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ABSTRACT 

Chromatin is a dynamic structure, and chromatin remodeling enzymes 

regulate chromatin structure to control gene expression and proper lineage 

specification. Tip60-p400 is a multi-subunit chromatin remodeling complex 

containing two biochemical activities: the Tip60 subunit is a lysine 

acetyltransferase (KAT) that targets histones and non-histone proteins, and p400 

catalyzes ATP-dependent incorporation of histone variant H2AZ into chromatin. 

Both of these chromatin modifications have been widely studied with respect to 

gene expression, DNA damage repair, and apoptosis. Ablation of these catalytic 

subunits causes defects in normal embryonic development, ESC self-renewal, 

and gene expression. My goal has been to understand the multiple independent 

functions of Tip60-p400 acetyltransferase in ESC maintenance and embryonic 

development.   

I showed that Tip60 KAT function is dispensable for gene expression, 

chromatin accessibility, and ESC self-renewal, which is different from Tip60 

knockdown phenotype. Interestingly, KAT deficient mutants exhibited defect in 

differentiation towards mesoderm and endoderm lineages. Consistent with this 

defect, I also observed gastrulation defect in mice lacking Tip60 KAT activity. 

Together, these data demonstrate that Tip60 KAT dependent function is only 

required during later stages of embryonic development, and it is dispensable for 

ESC self-renewal and pre-implantation development. 
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Tip60 KAT contains four isoforms generated from alternative splicing, 

whose individual functions are poorly characterized. In the second part of this 

thesis, I investigated the developmental role of one of the isoforms of Tip60, 

called Tip55. Unlike Tip60 knockout mice, which lack all the isoforms and causes 

pre-implantation lethality, I found that ablation of Tip55 results in post-

implantation lethality. I further found that loss of Tip55 causes defects in heart, 

and neural tube development, demonstrating the essential function of Tip55 

isoform for organogenesis during embryonic development.  

Together, these studies have provided new insight into the functions of 

Tip60-p400 and the mechanisms by which this complex regulates gene 

expression, ESC pluripotency, and embryonic development. Furthermore, these 

studies set the stage for future work to identify how the catalytic and non-catalytic 

functions are directed to perform distinct regulatory functions, as well as how 

each Tip60 isoform individually contributes to formation of the mammalian body 

plan.  
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CHAPTER I 

Introduction 

In all eukaryotes, DNA is present inside the cell nucleus in the form of 

chromosomes. Chromosomal DNA is negatively charged and is wrapped around 

positively charged histone proteins (H2A, H2B, H3 and H4) in the form of 

nucleosomes, which are further condensed into higher-order chromatin 

structures (Figure I.1) (Finch et al., 1977; Luger et al., 1997). Nucleosomes 

influence gene regulation by affecting accessibility of the regulatory proteins in 

their DNA binding sites (Lodén and van Steensel, 2005). There are several 

chromatin-remodeling complexes (discussed later in detail) that influence both 

nucleosome architecture and higher order chromatin structure to access or 

restrict DNA for gene expression.    

Embryonic stem cells (ESCs), which give rise to all the cell types present 

in adult mammals, possess euchromatin (more relaxed and less compact 

chromatin) and heterochromatin (densely packed chromatin) structures distinct 

from differentiated cells (Figure I.1) (Meshorer and Misteli, 2006; S.-H. Park et 

al., 2009). Undifferentiated ESCs have fewer heterochromatic domains in 

comparison to differentiated cells that contain numerous condensed 

heterochromatin foci (Meshorer and Misteli, 2006; S.-H. Park et al., 2009). 

Chromatin remodeling complexes maintain chromatin organization and regulate 

proper differentiation into specific cell lineages (Bultman et al., 2000; Fazzio et 

al., 2008; Kaji et al., 2006; Kurisaki et al., 2005; Meshorer and Misteli, 2006).  
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Characteristic features of mouse embryonic stem cells 

Mouse embryonic stem cells (mESCs) are derived from cells of the inner 

cell mass (ICM) of blastocyst stage embryos at embryonic day 3.5 (E3.5) (M. J. 

Evans and Kaufman, 1981; Martin, 1981). It has two characteristic features: self-

renewal and pluripotency. Self-renewal is the ability of ESCs to proliferate 

indefinitely in an undifferentiated state. Pluripotency is the ability of ESCs to give 

rise to all three embryonic germ layers ectoderm, mesoderm, and endoderm, 

which are the precursors for all cell types in the embryo. Because of these 

properties, ESCs hold great promise for studying early embryonic development 

and for regenerative medicine.  

ESCs are cultured on feeder cells in vitro to maintain in the 

undifferentiated state. Feeder cells are derived from mouse embryonic fibroblasts 

Figure	I.1:	Basics	about	
chromatin	organization.	147	bp	
of	DNA	is	wrapped	around	a	ball	
like	structure	of	nucleosomes	
composed	of	core	histone	
proteins,	giving	rise	to	
euchromatin	and	
heterochromatin	structure	to	fit	
genetic	information	into	nucleus.		
Euchromatin	is	associated	with	
open	chromatin	structure	to	
facilitate	transcription	whereas	
heterochromatin	is	tightly	packed	
chromatin	structure	that	restricts	
transcription.	Adapted	from	
(Boyer, 2009).			
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that provide essential nutrients for ESC self-renewal and proliferation (Suda et 

al., 1987).   Later, it was identified that ESCs can be maintained in gelatin coated 

plates, and doesn’t required feeders if provided with differentiation inhibiting 

factor secreted by feeder cells, called leukemia inhibitory factor (LIF) (A. G. Smith 

et al., 1988; Williams et al., 1988). LIF is an interleukin 6 class cytokine that 

interacts with its heterodimer receptor, LIF receptor/glycoprotein 130 

(LIFR/gp130), which then phosphorylates and activates Janus kinase (JAK) 

(Davis et al., 1993; Murakami et al., 1993; Narazaki et al., 1994). Activated JAK 

further phosphorylates and activates the signal transducer and activator of 

transcription 3 (STAT3) transcription factor, which then translocates into the 

nucleus to activate transcription of target genes that maintain ESC self-renewal 

(Hirai et al., 2011; Kristensen et al., 2005). Absence of LIF or disruption of the 

LIF mediated JAK-STAT pathway causes ESCs to differentiate (Hirai et al., 2011; 

Kristensen et al., 2005; Niwa et al., 1998). Therefore, LIF is important for ESC 

self-renewal, without which ESCs lose their self-renewing capability and cause 

undirected differentiation (A. G. Smith et al., 1988; Stewart et al., 1992).  

 

Core pluripotency factors that control ESC self-renewal  

The pluripotent state of the ESCs is controlled by a network of core 

transcription factors, octamer-binding transcription factor 4 (OCT4), sex 

determining region box-2 (SOX2), and NANOG (Chambers and A. Smith, 2004; 

Niwa, 2007; Silva and A. Smith, 2008). OCT4 (also called OCT3) belongs to the 
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POU family transcription factors encoded by Pou5f1 gene, and is expressed 

during the oocyte stage of embryonic development. It is also called the first 

pluripotency factor identified that regulates ESC pluripotency (Nichols et al., 

1998; Okamoto et al., 1990; Schöler et al., 1990).  

SOX2 is a SRY-box transcription factor that is first expressed in cells at 

the morula stage (E2.5) during embryogenesis, and mostly restricted to the ICM 

of the blastocyst (E3.5) (Avilion et al., 2003). Mouse embryos lacking Sox2 

expression show a defect in ICM formation and produce only trophectoderm cells 

causing peri-implantation lethality. Interestingly, Sox2 deficient ESCs also exhibit 

self-renewal defects and differentiate towards trophectoderm-like cells as 

observed in vivo (Avilion et al., 2003; Masui et al., 2007). Similar to the Sox2 

phenotype, knockout of Oct4 in embryos and ESCs also causes peri-implantation 

embryonic lethality and differentiation towards the trophectoderm lineage, 

respectively (Nichols et al., 1998). These data suggested a functional relationship 

between SOX2 and OCT4. As expected, SOX2 was found to interact with OCT4 

and the two factors co-occupy an overlapping set of target genes (Ambrosetti et 

al., 1997; Boyer et al., 2005; X. Chen et al., 2008; J. Kim et al., 2008; van den 

Berg et al., 2010). In addition, SOX2 positively regulates Oct4 expression (Masui 

et al., 2007).    

Another regulatory protein important for pluripotency is NANOG. Similar to 

Sox2 and Oct4 knockout phenotypes, Nanog deficient embryos exhibit peri-

implantation lethality. In contrast to Oct4 and Sox2 knockout phenotypes, ESCs 
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lacking Nanog expression can self-renew, but are defective in cell proliferation 

and prone to ESC differentiation towards endoderm-like cells (Mitsui et al., 2003). 

These results demonstrate that OCT4 and SOX2 are essential factors required 

for ESC maintenance at an earlier stage than NANOG; however, all three 

transcription factors are ultimately required for ESC pluripotency.  

 

Gene regulatory network of core pluripotency factors 

Oct4, Sox2, and Nanog expression control ESC pluripotency by forming a 

core regulatory network. All of these transcription regulators co-occupy regulatory 

regions of hundreds of protein coding genes, which are either expressed or 

silenced in ESCs (Loh et al., 2006).  Interestingly, they also co-occupy their own 

promoter regions and positively regulate their expression forming interconnected 

auto-regulatory and feed forward loops for ESC self-renewal (Boyer et al., 2005; 

Loh et al., 2006; Young, 2011). ESCs lacking any of these transcription factors 

disrupt the interconnected regulatory loop and cause repression of ESC specific 

genes including Oct4, Sox2, and Nanog, and  expression of normally silent 

lineage specific genes (Boyer et al., 2005; Loh et al., 2006). Therefore, these 

factors play crucial roles in ESC gene regulation to maintain pluripoteny. 

Recent studies have shown that co-occupancy by these factors at 

enhancers promotes direct interactions with co-activators such as Mediator and 

p300, which are commonly found at enhancer regions and regulate the 

expression of lineage specific genes (X. Chen et al., 2008; Kagey et al., 2010). 
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The pluripotency factors also functionally interact with several chromatin 

remodelers such as the INO80 and esBAF (ESC specific BAF) complexes to 

regulate the expression levels of ESC specific genes (Ho et al., 2009; L. Wang et 

al., 2014). In addition to gene activation, OCT4, SOX2, and NANOG are also 

involved in repression of genes that are normally silent in ESCs such as lineage 

specific transcription factors. Chromatin regulators such as histone-lysine N-

methyltransferase SetDB1 and Polycomb Repressive Complex 2 (PRC2) have 

been shown to play important roles in repression of lineage specific transcription 

factors. OCT4 interacts with sumoylated SetDB1 that catalyzes the incorporation 

of the repressive histone mark H3K9me3. This repressive mark is recognized by 

the PRC2 complex, which subsequently incorporates another repressive mark, 

H3K27me3, therefore enhancing the repression of lineage specific 

developmental regulators in ESCs (Bilodeau et al., 2009; Margueron et al., 

2009).    

Because of these characteristic features, ESCs are useful models to 

understand the mechanisms underlying regulation of chromatin structure, and the 

importance of chromatin regulation in proper differentiation.  

 

Mouse development 

Mouse is a powerful model system to study human diseases due to its 

strong genomic concordance with humans. In addition, mice are small, reproduce 

quickly, cost-effective, and can be genetically manipulated to study the 
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importance of genes and its connection with several diseases. In developmental 

biology, mouse development has been studied in detail during pre-implantation 

and post-implantation development, both of which are discussed in detail below.    

 

Pre-implantation embryonic development 

The pre-implantation period of the embryo refers to the early embryonic 

developmental stages where cell division and the first cell differentiation process 

is observed, before the embryo attaches or implants in the uterus and starts 

forming specialized tissues and organs (Figure I.2). Early mouse development 

begins after the male and female gametes fuse with each other in an oviduct to 

form one cell stage embryo (Kojima et al., 2014). This one cell stage embryo 

undergoes three rounds of cell division to become eight cells at E2.5, the 

embryonic structure called a morula (Fleming, 2001; Kojima et al., 2014). A 

compaction event occurs within the morula, where loosely packed cells are 

transformed into tightly packed cells to generate the embryonic blastocyst by 

E3.5 (Figure I.2). Blastocysts contain two distinct cell types: trophectoderm (TE) 

cells that give rise to placenta during embryonic development, and ICM, which 

contributes to the embryo (Fleming, 2001; Kojima et al., 2014). As the blastocyst 

develops within the uterus and reaches E4.5, the ICM further differentiates into 

epiblast cells (EPI), which produces the embryo, and primitive endoderm (PrE), 

which contributes to the embryonic yolk sac and other extra-embryonic tissues 

(Figure I.2) (Fleming, 2001; Kojima et al., 2014). Although cells of the morula 
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can differentiate into all three cell-types (TE, ICM and PrE) and contribute to the 

embryonic and extra-embryonic regions, cells of the ICM of the blastocyst 

contribute to epiblast cells that form embryo, and PrE but not TE (Lu and Y. 

Zhang, 2015; Mitalipov and Wolf, 2009). Therefore, cells of the morula are 

considered totipotent while the ICM is pluripotent. ESCs are derived from the 

ICM of the blastocyst stage embryo, and are pluripotent (M. J. Evans and 

Kaufman, 1981; Martin, 1981).  

OCT4, SOX2, and NANOG are highly expressed as early as the morula 

stage and play significant roles in early embryogenesis (Avilion et al., 2003; 

Dietrich and Hiiragi, 2007). Another transcription factor required for early 

embryonic differentiation is CDX2 (caudal like transcription factor) (Beck et al., 

1995). Studies have demonstrated the opposing functions of OCT4 and CDX2 in 

TE and ICM differentiation to form the blastocyst. Both of these transcription 

factors are initially expressed in the morula, but eventually Cdx2 expression 

becomes restricted to TE cells only, whereas Oct4 is expressed exclusively in the 

ICM (Dietrich and Hiiragi, 2007; Niwa et al., 2005). It is still unclear how these 

factors specify the first lineage specific differentiation to form the blastocyst. 

Although Nanog and Sox2 are expressed at similar stages of early embryonic 

development as Cdx2 and Oct4, their roles, if any, in the formation of TE and 

ICM are yet to be identified.  
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Post-implantation embryonic development 

Attachment of the blastocyst at E4.5 to the maternal uterine wall, followed by cell 

proliferation, and gastrulation marks the initiation of post-implantation embryonic 

development (Figure I.2) (L. J. Smith, 1980). When the embryo implants into the 

uterus, there are only about 100-120 cells within the embryo, which undergo 

rapid proliferation to produce about 660 cells by E6.5, when gastrulation begins 

(Figure I.2) (Snow, 1977). Gastrulation is the major event that forms all three 

primary germ layers, ectoderm, mesoderm, and endoderm from the epiblast for 

the formation of vertebrate body plan (Nowotschin and Hadjantonakis, 2010; 

Tam and Behringer, 1997). Prior to gastrulation, mouse embryos at E5.5 develop 

into a cup-shaped or cylinder-shaped embryo, which remains (with specific 

alterations discussed below) until E7.5. At the junction between epiblast cells and 

extra-embryonic ectoderm, a structure is formed at E6.5 called the primitive 

streak, which marks the beginning of gastrulation (Figure I.2) (Hashimoto and 

Nakatsuji, 1989; Tam and Behringer, 1997). Epiblast cells undergo an epithelial 

to mesenchymal transition (EMT) and ingress into the primitive streak-giving rise 

to mesendoderm cells, which amass on the outside of the cup. These cells are 

precursors of mesoderm cells, which gives rise to structures like heart, kidney, 

and somites; and endoderm cells, which gives rise to the gut and associated 

organs such as lung and pancreas (Lawson and Pedersen, 1987; Parameswaran 

and Tam, 1995). The ectoderm cells that also originate from the epiblast cells at 

the primitive streak are located on the inside of the cup shaped embryo, and  
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Figure I.2: Overview of pre-implantation and post-implantation embryonic 
development. Diagram representing embryo development from one cell stage 
(zygote) to thousands of cells (organ development). Zygote (E0.5) to blastocyst 
(E4.5) stage represent pre-implantation embryo development with the cell 
numbers highlighted in red. Events such as cell compaction, blastocoel cavity 
formation and first lineage specific cell differentiation occur during this stage. 
Stages from late blastocyst (E4.5) until organogenesis, before the pups are born, 
represent post-implantation embryo development with the cell number 
highlighted in blue.  Events such as embryo implantation on the uterine wall, 
anterior posterior pattering, primitive streak formation, gastrulation and 
organogenesis happen during this stage of development. Abbreviations: ALL: 
allantois, AMN: amnion, AVE: anterior visceral endoderm, BC: blastocyst cavity, 
DVE: distal visceral endoderm, ECT: ectoderm, EPI: epiblast, ExE: 
extraembryonic ectoderm, ICM:inner cell mass, MES: mesoderm, N: node, NF: 
neuralfold, PAC: proamniotic cavity, PrE: primitive endoderm, PS: primitive 
streak, TE:trophectoderm,VE: visceral endoderm, ZP: zona pellucida. Adapted 
from (Kojima et al., 2014).  
 
 
 
 
 

 

Pre-implantation Post-implantation
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contribute to formation of the nervous system (Quinlan et al., 1995). Until E7.5, 

ectoderm is found inside the cup shaped embryo, while the endoderm germ layer 

comprises the outside layer. After E7.5, the embryonic germ layers undergo an 

inversion process called “turning” whereby the endoderm layer is moved to the 

inside while the ectoderm becomes the outside layer. (Fujinaga, 1997; Melloy et 

al., 1998).   

During gastrulation, one of the earliest genes that is expressed is 

Brachyury (T). T is the first T-box transcription factor identified, and is required 

for proper development of primitive streak and induction of mesodermal 

precursors (Herrmann et al., 1990). It is specifically expressed in mesodermal 

cells and notochord (Wilkinson et al., 1990). Mice that are homozygous null for T 

die mid-gestation because of the inability of epiblast cells to migrate from the 

primitive streak and are also defective in formation of the notochord (Yanagisawa 

et al., 1981). How does T regulate proper gastrulation? Chromatin 

immunoprecipitation (ChIP) studies have shown that T binds the promoter 

regions of genes with important functions in development such as Wnt3a and 

Fgf-8, two essential signaling molecules (discussed later) and regulates their 

expression (A. L. Evans et al., 2012).  

 

Signaling pathways involved in mouse embryonic development   

Multiple signaling pathways such as fibroblast growth factor (FGF), 

wingless (WNT), and NODAL are required for pre- and post-implantation 
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embryonic development to control many cellular processes including cell 

proliferation, migration, and differentiation. The FGF family contains several 

secreted signaling proteins (FGFs) that bind to its specific tyrosine kinase 

receptors and mediate intracellular signaling through mitogen-activated protein 

kinase/extracellular signal-regulated kinase (MEK/ERK) pathway during various 

stages of embryonic development. Similarly, the WNT signaling pathway is 

activated by binding of WNT ligands to the Frizzled family of G-protein coupled 

receptors. In addition to FGF and WNT, NODAL signaling is very important 

during early embryonic development. NODAL belongs to the transforming growth 

factor beta (TGFb) superfamily that binds to ACTIVIN receptors and regulates 

gene expression through SMAD proteins.  Genetic experiments have shown that 

all of these signaling pathways exhibit essential functions during embryogenesis 

and proper ESC differentiation.  

There are twenty-two FGF ligands and four FGF receptors, which are 

expressed during different stages of embryonic development (Ornitz and Itoh, 

2015). One of the early FGF ligands is FGF-4, primarily expressed in the 8-cell 

stage morula and later restricted to the ICM. Unlike Fgf4 ligand, its receptor Fgfr2 

expression is restricted to TE cells.  Knockout of the ligand or the receptor exhibit 

similar embryonic lethality during early post-implantation, as well as defects in 

cellular differentiation and maintenance of the ICM (Arman et al., 1998; Feldman 

et al., 1995). This suggests that FGF-4 mediated signaling through FGFR2 is 

important for the first lineage specification of TE and ICM cells during early 
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embryogenesis (Arman et al., 1998; Goldin and Papaioannou, 2003). ESCs 

lacking FGF-4 or its downstream target MEK/ERK also exhibit defect in 

differentiation, suggesting that FGF-4 mediated activation of MEK/ERK pathway 

is essential for proper ESC differentiation (Kunath et al., 2007; Rossant, 2008). 

These in vivo and in vitro results demonstrate that FGF signaling is required 

during early development. FGF-8 is another secreted ligand that is expressed 

only during post-implantation embryonic development suggesting it may have a 

role later during development. Mouse embryos lacking Fgf-8 and Fgfr1 

expression exhibit defect in mesodermal cells formation and cell migration during 

gastrulation (Deng et al., 1994; X. Sun et al., 1999; Yamaguchi et al., 1994). 

These studies suggest that FGF/FGFR/ERK signaling pathway is required 

throughout embryonic development and ESC differentiation.  

WNT3 and WNT3A are among the components of the WNT signaling 

pathway that has been widely studied for its role in gastrulation. Wnt3 is initially 

expressed at E5.5 prior the formation of primitive streak in the posterior visceral 

endoderm, and later restricted in the primitive streak at E6.5 where the early 

gastrulation marker T is expressed (Rivera-Pérez and Magnuson, 2005). Ablation 

of Wnt3 specifically in epiblast cells affect the formation of primitive streak as 

marked by the reduced or weaker expression of primitive streak markers T, Fgf8, 

and Sp5 (Tortelote et al., 2013). In comparison, Wnt3a is expressed later than 

Wnt3 in mesodermal cells, and notochord of the primitive streak, and loss of 

which also affects the expression of the T (Wilkinson et al., 1990; Yamaguchi et 
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al., 1999). Mice homozygous null for Wnt3a are embryonic lethal at E9.5 

exhibiting defects in formation of mesodermal cells and notochord, phenocopying 

T null mice. Together these results suggest that WNT signaling mediated 

primitive streak formation, and T expression is critical for gastrulating mouse 

embryos (Takada et al., 1994; Yoshikawa et al., 1997).    

Similarly, NODAL signaling is also required for early embryonic 

development. Unlike FGF and WNT, NODAL is not required for mesoderm 

specification because T is broadly expressed in the null mutants for Nodal 

compared to wild type controls. However, mice lacking Nodal affect the formation 

of appropriate primitive streak. Likewise, ESCs lacking Nodal expression also do 

not exhibit defects in mesodermal differentiation. These in vivo and in vitro 

results demonstrate that NODAL signaling is not required for mesoderm 

induction, but instead is required to induce or maintain proper primitive streak 

(Conlon et al., 1994).   

 

Generation of knockout mice 

Because of the ability to easily manipulate the mouse genome, mice are 

powerful experimental models for the study of development and human diseases. 

Homologous recombination has been used to delete or insert mutations in genes, 

insert reporter genes and many other manipulations (Bouabe and Okkenhaug, 

2013; Sternberg, 1981). One of the most widely used techniques to generate 

conditional knockout mice is the Cre-loxP system (Gu et al., 1994; Sauer, 1998). 
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LoxP is a 34 basepair (bp) sequence that consists of an asymmetric 8bp 

sequence flanked by 13bp inverted repeats. CRE is a site-specific recombinase 

that acts as a molecular scissor and mediates recombination between loxP sites 

in the same orientation, efficiently removing the portion of gene flanked by the 

loxP (Babinet and Cohen-Tannoudji, 2001; Bouabe and Okkenhaug, 2013; 

Sternberg, 1981).  

Recently scientists have adapted the bacterial host defense system, 

CRISPR/Cas9 (clustured regularly interspread short palindromic 

repeats/CRISPR associated nuclease) system, for gene targeting. CRISPR/Cas9 

is fast, highly efficient, and multiplexable as compared to traditional approaches 

to generate knockout mice or mutant ESC lines for biomedical research (Cong et 

al., 2013; Mali et al., 2013; H. Wang et al., 2013; H. Yang et al., 2013). The 

CRISPR/Cas9 system that is adapted for genetic engineering contains a guide 

RNA (gRNA) and endonuclease Cas9. The gRNA is designed to be 

complementary to the target DNA sequence and directs Cas9 to the site of DNA 

cleavage (Cong et al., 2013; Mali et al., 2013). Expression of CRISPR/Cas9 

components in mammalian systems (as well as other eukaryotes) has been 

demonstrated to edit the genome through homologous recombination or non-

homologous end joining (Cong et al., 2013; Mali et al., 2013). In addition, the 

CRISPR/Cas9 system can be used to generate knockout mice by directly 

injecting Cas9 mRNA, gRNA and an oligonucleotide template (for HR) into the 

zygote, and transferring the manipulated zygotes into pseudo-pregnant females 
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(L.-F. Jin and J.-S. Li, 2016; H. Wang et al., 2013; H. Yang et al., 2013; Zuo et 

al., 2017). 

Chromatin structure plays important roles to influence gene expression 

during embryonic development or during cell differentiation into specific lineages. 

There are multiple chromatin remodeling factors and chromatin modifying 

enzymes that regulate chromatin structure by various mechanisms to control the 

expression of genetic information encoded in DNA during development.    

 

Packaging of eukaryotic DNA into chromatin 

The fundamental unit of chromatin is the nucleosome, which consists of a 

complex of positively charged histone proteins around which negatively charged 

DNA is wrapped. Each canonical nucleosome consists of two copies of histones 

H2A, H2B, H3, and H4 (Luger et al., 1997). These histones contain a histone fold 

and histone tail regions. The histone fold region forms the structure of each 

histone and is important for histone-histone interactions, such as the formation of 

H2A-H2B dimers and H3-H4 tetramers. The two H2A-H2B dimers bind the H3-

H4 tetramer through the interactions between H2B and H4 (Luger et al., 1997). 

Approximately 147bp of negatively charged DNA is wrapped around the 

positively charged histone octamer and binds tightly to form nucleosomes 

(Figure I.1). Nucleosomes are connected by linker DNA of varying length 

between 10 – 70bp resulting in “beads on a string” chromatin structure (Luger et 

al., 1997; Thoma, 1979; Woodcock and Ghosh, 2010). Linker histone H1, which 
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is not a core histone protein, interacts with nucleosomes and the linker DNA 

entering and exiting the nucleosome. Histone H1 influences chromatin 

compaction (Bednar et al., 1998; Harshman et al., 2013; Thoma, 1979), but it is 

not entirely clear how it promotes the higher order chromatin folding. On the 

other hand, histone tails are flexible regions of histone proteins that protrude from 

the nucleosome core, forming docking sites for chromatin regulatory complexes 

and influencing higher order folding. They interact with each other among 

different nucleosomes or with the DNA within nucleosomes to provide dense or 

compact chromatin structure (Hansen, 2002).  

Chromatin structure affects several aspects of transcription, such as 

binding of transcription factors, formation of pre-initiation complex and 

transcription elongation (Workman and Kingston, 1998). Therefore, chromatin 

structure is regulated dynamically to facilitate proper gene regulation, with factors 

that promote heterochromatin formation repressing transcription and factors that 

increase accessibility working as activators. There are several multi-subunit 

protein complexes that regulate the chromatin structure through covalent 

modifications of histones, and/or the use of energy from ATP hydrolysis to alter 

the position or structure of nucleosomes. Primary nucleosome positioning and 

occupancy is regulated through several mechanisms: histone exchange, histone 

dissociation, and sliding or relocation of nucleosomes (Kassabov et al., 2003; 

Lusser and Kadonaga, 2003).   
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Histone modifications and histone variants 

The N-terminal histone tails are subject to various post-translational 

modifications such as acetylation, phosphorylation, methylation and 

ubiquitination (Strahl and Allis, 2000; Turner, 1998). These post-translational 

modifications provide binding sites for chromatin regulators that move 

nucleosomes around and either allows or restricts access of transcription 

machinery causing either an open (transcriptionally active) or closed 

(transcriptionally inactive) chromatin state. Covalent modifications of histone tails 

such as H3K4me3, H3K9ac and H3K14ac are associated with actively 

transcribed genes, whereas H3K9me3 and H3K27me3 are associated with 

repressed or silent genes (Kraushaar and Zhao, 2013; Young, 2011). In ESCs, 

active H3K4me3 and repressive H3K27me3 marks are identified at the promoter 

region of developmentally silent genes and primed for activation during normal 

differentiation (Azuara et al., 2006; Bernstein et al., 2006; Boyer et al., 2006; 

Mikkelsen et al., 2007). Two independent chromatin-modifying enzymes catalyze 

these functionally opposing bivalent marks: PRC2 and MLL complexes. PRC2 

catalyzes the incorporation of H3K27me3 for gene silencing, and MLL complex 

catalyzes the incorporation of H3K4me3 for gene activation (Azuara et al., 2006; 

Boyer et al., 2006; Denissov et al., 2014; Dou et al., 2006). During ESC 

differentiation into specific lineages, the bivalent marks are resolved and harbor 

either active H3K4me3 mark for lineage specific gene expression or inactive 

H3K27me3 mark for repression of genes (Bernstein et al., 2006; Kraushaar and 
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Zhao, 2013). Covalent modifications also act as a prerequisite signal that 

regulate the binding of transcription factors as well as chromatin remodeling 

enzymes such as SWI/SNF or ISWI to regulate the chromatin structure during 

several cellular processes like DNA repair, transcription, recombination and 

replication (Guccione et al., 2006). 

In addition to histone modifications, histone variants also play important 

role to regulate nucleosome structure and gene regulation. All histones have 

variants except for H4. Some of the variants are tissue specific and only 

expressed in germ line cells such as testis or oocyte (TH2A and TH2B variants of 

histones H2A and H2B respectively), and some of the variants are expressed 

during different stages of embryonic development (H3.3 and H2AZ variants of 

histones H3 and H2A respectively) (Buschbeck and Hake, 2017). For instance, 

H2AZ that is expressed during pre-implantation development is a highly 

conserved histone variant and shares 60% homology with H2A (Eberharter and 

Becker, 2004; Fischle et al., 2003). Nucleosomes containing the H2AZ variant 

are similar in structure to those with H2A, although there are multiple amino-

acids substitutions in H2AZ compared to H2A, including the docking domain that 

interact between H2A-H2B dimer and H3-H4 tetramer (Suto et al., 2000). With 

40% of the sequence divergent from H2A, this suggests H2AZ has functions that 

are at least partially distinct from H2A (Jackson, 2000). In ESCs, H2AZ largely 

occupies regulatory regions. Two studies from Kaestner and Zhao labs showed 

that H2AZ incorporation enhances chromatin accessibility, and decreases 
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nucleosome occupancy (G. Hu et al., 2013; Z. Li et al., 2012). During 

differentiation, overall nucleosome density increases and chromatin accessibility 

decreases at regulatory regions occupied by H2AZ in ESCs. Interestingly, upon 

ESC differentiation towards the endoderm lineage, H2AZ enrichment decreases 

at promoter regions, facilitating the binding of the lineage specific transcription 

factor FOXA2, which activates expression of many endoderm-specific genes (Z. 

Li et al., 2012). Upon differentiation into the neuronal lineage, regulatory regions 

bound by the transcription factor RARa were enriched at regions occupied by 

H2AZ in ESCs (G. Hu et al., 2013). It still remains to be determined if the 

enrichment of RARa correlates with depletion of H2AZ enriched nucleosome 

during neuronal differentiation. Together, these data suggest that H2AZ mediated 

chromatin structure is important for proper gene regulation and lineage 

specification. The biological functions of H2AZ, and how H2AZ is incorporated 

into nucleosomes will be detailed below.    

 

Mechanistic roles of chromatin remodeling enzymes 

Nucleosome positions and occupancy are dynamically regulated in order 

to permit or restrict access to DNA for controlled gene expression (B. Li et al., 

2007). There are four families of chromatin remodeling enzymes: SWI/SNF, 

ISWI, CHD, and INO80 that utilize energy from ATP hydrolysis to disrupt DNA-

histone contacts, with several outcomes such as nucleosome sliding, histone 

eviction or histone variant exchange (Clapier and Cairns, 2009; Narlikar et al., 
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2013). Along with a conserved ATPase domain these enzymes also contain 

different accessory domains such as a bromodomain, helicase-SANT-associated 

(HSA) domain, and chromodomain. These domains are used to further divide 

chromatin remodeling enzymes into different families (Figure I.3) (Clapier and 

Cairns, 2009). The ATPase domain includes Walker A and Walker B motifs, 

which are required for ATP binding and hydrolysis (Clapier and Cairns, 2009; 

Walker et al., 1982). The Walker A motif consists of conserved GXXXXGKT/S 

(where X is any amino acid) amino acid sequence. The lysine (K) residue in this 

motif is crucial for ATP binding. Mutation of the invariant K in the Walker A motif 

eliminates ATP binding and hydrolysis (Hanson and Whiteheart, 2005). The 

Walker B motif contains conserved acidic residues following a stretch of 

hydrophobic residues with a consensus of hhhhDE (where h is any hydrophobic 

amino acid) (Hanson and Whiteheart, 2005). Aspartate (D) coordinates with a 

magnesium ion (acts as a cofactor that bridges between D and gamma 

phosphate of ATP) and glutamate (E) activates a water molecule (acts as a 

nucleophile) for ATP hydrolysis (Hanson and Whiteheart, 2005). These enzymes 

bind chromatin through accessory domains such as the bromodomain (which 

recognizes acetylated histones), HSA domain (which recognizes nucleosomal 

DNA) or chromodomain (which recognizes methylated histones). After binding 

the nucleosome substrate, the Walker A motif binds to ATP, hence causing a 

conformational change from an open to closed enzyme structure (Hanson and 

Whiteheart, 2005). This conformational change positions the gamma phosphate  
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Figure I.3: Classification of chromatin remodeling families. ATP dependent 
chromatin remodeling families are classified based on the presence of ATPase 
domain and associated unique accessory domains. The ATPase domain is 
splitted into two parts by DExx and HELICs, with short insertion in between 
SWI/SNF, ISWI and CHD family whereas long insertion in the INO80 family. 
Each of these families has unique domains: HSA, Bromo, SANT, SLIDE, Chromo 
as shown. Adapted from (Clapier and Cairns, 2009). 

 

 

 

for hydrolysis by the Walker B motif, resulting in physical work such as 

nucleosome movement, histone eviction or histone variant exchange. 

All of these chromatin-remodeling enzymes are important to regulate 

higher order chromatin structure and gene regulation in eukaryotes. The major 

focus of my work has been to understand the importance of Tip60-p400 complex 

in ESC maintenance, gene regulation, and development. Tip60-p400 (~1.5 MDa) 

is a 17-subunit chromatin remodeling complex, which has histone modifying and 

chromatin remodeling functions widely studied in the context of DNA repair and 
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apoptosis (J. H. Park et al., 2010). Tip60 is a lysine acetyltransferase (KAT) that 

acetylates histones and non-histone proteins, whereas the ATPase activity of 

p400 catalyzes replacement of H2A with H2AZ within a nucleosome (Ikura et al., 

2000; J. H. Park et al., 2010; Y. Xu et al., 2012). As the p400 and the Tip60 

subunits of Tip60-p400 belongs to the INO80 family and MYST  

family respectively, I will discuss the mechanisms of action of INO80 family 

remodeling factors, and MYST family acetyltransferase in detail below. In 

addition, I will also focus on the biology and function of Tip60, p400 and H2AZ in 

various cellular processes such as gene regulation, DNA repair, apoptosis, and 

development. 

INO80 family is highly conserved in all eukaryotes from yeast to 

mammals. This family of remodeling enzymes contains INO80 and SWR1 

complexes in yeast.   All INO80 family members contain a long insertion in the 

middle of the ATPase domain, which acts a platform for binding other subunits in 

the complex (Clapier and Cairns, 2009). INO80 complex contains 15 subunits in 

yeast, and functions in mobilization of nucleosomes for processes such as DNA 

repair, DNA replication and gene regulation (Ebbert et al., 1999; Jónsson et al., 

2004; Papamichos-Chronakis and Peterson, 2008; Shen et al., 2000). 

Mammalian INO80 complex is similar in composition to yeast INO80 complex 

and was shown to exhibit DNA and/or nucleosome mediated ATPase activity 

which promotes nucleosome sliding in vitro (J. Jin et al., 2005; Willhoft et al., 

2016). Recently, mammalian INO80 complex has been shown to regulate ESC 
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pluripotency. Knockdown of Ino80 causes a defect in ESC self-renewal and 

reduced expression of pluripotnecy genes (L. Wang et al., 2014). These data 

underscore the importance of INO80 complex in both yeast and higher 

eukaryotes. SWR1 complex from the same family consists of 14 subunits in 

yeast, including the catalytic SWR1 protein, which has an ATPase domain 

(Mizuguchi et al., 2004). Most chromatin remodeling enzymes use ATP 

hydrolysis to slide or evict nucleosomes within chromatin structure, whereas 

SWR1 complex functions to catalyze the incorporation of the H2AZ histone 

variant in place of the canonical H2A histone through a dimer exchange 

mechanism (Mizuguchi et al., 2004).         

Recently, extensive biochemical studies have elucidated the mechanism 

by which SWR1 complex binds the nucleosome substrate and uses energy from 

ATP hydrolysis for H2AZ exchange. The SWR1 and SWC2 (another subunit in 

the complex) proteins, as well as a linker DNA length of more than 50bp between 

nucleosomes, were shown to be required for the recruitment of SWR1 complex 

to the promoter region of target genes (Ranjan et al., 2013). These and other 

studies suggested a mechanism by which SWR1 complex catalyze the exchange 

of H2AZ from in vitro biochemical experiments. SWR1 complex binds the A/A 

nucleosome (nucleosome with two H2A histones), which causes a 

conformational change of the SWR1 complex and activates ATP hydrolysis (Luk 

et al., 2010). An H2AZ-H2B dimer then binds to the SWR1 complex as shown in 

Figure I.4. Further ATP hydrolysis causes the incorporation of H2AZ and  
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removal of one H2A from the nucleosome through a dimer exchange 

mechanism, resulting in A/Z nucleosome (nucleosome with one H2A and one 

H2AZ histone) (Luk et al., 2010). After the H2AZ exchange, catalytic activity of 

SWR1 complex is inactivated and A/Z nucleosome is released from the catalytic 

core of the enzyme. It has been proposed that the A/Z nucleosome may be 

subjected to another round of exchange mechanism that will result in Z/Z 

nucleosome (nucleosome with two H2AZ histones) (Luk et al., 2010). 

Interestingly, the other major constituent of the INO80 family of chromatin 

remodeling complexes, INO80 complex, was shown to catalyze the reverse 

reaction to regulate H2AZ distribution (Papamichos-Chronakis et al., 2011).  In 

Figure	I.4:	Mechanism	for	
SWR1	mediated	H2AZ	
exchange.	SWR1	complex	
binds	the	A/A	nucleosome	
and	catalyze	H2AZ	exchange	
through	ATP	hydrolysis	
forming	A/Z	nucleosome.	A	
face	of	the	hetero-
nucleosome	then	binds	the	
catalytic	domain	of	SWR1C	
for	another	round	of	histone	
replacement	to	form	Z/Z	
nucleosome.	Adapted	from	
(Luk et al., 2010).	
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the presence of ATP and H2A-H2B dimer, purified INO80 complex catalyzes the 

exchange of H2AZ for H2A within nucleosomes (Papamichos-Chronakis et al., 

2011; Watanabe and Peterson, 2011). From these studies, it is clear that the two 

ATP dependent chromatin-remodeling complexes of the INO80 family, SWR1 

and INO80, regulate H2AZ localization. 

The mammalian homologs of SWR1 complex are SRCAP and Tip60-

p400, multi-subunit complexes containing distinct SWR1 homologs, with Tip60-

p400 also containing the Tip60 histone acetyltransferase (HAT) activity (Cai et 

al., 2005; Clapier and Cairns, 2009). The SRCAP and p400 subunits that contain 

conserved bipartite ATPase domain are homologous to the yeast SWR1 protein, 

which catalyze H2AZ exchange in mammalian cells like its yeast counterpart 

(Eissenberg et al., 2005; March-Díaz and Reyes, 2009; Ruhl et al., 2006; Wong 

et al., 2007; Y. Xu et al., 2012). These catalytic subunits also contain similar HSA 

domain at the N-terminus and distinct domain at the C-terminus: SRCAP 

contains multiple A/T hook, whereas p400 contains SANT domain (Eissenberg et 

al., 2005; March-Díaz and Reyes, 2009). Despite these structural differences, it 

is likely that SRCAP and Tip60-p400 complexes use a similar mechanism for 

H2AZ exchange in higher eukaryotes; however, this has not been tested. Like 

Tip60-p400 (described below), SRCAP mediated H2AZ exchange also play 

important roles in gene expression, and DNA damage repair (Bowman et al., 

2011; Dong et al., 2014). But, it still need to be identified if there is redundancy 

between SRCAP and Tip60-p400 complexes for H2AZ exchange and various 
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cellular functions. Recently, p400 was also found to catalyze incorporation of 

histone variant H3.3 in place of canonical histone H3.1 into chromatin. H2AZ and 

H3.3 occupancy highly correlate with p400 occupancy at regulatory regions such 

as promoters and enhancers, and both are important for regulation of gene 

expression (Pradhan et al., 2016). The mechanism of H3.3 exchange is yet to be 

identified. Below, I have discussed in detail about the biological functions of 

Tip60 and p400 in various processes including gene transcription, DNA repair, 

apoptosis, and development.  

 

Biological functions of p400  

The p400 subunit of Tip60-p400 complex was identified as part of an 

adenovirus E1A oncoprotein binding complex (Fuchs et al., 2001). This protein is 

highly conserved from yeast to human and has been shown to be important in 

various cellular processes like DNA repair, senescence, and transcription (Gevry 

et al., 2007; Kusch, 2004). p400 has also been identified as an essential protein 

for ESC self-renewal (Fazzio et al., 2008). 

In normal cells (human fibroblasts), p400 occupies the promoter region of 

the p21, a gene involved in cell cycle inhibition and senescence, and acts as a 

negative regulator for expression of p21 (Chan et al., 2005; Gevry et al., 2007). 

Knockdown (KD) of p400 causes up-regulation of p21 and cell cycle arrest in 

human fibroblasts, suggesting that p400 is important for p21 mediated cellular 

senescence (Chan et al., 2005). p400 and H2AZ were shown to co-localize at the 
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promoter region of p21, and KD of p400 reduces H2AZ occupancy, consistent 

with this function (Gevry et al., 2007). KD of H2AZ also affects p21 expression, 

causing its up-regulation and resulting in premature senescence of human 

fibroblasts, similar to what is observed upon p400 KD (Chan et al., 2005; Gevry 

et al., 2007). Upon DNA damage, both p400 and H2AZ occupancy are reduced 

at the promoter of p21, allowing the upregulation of p21 expression for cellular 

senescence, and efficient DNA repair (Gevry et al., 2007).  

p400 also plays an important role in double strand break (DSB) repair 

along with the Tip60 acetyltransferase. Upon DSB production in human cells, 

p400 catalyzes incorporation of H2AZ into nucleosomes at the break site. The 

Tip60 acetyltransferase, which is a part of Tip60-p400 chromatin remodeling 

complex then acetylates the N-terminal tail of histone H4 (to be discussed later) 

to enhance H2AZ exchange, which is necessary for efficient double strand DNA 

break repair through homologous recombination (HR) or non-homologous end 

joining (NHEJ) pathways (Price and D’Andrea, 2013; Y. Xu et al., 2012). In 

Drosophila, Tip60 acetylates phospho-H2Av (the Droshophila homolog of both 

H2AZ and H2A.X) following DSB, resulting in the removal of phospho-H2Av and 

incorporation of unmodified H2Av by p400/Domino (Kusch, 2004). These data 

from different model systems suggest that p400 and Tip60 work together to 

facilitate chromatin remodeling for DNA repair through H2AZ exchange and 

histone acetylation activities respectively (Kusch, 2004; Y. Xu et al., 2012).  
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In addition to its role in transcription, DNA repair, and senescence, p400 is 

also essential for mouse embryonic development and ESC self-renewal. From an 

RNAi screen for chromatin remodeling enzymes, p400 has been identified as an 

essential protein for ESC self-renewal. p400 KD exhibit flattened and elongated 

ESC morphology, and decreased cell proliferation compared to wild type ESCs 

(Fazzio et al., 2008). p400 KD also show reduced alkaline phosphatase (AP) 

staining (an established marker of pluripotent stem cells), smaller and fewer 

embryoid body (EB) formation (in vitro readout for ESC differentiation), and a 

defect in teratoma development (in vivo readout for ESC differentiation). In 

addition, p400 occupies the promoter region of both active and silent genes in 

ESCs, and p400 KD largely causes derepression of genes normally silent in 

ESCs and minimally affects the expression of active genes (Fazzio et al., 2008). 

These data suggest that p400 largely acts as a repressor of silent genes (e.g. 

developmental genes) for ESC maintenance. To understand the role of p400 in 

embryonic development, Exon2 of the p400 gene was deleted to generate p400 

KO mice. Interestingly, deletion of exon2 resulted in aberrant splicing of the p400 

transcript that resulted in the expression of N-terminally truncated p400 protein. 

Mice homozygous for this mutation exhibited embryonic lethality at E9.5 (Ueda et 

al., 2007). Interestingly, the phenotype of a true null mutation has yet to be 

determined. Whether it causes a pre-implantation defect (similar to Tip60 KO 

mice and consistent with the phenotype of p400 KD ESCs) or a post-implantation 
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defect (similar to the p400 exon delete mouse phenotype) remains an open 

question.  

 

Biological functions of H2AZ 

H2AZ is highly conserved among eukaryotes and it plays an essential role 

in mammalian development. H2AZ KO mice are embryonic lethal and die during 

the developmental stage around E7.5 (Faast et al., 2001). H2AZ incorporation 

plays an important role in various cellular processes such as gene activation, 

heterochromatin silencing, and DNA damage repair. Genome-wide localization 

analyses in yeast have shown that SWR1 and H2AZ co-localize at the promoter 

regions of many repressed genes and some active genes, and regulate their 

expression (Guillemette et al., 2005; B. Li et al., 2005; Meneghini et al., 2003; 

Mizuguchi et al., 2004; H. Zhang et al., 2005). H2AZ is also enriched near 

telomeres and its occupancy prevents the spread of heterochromatin towards 

euchromatic regions (Guillemette et al., 2005; Meneghini et al., 2003). In ESCs, 

H2AZ largely occupies the promoter region of silent genes, such as 

developmental genes (Creyghton et al., 2008; G. Hu et al., 2013). In contrast, 

H2AZ mostly occupies the promoter regions of active genes but not silent genes 

in somatic cells (Hardy et al., 2009). Upon H2AZ KD in ESCs, expression of 

H2AZ enriched silent genes are up-regulated similar to what is observed in p400 

KD (Creyghton et al., 2008; Fazzio et al., 2008; G. Hu et al., 2013). These data 

suggest that the catalytic function of p400 might be required for ESC 
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maintenance and repression of developmental genes by incorporating H2AZ, a 

prediction that we address in this work.  

 

The MYST family of acetyltransferases  

Histone acetylation was first reported in 1964 by Alfred Mirsky’s laboratory 

(Allfrey et al., 1964). Histone acetyltransferases (HAT) are enzymes that catalyze 

the covalent addition of acetyl group from acetyl-coenzyme A to amine groups of 

lysine residues on histone tails. Acetylation changes the overall positive charge 

on histone tail to neutral and creates binding sites for proteins with 

bromodomains (Dhalluin et al., 1999; Marmorstein and Zhou, 2014). There are 

different HAT families such as GCN5 related N-acetyl transferases (GNATs), 

MYST, and p300/CBP found in higher eukaryotes that catalyze the HAT activity. 

The GNAT family includes HAT1, GCN5, and PCAF members. GCN5 is 

the most widely studied HAT that mostly acetylates lysine residues on H3 (K9, 

K14, K18, K23 and K27) and H2B (K11 and K16) tails (Suka et al., 2001). The 

p300/CBP family is only present in higher eukaryotes and acetylates all core 

histones: H2A (K5), H2B (K12 and K15), H3 (K4 and K18), and H4 (K5 and K8) 

(Kimura, 2005). The MYST family of acetyltransferases includes founding 

members MOZ, YBF2/SAS3, SAS2, and Tip60 all of which consists of conserved 

MYST domain containing acetyl-CoA binding site (Sapountzi and Côté, 2011; 

Voss and Thomas, 2009). SAS2 was the first member of MYST family 

discovered in yeast that specifically acetylates H4K16 to prevent spreading of 
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heterochromatin and maintenance of euchromatin (Kimura et al., 2002; Lafon et 

al., 2007; Suka et al., 2002). The acetyl-CoA binding domain of SAS2 was found 

to be closely related to SAS3 in yeast and two other mammalian proteins MOZ 

and Tip60. SAS3, which acetylates H3K16, is one of the less studied members of 

the MYST family (Lafon et al., 2007; Voss and Thomas, 2009). MOZ targets H3 

and plays important roles in gene regulation and hematopoietic stem cell (HSCs) 

maintenance (Crump et al., 2006; Katsumoto, 2006; Thomas et al., 2006; Voss 

and Thomas, 2009). The most widely studied MYST family protein is Tip60, 

which acetylates lysine 5 (K5) on the amino-terminal tails of histone H2A and 

H2A.Z, as well as K5, K8, K12, and K16 residues on histone H4 (Ikura et al., 

2000; Kimura and Horikoshi, 1998). In addition to mammals, Tip60 is also found 

in other organisms such as Drosophila (dTip60), and Caenorhabditis elegans 

(ceTip60/MYS1), and is important for their development (Ceol and Horvitz, 2004; 

Voss and Thomas, 2009; Zhu et al., 2007). Tip60 is also closely related to 

another MYST family member in yeast called Esa1 based on similar protein 

domains, histone targets, interacting proteins, and various cellular functions 

including cell cycle progression and DNA damage repair (Bird et al., 2002; Ikura 

et al., 2000; Sapountzi et al., 2006; Voss and Thomas, 2009).  

 Most of these HAT enzymes are multi-subunit proteins that not only 

acetylate histone tails, which correlates with transcription activation, but also 

acetylate lysine residues of non-histone proteins such as HIV-1 TAT, p53, and 

androgen receptor (AR) and act as transcriptional co-activators (Verdone et al., 
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2005; X.-J. Yang, 2004). Lysine acetylation generates docking sites for 

regulatory proteins and protein complexes containing bromodomains such as 

Gcn5, PCAF, and SWI/SNF complex to control gene expression (Verdone et al., 

2005; X.-J. Yang, 2004). Here, I will discuss biological functions and general 

mechanism of action of HAT enzymes, particularly focusing on Tip60. 

 

Mechanism of lysine acetylation by Tip60/Esa1  

The catalytic mechanism of the GCN5 HAT family was the first to be 

characterized. It was shown that GCN5 forms a ternary complex between acetyl-

CoA, histone substrate, and enzyme.  The glutamate (Glu) residue at the 

catalytic domain acts as a general base, which abstracts a proton from the lysine 

residue on the histone tail substrate.  Deprotonated lysine becomes unstable and 

acts as a nucleophile to attack the carboxyl group on the acetyl-CoA within the 

ternary complex. This leads to the formation of an unstable tetrahedral 

intermediate structure and its collapse finally gives acetylated histone tail as the 

final product (Tanner et al., 2000; 1999). It is important to note that ternary 

complex formation is necessary before the catalysis occurs. During this process, 

acetyl-CoA binds first with the enzyme, and then with the histone substrate and 

CoA is released along with an acetylated substrate. In contrast, p300/CBP uses 

different amino acids as catalytic residues (Tyr1467 and Trp1436) for catalysis. 

From structural analysis, Tyr1467 in the catalytic domain is proposed to act as a 

general acid for catalysis and Trp1346 is proposed to orient the lysine residue 
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from the histone substrate into the active site of p300/CBP (Yuan and 

Marmorstein, 2012).  

Members of the MYST family of HATs, which include Tip60, contain a 

conserved MYST catalytic domain, and other accessory domains such as zinc 

fingers (within MYST domain) and chromo domains for substrate specificity 

(Figure I.5) (Brown et al., 2016; Kuo and Allis, 1998). The catalytic mechanism of 

MYST with regard to lysine acetylation has been well studied with regard to 

Esa1, the Tip60 homolog in yeast, suggesting similar mechanism might exist in 

Tip60. Motif A present within MYST domain is a highly conserved motif among 

HATs that contains the amino acid sequence R/Q-X-X-G-X-G/A (where X is any 

amino acid). This conserved sequence binds the cofactor acetyl-CoA, thereby 

catalyzing the transfer of an acetyl group onto the histone tails (Kuo and Allis, 

1998). Like Gcn5, ESA1/ Tip60 also forms a ternary complex between acetyl-

CoA and histone substrates for catalysis (Figure I.6) (Berndsen et al., 2007).  

 

Biological functions of Tip60 acetyltransferase 

  Tip60 not only acetylates histone tails, but also acetylates and activates 

non-histone substrates, such as ATM or p53, during DNA repair and apoptosis 

(Sapountzi et al., 2006). In addition, Tip60 also acetylates the nuclear receptor 

AR, and the transcription factor MYC to enhance activation of their target genes 

(Patel et al., 2004). Upon DNA damage, Tip60 has been shown to acetylate and 

activate p53 and trigger apoptotic cell death if the damaged DNA is not repaired 
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Figure I.5: Tip60 protein structure. Diagram representation of Tip60 domains 
that belong to MYST family of histone acetyltransferase. Tip60 contains chromo-
domain and MYST domain. Within MYST domain contains zinc finger (ZnF) 
domain and acetyl-CoA binding domain. Adapted from (Brown et al., 2016). 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

 

Figure	I.6:		Schematic	
for	the	ESA1/Tip60	
HAT	activity.	Direct	
attack	mechanism	of	
ESA1/Tip60	protein	to	
acetylate	the	N-terminal	
histone	tail	forming	
ternary	complex	with	
acetyl-CoA	and	histone	
substrate.	Adapted	from	
(Berndsen et al., 2007).	
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(Ikura et al., 2000). Expression of mutated Tip60 lacking catalytic activity in HeLa 

cells fails to promote apoptosis after gamma irradiation indicating the catalytic 

activity of Tip60 is required to promote apoptosis (Ikura et al., 2000). 

During dsDNA break repair, Tip60 is directly recruited to the break site 

along with ATM. Tip60 acetylates ATM, which leads to auto-phosphorylation and 

activation of ATM kinase activity, resulting in phosphorylation of histone variant 

H2A.X  (called γH2A.X) (Y. Sun et al., 2005). Acetylation of histone tails by Tip60 

is also thought to facilitate chromatin decompaction to allow spreading of γH2A.X 

and efficient repair of damaged DNA (Price and D’Andrea, 2013). The γH2A.X 

variant acts as a signal for recruitment of DNA damage repair proteins such as 

MRN complex or Ku70/Ku80 complex. The recruitment of these repair proteins 

mediate dsDNA break repair using error free homologous recombination or error 

prone non-homologous end joining pathways (Price and D’Andrea, 2013).  

In addition to its role in DNA damage and apoptosis, Tip60 is required for 

ESC maintenance and mammalian development (Fazzio et al., 2008; Y. Hu et 

al., 2009). Tip60 was first isolated as a HIV-1 Tat interactive protein (Tip) that 

acts as a co-activator and enhances the expression of the HIV-1 promoter 

(Kamine et al., 1996). It consists of four isoforms, which are alternative splice 

variants of the Tip60 gene (Figure I.7) (M.-S. Kim et al., 2006; Legube and 

Trouche, 2003; Ran and Pereira-Smith, 2000). The functional roles of each of 

these specific isoforms are currently unknown. In this study, we have 

characterized the importance of one isoform called Tip55 during embryonic  
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Figure I.7: Tip60 isoforms. Tip60 gene contains four alternatively spliced 
isoforms. iTip60 retains intron 1, Tip60a retains all exons (no introns), Tip60b 
lacks exon 5, and Tip55 retains short intron between exon11 and exon12 
(doesn’t retain exons 12, 13 and 14).   
 

 

 

development, which will be discussed in chapter III. Previous work found that 

Tip60 KO mice that lack all four isoforms are embryonic lethal and die due to 

proliferation defects in the inner cell mass that lead to apoptosis (Y. Hu et al., 

2009). In addition, an RNAi screen looking for proteins involved in ESC self-

renewal identified Tip60 as an essential protein for ESC maintenance (Fazzio et 

al., 2008), consistent with the phenotype of Tip60 KO mice. Tip60 KD exhibits a 

similar phenotype to p400 KD with flattened and elongated ESC morphology, 

reduced cell proliferation, decreased alkaline phosphatase (AP) staining, and 

defects in embryoid body (EB) formation and teratoma development (Fazzio et 
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al., 2008). Tip60 also occupies and acetylates the promoter region of both active 

and silent genes in ESCs. Upon Tip60 KD, there is decrease in acetylation level 

and de-repression of developmental genes normally silent in ESCs, indicating 

that Tip60 acts as a repressor of differentiation or developmental genes for ESC 

self-renewal (Fazzio et al., 2008). This is a surprising finding because histone 

acetylation is associated with gene expression, but these data suggest that Tip60 

mediated histone acetylation might be responsible for repressing silent genes for 

ESC maintenance and proper embryonic development. We have tested this 

possibility and report the findings below, in chapter II. 
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CHAPTER II 

PREFACE 
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KAT–independent gene regulation by Tip60 promotes ESC self-renewal but 

not pluripotency 
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Summary 

Although histone-modifying enzymes are generally assumed to function in 

a manner dependent on their enzymatic activities, this assumption remains 

untested for many factors. Here we show the Tip60 (Kat5) lysine 

acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-

renewal and pre-implantation development, performs these functions 

independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT–deficient 

ESCs exhibited minimal alterations in gene expression, chromatin accessibility at 

Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT–

independent role of Tip60 in ESC maintenance. In contrast, KAT–deficient ESCs 

exhibited impaired differentiation into mesoderm and endoderm, demonstrating a 

KAT–dependent function in differentiation. Consistent with this phenotype, KAT–

deficient mouse embryos exhibited post-implantation developmental defects. 

These findings establish separable KAT–dependent and KAT–independent 

functions of Tip60 in ESCs and during differentiation, revealing a complex 

repertoire of regulatory functions for this essential chromatin remodeling 

complex. 
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Introduction 

Embryonic stem cells (ESCs)—cells derived from the inner cell mass of 

the early blastocyst—have been utilized as an in vitro model of differentiation due 

to their pluripotency and unlimited capacity for self-renewal in culture (Keller, 

2005). A complex array of signaling pathways and transcription factors control 

ESC fate, promoting self-renewal in the presence of either leukemia inhibitory 

factor (LIF) or inhibitors of differentiation-promoting kinases MEK1/2 and Gsk3b 

(Ying et al., 2008). In addition to transcription factors, a number of chromatin 

regulatory proteins help control the expression of pro-self-renewal and pro-

differentiation genes (T. Chen and Dent, 2013). Although dozens of chromatin 

regulators necessary for ESC self-renewal or differentiation have been identified, 

the specific contributions of many chromatin regulatory proteins to ESC self-

renewal and differentiation are poorly understood, due to the redundant and 

context-dependent contributions of most chromatin modifications to gene 

expression (Rando and Chang, 2009). 

Previously we showed that RNAi-mediated knockdown (KD) of 

components of the well-conserved Tip60-p400 (also called NuA4) chromatin 

regulatory complex resulted in multiple defects in ESC pluripotency (Fazzio et al., 

2008). ESCs depleted of Tip60-p400 subunits exhibit cell and colony 

morphologies indicative of differentiation and reduced expression of some 

pluripotency markers. However, Tip60-p400-depleted cells are also defective in 

normal ESC differentiation, forming small, abnormal embryoid bodies under 
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differentiation conditions that fail to upregulate some markers of differentiated 

cells (Fazzio et al., 2008). Consistent with this self-renewal defect, homozygous 

knockout of the Tip60 gene in mouse results in embryonic lethality at 

approximately the blastocyst stage (the stage at which ESCs are derived) (Y. Hu 

et al., 2009). Tip60-/- blastocysts are morphologically abnormal and fail to hatch 

from the zona pellucida when cultured in vitro.  No post-implantation Tip60-/- 

embryos were observed, demonstrating an absolute requirement for Tip60 at or 

before this stage. 

Tip60-p400 has two biochemical activities that contribute to its functions 

within the nucleus. The Tip60 subunit is a lysine acetyltransferase (KAT) that 

targets histones H4, H2A, H2A variants, and non-histone proteins (Ikura et al., 

2000). Histone acetylation near gene promoters or enhancers is strongly 

associated with gene expression, consistent with Tip60’s known function as a co-

activator that collaborates with numerous transcription factors (Squatrito et al., 

2006). In addition to its role as a co-activator, Tip60 also directly regulates the 

activities of numerous transcription factors through acetylation of lysine residues 

(Farria et al., 2015). Finally, besides regulation of transcription, Tip60 plays 

important roles in DNA damage repair, senescence, and apoptosis (Doyon et al., 

2004; Ikura et al., 2000; Jiang et al., 2011; Kusch, 2004; Sykes et al., 2006; Tang 

et al., 2006; Van Den Broeck et al., 2011). Importantly, the KAT activity of Tip60 

has been shown to be essential for its role in each of these processes. 
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The second chromatin remodeling activity found within Tip60-p400 

complex is catalyzed by the p400 subunit (gene name: Ep400). The p400 

protein, like its homologs in other eukaryotes, catalyzes ATP-dependent 

incorporation of histone H2A variant H2A.Z into chromatin via exchange of H2A-

H2B dimers within nucleosomes for free H2A.Z-H2B dimers (Gevry et al., 2007; 

Mizuguchi et al., 2004). Interestingly, p400 was recently shown to incorporate 

histone H3 variant H3.3 into chromatin (Pradhan et al., 2016). H2A.Z and H3.3 

are often enriched near gene regulatory regions, consistent with a role for p400 

(like Tip60) as a co-activator of transcription (Melters et al., 2015). However, 

p400 also appears to repress transcription in some contexts, as well as promote 

DNA repair in concert with Tip60 (Gevry et al., 2007; Papamichos-Chronakis et 

al., 2011; Y. Xu et al., 2012). 

How does Tip60-p400 promote ESC self-renewal and pre-implantation 

development? Tip60-p400 binds near the promoters of both active genes and 

lowly expressed developmental genes in ESCs, and acetylates the promoter-

proximal histones of both groups (Fazzio et al., 2008). Given the well-established 

activating roles of histone acetylation, these data imply that Tip60-p400 may 

drive expression of highly expressed housekeeping and pluripotency genes, but 

that its developmental targets are resistant to this activation, possibly due to the 

repressive activities of Polycomb complexes or other factors (Aloia et al., 2013; 

Simon and Kingston, 2013). However, this model is unlikely to be correct, since 

Tip60-p400 is largely dispensable for transcriptional activation in ESCs, and 
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instead functions mainly to repress its developmental targets (Fazzio et al., 

2008). Therefore, the Tip60 KAT activity must either inhibit transcription of 

developmental genes in ESCs, or repression of these genes by Tip60-p400 is 

KAT–independent. 

Here we show that Tip60 functions independently of its KAT activity to 

repress differentiation genes in ESCs and promote ESC self-renewal. Consistent 

with this repressive function, Tip60 limits promoter-proximal chromatin 

accessibility at many Tip60 target genes, and this function is similarly KAT–

independent. By contrast, KAT–deficient ESCs are impaired for differentiation, 

revealing a critical role for the Tip60 KAT activity in pluripotency. Upon induction 

of differentiation, KAT mutant ESCs exhibit defects in production of mesoderm 

and endoderm cell types, due to reduced induction of numerous key drivers of 

differentiation. Unlike Tip60 null mice (Y. Hu et al., 2009), KAT–deficient mutant 

mice proceed past the blastocyst stage, consistent with the ability of KAT mutant 

ESCs to self-renew. However, KAT mutant mice exhibit post-implantation 

developmental defects beginning around the start of gastrulation, analogous to 

the ESC differentiation defect observed in vitro. Together, these findings 

establish separable KAT–independent and KAT–dependent roles of Tip60 in 

pluripotency and embryonic development that are both essential, but which act at 

different stages. 
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Results 

Tip60 KAT activity is dispensable for gene regulation and self-renewal in 

ESCs 

Tip60 is one of several HATs that acetylate the N-terminal tails of histones 

H4 and H2A, whereas p400 is one of two SWI/SNF family ATPases that mediate 

H2A.Z deposition (Altaf et al., 2009; Lalonde et al., 2014). To test the importance 

of these activities in ESCs, we generated independent ESC lines with 

homozygous mutations encoding amino acid substitutions in the acetyl CoA 

binding site of Tip60 (Tip60ci/ci) or the ATP-binding pocket of p400 (Ep400ci/ci; 

Figure II.S1A-B), both of which were previously shown to block enzymatic activity 

(Ikura et al., 2000). We confirmed that these mutations broadly reduced H4 

acetylation and H2A.Z deposition, respectively, in ESCs (Figure II.S1C-D). Since 

Tip60 or Ep400 depletion in ESCs causes loss of self-renewal (Fazzio et al., 

2008), we utilized previously validated shRNAs (P. B. Chen et al., 2013) to 

perform acute KD of Tip60 or Ep400, along with an Ep400 hypomorphic mutant 

(Ep400hypo) that exhibits reduced levels of p400 protein (Figure II.S1E), for 

comparison. Surprisingly, Tip60ci/ci and Ep400ci/ci lines had normal ESC 

morphology and maintained expression of pluripotency markers such as alkaline 

phosphatase (AP; Figure II.1A), and SSEA-1 (Figure II.S1F), whereas Tip60 KD 

or Ep400hypo cells exhibited reduced AP and SSEA-1 staining and flattened 

colony morphologies, as observed previously (Fazzio et al., 2008). Tip60ci/ci and 

Ep400ci/ci cells proliferated more rapidly than Tip60 KD and Ep400hypo cells 
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(Figure II.1B), although Tip60ci/ci cells proliferated slightly less rapidly than wild 

type controls. Finally, to test for functional redundancy, we constructed double 

homozygous mutant Tip60ci/ci Ep400ci/ci lines. As with the single mutants, these 

lines expressed markers of pluripotent stem cells and normal ESC colony 

morphology, similar to that of Tip60ci/ci single mutants (Figure II.S1F-G). These 

data suggest loss of Tip60 KAT activity and p400 ATP-dependent nucleosome 

remodeling activity have minimal effects on ESC maintenance. 

 To test whether gene expression is altered in Tip60ci/ci and Ep400ci/ci 

mutant ESCs, in spite of their normal self-renewal, we performed RNA-seq on 

biological replicates of Tip60ci/ci and Ep400ci/ci mutants, along with positive and 

negative controls. Consistent with previous findings (Fazzio et al., 2008), Tip60 

KD and Ep400hypo cells each exhibited up-regulation of numerous genes 

enriched for developmental factors, and down-regulation of a smaller group of 

genes (Figure II.1C-F, Figure II.S2A-B). In contrast, few genes were significantly 

altered in Tip60ci/ci, Ep400ci/ci, or Tip60ci/ci Ep400ci/ci double mutants (Figure II.1C-

F, Figure II.S2C-F). These data demonstrate that while Tip60 and p400 are 

necessary for gene regulation and self-renewal in ESCs, their catalytic activities 

are dispensable for these processes. 
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Figure II.1. Tip60 KAT and p400 ATPase activities are dispensable for ESC 
self-renewal and gene regulation.  
 
(A) Alkaline phosphatase staining (AP) of Tip60ci/ci and Ep400ci/ci mutants and 
controls (Tip60fl/+, Tip60 KD, Ep400 KD, and Ep400hypo). Scale bars equal 200 
mm.  
(B) Growth curve, measuring the proliferation rates of the indicated mutant and 
control ESCs.  
(C, D) Heatmaps of differentially expressed genes in Tip60ci/ci and Tip60 KD 
ESCs relative to Tip60fl/+control cells (C), or Ep400ci/ci and Ep400hypo ESCs 
relative to wild type (E14) control ESCs (D). Genes in the heatmaps are sorted 
from the most upregulated to the most down regulated genes in the Tip60 KD 
and Ep400hypo controls, respectively.  
(E, F) Venn diagrams showing number of genes commonly misregulated in 
Tip60ci/ci and Tip60 KD ESCs (E), or Ep400ci/ci and Ep400hypo ESCs (F). Genes 
were considered significantly misregulated in each KD or mutant if their |log2 (fold 
change)| > 1 and their multiple testing-adjusted p value < 0.05. 
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Figure II.S1: Generation and phenotypes of Tip60ci/ci and Ep400ci/ci mutants, 
Related to Figure II.1.  
 
(A) Schematic representation of Tip60ci/ci lines generated using homologous 
recombination of the construct, followed by Cre-LoxP–mediated excision of the 
wild type Tip60 sequence.  
(B) Schematic for generation of Ep400ci/ci mutants using CRISPR/Cas9 mediated 
homologous recombination.  
(C) ChIP-seq of tetra-acetylated H4 (K5/8/12/16) in wild type and two Tip60ci/ci 
lines. Heatmaps are over TSS-proximal regions (+/- 2kb), sorted from highest 
H4ac to lowest. IgG is a specificity control.  
(D) H2A.Z ChIP-seq in wild type or two Ep400ci/ci mutant ESC lines, as in (C).  
(E) Western blot confirmation of Ep400hypo lines, generated using CRISPR/Cas9 
without the repair template.  
(F) SSEA-1 live cell staining of Tip60ci/ci, Ep400ci/ci, and Tip60ci/ciEp400ci/ci 
mutants, compared to their respective controls Tip60fl/+, Tip60 KD, Wild Type and 
Ep400 KD.  
(G) AP staining of Tip60ci/ciEp400ci/ci mutants as in Figure II.1A. Scale bars equal 
200 mm in both (F) and (G). 
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Figure II.S2: Catalytic activity-independent gene regulation by Tip60-p400, 
Related to Figure II.1.  
 
(A, B) GO (Gene ontology) terms enriched within genes upregulated in Tip60 KD 
(A), and Ep400hypo ESCs (B), as measured by RNAseq. Shown are histograms 
depicting the significance (-log10 p value) of GO categories enriched in each gene 
set (generated by Metascape; http://metascape.org).  
(C) Heatmaps of differentially expressed genes in Tip60ci/ci Ep400ci/ci ESCs 
relative to Ep400hypo control cells, as in Figure II.1.  
(D) Venn diagram showing number of significantly misregulated genes commonly 
misregulated in Tip60ci/ciEp400ci/ci and Ep400hypo ESCs, as in Figure II.1.  
(E, F) RT-qPCR measuring mRNA levels of Tip60-p400 target genes in mutants 
or control ESCs as indicated. mRNA levels were normalized to GAPDH. 
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Table II.S3. Ep400 repair template, related to Figures S1-S3 and Figure 1. 
 (K1084A mutation; silent PAM mutation; guideRNA sequence) 
TAGGCTCATAAAACTCACAGCAGTCTGAGTTGTGTCTATTTCATTGTTGTTGT
AGATGTAGAAGACTGTCCTAGTGACAGGGAGAGCCGGAGGGACTCCGTTC
TCATTGACTCACTCTTCATCATGGATCAGTTTAAAGCTGCAGAGAGAATGAG
CATTGGAAAATCCAACACCAAGGACATCACAGAAGTTACTGCTGTGGCTGA
AGCCATCCTCCCTAAGGGCAGTGCCCGAGTCACAACTGCGGTGAGGAAAG
CCTTTCCTGCCTCCCAAACACGCTCCATAGGAATGCCTAGAAAAGGCAGTT
CTTGTGTCCTTATGTTCTGTAAATCATTTGGGATAGTCTCTCGATTTAGGCTC
TGAGAAGGTGTGTGCCAATTACTCACTCTTTGGCTGGTCTGTCTGTCTCTAT
AGGTGAAGTTTAGTGCTCCATCTTTGTTGTATGGTGCTCTCCGAGACTATCA
GAAGATAGGCCTGGACTGGTTGGCCAAGCTATACCGGAAGAATCTCAATGG
CATATTGGCTGATGAAGCAGGGCTTGGCGCCACTGTGCAGATCATTGCTTT
TTTTGCTCACCTTGCCTGTAATGAAGGTAAGATCCTCTCAGTCTCCACTAAG
AGCGTGTGTTAGATCTGAGAGAAAAGAAATTGTCAGCCTCTTTTGCTCATCT
CTCTTTCTTGAGCCAAGAAATGACTCTCCTTTTTAAAATTTTTATTTATTTTTTT
ATTCTTTGCATACATTATATCTCGACCACACCATTCTTCCCAGAGTCTTCCTC
CATCATCTTCTCCCCAGGAGCTTCCATTACCATAAAAAAATAAAACCAACAAA
TAACAGCAACAAAAAACAAAAAGCAGGCATCCCAGGGATATCCACCATACAT
GGCATAACAAGTTACAGTGAGACTAGGCACAAACCCTCATCTCAAGGCTGG
ATGAGGCAGCCCAGTAGA 
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KAT–independent regulation of promoter-proximal chromatin accessibility 

by Tip60 

Since KATs function mainly as co-activators of gene expression, we next 

focused on how Tip60 functions independently of its KAT activity to repress 

transcription in ESCs. We confirmed normal expression of Tip60 and p400 in 

Tip60ci/ci Ep400ci/ci ESCs (Figure II.S3A), and found that Tip60ci/ci and Ep400ci/ci 

ESCs assemble intact Tip60-p400 complexes with compositions similar to that of 

wild type cells, in contrast to p400hypo mutant ESCs (Figure II.S3B). Given its size 

(~1.5 MDa; 17 core subunits), we considered the possibility binding of Tip60-

p400 complex reduces the accessibility of underlying chromatin, regardless of its 

enzymatic functions. To test this possibility, we performed ATAC-seq (Buenrostro 

et al., 2013) to quantify changes in chromatin accessibility at Tip60 binding sites. 

In Tip60fl/+ control ESCs (expressing wild type Tip60), chromatin accessibility is 

higher at Tip60 binding sites than flanking regions (Figure II.2A-B), consistent 

with the observed enrichment of Tip60 near gene regulatory elements such as 

promoters and enhancers (Fazzio et al., 2008). Interestingly, we observed 

significantly increased chromatin accessibility upon Tip60 KD, but minimal 

changes in accessibility in KAT–deficient ESCs (Figure II.2A-B). Clustering of 

these data identified two prominent patterns of chromatin accessibility, 

segregated primarily by whether the Tip60–binding sites were promoter-proximal 

or -distal (Figure II.2C). Examination of promoter-proximal regions of Tip60 target 

genes revealed that Tip60 KD increased chromatin accessibility within a several 
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hundred base pair window extending from the promoter into the gene body, 

corresponding to Tip60-p400 binding sites on chromatin (Figure II.2D) (P. B. 

Chen et al., 2015; Ravens et al., 2015). In contrast, KAT-deficient ESCs were 

minimally affected. Unlike promoter-proximal regions, chromatin accessibility at 

gene-distal Tip60–binding sites was relatively unaltered by Tip60 KD or KAT 

mutation (Figure II.2E). Consistent with these findings, KAT–deficient Tip60 

bound to Tip60-p400–target genes at levels similar to wild type (Figure II.S3C). 

These data demonstrate Tip60 functions independently of its KAT activity to 

regulate promoter-proximal chromatin accessibility in ESCs. 
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Figure II.2: KAT-independent regulation of chromatin accessibility at Tip60 
target loci.  
 
(A) Example Tip60 target gene showing increased promoter-proximal chromatin 
accessibility in Tip60 KD but not Tip60ci/ci relative to Tip60fl/+ control cells. Shown 
are normalized ATAC-seq reads ≤ 100bp for each biological replicate, and Tip60 
ChIP-seq data from (Ravens et al., 2015).  
(B) Aggregation plot showing average ATAC-seq signal for two biological 
replicates of each mutant or KD aggregated over high-quality Tip60 binding sites. 
A Kolmogorov–Smirnov test of differences in ATAC profiles was used to 
calculate p values.  
(C) K-means clustering (K=3) for ATAC-seq data over Tip60 binding sites. 
Promoter-proximal peaks are marked with a black bar to the right, promoter-distal 
peaks with a white bar.  
(D) Aggregation plot of ATAC-seq data (as in B) over Tip60–bound promoter 
regions aligned such that all gene bodies are to the right. Promoter-proximal 
regions (pro) and transcription start sites (TSS) are indicated. Tip60 ChIP-seq 
data (Ravens et al., 2015) are shown for reference.  
(E) Aggregation plot over Tip60–bound gene-distal regions. 
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Figure II.S3: Catalytically inactive Tip60-p400 mutations do not compromise 
complex integrity, Related to Figure II.2.  
 
(A) Western blots indicating equal expression of catalytic subunits of Tip60-p400 
in wild type or double catalytically inactive mutant ESCs. Actin is a loading 
control.  
(B) Silver stain of Tip60-p400 complex purified from lines with genotypes 
indicated at top. In each case, Tip60 is FLAG-tagged at both copies of its 
endogenous locus.  
(C) Tip60-FLAG ChIP-qPCR from WT, Tip60ci/ci, and Ep400ci/ci ESCs show 
similar Tip60 occupancy in each. Shown are biological triplicate ChIP-qPCRs 
from each line, normalized to untagged control ESCs, and expressed relative to 
WT. 
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Tip60 KAT activity is necessary for differentiation and post-implantation 

development 

Consistent with the self-renewal defect of Tip60 KD ESCs (Fazzio et al., 

2008), Tip60 homozygous null (Tip60-/-) mice die at the peri-implantation stage: 

Tip60-/- blastocysts fail to hatch and survive in culture, and no post-implantation 

Tip60-/- embryos can be recovered (Y. Hu et al., 2009). Since Tip60ci/ci ESCs self-

renew normally, we next tested whether the Tip60 KAT activity is also 

dispensable for mouse development. To this end, we generated and intercrossed 

Tip60ci/+ heterozygous mice to produce Tip60ci/ci homozygotes (see Experimental 

Procedures for details). However, we recovered no Tip60ci/ci pups at birth (c2= 

40.45; P < 0.001), suggesting the Tip60 KAT activity is essential for development 

(Figure II.3A). To elucidate the developmental defect of Tip60ci/ci animals, we 

examined the morphology of embryos at multiple stages. Tip60ci/ci embryos were 

recovered as late as 10.5 days post fertilization (E10.5; Figure II.3A), but were 

much smaller than Tip60+/+ or Tip60ci/+ littermates (Figure II.3B), and exhibited 

morphological abnormalities as early as E6.5 (Figure II.S4A-C). The contrasting 

phenotypes between Tip60-/- and Tip60ci/ci mice reveal an essential KAT–

independent role for Tip60 in pre-implantation development, as well as an 

essential KAT–dependent role in early post-implantation development. 

 The phenotypes of Tip60ci/ci embryos are evident at or just before 

gastrulation, where the three primary germ layers are established, suggesting 

that although Tip60ci/ci ESCs self-renew normally, they may not differentiate 
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properly. We tested this possibility using embryoid body differentiations of 

control, Tip60 KD, and Tip60ci/ci ESCs. Previously, we showed that KD of Tip60, 

Ep400, or (Tip60-p400 subunit) Dmap1 resulted in defects in EB formation 

(Fazzio et al., 2008), suggesting Tip60-p400 is required for this initial step of 

differentiation. In contrast, Tip60ci/ci ESCs efficiently formed EBs, which expanded 

in culture at near wild type levels, although modest differences in EB morphology 

were observed relative to Tip60fl/+cells (Figure II.3C-D). However, induction of 

mesodermal and endodermal markers was delayed and/or reduced in Tip60ci/ci 

EBs (Figure II.3E) compared to Tip60fl/+ controls. These data suggest that the 

Tip60 KAT activity is important for specification of mesodermal and endodermal 

cell types in vitro. 

To test whether the ESC differentiation defects were recapitulated in vivo, 

we stained post-implantation Tip60ci/ci embryos for T (also known as Brachyury), 

a marker of cells migrating through the primitive streak to become mesodermal or 

endodermal cell types (Herrmann, 1991; Rivera-Pérez and Magnuson, 2005). 

Although T staining of Tip60+/+ and Tip60ci/+ embryos was evident at E6.5 and 

strong at E7.5, Tip60ci/ci embryos exhibited reduced staining at both stages 

(Figure II.3F-G). These data show that gastrulation is delayed or impaired in 

Tip60ci/ci embryos. This phenotype could result from impaired lineage 

commitment, poor migration of cells through the primitive streak, or other factors. 

Regardless, this developmental defect is consistent with the impaired induction of 
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early mesodermal and endodermal markers observed for KAT-defective ESCs in 

vitro. 
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Figure II.3: The Tip60 catalytic activity is required for differentiation and 
post-implantation development.  
 
(A) Genotypes of embryos from Tip60ci/+ intercrosses at different developmental 
stages.  
(B) Images of E10.5 embryos of the indicated genotypes. Scale bar equals 1 
mm.  
(C) Embryoid body (EB) formation assay comparing EB morphology in Tip60ci/ci 
mutant ESCs to Tip60fl/+ and Tip60 KD controls. Scale bars equal 400 mm.  
(D) Quantification of EB size in indicated mutants and controls (n = 49 per 
genotype). Boxes range from the 25th to the 75th percentile, the dark lines 
indicate the median, and the whiskers indicate the lesser of either the extreme 
(max or min) value or 1.5 times the interquartile range (***p < 0.001, calculated 
using a two-sided t-test).  
(E) RT-qPCR analysis of indicated germ layer markers during a time course of 
EB differentiation.  
(F, G) Whole mount in situ hybridization in E6.5 and E7.5 mouse embryos 
staining for T transcript. Scale bars equal 100 mm (F) or 250 mm (G). 
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Figure II.S4. Phenotypes of Tip60ci/ci embryos, Related to Figure II.3.  
 
(A, B) Brightfield images of E7.5 and E6.5 embryos from Tip60ci/ci intercrosses, 
with their genotypes (determined after imaging) indicated. Scale bars equal 100 
mm.  
(C) Measurement of the length of the proximal distal axis of embryos (epiblast + 
extraembryonic endoderm) of the indicated genotypes (**p < 0.01, calculated 
using a two sided t-test). 
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Table II.S1. RTqPCR primers, Related to Figure 3. 
 
Nestin Forward: TGGCACACCTCAAGATGTCCCTTA 

Reverse: AAGGAAATGCAGCTTCAGCTTGGG 
Sox11 Forward: ACGACCTCATGTTCGACCTGAGCT 

Reverse: CACCAGCGACAGGGACAGGTTC 
T Forward: CCAAGGACAGAGAGACGGCT 

Reverse: AGTAGGCATGTTCCAAGGGC 
Flk1 Forward: GCTTGCTCCTTCCTCATCTC 

Reverse: CCATCAGGAAGCCACAAAGC 
Sox17 Forward: CTCGGGGATGTAAAGGTGAA 

Reverse: GCTTCTCTGCCAAGGTCAAC 
FoxA2 Forward: CCCTACGCCAACATGAACTCG 

Reverse: GTTCTGCCGGTAGAAAGGGA 
Dkk1 Forward: ACTCAAATGGCTTTGGTAATATGG 

Reverse: ATAATCTCTTCTGAATTCTGCCCA 
Myc Forward: AGCTGTTTGAAGGCTGGATTTC 

Reverse: GCAACATAGGATGGAGAGCAGA 
Akr1b8 Forward: TACTGTCACTCGAAGGGCATCT 

Reverse: ATCTCCTCGTCACTCAACTGGA 
Nodal Forward: TCCTTCTTCTTCAAGCCTGTTG 

Reverse: CCAGATCCTCTTCTTGGCTCA 
Snai1 Forward: CTTGTGTCTGCACGACCTGTG 

Reverse: AGACTCTTGGTGCTTGTGGAG 
Oasl2 Forward: TTGTGCGGAGGATCAGGTACT 

Reverse: TGATGGTGTCGCAGTCTTTGA 
Ennp2 Forward: ATGGCAAGACAAGGCTGTTTC 

Reverse: TTGACGCCGATGGCAAAAGT 
Scamp1 Forward: CCTTGAGGTCTGTGGTATTGGA 

Reverse: TACACCCTTAGTGACCTCAGTGTC 
Nefl Forward: AGCTAGAGGACAAGCAGAATGC 

Reverse: GCAAGCCACTGTAAGCAGAAC 
 
 
 
 
Table II.S2. Genotyping primers, related to Figure 3. 
 
Tip60ci/+ or Tip60ci/ci  
(mice and ESCs) 

Forward: GTGGGCTACTTCTCCAAGGTC 
Reverse: TGTGAAGCACAGATGAGGGT 
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Impaired expression of multiple drivers of differentiation in KAT–deficient 

ESCs 

What is the molecular basis for the in vivo and in vitro developmental 

defects of Tip60ci/ci mutants? These phenotypes could result from failure to 

upregulate key lineage-specific transcription factors and/or a disruption in 

signaling pathways that promote lineage commitment. To address these 

possibilities, we compared the changes in gene expression during a time course 

differentiation of control (Tip60fl/+) and Tip60ci/ci ESCs using RNA-seq on 

biological replicate samples. We observed differences in both the timing and 

levels of markers of mesoderm and endoderm (Figure II.4A; e.g. FoxA2, Gata4, 

Sox17, T, Hand1, Flk1), expanding on our preliminary analyses (Figure II.3E). 

Next we used k-means clustering to identify groups of genes induced early or 

late during differentiation in Tip60fl/+ control cells and characterized the effects of 

the KAT mutation on their induction. We observed 1,338 genes of this type that 

mainly fall into three clusters based on the timing of their expression peak (Figure 

II.4B). In Tip60ci/ci cells, we observed reduced or delayed induction of numerous 

genes with key roles in differentiation, including developmental transcription 

factors and mediators of growth factor signaling, within each of the three clusters 

(Figure II.4B).  

To test whether impaired induction of key signaling proteins hindered 

activation of their downstream targets, we examined activation of the 

FGF/MEK/ERK and TGF-b pathways using antibodies recognizing the 
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phosphorylated (and activated) forms of ERK1/2 and Smad2/3, respectively 

(Tsang and Dawid, 2004; Whitman and Mercola, 2001). These factors act 

downstream of FGF and BMP signaling in differentiating ESCs and embryos, and 

are critical for differentiation (Sui et al., 2013). Although Smad2/3 

phosphorylation was unaltered in differentiating Tip60ci/ci ESCs, we observed 

impaired ERK phosphorylation in these mutants after six days of differentiation 

(Figure II.4C). Together, these data suggest that the differentiation defect 

observed in Tip60ci/ci ESCs is due to at least two overlapping defects: delayed or 

reduced activation of ERK, and impaired induction of key developmental 

transcription factors. 
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Figure II.4: Delayed/impaired expression of developmental regulators in 

differentiating Tip60ci/ci ESCs.  

 
(A) Heatmap indicating induction kinetics of each germ layer markers during 
differentiation of Tip60fl/+ controls or Tip60ci/ci mutant ESCs.  
(B) K-means clustering (K = 9) of differentially expressed genes [|log2 (fold 
change)| > 0.7; multiple testing-adjusted p value < 0.05] in Tip60fl/+ controls or 
Tip60ci/ci mutant ESCs during the differentiation time course. Large up-regulated 
clusters are noted. Key regulatory proteins with impaired induction in Tip60ci/ci 
mutant ESCs are highlighted.  
(C) Western blots (one of two independent experiments with similar results) of 
phosphorylated and total Smad2/3 and Erk1/2 during differentiation in Tip60fl/+ or 
Tip60ci/ci ESCs.  
(D) Model indicating the KAT-independent role of Tip60 in ESC self-renewal and 
gene regulation, as well as pre-implantation development, and the KAT-
dependent role of Tip60 in differentiation and post-implantation development. 
See text for additional details. 
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Discussion 

Here we showed that Tip60 functions in ESC gene regulation and self-

renewal, as well as pre-implantation development, independently of its KAT 

activity. This finding was unexpected because Tip60 depletion or knockout leads 

to a self-renewal defect in ESCs and pre-implantation lethality in mice (Fazzio et 

al., 2008; Y. Hu et al., 2009). Furthermore, KAT–impaired mutants of esa1, the 

yeast homolog of Tip60, are severely growth impaired (Selleck et al., 2005), 

suggesting the critical cellular functions of this KAT are dependent on its 

acetylation activity.  

 The fact that Tip60 is largely a repressor of transcription in ESCs (Fazzio 

et al., 2008), and this repressive function is independent of its KAT activity, 

suggests that Tip60 regulates ESC gene expression in a manner that is distinct 

from other well-studied KATs, at least in part. Consistent with its role as a broadly 

acting repressor of transcription in ESCs, we found Tip60 functions by a KAT–

independent mechanism to limit chromatin accessibility directly over its promoter-

proximal binding sites at many target genes. Additional studies will be necessary 

to determine whether Tip60 also performs this function in somatic cell types. 

In contrast, the Tip60 KAT activity is essential during ESC differentiation 

and post-implantation development. Consequently, these findings demonstrate 

separable, essential functions of Tip60: its KAT-independent function is sufficient 

for Tip60’s essential role in ESC self-renewal and pre-implantation development, 

and its KAT–dependent function is required for post-implantation development 
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and ESC differentiation. Interestingly, we found that the ATP-dependent histone 

exchange activity of p400 was also dispensable for gene regulation and self-

renewal in ESCs, revealing that Tip60-p400 complex represses differentiation 

genes in ESCs independently of its known chromatin remodeling activities 

(Figure II.4D). These findings necessitate a re-evaluation of current models of 

gene regulation by this essential chromatin regulatory complex. 

What is the role of the Tip60 KAT activity during development? Given the 

defect of KAT-deficient ESCs and embryos in lineage specification, one 

possibility is that histone acetylation at differentiation genes in ESCs (as 

observed previously (Fazzio et al., 2008)) facilitates their up-regulation when 

differentiation is induced. This provides a potential explanation for the 

counterintuitive role of Tip60 in repression of differentiation genes in ESCs–

occupancy of Tip60-p400 at differentiation gene promoters helps repress these 

genes by reducing chromatin accessibility, while acetylation at these loci may 

allow more rapid induction after binding of differentiation-specific transcription 

factors. Together, these data show that not all functions of Tip60 are reliant on its 

KAT activity, and raise the possibility that KAT–independent gene regulation by 

Tip60 plays important roles in additional cell types. 
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Experimental Procedures 

 

Antibodies 

Antibodies used in this study: p400 (A300-541A; Bethyl), StainAliveTM SSEA-1 

(09-0067; Stemgent); Smad2/3 (8685; Cell Signaling Technologies); Phospho-

Smad2/3 (8828; Cell Signaling Technologies); Erk1/2 (9102; Cell Signaling 

Technologies); Phospho-Erk1/2 (9101; Cell Signaling Technologies); H2AZ 

(ab4174, Abcam); Acetyl-H4 (06-598; Millipore); FLAG-M2 (F1804; Sigma); IgG 

(ab37415; Abcam); b-actin (A5316; Sigma). 

 

Cell Lines 

Mouse ESC lines were derived from E14 (129/Ola) (Hooper et al., 1987) and 

grown as described (P. B. Chen et al., 2013). Tip60ci/ci ESCs were derived from 

floxed Tip60-H3F cells (P. B. Chen et al., 2013), by introduction of Cre 

recombinase (Addgene, 20781) to loop out wild type Tip60 regions upstream of 

exon 11 that harbors two substitution mutations (Q377E and G380E) that 

eliminate acetyl CoA binding (Ikura et al., 2000) (figure II.S1A). 

 Catalytically inactive mutants of p400 (Ep400ci/ci) were generated using 

homologous recombination stimulated by CRISPR/Cas9-mediated cleavage 

(Cong et al., 2013; Mali et al., 2013). A repair template (Table II.S3) was 

synthesized (Integrated DNA Technologies), cloned into pCR2.1, and introduced 

together with the CRISPR/Cas9 vector (a variant of plasmid pX330 that 



	 73	

expresses puromycin resistance). The Ep400hypo mutant line, described 

previously (P. B. Chen et al., 2015), was generated using the same 

CRISPR/Cas9 construct, but without the repair template, resulting in a 

homozygous 135bp in-frame deletion that disrupts the ATPase domain and 

results in lower expression of p400 protein (Figure II.S1E).  

 

ESC differentiation 

Embryoid bodies (EBs) for growth/morphology assays were formed using 

hanging drops containing 100 cells in 10 ul of differentiation medium. Morphology 

was examined after 48 hours. For gene expression assays, 106 ESCs were 

plated on non-adherent plates for 48 hours to form EBs, and then transferred into 

gelatinized 6-well plates at a low density. Cells were harvested using TRIzol 

reagent (Invitrogen) at indicated time points. RNA was prepared and RT-qPCR 

was performed as described (P. B. Chen et al., 2013), using primers listed in 

Table II.S1.  

 

Cell Staining 

105 ESCs were grown on gelatin-coated 6-well plates for 48 hours. Alkaline 

phosphatase (AP) staining was performed using a kit (EMD Millipore, SCR004), 

following the manufacturers’ guidelines. SSEA-1 staining of live ESCs was also 

performed per the manufacturers’ instructions (Stemgent, 09-0067).  
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Tip60-p400 Purification 

Tip60-p400 complex was purified from nuclear extracts of WT, Tip60ci/ci, p400ci/ci, 

and p400hypo cells with endogenous 6Xhis/3XFLAG tags at the Tip60 locus, as 

described previously (P. B. Chen et al., 2013). Purified proteins were separated 

on SDS-PAGE gels, and Silver Staining was performed using a Silver Staining 

Kit (ThermoFisher, LC6100). 

 

Western Blotting 

30ug of nuclear extract per lane (prepared using the NE-PER kit; ThermoFisher, 

78833) were used for Western blotting.  

 

Generation of Tip60ci/ci mice  

Tip60ci/+ heterozygous mice were generated by crossing Tip60 floxed mice (P. B. 

Chen et al., 2013) with the allele described above with Tg(EIIa-cre) mice, which 

broadly express Cre recombinase (Dooley et al., 1989; Lakso et al., 1996). Mice 

were genotyped by PCR with primers listed in Table II.S2. Tip60ci/+ mice were 

maintained as heterozygotes on an inbred FVB/N background and intercrossed 

to generate Tip60+/+, Tip60ci/+, and Tip60ci/ci embryos. Animal studies were 

performed in accordance with guidelines of the Institutional Animal Care and Use 

Committee at the University of Massachusetts Medical School (A-2165) and NIH. 
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RNA in situ hybridization 

Whole mount in situ hybridization was performed as previously described 

(Rivera-Pérez and Magnuson, 2005), using a full-length cDNA probe of T 

(Herrmann, 1991). Embryos were genotyped after staining by PCR, using 

primers listed in Table II.S2. 

 

Chromatin Immunoprecipitation 

Chromatin immunoprecipitation and deep sequencing were performed as 

described previously (P. B. Chen et al., 2013; Hainer et al., 2015). ChIP-qPCR 

was performed using SYBR FAST (KAPA Biosystems) with primers described 

previously (Fazzio et al., 2008). 

 

ChIP-seq analysis 

Single-end raw FastQ reads were collapsed, adaptor sequence were removed, 

and reads were mapped to the mouse mm10 genome using bowtie, allowing one 

mismatch. Aligned reads were used for downstream analysis using the 

“annotatePeaks” command in HOMER (Heinz et al., 2010) to make 20 bp bins 

over promoter proximal regions and summing the reads within each bin. 

Experiments were aligned over high quality (peak score > 6) promoter-proximal 

Tip60 peaks called from (Ravens et al., 2015). After anchoring mapped reads 

over the reference site, heatmaps for biological replicates were generated using 

Java Treeview. 
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RNA-seq 

Strand specific library construction and RNA-seq were performed by Applied 

Biological Materials, Inc. and the UCLA Clinical Microarray Core for ESCs and 

differentiating ESCs, respectively. Data analysis is described in Supplemental 

Experimental Procedures.  

 

RNA-seq analysis 

TopHat2 (D. Kim et al., 2013) was used to map the RNAseq reads to the mouse 

genome (mm10) using parameters (--library-type fr-firststrand --segment-length 

38). The bam files from the Tophat output were used for downstream analysis 

using HOMER (Heinz et al., 2010). DESeq2 (Love et al., 2014) was used to 

identify the differentially expressed genes. Heatmaps were generated using Java 

TreeView (Saldanha, 2004). K-means clustering was performed using Cluster 3.0 

(de Hoon et al., 2004), and GO term enrichment was calculated using Metascape 

software (http://metascape.org) (Tripathi et al., 2015). 

 

ATAC-seq 

ATAC-seq was performed essentially as described (Buenrostro et al., 2013; 

2015). Two independent ATAC reactions per biological replicate were performed, 

using 35,000 and 70,000 ESCs each. After library preparation, the two reactions 

were found to have indistinguishable distributions of fragment sizes, and were 
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therefore combined for sequencing. (Therefore, each biological replicate 

consisted of two ATAC reactions.) Data analysis is described in Supplemental 

Experimental Procedures. 

 

ATAC-seq analysis 

Paired-end 75 bp reads were trimmed to 24 bases and reads were then aligned 

to mm10 using Bowtie2 with the parameter -X 2000 to ensure that fragments up 

to 2 kb were allowed to align. Duplicates were then removed using Picard 

(http://broadinstitute.github.io/picard/). Reads with low quality score (MAPQ < 10) 

and reads mapping to the mitochondrial genome (chrM) were removed. Reads 

were separated into size classes as described (Buenrostro et al., 2013) and only 

nucleosome free reads (less than 100 bp) were used for subsequent analyses. 

These reads were processed in HOMER (Heinz et al., 2010). Genome browser 

tracks were generated from mapped reads using the “makeUCSCfile” command. 

Mapped reads were aligned over specific regions using the “annotatePeaks” 

command to make 20 bp bins over regions of interest and sum the reads within 

each bin. Experiments were aligned over high quality (peak score > 6) Tip60 

peaks called from (Ravens et al., 2015), that were subsequently separated into 

promoter-proximal and –distal groups. After anchoring mapped reads over 

reference sites, aggregation plots were generated by averaging data obtained 

from biological replicates. Heatmaps were ordered based on clustering of reads 
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summed over -100 bp to +100 bp from the Tip60 peak center through K-means 

clustering using Cluster 3.0. 

 

Statistical Methods 

For non-genomic in vitro experiments, two tailed t-tests were used to calculate 

statistical significance. A chi-square test was used to evaluate genotypes of 

offspring from Tip60ci/+ intercrosses. Adjusted p-values were calculated for 

RNA-seq data using DEseq2. Significance of differences in ATAC-seq read 

enrichment were calculated by a hypergeometric test using the dhyper package 

in R. 

 

Accession numbers 

Deep sequencing data are available at Gene Expression Omnibus (accession: 

GSE85505). 
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CHAPTER III 

PREFACE 

 

Data presented in this chapter are not published. Currently, we are working to 

prepare manuscript for submission: 
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Summary 

Tat-interactive protein 60 (Tip60) belongs to the MYST family of histone 

acetyltransferases (HATs), and is important for various cellular functions 

including gene regulation, DNA repair, apoptosis, and early embryonic 

development. Four splice variants of Tip60 are expressed, Tip60a, Tip60b, 

iTip60, and Tip55. The extent to which these isoforms perform overlapping or 

distinct functions has not been addressed, with most studies focusing solely on 

the most abundant isoform, Tip60a. In this study, we ablate the Tip55 isoform in 

mice and find that homozygous mutation of Tip55 results in embryonic lethality 

around embryonic day E11.5. We further show that loss of Tip55 causes a defect 

in cellular proliferation in heart, and increased cell death in the neural tube. Our 

findings demonstrate that the Tip55 isoform is essential for organogenesis during 

early embryonic development.          
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Introduction 

 Tip60 was originally identified from a yeast two hybrid screen as a 60 

kDa, HIV-1 Tat interactive protein (Kamine et al., 1996). Tip60, which is the 

mammalian ortholog of the essential yeast HAT Esa1, is highly conserved among 

eukaryotes (Doyon et al., 2004). In mammalian cells, Tip60 exists mainly within 

the Tip60-p400 multi-subunit complex, which regulates gene expression and has 

key roles in DNA repair (Fazzio et al., 2008; Ikura et al., 2000). In addition, Tip60-

p400 contains a second catalytic subunit, the p400 ATPase, which functions in 

exchange of canonical H2A for H2A.Z within nucleosomes, and has been 

reported to function in incorporation of H3 variant H3.3 (Pradhan et al., 2016; Y. 

Xu et al., 2012). The components and functions of Tip60-p400 are largely 

conserved, although the HAT and ATPase functions comprise separate 

complexes in yeast, NuA4  and SWR1, respectively (Auger et al., 2008; Fuchs et 

al., 2001; Ikura et al., 2000).   

Tip60 is one of the founding members of the MOZ, YBF2, SAS2, TIP60 

(MYST) family of histone acetyltransferase (HAT) proteins that contains a 

chromodomain and MYST domain (Sapountzi et al., 2006). The MYST domain of 

Tip60 contains a HAT domain that acetylates lysine residues on histone tails 

(Kimura and Horikoshi, 1998; Yamamoto and Horikoshi, 1997). In addition, Tip60 

binds and acetylates non histone proteins such as p53, ATM, and the androgen 

receptor and acts as a coactivator with numerous transcription factors (Verdone 

et al., 2005; X.-J. Yang, 2004). In addition, Tip60 has also been observed to 
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interact with repressor proteins such as CREB and ZEB and acts as a 

corepressor at some loci (Gavaravarapu and Kamine, 2000; Hlubek et al., 2001). 

Therefore, the Tip60-p400 complex has a complex array of context-dependent 

functions in gene regulation. In addition to regulation of gene expression, Tip60 

mediated acetylation is important for additional functions within the nucleus, such 

as DNA repair (Ikura et al., 2000; Kusch, 2004). Not surprisingly, given its diverse 

array of cellular functions, Tip60 is essential for mouse embryonic development 

(Acharya et al., 2017; Y. Hu et al., 2009), and is mutated in a variety of cancer 

types (Gorrini et al., 2007; Sakuraba et al., 2009; 2011). 

  The Tip60 gene expresses four splice variants: (i) isoform1 (iTip60), which 

retains an intron between exon 1 and 2; (ii) isoform2 (Tip60a), the best 

characterized isoform, which retains all 14 exons and no intronic regions; (iii) 

isoform3 (Tip60b), which lacks exon5; and (iv) isoform4 (Tip55), which retains a 

short intron between exon11 and exon12 (M.-S. Kim et al., 2006; Legube and 

Trouche, 2003; Ran and Pereira-Smith, 2000). Studies have demonstrated that 

knockdown (KD) of all four isoforms causes self-renewal and gene regulation 

defects in ESCs (Acharya et al., 2017; P. B. Chen et al., 2013; Fazzio et al., 

2008). Consistent with this phenotype, homozygous knockout of all four isoforms 

of the Tip60 gene results in arrest of blastocyst stage (E3.5) embryos, owing to 

increased apoptosis and poor proliferation within the inner cell mass (ICM) (Y. Hu 

et al., 2009).  All of these studies suggest the importance of Tip60 in various 
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cellular functions including cell proliferation and mouse embryonic development, 

but the functional roles of Tip60 individual isoforms have not been deconvolved.                 

Given its early embryonic lethality, there are relatively few studies that 

have examined the roles of Tip60 at later stages of development. Tip60 is highly 

expressed during multiple stages of heart development, as assessed by an 

antibody that recognizes all four isoforms (M.-S. Kim et al., 2006; Lough, 2002). 

These isoforms have been shown to interact with serum response factor (SRF) to 

induce transactivation of the promoter of ANF (atrial natriuretic factor), a heart 

specific gene (M.-S. Kim et al., 2006). However, it is unclear which specific 

isoform(s) of Tip60 are important for early heart development. 

Here we characterize the developmental roles of the Tip55 isoform of 

Tip60. Using an allele that removes intron 11, which is uniquely retained in the 

Tip55 isoform, we show that Tip55 is necessary for embryonic development, with 

Tip55 Δ/ Δ animals dying at or around E11.5. Development prior to this stage was 

grossly normal; however, fibroblasts isolated from E9.5 embryos proliferated 

slowly and exhibited premature senescence. Closer examination of E8.5 

embryos revealed defects in morphology of both heart and neural tube. 

Interestingly, Tip55 loss results in reduced proliferation in heart and increased 

apoptosis in neural tube, suggesting distinct functions in these two tissue types. 

These data reveal a critical function of Tip55 in development that is distinct from 

those observed upon loss of all Tip60 isoforms.   
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Results 

Tip55 is essential for embryonic development 

The Tip55 isoform of Tip60 protein encodes a unique 103 amino acids at 

the C-terminus relative to the most abundant and well studied Tip60a isoform 

(figure III.1.A) (M.-S. Kim et al., 2006). In the course of generating catalytically 

inactive Tip60 mutant mice described previously (Acharya et al., 2017), we 

generated an allele of Tip60 with a deletion of intron 11 (which encodes the 

unique C-terminal 103 amino acids in Tip55 only). In this allele, exons 11-14, 

which are retained in all other Tip60 isoforms, are fused together, such that all 

Tip60 isoforms except Tip55 are intact (figure III.1.B; see experimental procedure 

for details). We intercrossed mice heterozygous for this allele (hereafter, 

Tip55Δ/+) to generate Tip55Δ/ Δ homozygotes as shown in figure III.1.B. However, 

we recovered no Tip55Δ/ Δ pups at birth (c2= 38.76; P < 0.001), suggesting that 

the Tip55 isoform is essential for embryonic development (figure III.1.C). 

Mice lacking all four isoforms of Tip60 do not survive past pre-implantation 

stages and embryonic stem cells cannot be recovered from blastocysts isolated 

from these mice (Y. Hu et al., 2009). To determine when during embryonic 

development Tip55Δ/ Δ mice were blocked, we dissected and genotyped embryos 

from E8.5 to E11.5 (figure III.1.C and III.1.D). In addition, we also performed RT-

PCR to confirm Tip55Δ/ Δ homozygotes are not expressing Tip55 specific isoform 

(figure III.1.E). We observed no morphological differences between Tip55Δ/ Δ and 

Tip55+/+ at E8.5 (figure III.2.A). Interestingly, Tip55Δ/ Δ homozygous null embryos 
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at E9.5 and beyond were smaller as compared to Tip55+/+, although they 

appeared morphologically normal (figure III.2.A). Although we found that Tip55Δ/ Δ 

homozygous null embryos could readily be recovered as late as E10.5 and 

occasionally as late as E11.5 (figure III.1.C), these embryos are morphologically 

abnormal and lack beating hearts (figure III.2.A). These data reveal that Tip55Δ/ Δ 

mice progress normally through early developmental stages, in contrast to Tip60 

null mice, but die during mid-gestation, potentially due to deficiency in heart 

development.  
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Figure III.1. Tip55 knockout mice are embryonic lethal. 

(A) Schemetic representation of the Tip60 gene along with its two isoforms. 
Tip60α retains all the exons, whereas Tip55 isoform retains exons 1 through 11 
and small intronic region (103 amino acids) between exons 11 and 12. 
(B) Schematic for generation of Tip55Δ/ Δ embryos. 
(C) Genotypes of embryos from Tip55Δ/ + intercrosses at different developmental 
stages. 
(D) PCR genotyping of Tip55+/+, Tip55Δ/ +, and Tip55Δ/ Δ embryos. 
(E) RT-PCR showing Tip55Δ/ Δ mutants express all isoforms but Tip55. 
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Figure III.2. Tip55 isoform is necessary for normal embryonic development. 
 
(A) Images of embryos of the indicated genotypes during development from E8.5 
to E11.5. Images are taken in different magnifications as indicated.  
 
 
 
 
 
 
 
Table III.1. Genotyping primers, Related to Figure 1. 
Tip60 isoforms (all) Forward (a): ACGCCACTTGACCAAATGTGA 

Reverse (b): TACTGGCCCTTGTAGTAATTG 
Tip55 specific isoform Forward (a): ACGCCACTTGACCAAATGTGA 

Reverse (c): TACTCACTGAACTCAATAAGC 
Tip55 tail/embryo PCR Forward     : CAAGTGTTTCCTGGACCACA 

Reverse     : TTGCCATAGCCCCGGCGCT 
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Loss of Tip55 causes premature senescence in MEFs  

The data in figure III.2.A suggested that the cause of developmental 

defects and embryonic lethality in Tip55Δ/ Δ mice might be due to impaired cellular 

proliferation. To test this possibility, we intercrossed Tip55Δ/+ heterozygotes, 

isolated Tip55+/+ and Tip55Δ/ Δ mouse embryonic fibroblasts (MEFs) from E9.5 

embryos, and measured their proliferation rates. As shown in figure III.3.A, 

Tip55Δ/ Δ MEFs stop increasing in number after two days in culture, and have 

reduced cell numbers by four days, suggesting these cells may be undergoing 

premature senescence. To test this possibility, we stained for senescence-

associated β-galactosidase activity. We observed that Tip55Δ/ Δ MEFs exhibit 

increased β-galactosidase staining relative to Tip55+/+ controls (figure III.3.B). 

These observations indicated that the Tip55Δ/ Δ MEFs undergo premature 

senescence in culture, resulting in arrested proliferation.  
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Figure III.3. Loss of Tip55 causes premature senescence in MEFs. 
 
(A) Growth curve, measuring the proliferation rates of the indicated mutant and 
control MEFs. 
(B) β-galactosidase activity looking into cellular senescence in mutant and 
control MEFs. Images are taken in 10X magnification. 
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Tip55 null embryos exhibit heart and neural tube defects  

Our results that Tip55Δ/ Δ embryos are smaller during embryonic 

development, and that Tip55Δ/ Δ MEFs undergo premature senescence suggest 

the possibility that impaired cell proliferation underlies the observed defects in 

organ development. Alternatively, loss of Tip55 may affect different tissues 

differently, leaving open the possibility that increased cell death or premature 

differentiation might cause these phenotypes. To investigate these possibilities, 

sagittal sections of Tip55+/+ and Tip55Δ/ Δ embryos were obtained from E8.5 

embryos. Haemotoxylin and Eosin (H&E) staining of the embryo revealed no 

obvious morphological differences between Tip55+/+ and Tip55Δ/ Δ at this stage 

(figure III.4.A), as we observed for whole E8.5 embryos (figure III.2.A). Next, we 

performed immunohistochemistry (IHC) using antibodies against phospho-

Histone H3 (p.Histone H3), and cleaved caspase 3 (Casp3) to test for 

proliferation defects or elevated apoptosis, respectively, in embryo sections. We 

observed no obvious defects in embryo sections with the exception of two 

tissues, heart and neural tube, which develop at these early stages of embryonic 

development (figure III.4.B). We observed significant reduction in proportion of 

p.Histone H3 positive cells (p<0.022), in Tip55Δ/ Δ embryos relative to wildtype, 

but no obvious changes in Casp3 staining in the heart (figures III.4.B and III.4.C). 

These data suggest that cellular proliferation in developing heart tissue is 

impaired in Tip55Δ/ Δ mice. In contrast, we observed significant increase in Casp3 

staining (p<0.041), but no significant changes in p.Histone H3 positive cells, in 



	 91	

the neural tube regions of Tip55Δ/ Δ embryos relative to Tip55+/+ controls, 

suggesting increased apoptosis in this tissue (figures III.4.B and III.4.C). These 

data suggest that embryonic lethality caused by Tip55 loss is due to combined 

defects in the development of the heart and the neural tube, which manifest as 

impaired proliferation and increased apoptosis, respectively. 
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Figure III.4. Tip55 null embryos exhibit heart and neural tube defects. 

  
(A) H&E stained E8.5 embryo sections of Tip55+/+ and Tip55Δ/ Δ looking into the 
morphology of whole embryo, and specific organs heart and neural tube.  
(B) Cleaved caspase 3 (Casp3) and phospho-Histone H3 (p.Histone H3) 
immunostaining of E8.5 embryo sections of Tip55+/+ and Tip55Δ/ Δ looking into 
cellular proliferation and apoptosis within heart and neural tube. Arrowhead 
showing some of the positively stained cells.   
(C) Quantification of percentage of phospho-Histone H3 and cleaved caspase 3 
positive cells in neural tube and heart. N=3 embryo sections were used for the 
two-sided t test (*p<0.05).    
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Discussion  

In this study, we generated mice lacking sequences specific for the Tip55 

isoform of Tip60. We found that loss of Tip55 causes a cell proliferation defect in 

heart and fibroblasts from mutant embryos, as well as increased apoptosis in 

neural tube. Tip55 Δ/ Δ mutant embryos fail to develop beating hearts, which may 

account for their mid-gestation lethality. 

As reported previously, Tip60 is required for mouse ESC maintenance and 

embryonic development (Acharya et al., 2017; Fazzio et al., 2008; Y. Hu et al., 

2009). In addition to Tip60, ablation of Esa1 (the yeast homolog of Tip60) or 

drosophila Tip60 (dTip60) causes defects in proliferation and embryogenesis, 

respectively, consistent with the essential function of Tip60 in mammals (E. R. 

Smith et al., 1998; Zhu et al., 2007). Although alternative Esa1 and dTip60 

isoforms have not been reported, mammalian Tip60 gene contains four isoforms, 

several of which remain uncharacterized (M.-S. Kim et al., 2006; Legube and 

Trouche, 2003; Ran and Pereira-Smith, 2000). Here we demonstrated that the 

Tip55 isoform of Tip60 is required for normal embryogenesis, leaving open the 

possibility that other Tip60 isoforms have important functions during embryonic 

development that remain to be identified.      

Prior to E9.5, Tip55 mutant embryos exhibit no apparent morphological 

phenotypes. Starting around E9.5, homozygous Tip55 mutants appear smaller 

but grossly normal, suggesting that the observed proliferation defect might 

contribute to the defects in heart and neural tube development in Tip55 null 
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embryos.  Our in vitro results revealed Tip55 null MEFs undergo premature 

senescence, consistent with the growth defect in mutant embryos. Unlike 

previous findings that homozygous Tip60 null mutants were peri-implantation 

lethal and catalytic inactive mutants exhibited defects at approximately the 

gastrulation stage, loss of Tip55 causes much later developmental defects that 

manifest during organogenesis. These data suggest that one or more of the 

remaining Tip60 isoforms play critical roles in early development that are 

unaffected by Tip55 loss. 

What are the molecular defects underlying embryo lethality in Tip55 

mutants? The poor growth of embryos, premature senescence of MEFs, and 

reduced proliferation of cells within the developing heart suggest that cell cycle 

inhibitors may be upregulated in the absence of Tip55, proteins that stimulate cell 

cycle progression are downregulated or both. Ongoing work in the lab will 

address these possibilities. In addition, the increase in apoptotic markers in Tip55 

mutant neural tube raises the possibility that DNA damage or other pro-apoptotic 

stimuli may accumulate in mutant cells of this lineage. The reasons why some 

cell types may grow slowly and others may undergo apoptosis due to Tip55 loss 

is not known at this time.  

Together, these studies identify the essential role of Tip55 isoform during 

post-implantation embryonic development. These findings are the first to 

demonstrate the importance of Tip55 during in vivo development, which are 

different from previously reported null phenotype for Tip60 that lacks all its 
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isoforms and resulted lethality during blastocyst stage. Our observations that 

Tip55 null embryos die mid-gestation while exhibiting reduced growth, premature 

senescence, and increased apoptosis raise the question of what developmental 

roles are played by the other remaining isoforms. 

 

Experimental procedures 

Antibodies 

Antibodies uses in this study were as follows: phospho-Histone H3 (9701, Cell 

Signaling Technologies), and Cleaved caspase 3 (9661, Cell Signaling 

Technologies). 

 

Generation of Tip55 knockout mice 

Tip60fl/+ mice used to generate Tip60ci/ci mice lack Tip55 isoform from floxed 

allele (called Tip55Δ/+ mice) (Acharya et al., 2017; P. B. Chen et al., 2013). Mice 

were genotyped by PCR with primers listed in Table III.1. Tip55Δ/+ mice were 

maintained as heterozygotes on an inbred FVB/N background and intercrossed 

to generate Tip55+/+, Tip55Δ/+ and Tip55Δ/ Δ embryos. Animal studies were 

performed in accordance with the recommendations of the Institutional Animal 

Care and Use Committee at the University of Massachusetts Medical School (A-

2165) and NIH guidelines.  
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Derivation of MEFs  

MEFs were generated from E9.5 day embryos as previously described (Todaro 

and Green, 1963). Briefly, E9.5 day embryos were dissected, and trypsin (0.05%) 

digested for 12 minutes at 37oC incubator. Embryos were pipetted up/down to 

obtain single cells, and cultured in a 12 well plate in the presence of MEF 

medium. 

 

Senescence and cell growth assays 

Two independent MEFs of Tip55+/+, Tip55Δ/+ and Tip55Δ/ Δ genotypes were 

cultured in 12-well plate of varying numbers. Total number of cells were counted 

and re-plated into new 12-well plates every 48 hours for the total of four days to 

obtain growth curve. Same MEFs of equal number (1.5 x 104) were plated into a 

gelatin coated 24-well plate for another 48 hours, and β-galactosidase staining 

was performed to test for cellular senescence using a kit (EMD Millipore, KA002), 

following the manufacturers’ protocol. 

 

Hematoxylin and Eosin (H&E) Staining 

E8.5 embryos were collected and sectioned at 8um thickness for morphological 

analysis as previously described (Milstone et al., 2017). Hematoxylin- and eosin- 

staining was performed by deparaffinizing sections in xylene, rehydrated through 

an ethanol gradient, 30s with 30% Harris modified hematoxylin, and a 30s 
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counterstain with eosin Y. Slides were rinsed and dehydrated with ethanol, 

cleared with xylene, and mounted using Vectashield mounting media.  

 

Immunohistochemistry 

Sections from E8.5 embryos were examined for proliferation and apoptosis 

defects following the protocols described previously (Milstone et al., 2017). 

Briefly, sections were rehydrated through an ethanol gradient, followed by heat 

antigen retrieval (Buffer A, Electron Microscopy Sciences). Immunostaining was 

conducted using the Vectastain Elite ABC and DAB Peroxidase Substrate kit 

according to manufacturer guidelines. Sections were incubated with phospho-

Histone H3 (1:100) and cleaved caspase 3 (1:100) primary antibodies overnight 

at 4°C(Milstone et al., 2017). For counterstaining, slides were rinsed and then 

incubated with 30% hematoxylin for 30s after 3,3’ DAB developing. All slides 

were ethanol-dehydrated, cleared with xylene, and mounted with Vectashield 

mounting medium. 

	

Proliferation	and	Apoptosis	Quantification	

Immunostaining	for	phospho-Histone	H3	or	cleaved	caspase-3	was	utilized	for	

defining	cardiomyocytes	undergoing	mitosis	or	apoptosis,	respectively.	Digital	

images	of	E8.5	sections	were	taken	using	a	Nikon	Eclipse	80i	microscope	and	the	

NIS-Elements	4.00.03	software.	Postive	stained	cells	were	counted	manually	using	

20X	images	and	ImageJ	(v	1.6.0_65).	The	percentage	of	phospho-Histone	H3	positive	
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or	cleaved	caspase-3	positive	cells	relative	to	the	total	number	of	nuclei	in	the	

neural	tube	and	heart,	was	calculated	for	a	minimum	of	three	embryos	per	

genotype.	Data	collected	was	plotted	and	statistically	analyzed	using	Microsoft	

Excel. 
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Chapter IV 

Discussion and future directions 

 

Chromatin structure plays important roles in gene expression and lineage 

specification of specific cell types. Tip60-p400 is a multi-subunit chromatin 

remodeling complex that has biochemical activities to modify histone tails and 

remodel nucleosomes, catalyzed by the Tip60 KAT and p400 ATPase subunits, 

which have been widely studied with respect to gene expression, DNA damage 

repair, and apoptosis (Gevry et al., 2007; Ikura et al., 2000; Mizuguchi et al., 

2004). Our lab has previously shown that the Tip60-p400 complex largely acts as 

a repressor of developmental genes to control gene expression and self-renewal 

in ESCs (Fazzio et al., 2008). However, the molecular mechanism regarding the 

requirement of chromatin remodeling activities present within Tip60-p400 

complex was largely unknown. In addition, while the Tip60 KAT contains multiple 

isoforms, their individual roles during development have not been studied. 

Therefore, in the first part of this thesis, I focused on understanding the catalytic 

and non-catalytic functions of Tip60-p400 with respect to ESC maintenance, 

gene expression, and embryonic development. In the second part, I investigated 

the developmental role of one of the isoforms of Tip60, called Tip55. Below, I 

discuss in detail my major findings, as well as critical analyses of the findings, 

limitations of the studies, and future directions. 
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KAT-independent function of Tip60 in ESC 

 I found that Tip60-p400 catalytic activities are dispensable for ESC 

maintenance and repression of developmental genes, and instead are required 

for ESC differentiation and embryonic development. Previous studies 

demonstrated that knockdown of Tip60 KAT and p400 ATPase subunits in ESCs 

causes self-renewal and gene regulation defects causing ESCs to differentiate 

and de-repression of normally silent genes such as developmental genes in 

ESCs (P. B. Chen et al., 2013; Fazzio et al., 2008). From these studies, we 

learned that Tip60-p400 is required for the ESC maintenance and repression of 

developmental genes. But, it was unknown if the Tip60-p400 catalytic functions 

are required, which was the major focus of my studies. The p400 subunit of 

Tip60-p400 catalyzes H2AZ incorporation into chromatin using energy from ATP 

hydrolysis (Gevry et al., 2007; Mizuguchi et al., 2004). The Boyer lab 

demonstrated that H2A.Z KD ESCs self-renew normally, but fail to differentiate 

properly in EBs and neuronal cells, which is different from the p400 KD that 

exhibit both self-renewal and differentiation defects (Creyghton et al., 2008; 

Fazzio et al., 2008). In addition, H2AZ KO and N-terminally deleted p400 also 

causes post-implantation embryo lethality (Faast et al., 2001; Fujii et al., 2010; 

Ueda et al., 2007). It still remains to be determined whether complete ablation of 

p400 causes pre-implantation lethality, as expected from the p400 KD phenotype 

in ESCs, or causes post-implantation lethality. In this study, we generated 

independent ESC lines lacking p400 ATPase activity to investigate its function in 
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ESC self-renewal.  In correlation with H2AZ KD, we identified that p400 catalytic 

function is only required for normal ESC differentiation, not for ESC self-renewal. 

Unlike p400 KD, a hypomorphic p400 mutant, and H2AZ KD, p400 catalytic 

mutants did not exhibit gene regulation defects, suggesting the possibility of 

redundancy between p400 and SRCAP, another ATPase in higher eukaryotes 

that also exchanges H2AZ for H2A through a dimer exchange mechanism (Ruhl 

et al., 2006; Wong et al., 2007).    

 Next, we tested the possibility that Tip60 KAT activity might be required 

for ESC self-renewal and Tip60-p400 mediated repression of developmental 

genes. Tip60 acetylates histone proteins and histone acetylation is generally 

known to activate gene expression (Allard et al., 1999; Kimura and Horikoshi, 

1998; Utley et al., 1998; Verdone et al., 2005). Therefore, it would be surprising 

to find the Tip60 KAT activity was critical for repression of developmental genes. 

When we generated independent lines lacking Tip60 KAT activity, we found that 

Tip60 catalytic function is also dispensable for repression of developmental 

genes and ESC self-renewal. In addition, our results further showed that there is 

no functional redundancy between Tip60 KAT and p400 ATPase activities in 

ESCs. These results raised an interesting question: what non-catalytic function is 

required for ESC maintenance? One possibility is that Tip60-p400 occupies the 

promoter region of target genes and reduces the chromatin accessibility to 

maintain repressive chromatin structure. To test this possibility, we performed 

ATAC-seq and showed that Tip60 KD causes increased chromatin accessibility 
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at the promoter region compared to the controls. In contrast, Tip60 KAT deficient 

ESCs exhibit minimal changes. Together, our studies demonstrate that Tip60-

p400 mediated repression of chromatin accessibility is important for repression of 

normally silent developmental genes in ESCs, regardless of Tip60 KAT activity. 

These are surprising findings that Tip60 KAT and p400 ATPase 

nucleosome remodeling activities of Tip60-p400 complex are dispensable for 

ESC maintenance and repression of developmental genes. Although these 

catalytic activities are not required, these subunits possess other non-catalytic 

domains such as chromodomain (Tip60), and SANT domain (p400) that 

generally recognize and binds histone tails (Boyer et al., 2002; 2004; Jacobs and 

Khorasanizadeh, 2002). Very little is known about these domains with respect to 

Tip60 and p400 function. It is possible that these chromo or SANT domains might 

be important to recruit Tip60-p400 to their target genes for ESC self-renewal and 

their repression, which need to be studied.  

Apart from Tip60 and p400 nucleosome-remodeling subunits, Tip60-p400 

also contains two other catalytic subunits Ruvbl1 and Ruvbl2. These proteins 

belong to the highly conserved ATPase family that contain DNA helicase activity 

in association with Tip60-p400 complex (Ikura et al., 2000; Jha and Dutta, 2009). 

Ruvbl1 and Ruvbl2 is also part of nucleoprotein complexes such as INO80 and 

SWR1, but very little is known about their cellular function in Transcription, DNA 

damage response, and apoptosis (Huen et al., 2010; Jha and Dutta, 2009). Our 

lab has also previously demonstrated that KD of Ruvbl1 and Ruvbl2 subunits 
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exhibit self-renewal defect in ESCs, similar to the phenotype observed in Tip60 

KD and p400 KD (Fazzio et al., 2008). Therefore, future studies regarding the 

ATPase activities of these proteins are necessary to understand their role in ESC 

self-renewal and gene regulation.  

 Although we did not observe any phenotypic differences between controls 

and Tip60 KAT mutants in ESCs, we were interested to pursue the importance of 

Tip60 KAT activity during mouse embryonic development and ESC 

differentiation. Previously, it has been reported that ablation of Tip60 causes 

embryonic lethality during the pre-implantation stage, which correlates with the 

failure of Tip60 KD cells to maintain ESC pluripotency (Fazzio et al., 2008; Y. Hu 

et al., 2009). In addition, ablation of EsaI (Tip60 homolog in yeast) or dTip60 

(Tip60 homolog in drosophila) is lethal (Clarke et al., 1999; E. R. Smith et al., 

1998; Zhu et al., 2007). Consistent with these phenotypes, we also observed 

embryonic lethality in our Tip60 KAT deficient mutants. In contrast to the 

essential function of Tip60 during pre-implantation, the Tip60 KAT deficient 

embryos fail to gastrulate properly and die during post-implantation development, 

suggesting the importance of Tip60 KAT activity for proper lineage specification. 

When we performed RNA-seq on wild type and Tip60 KAT deficient ESCs during 

undirected differentiation, we observed delayed and reduced expression of 

multiple transcription factors associated during gastrulation (e.g. FoxA2, Gata4, 

Sox17, T, Hand1, Flk1) and signaling proteins associated with early development 

(e.g. Fgfr2, Tgfb2, Bmp2, Fzd2) in KAT deficient mutants. These in vivo and in 
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vitro results imply the importance of Tip60 KAT activity in regulation of multiple 

lineage specific transcription factors and signaling pathways for embryonic 

development. Future studies should look more closely into global changes in 

Tip60-p400 occupancy and Tip60 mediated histone acetylation in wild type and 

Tip60 KAT deficient mutants to understand the functional role of Tip60-p400 in 

gene regulation during ESC differentiation. In addition, we can also generate 

tissue specific Tip60 KAT deficient mice, and study the function of Tip60 catalytic 

activity in various organs such as heart and brain where it is highly expressed.   

 

Catalytic-independent functions of multiple chromatin regulators 

 Multiple chromatin regulators, including Gcn5 and RING1B, exhibit 

catalytic-independent functions in addition to their better understood catalytic 

roles in chromatin regulation. Gcn5, one of the most widely studied HATs in 

multiple eukaryotes, is essential for embryonic development in mammals and is a 

key regulator of gene expression from yeast to humans (Roth et al., 2001). 

Ablation of Gcn5 in yeast displayed a decrease in expression of many target 

genes, whereas Gcn5 HAT deficient mutants had much weaker effects on gene 

expression, suggesting a catalytic independent function of Gcn5 in gene 

regulation (Huisinga and Pugh, 2004). Gcn5 deletion in mice results in embryonic 

lethality at around E10.5, due to a defect in specification of some mesodermal 

cell types (W. Xu et al., 2000). In contrast, mouse embryos homozygous for a 

mutation in the Gcn5 catalytic domain survive until E16.5, where they exhibit 
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defects in neural tube closure (Bu et al., 2007). These data suggest that one or 

more HAT-independent functions of Gcn5 are required earlier in embryonic 

development than the HAT activity is required. Gcn5 is also required for gene 

expression in ESCs. Ablation of Gcn5 in ESCs caused downregulation of target 

genes enriched for cell cycle regulation, which is similar to the phenotype 

observed in yeast (Hirsch et al., 2015; Huisinga and Pugh, 2004). It still remains 

to be addressed if the acetyltransferase activity of Gcn5 is required for this 

function.   

 In addition to Gcn5, RING1B, a critical subunit of the PRC1 complex, also 

possesses a catalytic independent function in gene regulation and embryonic 

development. RING1B is the catalytic subunit of the PRC1 complex that 

ubiquitylates histone H2A on K119, which is important to recruit PRC2 complex 

for gene silencing (Simon and Kingston, 2013). Ablation of Ring1B results in a 

gastrulation defect, causing embryo lethality around E10.5 (Voncken et al., 

2003). In contrast, mouse embryos homozygous for a mutation in the Ring1B 

catalytic domain complete gastrulation and survive longer than Ring1B null 

embryos until E15.5 (Illingworth et al., 2015). RING1B also plays important role in 

gene regulation. Ablation of Ring1B caused de-repression of genes normally 

silent in ESCs, such as Homeobox genes, whereas Ring1B catalytic deficient 

mutants had much weaker effects on gene expression (Eskeland et al., 2010; 

Illingworth et al., 2015). These data together suggest the catalytic independent 

functions of RING1B during embryo development and gene regulation. 
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These findings, together with our findings that Tip60-p400 catalytic 

functions are dispensable for ESC gene regulation and pre-implantation 

development, suggest that the assumption that most chromatin remodeling 

enzymes function through their enzymatic activities is not always correct. 

Although additional studies are necessary, it is likely that additional chromatin 

regulatory enzymes also have important functions independent of their catalytic 

activities, which will be uncovered only when catalytic mutants are generated and 

compared with knockouts. 

 

The Tip55 isoform of Tip60 is required during embryonic development 

 We found that Tip55, one of the four isoforms of Tip60, is essential for 

mouse embryonic development. Previous studies have clearly demonstrated that 

ablation of Tip60 causes pre-implantation lethality, where the embryo fails to 

hatch from the zona pellucida (Y. Hu et al., 2009). This result is consistent with 

the ESC phenotype, where knockdown of Tip60 causes a self-renewal defect 

(Fazzio et al., 2008). In these studies, the above-mentioned phenotypes were 

observed upon targeting all four isoforms. Here, we study the role of Tip55 

isoform during mouse embryonic development. Unlike the Tip60 knockout 

phenotype, ablation of the Tip55 isoform causes post-implantation lethality at 

E11.5, suggesting Tip55 plays an important role during later stages of 

development. Our findings also raise the possibility that other isoforms might 
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have important functions during earlier stages of embryonic development, which 

will need to be tested. 

 We have identified that Tip55 ablation impairs growth of mouse embryos 

starting from E9.5. Previous studies have shown that ablation of Tip60 causes 

proliferation defects and increased apoptosis in mouse embryos during pre-

implantation stages (Y. Hu et al., 2009). We also observed a cell proliferation 

defect marked by a decrease in phospho-histone H3, and an increase in 

apoptosis marked by an increase in cleaved caspase 3 in the heart and neural 

tube (that gives rise to brain) of Tip55 mutant embryos respectively. But, these 

defects occurred much later than defects observed in Tip60 knockout mutants. 

Therefore, our data clearly imply the role of the Tip55 isoform in heart and brain 

development, where Tip60 isoforms are highly expressed (M.-S. Kim et al., 2006; 

Lough, 2002; McAllister et al., 2002). Tip55 has been previously reported to 

regulate the activation of ANF, a heart specific gene suggesting its function in 

heart development (M.-S. Kim et al., 2006), which is also supported by our in vivo 

findings. In contrast, the role of Tip55 in brain development was not reported 

previously. Whether the Tip55 KAT activity is necessary for heart and brain 

development needs to be tested. In addition, whether or not the expression of 

heart and neural tube specific genes is altered in Tip55 mutant embryos will need 

to be addressed.  

 This is the first report to show that a specific Tip60 isoform is required for 

embryonic development. Our findings raise other interesting questions in addition 
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to the functions of other Tip60 isoforms. What happen to the Tip60-p400 complex 

formation, their occupancy and gene regulation in the absence of Tip55 isoform? 

We can use CRISPR-Cas9 system to delete novel 103 amino acids from Tip55 

isoform in ESCs, including other cell types to understand these biological 

questions. 

 

Increased complexity of regulatory networks resulting from differential 

splice isoforms of regulatory proteins 

 Whole genome sequencing of various organisms has revealed protein 

complexity in higher eukaryotes as compared to Drosophila and yeast, due to 

alternative splicing of protein coding genes (Blencowe, 2006; Maniatis and Tasic, 

2002). Generation of knockout mice using gene-targeting strategies have been 

used to study the in vivo functions of specific isoforms. For instance, FGFR2, one 

of the four receptor tyrosine kinases important for intracellular signaling contains 

two isoforms Fgfr2 IIIb, and Fgfr2 IIIc, generated by splicing of exon 8 and exon 9 

respectively (Eswarakumar et al., 2005; Orr-Urtreger et al., 1993). Unlike Fgfr2 

knockout, which exhibits lethality due to a placental defect around E10.5, 

knockout of Fgfr2 IIIb causes lethality immediately after birth due to impairment in 

lungs, limbs and other tissues (Arman et al., 1998; De Moerlooze et al., 2000). In 

contrast, Fgfr2 IIIc knockout mice were born with defects in the skull and bone 

development (Hajihosseini et al., 2001).  
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Differential isoforms of chromatin remodeling proteins are also important 

during development. The p400 homolog in drosophila (called DOMINO) contains 

two alternatively spliced isoforms, DomA and DomB (Ruhf et al., 2001). 

Depletion of either of these isoforms results in non-redundant phenotypes during 

different stages of oogenesis (Börner and Becker, 2016). However, the individual 

functions of multiple isoforms of p400 in mammals are yet to be identified.   

Our findings that the Tip55 isoform is essential during post-implantation 

development and the few examples provided above suggest that alternative 

isoforms of other regulatory proteins play key (yet unexplored) roles during 

various stages of embryonic development. Interestingly, the average number of 

distinct protein isoforms encoded by each gene in mammals is four, suggesting 

these studies are at the tip of the iceberg (Melamud and Moult, 2009). Therefore, 

in order to understand the entire repertoire of functions of each developmental 

regulator, one needs to examine mutants individually defective in each isoform. 
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