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Association of Multiorgan Computed Tomographic Phenomap
With Adverse Cardiovascular Health Outcomes
The Framingham Heart Study
Ravi V. Shah, MD; Ashish S. Yeri, PhD; Venkatesh L. Murthy, MD, PhD; Joe M. Massaro, PhD;
Ralph D’Agostino Sr, PhD; Jane E. Freedman, MD; Michelle T. Long, MD; Caroline S. Fox, MD, MHS;
Saumya Das, MD, PhD; Emelia J. Benjamin, MD, ScM; Ramachandran S. Vasan, MD;
Christopher J. O’Donnell, MD, MPH; Udo Hoffmann, MD, MPH

IMPORTANCE Increased ability to quantify anatomical phenotypes across multiple organs
provides the opportunity to assess their cumulative ability to identify individuals at greatest
susceptibility for adverse outcomes.

OBJECTIVE To apply unsupervised machine learning to define the distribution and prognostic
importance of computed tomography–based multiorgan phenotypes associated with adverse
health outcomes.

DESIGN, SETTING, AND PARTICIPANTS This asymptomatic community-based cohort study
included 2924 Framingham Heart Study participants between July 2002 and April 2005
undergoing computed tomographic imaging of the chest and abdomen. Participants are from
the offspring and third-generation cohorts.

EXPOSURES Eleven computed tomography–based measures of valvular/vascular calcification,
adiposity, and muscle attenuation.

MAIN OUTCOMES AND MEASURES All-cause mortality and cardiovascular disease (myocardial
infarction, stroke, or cardiovascular death).

RESULTS The median age of the participants was 50 years (interquartile range, 43-60 years),
and 1422 (48.6%) were men. Principal component analysis identified 3 major anatomic axes:
(1) global calcification (defined by aortic, thoracic, coronary, and valvular calcification);
(2) adiposity (defined by pericardial, visceral, hepatic, and intrathoracic fat); and (3) muscle
attenuation that explained 65.7% of the population variation. Principal components showed
different evolution with age (continuous increase in global calcification, decrease in muscle
attenuation, and U-shaped association with adiposity) but similar patterns in men and
women. Using unsupervised clustering approaches in the offspring cohort (n = 1150), we
identified a cohort (n = 232; 20.2%) with an unfavorable multiorgan phenotype across all
3 anatomic axes as compared with a favorable multiorgan phenotype. Membership in the
unfavorable phenotypic cluster was associated with a greater prevalence of cardiovascular
disease risk factors and with increased all-cause mortality (hazard ratio, 2.61; 95% CI,
1.74-3.92; P < .001), independent of coronary artery calcium score, visceral adipose tissue,
and 10-year global cardiovascular disease Framingham risk, and it provided improvement in
metrics of discrimination and reclassification.

CONCLUSIONS AND RELEVANCE This proof-of-concept analysis demonstrates that
unsupervised machine learning, in an asymptomatic community cohort, identifies an
unfavorable multiorgan phenotype associated with adverse health outcomes, especially in
elderly American adults. Future investigations in larger populations are required not only to
validate the present results, but also to harness clinical, biochemical, imaging, and genetic
markers to increase our understanding of healthy cardiovascular aging.

JAMA Cardiol. 2017;2(11):1236-1246. doi:10.1001/jamacardio.2017.3145
Published online September 20, 2017.
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C ardiovascular disease (CVD) is the result of unfavor-
able changes in structure and function across multiple
organ systems.1-3 Seminal investigations have de-

tailed the importance of many individual phenotypes physi-
ologically central to CVD, including coronary4-7 and valvular8

calcification, adiposity (eg, abdominal visceral and pericar-
dial fat depots),9-14 muscle fat content, and sarcopenia.15-17 Al-
though these individual CVD-related phenotypes may be as-
sociated with each other, their presence and extent vary
substantially between individuals: individuals with coronary
vascular calcification may not have valvular or abdominal aor-
tic calcification (and vice versa), likely owing to distinct genetic/
epigenetic determinants.18 Thus, while coronary calcifica-
tion is a strong marker of CVD risk, a phenotype spanning
multiple organs (similar to multimarker blood biomarker
approaches19) may be important to understand which indi-
viduals are at greatest susceptibility for adverse CVD-related
prognosis.

Recently, machine learning techniques have been used
to summarize and classify multiple phenotypes and out-
comes in CVD (phenomapping),20 although the clinical or
physiologic value of such approaches in CVD remains
unclear.21 In this study, we examined 2924 participants of
the Framingham Heart Study (FHS) offspring and third-
generation cohorts with computed tomographic (CT) mea-
surements of 11 different organ phenotypes across the chest
and abdomen, including vascular and cardiac calcification
and adipose and muscle tissue characteristics. Using a
machine learning approach, we sought to describe patterns
of variation of presence and extent of individual phenotypes
across vascular and valvular calcification; abdominal, intra-
thoracic, and pericardial adiposity; and liver and muscle fat
content. Furthermore, we wanted to understand whether
combining information from these phenotypes would iden-
tify prognostically and phenotypically distinct subgroups
within a heterogeneous population.

Methods
Study Cohort and Imaging Exposures
The analytic cohort comprised participants in the FHS off-
spring cohort (n = 1150; median age, 63 years; interquartile
range [IQR], 57-70 years; age range, 40-87 years; 57%
female) or the third-generation cohort (n = 1774; median age,
45 years; IQR, 40-49 years; age range, 32-72 years; 48%
female) who underwent chest and abdominal CT imaging
between 2002 and 2005. We included 2924 individuals with
available measures for all imaging domains assayed (calcifi-
cation, adiposity, and liver and muscle attenuation; eFigure 1
in the Supplement). Techniques for quantification of the
various calcification8 and fat10,22 phenotypes have been pre-
viously described and are detailed in eTable 1 in the Supple-
ment. The study design and methods for data collection
have been published elsewhere.23 The institutional review
boards of Boston University Medical Center and Massachu-
setts General Hospital approved the study. All participants
provided written informed consent.

Cardiovascular and Noncardiovascular Mortality
All-cause mortality was our primary outcome. We included
hard CVD events as a secondary outcome, defined as a com-
posite of death due to coronary heart disease or stroke, non-
fatal myocardial infarction, or nonfatal ischemic stroke. Meth-
ods for adjudication of these events have been previously
reported.10

Statistical Analysis
General Descriptive Statistics
Descriptive data were expressed as percentage (for categori-
cal variables) or median and IQR (for continuous variables). Cor-
relations between imaging indices were estimated using Spear-
man coefficients. Comparison of covariates among quartiles
of age was performed via standard methods (nonparametric
Wilcoxon or Kruskal-Wallis tests for continuous and χ2 test for
categorical variables).

General Approach
The overall goal of our study was in 2 phases (Figure 1). First,
we sought to describe patterns of variation in 11 CT pheno-
types across vascular and valvular calcification; abdominal,
intrathoracic, and pericardial adiposity; and liver and muscle
fat content. For this first step, we used a principal compo-
nents analysis (PCA), an unsupervised learning technique
that statistically groups correlated phenotypes together into
components; each of these components accounts for some
proportion of variation in overall data. These components
can then be used to understand interrelationships among
imaging variables and their variability across age and sex in
the FHS. Second, we wanted to understand whether CT phe-
notypes would be able to classify participants in the FHS off-
spring cohort into prognostically and phenotypically distinct
subgroups. For this second step, we used a clustering tech-
nique that identified clusters of participants based on all 11
CT phenotypes. The 2 approaches (PCA and clustering) were
chosen to address specific hypotheses in our study and are
not related. We have specified the details of each method in
this section.

Key Points
Question Can an unbiased evaluation of multiorgan phenotypes
identify favorable and unfavorable clusters within a
community-based cohort, especially among elderly American
adults?

Findings Using 11 quantitative computed tomography–based
phenotypes, this cohort study found that unsupervised machine
learning identified a favorable multiorgan phenotype
characterized by increased calcification, adiposity, and muscle fat,
which was associated with a 2-fold increased hazard of death at
10 years, robust to adjustment for age, sex, risk factors, and
individual phenotypes.

Meaning This proof-of-concept analysis demonstrates that
unsupervised machine learning identifies an unfavorable
multiorgan phenotype associated with adverse health outcomes,
especially in elderly American adults.
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Principal Components Analysis
To cover the broadest range of age in FHS, we used all 2924
participants (offspring and third-generation cohorts) in our
descriptive analysis by PCA. Before entry into PCA, all
imaging variables were natural log-transformed to reduce
variance, followed by mean centering and standardization
(mean, 0; variance, 1). A value of 1 was added to each calcifi-
cation variable (coronary, aortic, thoracic, and valvular)
before log-transformation to allow estimation of the loga-
rithm for zero calcification values. The adiposity and liver
and muscle fat variables were log-transformed. The total
number of principal components (PCs) to include in our
analysis was determined by scree plot and inclusion of PCs
up to 60% of the overall variance. Varimax rotation was
used to determine final PC loadings. We examined the dis-
tribution of PC-based scores using a box plot for each
decade of age for men and women separately. We measured
the association of age and sex with PC scores using a linear
model with inclusion of a quadratic term for age (to model
nonlinearity). Effect modification by sex was assessed using
a multiplicative interaction term between age and sex in
each model.

Clustering
We chose to focus on the offspring cohort for the clustering
analysis for several reasons. First, our primary research
interest was to investigate an older, at-risk population with a
greater prevalence (and incidence) of disease, in which
imaging indices may have a greater impact on differentiating
disease subsets. Second, the 2 cohorts (the second genera-
tion or offspring cohort vs third generation) aged in different
eras of medical care, leading to potential unmeasured differ-
ences in prevention and surveillance. To visualize the data,
we first performed unsupervised agglomerative hierarchical
clustering, with the Manhattan distance measure more
robust in terms of assigning cluster and the Ward method of
clustering using all 11 imaging indices (log-transformed,
mean centered, and standardized, as with PCA), in 1150 off-
spring cohort participants. Clusters were plotted as a heat-
map using a modified version of heatmap.2 (package hclust
in R) to include bars for all-cause mortality and incident
CVD. While hierarchical clustering is sufficient for the pur-
poses of visualization, it is difficult to accurately classify the
participants into different clusters. Model-based clustering is
more robust in terms of assigning clusters to data that are

Figure 1. Unsupervised Machine Learning to Define Unique Phenotypic Subtypes
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either overlapping or have varying sizes or shapes. To accu-
rately classify the 1150 participants into clusters, we used a
gaussian model–based clustering to identify the optimal
number of clusters within our data. In this approach, each
cluster is modeled as a gaussian multivariate mixture model
with a mean and covariance that describes its shape. The
mclust package in R24 fits a variety of gaussian mixture mod-
els to the observed data, followed by identification of the
optimal number of clusters using an information criterion
(eg, Bayesian information criterion) that penalizes model
complexity based on the number of clusters. For a full list of
models investigated, refer to eFigure 2 in the Supplement.

Cluster Validation
We performed internal validation within the offspring cohort
to evaluate fitting of the model-based clustering. As previ-
ously noted, model-based clustering allocated FHS partici-
pants in 1 of 2 groups: a favorable cluster (cluster 1) and an un-
favorable cluster (cluster 2). To determine the robustness of
the cluster membership, we performed logistic regression with
100 naive bootstraps. Here, the dependent (predictor) vari-
able is cluster membership (cluster 1 or cluster 2). The inde-
pendent variables are the 11 imaging indices. Briefly, approxi-
mately 62% of the individuals in the overall cohort of 1150 were
randomly selected, with replacement in each bootstrap, and
a logistic regression model is built using the glm and caret pack-
age in R. The remaining approximate 38% of the samples are
introduced into this model and the performance metrics (ac-
curacy, sensitivity, and specificity) of the logistic regression
model are evaluated. This process is repeated for 100 random
splits of the population. The model prediction from the logis-
tic regressions in 100 bootstraps is subsequently used to com-
pute the area under the receiver operating characteristic curve
(C-statistic) with 95% CIs using the pROC package in R.

To identify clinical determinants of cluster membership,
we compared clinical and demographic characteristics be-
tween the 2 identified clusters using Wilcoxon (continuous)
and χ2 (categorical) statistics. The cluster optimization ap-
proach used here has been widely used in machine learning
applied to genomics and has been used in deep clinical
phenotyping.20

Event Analysis
After generating clusters of phenotypically distinct partici-
pants in the offspring cohort, we determined the association
of membership in a given cluster with outcomes. We esti-
mated Cox regression models for each specified outcome (pri-
mary: all-cause mortality; secondary: hard CVD) as a func-
tion of cluster membership, adjusted for 10-year global
Framingham CVD risk as an age- and sex-specific marker of car-
diovascular risk. We additionally adjusted for coronary ar-
tery calcium score (modeled at log[CAC+1]) and visceral adi-
pose tissue (log-transformed) in multivariable models to assess
whether composite imaging phenotypes (as identified in clus-
ter membership) would be associated with outcome indepen-
dently of single prognostic measures of calcification and fat,
respectively. Proportional hazards were confirmed for each
model using the supremum test. Finally, to assess incremen-

tal prognostic value of cluster membership over clinical risk
(by 10-year Framingham risk) and imaging-based risk (by coro-
nary calcium and visceral adiposity), we calculated a C-index
for each model (comparing C-indices by established methods25)
and a continuous net reclassification index (NRI) and relative
integrated discrimination improvement (IDI).26 Confidence in-
tervals for NRI and IDI were computed by bootstrapping with
999 resamples. The NRI and C-index were computed at a point
selected between the median and 75th percentile of fol-
low-up duration to optimize balance between power and bias
(at 10.0 years for all-cause mortality and 9.5 years for CVD).

All statistics were performed in SAS version 9.3 (SAS In-
stitute) or R version 3.3.1 (R Foundation). A 2-tailed P < .05 was
used as a criteria for significance.

Results
Study Population
An overview of the cohort is shown in eFigure 1 in the Supple-
ment. The characteristics of the study population (by quar-
tiles) are shown in Table 1. Of the 2924 FHS participants, 1150
were members of the offspring cohort and 1774 members of
the third-generation cohort. The median age of the overall co-
hort was 50 years (IQR, 43-60 years), 48.6% were men, and the
mean 10-year CVD risk (by the 10-year Global CVD Framing-
ham risk as described27) was 4.9%. Of note, the 558 partici-
pants who were excluded from the study had a generally higher
cardiometabolic risk (eTable 2 in the Supplement).

Distinct Components of Variability
in Multiorgan CT Phenotypes
We observed statistically significant but modest correlations
among calcification parameters (eg, for coronary calcification;
Spearman ρ range, 0.07-0.62; eFigure 3 in the Supplement). On
theotherhand,weobservedhighestcorrelationbetweenregional
fatmeasures(eg,visceralvsintrathoracicfat,Spearmanρ = 0.86).
Given the significant differences in interrelationships across
imaging parameters, we used PCA to visualize how each indi-
vidual imaging phenotype naturally grouped together.28 Three
PCs described 65.7% of the overall variation in imaging measures
(Figure 2A; scree plot in eFigure 4 in the Supplement). Principal
component 1 was highly associated with coronary, valvular,
and noncoronary vascular calcification indices; therefore, we
termed PC1 a global (valvular/vascular) calcification PC. Princi-
pal component 2 identified adiposity component, with positive
associationwithvisceral,pericardial,subcutaneous,hepatic,and
intrathoracic fat. Finally, we labeled PC3 as a muscle quality com-
ponent, given that we observed the highest loading on muscle
attenuation in this PC (with greater values of attenuation corre-
sponding to decreased intramuscular fat). The dependence of
each PC score on age and sex is depicted in Figure 2B. We found
significant nonlinearity in PC scores by age for all PCs (age2:
P < .05 for all PCs). In general, we observed an increase in
valvular/vascular calcification with age (PC1~age + age2 + sex,
βage = −1.05, P < .05, and βage2 = −1.5 × 10−3, P < .05), a more com-
plex (U-shaped) association with adiposity with age (PC2~age
+ age2 + sex, βage = 0.14, P < .05, and βage2 = −1.1 × 10−3, P < .05),
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and a gradual decline in muscle quality with age (PC3~age
+ age2 + sex, βage = −0.03, P < .05, and βage2 = 4.5 × 10−4,
P < .05). While we observed a significant association of each

PC score with sex (P < .05 for all; men with higher calcifica-
tion and adiposity; lower muscle fat), only the association
between global calcification (PC1) and age was modified by sex

Table 1. Characteristics of 2924 Framingham Heart Study Participants, Stratified by Quartile of Age

Characteristic
Study Cohort
(N = 2924)

Quartile 1
(Age 32-43 y)a

(n = 757)

Quartile 2
(Age 44-49 y)a

(n = 655)

Quartile 3
(Age 50-60 y)a

(n = 785)

Quartile 4
(Age 61-87 y)a

(n = 727)
Baseline Demographics

Age at CT examination,
median (IQR), y

50.0 (43.0-60.0) 40.0 (38.0-42.0) 46.0 (45.0-48.0) 54.0 (51.0-57.0) 68.0 (64.0-74.0)

Male, No. (%) 1422 (48.6) 462 (61.0) 303 (46.3) 352 (44.8) 305 (42.0)

Current smoker, No. (%) 382 (13.1) 124 (16.4) 98 (15.0) 118 (15.0) 42 (5.8)

Antihypertensive therapy
use, No. (%)

518 (17.7) 40 (5.3) 63 (9.6) 148 (18.9) 267 (36.7)

Lipid-lowering therapy
use, No. (%)

364 (12.5) 50 (6.6) 57 (8.7) 96 (12.2) 161 (22.2)

Offspring cohort 1150 (39.3) 10 (1.3) 52 (7.9) 387 (49.3) 701 (96.4)

Third-generation cohort 1774 (60.7) 747 (98.7) 603 (92.1) 398 (50.7) 26 (3.6)

History of CVD, No. (%) 52 (1.8) 0 (0) 2 (0.3) 13 (1.7) 37 (5.1)

Cardiometabolic Risk Factors

BMI, median (IQR)
(n = 2923)

26.7 (23.8-30.1) 25.9 (23.0-29.2) 26.4 (23.3-29.9) 27.0 (24.2-30.1) 27.5 (24.8-31.2)

Waist circumference,
median (IQR), cm
(n = 2921)

95.3 (86.4-104.14) 91.4 (58.4-100.3) 94.0 (85.1-104.1) 96.5 (87.6-105.4) 99.1 (91.4-108.7)

Framingham risk score,
median (IQR), %
(n = 2923)

4.9 (2.7-8.6) 2.8 (1.4-4.7) 3.8 (2.1-6.0) 5.8 (3.5-9.0) 9.3 (5.8-15.4)

Diabetes, No. (%) 166 (5.7) 17 (2.3) 17 (2.6) 46 (5.9) 86 (11.8)

Hypertension, No. (%) 811 (27.7) 102 (13.5) 115 (17.6) 230 (29.3) 364 (50.1)

Blood pressure, median
(IQR), mm Hg

Systolic (n = 2923) 120.0 (110.0-130.0) 115.0 (107.0-123.0) 118.0 (109.0-126.0) 121.0 (111.0-130.0) 127.0 (117.0-141.0)

Diastolic (n = 2920) 76.0 (69.0-82.0) 76.0 (69.0-82.0) 76.0 (71.0-82.0) 77.0 (70.0-83.0) 73.0 (67.0-80.0)

Cholesterol level, median
(IQR), mg/dL

Total 194.0 (173.0-218.0) 187.0 (167.0-210.0) 190.0 (170.0-214.0) 200.0 (176.0-223.0) 198.0 (177.0-224.0)

HDL 52.0 (42.0-64.0) 50.0 (41.0-60.0) 53.0 (42.0-65.0) 54.0 (43.0-67.0) 52.0 (42.0-63.0)

Triglyceride level, median
(IQR), mg/dL

101.0 (71.0-153.0) 90.0 (65.0-137.0) 94.0 (67.0-145.0) 101.0 (73.0-150.0) 120.0 (81.0-175.0)

Imaging Parameters

Calcification, median
(IQR)b

Thoracic aortic 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 53.9 (0-397.8)

Coronary artery 0 (0-44.1) 0 (0-0) 0 (0-1.0) 0 (0-43.4) 82.0 (3.9-409.5)

Abdominal aortic 3.9 (0-513.1) 0 (0-0) 0 (0-30.0) 30.4 (0-444.3) 1304.2 (255.1-3389.1)

Aortic valve 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-50.9)

Mitral valve 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-0) 0 (0-3.8)

Intrathoracic fat, median
(IQR), mL

80.5 (49.2-124.1) 63.9 (37.8-101.2) 68.9 (39.2-114.5) 83.6 (54.3-126.5) 105.3 (71.6-150.8)

Pericardial fat, median
(IQR), mL

102.9 (80.0-132.8) 90.6 (71.5-116.9) 98.2 (76.7-124.9) 106.1 (83.2-134.9) 120.1 (93.4-152.9)

VAT, median (IQR), mL 1594.1 (925.6-2330.8) 1305.3 (727.4-1874.2) 1418.0 (803.9-2213.4) 1656.0 (992.1-2378.1) 1975.0 (1353.3-2788.5)

Liver attenuation, median
(IQR), HU

68.0 (63.3-71.3) 68.3 (64.7-71.3) 68.0 (63.3-71.3) 68.0 (62.7-71.0) 67.3 (62.0-71.0)

SAT, median (IQR), mL 2561.1 (1866.8-3525.8) 2182.2 (1619.9-3026.8) 2528.9 (1780.6-3538.5) 2725.8 (1988.9-3766.7) 2771.3 (2113.7-3677.2)

Muscle attenuation,
median (IQR), HU

57.5 (53.5-60.5) 60.5 (58.0-62.5) 58.5 (56.0-60.5) 57.0 (53.5-59.5) 52.0 (47.5-55.5)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided
by height in meters squared); CT, computed tomography; CVD, cardiovascular
disease; HDL, high-density lipoprotein; HU, Hounsfield units; IQR, interquartile
range; SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.

SI conversion factors: To convert HDL and total cholesterol and triglyceride

levels to millimoles per liter, multiply by 0.0259.
a Age ranges signify the minimum and maximum age at CT scan in each quartile

of age.
b Units for calcification measures are as described in eTable 1 in the Supplement.
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(PC1~age + age2 + sex + age × sex + age2 × sex, βage × sex = 0.06,
P < .05, and βage2 × sex = −4.7 × 10−4, P < .05).

Phenotypically Distinct Groups
of Older American Adults
Our next step was to use the 11 different imaging phenotypes
to understand underlying groups within the offspring cohort
with different physiology and prognosis. Based on the hier-
archical clustering of the 11 imaging variables, we observed 2
main clusters, with concordance between high calcification
and adiposity parameters in individuals at highest risk of
death or CVD of individuals with high calcification and fat
(eFigure 5 in the Supplement). To accurately classify indi-

viduals into the highest-risk group, we used a model-based
clustering to get 2 phenotypically distinct clusters. Gaussian
model–based clustering revealed 2 distinct clusters of
participants in the offspring cohort. The model selected by
the package mclust was an ellipsoidal, equal volume and ori-
entation with 2 components or clusters (eFigure 2 in the
Supplement).

To determine whether the model-based clustering was
overfit, we performed internal validation using logistic regres-
sion (described in Cluster Validation in the Methods section).
A logistic regression model (dependent variable: cluster mem-
bership; independent variables: 11 imaging indices) with 100
naive bootstraps yielded a C-statistic of 0.995 (95% CI, 0.994-

Figure 2. Principal Components Analysis

Principal component analysisA Box plots of principal component scores across
decades of age, stratified by sex
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Principal components analysis of 11 parameters obtained from chest and
abdominal computed tomographic imaging. A, Three principal components
(representing 65.7% of the total variance in the imaging data) with loadings of
each imaging parameter are presented. The dark blue hue represents imaging
variables that have positive loading in a given principal component; the light
blue hue represents imaging variables that have a negative loading in a given
principal component. Of note, greater liver or muscle attenuation corresponds

to decreased liver or intramuscular fat, respectively; therefore, a positive
loading for muscle in principal component 3 signifies that a higher principal
component 3 score is associated with greater muscle attenuation (lower
intramuscular fat content). B, Box plots of principal component scores across
decades of age. Details of statistical testing are specified in the text. SAT
indicates subcutaneous adipose tissue; VAT, visceral adipose tissue.
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0.996) for the discrimination of cluster membership, suggest-
ing stability of the assignment of the individuals to the 2 clus-
ters in the offspring cohort.

The model-based clustering yielded 2 clusters within the
offspring cohort: cluster 1 (a favorable phenotypic cluster) that
had a more salutatory profile across all major imaging indices
relative to cluster 2 (an unfavorable phenotypic cluster), in-
cluding decreased visceral (but not subcutaneous) adiposity,
muscle fat, and calcification (eFigure 6 in the Supplement;
Table 2). We found significant differences in CVD risk factors
and adverse health outcomes between these clusters. Most in-

dividuals were in the favorable phenotypic cluster (cluster 1;
n = 918; 79.8%). On average, members of the favorable phe-
notypic cluster were younger with a lower body mass index
and lower prevalence of cardiovascular risk factors relative to
the unfavorable cluster.

Association of Cluster Membership
With Outcome
With a median follow-up for all-cause death of 9.6 years (IQR,
8.9-10.5 years) after the CT scan, we observed 105 deaths
(in 1150 individuals; 53 of 232 in the unfavorable cluster) and

Table 2. Demographics and CVD Risk Factor, Individual Phenotypes, and Adverse Events
by Cluster Designation

Variable

No. (%)

P Value

Cluster 1:
Favorable Cluster
(n = 918)

Cluster 2:
Unfavorable Cluster
(n = 232)

Demographics and CVD Risk Factors

Age, median (IQR), y 61 (56-68) 72 (66-77) <.001

Age > 70 y 180 (20) 144 (62) <.001

Male 393 (43) 100 (43) .94

10-y Framingham risk score 6.8 (4.0-11.6) 9.9 (6.2-15.9) <.001

Smoking 100 (11) 16 (7) .07

History of CVDa 26 (3) 19 (8) <.001

Use of antihypertensive medication 223 (24) 105 (45) <.001

Use of lipid-lowering therapy 132 (14) 61 (26) <.001

Diabetes 66 (7) 35 (15) <.001

Blood pressure, mm Hg

Systolic 122 (111-134) 130 (119-143) <.001

Diastolic 75 (69-81) 73 (66-80) .04

BMI 27.2 (24.5-30.1) 28.3 (25.1-31.9) .001

Waist circumference, cmb 97.3 (88.9-106.2) 101.6 (92.7-110.7) <.001

Cholesterol level, mg/dL

HDL 53 (43-64) 50 (42-60) .05

Total 198 (177-223) 201 (183-224) .36

Triglyceride level, mg/dL 109 (76-162) 129 (89-183) <.001

Individual Phenotypes

Adipose tissue, median (IQR), mL

Visceral 1808.5 (1174.9-2559.9) 2165.9 (1455.8-2896.6) <.001

Subcutaneous 2723.9 (2069.3-3655.0) 2943.8 (2040.3-3791.9) .37

Fat, median (IQR), mL

Pericardial 108.1 (86.0-142.5) 124.2 (97.5-155.1) <.001

Intrathoracic 93.5 (65.2-137.8) 110.5 (79.1-156.9) <.001

Attenuation, median (IQR), HU

Liver 68 (63-71) 67 (61-71) .03

Muscle 54 (50-58) 51 (45-55) <.001

Calcification, median (IQR)

Thoracic aortic 0 (0-73) 172 (7-1296) <.001

Aortic valve 0 (0-1.2) 33 (1-134) <.001

Mitral valve 0 (0-0) 57 (14-297) <.001

Coronary artery 12 (0-141) 212 (53-683) <.001

Abdominal aortic 292 (2-1490) 2577 (671-5000) <.001

Adverse Events

CVD 36 (4) 29 (13) <.001

Mortality 52 (6) 53 (23) <.001

Abbreviations: BMI, body mass index
(calculated as weight in kilograms
divided by height in meters
squared); CVD, cardiovascular
disease;
HDL, high-density lipoprotein;
HU, Hounsfield units;
IQR, interquartile range.

SI conversion factors: To convert HDL
and total cholesterol and triglyceride
levels to millimoles per liter, multiply
by 0.0259.
a History of CVD was defined as prior

myocardial infarction or stroke.
b All measures available on all

participants, except with waist
circumference (n = 1 missing).
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65 CVD events (in 1105 participants without history of CVD;
29 of 213 in the unfavorable cluster). In multivariable Cox re-
gression adjusted for 10-year global CVD Framingham risk,
membership in the unfavorable phenotypic cluster was asso-
ciated with a greater than 3-fold increased hazard of all-cause
mortality (hazard ratio, 3.48; 95% CI, 2.35-5.17; P < .001), which
remained significant after further adjustment for coronary ar-
tery calcium and visceral adipose tissue (hazard ratio, 2.61; 95%
CI, 1.74-3.92; P < .001). Addition of cluster membership to 10-
year global CVD Framingham risk, coronary artery calcium
score, and visceral adiposity was associated with a signifi-
cant improvement in risk discrimination (relative IDI, 0.34; 95%
CI, 0.19-0.50) and net risk reclassification (by continuous NRI;
Figure 3).

For hard CVD (median follow-up, 9.0 years; IQR, 7.7-9.9
years), unfavorable cluster membership was associated with
a 3-fold increased hazard (hazard ratio, 3.02; 95% CI, 1.83-
4.98; P < .001) after adjustment for 10-year Framingham risk,
which attenuated but remained significant after further ad-
justment for coronary artery calcium score and visceral fat (haz-
ard ratio, 2.15; 95% CI, 1.29-3.58; P = .003). Addition of clus-
ter membership improved discrimination (by relative IDI) and
risk reclassification, driven primarily by successful reclassifi-
cation of individuals without CVD events (with continuous NRI;
improved specificity).

Discussion

The primary aim of our study was to describe patterns in vari-
ability in multiorgan CT-based imaging phenotypes and
whether these phenotypes could identify meaningful sub-
groups with different pathology and prognosis. We found mod-
est associations between regional calcification measures and
greater associations among fat measures, motivating efforts
to integrate calcification and fat. Using unsupervised ma-
chine learning techniques, we uncovered 3 major anatomic
components of risk—global vascular/valvular calcification, adi-
posity, and muscle fat content—variable by age and sex. Fo-
cusing on an older subgroup (offspring cohort), we used model-
based clustering with the 11 CT imaging indices to identify 2
different clusters. Cluster membership was robust to internal
cross-validation by binary logistic regression within our co-
hort. Each cluster had distinct clinical characteristics, with
members in the more clinically adverse cluster harboring ab-
normalities in all domains: calcification, adiposity, and muscle
fat content. After adjustment for 10-year global Framingham
CVD risk, coronary artery calcium score, and visceral adipos-
ity, cluster membership remained associated with all-cause
mortality, providing significant risk discrimination and reclas-
sification above these single measures of adiposity, calcifica-

Figure 3. Survival Analysis
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tion, and clinical risk. Ultimately, these results suggest that
joint, global alterations in multiple organ systems that di-
rectly (eg, calcification) and indirectly (eg, adiposity and
muscle) impact CVD pathogenesis translates to greatest over-
all clinical risk.

In recognition of the biological overlap between aging, adi-
posity, and CVD, there is an impetus to define biomarkers that
integrate these interconnected processes for risk stratifica-
tion, surveillance, and targeted therapy. Individual measures
have been the focus of most studies in cardiovascular preven-
tion to date, including diastolic function,29 cardiac geometry,30

vascular calcification7 and stiffness,31 and sarcopenic obesity.11

Despite their shared impact on systemic inflammation,32

the mechanistic interplay between adipose, liver, and muscle
tissue abnormalities with myocardial and vascular disease in
humans is only recently recognized.33-36 Furthermore, al-
though calcification in different territories may “travel to-
gether,” recent results from FHS suggest that calcification in
different anatomic locations may have differential impact on
cardiac and all-cause mortality.8 Noncoronary calcification may
also have distinct genetic determinants relative to coronary
calcification.18 Nevertheless, studies that provide a view of in-
dividual patient-level risk as a function of integrated CVD phe-
notypes remain few.

In this study, we used unsupervised machine learning tech-
niques across more than 2900 participants in a large ongoing
community-based cohort study to address this limitation. By fo-
cusing on direct measures of the cardiovascular system in a
heterogeneous population, we identified distinct groups of phe-
notypes by PCA that reflect vascular remodeling (calcification)
and metabolic dysfunction (adiposity and muscle fat), and dem-
onstrated using cluster-based techniques that these phenotypes
are able to separate older individuals at high clinical risk. Impor-
tantly, while the approaches used here were “unsupervised” (not
guided by operator selection or a specific outcome), they gen-
erated a clinically plausible result: a cluster of high-risk individu-
als in the offspring cohort marked by abnormalities across all do-
mains of multiorgan structure by CT and reduced survival. With
the increasing availability of high-dimensional data across the
biochemical, clinical, genetic, and phenotypic domain,20 these
results provide support for unsupervised methods to identify
clinically consistent, prognostic patient subgroups that integrate
multiple direct (eg, calcification) and indirect (eg, adiposity) mea-
sures of CVD. Importantly, future validation in large, diverse,
multiracial/ethnic aging populations is required to substantiate
the findings in this study.

Defined by joint alterations in multiple imaging-based met-
rics of cardiometabolic health, cluster membership was asso-
ciated with all-cause mortality but not hard CVD, independent
of coronary artery calcium score, visceral fat, and Framing-
ham risk, and it provided incremental risk discrimination and
reclassification. While cardiac-specific events (hard CVD) are
most closely linked to coronary calcification, these findings sug-
gest that composite, global phenotypes may be important in de-
lineating nonorgan-specific risk, specifically in older popula-
tions. Indeed, aging represents a cumulative, systemic process
impacting multiple cardiovascular and metabolic systems1-3 over
decades (eg, calcification,4-7 sarcopenia,15-17 and adiposity9-14).

Efforts to integrate these phenotypes in large populations may
facilitate a better understanding of rates of aging and its ante-
cedent determinants. In addition, deeper phenotypes that more
accurately capture downstream clinical risk in older popula-
tions may target discovery efforts for pathways, therapeutics,
and biomarkers of healthy and unhealthy aging. In effect, the
results from this study provide support for a hypothesis that
maintenance of favorable adiposity, muscle, and vascular phe-
notypes with age is an essential component of healthy aging,
and they underscore the importance of comprehensive, con-
temporaneous investigations of clinical, biochemical, func-
tional, and anatomic phenotypes to better characterize what it
means to age healthily.

Strengths and Limitations
Strengths of this study include quantitative phenotypes across
the chest and abdomen in a large community-based longitu-
dinal cohort, approximately 10 years of follow-up for clinical
outcomes, and the application of unsupervised methods to as-
sess importance and linkage of individual phenotypes. In ad-
dition, the study relied on proven high-quality methods for as-
certainment of cardiovascular risk factors; imaging-based
measurements of calcification; muscle, liver fat, and adipose
tissues; and independent adjudication of relevant clinical out-
comes by established criteria.

Nevertheless, there are several limitations based in the study
design. An important limitation of this work is the lack of exter-
nal validation. In this regard, further investigations are needed
to reproduce and externally validate the findings in this study.
For example, larger populations with a greater spectrum of risk
may allow for identification of a greater number of phenotypic
clusters that more finely resolve prognostically, physiologically,
and phenotypically distinct subgroups. In turn, these larger stud-
ies would benefit from precision molecular phenotyping (eg,
metabolomewide, transcriptomewide, or proteomewide) to pin-
point mechanisms by which these structural changes interact to
produce outcomes. Moreover, we did not have the opportunity
to evaluate noncardiovascular elements of organ aging (eg, neu-
rologic). Finally, the FHS cohort is of European ancestry and
largelyresidinginMassachusetts, limitinggeneralizabilitytoother
races/ethnicities.

Conclusions
Unsupervised machine learning techniques rooted in 11 quan-
titative, CT-based phenotypes of CVD in the chest and abdo-
men identified 3 important imaging-based domains (global vas-
cular/valvular calcification, adiposity, and muscle fat).
Furthermore, these 11 metrics classified offspring cohort par-
ticipants into 2 phenotypically distinct clusters, with associa-
tion with all-cause mortality independent of single anatomic
measures of fat or coronary artery calcium score and clinical
risk. Further validation of these results in larger multiracial/
ethnic populations and integration with clinical, biochemi-
cal, imaging, and genetic markers are necessary to inform gen-
eralizability of these results and increase understanding of
healthy living, aging, and cardiometabolic risk.
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