagy pathway. 



	
  

	
  

10	
  

So, from now on, the term autophagy will denote macroautophagy unless stated 

otherwise. 

 

Part IV.A. Autophagy Mechanism 

Autophagy is induced in cells under a variety of conditions, including nutrient 

deprivation, hypoxia, and infection. It begins with the formation of vacuolar 

structures, called autophagosomes. The origin of this membranous structure is 

still controversial, however the smooth endoplasmic reticulum and in some 

instances the plasma membrane and mitochondria are hypothesized as the 

possible sources(Dunn, 1990; Hailey et al., 2010). The assembly of the 

autophagosome is initiated by the localization of multiple autophagic proteins to a 

particular site called phagophore assembly site (PAS). Also formed at the PAS is 

the isolation membrane, which sequesters the cytoplasmic content and 

generates the autophagosome. The outer membrane of autophagosomes later 

fuses with the lysosomes and lysosomal enzymes degrade both the inner 

membrane and the cytoplasmic contents (Mizushima and Komatsu, 2011).  

 

Part IV.B. Autophagy Machinery 

Much of what is currently known about the autophagy pathway and its 

components is from studies in yeast(Harding et al., 1995; Tsukada and Ohsumi, 

1993). Most of the autophagy-related (Atg) genes that were identified in the yeast 

system later found to be conserved in higher species, as well. The autophagy 
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pathway progresses via coordinated formation of different protein complexes, 

such as Atg1 complex, vacuolar protein sorting 34 (vps34) complex, and the 

atg5-atg12 complex.  

Genetic studies place the formation of Atg1 complex as the most upstream event 

in the autophagic pathway. This particular complex consists of the 

serine/threonine kinase Atg1 (ULK1/ULK2 in mammals), Atg13, Atg101, FIP200 

(RBCC1 in mammals and Atg17 in Drosophila). The kinase activity of Atg1 is 

necessary for the activation of this pathway and expression of Atg1 alone can 

induce autophagy in multiple systems(Berry and Baehrecke, 2007; Scott et al., 

2007). Various studies suggest a dual role of Atg1 in phagophore assembly; Atg1 

both recruits of other autophagy proteins and phosphorylates key autophagy 

components (Kamada et al., 2000; Scott et al., 2004).  

An essential part of the autophagy induction is the establishment of the 

autophagosomal membrane. An important constituent of the autophagosomal 

membrane is the phospholipid phosphatidylinositol 3-phosphate (PI3P), which is 

generated by the action of phostidylinositol 3-kinase (PI3K) complex activity. The 

PI3K complex is comprised of the kinase Vps34, the serine/ threonine kinase 

Vps15 (p150 in mammals), Atg6 (Beclin1 in mammals), Atg14 and Vps38 

(UVRAG in mammals). The nucleation and further elongation of the isolation 

membrane is dependent on these proteins. Furthermore different effectors such 

as Atg18 (WIPI1 in mammals) are also recruited to the autophagosomal 
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membrane through interaction with PI3P and regulate the size of the vesicles 

(Efe et al., 2007; Kihara et al., 2001; Takahashi et al., 2007). 

The ubiquitin like conjugation systems Atg12-Atg5-Atg16 and Atg8 (LC3 in 

mammals)-Phosphatidylethanolamine (Atg8-PE) play crucial roles in cargo 

selection and further membrane formation. Atg12 is activated by the E1 enzyme 

Atg7 and transferred to E2 enzyme Atg10. Finally Atg12 is conjugated to Atg5 via 

an irreversible covalent bond with an internal lysine residue in Atg5. The protein 

Atg16 binds this Atg12-Atg5 complex and further oligomerization results in the 

formation of a tetrameric complex, which is localized to the isolation membrane 

(Kuma et al., 2002; Shintani et al., 1999). By contrast, the Atg8 protein is cleaved 

by the cysteine protease Atg4 and this cleavage exposes the c-terminal glycine 

residue of the Atg8. The Atg7 enzyme activates the Atg8, which facilitates Atg8 

transfer to Atg3. Finally, Atg8 is conjugated to the Phosphtidylethanolamine (PE) 

to form the Atg8-PE complex, which is observed both in isolation and in 

autophagosomal membranes. This lipid-conjugated form of Atg8 is widely used 

as the biomarker for autophagy induction (Hanada et al., 2007; Ichimura et al., 

2000; Tanida et al., 1999). 

 

Part IV.C. Autophagy regulation 

As discussed earlier, autophagy is regulated by different factors and conditions, 

including nutrients, energy, pathogens and hormones. Probably the best-

characterized and most commonly found autophagy regulator is the availability of 
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nutrients. The protein TOR (target of rapamycin) negatively regulates autophagy 

in the presence of nutrients (Chang and Neufeld, 2009). Recent discoveries 

showed that in response to amino acids, Ras-related small GTPases (Rag) 

cause TOR translocation to protein Ras homolog enriched in brain (Rheb) 

containing compartments. The direct interaction between GTP bound Rheb and 

TOR activates the TOR protein, which inhibits downstream Atg1 activity(Kim et 

al., 2008). However during starvation TOR is inhibited itself and autophagy is 

induced. In addition to the TOR pathway autophagy is also negatively regulated 

during nutrient rich condition by the Ras/cAMP Protein Kinase A (PKA) signaling 

pathway. Here, PKA inhibits autophagy by phosphorylating Atg1, which causes 

Atg1 detachment from the PAS (Budovskaya et al., 2004).
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Figure 1.1 The Autophagy Core Pathway 
 
The most upstream event of the autophagy pathway is the formation of Atg1 

complex. This is followed by the generation of Vps34 complex. These complexes 

are formed at the PAS site and that leads to the formation of the isolation 

membrane. Further molecular events, including Atg12-Atg5-Atg16 conjugation 

cycle, Atg8 cleavage and lipidation result in the formation of autophagosome, 

which later fuses with lysosome and lysosomal enzymes to degrade the internal 

components of the autophagosome.  
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 Under metabolic stress, the drastic change in the ratio of ATP and AMP 

activates the LKB1-AMPK pathway, which results in the activation of AMPK (5`-

AMP activated Protein Kinase). Activated AMPK phosphorylates the Tuberous 

Sclerosis (TSC) complex. The phosphorylated TSC complex inhibits TOR activity 

and promotes autophagy (Inoki et al., 2003).  

 

Part V. Autophagy and Cell Death 

Autophagy is necessary for maintaining cellular homeostasis. Under nutrient 

deprived condition, the induction of autophagy recycles cellular material and 

eliminates damaged or unwanted organelles to protect the cells from early 

demise. 

In addition to its role as a pro-survival mechanism, in some instances autophagy 

has also been shown to promote cell death. However, it is still a matter of debate 

whether autophagy induction actually kills cells or the presence of autophagic 

markers in the dying cells are marks of cells` last-ditch effort to survive.  

Nonetheless recent discoveries have shown that autophagy induction leads to 

cell death both in vitro and in vivo under certain conditions. In higher eukaryotes 

the double knockout of the key apoptotic genes Bax and Bak renders the cells 

deficient in mitochondrial apoptosis. Under these genetic conditions, further 

exposure to the DNA damaging agents forces the cells to undergo autophagic 

cell death. In this case, two key autophagy components ATG5 and Beclin-1 play 

important role as their knockdown protects cells (Shimizu et al., 2004). Similarly, 
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upon inhibition of Caspase-8, L929 fibroblasts undergo autophagic cell death that 

is dependent on Beclin-1 and Atg7 (Yu et al., 2004a). Caspse-10 inhibition in 

multiple myeloma cell lines also induces autophagic cell death (Lamy et al., 

2013). These examples pertinently show induction of autophagic cell death when 

apoptosis is blocked. However, in some cases autophagy can be induced even 

when active apoptosis tools are present. The overexpression of mutant Beclin-1 

(lacks the Bcl-2 binding domain) can induce autophagic cell death, which can be 

blocked by knockdown of downstream autophagy gene Atg5. In another 

example, overexpression of the Ras oncogene induces Beclin-1 expression that 

activates autophagy in ovarian surface epithelial cell line. Interestingly, Ras also 

induces the expression of Noxa, a BH-3 only protein. The expression of Noxa is 

necessary for autophagy induction as it blocks Bcl-2 mediated inhibition of 

Beclin-1 (Elgendy et al., 2011). 

In vivo autophagic cell death is observed in several organisms, including 

Drosophila melanogaster, and Dictyostelium discoideum. The slime mold 

Dictyostelium has an interesting life cycle. It can exist in both unicellular and 

multicellular forms depending on the nutrient availability. In nutrient limiting 

condition, Dictyostelium switches to their multicellular form via adhesion and 

aggregation of unicellular amoebas. This particular multicellular fruiting body of 

Dictyostelium is comprised of a stalk and spores. The stalk cells undergo 

autophagic cell death during development. However the developmental 

autophagic cell death observed in Dictyostelium is difficult to compare to more 
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evolved organisms, as Dictyostelium lacks the apoptosis machinery(Giusti et al., 

2009). 

In contrast to Dictyostelium, the fruit fly, Drosophila melanogaster has yielded 

significant insight into the model of autophagic cell death in vivo. In flies, 

autophagy occurs under different conditions and in different tissues. But, a 

clearly defined model of autophagic cell death is observed during metamorphosis 

under the influence of the molting hormone 20hydroxyecdysone (ecdysone). 

Specifically, two tissues that undergo ecdysone driven autophagic cell death 

during Drosophila metamorphosis are the larval salivary glands and midgut. 

 

Part V.A. Autophagic Cell Death: Drosophila Salivary Gland 

Drosophila larval salivary glands consist of two tube-shaped luminal organs that 

are joined by a common duct, which carries the glandular secretions to the larval 

mouth(Abrams et al., 2003). The salivary glands have been extensively studied 

as a model for developmental cell fate determination, due to its simple cellular 

architecture and lack of late mitotic cell division. The salivary glands develop 

from the ventral ectoderm and further increase in size through multiple rounds of 

endomitosis, which results in the formation of giant cells containing polytene 

chromosomes (Smith and Orr-Weaver, 1991). During Drosophila metamorphosis, 

when massive tissue remodeling occurs, salivary glands are also subjected to 

histolysis and eventually degraded completely (Jiang et al., 1997). The 
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developmental degradation of salivary glands also makes these organs an ideal 

model to study different aspects of the cell death pathways. 

The steroid hormone ecdysone plays many roles during Drosophila 

metamorphosis (Riddiford, 1993). Throughout metamorphosis, ecdysone 

promotes adult tissue formation and triggers context-specific cell death 

pathways. Two distinct ecdysone pulses are observed in metamorphosis. The 

first and relatively higher titer ecdysone pulse (referred as 0 hour ecdysone 

pulse) marks the transition from larval to prepupal stage, while the second pulse 

(referred as 12 hour ecdysone pulse) transforms the prepupa to pupa. The late 

12-hour ecdysone pulse triggers the histolysis of salivary glands. Salivary gland 

destruction requires both the caspase-dependent and autophagic cell death 

pathways. Loss of only one pathway causes a mild defect in salivary gland 

degradation while blocking both pathways has a more profound phenotype (Berry 

and Baehrecke, 2007; Martin and Baehrecke, 2004). In Drosophila fatbody, 

autophagy is observed upon nutrient starvation, however autophagy is not 

induced in salivary glands in such condition. So, nutrient deprivation does not act 

as a trigger in case of salivary gland degradation. Relatively simple cellular 

structure, lack of interference from starvation induced autophagy signals, 

opportunities to study different aspects of multiple developmental cell death 

pathways, together make salivary gland degradation a very attractive model to 

study cell death.  
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Part V.B. Autophagic Cell Death: Drosophila Midgut 

Distinct from the larval salivary gland, the Drosophila larval midgut is degraded 

as a result of the 0 hour ecdysone pulse. Two different ecdysone regulated 

transcription factors E93 and Broad complex (BR-C) promote the expression of 

several pro-apoptotic genes, including reaper and hid. At this time the effector 

caspase Dronc is also expressed and strong activity from other caspases such 

as Decay and Drice is also detected. During midgut programmed cell death, 

TUNEL positive cells are observed, which indicates the presence of DNA 

degradation and caspase activity. However inhibition of caspase activity does not 

block midgut degradation, suggesting dispensable roles of caspases in midgut 

cell death. Interestingly, many autophagy genes are also upregulated in the 

midgut before midgut destruction. Furthermore, mutation of the autophagy genes 

Atg1, Atg2 or Atg18 impedes proper midgut degradation, which indicates that 

autophagic but not caspase dependent cell death is necessary for successful 

elimination of the larval midgut (Denton et al., 2009). 

 

Part VI. Autophagy in Cancer 

The role of autophagy in cancer is complex and rather controversial. During early 

stages of cancer development, autophagy suppresses cancer progression. 

However, as the cancer cells are metabolically stressed and the tumor 

microenvironment compromises cellular homeostasis, induction of autophagy 

can improve the survival of cancer cells.  
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Part VI .A. Autophagy: Promotion of Tumorigenesis  

The hyper-proliferation of cancer cells creates a high demand for nutrients and 

oxygen, which induces metabolic stress and hypoxia in the tumor 

microenvironment. In this hostile environment, cancer cells are dependent on 

autophagy for their survival. Relative to non-malignant cell lines, various cancer 

cell lines survive longer under nutrient limiting conditions. This enables cancer 

cells to recover and regrow when favorable physiological conditions are 

established. Autophagy-triggered dormancy protects cancer cells from harsh 

cellular conditions, which enables recovery and proliferation when favorable 

conditions return. In fact, this is an underlying cause of cancer relapse. In solid 

tumors, poor vascularization results in defective oxygen delivery and hypoxic 

conditions. In the hypoxic regions of solid tumors, localized autophagy is 

observed. Inhibition of autophagy at these locations causes cell death and helps 

limit cancer progression (Degenhardt et al., 2006). In fact, deletion of FIP200 

(mammalian homolog of yeast Atg17) inhibits polyoma middle T antigen 

mediated breast cancer in mice (Wei et al., 2011).  

Further deletion of Atg5 or Atg7 impairs RAS mediated tumorigenesis while 

knockdown of Atg5 in human pancreatic adenocarcinoma blocks tumor growth in 

a mouse xenograft model (Yang et al., 2011). Moreover, high levels of basal 

autophagy are observed in human melanomas with BRAF mutation, which 

suggests a positive role of autophagy in tumorigenesis (Corazzari et al., 2015).  
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Part VI .B. Autophagy: Suppression of Tumorigenesis 

In contrast to the above observations, several studies suggest that autophagy 

can act as a tumor suppressor. Autophagy is necessary for maintaining cellular 

homeostasis and genomic integrity, which helps prevent malignant 

transformation of cells. The role of Beclin-1 (BECN1) in tumorigenesis presents 

the most prominent example of autophagy in tumor suppression. Monoallelic 

deletion of Beclin-1 is associated with human prostate, ovarian and breast 

cancers (Liang et al., 1999). In mice, heterozygous deletion of Beclin-1 leads to 

the formation of liver and lung tumors (Qu et al., 2003). Further, the autophagy 

regulator Bif-1 is also down regulated in different human cancers, including liver, 

gall bladder, prostate and gastric cancers. Consistently, mouse deficient of Bif-1 

is more prone to tumor development(Takahashi et al., 2007). Mutations in other 

autophagy genes such as Atg2B, Atg9, Atg5, Atg12 are observed in gastric and 

colorectal cancers (Kang et al., 2009). In mice, deficiencies of Atg5 and Atg7 

result in the formation of benign liver tumors.  

 

Part VII. Autophagy In Immunity 

Autophagy has long been regarded as a survival mechanism for cells in nutrient 

limiting conditions. Autophagy is also important in the maintenance of cellular 

homeostasis and the clearance of damaged organelles and proteins. In addition, 

recent studies suggest that autophagy is essential for host immunity. In fact, 
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autophagy has diverse roles in immunity, including regulation of inflammation 

and clearance of intracellular pathogens. 

 

Part VII. A. Inflammation Regulation 

Inflammation in response to foreign organisms is generally a protective 

mechanism of the hosts. Pathogen infection triggers the inflammatory cascade 

that recruits a diverse array of immune cells, which are essential for pathogen 

clearance and the regeneration of host tissues. Current advances in this field 

also suggest the necessity of autophagy in modulating inflammatory responses.  

A key feature of inflammation is the production of cytokines, such as the pro-

inflammatory cytokine interleukin-1β (IL-1β). Production of Cytokines, including 

IL-1β, is dependent on the assembly and activation of the inflammasomes. The 

inflammasome is a multi-protein complex that is formed in response to either 

foreign Pathogen-associated molecular pattern (PAMP) or host Damage-

associated molecular pattern (DAMP) molecules (Rathinam et al., 2012). These 

particles are recognized by cytosolic innate immune receptors called NOD-like 

receptors (NLRs). Activation of the NLRs initiates the formation of 

inflammasomes, subsequent activation of Caspase-1, and the production of 

inflammatory cytokines, including IL-1β and interleukin-18 (IL-18) (Brough and 

Rothwell, 2007; Thornberry et al., 1992).  

A link between inflammasome activation and autophagy has been observed. For 

instance, the macrophages from Atg16l1 knockout mice produce higher levels of 
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processed IL-1β, compared to wild type controls, when exposed to bacterial LPS 

(Saitoh et al., 2008). This increased IL-1β production results from excessive 

activation of Caspase-1. Autophagy has also been proposed to eliminate cellular 

debris and damaged organelles, which may serve as endogenous inflammasome 

activators. These data suggest that inflammasome activation is dampened by 

autophagy (Zhou et al., 2011). Further, inhibition of autophagy leads to the 

accumulation of damaged mitochondria and the release of mitochondrial DNA 

and reactive oxygen species (ROS), which activates AIM2 and NLRP3-

dependent inflammasomes(Nakahira et al., 2011). Upon Influenza virus infection 

the receptor interacting protein kinase 2 (RIPK2 or RIP2) activates Ulk1, a critical 

component of the autophagy pathway. Active Ulk1 stimulates mitophagy, which 

reduces inflammasome activation (Lupfer et al., 2013). Autophagy can also 

hinder inflammasome activation by selectively degrading assembled 

inflammasome components, as evidenced by the ubiquitin-mediated degradation 

of the Apoptosis-associated speck-like proteins (ASC). This degradation is 

mediated by p62, another component of the autophagy pathway.(Shi et al., 

2012). 

 

Part VII. B. Intracellular Pathogens 

In addition to its role as a modulator of inflammasome activity in response to both 

foreign and self-molecules, autophagy can directly function in the elimination of 

the intracellular pathogens. Several mechanisms exist to achieve this autophagy-
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mediated removal. One such mechanism is “xenophagy.” Here, pathogens are 

sequestered inside autophagosomal compartments and subsequent 

autophagosomal and lysosomal fusion kills the invading microorganisms. 

Sometimes pathogens are engulfed inside single membrane phagosomal 

compartments, which are coated with LC3 proteins in a PI3K and LC3 

conjugation dependent but ULK1 independent manner. This process is known as 

LC3 associated phagocytosis (LAP) and is essential for eliminating intracellular 

pathogens, such as Burkholderia pseudomallei (Sanjuan et al., 2007). By 

contrast, a process called “virophagy” degrades viral components. This process 

is different from xenophagy, as newly synthesized viral components are targeted 

for autophagy rather than complete virus particles, for example Sindbis viral 

capsid is degraded by autophagy in a p62 mediated but ubiquitin independent 

manner (Orvedahl et al., 2010). 

Autophagy can be induced at different stages of host-pathogen interaction. At the 

early stages of infection; pattern recognition receptors (PRRs), such as TLRs and 

NLRs recognize PAMP molecules and initiate autophagy (Shi and Kehrl, 2010a). 

The autophagic pathway can be activated by macrophage-based phagocytosis of 

pathogens or triggered by pathogen-inflicted damages on the host cell.  

The NLRs NOD1 and NOD2 interact with the bacterial component meso-

diaminopimelic acid (DAP) and muramyl dipeptide (MDP) respectively, which 

results in the recruitment of the autophagy component ATG16L1 at the site of 

bacterial entry (Travassos et al., 2010b). Further, mitochondrial NLRX1 protein 
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and its partner Tu Elongation Factor (TUFM) promote autophagy by associating 

with the Atg5-Atg12 complex (Lei et al., 2012).  

During infection, the bacteria Salmonella typhimurium reside inside specific 

Salmonella containing vacuoles, which facilitate bacterial survival and 

multiplication. However, a small fraction of bacteria is found in the cytoplasm, 

likely as a result of bacteria released from damaged vacuoles. Cytoplasmic 

bacteria are rapidly ubiquitinated and recognized by the autophagic adaptor 

proteins p62, optineurin (OPTN) and NDP52. This NDP52 and OPTN mediated 

autophagy of Salmonella also requires Tank binding kinase (TBK1) (Thurston et 

al., 2009). 

Another example of antimicrobial autophagy is observed upon Toxoplasma 

gondii infection. It is an intracellular protozoan parasite, which causes the 

disease toxoplasmosis.  An increased level of Beclin-1 promotes autophagy in 

Toxoplasma gondii infected macrophages and this autophagy induction is 

necessary to restrict the proliferation of this pathogen (Andrade et al., 2006). 

Autophagy is also effective against different viruses. For instance, TLR7 

mediated viral ligand recognition is autophagy-dependent. Here, autophagy is 

necessary for the induction of TLR7-directed cytokines following Sindbis or 

Vesicular stomatitis virus infection in plasmacytoid dendritic cells (Lee et al., 

2007). Similarly, measles virus infection of epithelial cells induces autophagy, 

which relies on cell surface protein CD46 and scaffold protein GOPC (Joubert et 

al., 2009). Viral infection is also responsible for stress induced translational 
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regulation, as evidenced by the activation of RNA dependent protein kinase 

(PKR) and eIF2α phosphorylation, which halts translation. Both of these events 

are necessary for autophagy induction following herpes simplex virus (HSV) 

infection (Talloczy et al., 2002). In Consistently, autophagy is blocked in PKR 

mutant neurons upon Sindbis virus infection. Also, Atg5 mutant mice die faster 

following Sindbis infection. However, it is to be noted also that some viruses such 

as, Dengue and Hepatitis B, promote autophagy to limit host immune responses 

and stimulate further viral proliferation. 

Akin to mammals, autophagy serves as a defense mechanism in the fruit fly, 

Drosophila melanogaster as well. Excellent genetic tools, ease of use, and the 

conserved nature of many genes with the mammals, make Drosophila an 

excellent model to study antimicrobial autophagy. Knockdown of several 

autophagy genes in the Drosophila S2 cell line results in an increased vesicular 

stomatitis viral load. Similarly, when autophagy genes are silenced in vivo, 

heightened mortality and viral replication are observed upon infection with the 

same virus. The viral glycoprotein VSV-G acts like a PAMP and is sufficient to 

induce autophagy. The Drosophila Toll receptor Toll-7 recognizes VSV-G and 

triggers autophagy (Shelly et al., 2009). 

Autophagy is also necessary against Listeria monocytogenes infection in flies. 

Listeria is a facultative, Gram-positive bacterium, which multiplies inside the cell. 

This bacterium causes serious food borne illness called listeriosis. Autophagy is 

important in restricting Listeria infection. In fact, knockdown of autophagy genes 
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both in vitro and in vivo in flies causes increased death (Yano et al., 2008). The 

Peptidoglycan binding receptors (PGRPs), PGRP-LC and PGRP-LE are 

essential for fly defense against Listeria and autophagy induction in response to 

infection is particularly dependent on PGRP-LE. Both PGRP-LC and PGRP-LE 

were previously characterized components of the fly humoral immune system 

and they are responsible for the production of antimicrobial peptides (AMPs). 

 

Part VIII. Drosophila Immune System 

The fruit fly, Drosophila melanogaster thrives on rotten fruit and vegetables. So 

their natural habitat certainly consists of numerous bacteria and fungi. As the flies 

lack adaptive immunity, they possess a strong innate immune system to survive 

such a pathogen-infested environment. Drosophila innate immunity is divided into 

two categories, humoral and cellular immune responses.   

 

Part VIII. A. Cellular Immune System 

Drosophila cellular immunity is dependent on mainly three processes; 

phagocytosis, melanization and encapsulation. Three distinct classes of blood 

cells (also called hemocytes), plasmatocytes, crystal cells and lamellocytes, 

respectively, accomplish these processes. The plasmatocytes are phagocytic 

cells, which recognize a range of particles, from foreign pathogens to apoptotic 

bodies. Crystal cells contain phenolperoxidase crystals and cause melanization 

upon infection. The third group of cells, termed lamellocytes, is only observed in 
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the larvae and is responsible for the engulfment or encapsulation of large objects 

such as wasp eggs (Lanot et al., 2001; Scherfer et al., 2004; Tepass et al., 

1994). 

 

Part VIII .B. Humoral Immune Response 

The humoral response utilizes soluble effectors, including turnadots and 

antimicrobial peptides to mount a response against invading microorganisms. 

Different signaling pathways are involved in the production of such effector 

molecules. Here I will discuss two of these pathways, the Toll and Imd. 

 

Part VIII .B. a. Toll Pathway 

The Toll pathway is critical for fly development, particularly in the dorso-ventral 

axis pattern formation(Nusslein-Volhard et al., 1980). However, in addition to its 

role in development, the Toll pathway plays a significant role in fly immunity. It is 

mostly activated by Gram-positive bacteria and fungi (Lemaitre et al., 1996). 

Unlike the mammalian membrane bound Toll Like Receptors (TLRs), Toll 

receptors in flies do not act like PRRs themselves, rather they are activated upon 

binding to the cleaved form of the cytokine Spätzle (Weber et al., 2003). Different 

upstream components such as PGRP-SA, GNBP1, and GNBP3 recognize 

bacterial and fungal structures and subsequent activation of a downstream 

signaling cascade results in the cleavage of Spätzle (Pili-Floury et al., 2004). The 

interaction between the Toll receptor and Spätzle initiates a signaling cascade 
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that involves other pathway components, including Pelle, Tube, and MyD88, and 

culminates in the activation of NF-κB factors Dif and Dorsal (Gillespie and 

Wasserman, 1994). Activation of NF-κB drives the production of AMPs (Gross et 

al., 1996; Ip et al., 1993; Sun et al., 2002a; Tauszig et al., 2000). 

 

Part VIII .B. b. Imd pathway 

The Drosophila Imd pathway is activated upon infection by mostly Gram-negative 

bacteria. The diaminopimelic acid (DAP) type of cell wall peptidoglycan of Gram-

negative bacteria is responsible for the activation of this pathway(Kaneko et al., 

2004). Unlike Toll receptors, the PGRP receptors in the Imd pathway recognize 

the bacterial cell wall components directly. The membrane bound receptor 

PGRP-LC interacts with polymeric PGN, while the cytosolic PGRP-LE binds 

monomeric PGN, such as Tracheal cytotoxin (TCT) (Gottar et al., 2002; 

Takehana et al., 2004). Next, the IMD protein is recruited to the PGRPs. IMD 

then binds Drosophila homolog of Fas associated death domain (FADD) through 

homotypic interaction of the death domains. FADD then recruits the caspase 

Death-related ced-3/Nedd2-like protein (Dredd), which cleaves both Imd and the 

NFκB factor Relish (Hu and Yang, 2000). Cleaved Imd is then ubiquitinated, 

which leads to the recruitment of the TGF-β activated kinase 1 (Tak1) and Tak1 

associated binding 2 protein (Tab2) (Georgel et al., 2001; Leulier et al., 2000). 

Tak1 then activates the downstream IKK complex, which consists of kinase 

immune response deficient 5 (id5) and Kenny. The activated IKK complex 
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phosphorylates Relish. Upon phosphorylation, the N-terminal domain of the 

Relish translocates to the nucleus and induces transcription of several genes, 

including the AMP genes (Silverman et al., 2003; Silverman et al., 2000). 
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Figure 1.2 Drosophila IMD signaling Pathway 
 
This pathway is responsible for the production of AMPs and is necessary for the 

protection against mostly Gram-negative bacterial infection. It is activated when 

either the membrane bound PGRP-LC or cytoplasmic PGRP-LE interacts with 

the polymeric / monomeric peptidoglycan of Gram-negative bacteria. This 

interaction results in the activation of the caspase Dredd and cleavage of the Imd 

protein, which is then ubiquitinated. Further downstream signaling events causes 

the cleavage of NF-κB protein Relish, which is translocated to the nucleus to 

activate the expression of several AMP genes.  
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Part IX. NFκB Factors 

Nuclear factor kappa B (NFκB) is a highly conserved family of transcription 

factors that play crucial roles in different biological phenomena, including innate 

and adaptive immunity. This transcription factor was discovered by Ranjan Sen 

in David Baltimore`s lab in 1986 and initially thought to be only important for B-

cell development (Sen and Baltimore, 1986). However it is now regarded as one 

of the most versatile transcription factors that are involved in multiple cell types 

and control a variety of gene expression. Even almost 30 years later and with 

thousands of publications worth of findings, it is still a matter of great interest to 

discover that how this particular factor regulates different sets of genes under 

variety of stimulus. 

 

Part IX .A. NFκB in Mammalian System 

There are five members in the mammalian NFκB family, p65 (RelA), p100/p52, 

p105/p50, c-Rel and RelB (Bonizzi and Karin, 2004). In unstimulated cells, they 

remain inactive. RelA, RelB and c-Rel are bound to inhibitory proteins IκB. The 

precursor proteins p100 and p105 possess inhibitory domains similar as IκB. 

Each family member possesses a Rel Homology Domain (RHD), which contains 

a DNA binding motif, a dimerization motif, and a region responsible for interacting 

with IκB proteins. Interaction with these inhibitory proteins prevents the 

dimerization and nuclear translocation of the NFκB members (Alkalay et al., 

1995). Under distinct stimuli, the IKK kinase complex is activated, which leads to 
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the phosphorylation of IκB at specific serine residues (DiDonato et al., 1996). 

Then, the Skp1–Cullin–Roc1/Rbx1/Hrt-1–F-box (SCF or SCRF) type ubiquitin 

ligases mediate ubiquitination of these proteins and as a result these proteins are 

degraded by the proteasome and incase of precursor proteins, p105 and p100, 

undergo limited proteolysis (Suzuki et al., 1999; Verma et al., 1995). 

Depending on the stimulus and the need of the cell, the NFκB proteins homo or 

heterodimerize and these complexes act either as activators or repressors. As 

the p50 and p52 do not possess a transactivation domain (TAD) like p65, RelB 

and c-Rel, they can only activate gene expression if they heterodimerize with any 

of the other three(Gilmore, 2006).  

 

Part IX. B. NFκB in Drosophila System  

The Drosophila genome encodes three NFκB factors, Dorsal, Dorsal-related 

Immune factor (DIF) and Relish. Among these three proteins, Dorsal and DIF 

share similarity with mammalian p65 while Relish functions as a NFκB precursor 

protein. However, it is to be noted that unlike mammalian precursor proteins, 

Relish is not processed via the proteasomes; rather the Caspase Dredd cleaves 

the inhibitory domain of Relish (Stoven et al., 2000). DIF and Dorsal are part of 

the Toll signaling pathway that is essential during both development and 

infection. Dorsal was the first identified NFκB factor in flies and it is important for 

dorso-ventral pattern formation during development (Anderson and Nusslein-

Volhard, 1984). Another factor DIF is involved in the humoral immune response 
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of the flies. In larval stage, both Dorsal and DIF function as immune pathway 

components while in adults the humoral immunity is mainly DIF dependent (Ip et 

al., 1993; Rutschmann et al., 2000). In unstimulated condition both Dorsal and 

DIF remain in the cytoplasm bound by the inhibitory IκB protein, Cactus 

(Manfruelli et al., 1999; Wu and Anderson, 1998). Phosphorylation of Cactus and 

subsequent ubiquitination by the gene Slimb, causes proteosomal degradation of 

Cactus, similar to the mammalian system (Belvin et al., 1995; Spencer et al., 

1999). In the case of Relish, the caspase Dredd mediated cleavage uncouples 

the protein from its C-terminal domain, which contains inhibitory ankyrin repeats. 

The active N-terminus then translocates to the nucleus and activates 

downstream target genes, including AMPs (Belvin et al., 1995; Stoven et al., 

2000). 

 

Part IX. C. NFκB in Immunity 

The prominence of NFκB in both innate and adaptive immune responses is well 

established. Interestingly NFκB is involved in multiple stages of the immune 

system. These proteins are crucial for the development of immune cells, 

including dendritic cells, neutrophils, B and T lymphocytes. In addition to this, 

development of both primary and secondary lymphoid organs is also dependent 

on NFκB factors. RelA and TNFR double knockout mice show severe defects in 

the formation of Peyer`s patches, the spleen and the lymph nodes (Alcamo et al., 

2002). Different PRRs, such as TLRs utilize the NFκB mediated signaling 
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pathway to produce downstream effectors, such as cytokines. For example, 

TLR4 recognize the bacterial lipopolysaccharide (LPS) and initiate NFκB 

dependent signaling pathways. The TLR4- NFκB mediated signaling pathway is 

dependent on either the adaptor protein MyD88 or TRIF. Similarly, cytoplasmic 

NOD receptors, NOD1 and NOD2 recognize meso-DAP (Diaminopimelic acid) 

type of peptidoglycan and muramyl dipeptide, respectively, and subsequently 

induce NFκB signaling pathway (Fitzgerald et al., 2001; Inohara et al., 1999; 

Yamamoto et al., 2003).  
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Thesis Objective 

Cell death is induced under different biological conditions and is necessary for 

variety of purposes, including tissue development, survival and protection. The 

role of cell death in these individual biological pathways has been studied 

extensively. However, a growing body of evidence suggests that these 

phenomena are not exclusive and in many cases crosstalk between these 

pathways is essential for the benefit of the organism. Therefore, the involvement 

of previously characterized immune or developmental components in the context 

of cell death induction has become quite an exciting subject. In the following 

chapters, I intend to demonstrate a novel mechanism to decipher the interplay 

between the immune effectors, autophagic cell death and developmental cues, 

using Drosophila as a model system. I sincerely hope that my work would aid to 

understand these subjects better, and be used in the future to interpret the 

complex interaction of these biological processes.   
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CHAPTER 2. 

 

 

 

 

 

The NF-κB Factor Relish Regulates Atg1 Expression and 

Controls Autophagy 

 

(Part of the following work is under review at Cell Reports) 
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Abstract 

Macroautophagy and cell death both contribute to innate immunity, but little is 

known about how these processes integrate. Drosophila larval salivary glands 

require autophagy for developmentally programmed cell death, and innate 

immune signaling factors increase in these dying cells. Here we show that the 

NF-κB factor Relish, a component of the Imd immune pathway, is required for 

salivary gland degradation. Surprisingly, of the classic Imd pathway components, 

only Relish and the PGRP receptors were involved in salivary gland degradation. 

Significantly, Relish controls salivary gland degradation by regulating autophagy, 

but not caspases. In addition, expression of either Relish or PGRP-LC causes 

premature autophagy induction and subsequent gland degradation. Relish 

controls autophagy by regulating the expression of Atg1, a core component and 

activator of the autophagy pathway. Together these findings demonstrate that a 

novel NF-κB pathway regulates autophagy during developmentally programmed 

cell death. 
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Introduction  

The NF-κB family of transcription factors is involved in diverse range of 

physiological processes, including cell division, cell death and most prominently 

innate and adaptive immunity (Bonizzi and Karin, 2004; Guttridge et al., 1999; 

Hayden and Ghosh, 2011). The mammalian NF-κB family consists of five 

members, RelA (p65), RelB, c-Rel, p50/p105 and p52/p100. These factors are 

critical for the production of cytokines, regulation of cell death and control of cell 

cycle progression in activated leukocytes and lymphocytes. Mutation in these 

factors leads to lethality, increased susceptibility to infection, and altered tissue 

development while constitutively active NF-κB leads to inflammatory diseases 

such as arthritis, inflammatory bowel disease and cancer (Li and Verma, 2002). 

The study of NF-κB factors and their proper regulation remains of great interest 

for many fields.  

One powerful model to study the role of NF-κB factors in diverse areas of biology 

is the fruit fly Drosophila melanogaster, which encodes three NF-κB factors - 

Dorsal, Dif and Relish. Dorsal and Dif are similar to mammalian RelA and are 

activated following the cleavage of the cytokine Spätzle and its subsequent 

binding to and activation of the receptor Toll (Buchon et al., 2014). By contrast, 

Relish is an important component of the immune deficiency (Imd) pathway, which 

responds to the diaminopimelic acid (DAP) type peptidoglycan, from the cell wall 

of Gram-negative bacteria. Upon direct binding of DAP-type peptidoglycan to the 

Peptidoglycan Recognition Proteins-LC or -LE (PGRP-LC or -LE), a signaling 
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cascade is triggered that results in the cleavage, activation and nuclear 

translocation of Relish, and transcription of antimicrobial peptide (AMP) genes 

(Choe et al., 2002; Hedengren et al., 1999). AMPs such as Diptericin, Cecropin, 

and Defensin are small cationic peptides with direct antimicrobial activity (Imler 

and Bulet, 2005). 

Relish was characterized as an important component of the Drosophila immune 

system and is primarily responsible for the immune-induced expression of AMP 

genes. However, recent findings implicate Relish in several cell death paradigms. 

For example, Relish is required for the death of photoreceptor cells in a 

Drosophila model of light-dependent retinal degeneration (Chinchore et al., 

2012). In another report, Relish was found to play a crucial role in elimination of 

“unfit” cells in a fly model of cell competition (Meyer et al., 2014). These findings 

suggest the involvement of Relish in caspase-dependent cell death pathways. 

Other reports have argued that Relish, through the production of antimicrobial 

peptides, can drive other types of cell death and neurodegeneration in the 

Drosophila CNS (Cao et al., 2013; Petersen et al., 2013). Moreover dying 

Drosophila larval salivary glands also show a marked increase in the expression 

of several NF-κB dependent antimicrobial peptide genes (Lee et al., 2003). The 

salivary gland is an excellent genetic model to study developmentally 

programmed cell death as steroid-induced salivary gland degradation requires 

both apoptotic caspases and autophagy (Berry and Baehrecke, 2007) 
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Autophagy is a catabolic process that sequesters cytoplasmic components inside 

a double membrane “autophagosome” structure followed by lysosomal fusion 

and content degradation. Although different types of autophagy have been 

characterized (Mizushima and Komatsu, 2011), here we will use the word 

“autophagy” to denote macro-autophagy. Autophagy serves different roles 

depending on cellular and environmental context (He and Klionsky, 2009). In 

times of starvation, autophagy promotes cell survival by recycling cellular 

contents. Dysregulation of autophagy has been implicated in different age-related 

disorders, including neurodegeneration (Qin et al., 2003; Yu et al., 2004b). Also, 

loss of autophagy contributes to genomic instability, tissue damage and in turn 

cancer (Karantza-Wadsworth et al., 2007; Mathew et al., 2007; White, 2015). 

Moreover, autophagy is involved in several immune pathways including 

inflammatory signaling, immune mediator secretion, antigen presentation and the 

elimination of cytosolic pathogens (Pengo et al., 2013; Saitoh et al., 2008; 

Schmid et al., 2007; Yano et al., 2008).  

In Drosophila, autophagy and immune responses have been linked by several 

findings. The intracellular pathogen L. monocytogenes is controlled through the 

activation of autophagy following immune recognition by the cytosolic 

peptidoglycan receptor PGRP-LE (Yano et al., 2008). More recently, we found 

that complement-like factor Mcr also induces autophagy, via signaling through 

the scavenger receptor Draper, specifically in the salivary glands (Lin et al., 

2017). Interestingly, we also observed that several AMP genes and other 
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immune factors, which are controlled by NF-κB factors in the context of immunity, 

are upregulated in dying salivary glands (Lee et al., 2003). Together these 

findings suggested possible involvement of Relish and the Imd pathway in the 

control of autophagic cell death during salivary gland degradation. 

Here we show that the Drosophila NF-κB family member Relish plays an 

essential role in salivary gland degradation. Surprisingly, apart from Relish and 

the two PGRP receptors involved in the Imd pathway, none of the other six 

components of the canonical Imd signaling pathway (FADD, Dredd, IMD, Diap2, 

Tak1, IKKβ, IKKγ) play any role in salivary gland cell death and degradation. The 

contribution of Relish to salivary gland degradation is caspase-independent, 

unlike that observed in either the Relish-dependent cell competition or retinal 

degeneration models. On the other hand, Relish was necessary and sufficient for 

activation of autophagy in the salivary gland. Our genetic and molecular data 

further indicate that Relish regulates autophagy by controlling the expression of 

Atg1, a key activator of autophagy. This study reveals a novel role for known 

immune pathway components, the NF-κB factor Relish and PGRP receptors, in 

the regulation of autophagy during programmed cell death. 
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Results 

Relish is required for salivary gland cell death  

Genome wide transcriptome analyses of dying Drosophila salivary gland cells 

identified many genes that are either up regulated or down regulated during cell 

death (Lee et al., 2003). In addition to genes associated with apoptosis and 

autophagy, many NF-κB targets, including AMP genes, were upregulated in 

dying salivary glands. This prompted us to analyze whether loss of immunity 

genes would cause any change in salivary gland cell death.  

We found that loss of the NF-κB factor Relish impaired salivary gland 

degradation. Salivary gland cell death is activated by a rise in steroid hormone 12 

hours after puparium formation, and by 16 hours after puparium formation this 

tissue is largely degraded. We used RelE23  as control animals, because RelE23 is 

an exact excision of the same P-element used to create the RelE20 allele (via 

imprecise excision) and thus serves as the best control strain (Hendengren et al. 

1999). Like wild type animals, control animals possessed no remnants of salivary 

glands 24 hours after puparium formation (APF) (Fig 2.1 A, B), 8 hours after this 

tissue is destroyed. By contrast, a null allele of Relish (RelE20) exhibited 

persistent salivary gland cell fragments at 24h after puparium formation in ~80% 

of the cases examined (Fig 2.1A,B & Fig 2.2A, middle, displaying the salivary 

gland cell fragments without other tissue). In addition, ectopic expression of 

Relish in the salivary glands, using the GAL4 UAS system, rescued the salivary 

gland degradation defect observed in Relish mutant animals (Fig 2.1C,D). 



	
  

	
  

44	
  

Together these results indicate that Relish is required for complete salivary gland 

degradation and clearance.  

Relish is an essential component of Drosophila Imd pathway. Therefore, we next 

sought to determine if other components of the Imd pathway are also involved in 

salivary gland degradation. Surprisingly, only Relish or PGRP-LC mutants, or 

PGRP-LC, -LE double mutants displayed a significant defect in salivary gland 

degradation; none of the other Imd pathway components effected salivary gland 

destruction and clearance (Fig 2.1E,F, and Fig 2.2B)
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Figure 2.1. The Drosophila NF-κB factor Relish is essential for salivary 

gland degradation  

(A) Representative histological sections of control (Rel E23) and Relish mutant 

(RelE20) flies 24 h APF. Salivary gland fragments observed in the Relish 

mutants are highlighted within dotted blue circle. (B) Quantitation of histology 

from 20 independent samples for each strain as in (A), statistical analysis by 

chi-square test. (C) Representative histological sections of samples of control 

Relish mutants (fkh-Gal4/+;; RelE20, left), and Relish mutants with salivary 

gland specific expression of transgenic Relish, (fkh-Gal4/+; UAS-Relish/+; 

RelE20, right) analyzed 24 h APF. Salivary gland fragments are highlighted 

within dotted blue circle. (D) Quantitation of histology from 20 independent 

samples for each strain as in (C), statistical analysis by chi-square test. (E) 

Representative histological sections of control (PGRP-LE112/+;; PGRP-LCΔE /+, 

left) and PGRP-LC mutants (PGRP-LCΔE, middle) and PGRP-LC and PGRP-

LE double mutants (PGRP-LE112;; PGRP-LCΔE, right) flies 24 h APF. Salivary 

gland fragments observed in PGRP mutants are highlighted within dotted blue 

circle. (F) Quantitation of histology from 20 independent samples for each 

strain as in (E), statistical analysis by chi-square test.  **** P<0.0001, *** 

P<0.001. 
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Major transcriptional targets of Relish during the immune response include the 

AMP genes. Previous transcriptomic analyses of the dying salivary glands 

showed upregulation of several AMP genes, including Cecropin-C and Attacin-A. 

The expression profile of these two AMP genes in the salivary glands was 

determined both at 0 hour (puparium formation) and 14 hours after puparium 

formation (when salivary gland degradation occurs) by qRT-PCR. Wild type and 

Imd pathway mutants were compared (Fig 2.2D,E).  While PGRP double mutants 

exhibited dramatic effects on salivary gland degradation, they showed robust 

expression of Attacin-A but reduced Cecropin-C.  By contrast, Relish mutants, 

which also effected salivary gland degradation, showed the opposite with low 

Attacin-A and elevated Cecropin-C expression. Moreover, mutants that do not 

affect salivary gland degradation, such as Dredd and TAK1, also showed 

reduced Attacin-A, but not Cecropin-C. All together, this pattern of AMP gene 

expression did not correlate with the salivary gland phenotypes (or lack thereof) 

exhibited by these mutants, and suggests AMPs are not involved in this process.
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Figure 2.2 Role of Imd pathway Components in Salivary Gland Degradation 

and AMP expression profile in different Imd Pathway mutants 

(A) Representative histological sections of control (RelE23, left) Relish mutant 

(RelE20, middle), and Relish mutants expressing p35 (p35, RelE20, right) 24 h 

APF. All tissues except the salivary gland cellular fragments and gland fragments 

were removed in Photoshop. (B) Diagram of core components of the Imd 

pathway and (C) a table indicating their role in salivary gland degradation. (D, E) 

Salivary gland expression of the antimicrobial peptides Attacin A and Cecropin C 

in wild type (Canton-S) and several Imd pathway mutants at different time points, 

as indicated, APF. 

 

 

Previous reports demonstrated that ectopic expression of AMPs could drive 

neurodegeneration (Cao et al., 2013). Therefore, we tested whether ectopic 

expression of AMPs is sufficient to induce premature salivary gland degradation. 

However, ectopic expression of several AMPs in the salivary gland did not result 

in any discernible effect, further indicating that AMPs do not function in salivary 

gland degradation (Fig.2.3A).  

We next considered the possibility that the endogenous microflora could provide 

a stimulus through the PGRPs, which are activated by the bacterial cell wall 

(Kaneko et al., 2004; Leulier et al., 2003), to activate Relish and contribute to 

salivary gland degradation. However, axenic flies, which were negative for 
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bacterial 16S sequences and devoid of any colony forming microbes (Fig 

2.3B,C), showed normal salivary gland degradation (Fig 2.3D), excluding a role 

for the microflora in salivary gland degradation. Combined these data suggest 

that PGRP receptors and Relish function in a novel pathway to regulate cell 

death.
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Figure 2.3. AMPs and Microflora are not required for Salivary Gland 

Degradation. 

(A) Representative histological sections from animals ectopically expressing 

several AMP genes in the salivary gland (w; UAS-AMP/+; fkh-Gal4/+) 6 h APF. 

12 independent samples for each AMP gene were similarly analyzed without 

any premature gland degradation. (B) 16S rDNA gene PCR from three axenic 
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and one conventional fly samples. (C) Bacterial loads from three axenic strains 

and one conventional strain. (D) Representative histological sections of 

conventionally reared (w1118, left) and axenic (w1118, right) fly 24 h APF. 10 

and 11 independent samples respectively from each condition were 

histologically analyzed and no salivary gland cell fragments were observed.(E) 

Quantitation of histology from samples for each genotype as in (D) 

 

 

Relish contributes to autophagic, but not caspase-dependent cell death 

Caspases and autophagy are both necessary for complete salivary gland 

degradation(Berry and Baehrecke, 2007). To determine if Relish contributes to 

the caspase-dependent pathway, p35, a potent baculoviral inhibitor of effector 

caspases, was expressed in the salivary glands of wild type or RelE20 mutant 

animals. As expected, p35 expression in the salivary glands of wild type animals 

resulted in the accumulation of cell fragments in ~60% of animals analyzed, with 

more intact tissue, known as gland fragments, in the other ~40%. These gland 

fragments are indicative of a more severe failure in salivary gland degradation. 

When p35 was expressed in the Relish mutants, gland fragments were observed 

in over 80% of animals (Fig 2.4 A, B & Fig 2.2A, right, displaying the salivary 

gland fragments without other tissue). The enhanced severity of this phenotype 

suggests that Relish mediated cell death and caspase-dependent apoptotic 
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pathways are distinct, working in tandem contributing to salivary gland 

degradation.  

Cleaved caspase-3 is used as a marker of caspase activity (Fan and Bergmann, 

2010). The accumulation of cleaved caspase-3 in salivary glands was examined 

by immunofluorescence, and Relish had no effect on the appearance of this 

apoptotic marker (Fig. 2.4C). Together, these results indicate that caspase-

dependent and Relish-mediated cell death pathways function in parallel, 

converging on the degradation and clearance of the larval salivary gland.
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Figure 2.4. Relish controls salivary gland degradation independent of 

caspase activity 

(A) Representative histological sections of animals with salivary gland specific 

expression of p35 (fkh-gal4/+; UAS-p35/+; RelE20/+, left), Relish mutants with 

salivary gland specific expression of p35 (fkh-gal4/+; UAS-p35/+; RelE20, right) 

24 h APF. Salivary gland cell fragments are within dotted blue and gland 

fragments are within dotted red circle. (B) Quantitation of histology from 21 

and 24 independent samples respectively for each strain as in (A), statistical 

analysis by chi-square test comparing gland fragments in these two 
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genotypes. ** P<0.01. (C) Cleaved caspase-3 antibody staining (green) and 

DAPI (blue) in salivary glands of control (RelE23) and mutant (RelE20) animals at 

0 h and 14 h APF, representative images from at least five independent 

samples analyzed in two independent trials. 

 

 

We next examined the relationship between Relish and autophagy. Decreased 

Atg18 function results in persistence of salivary gland cell fragments (Berry and 

Baehrecke, 2007), a phenotype that is similar to Relish mutants. In Atg18, Relish 

double mutants, salivary gland cell fragments were present 24 hours after 

puparium formation, similar to that observed in either single mutant (Fig. 2.5A,B), 

suggesting Relish functions through autophagy to regulate salivary gland 

destruction. To further examine the connection between Relish and autophagy, 

mCherry-Atg8a puncta were visualized 14 hours after puparium formation. 

Control animals (RelishE23) showed distinct puncta in salivary gland cells, while 

the amount of Atg8a puncta were significantly decreased in the salivary glands of 

Relish mutant animals (Fig 2.5 C, D).  

In Drosophila, the expression of Atg1 induces premature autophagy in multiple 

Drosophila tissues (Berry and Baehrecke, 2007; Chang et al., 2013; Scott et al., 

2007). We expressed Atg1 in salivary glands to test if this is sufficient to 

suppress the Relish phenotype. Indeed, Atg1 expression in the salivary glands of 

Relish mutants suppressed the salivary gland degradation defect observed in 
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Relish mutants (Fig. 2.5 E,F). Taken together, these data indicate Relish is 

required for autophagy during salivary gland degradation. 

However, there is a caveat in the cleaved Atg8 assay. This assay cannot 

distinguish between the induction of autophagy or block in autophagosomal 

fusion with lysosomes, as both the processes would cause accumulation of 

cleaved Atg8 puncta. To ensure proper autophagic flux, another assay involving 

the adaptor protein Ref(2)P was used. This protein is a fly homolog of 

mammalian p62. Ref(2)P functions as an adaptor, which couples ubiquitinated 

components and Atg8 by its ubiquitin binding domain (UBD) and LC3-interacting 

region (LIR) respectively. During autophagosomal fusion with lysosomes, 

Ref(2)P is degraded and thus presence of accumulated Ref(2)P serves as an 

indication of block in autophagy pathway. Immunofluorescence experiments in fly 

salivary glands showed that compared to controls, Relish mutants demonstrate 

significantly higher levels of Ref(2)P puncta in salivary gland cells(Fig 2.5 G, H), 

supporting earlier findings that indeed Relish functions through autophagy. 



	
  

	
  

57	
  

Figure 2.5. Relish mediated salivary gland degradation is autophagy 

dependent 

(A) Representative histological sections of Atg18 mutants, (left, 

Atg18KG03090/Df (3L) Exel6112) or Relish, Atg18 double mutants (right, If/CyO; 

Atg18 KG03090, RelE20/Df (3L) Exel6112, RelE20) 24 h APF. Salivary gland 

fragments are within blue dotted circle. (B) Quantitation of histology from 9 and 

12 independent samples for each genotype as in (A) respectively, statistical 
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significance by chi-square test. (C) Representative images of mCherry-Atg8a 

expressed in the salivary glands of control animals (w; pmCherry-Atg8a; 

RelE20/TM6b) or Relish null mutants (w; pmCherry-Atg8a; RelE20). Salivary 

Glands were dissected and visualized 14 h APF. (D) Quantitation of data from 

(c) N=5, data presented as mean ± SEM and statistical analysis by unpaired 

two-tailed t-test with Welch`s correction, ** P<0.01, ns not significant. (E) 

Representative histological sections of Relish mutants (UAS-Atg16A; RelE20, 

left), and Relish mutants with transgenic salivary gland specific Atg1 

expression, (fkh-Gal4/+; UAS-Atg16A /+; RelE20, right) analyzed 24 h APF. 

Salivary gland fragments are highlighted within dotted blue circle. (F) 

Quantitation of histology from 20 independent samples for each strain as in 

(E), statistical analysis by chi-square test; * P<0.05. (G) Representative 

immunofluorescence images of Ref2P in the salivary glands of control animals 

(RelE20/TM6b) or Relish null mutants (RelE20). Salivary Glands were dissected 

and visualized 14 h APF. (H) Quantitation of data from (G) N=18, data 

presented as mean ± SEM and statistical analysis by unpaired two-tailed t-test 

with Welch`s correction, ** P<0.01 
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Expression of the Relish N-terminus or PGRP-LC Causes Premature Gland 

Degradation 

Relish and PGRP-LC are crucial components of the Imd pathway and expression 

of these factors can activate Imd pathway even without an immune challenge 

(DiAngelo et al., 2009; Gottar et al., 2002; Wiklund et al., 2009). Our data also 

suggest that Relish and PGRP-LC positively regulate salivary gland autophagic 

cell death pathway. Therefore, we hypothesized that expression of active 

versions of these factors will cause early gland degradation. To test this 

hypothesis, we expressed either full length Relish, the N-terminus of Relish 

(RelN, an active form), PGRP-LCx, Dredd or imd in salivary glands and analyzed 

by histology, before salivary glands normally degrade. Salivary gland expression 

of either RelN or PGRP-LC caused premature gland degradation, but no such 

phenotype was observed with similar expression of full-length Relish, imd or 

Dredd (Fig. 2.6A-J). In particular, gland specific expression of RelN or PGRP-LC 

caused a marked loss of lumen structure and a severe reduction of gland size. 
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Figure 2.6. Relish-N or PGRP-LC misexpression causes premature gland 

degradation 

(A, C, E, G, I) Representative histological sections from  of control 

animals (left, w; UAS-Relish full-length, UAS-RelN, w; UAS-PGRP-LCx, w; 

UAS-imd, w;; UAS-Dredd respectively,) or animals expressing those genes 
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ectopically in salivary glands (right, w; UAS-Relish full-length /+; fkh-Gal4/+, 

UAS-RelN/+;; fkh-Gal4/+, w; UAS-PGRP-LCx/+;fkh-Gal4/+, w;UAS-imd/+; fkh-

Gal4/+, w;;UAS-Dredd/fkh-Gal4). Salivary glands are highlighted within blue 

dotted circles. (B, D, F, H, J) Quantitation of histological sections from 20 

independent samples for each strain as in (A, C, E, G, I), statistical 

significance by chi-square test. **** P<0.0001, ns not significant. 

Similarly, expression of these genes in 3rd instar salivary glands also caused 

severe gland size reduction (Fig. 2.7). imd expression caused a mild degree of 

gland size reduction in the 3rd instar, while Relish full-length and Dredd had no 

effect. These data demonstrate that expression of active Relish and PGRP-LCx 

in salivary glands is sufficient to trigger a pathway of gland degradation.
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Figure 2.7. Ectopic expression of RelN or PGRP-LC Reduces Salivary Gland 

Size 

(A-E) DIC images of whole salivary glands and (A`-E`) quantitation of salivary 

gland size from animals ectopically expressing various Imd pathway 

components. (A) Left, control (pmCherry Atg8a/UAS-Relish full length, N=6), and 

right, misexpression of full length Relish (pmCherry Atg8a/ UAS-Relish full 

length; fkh-Gal4/+, N=4). (B) Left, control (UAS-RelN/+; pmCherry Atg8a/+, N=8), 

and right, misexpression of RelN (UAS-RelN/+; pmCherry Atg8a/+; fkh-Gal4/+, 

N=10). (C) Left, control (pmCherry Atg8a/+; UAS-Dredd/+, N=11), and right 

misexpression of Dredd, (pmCherry Atg8a/+; fkh-Gal4/UAS-Dredd, N=13). (D) 

Left, control (pmCherry Atg8a/UAS-imd, N=7), and right, misexpression of imd 

(pmCherry Atg8a/ UAS-imd; fkh-Gal4/+, N=7). (E) Left, control (pmCherry 

Atg8a/UAS-PGRP-LCx, N=16), and right, misexpression of PGRP-LCx 

(pmCherry Atg8a/ UAS-PGRP-LCx; fkh-Gal4/+, N=29). Statistical analysis was 

performed by unpaired two-tailed t-test with Welch`s correction. **** P<0.0001, 

*** P<0.001, * P<0.05, ns not significant. 

Premature Gland Degradation due to Relish and PGRP expression is 

Autophagy-Dependent 

We next tested if the early salivary gland degradation induced by RelN 

expression was dependent either on caspases or autophagy. RelN was 
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expressed in salivary glands along with p35 or in a homozygous Atg18 mutant 

background. Inhibition of caspases by expression of p35 did not suppress the 

early gland degradation caused by RelN expression (Fig 2.8A,B). By contrast, 

when RelishN was expressed in Atg18 mutant animals, a complete suppression 

of early gland degradation was observed (Fig. 2.8C & D).  

Drosophila midgut cells undergo dramatic size reduction due to autophagy 

induction during pupation (Chang et al., 2013). Similarly, expression of either 

RelN or PGRP-LCx in salivary gland cell clones also caused significant cell-

autonomous reduction and autophagy, as assayed by mCherry-Atg8a puncta 

formation (Fig 2.8E-H).
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Figure 2.8.  Relish-N and PGRP-LC Mediated Early Gland Degradation is 

Autophagy dependent 

(A) Representative histological sections of animals expressing RelN (left, 

UAS-RelN/+;; fkh-Gal4/+) and animals expressing RelN and p35 together 

(UAS-RelN/+;; fkh-Gal4/UAS-p35), in salivary glands. Salivary glands are 

highlighted within blue dotted circles. (B) Quantitation of histology from 20 
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samples for each genotype as in (A), statistical significance by chi-square test. 

(C) Representative histological sections of animals expressing RelN in salivary 

glands of wild type flies (left, UAS-RelN/+;; fkh-Gal4/+) and in Atg18 mutant 

flies (right, UAS-RelN/fkh-Gal4;; Atg18KG03090/Df (3L) Exel6112) . Salivary 

glands are highlighted within blue dotted circles. (D) Quantitation of 14 and 10 

independent samples respectively from each genotype as in (C), statistical 

significance by chi-square test. **** P<0.0001, ns not significant. (E) 

Representative images of dissected salivary glands from wandering larvae. All 

cells express mCherryAtg8, while RelN is expressed in GFP marked clone 

cells (hsflp/UAS-RelN; pmCherryAtg8/CyO; act<FRT, cd2, FRT>Gal4; UAS-

GFP/+). Quantitation of the cell size of RelN expressing cells compared to 

neighboring wild type cells is shown in (F), N=3, data presented as mean ± 

SEM and statistical analysis by unpaired two-tailed t-test with Welch`s 

correction. (G) Representative images of dissected salivary glands from 

wandering larvae. All cells express mCherryAtg8, while PGRP-LCx is 

expressed in GFP marked clone cells (hsflp/w); pmCherryAtg8/UAS-PGRP-

LCx; act<FRT, cd2, FRT>Gal4; UAS-GFP/+). Quantitation of the cell size of 

PGRP-LCx expressing cells and wild type cells is shown in (H), N=3, data 

presented as mean ± SEM and statistical analysis by unpaired two-tailed t-test 

with Welch`s correction., ** P<0.01, * P<0.05. 
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Additionally, when expressed throughout the 3rd instar salivary gland, RelN or 

PGRP-LC triggered Atg8a puncta formation, similar expression of imd 

triggered only mild puncta formation, while Relish full-length or Dredd 

expression did not cause this phenotype (Fig. 2.9). Taken together, these 

data indicate that premature gland degradation caused by RelN and PGRP-

LC mis-expression is due to premature activation of autophagy.
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Figure 2.9. Misexpression of RelN or PGRP-LC induces autophagy in Larval 

Salivary Glands 

Fluorescent microscopy of larval salivary glands from the same genotypes as 

Rel(Full)

RelN

Dredd

PGRP-LCx

Control Misexpression
)LJXUH����
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Supplementary Figure 4. Misexpression of RelN or PGRP-LC induces 
Autophagy in Larval Salivary Glands
Fluorescent microscopy of larval salivary glands from the same genotypes as 
shown in Supplemental Figure 3 visualizing mCherry-Atg8 puncta formation. 
Representative images, replication for each genotype as indicated in previous 
legend.
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Shown in Figure 2.7 visualizing mCherry-Atg8 puncta formation. 

Representative images, replication for each genotype as indicated in previous 

legend. 

Relish and PGRP-LCx Function Upstream of the Autophagy Pathway 

To begin to map the pathway by which Relish and PGRP-LC control autophagy 

in salivary glands, we next determined the epistatic relationship between these 

two classic immune signaling components. PGRP-LCx, -LE, Relish triple mutant 

does not show any increase in phenotype than the single mutants (Fig.2.10), 

suggesting they act in the same pathway. Furthermore, PGRP-LCx-induced early 

gland degradation was suppressed in Relish mutants (Fig.2.11 A, B), indicating 

that PGRP-LCx acts upstream of Relish, as observed in the immune signaling 

context.  

The above data indicates that Relish affects the autophagy pathway upstream of 

both Atg8 and Atg18. To further map the interaction between Relish and the 

autophagy pathway, RelN misexpression was combined with knockdowns or 

mutations of two genes upstream in the autophagy pathway, Atg1 or Atg13 (Fig. 

2.10 C-F). In particular, RelN -induced salivary gland degradation was 

suppressed by loss of Atg1, but not by Atg13. These results suggest Relish acts 

upstream of Atg1 but downstream or parallel of Atg13.  
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Figure 2.10 PGRPs and Relish Function In The Same Pathway In The 

Context Of Salivary Gland Degradation 

(A) Representative histological sections of PGRP mutants (left, LE112;;LCΔE) and 

PGRP, Relish triple mutants (LE112;;LCΔE.RelE20) flies 24 h APF. Salivary gland 

fragments observed in the mutants are highlighted within dotted blue circle. (B) 

Quantitation of histology from 20 independent samples for each strain as in (A), 

statistical analysis by chi-square test. ns not significant 
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Since Relish is best characterized as a transcription factor that can drive gene 

expression when activated or mis-expressed, we investigated whether Relish 

influences Atg1 expression. It has been reported that Atg1 expression is 

sufficient to drive autophagy in the salivary gland (Berry and Baehrecke, 2007). 

The level of Atg1 expression in the salivary glands of both control (RelE23) and 

Relish mutant animals (RelE20) was determined at both 0 hour and 14 hours after 

puparium formation. We found that expression of Atg1 gene is significantly 

reduced at both time points in Relish mutants compared to controls (Fig. 2.10 G). 

On the other hand, RelN expression in salivary glands significantly increased 

Atg1 transcription. These data indicate that Relish controls autophagy through 

the regulation Atg1 expression (Fig. 2.10 H). 
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Figure 2.11. Relish controls autophagy through Atg1 expression 

(A) Representative histological sections of animals expressing PGRP-LCx in 

salivary glands of wild type flies (left, w; UAS-PGRP-LCx/+; fkh-Gal4/+) and 

Relish mutant flies (right, fkh-Gal4/+; UAS-PGRP-LCx/+; RelE20) . (B) 

Quantitation of 20 independent samples from each genotype as in (A), 

statistical significance by chi-square test. (C) Representative histological 

sections of animals expressing RelN in salivary glands of wild type flies (left, 

UAS-RelN/+;; fkh-Gal4/+) and in PGRP-LCx mutant flies (right, UAS-RelN/fkh-

gal4;; PGRP-LCxΔEfkh-gal4, Atg1374) 6 h APF (D) Quantitation of 20

independent samples respectively from each genotype as in (C), statistical 

significance by Chi-square test. (E) Representative histological sections of 

animals expressing RelN in salivary glands of wild type flies (left, UAS-

RelN/+;; fkh-Gal4/+) and in Atg13 mutant flies (right, UAS-RelN/+;; fkh-gal4, 

Atg1374)  (F) Quantitation of 10 and 11 independent samples respectively 

from each genotype as in (E), statistical significance by Chi-square test. (G) 

Representative histological sections of animals expressing RelN (left, UAS-

RelN/+;; fkh-Gal4/+) and animals expressing RelN and Atg1 RNAi together 

(UAS-RelN/+; UAS-Atg1 RNAi/+; fkh-Gal4/+), in salivary glands. (H) 

Quantitation of histology from 20 samples for each genotype as in (G), 

statistical significance by chi-square test. For A, C, E & G, salivary glands are 

highlighted within blue dotted circles. (I) Atg1 gene expression levels in 

salivary glands of control (RelE23) and RelE20 animals, at 0 
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h and 14 h APF, measured by qRT-PCR, N=3, data presented as mean ± 

SEM, and statistical analysis by unpaired two-tailed t-test with Welch`s 

correction. (J) Atg1 gene expression in salivary glands of control (UAS-RelN) 

and RelN expressing animals (UAS-RelN/+;; fkh-Gal4/+), 6 h APF quantified 

by qRT-PCR, N=3, data presented as mean ± SEM) and statistical analysis by 

unpaired two-tailed t-test with Welch`s correction. **** P<0.0001, *** P<0.001, 

** P<0.01, * P<0.05, ns not significant. 

Bioinformatic analysis of Atg1 promoter using different transcription factor binding 

prediction software (like Consite, Jasper, Twine) revealed four putative NF-κB 

binding sites at -1706, -1229, -723, and -26bp respectively (Fig.2.11A). We 

performed a Chromatin-Immunoprecipitation (ChIP) assay to check whether 

Relish induces Atg1 expression by directly binding to the promoter region. 

Diptericin promoter was used as a positive control and Diedel and Atg6 

promoters as well as Atg1 downstream region (9284bp, no putative NF-κB site) 

were used as negative controls. Our data shows that indeed Relish N-terminal 

binds to the Atg1 promoter region (Fig 2.11B), particularly to the region closest to 

the transcription start site. 
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Figure 2.12. Relish directly binds the promoter region of Atg1 to induce 

Atg1 expression 

(A) DNA sequence of the Atg1 promoter region. The putative NFκB sites  
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(-1706bp, -1229bp, -723bp, -26bp) are highlighted in yellow and the 

transcription initiation site is highlighted in grey. (B) The recruitment of Relish 

N-terminal (UAS-FLAG-RelN/+; tub-Gal80ts/+; fkh-Gal4/+) to the promoters of 

Diedel, Atg1, Atg6, Diptericin in salivary glands. Diedel and Diptericin were 

used as negative and positive controls respectively. All values are represented 

as percent fraction of total input DNA. Data was calculated against the driver 

only control (w; tub-Gal80ts; fkh-Gal4) and is representative of two 

independent experiments. 

Starvation induced Autophagy and Midgut Degradation are Relish 
Independent 

Nutrient deprivation triggers autophagy as autophagy inhibitor TOR is inhibited in 

this condition. To check whether Relish also influences this kind of autophagy 

pathway we starved the animals and observed the fatbody for autophagy 

induction. The Relish mutants did not show any discrepancy in mcherry-Atg8 

puncta formation (Fig.2.12A, B) compared to the control animals suggesting that 

Relish is not involved in starvation-induced autophagy.  

Larval midgut is also degraded during metamorphosis and that degradation is 

autophagy dependent. So, we decided to check whether this developmental 

autophagy is also influenced by Relish. However, we found autophagy induction 

occur normally in the Relish mutant animals (Fig.2.12C, D), indicating that Relish 

is not involved in autophagy mediated midgut histolysis.
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Figure 2.13. Relish is not involved in Starvation induced Autophagy or 

Midgut degradation.  

(A) Representative images of mCherry-Atg8a expressed in the fat bodies of 

control animals (w; pmCherry-Atg8a; RelE20/TM6b) or Relish null mutants (w; 

pmCherry-Atg8a; RelE20). Fat bodies were dissected and visualized 4 h after 

starvation. (B) Quantitation of data from (A) N=10, data presented as mean ± 

SEM and statistical analysis by unpaired two-tailed t-test with Welch`s 

correction, ns not significant. (C) Representative images of mCherry-Atg8a 
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expressed in the midguts of control animals (w; pmCherry-Atg8a;RelE20/TM6b) 

or Relish null mutants (w; pmCherry-Atg8a; RelE20).  

(D) Quantitation of data from (C) (control, N=8 and Relish mutants, N=9), data 

presented as mean ± SEM and statistical analysis by unpaired two-tailed t-test 

with Welch`s correction, ns not significant. 

RelN Influenced Eye deformities are also Autophagy Dependent   

In a previous report RelN expression in the eyes causes eye deformities. The 

authors attributed this phenotype as a result of toxicity. However, as we 

demonstrated earlier that the expression of the active version of Relish results in 

the premature gland degradation, we thought the eye phenotype could be the 

result of that. RelN mediated eye deformities are suppressed by the knockdown 

of Atg1 and Atg2, but not Atg13, indicating that Relish mediated eye deformities 

are also caused by autophagy (Fig.2.13 A-D). It has already been reported that 

autophagy gene knockdown in Drosophila eye alone does not change eye 

morphology(Chen et al., 2012; Nandi et al., 2014).
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Figure 2.14. Relish-N mediated Eye Deformities are Autophagy Dependent. 

(A) Representative images of the eyes of Drosophila, control (left), expressing 

RelN (UAS-RelN/+; GMR-Gal4/+, middle), and expressing RelN and Atg1 

RNAi together (UAS-RelN/+; GMR-Gal4/ UAS-Atg1 RNAi, right). (B) 

Quantitation of data from (A) from each genotypes (N=25). (C) Representative 

images of the eyes of Drosophila, expressing RelN (UAS-RelN/+; GMR-

Gal4/+, left), expressing RelN and Atg13 RNAi together (UAS-RelN/+; GMR-

Gal4/ UAS-Atg13 RNAi, middle) and expressing RelN and Atg2 RNAi together 

(UAS-RelN/+; GMR-Gal4/ UAS-Atg2 RNAi, right). (D) Quantitation of data 

from three independent biological experiments from (C) from each genotypes 

(N=25). Data presented as mean ± SEM) and statistical analysis by unpaired 

two-tailed t-test with Welch`s correction. * P<0.05, ns not significant. 
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Discussion 

Different aspects of autophagy have been extensively studied over the years, 

particularly during nutrient deprivation, and the role of metabolites in the 

regulation of autophagy is well established. Autophagy is critical for genomic 

stability and alleviation of oxidative stress, and in turn the prevention of 

tumorigenesis(White, 2015). In recent years autophagy has become an attractive 

target for cancer therapy (Thorburn et al., 2014). Moreover, it has also been 

observed that autophagy plays important roles in different immune defenses, 

especially against intracellular pathogens.  

Our findings suggest that the NF-κB factor Relish, an important component of the 

fly immune system, plays a significant role in steroid hormone triggered 

autophagy in the salivary glands of Drosophila. Relish positively regulates 

autophagy as evidenced by the inhibition of autophagy in salivary glands of 

Relish mutant flies. Ectopic expression of active Relish induces autophagy and 

causes premature gland degradation. Furthermore, we present a novel 

mechanism by which Relish regulates autophagy. Relish drives the expression of 

Atg1, which is both necessary and sufficient for autophagy induction and 

programmed cell death of salivary glands (Berry and Baehrecke, 2007; Scott et 

al., 2007).  

As Relish is the key transcription factor regulating Drosophila immunity via the 

Imd pathway, we examined all other components of this pathway to determine 

whether they also contribute to salivary gland degradation. However, apart from 
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the bacterial sensing receptors, PGRP-LC and –LE and Relish, none of the other 

Imd pathway components affected salivary gland degradation. PGRP-LC 

functions upstream of Relish during gland degradation, similar to that observed in 

the immune signaling context. These results are surprising and suggest several 

possibilities including a direct interaction between Relish and PGRP-LC/LE or the 

existence of a novel pathway that connects PGRP-LC and/or PGRP-LE to Relish 

without the involvement of other traditional Imd pathway components. We also 

report here that the PGRP-LC and PGRP-LE, which encode receptors known to 

directly bind bacterial peptidoglycan, function in the context of salivary gland 

degradation even though microbial triggers are not involved in this biological 

process, as salivary gland degradation occurs normally in axenic flies. It has 

been reported that PGRP-LE, but not Relish, is crucial to mount an autophagic 

response against cytosolic Listeria monocytogenes infection (Yano et al., 2008). 

So it seems unlikely that the autophagy activation upon Listeria infection is 

regulated in the same way as the Relish-controlled autophagy pathway in 

salivary gland degradation. Thus the Imd pathway can trigger autophagy in 

different contexts involving PGRP receptors and/or Relish but the mechanism 

involved likely differ depending on the context. 

Recently, Relish has been implicated in several cell death related processes. For 

example, Relish was found to be essential for the light-dependent death of 

photoreceptor cells in norpA mutant flies (Chinchore et al., 2012). Another report 

suggests that Relish is crucial in removing unfit cells in a Drosophila wing-disc 
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model of cell competition (Meyer et al., 2014). Relish has also been linked to 

neurodegeneration in Drosophila, where Relish-dependent expression of AMPs 

was shown to cause increased neuronal damage (Cao et al., 2013). Several of 

these studies either speculated or showed that Relish influences caspase 

dependent cell death. Yet in salivary gland degradation Relish does not affect 

caspase-dependent processes, and instead controls the activation of autophagy 

and cell death. To the best of our knowledge, no previous reports have 

implicated Relish in the regulation of autophagy.  

It has been reported that some autophagy components play important roles in 

both immunity and tumorigenesis, such as ATG6/BECN1 that acts downstream 

of cGAS-STING signaling pathway as well as downstream of TLR4 signaling 

upon cytosolic DNA and LPS exposure respectively (Cadwell, 2016). However it 

has been reported that deletion of BECN1 also results in the generation of liver 

and lung tumors as well as lymphomas in mice (Qu et al., 2003). So, clearly 

these results demonstrate that some autophagy components play dual role in 

both immunity and cellular homeostasis. Interestingly, our findings also 

demonstrate a dual role of the PGRP receptors and Relish in both immune 

responses and regulation of developmentally controlled cell death. The lack of 

any microbial involvement linking PGRP receptors and Relish to the death of 

salivary gland cells indicates the possibility that these factors are regulated by 

developmental cues in this context. We have previously demonstrated that a rise 

in steroid hormone induces PGRP-LC and Relish expression (Rus et al., 2013). 
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Supplementary Figure 5. PGRP-LCx and Relish are upregulated during 
salivary gland degradation
(A, B) Analysis of PGRP-LCx and Relish expression at 0 h and 14 h APF by 
qRT-PCR. N=3, statistical analysis was performed by unpaired two-tailed t-test 
with Welch`s correction. ** P<0.01, * P<0.05.

In fact, we also observed increased expression of both PGRP-LC and Relish in 

dying salivary glands (Fig. 2.14A,B)

Figure 2.15. PGRP-LCx and Relish are Upregulated during Salivary gland 

Degradation 

(A, B) Analysis of PGRP-LCx and Relish expression at 0 h and 14 h APF by 

qRT-PCR. N=3, statistical analysis was performed by unpaired two-tailed t-test 

with Welch`s correction. ** P<0.01, * P<0.05. 
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Elevated levels of PGRP-LC are sufficient to activate the classical Imd pathway 

(Choe et al., 2002). Together these findings suggest that in the presence of high 

levels of steroid, PGRP-LC is upregulated within the salivary glands, to a level 

that triggers a non-classical PGRP-LC to Relish pathway, which in turn induces 

Atg1 expression. Atg1 expression per se is sufficient to activate autophagy in the 

salivary gland (Berry and Baehrecke, 2007). Although in physiological context 

Atg13 is required for proper gland degradation and Atg1 activation, we have 

demonstrated that in case of active relish misexpression, Atg13 is not required. 

This could be due to high level of Atg1 expression through active relish and this 

bypasses the need for Atg13. We speculate that in normal condition both relish 

mediated Atg1 expression and subsequent complex formations by Atg13 are 

necessary for autophagy induction in salivary glands. Hence, even in the 

absence of any microbial stimulus, steroid hormone signaling, through elevated 

expression of PGRP-LC and Relish, could contribute to the activation of 

programmed cell death by transcriptionally regulating the Atg1 and autophagy. 

Alternatively, in this context PGRPs could be activated by a yet-to-be identified 

developmentally regulated ligand, to activate Relish and autophagy. Future 

studies will be necessary to discriminate between these possibilities. 
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CHAPTER 3. 

Experimental Procedures 

Fly Strains 

All strains have been previously described including RelishE23, a precise P-

element excision allele, and RelishE20, a congenic imprecise deletion allele 

(Hedengren et al., 1999), PGRP-LCΔE and the PGRP-LE112;; PGRP-LCΔE double 

mutant (Gottar et al., 2002; Takehana et al., 2004), UAS-Relish Full length (BL-

9459)(Hedengren et al., 1999), UAS-RelN (Wiklund et al., 2009) , UAS-imd 

(Georgel et al., 2001), UAS-Dredd (Leulier et al., 2002),Tak12 (Vidal et al., 2001), 

UAS-AMPs(Cao et al., 2013), UAS-PGRP-LCx (Kaneko et al., 2006), hsflp; +, 

act<FRT, cd2, FRT> Gal4,UAS-GFP, pmcherry-Atg8a (Denton et al., 2012), 

UAS-Atg16A  (Mohseni et al., 2009), UAS-Atg1 RNAi (VDRC-16133), UAS-p35 

(Hay et al., 1994)  Atg1374 (Chang and Neufeld, 2009), Atg18aKG03090 (BL-13945), 

Df(3L)Exel6112 (BL-7591). 

Axenic Fly Preparation 

The fly embryos were collected on grape juice agar plates and later washed 

sequentially with 2.7% sodium hypochlorite solution, 70% Ethanol, sterile PBS 

and transferred to vials containing autoclaved fly food with an antibiotic cocktail 

of tetracycline, ampicillin, rifamycin (50 µg/ml, 500 µg/ml, or 200 µg/ml 
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respectively). 16S ribosomal DNA PCR was performed to determine the axenic 

status of the flies, and whole fly lysates, from 10 animals, were serially diluted 

and plated on LB agar plates to quantify culturable microbes. 

Immunostaining and Microscopy 

Salivary glands were dissected in cold PBS solution and then fixed in 4% 

paraformaldehyde for overnight at 4°C. The glands were washed with PBST 

(PBS with 0.1% tween-20) and then with PBSBT (PBS with 0.1% tween-20 and 

1% BSA). Next, they were incubated in PBSBT at room temperature for 2 hours 

and kept in primary antibody (rabbit anti-cleaved caspase-3, 1:400, Cell-

Signaling, #9664) overnight at 4°C. The glands were washed with PBSBT, 

incubated with secondary antibody for 2 hours at room temperature and washed 

again with PBSBT for 1 hour. Finally, the glands were mounted in Vectashield 

(Vector Laboratories). For mcherry-Atg8 analysis, salivary glands were dissected 

in cold PBS and fixed with 2% paraformaldehyde for 1 hour in room temperature. 

The glands were then mounted in 50% glycerol containing 2 µM Hoechst stain. 

Imaging was performed using Zeiss AxioImager microscope and mecherry-Atg8 

puncta analysis and cell size measurement were performed with ImageJ 

software. 
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Quantitative RT-PCR analysis 

Salivary glands were dissected in cold PBS and RNA isolated as described 

(Andreas and Thummel, 1994). 500ng of total RNA was treated with DNaseI 

(Invitrogen) and used as template in an iscript cDNA synthesis reaction (Bio-

Rad), followed by qRT-PCR reaction using SYBR green supermix (Bio-Rad). 

 

Histology 

Salivary gland histology was performed as described previously (Muro et al. 

2006). 

 

Induction of Cell Clones 

Misexpressing cell clones were induced in Drosophila salivary glands as 

described previously (McPhee et al. 2010). 

 

Starvation Assay 

Starvation of larvae was done as described previously (McPhee et al. 2010) 

 

Chromatin-Immunoprecipitation Assay 

Wandering larvae were kept at 29ºC for 3 hours to induce Relish N-terminal 

expression and ~100 pairs of salivary glands were dissected from these larvae. 

The glands were washed with cold PBS and then suspended in 1ml of PBS 

solution. The glands were cross-linked using 1% formaldehyde; at room 
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temperature for 10 min. Glycine was added to quench the cross-linking at a 

concentration of 125mM. Then, the glands were washed with ice-cold TBS and 

resuspended with 500 µl of sonication buffer (50mM Hepes-pH7.8, 150mM NaCl, 

1mM EDTA, 1% Triton-X 100, 0.1% sodium Deoxycholate, 1% SDS, Protease 

Inhibitor Cocktail). The glands were ground with pestle and then freeze-thawed. 

Finally, the solution was sonicated using the diagenode-bioruptor sonicator 

(20min sonication, 30sec On and 30sec Off cycle, setting-high). The chromatin 

was co-immunoprecipitated overnight using Dynabeads (thermofisher, catalog 

no-10003D) conjugated with anti-FLAG antibody (Sigma, catalog no-F1804), 

reverse-crosslinked and purified. Quantitative RT-PCR was performed using 

primers designed to sites of interest.  
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CHAPTER 4. 

Discussion 

Autophagy, which initially was thought to be cells` last resort for survival and only 

a recycling mechanism, now found out to be involved in numerous other 

biological processes, including development and immunity. Its role in cancer and 

other disorders made it an attractive target for future drug therapy. Therefore the 

mechanisms that regulate autophagy are of great interest. Here, in my 

dissertation I have described a novel transcriptional regulation of autophagy 

pathway, mediated by the NFκB transcription factor Relish. 

Role Of NFκB in regulation of Autophagy 

NFκB is a versatile transcription factor, which influences a large number of 

biological pathways. The fruit fly Drosophila melanogaster has three NFκB 

factors, Dorsal, DIF and Relish. Dorsal is essential for the dorso-ventral pattern 

formation during development. Stimulation of the Toll pathway during 

development results in the nuclear localization of Dorsal, which then activates 

several genes, including snail and twist (Jiang et al., 1991). However, later the 

role of Dorsal in expression of several AMP genes was also discovered. The 

second NFκB factor DIF is also a component of the Toll pathway. DIF is also 

necessary for the induction of proper humoral immune response as it also 

controls the expression of several AMP genes. It has been found that Dorsal/ DIF 

controls AMP expression during larval stage in a redundant manner. However, in 
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adults DIF is the principal NFκB factor, which is involved in Toll pathway 

dependent AMP production (Ip et al., 1993). The last NFκB factor, Relish, was 

characterized as a component of the Imd pathway, which is essential for 

generation of proper humoral immune response against Gram-negative bacteria 

(Hedengren et al., 1999).  

Developmentally programmed cell death is observed in Drosophila during 

metamorphosis. At this stage major tissue remodeling, which include both old 

tissue histolysis and generation of new tissues, occurs. Drosophila salivary 

glands and midgut are degraded at this time under the influence of major cell 

death pathways. As apoptosis and autophagic cell death both take place in the 

salivary glands to ensure its complete destruction, this particular tissue is an 

extremely useful model to study different aspects of both cell death pathways. 

Interestingly, a high level of AMPs, whose expression is controlled by Relish, is 

observed in dying salivary glands (Lee et al., 2003). As the salivary glands are 

degraded by both apoptosis and autophagy, I was curious whether Relish plays 

any role to control these pathways.  

My data shows that Relish controls salivary gland degradation. Further 

investigation also revealed that Relish mediated salivary gland degradation is 

autophagy dependent. This is the first in vivo data showing the involvement of 

Relish in regulation of autophagy. Furthermore the PGRPs, which are primarily 

characterized as necessary components of humoral immune response, also 

found to be acting in the same pathway. Although mammalian NOD receptors 



92	
  

92	
  

also control autophagy, they mostly respond to microbial components, not 

developmental cues (Travassos et al., 2010a). In this regard this pathway is quite 

unique and more research is needed to properly delineate the pathway. 

Relish null mutant animals show incomplete salivary gland degradation, as 

salivary gland cell fragments are observed in the histological sections of the 

Relish mutants compared to the control animals. Expression of wild type Relish 

gene in the salivary glands in Relish mutant background rescues the phenotype, 

further proving the necessity of Relish in salivary gland histolysis. Surprisingly the 

other components of the Imd pathway, except the receptors PGRP-LC and-LE, 

did not show any such phenotype. Furthermore the Relish mediated salivary 

gland cell death appears to be caspase independent rather it relies on 

autophagy. Expression of both the active versions of Relish and PGRP-LC 

results in the premature gland degradation and autophagy induction, proving that 

Relish and PGRP-LC are necessary and sufficient to induce autophagy. 

Interestingly, my data also indicates that Relish controls autophagy by regulating 

the expression of Atg1, as evidenced by the comparatively lower expression of 

Atg1 in Relish mutants and induction of Atg1 expression in salivary glands when 

Relish N-terminal was misexpressed. Bioinformatic analyses and ChIP assay 

further demonstrated direct interaction of Relish N-terminal to the putative NFκB 

sites at the Atg1 promoter region.  

Different pathways, including the TOR network, regulate autophagy. As 

mentioned earlier, TOR pathway monitors the nutrient status of the cells and in a 
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nutrient rich condition TOR is activated and that leads to cell growth. TOR kinase 

causes protein synthesis by phosphorylating downstream protein S6 kinase 

(RPS6-p70-protein kinase). Phosphorylation of the ribosomal S6 protein results 

in protein synthesis. TOR also inhibits the translational repressor Thor/4E-BP 

(Eukaryotic Translation Initiation Factor 4E binding), by phosphorylating it 

(Gingras et al., 2001). So, together with inhibition of autophagy and promotion of 

cell growth, TOR activity ensures proper development of tissues and organs 

(Noda and Ohsumi, 1998). As both nutrients and growth factors such as IGF 

(Insulin like Growth Factor) influence TOR activity I thought whether Relish 

activates autophagy by influencing these particular signaling cascades. However, 

we found that starvation-induced autophagy occurs normally in Relish mutants. 

This suggests that Relish mediated autophagy is separate from the one 

controlled by TOR/IIS axis. 

As I have demonstrated that PGRP-LC and Relish also act in the same pathway 

in the context of cell death, the next question was, what is activating PGRP-LC 

and initiating subsequent Relish activation? Microbes were ruled out as possible 

candidates as axenic flies show normal gland degradation. Interestingly it has 

been observed that the molting hormone 20-hydroxyecdysone (20E), which is 

essential for fly development and metamorphosis, induces PGRP-LC expression. 
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Ecdysone Pathway 

Ecdysone is secreted from the prothoracic ring glands into the hemolymph and 

processed by several enzymes to produce the molting hormone 20-

hydroxyecdysone (20E). Two different nuclear receptors, ecdysone receptor 

(EcR) (homolog of vertebrate farnesoid receptor or liver X receptor) and 

ultraspiracle (USP) (homolog of retinoid X receptor), form a heterodimer 

complex, which recognizes this particular form of ecdysone (Koelle et al., 1991). 

EcR has three different isoforms; -A, -B1 and-B2 while USP has only one. Three 

isoforms of EcR has similar DNA and ligand binding domains but they differ at 

the amino termini(Talbot et al., 1993). Differential expression isoforms led to 

tissue specific responses of 20E during development, as evidenced by the 

observations that EcR-A mutants display improper salivary gland degradation 

and abnormality in leg development while metamorphosis is blocked in EcR-B 

mutants, which also exhibit defects in tanning of pupa and neuronal network 

formation (Bender et al., 1997). The EcR-B isoforms are strong activators of 

gene expression due to their AF-1 domains. During each stages of the 

developmental cycle, there is a pulse of 20E that propels the animal towards next 

phase of development. Upon 20E binding, the EcR and USP complex initiate 

different gene expression, which are categorized into early and late response 

genes, depending on their time of expression. The early response class of 

genes, that are expressed during larval to prepupal transition, includes Broad 

complex (Br-C), E74, E75, which are transcription factors themselves. In addition 
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to these early genes, a second 20E pulse that results in the prepupal to pupal 

transition also activates the helix-turn-helix factor E93. These transcription 

factors are responsible for the expression of late response genes that includes 

pro-apoptotic genes reaper and hid (Baehrecke and Thummel, 1995; Woodard et 

al., 1994). 

In an earlier publication from our lab, we observed that 20E alone could drive the 

expression of various Imd pathway genes such as PGRP-LC in Drosophila cell 

lines (Rus et al., 2013). I also noticed during metamorphosis, when the 20E titer 

is particularly high, PGRP-LC and Relish expression is also upregulated in the 

salivary glands. This suggests that 20E or ecdysone might be the stimulus that 

drives PGRP-LC expression, which leads to Relish cleavage and subsequent 

autophagy induction. However as the ecdysone controls both apoptosis and 

autophagy during salivary gland degradation and is also involved in plethora of 

developmental pathways, it is rather difficult to ascertain the possible role of 

ecdysone in controlling autophagy through PGRP-LC and Relish. However 

identification and selective mutation of ecdysone responsive elements in PGRP-

LC and possibly Relish promoters might be useful to address this question.  

Relish mediated cell death is tissue specific and also varies depending on the 

stimuli. For example, in a previous report Relish is necessary for the light 

dependent cell death of photoreceptor cells. In another, during cell competition 

unfit cells are killed through the involvement of both Relish and Toll pathway 

components (Chinchore et al., 2012). However in both cases the cell death 
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appears to be caspase dependent. In our model, we have shown that Relish 

controls another form of cell death, called autophagy, in the salivary glands of 

Drosophila. Interestingly, autophagy mediated cell death is also observed during 

the degradation of midgut and that event is also ecdysone dependent. However 

we did not find any link between autophagy and Relish during midgut histolysis, 

suggesting Relish mediated autophagy induction is tissue specific. These 

observations also imply that Relish can influence both caspase dependent and 

autophagic form of cell death in different scenarios. In addition, according to our 

hypothesis ecdysone dependent activation of Relish is important, however high 

titer of ecdysone in midgut did not show any Relish dependency to induce 

autophagy. So, probably differential expression of ecdysone receptors in different 

tissues might be driving Relish activation or there are other tissue specific stimuli 

that results in the activation of Relish and subsequent autophagy induction. 

Another interesting aspect of my research is the involvement of PGRP receptors 

in developmentally programmed salivary gland degradation. Both the membrane 

bound receptor PGRP-LC and cytosolic receptor PGRP-LE is found to be 

necessary for proper gland degradation. Ectopic expression of PGRP-LC causes 

premature gland degradation and autophagy, further justifying that PGRP 

receptors are both necessary and sufficient to induce autophagic cell death.  

In Drosophila PGRP receptors were known as part of the Imd pathway, which is 

activated upon Gram-negative bacterial infection. However PGRP-LE was also 

found to be necessary for autophagy induction upon intracellular pathogen 
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Listeria monocytogenes infection. Interestingly, even in that case the classical 

Imd pathway did not seem to be involved. This leaves us with several questions, 

are PGRP-LE mediated autophagy upon Listeria infection and PGRP-LC and –

LE mediated autophagy in salivary gland completely different? It’s quite possible 

that in different situations and under different stimulation the receptors behave 

differently and engage different pathways to accomplish the same thing, 

induction of autophagy. However, as we already discussed that same 

components can behave differently in different tissues, such as Relish controlling 

either Caspase dependent or autophagic cell death, there is a possibility that 

those pathways might utilize similar factors. In both cases classical Imd pathway 

did not seem to be involved so it would be really interesting to identify 

components that link those two pathways together.  

Mammalian PRRs and Autophagy 

In mammalian system pattern recognition receptors (PRR) play necessary roles 

in activating autophagy. The TLR4 recognizes bacterial lipopolysaccharide and 

that leads to the activation of ubiquitin ligase TRAF6, which ubiquitinates Beclin1 

resulting in its dissociation from Bcl2, thus promoting autophagy. Interestingly, 

stimulation of TLR4 pathway also leads to the activation of NFκB, which causes 

A20 transcription. A20 negatively regulates autophagy by de-ubiquitinating 

Beclin1 (Shi and Kehrl, 2010b). Cytosolic NOD receptors influence autophagy by 

interacting with Atg16L1 and localizing it to the plasma membrane, particularly to 
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the entry site of microorganisms. By contrast the receptors NLRC4 and NLRP4 

inhibit autophagy by sequestering Beclin-1. The NACHT domain of these two 

proteins interacts with Beclin-1 ECD domain and this interaction is necessary for 

the inhibition of autophagy (Jounai et al., 2011). Autophagy is also activated 

through the IKK complex utilizing different mechanisms. The canonical IKK 

complex activates autophagy through AMPK, which phosphorylates ULK1, 

upstream component of the autophagy pathway. Surprisingly, this mode of IKK 

mediated autophagy initiation is NFκB independent (Comb et al., 2011).  

Hormonal Involvement in mammalian Innate Immunity 

Hormonal control of PRR expression and immune function became an exciting 

field as it indicates possible immunomodulatory roles of hormones. Hormones, 

particularly the glucocorticoids play important role in regulation of both innate and 

adaptive immune pathways. It has been observed that glucocorticoids dampen 

cytokine production, as evidenced by the enhanced production of IL-12, TNF, IL-

1β, and IL-6 in conditional glucocorticoid receptor mutant mice. These mice also 

show higher mortality compared to wild type controls (Bhattacharyya et al., 

2007). The inhibition of cytokine production by this type of hormones is 

accomplished by different ways, such as inhibiting of NFκB activity either by 

direct sequestration or coding of other NFκB inhibitors, like IκB and 

glucocorticoid-induced leucine zipper protein (GILZ). However, prolonged 
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signaling through TLRs in pDCs (Plasmacytoid Dendritic Cells) circumvents this 

particular mode of inhibition (Guiducci et al., 2010; Scheinman et al., 1995). 

Surprisingly in other studies it has been demonstrated that glucocorticoids can 

also act as immunoenhancers. Low dose of corticosterone activates 

inflammatory gene expression in macrophages, which were primed with LPS and 

IFN-γ. Pro-inflammatory cytokine level is increased in rats upon glucocorticoid 

treatment, however that effect decreases following LPS exposure. In respiratory 

epithelial cell line glucocorticoid treatment enhances TLR2 expression. 

Furthermore, NACHT, LRR and PYD domains-containing protein 3 (NLRP3) 

expression is also upregulated in glucocorticoid treated primary and immortalized 

macrophages (Dhabhar and McEwen, 1999; van de Garde et al., 2014).  

This curious observation that glucocorticoid performs both immunostimulatory 

and immunosuppressive actions in cells led to the hypothesis that 

immunomodulatory role of glucocorticoids is dose-dependent. At low 

concentration this hormone exposure results in the expression of PRRs 

potentiating cytokine expression, however high concentration diminishes that 

response (Sapolsky et al., 2000).  

This hypothesis might prove useful in explaining the ecdysone mediated cell 

death through PGRP-LC and Relish in salivary glands. Comparatively higher 

dose of ecdysone at 0 hour during larval to prepupal transition does not induce 

autophagy in the salivary gland. By contrast, lower surge of the same hormone 

drives salivary gland degradation at 14 hour, during prepupal to pupal transition. 
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However, ecdysone mediated salivary gland degradation is dependent on PGRP-

LC and Relish. So, it is possible that comparatively low dose of ecdysone in the 

glands causes PGRP-LC upregulation, Relish cleavage and subsequent 

autophagy induction. While, higher dose of ecdysone at 0 hour dampens PGRP-

LC-Relish expression.  

Questions and Future Directions: -  

In our model (Fig 4.2) we proposed a novel manner of autophagy regulation 

through the regulation of key autophagy gene expression by immune receptors 

and NF-κB factor. However some interesting questions remained.  

1. The cleavage of relish in the context of salivary gland degradation was not

explored properly. We have established the role of relish as a transcription factor 

and demonstrated that active cleaved relish is sufficient to induce autophagy, 

however the caspase Dredd, which cleaves relish, was not involved in gland 

degradation. This led us to postulate several possibilities, like relish could be 

cleaved by some hitherto unknown mechanism. In that case relish nuclear 

translocation in salivary glands and genetic screen for known drosophila 

proteases in terms of salivary gland degradation defect might be useful to 

understand the relish cleavage mechanism.  

2. RIP Homology Interaction Motif (RHIM) is a conserved protein domain that

was discovered in mammalian Receptor-Interacting-Proteins (RIP) (Sun et al., 

2002b). This domain is necessary for the association of RIP1 and RIP3 and 
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further signal transduction. Later it was discovered in other proteins as well, such 

as the adaptor TIR-domain-containing adapter-inducing interferon-β (TRIF) and 

cytosolic DNA sensor DAI/ZBP1 (DNA-dependent activator of IRFs/Z-DNA 

binding protein-1) (Kaiser and Offermann, 2005; Rebsamen et al., 2009). In 

Drosophila RHIM like motifs were discovered in the PGRP receptors, -LC and –

LE. This motif is essential for signal transduction and mutation in these motifs 

blocks IMD pathway activation in response to PGN stimulation (Kaneko et al., 

2006). Recently we also demonstrated that similar as mammalian RHIM 

domains, drosophila RHIM like motifs also form amyloid structure and Drosophila 

RHIM could replace mammalian RHIM, suggesting the conserved nature of this 

domain (Kleino et al., 2017). Interestingly, it has also been shown that the death 

domain containing protein IMD and NFkB factor Relish both have putative RHIM 

domain  

[Putative Relish RHIM Domain- 

N-Terminal-

...PYQNQLLNNGGICQLGATNLINSTGVSFGVANVTSFGNMYMDHQYFVP...  

C-terminal] (VSFG residues serve as the core of the RHIM domain) 

We were interested whether this domain is necessary for the salivary gland 

degradation as well, since the canonical IMD pathway was not involved. 

Surprisingly the PGRP-LCx RHIM mutant failed to induce salivary gland 

degradation upon misexpression (Figure 4.1), suggesting possible role of the 

RHIM domain in salivary gland degradation. This led us to speculate the possible 
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interaction between RHIM containing proteins, such as PGRP-LC, LE and Relish 

might be important for autophagy induction in salivary glands. Possible 

experiments that would prove this hypothesis include (a) interaction of Relish in 

PGRP receptors in both Drosophila Cells and in heterologous expression 

system. (b) RHIM domain mutation in endogenous Relish and PGRP receptors 

and check that whether these mutations affect salivary gland degradation. 

 

 
Figure 4.1 PGRP-LCx RHIM Domain Is Essential For Salivary Gland 

Degradation 

(A) Representative histological sections of animals expressing PGRP-LCx in 

salivary glands of wild type flies (left, w; UAS-PGRP-LCx/+; fkh-Gal4/+) and 

PGRP-LCx RHIM mutant flies (right, w; UAS-PGRP-LCxRHIM/+; fkh-Gal4/+) (B) 

Quantitation of 20 independent samples from each genotype as in (A), statistical 

significance by chi-square test. *** P<0.001  
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3. Further exploration of the role of the hormone ecdysone in LC-Relish mediated

gland degradation is necessary. We have shown we have demonstrated that 

PGRP-LCx and Relish expression are upregulated in dying salivary gland and 

this upregulation occurs at the same time of ecdysone pulse. However the role of 

ecdysone specifically in this event was not characterized properly. Inhibition of 

ecdysone signaling in salivary glands either by expressing dominant negative 

ecdysone receptor or knockdown of ecdysone induced transcription factors and 

subsequent change in PGRP-LC and Relish expression would be informative. 

Further, identification of specific ecdysone responsive elements in either PGRP-

LC or Relish promoter region and selective mutation of those elements would 

also be helpful to elucidate the role of ecdysone in mediating the gland 

degradation through the expression of PGRP-LC and Relish.  

4. As the canonical IMD pathway is not involved in salivary gland degradation, it

is still unclear if there is any external stimulus that involves LC-Relish mediated 

gland degradation. Currently we are unaware about the any other ligands of 

PGRP receptors except microbial components. However that does not rule out 

the existence of such factors. To test whether PGRP receptors require any such 

ligands for gland degradation, expression of PGRP receptors without ligand-

binding domain and subsequent monitoring of salivary gland degradation would 

be worthwhile.  

5. It would be interesting to investigate the role of these particular factors, PGRP

receptors and Relish in induction of autophagy in other tissues or in different 



	
  

	
  

104	
  

104	
  

biological context. For example, we demonstrated that active relish expression 

results in the eye deformities, which can be suppressed by knockdown of key 

autophagy genes. Similarly, it has been reported earlier that PGRP-LE is 

involved in autophagy induction in response to Listeria infection (Yano et al., 

2008). Further experiments to elucidate the role of these components in the 

context of intracellular pathogens as well as in other tissues of Drosophila in 

response to developmental cues or otherwise, would be of significance.  

 

Although earlier reports demonstrated the role of several PRRs in autophagy 

induction, none of the findings suggested transcriptional regulation through NF-

κB. Hormonal control of cell death and immune responses is well known, 

however here we showed that hormones can also regulate cell death through 

previously characterized immune response factors, and possibly this mechanism 

is dose-dependent. As, all three pathways, immunomodulatory function of 

hormones, Regulation of autophagic cell death, crosstalk between immune 

effectors and autophagy components, are of clinical significance, further study 

would be extremely beneficial for the advancement of drug development.  
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Figure 4.2 Relish Mediated autophagy Induction 

Our Proposed model shows that external stimuli, possibly the hormone ecdysone 

induce the expression of PGRP-LC receptor. PGRP-LC and Relish interact via 

the RHIM domain and this interaction causes Relish cleavage and translocation 

to the nucleus where Relish activates the expression of the key autophagy gene, 

Atg1. 
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