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Abstract 

Breast cancer remains the most common malignant disease in women worldwide. 

Despite the advantages of early detection and improved treatments, studies into the 

mechanisms that initiate and drive breast cancer progression are still required. Recent 

studies have identified RUNX1, which is an essential transcription factor for 

hematopoiesis, is one of the most frequently mutated genes in breast cancer patients. 

However, the role of RUNX1 in the mammary gland is understudied. 

    In this dissertation, we examined the role of RUNX1 in both normal mammary epithelial 

and breast cancer cells. Our in vitro studies demonstrated that RUNX1 inhibits epithelial 

to mesenchymal transition (EMT), migration, and invasion, reflecting its tumor suppressor 

activity, which was confirmed in vivo.  Moreover, RUNX1 also contributes significantly to 

inhibition of the phenotypes of breast cancer stem cells (CSC), which is responsible for 

metastasis and tumor relapse.  We showed that Runx1 overexpression reduces the 

tumorsphere formation and cancer stem cell population. Overall, our studies provide 

mechanistic evidence for RUNX1 repression of EMT in mammary cells, anti-tumor activity 

in vivo and regulation of CSC-like properties in breast cancer.  

Our results highlight crucial roles for RUNX1 in preventing epithelial to mesenchymal 

transition and tumor progression in breast cancer. This RUNX1 mediated mechanism 

points to novel intervention strategies for early stage breast cancer.  
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Chapter I Introduction 

1.1 Mammary Gland Biology and Breast Cancer   

1.1.1 Breast cancer overview 

Breast cancer is the most commonly diagnosed cancer in women worldwide (~30% 

of new cancer diagnoses). Approximately 1 in 8 women in the USA will develop 

invasive breast cancer during their lifespan. In 2017, about 252,000 new invasive 

breast cancer cases are expected to be diagnosed in the U.S (Siegel, Miller et al. 

2016).  In the past few decades, significant advances in early detection and 

treatment of breast cancer have greatly improved the overall 5-year survival rate 

for breast cancer patients with an increase from 35% in 1960’s to 89% in 2016 

(Miller, Siegel et al. 2016). Despite this progress, breast cancer remains the 

second leading cause of cancer-related death in American women. About 40,000 

women in the USA are expected to die due to breast cancer in 2017 alone (Siegel, 

Miller et al. 2016).  Worldwide, half-a-million women die from breast cancer each 

year. Therefore, further studies into the mechanisms that initiate and drive breast 

cancer progression are still needed. A greater understanding of these mechanisms 

will provide new potential targets for improved therapies. 

 

1.1.2 Breast cancer molecular subtypes  

Breast cancer is either ductal or lobular, with the ductal type compositing the 

majority of cases (40%-75%) (Bombonati and Sgroi 2011). Ductal breast 

carcinoma progression can be further divided into 4 progressive stages based on 
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histology: flat epithelial atypia (benign lesion), atypical hyperplasia (precancerous 

lesion), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC, which 

is highly aggressive and metastatic) (Bombonati and Sgroi 2011). However, 

patients exhibit considerable heterogeneity in clinical responses even amongst the 

same stage, indicating the need for a new classification method (Polyak 2007, 

Rivenbark, O’Connor et al. 2013).  In the past two decades, using the gene 

expression portrait including the expression of estrogen receptor (ER), the 

progesterone receptor (PR) and the human epidermal growth factor receptor-

related protein (HER2), breast cancer is characterized into 6 distinct molecular 

subtypes, summarized in Table 1.1, including four major subtypes: Luminal A, 

Luminal B, Basal like, Her2 enriched, and two unusual subtypes: Claudin-low and 

normal-breast (Sørlie, Perou et al. 2001, Sørlie, Tibshirani et al. 2003, Prat, Parker 

et al. 2010, Eroles, Bosch et al. 2012) .  
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Table 1.1 Features of molecular subtypes of breast cancer. 

 

Luminal A 

The luminal A subtype comprises 50–60% of all diagnosed breast tumors and is 

therefore the most common subtype (Eroles, Bosch et al. 2012). It is characterized 

by high expression of ER-activated genes that are typically expressed in the 

luminal epithelial lining in the mammary ducts (Sørlie, Perou et al. 2001). Luminal 

A tumors usually have a low histological grade, and lower expression of 

proliferation related genes. In particular, the immunohistochemistry profile of the 

luminal A subtype is characterized by expression of ER, PR, Bcl-2, GATA3 and 

cytokeratin CK8/18, and an absence of HER2 and Ki67 expression (Eroles, Bosch 
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et al. 2012).  This subtype of breast cancer has a higher incidence of metastasis 

to bone (18.7% of total patients) compared to other sites such as nervous system, 

liver and lungs, which together represent less than 10% of metastatic sites (Eroles, 

Bosch et al. 2012).  Luminal A patients have a generally good prognosis with a 

metastatic rate of 27.8% which is significantly lower than that of other subtypes 

(Kennecke, Yerushalmi et al. 2010).  The treatment of this subtype is mainly based 

on hormonal treatment in postmenopausal patients, and selective estrogen 

receptor modulators like Tamoxifen, a competitive inhibitor of the estrogen 

receptor binding to its ligands (Guarneri and Conte 2009).  

Luminal B  

The luminal B group makes up 10–20% of all breast cancers and has a higher 

histological grade, greater proliferative rate, and an aggressive phenotype with a 

worse prognosis compared with the Luminal A subtype (Colleoni, Rotmensz et al. 

2012). Similar to the Luminal A subtype, the Luminal B subtype also expresses ER, 

but with a higher expression of proliferation genes, such as Ki67 and cyclin-B1, 

and growth factor receptors EGFR and HER2. Bone is also the most common site 

of metastasis (30%), together with a high metastasis rate in other organs such as 

the liver (13.8%) (Eroles, Bosch et al. 2012). Luminal B tumors are treated with 

Tamoxifen and aromatase inhibitors, which inhibits the generation of estrogen. 

However, the worse prognosis compared to luminal A tumors underlines the need 

of new therapeutic options for this subgroup (Bosch, Eroles et al. 2010).  
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Basal-like   

The basal-like subtype accounts for 10% to 20% of breast cancer cases (Bosch, 

Eroles et al. 2010). Basal-like tumors typically express genes characteristic of 

mammary myoepithelial cells, including Cytokeratins CK5 and CK17, P-cadherin, 

Caveolin 1/2, Nestin, CD44, Vimentin and EGFR (Nielsen, Hsu et al. 2004). 

Meanwhile genes characteristic of the luminal epithelium, such as CK8/18 and Kit, 

are lower in these tumors (Eroles, Bosch et al. 2012). Clinically, basal-like tumors 

are characterized by their larger size, higher grade, presence of necrosis, pushing 

borders of invasion, and frequent invasion of the lymph node (Livasy, Karaca et al. 

2005, Bosch, Eroles et al. 2010). One of the most relevant features of this subtype 

is the lack of expression of the three key receptors in breast cancer: estrogen 

receptor, progesterone receptor and HER2. For this reason the basal-like group 

overlaps with triple-negative breast cancer (TNBC) (Eroles, Bosch et al. 2012). 

Compared with luminal subtypes, basal-like tumors frequently have a worse 

prognosis and a higher relapse rate in the first 3 years (Dent, Trudeau et al. 2007).  

Molecularly, basal-like tumors have a high rate of p53 mutation and often carry a 

germ-line mutation in BRCA1 (Sørlie, Tibshirani et al. 2003).  Metastatic relapse 

of the basal-like subtype commonly occurs in visceral organs, such as lung, central 

nervous system and lymph nodes (Kennecke, Yerushalmi et al. 2010).   
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HER2 positive  

HER2 positive tumors represent 15-20% of breast cancers. They are characterized 

by a high expression of the HER2 gene and other genes associated with the HER2 

pathway (Eroles, Bosch et al. 2012). These tumors are highly proliferative, with a 

high histological grade and frequent p53 mutations (Montemurro, Di Cosimo et al. 

2013). Clinically, the HER2-positive subtype is a poor prognosis subtype, while the 

introduction of anti-HER2 treatment has significantly improved survival in both 

primary and metastatic disease (Slamon, Leyland-Jones et al. 2001).   

Claudin-low 

The Claudin-low subtype is the newest defined subtype, which was identified in 

2007 (Herschkowitz, Simin et al. 2007). It is characterized by having low 

expression of tight junction and intercellular adhesion genes, including Claudin-3, 

-4, -7, Occludin and E-cadherin (Eroles, Bosch et al. 2012).  The gene expression 

profile of this subtype is similar to that of the basal subtype, as both have low Her2 

and luminal gene expression (Parker, Mullins et al. 2009, Prat, Parker et al. 2010).  

In contrast to the basal subtype, however, the Claudin-low subtype expresses a 

set of 40 immune response-related genes, indicating high infiltration of immune 

system cells (Hennessy, Gonzalez-Angulo et al. 2009, Prat, Parker et al. 2010, 

Sabatier, Finetti et al. 2014).  Additionally, this subtype is also enriched in genes 

associated with epithelial-mesenchymal transition and cancer stem cell 

phenotypes (Eroles, Bosch et al. 2012).  These tumors show poor long-term 
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prognosis and are not sensitive to neoadjuvant chemotherapy (Prat, Parker et al. 

2010, Prat and Perou 2011).  

Normal Breast Subtype 

The normal-breast subtype accounts for about 5-10% of breast carcinomas (Eroles, 

Bosch et al. 2012). This subtype expresses genes associated with adipose tissues 

and has an intermediate prognosis between luminal and basal-like subtypes. 

Tumors from this subtype are occasionally inappropriately classified as triple-

negative as they do not express ER, PR and HER. However, this subtype differs 

from the basal-like subtype, as they are negative for CK5 and EGFR expression 

(Eroles, Bosch et al. 2012).  There are some contradictory views of this subtype, 

as some researchers question its existence as they consider it a technical artifact 

due to contamination from normal breast tissue (Weigelt, Mackay et al. 2010). The 

knowledge regarding the molecular mechanism and treatment is inadequate for 

this subtype due to its rarity and the technical artifact hypothesis.  

 

1.1.3 The origin of breast cancer and breast cancer subtypes 

As discussed above, breast cancer is not a single disease, but is composed of 

distinct subtypes associated with different clinical outcomes. Understanding this 

heterogeneity is key for developing targeted therapy and preventive intervention.  

The roots of breast cancer heterogeneity lie in the developmental hierarchy of the 

normal mammary gland, which contains both luminal and basal cell lineages 

(Skibinski and Kuperwasser 2015). It has been speculated for a long time that 
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accumulation of specific mutations in a particular cell type of the normal mammary 

epithelium generates transformed multi-potent cells, which then give rise to a 

specific breast cancer subtype (Smalley and Ashworth 2003). The molecular 

features of each subtype mirror the characteristics of the normal cell type of their 

origin. For example, mammary stem cells are thought to be the cell-of-origin for 

basal-like breast cancer based on their shared features such as expression of 

basal cytokeratin and low expression of hormone receptors (Polyak 2007). While 

Luminal A tumors are thought to be derived from relatively well-differentiated cells 

of the ER+ lineage, Luminal B tumors are believed to develop from less 

differentiated luminal progenitors (Polyak 2007). However, this hypothesis has 

been recently challenged using in vivo lineage tracing. In this method, particular 

cell types from the mammary gland, such as mammary stem cells, luminal 

progenitors and basal progenitor cells, have been identified using different cell 

surface markers (Summarized in Fig. 1.1) (Visvader and Stingl 2014, Skibinski and 

Kuperwasser 2015). Comparison of the gene expression signature of these 

lineages with breast cancer subtypes has suggested that one lineage may give 

rise to the multiple subtypes (Lim, Vaillant et al. 2009). Luminal progenitors likely 

serve as the origin of both luminal and basal-like breast cancers (Lim, Vaillant et 

al. 2009, Prat and Perou 2011); whereas the basal progenitor signature is most 

closely aligned with the expression profile of the Claudin-low subtype (Lim, Vaillant 

et al. 2009). This observation was confirmed by studies of the origin of BRCA-1 

associated breast cancer.  Different strategies have all demonstrated that BRCA-
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1 associated basal-like breast cancer is derived from luminal progenitor cells (Lim, 

Vaillant et al. 2009, Molyneux, Geyer et al. 2010, Proia, Keller et al. 2011, Bai, 

Smith et al. 2013).  

Still, it remains an open question as to why luminal progenitor cells can give rise 

to both luminal and basal subtypes. One explanation is that the luminal progenitor 

population itself is heterogeneous (e.g., with respect to estrogen receptor 

expression) (Booth and Smith 2006, Shehata, Teschendorff et al. 2012).  Another 

hypothesis is based on the striking finding that 80% of basal-like breast tumors 

carry p53 mutations. An early loss of p53 may cause genome instability thereby 

allowing the acquisition of secondary mutations. The cells with p53 and secondary 

mutations may gain a competitive advantage over neighboring clones with regard 

to proliferation, migration and invasion, which are also features of basal-like breast 

cancer (Skibinski and Kuperwasser 2015). Currently the origin of Her2-positive 

breast cancer remains unclear. Better understanding of the etiology and biology of 

each subtype will enhance the precision of diagnosis and treatment of women with 

different forms of breast cancer.  
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Figure 1.1 Schematic model of mammary epithelial hierarchy and 

potential relationship with breast tumor subtypes.  Cell surface 

markers used for the isolation of epithelial cell populations from the 

mouse mammary gland are indicated. The four major tumor types are 

shown linked to their closest normal epithelial cell type. Basal-like 

subtype could originate through mutation of p53 and BRCA1 in the 

luminal progenitor cells.  
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1.1.4 Cell line models used in breast cancer studies 

The first breast cancer cell line, BT-20, was established in 1958 (Lasfargues and 

Ozzello 1958). Later more breast cancer cell lines were generated, such as the 

MDA series generated by MD Anderson Cancer Center. One of such cell line, 

MDA-MB-231, the highly metastatic breast cell line generated in 1973	(Cailleau, 

Young et al. 1974), is widely used to identify genes and pathways that regulate 

metastasis to different sites	(Kang, Siegel et al. 2003, Minn, Gupta et al. 2005, Bos, 

Zhang et al. 2009). The most commonly used breast cancer cell line in the world 

is MCF-7, which was also established in 1973 at the Michigan Cancer Foundation	

(Soule, Vazquez et al. 1973).  MCF-7 cells have high expression of estrogen 

receptor (ER), which makes them very sensitive to hormone and thus an ideal 

model to study hormone response	(Levenson and Jordan 1997).  Currently there 

are more 100 breast cancer cell lines available from ATCC. Based on their gene 

expression profiles, they have been grouped into different subtypes of breast 

cancer (Neve, Chin et al. 2006, Prat, Karginova et al. 2013). Breast cell line models 

are widely used to identify molecular mechanisms, test treatment response both in 

vitro and in xenograft models	(Holliday and Speirs 2011).  

    Another breast cell line model used in this dissertation is the MCF10 cell line 

series. MCF10A cells are considered to be a normal-like mammary epithelial cell, 

which was obtained from a patient with benign fibrocystic disease (Soule, Maloney 

et al. 1990). It is a spontaneously immortalized, non-malignant breast cell line. The 

MCF10A cell line is the founder of a progressively more aggressive family of breast 



	 12	

cancer lines named MCF10 series. These cell lines include MCF10AT1, which is 

a premalignant cell line derived from MCF10A by overexpressing the H-Ras 

oncogene (Dawson, Wolman et al. 1996), a set of highly aggressive and metastatic 

MCF10CA cell lines (including MCF10CA1a), which gained the capability of 

metastasis after in vivo passage of MCF10AT (Santner, Dawson et al. 2001). While 

MCF10A cells cannot form tumors in vivo, MCF10AT can form tumors with an 

incidence of about 25% and MCF10CA1a always forms tumors after subcutaneous 

injection into nude mice (Dawson, Wolman et al. 1996, Santner, Dawson et al. 

2001). Therefore, the MCF10 cell line series provides a useful model to assess the 

progression of breast cancer. 

 

1.2 The Runx Family  

1.2.1 Runx family overview 

Runx proteins, which function as lineage-specific transcription factors, regulate cell 

differentiation, proliferation and growth (Reviewed in (Coffman 2003)).  Runx 

proteins are also known as acute myeloid leukemia (AML), core-binding factor 

(CBF) or Polyoma enhancer-binding protein-2α (PEBP2α) family (Ito 2004). The 

Runx proteins share a highly conserved Runt domain with 128 amino acids in the 

N-terminus (Ogawa, Maruyama et al. 1993). This Runt homology domain is 

responsible for DNA binding and hetero-dimerization with Core Binding Factor 

(CBF-b), which stabilizes the protein complex.  The Runx-CBF-b complex binds to 

a consensus sequence within the DNA (PyGPyGGTPy;Py- cytosine or thymine) 
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(Melnikova, Crute et al. 1993)	(Ogawa, Maruyama et al. 1993). A nuclear targeting 

sequence, located on the C-terminal end of the Runt domain, is essential for proper 

nuclear localization (Kanno, Kanno et al. 1998). Although Runx proteins are 

primarily located in nucleus, in some cell types, Runx proteins are found partly in 

cytoplasm sequestered by STAT5, which is usually elevated in cancer cells 

(Ogawa, Satake et al. 2008).  

    All Runx family members also have a conserved C-terminal region, which is a 

sub-nuclear matrix-targeting signal (NMTS)	(Zeng, McNeil et al. 1998, Zaidi, Javed 

et al. 2001). The NMTS in Runx proteins is a 30-35 amino acid sequence, 

responsible for sub-nuclear localization to distinct nuclear sites for specific gene 

regulation (Zeng, van Wijnen et al. 1997, Zeng, McNeil et al. 1998, Zaidi, Javed et 

al. 2001, Stein, Lian et al. 2007).  The NMTS organizes the multiple complexes of 

Runx proteins with different classes of co-regulatory factors, such as SMAD family 

members. Runx proteins also have PY and VWRPY motifs for protein-protein 

interaction with other transcription factors (Aronson, Fisher et al. 1997, Javed, Guo 

et al. 2000, Lian, Javed et al. 2004, Zaidi, Young et al. 2005, Westendorf 2006, 

Chuang, Ito et al. 2013). 

    In almost all species, Runx function has been shown to be dependent on its 

binding to CBF-b, which increases specificity and affinity of Runx protein binding 

to their target genes (Golling, Li et al. 1996, Adya, Castilla et al. 2000, Kagoshima, 

Nimmo et al. 2007). Sedimentation equilibrium measurement was performed to 

confirm that Runx, CBF-b and DNA form a complex in a 1:1:1 stoichiometry (Tang, 
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Crute et al. 2000). The affinity of Runx for DNA or Runx-CBF-b for DNA has also 

been measured using electromobility shift assay (EMSA) and an isothermal 

titration calorimetric assay (Crute, Lewis et al. 1996, Huang, Crute et al. 1998, 

Tang, Crute et al. 2000). Both measurements have shown a significant 

enhancement (6 to 10-fold) of Runx-DNA binding affinity in the presence of CBF-

b (Crute, Lewis et al. 1996, Huang, Crute et al. 1998, Tang, Crute et al. 2000). In 

addition to CBF-b, Runx factors also bind with co-activators (e.g., p300) or co-

repressors (e.g., Groucho) depending on the cellular context (Aronson, Fisher et 

al. 1997, Javed, Guo et al. 2000, Coffman 2003, Durst and Hiebert 2004, Chuang, 

Ito et al. 2013, Ito, Bae et al. 2015). This complex and dynamic ability allows Runx 

factors to engage in diverse functions and regulatory mechanisms (Coffman 2003).  

 

1.2.2 Structure of Runx 

The structure of the Runt domain has been determined, using X-ray 

crystallography and NMR, to be a member of the s-type Ig fold DNA binding 

domains (Berardi, Sun et al. 1999, Nagata, Gupta et al. 1999). Other members 

include NF-kB, NFAT, STAT1 and p53 (Berardi, Sun et al. 1999, Nagata, Gupta et 

al. 1999). The structure of Runx-CBF-b-DNA complex was later solved using X-

ray crystallography (Warren, Bravo et al. 2000, Bravo, Li et al. 2001, Tahirov, 

Inoue-Bungo et al. 2001). As shown in Figure 1.2, the structure reveals that the 

Runt domain contacts with both DNA major and minor grooves, and the C-terminal 

region of the Runt domain establishes sequence-specific DNA-contacts. On the 
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other hand, CBF-b does not make any contacts with DNA but induces a 

conformational change in the Runt domain to allosterically facilitate binding 

between Runx factors and DNA (Tahirov and Bushweller 2017). Mutagenesis 

studies also identified that residues at the C-terminus of Runt domain (T169, D171, 

R174 and R177 in human RUNX1) are the key amino acids, essential for forming 

the complex between Runx and CBF-b and DNA (Li, Yan et al. 2003). In breast 

cancer patients, several RUNX1 mutations have been identified in Runt domain. 

These mutations, such as D171 and R174, are located at the interface of the Runt 

domain and DNA (Fig. 1.2 Red residues), suggesting that loss of Runx binding on 

target genes will cause disease. In addition to breast cancer, mutations in the 

interface of DNA/Runx or CBF-b/Runx binding have been documented in patients 

with either RUNX1 related leukemia or RUNX2 related Cleidocranial Dysplasias 

(CCD), respectively (Otto, Kanegane et al. 2002, Mangan and Speck 2011).    

The Runt domain is evolutionary conserved in metazoans suggesting that Runx 

proteins have conserved functions through different species. Because Runx genes 

are highly context dependent and partially redundant within vertebrates, the use of 

invertebrate animal models with simple genetic background such as Drosophila 

melanogaster or Caenorhabditis elegans (C.elegans) can help us find an ancestral 

function of Runx.  
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Figure 1.2 Structure of the CBF-b: Runt domain: DNA complex.  

Ribbon representation shows CBF-b in purple, the Runt domain in green, 

and the DNA in blue. RUNX1 mutations identified in breast cancer 

patients are shown in red. For clarity, the structure is shown in two 

different orientations, rotated by 90 degrees relative to one another. The 

image was rendered from PDB code 1H9D. The mutations are clearly 

seen in the DNA binding domain suggesting a loss of RUNX1 function in 

breast cancer. Association of loss function of RUNX1 and breast cancer 

progression is studied in Chapter II,III and IV.  
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1.2.3 Evolutionary role of Runx  

    Evolutionarily, Runx genes have been identified in all metazoans and 

unexpectedly in the unicellular amoeboid halozoan Capsaspora owczarzaki, 

suggesting the Runx family is involved in fundamental biological processes (Sebé-

Pedrós, de Mendoza et al. 2011). The role of Runx genes have been intensively 

studied in the invertebrate animal models Drosophila melanogaster (Dm), 

Strongylocentrotus purpuratus (Sp) and Caenorhabditis elegans. The mechanisms 

obtained from these models can give us a hint of Runx function in mammals, 

especially in human.  

     In the fruit fly, Drosophila melanogaster, there are four Runx genes (Rennert, 

Coffman et al. 2003, Bao and Friedrich 2008). The most well studied Runx family 

member is runt, which was identified for its function in development. DmRunt is 

one of the five pair-rule genes, which regulate the spatial expression of other pair 

rule genes and segment polarity genes (Nusslein-Volhard and Wieschaus 1980, 

Gergen and Wieschaus 1985). Deletion of DmRunt results in the loss of larval 

segments and consequently, smaller than wild-type flies (Gergen and Wieschaus 

1985). In addition, DmRunt also plays a role in sex determination and 

neurogenesis (Gergen and Butler 1988, Kania, Bonner et al. 1990, Duffy and 

Gergen 1991, Duffy, Kania et al. 1991, Canon and Banerjee 2000). Another Runx 

family member studied in Drosophila is lozenge (lz), which is required for eye 

development and hematopoiesis (Canon and Banerjee 2000). The function of two 

other Runx genes, CG34145 (RunxA) and CG42267 (RunxB) remains unclear. 
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However, it has been shown that RunxB is involved in the control of cell survival 

(Boutros, Kiger et al. 2004).  

   In Caenorhabditis elegans, the single Runx homolog, rnt-1, also plays an 

essential role during development (Hughes and Woollard 2017). It regulates the 

balance between proliferation/self-renewal and differentiation in the lateral 

neuroectodermal seam cells (Kagoshima, Sawa et al. 2005, Nimmo, Antebi et al. 

2005, Xia, Zhang et al. 2007). The seam cells are multi-potent stem cell-like cells 

formed during C.elegans embryogenesis (Sulston and Horvitz 1977). Rnt-1 is 

expressed in seam cells during embryogenesis and throughout larval development 

and functions to regulate their division (Braun and Woollard 2009).  Consequently, 

in rnt-1 mutant worms, the number of seam cells is reduced from 16 to an average 

of 13 per worm (Kagoshima, Sawa et al. 2005, Nimmo, Antebi et al. 2005). 

Importantly, overexpression of rnt-1 leads to hyper-proliferation and expansion of 

seam cells (Kagoshima, Sawa et al. 2005, Kagoshima, Nimmo et al. 2007). As a 

result, rnt-1 overexpression mutant worms develop massive hyperplasia leading 

to a tumor-like appearance of the seam cell tissue, which normally forms a straight 

line of cells at each side of the worm (Kagoshima, Nimmo et al. 2007).  

    There are two Runx genes in sea urchin S. purpuratus, but only one of them, 

SpRunt-1, is expressed (Braun and Woollard 2009). SpRunt-1 is expressed in 

various tissues during embryogenesis and transiently in adult coelomocytes upon 

challenging their immune system (Coffman, Kirchhamer et al. 1996, Pancer, Rast 

et al. 1999, Robertson, Dickey et al. 2002, Fernandez-Guerra, Aze et al. 2006). 
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During embryogenesis, spRunt-1 regulates the expression of transcription factors 

and other markers of terminal differentiation in all major tissues (Robertson, 

Coluccio et al. 2008). SpRunt-1 activates the WNT signaling pathway thereby 

positively regulating cell proliferation (Minokawa, Wikramanayake et al. 2005, 

Robertson, Coluccio et al. 2008).   

    The role of Runx genes as the master regulator specifying lineage was further 

studied in the more complex vertebrate animal models. Runx1 is expressed in 

hematopoietic progenitors in Zebrafish and Xenopus where it controls stem cell 

differentiation (Tracey, Pepling et al. 1998, Kalev-Zylinska, Horsfield et al. 2002, 

Burns, Traver et al. 2005).  Runx1 is also required for neuronal development in 

Xenopus (Park, Hong et al. 2012).  In both fish and frogs, Runx2 is required for 

chondrogenesis and is detected in developing bones (Flores, Tsang et al. 2004, 

Flores, Lam et al. 2006, Kerney, Gross et al. 2007).  

In summary, evidence gathered utilizing different animal models from 

invertebrate to vertebrate, separated by millions of years of evolution, helps build 

a picture of Runx genes as key transcription factors. This work further highlights 

their function in lineage determination and fine-tuning the balance between cell 

proliferation and differentiation. These Runx functions identified in lower animal 

models are also found in mammalian cells.  In the next section, the role of each 

Runx factor during normal development in mammalian systems is reviewed.   
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1.3 The Runx Family and Development in Mammals  

1.3.1 Overview 

In mammals, the Runx family is composed of three genes, Runx1, Runx2, 

and Runx3. Each of these genes is transcribed from two promoters, a distal P1 

promoter and a proximal P2 promoter (Ghozi, Bernstein et al. 1996, Fujiwara, 

Tagashira et al. 1999, Drissi, Luc et al. 2000, Bangsow, Rubins et al. 2001). All 

Runx proteins play essential roles in both normal developmental processes and 

diseases. Runx1 is essential for hematopoiesis (Okuda, van Deursen et al. 1996), 

Runx2 is required for osteoblast maturation and osteogenesis (Otto, Thornell et al. 

1997), and Runx3 is involved in gastrointestinal, neurogenesis of the dorsal root 

ganglia and T-cell differentiation (Inoue, Ozaki et al. 2002, Levanon, Bettoun et al. 

2002, Li, Ito et al. 2002).  Deletion of any of the Runx genes is lethal in mice.   For 

example, Runx1 loss causes embryonic lethality due to major defects in the 

formation of the fetal liver and hemorrhaging in the central nervous system by 

embryonic day 12.5 (E12.5) (Okuda, van Deursen et al. 1996, Wang, Stacy et al. 

1996). Furthermore, mice bearing a homozygous mutation in Runx2 die just after 

birth due to an inability to breathe, presumably caused by complete lack of 

ossification (Otto, Thornell et al. 1997). The concept of fundamental core 

mechanism(s) for Runx protein function in development has been posited, 

however no single common machinery that governs the development of different 

tissues has been identified. Instead, Runx proteins utilize multiple spatiotemporal 

mechanisms to regulate development of different tissues depending on tissue type 
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or age. In this section, I will discuss the role of each Runx protein in tissue 

development.  

 

1.3.2 Runx1 

Runx1 is widely considered as the master regulator of developmental 

hematopoiesis (Okuda, van Deursen et al. 1996, Yzaguirre, de Bruijn et al. 2017). 

The process of hematopoiesis begins with primitive hematopoiesis, where a limited 

number of blood lineages (erythrocyte progenitors, erythrocyte/ megakaryocyte 

progenitors and primitive macrophages) that sustain early embryonic development 

are produced primarily from the yolk sac (Palis, Robertson et al. 1999, Xu, 

Matsuoka et al. 2001, Ferkowicz and Yoder 2005, Tober, Koniski et al. 2007). 

Runx1 is expressed in the mesodermal masses in this yolk sac, and in the primitive 

hematopoietic cells with the exception of primitive erythrocyte progenitor cells 

(North, Gu et al. 1999, Georges Lacaud, Lia Gore et al. 2002).  Although, Runx1 

is not considered to be required for primitive hematopoiesis, in its absence, all 

three primitive hematopoietic lineages are affected. Without Runx1, primitive 

macrophages are absent (Georges Lacaud, Lia Gore et al. 2002, Li, Chen et al. 

2005), the number of megakaryocytes is reduced (Potts, Sargeant et al. 2014), 

and primitive erythrocytes are abnormal in function with decreased expression of 

the erythroid marker Ter118 and the transcription factors EKLF and Gata1 (Castilla, 

Wijmenga et al. 1996, Yokomizo, Hasegawa et al. 2008). Therefore, Runx1 plays 

an essential role in primitive hematopoiesis. 
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    After primitive hematopoiesis, endothelial cells undergo a process known as 

definitive hematopoiesis, which constitutes the second and third waves of blood 

development (Yzaguirre, de Bruijn et al. 2017). During this stage of development, 

hematopoietic stem cells (HSCs) are formed (Chen, Mao et al. 2014). HSCs have 

long-term repopulation capacity and the ability to produce any of the hematopoietic 

lineages (Bryder, Rossi et al. 2006). Definitive hematopoietic cells are derived from 

a subset of epithelial cells called hemogenic endothelium (HE) cells, which are part 

of the interior lining of blood vessels in the embryo (Swiers, Rode et al. 2013). HE 

cells are a transitional population that undergoes an endothelial to hematopoietic 

transition (EHT) to transform into hematopoietic progenitors and stem cells (Kissa 

and Herbomel 2010). Runx1 is indispensable for definitive hematopoiesis and a 

critical transcription factor regulating such processes by suppressing the 

endothelial transcriptional program and initiating the hematopoietic program (North, 

Gu et al. 1999, Yokomizo, Ogawa et al. 2001, Chen, Yokomizo et al. 2009, Lancrin, 

Mazan et al. 2012, de Bruijn and Dzierzak 2017).  In the absence of Runx1, no 

definitive HSCs are formed (Okuda, van Deursen et al. 1996, Wang, Stacy et al. 

1996). On the other hand, in Runx1 heterozygous mutant embryos, definitive 

hematopoiesis is suppressed and the spatial and temporal developments of HSCs 

are changed (Wang, Stacy et al. 1996, Cai, de Bruijn et al. 2000, Mukouyama, 

Chiba et al. 2000). Depletion of Runx1 within specific tissues or developmental 

stages in mice demonstrated that Runx1 expression is required specifically in 

endothelial cells for de novo generation of HSCs, but is not essential for the 
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renewal and survival of HSCs thereafter (Chen, Yokomizo et al. 2009, Yzaguirre, 

de Bruijn et al. 2017). Even so, Runx1 is still required for lineage-specific 

differentiation and homeostasis. For instance, Runx1 is necessary for 

megakaryocytic maturation and differentiation of B-cells and T-cells in mouse bone 

marrow (Ichikawa, Asai et al. 2004, Seo, Ikawa et al. 2012, Niebuhr, Kriebitzsch et 

al. 2013).  

    Runx1 may function in embryogenesis at an even earlier stage than 

hematopoiesis. In human embryonic stem cells, RUNX1 is transiently expressed 

during early mesendodermal differentiation, which starts at E 5.5 day (Wang and 

Chen 2016), by promoting an epithelial to mesenchymal transition in a 

Transforming growth factor beta (TGF-b) dependent manner (VanOudenhove, 

Medina et al. 2016).  In addition to its role in defining hematopoietic lineages, 

Runx1 is also involved in the development of other tissues including hair follicles, 

bone, nervous system, mammary gland and muscle (Yamashiro, Åberg et al. 2002, 

Lian, Balint et al. 2003, Osorio, Lee et al. 2008, Hoi, Lee et al. 2010, Kanaykina, 

Abelson et al. 2010, van Bragt, Hu et al. 2014, Sokol, Sanduja et al. 2015, 

Umansky, Gruenbaum-Cohen et al. 2015). It has been well documented that 

Runx1 modulates the developmental activation and proliferation of hair follicle cells 

(Osorio, Lee et al. 2008).  The formation of hair follicle stem cells requires constant 

interaction between epithelial and mesenchymal cells, which both require RUNX1 

expression (Raveh, Cohen et al. 2006, Osorio, Lee et al. 2008, Sennett and Rendl 

2012).  In epithelial cells, depletion of Runx1 delays the formation of hair follicles 
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due to the lack of hair follicle cell emergence (Osorio, Lee et al. 2008, Osorio, Lilja 

et al. 2011). However, the function of Runx1 in this cell type appears dispensable, 

as the defects are overcome with time (Osorio, Lilja et al. 2011). Loss of Runx1 in 

mesenchymal cells during embryogenesis affects the integrity of hair follicle 

formation. It has been shown that mesenchymal cells still mature into hair follicles 

after knockout of Runx1 in mice, but with enormous sebaceous cysts that do not 

contain the bulb and bulge region at the first hair cycle (Osorio, Lilja et al. 2011). 

Besides embryogenesis, Runx1 is also crucial for regulating the hair cycle at the 

transition into adult skin homeostasis. Runx1 directly promotes the proliferation of 

hair follicle stem cells and loss of RUNX1 delays the activation of stem cells into 

the cell cycle (Osorio, Lee et al. 2008, Hoi, Lee et al. 2010, Scheitz, Lee et al. 

2012). Recently it has been discovered that RUNX1 is also essential for mammary 

gland development as will be discussed later (see Section 1.5.1).   

 

1.3.3 Runx2 

Bone development occurs through two independent processes termed 

intramembranous and endochondral ossification (Berendsen and Olsen 2015). For 

intramembranous bone development, flat bones are directly formed by osteoblasts, 

which are differentiated from mesenchymal cells (Berendsen and Olsen 2015).  

Runx2 is the first transcription factor required for osteoblast differentiation (Komori 

2010, Komori 2017). Osteoblasts are completely absent in Runx2-/- mice, which 

indicates that Runx2 is required for the differentiation of mesenchymal stem cells 
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into osteoblasts (Komori, Yagi et al. 1997, Otto, Thornell et al. 1997). Runx2 also 

activates the bone commitment transcription factor SP7 and bone matrix proteins 

including Spp1, Col1a1, IBSP and Bglap2 (Ducy, Zhang et al. 1997, Sato, Morii et 

al. 1998, Harada, Tagashira et al. 1999, Lee, Kim et al. 2000, Stein, Lian et al. 

2004). After mesenchymal stem cell differentiation into osteoblasts, Runx2 

expression is decreased, and abnormally maintaining Runx2 expression inhibits 

osteoblast maturation (Liu, Toyosawa et al. 2001, Geoffroy, Kneissel et al. 2002, 

Kanatani, Fujita et al. 2006). For the formation of long bones, endochondral 

ossification requires maturation of chondrocytes at the center of the bone, known 

as the diaphysis. Terminally differentiated chondrocytes undergo apoptosis and 

are then replaced by mesenchymal cells. These mesenchymal cells later 

differentiate into osteoblasts (Berendsen and Olsen 2015). In Runx2-/- mice, 

chondrocyte maturation is severely inhibited and mechanistically Runx2 up-

regulates chondrocyte maturation through the activation of osteoblast 

differentiation (Komori, Yagi et al. 1997, Inada, Yasui et al. 1999, Komori 2017).   

    Recently, evidence has demonstrated that Runx2 is also involved in 

hematopoiesis. Runx2 expression is at an even higher level than Runx1 in 

hematopoietic stem cells; however the level of Runx2 sharply decreases during 

myeloid differentiation (Kuo, Zaidi et al. 2009). This loss of Runx2 expression is 

necessary for myeloid progenitor differentiation, as ectopic expression of Runx2 

blocked differentiation in in vitro assays (Kuo, Zaidi et al. 2009). Besides myeloid 

differentiation, Runx2 is also involved in regulating lymphoid lineage	 (Stewart, 



	 26	

Terry et al. 1997). Runx2 is expressed at the earliest stage of thymocyte 

development and forced expression of Runx2 slows down T cell development, 

resulting in an expansion of double-negative and CD8 immature single-positive 

cells (Satake, Nomura et al. 1995, Vaillant, Blyth et al. 2002, Blyth, Vaillant et al. 

2010). Moreover, Ehrhardt et al. showed that Runx2 expression is enriched in a 

subpopulation of memory B cells and therefore might be involved in B-cell 

differentiation (Ehrhardt, Hijikata et al. 2008). In addition to bone development and 

hematopoiesis, Runx2 is also expressed in prostate, testis, vascular endothelium 

and ovary where its function in these tissues remains unclear (Sun, Vitolo et al. 

2001, Jeong, Jin et al. 2008, Blyth, Vaillant et al. 2010).  The reason why bone-

specific factor Runx2 is found in hematopoietic stem cells and other tissue lineages 

is still unclear. It could potentially be related to mitotic bookmarking functions of 

Runx factors (Young, Hassan et al. 2007, Young, Hassan et al. 2007).   

 

1.3.4 Runx3  

Like Runx1 and Runx2, Runx3 has also been shown to be involved in development 

(Inoue, Shiga et al. 2008). Runx3-/- mice exhibit ataxia due to improper function of 

several important organs, including dorsal root ganglia, natural killer cells, and 

CD8+ T cells (Inoue, Ozaki et al. 2002, Levanon, Bettoun et al. 2002, Taniuchi, 

Osato et al. 2002, Durst and Hiebert 2004, Chen, de Nooij et al. 2006). In addition 

to neuronal defects, Runx3-null mice develop gastric hyperplasia and die shortly 

after birth due to starvation (Li, Ito et al. 2002). These data indicate a possible role 



	 27	

of Runx3 in regulating development of the gastric epithelium (Li, Ito et al. 2002). 

Conversely, this phenotype was not observed in another Runx3 knockout mouse 

(Levanon, Brenner et al. 2003, Levanon, Bernstein et al. 2011). The reason for this 

discrepancy is still unclear, but could be a result of different genetic backgrounds 

and/or antibodies used in these studies (Ito 2012, Levanon, Negreanu et al. 2012).  

    In summary, all three Runx proteins are essential for normal development in 

multiple tissues and have diverse roles in proliferation, differentiation and cell 

lineage commitment. In the original studies, all Runx-null mice are lethal. The 

advancement of new tissue-specific CRISPR/Cas9 technology may find novel 

developmental roles for this conserved Runx family in the future.   

 

1.4 The Runx Family in Cancer  

1.4.1 Overview 

As discussed, all three Runx proteins are involved in the development of multiple 

tissues. Therefore, the precise regulation and integrity of these factors is 

necessary for normal function. Deregulation of Runx functions causes many 

diseases and cancers. One such example, mutation of RUNX2, causes a 

hypomorphic allele and results in a congenital disorder in skeletal development 

named Cleidocranial Dysplasia (CCD) (Otto, Kanegane et al. 2002, Matheny, 

Speck et al. 2007) . In this section, I will give examples of how dysfunction of Runx 

proteins causes diseases and cancer. 
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1.4.2 Runx1 

RUNX1 was first cloned in 1991 at the breakpoints on chromosome 21 in leukemia 

(Miyoshi, Shimizu et al. 1991). Later it was discovered that a RUNX1 fusion protein, 

RUNX1-ETO (AML1-ETO), is generated by a translocation between chromosomes 

8 and 21 (t8:21) (Miyoshi, Shimizu et al. 1991, Erickson, Gao et al. 1992, Miyoshi, 

Kozu et al. 1993).  RUNX1-ETO leads to leukemia and is the most common genetic 

alteration in acute myeloid leukemia (AML), especially within the M2 subtype of 

AML (Lin, Mulloy et al. 2017, Sood, Kamikubo et al. 2017). This subtype is 

associated with younger age and relatively good prognosis (Lin, Mulloy et al. 2017). 

The RUNX1-ETO fusion protein contains the N-terminal 177 amino acids of 

RUNX1, including the entire Runt DNA-binding domain, fused in frame with almost 

the entire ETO protein. ETO contains four evolutionarily conversed domains 

termed nervy homology regions (NHR), which mediates homodimerization of 

RUNX1-ETO (Davis, McGhee et al. 2003, Liu, Cheney et al. 2006, Kwok, Zeisig et 

al. 2009, Yan, Ahn et al. 2009). Like RUNX1, RUNX1-ETO regulates gene 

expression by forming complexes with diverse proteins and gains the ability to form 

complexes with aberrant partners compared with the wild-type RUNX1. For 

instance, RUNX1-ETO forms a co-repressor complex with nuclear receptor co-

repressor (NCOR1), histone deacetylase (HDAC1), and SIN3A/HDAC at the ETO 

NHR domain (Gelmetti, Zhang et al. 1998, Lutterbach, Westendorf et al. 1998, 

Wang, Hoshino et al. 1998, Amann, Nip et al. 2001, Davis, McGhee et al. 2003, 

Lin, Mulloy et al. 2017). RUNX1-ETO also interacts with E proteins through the 
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NHR domain to inhibit E-protein-induced transcriptional activation (Zhang, Kalkum 

et al. 2004).  It has also been reported that in physiological conditions, p300 and 

PRMT bind weakly to RUNX1-ETO forming a transcription co-activation complex 

to dynamically regulate target gene expression (Sun, Wang et al. 2013).  

Dominant-negative inhibition of native RUNX1 function may therefore be the 

central mechanism for RUNX1-ETO induced leukemogenesis (Goyama and 

Mulloy 2011). However, surprisingly, RUNX1-ETO also requires some activities of 

the native RUNX1 to promote leukemogenesis, as RUNX1 is a member of the 

RUNX1-ETO transcription complex (Li, Wang et al. 2016) .   

    In addition to the t(8:21) translocation, more than 50 other chromosomal 

translocations affect RUNX1. Most of them are related to leukemia, but only about 

half of the partner genes have been identified among these translocations (Etienne 

De Braekeleer 2011). Other common translocations include t(12;21) in pediatric 

acute lymphoblastic leukemia (ALL), known as TEL-RUNX1 (Jamil, Theil et al. 

2000); and t(3:21) in therapy related AML and myelodysplastic syndrome (MDS), 

known as RUNX1-MECOM (Yang, Cho et al. 2012).  

    RUNX1 somatic mutations are also detected in approximately 3% of pediatric 

and 15% of adult AML patients. Adult AML is associated with older age and worse 

prognosis.  These leukemic cells generally have a growth advantage over the 

hematopoietic progenitor cells with defects in differentiation due to mutated 

RUNX1 (Tang, Hou et al. 2009, Greif, Konstandin et al. 2012, Mendler, Maharry et 

al. 2012, Schuback, Arceci et al. 2013, Skokowa, Steinemann et al. 2014).  RUNX1 



	 30	

is also one of the most frequently mutated genes in MDS and ALL, about 10% and 

25% respectively (Speck and Gilliland 2002, Bejar, Stevenson et al. 2011, 

Grossmann, Kern et al. 2011, Mullighan 2012, Papaemmanuil, Gerstung et al. 

2013, Haferlach, Nagata et al. 2014).  

    In summary, RUNX1 is a major player in hematologic malignancies. It is a key 

regulator of hematopoiesis, and maintains a proper balance between proliferation 

and differentiation.  Therefore, the high frequency of loss-of-function somatic point 

mutations or translocations in multiple subtypes of leukemia result in the 

repression of RUNX1 normal function and initiation of leukemogenesis. Several 

companies including Invitae and NEO genomics provide screening of RUNX1 

mutations in leukemia patients to evaluate prognosis and select therapeutic 

strategy.  

    Besides its impact on leukemia, Runx1 is either over- or under-expressed in 

many solid tumors, implying that Runx1 either promotes or represses epithelial 

cancers depending on the cellular context (Scheitz and Tumbar 2013). For 

example, Runx1 is identified as a tumor promoter in ovarian and skin cancers and 

tumor suppresses tumor growth in prostate cancer (Scheitz, Lee et al. 2012, Keita, 

Bachvarova et al. 2013, Takayama, Suzuki et al. 2015). The involvement of Runx1 

in skin cancer was first discovered in a chemically induced mouse model. Loss of 

Runx1 significantly decreases the number of skin tumors formed (Hoi, Lee et al. 

2010).  Using lineage tracing, it has been shown that the Runx1-expressing hair 

follicle stem cells are the origin of these chemically induced skin tumors (Scheitz, 
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Lee et al. 2012).  Mechanistically, in skin cancer Runx1 maintains an 

active/phosphorylated form of the oncogene STAT3, and thus increases cell 

survival, proliferation and invasion (Scheitz, Lee et al. 2012).   

 

1.4.3 Runx2 and Runx3  

In contrast with RUNX1, which has opposing functions in different cancer types, 

RUNX2 has been well documented to be an oncogene (Chuang, Ito et al. 2017). 

For example, Runx2 functions as an oncogene in lymphoma, where it is a frequent 

target for viral insertion in T-cell lymphomas (Stewart, Terry et al. 1997, Blyth, 

Vaillant et al. 2006). In osteosarcoma, increased RUNX2 expression is also 

associated with tumorigenicity, metastasis, lower survival and poor prognosis by 

directly activating PI3K/AKT pathways (Martin, Zielenska et al. 2011, Cohen-Solal, 

Boregowda et al. 2015). Up-regulation of RUNX2 has been linked to bone 

metastasis in multiple epithelial cancer types including colon, breast, prostate and 

thyroid cancer (Pratap, Javed et al. 2005, Akech, Wixted et al. 2010, Chimge, 

Baniwal et al. 2011, Niu, Kondo et al. 2012, Cohen-Solal, Boregowda et al. 2015).  

RUNX2 contributes to metastatic events through regulation of bone metastatic-

related genes, such as osteopontin, bone sialoprotein, matrix metalloproteinases, 

and activation of signaling pathways including WNT and TGF-b (Pratap, Lian et al. 

2006).  Meanwhile RUNX3 is also involved in multiple solid tumors and functions 

as a tumor suppressor in the majority of the cases (reviewed in (Chuang and Ito 

2010, Chen, Wang et al. 2014, Chen, Liu et al. 2016) ) . 
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1.5 RUNX1 in Mammary Gland development and Breast Cancer  

1.5.1 Mammary gland development and hierarchy 

The mammalian mammary gland is a highly dynamic organ that undergoes 

profound changes in structure and function during the reproductive cycle and 

pregnancy (Richert, Schwertfeger et al. 2000, Hennighausen and Robinson 2005, 

Watson and Khaled 2008). The development of mouse mammary gland starts at 

puberty when the embryonic epithelial placode transforms into a branched network 

of collecting ducts and tubes, which consist of two distinct types of cell lineages: 

the inner layer of luminal lineage (including ductal and alveolar luminal cells) and 

the outer layer of basal lineage (the myoepithelial cells) (Muschler and Streuli 

2010). During pregnancy, increased progesterone and prolactin levels result in 

greater branching and formation of mature lobuloalveolar units that contain 

terminally differentiated cells for milk production (Hennighausen, Robinson et al. 

1997). The milk is released by contraction of ductal and lobular myoepithelial cells 

(Haaksma, Schwartz et al. 2011).  Following lactation, the mammary gland returns 

to a virgin-like state through involution, with the death of epithelial cells and 

extensive tissue remodeling (Richert, Schwertfeger et al. 2000, Watson and 

Khaled 2008, Inman, Robertson et al. 2015). 
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1.5.2 RUNX1 and mammary gland development 

    Runx1 has a spatial/temporal expression pattern in the mammary gland, as it is 

differentially expressed during physiological stages of mammary gland 

development. The highest levels are observed in virgin and early-pregnant glands 

and decrease in late pregnancy and during lactation (McDonald, Ferrari et al. 2014, 

van Bragt, Hu et al. 2014, Rooney, Riggio et al. 2017). Compared with cells of the 

luminal lineage, Runx1 is expressed at higher levels in basal progenitor cells 

(McDonald, Ferrari et al. 2014, van Bragt, Hu et al. 2014). As Runx1 expression is 

lost from differentiated alveolar luminal cells, it has been speculated that a 

reduction in RUNX1 expression is necessary for milk production and secretion (van 

Bragt, Hu et al. 2014).  Besides the expression pattern, the role of Runx1 in 

regulation of mammary development and its role in normal mammary gland are 

still understudied.  In normal-like basal MCF10A cells, RUNX1 is essential for 3D 

growth in Matrigel (Wang, Brugge et al. 2011). Furthermore, Runx1 is required for 

mammary stem cells to exit the bipotent state and differentiate into mature lobules 

and ducts (Sokol, Sanduja et al. 2015). In vivo, deletion of Runx1 specifically in the 

mouse mammary gland reduces the proportion of luminal cells. In particular, loss 

of Runx1 results in a deficit in mature estrogen receptor (ER) positive luminal cells 

(van Bragt, Hu et al. 2014).  The mechanism(s) of Runx1 regulation of mammary 

gland development is still unclear. It has been suggested that Runx1 decides the 

fate of the ER-positive luminal subpopulation and directs ductal differentiation by 

repressing the alveolar transcription factor Elf5 (van Bragt, Hu et al. 2014). There 
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are relatively few studies devoted to determining the role of Runx1 in the basal 

lineage of myoepithelial cells, even though Runx1 is expressed at a higher level in 

this subpopulation compared with luminal cells (van Bragt, Hu et al. 2014). 

Interestingly, Runx1 conditional knockout mice have defects in myoepithelial cell 

contraction and milk ejection, and most of the pups die within 24 hours after birth 

with no observed milk spots (van Bragt, Hu et al. 2014).   It is interesting to note 

that smooth muscle contraction is among the top down-regulated pathways in 

embryonic stem cells with RUNX1 depletion (VanOudenhove, Medina et al. 2016). 

These data reveal a potential role for RUNX1 in maintaining the normal phenotype 

of basal myoepithelial cells.  

 

1.5.3 RUNX1 and breast cancer  

In recent years, growing evidence has indicated that RUNX1 suppresses tumor 

growth in breast cancer. RUNX1 was initially identified as a potential transcription 

factor to suppress tumor growth in breast cancer, as it was down regulated among 

a 17-gene signature associated with metastasis in adenocarcinoma including 

breast cancer (Ramaswamy, Ross et al. 2003). The expression of RUNX1 was 

later shown to decrease when comparing normal mammary tissue to breast cancer, 

with a greater decrease in higher-grade tumors (Kadota, Yang et al. 2010). 

Sequencing of breast cancer patient samples then identified that 6% of all breast 

invasive cancers and 10% of invasive lobular breast cancers have an alteration in 

the RUNX1 gene (Ciriello, Gatza et al. 2015, Rooney, Riggio et al. 2017). Both 
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whole genome and whole exome sequencing have identified point mutations and 

deletions of RUNX1 in luminal and basal breast cancers (Banerji, Cibulskis et al. 

2012, Ellis, Ding et al. 2012, Network 2012). In these studies, RUNX1 is a 

frequently mutated gene along with other well-known tumor suppressor and 

oncogene genes including PTEN, CDH1, TP53, PIK3CA, which have been 

intensively investigated in breast cancer (Bertheau, Lehmann-Che et al. , 

Kechagioglou, Papi et al. 2014, Mukohara 2015, Maeirah Afzal and Ezharul Hoque 

2016). These RUNX1 mutations, including point mutations, frame-shift mutations, 

and deletions, were assumed to be loss-of-function mutations. The majority of 

these mutations are located at the interface between the Runt domain and DNA, 

suggesting that the RUNX1 mutants cannot bind properly to target genes (Fig.1.2). 

Notably, mutations were also identified in the RUNX1 binding partner CBF-b 

(Network 2012). Thus, it is possible that loss of RUNX1 function by disrupting 

RUNX1-DNA binding or the interaction between RUNX1 and CBF-b may promote 

tumorigenesis in mammary gland.  Recently, there are two studies that 

independently identified RUNX1 loss-of-function mutation as the driver for the 

existence of other mutations in breast cancer, thus strongly suggesting that 

RUNX1 loss promotes breast cancer progression (Pereira, Chin et al. 2016, Kas, 

de Ruiter et al. 2017).   

In summary, by sequencing the tumors from breast cancer patients, RUNX1 

mutations that associate with initiation and progression of the disease have been 

identified in multiple subtypes of breast cancer. In a tissue microarray study, 
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RUNX1 intensity was decreased in breast cancer tumors compared with normal 

mammary tissues (Browne, Taipaleenmäki et al. 2015). However, the molecular 

mechanisms underlying RUNX1 suppressed tumor growth remain unclear and 

require further investigation in cell lines, mouse models, and human patient 

samples.   

    Multiple studies using cell lines and mouse models have been carried out to 

identify RUNX1 function in breast cancer. In normal mammary epithelial cells, loss 

of RUNX1 in a 3D Matrigel assay resulted in hyper-proliferation and abnormal 

morphogenesis, which requires normal FOXO1 function (Wang, Brugge et al. 

2011). In another study, conditional knockout of Runx1 in mammary epithelial cells 

reduced the proportion of ER+ luminal cells, but did not result in mammary tumors 

(van Bragt, Hu et al. 2014).  However, loss of TP53 or Rb1 rescued this phenotype 

and resulted a hyper-proliferation of Runx1-deficient ER+ luminal cells. Cells 

harboring a double mutation may eventually develop into breast cancer (van Bragt, 

Hu et al. 2014).  Further exploration using double-knockout mice (Runx1/TP53 or 

Runx1/RB1) will be required to determine whether these mice develop abnormal 

mammary hyperplasias or tumors. Recent work from the Frenkel lab has 

demonstrated that loss of RUNX1 in Luminal A breast cancer cells facilitates 

estrogen-induced WNT signaling by suppressing the scaffold protein AXIN1 

(Chimge, Little et al. 2016). Therefore, along with genetic data, growing evidence 

in cell lines and mouse models establishes the concept that RUNX1 reduces 

aggressive phenotype in breast cancer, especially in the luminal subtype. 
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    In contrast, a few studies indicate that RUNX1 may function as an oncogene in 

breast cancer. In particular, triple-negative breast cancer was correlated with high 

RUNX1 expression and poor prognostic outcome (Ferrari, Mohammed et al. 2014). 

RUNX1 inhibition in the triple-negative MDA-MB-231 late stage breast cancer cell 

line, showed a less aggressive phenotype with decreased proliferation, migration 

and invasion in vitro (Recouvreux, Grasso et al. 2016). Furthermore, in the MMTV-

PyMT mouse model, RUNX1 expression is positively correlated with advanced 

disease (Browne, Taipaleenmäki et al. 2015).  The discrepancy could be due to 

heterogeneity in breast cancer, as breast cancer encompasses a diverse group of 

subtypes. These subtypes have different cellular origins (luminal versus basal) and 

molecular alterations (e.g., hormonal status including ER, PR, and HER2) (Eroles, 

Bosch et al. 2012).  In the luminal subtype of breast cancer, it has been well 

accepted that RUNX1 reduces tumor aggressive phenotypes. On the other hand, 

in the basal-like subtype, RUNX1 may have a dual function depending on the stage 

of breast cancer. In normal mammary myoepithelial cells, loss of RUNX1 disrupts 

the normal function of that cell layer’s ability to contract and eject milk (van Bragt, 

Hu et al. 2014). However, in late-stage triple-negative breast cancer, RUNX1 is 

linked to fast proliferation and a more aggressive phenotype (Recouvreux, Grasso 

et al. 2016). The molecular signatures of normal basal cells/early stage basal 

cancer and late stage basal cells are significantly different. Due to the distinct 

cellular context and gene expression patterns, RUNX1 may form complexes with 

different co-activator or co-repressor proteins. This differential binding of co-



	 38	

regulatory factors may convert its activity from being a gene against tumor growth 

to an oncogene by differentially regulating the same subset of genes. Alternatively, 

these RUNX1 complexes may be targeted to entirely new subsets of genes. 

         In conclusion, knowledge regarding the function of RUNX1 in breast cancer 

is still far from complete, and the potential dual role as promoting or suppressing 

tumor growth highlights its extreme context dependency. It is still a challenge to 

integrate the genomic data obtained from patients with molecular data from cell 

lines and animal models. A better understanding of RUNX1 function in different 

stages of breast cancer will potentially translate into targeted therapies that could 

greatly benefit prevention and screening. 

  

1.6 Epithelial Mesenchymal Transition in Breast Cancer   

1.6.1 Overview of EMT 

The concept of epithelial-mesenchymal transition (EMT) was first described almost 

50 years ago in 1968 by Elizabeth Hay (Hay 1968). EMT is an evolutionally 

conserved morphogenetic program during which epithelial or epithelial-like cells 

undergo a series of biochemical changes allowing them to acquire a mesenchymal 

phenotype (Thiery 2002). During the EMT process, polarized epithelial cells with 

tight junctions acquire mesenchymal properties, such as enhanced migration, 

invasiveness, and elevated resistance to apoptosis. EMT is precisely regulated by 

the interplay of signaling pathways, transcription factors and miRNAs. Several 

transcription factors, for example, the Zeb, Snail and Twist families, are activated 
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by a variety of signaling pathways, including TGF-b, NOTCH and WNT (Nieto 2002, 

Yang, Mani et al. 2004, Liu, El-Naggar et al. 2008, Lamouille, Xu et al. 2014). In 

turn, these transcription factors initiate the EMT program by silencing E-cadherin 

expression at the cell surface. The loss of E-cadherin is a fundamental hallmark of 

EMT (Kalluri and Weinberg 2009). Furthermore, mesenchymal-like cells 

commonly express Vimentin, which is a cytoskeletal protein necessary for 

migration (Kalluri and Weinberg 2009). Recent findings suggest that EMT is not an 

all-or-none process from purely epithelial to purely mesenchymal phenotypes, but 

rather is a multi-stage process, with one or multiple intermediate stages. These 

intermediate phenotypes have been referred to as partial EMT (Shibue and 

Weinberg 2017).  The details on partial EMT and its role in metastasis and cancer 

stem cells will be discussed in detail in section 1.7.2. 

    There are three different types of EMT, which carry out very different functions. 

1. EMT that is required for the formation of mesodermal and neural tube tissue 

during embryogenesis; 2. EMT associated with tissue regeneration and organ 

fibrosis; 3. EMT that contributes to the pathogenesis of cancer metastasis (Kalluri 

and Weinberg 2009, Thiery, Acloque et al. 2009, Kovacic, Mercader et al. 2012).  

I will discuss the role of EMT in development and cancer in the next two sections.  

 

1.6.2 Epithelial mesenchymal transition in development 

EMT drives essential aspects of embryonic development. During gastrulation, 

complete EMT occurs to generate fully committed mesenchymal cell types forming 
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the early mesoderm or endoderm (Viebahn, Lane et al. 1995, Thiery, Acloque et 

al. 2009). In contrast, partial and reversible EMT occurs during morphogenesis of 

certain epithelial tissues such as the mammary gland (Nakaya and Sheng 2013).   

    During puberty, mammary epithelial stem/progenitor cells that reside in the 

terminal end buds of the breast start to elongate and migrate, thereby driving 

branching morphogenesis (Micalizzi, Farabaugh et al. 2010). These epithelial cells 

transiently acquire mesenchymal features, including loss of apical-basal polarity 

(Ewald, Brenot et al. 2008, Ewald, Huebner et al. 2012), and elevated expression 

of the EMT transcription factors Snai1 and Twist (Kouros-Mehr and Werb 2006, 

Foubert, De Craene et al. 2010).  The cells in the terminal end buds are regulated 

by a number of extracellular factors known to induce EMT, including epidermal 

growth factor (EGF) and hepatocyte growth factor (HGF). For instance, in the 

mouse mammary gland, overexpression of HGF causes hyperplastic branching 

morphogenesis, while inhibition of HGF signaling blocks budding of side branches 

(Rosário and Birchmeier 2003).  Branching morphogenesis is a highly plastic 

process with an incomplete EMT program, as both the epithelial and mesenchymal 

lineages are essential for normal mammary gland function. Recently two 

transcription factors, Elf5 and Ovol2, have been shown to be the gatekeepers of 

mammary epithelial differentiation by inhibiting EMT at terminal end buds 

(Chakrabarti, Hwang et al. 2012, Watanabe, Villarreal-Ponce et al. 2014).  Elf5 is 

the master regulator for transforming luminal progenitor cells into alveolar cells 

during pregnancy and lactation (Oakes, Naylor et al. 2008, Choi, Chakrabarti et al. 
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2009). Therefore, a partial EMT state, gaining partial mesenchymal features with 

maintenance of some epithelial characteristics, is critical during mammary gland 

development.   

 

1.6.3 Epithelial mesenchymal transition in cancer 

Almost 80% of human cancer deaths derive from epithelial tissues including 

tumors of the breast, lung, pancreas, prostate, colon, ovary, kidney and liver	(Ye 

and Weinberg 2015).  Hyperplasia or early stage tumors arising in these tissues 

continue to express the epithelial marker E-cadherin, whereas cells from highly 

aggressive primary tumors exhibit mesenchymal features including motility and 

invasiveness (Choi, Lee et al. 2013, Cheng, Chang et al. 2014). Cancer cells have 

the capability to utilize the EMT process to initiate invasion and metastasis (Chaffer, 

San Juan et al. 2016).   

    In breast cancer, an EMT signature is enriched in basal-like and Claudin low 

subtypes compared with Luminal A/B subtypes	(Prat, Parker et al. 2010). Since 

tumor progression is positively associated with acquisition of mesenchymal 

features, this may be an explanation for why basal and Claudin low breast cancers 

are more aggressive. Depletion of activators of EMT, such as Twist, Snail and Zeb 

in human and mouse breast cancer cell lines, greatly inhibit metastasis after 

mammary fat pad or tail vein injection (Yang, Mani et al. 2004, Guo, Keckesova et 

al. 2012, Zhang, Corsa et al. 2013, Roy, Gonugunta et al. 2014, Tran, Luitel et al. 

2014). For instance, depleting Snail in MMTV-PyMT mice completely abolished 95% 
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of lung metastasis (Tran, Luitel et al. 2014). Consistently, activating EMT in human 

breast cancer cells can enhance metastatic dissemination (Tran, Luitel et al. 2014). 

Therefore, EMT has been defined as a critical component of the metastatic 

process.  

    Although EMT processes are well documented in many in vitro cancer cell 

models and even in vivo animal experiments, the existence of EMT during tumor 

progression and its relevance in metastasis have remained matters of controversy. 

One of the key concerns is the lack of convincing histological evidence of EMT in 

clinical samples (Thiery, Acloque et al. 2009).	 Two recent reports raise the 

question of whether EMT is dispensable for invasion and metastasis in mouse 

models of breast and pancreatic cancer	 (Fischer, Durrans et al. 2015, Zheng, 

Carstens et al. 2015). Fisher et al. used a spontaneous breast to lung metastasis 

mouse model and labeled fibroblast-specific protein 1 (Fsp1) as a marker for EMT. 

They observed that many Fsp1 negative cells metastasize to lung, indicating that 

EMT is not necessary for metastasis	 (Fischer, Durrans et al. 2015). In another 

study, Zheng et al. knocked out either Snail or Twist in a spontaneous pancreatic 

ductal adenocarcinoma (KPC model) and observed no difference in metastasis by 

tracing a-smooth muscle actin as a mesenchymal marker	(Zheng, Carstens et al. 

2015). However, there is some debate regarding whether Fsp1 or a-smooth 

muscle actin are proper EMT markers, as they are rarely induced upon activation 

of EMT (Aiello, Brabletz et al. 2017, Ye, Brabletz et al. 2017). Furthermore, using 

the same KPC mouse model, depleting Zeb1 suppresses stemness, invasion and 
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metastasis, indicating that EMT is necessary for metastasis in vivo	 (Krebs, 

Mitschke et al. 2017).   

    Although these two studies suggest that EMT is dispensable for metastasis, 

both uncovered that EMT is key to chemoresistance	(Fischer, Durrans et al. 2015, 

Zheng, Carstens et al. 2015). Several other studies also demonstrated that 

induction of EMT confers resistance to chemotherapy and radiotherapy	(Creighton, 

Li et al. 2009, Oliveras-Ferraros, Corominas-Faja et al. 2012, Chen, Gibbons et al. 

2014).  The underlying molecular mechanisms of EMT-induced chemoresistance 

remain unsolved.  One hypothesis is that the EMT activator Twist can bind to the 

promoter and activate the expression of the ABC transporter, which is responsible 

for efflux of drugs out of the cell (Saxena, Stephens et al. 2011).   In the past 

decade, studies have highlighted a link between EMT and cancer stem cells, which 

be discussed in detail in section 1.7.  

 

1.6.4 Runx and EMT 

The Runx proteins are important players in the determination of cell fate during 

development, which often overlaps with the occurrence of EMT. During 

embryogenesis, transient RUNX1 expression in early mesendodermal 

differentiation of human embryonic stem cells promotes EMT through TGF-b 

signaling (VanOudenhove, Medina et al. 2016). During mammary branching 

morphogenesis, the level of Runx2 is increased and accompanied by the up-

regulation of EMT activators such as Snail2 (Kouros-Mehr and Werb 2006, 
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McDonald, Ferrari et al. 2014). Overexpressing RUNX2 in mammary epithelial 

cells activated differentiation and induced EMT (Chimge, Baniwal et al. 2011, 

Owens, Rogers et al. 2014).  On the other hand, depleting Runx2 in mouse 

mammary glands disrupted ductal outgrowth at puberty and progenitor cell 

differentiation during pregnancy (Owens, Rogers et al. 2014, Ferrari, Riggio et al. 

2015).  All these data suggest that Runx2 is a positive regulator of EMT in 

mammary gland development.   

    Increasing evidence has suggested that deregulation of Runx expression and 

function is linked to the aberrant induction of EMT in cancer.  Parallel to its 

involvement in EMT during development, RUNX2 has been implicated in the 

aberrant activation of EMT and metastasis in breast and prostate cancer.  In breast 

cancer cells, RUNX2 is necessary for the induction of Snail expression	(Chimge, 

Baniwal et al. 2011), while in prostate cancer, RUNX2 also positively regulates 

EMT drivers such as Snail2, SMAD3, and Sox9 (Baniwal, Khalid et al. 2010, Little, 

Noushmehr et al. 2012, Little, Baniwal et al. 2014) .    

     Until now, there has been no direct evidence showing whether RUNX1 

regulates EMT in the mammary gland or breast cancer. However, it was shown 

that RUNX1 binds to the promoter of E-cadherin and positively regulates its 

promoter activity (Liu, Lee et al. 2005).  Runx1 also represses ELF5 expression, 

which is a key driver of alveolar luminal cell differentiation	(van Bragt, Hu et al. 

2014). Therefore, RUNX1 may be important in maintaining homeostasis and 

preventing EMT in the mammary gland.  



	 45	

1.7 Breast Cancer Stem cells  

1.7.1 Intra-tumor heterogeneity 

Breast cancer is a heterogeneous disease, which often displays intra-tumor and 

inter-tumor heterogeneity as the result of genetic and non-genetic alterations 

(Polyak 2007) . Inter-tumor heterogeneity has been proposed to reflect the different 

cells-of-origin that become transformed into the tumor cells (Burrell, McGranahan 

et al. 2013). In breast cancer, inter-tumor heterogeneity often leads to the 

classification of different tumor subtypes as discussed in Section 1.1.3. 

    It also has been noticed for a long time that tumors contain sub-clones that differ 

in karyotype and chemoresistance (Shapiro, Yung et al. 1981, Yung, Shapiro et al. 

1982) . Using deep-sequencing expression profiling of various regions in the same 

tumor, it has been found that within a single tumor, there are multiple clones with 

distinct genetic and epigenetic profiles, as well as somatic mutations (Anderson, 

Lutz et al. 2010, Gerlinger, Rowan et al. 2012). This phenomenon has been 

described as intra-tumor heterogeneity (Marjanovic, Weinberg et al. 2013, 

Prasetyanti and Medema 2017). Intra-tumor heterogeneity is not limited to the 

differences in malignant cancer cells. More importantly, a tumor is a complex 

structure containing different clones of tumor cells as well as other cell types, such 

as infiltrating immune cells, stromal cells and endothelial cells (Lu, Weaver et al. 

2012, Junttila and de Sauvage 2013).   

    Both intrinsic and extrinsic factors influence the intra-tumor heterogeneity. The 

intrinsic factors exist at both genetic and epigenetic levels (Prasetyanti and 
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Medema 2017).  Cancer cells usually inherit or acquire aberrations in their genome, 

such as point mutation, translocation, deletion and amplification (Vogelstein, 

Papadopoulos et al. 2013). Those mutations reflect a degree of genome instability, 

which is a hallmark of cancer (Hanahan and Weinberg 2011).  Among those 

mutations, some defined as driver mutations, induce activation of oncogenic 

pathways and suppression of tumor suppressors (Stratton, Campbell et al. 2009). 

Intensive efforts have been carried out to find these driver mutations in cancer 

patients. Recently, a list of 40 mutation driver genes has been identified in breast 

cancer patients (Pereira, Chin et al. 2016). Interestingly, RUNX1 is in that list, 

suggesting its role for maintaining genome stability (Pereira, Chin et al. 2016).  

Epigenetic heterogeneity is also often observed in tumors (Dawson and 

Kouzarides 2012). Drugs that target epigenetic enzymes, which rearrange 

chromatin structure and function, are being developed rapidly and undergoing 

clinical trials (Simó-Riudalbas and Esteller 2015, de Lera and Ganesan 2016).  

    The different environments surrounding tumors also influence the intra-tumor 

heterogeneity (McGranahan and Swanton 2017). Tumor cells that survive within 

the hypoxic region due to poor vascularization commonly maintain a mesenchymal 

phenotype, and have high hypoxia-inducible factor (HIF) expression, which inhibits 

cell differentiation (Terry, Buart et al. 2017). Besides the local environment of the 

tumor cells, tumors are constantly under selection pressure, which is a result of 

the dynamic tumor microenvironment, applied therapy, and attacks from the 

immune system (Colak and Medema 2014) (McGranahan and Swanton 2017).  
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These pressures act as the extrinsic factors for intra-tumor heterogeneity.  For 

instance, therapy acts as a selection mechanism that shapes the evolution of 

tumor cells (McGranahan and Swanton 2017)(Kreso and Dick 2014).  In breast 

cancer, treating luminal breast cancer with aromatase inhibitor induces the 

remodeling of the clonal population by the acquisition of new mutations or the 

enrichment of existing mutations (Miller, Gindin et al. 2016).  

    Therefore, the combination of genetic/epigenetic alterations and 

microenvironment components can generate intra-tumor heterogeneity and 

support tumor progression by conferring a competitive advantage on subsets of 

cancer cells (Prasetyanti and Medema 2017). The origin of intra-tumor 

heterogeneity could be explained by the cancer stem cell (CSC) theory, which will 

be discussed in section 1.7.2. 

 

1.7.2 Cancer stem cells 

Cancer stem cells (CSCs) are defined by their ability to form new tumors, self-

renew, and differentiate into non-stem like cancer cells (Shibue and Weinberg 

2017). Also, when injected into immunocompromised mice, CSCs have the ability 

to generate tumors with high efficiency	(Alison, Lim et al. 2011). Thus, CSCs have 

been implicated both in initiating and sustaining primary tumor growth and in 

driving the seeding and establishment of metastases at distal sites (Al-Hajj, Wicha 

et al. 2003, Abraham, Fritz et al. 2005, Sheridan, Kishimoto et al. 2006, Ginestier, 

Hur et al. 2007, Liu, Wang et al. 2007). Cancer stem cells were first isolated from 
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AML leukemia based on the expression of cell-surface markers (Lapidot, Sirard et 

al. 1994), and later in solid tumors such as breast	(Al-Hajj, Wicha et al. 2003), brain	

(Singh, Hawkins et al. 2004), colon	 (O’Brien, Pollett et al. 2006, Ricci-Vitiani, 

Lombardi et al. 2006) and pancreatic cancer (Hermann, Huber et al. 2007). 

The Wicha group first isolated breast cancer stem cells (BCSCs) in 2003 using 

cell surface markers for CD24low/CD44high Lineage negative (Al-Hajj, Wicha et al. 

2003). They showed that within this population, as few as 200 cells were able to 

initiate tumor formation in immunocompromised mice (Al-Hajj, Wicha et al. 2003). 

Now it is clear that BCSCs exist in two distinct development states and can 

reversibly transition between them due to their property of cell plasticity (Liu, Cong 

et al. 2014). The first state is the mesenchymal-like state in which BCSCs express 

the CD24-CD44+ cell surface marker profile. They are mainly quiescent with low 

proliferation. The location of this population is commonly at the tumor-invasive 

edge adjacent to the tumor stroma. The second population is the epithelial-like 

state, and they express the de-toxifying enzyme, aldehyde dehydrogenase (ALDH). 

These BCSCs are highly proliferative, and localized at the center of the tumor. 

BCSCs containing both of the CSC markers (CD24- CD44+ and ALDH+) show the 

greatest tumor-initiating capacity (Liu, Cong et al. 2014).    

Breast cancer stem cells have been associated with metastasis.  Gene 

expression profiles of BCSCs featured an invasive gene signature with increased 

metastastic potential (Liu, Wang et al. 2007). It was also shown that disseminated 

bone marrow cancer cells from breast cancer patients have the CD44+/CD24-/low 
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cancer stem cell phenotype (Balic, Lin et al. 2006).  In a mouse xenograft model, 

human breast cancer cells metastasized to the lung express high levels of the stem 

cell marker CD44, strongly suggesting the metastatic role of BCSCs (Liu, Patel et 

al. 2010). It has been proposed that BCSCs may enter the circulation and become 

the circulating tumor cells (CTCs) to metastasize to distal organs and serve as the 

seeds of metastatic lesions (Batlle and Clevers 2017).  Some CTCs have high 

expression levels of BCSC markers (Baccelli, Schneeweiss et al. 2013).  Moreover, 

from liquid biopsy samples of luminal breast cancer patients, the CTCs with BCSC 

signature are enriched upon disease progression, while the CTCs with bulk tumor 

signature are not changing (Baccelli, Schneeweiss et al. 2013).  

 

1.7.3 EMT and plasticity and cancer stem cells 

It has been postulated for decades that EMT is related to the generation of CSCs.  

In 2008, Mani et al. from the Weinberg group first demonstrated that a 

CD44high/CD24low population was generated from the bulk population upon EMT 

induced by either TGF-β or transcription factors (Mani, Guo et al. 2008). This sub 

population exhibits a gene expression profile similar to mammary stem cells and 

is able to initiate tumors quite efficiently in mouse (Mani, Guo et al. 2008). Later, 

multiple studies confirmed the link between EMT and breast (Thiery, Acloque et al. 

2009, Scheel, Eaton et al. 2011, Chaffer, Marjanovic et al. 2013). Mechanistically, 

a number of pathways and transcription factors that are known to induce EMT, 
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including Notch, hedgehog, WNT, TGF-b and NFkb, are also capable of regulating 

cancer stem cells (Scheel and Weinberg 2012).  

    Little is known regarding RUNX1 regulation of CSC in breast cancer or in other 

solid tumors.  Based on the evidence that RUNX1 regulates mammary stem cell 

differentiation and its role during mammary morphogenesis, it seems worth 

investigating whether RUNX1 inhibits/activates the cancer stem cell phenotype in 

breast cancer.  

 

1.8 Rationale for the dissertation 

Given the crucial role of RUNX1 in tissue development, especially in the mammary 

gland, and the fact that RUNX1 is often mutated in breast tumors, we hypothesized 

that RUNX1 functions to reduce tumor aggressive phenotype in breast cancer.   

    In Chapter II, I initiated the project by comparing the RUNX1 levels in a panel of 

normal mammary epithelial cells (MCF10A) and human breast cancer (MCF7) 

cells and found that the level of RUNX1 is decreased in breast cancer cell lines.  

By using a breast cancer progression model (MCF10 series), I also observed that 

RUNX1 expression is lost during breast cancer progression. From this observation, 

further experiments were performed to establish the concept that RUNX1 reduces 

tumor aggressive phenotypes in both normal and breast cancer cells and loss of 

RUNX1 is accompanied by disease progression. Since the mechanism(s) 

underlying the function of RUNX1 in breast cancer was unclear, in this dissertation 
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I explored the functional role of RUNX1 in mammary epithelial and breast cancer 

cells.  

When I joined the Stein-Lian lab, RUNX1 molecular mechanisms were focused 

in hematopoiesis and leukemia. The first report of RUNX1 mutations in breast 

cancer patients generated my and the lab’s enthusiasm for understanding the role 

of RUNX1 in mammary epithelial and breast cancer cells.  The aim of the first part 

of this dissertation was to investigate the consequences of loss of RUNX1 in both 

normal mammary epithelial and breast cancer cells at cellular levels.  There are 

several lines of evidence that suggest RUNX1 may be involved in EMT (Liu, Lee 

et al. 2005, van Bragt, Hu et al. 2014). Therefore, in Chapter II, I focused on testing 

whether RUNX1 depletion is associated with the activation of EMT in breast cancer; 

and identify the mechanisms on how RUNX1 represses EMT.   

In Chapter II, our studies found RUNX1 is a repressor of EMT and thus 

preserves the epithelial phenotype in normal mammary epithelial cells.  The next 

goal was to gain a better understanding of how RUNX1 regulates EMT, and to 

identify novel genes and pathways that are regulated by RUNX1. To achieve this 

goal, we performed gene expression profiling and genome-wide RUNX1 binding 

analysis (RNA-seq, ChIP-seq) in MCF10A cells (with or without RUNX1 depletion).  

These studies discovered novel genes and pathways indicating RUNX1 is a 

master transcription factor in mammary lineage. 

        Many recent studies have linked EMT phenotypes to cancer stem cells 

(Shibue and Weinberg 2017).  Breast cancer cells that undergo EMT or partial 
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EMT exhibit cancer stem cell properties with more aggressive metastatic potential 

(Grigore, Jolly et al. 2016). It was intriguing that results achieved in Chapter II 

suggested RUNX1 could repress the breast cancer stem cell phenotype. Therefore, 

the involvement of RUNX1 in breast cancer stem cells was investigated in Chapter 

IV through a combination of in vitro (tumorsphere assay, matrigel invasion and 

migration assays) and in vivo (mammary fat pad injection, tibia injection) studies.  

Overall, the goals of this dissertation are to determine the role of RUNX1 in 

normal mammary epithelial cells and to understand how the loss of RUNX1 

contributes to breast cancer progression. The novel findings obtained in this 

dissertation provide a better understanding of Runx biology, as well as 

mechanisms of tumor initiation and progression, and open many future directions 

for developing therapeutic interventions.     
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Chapter II RUNX1 stabilizes the mammary epithelial cell phenotype and 

prevents epithelial to mesenchymal transition 

 

 
 
A large portion of this chapter comes from the published work: 

Deli Hong, Terri L. Messier, Coralee E. Tye, Jason R. Dobson, Andrew J. Fritz, 

Kenneth R. Sikora, Gillian Browne, Janet L. Stein, Jane B. Lian, Gary S. Stein   

    Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial 

to mesenchymal transition.  Oncotarget. 2017; 8:17610-17627 

 

Contribution: Deli Hong, Jane B. Lian, Janet L. Stein and Gary. S. Stein. 

conceived and designed the experiments, and analyzed data. Deli Hong 

performed the majority of the experiments. Terri L. Messier helped with the 

experiment in Fig. 2.4.  Jason R. Dobson, Gillian Browne and Deli Hong 

performed tissue microarray. Coralee E. Tye and Kenneth R. Sikora build the 

RNA-seq library and normalized the RNA-seq count. Andrew J. Fritz performed 

ChIP-seq qPCR. Deli Hong created all the figures. Deli Hong, Jane B. Lian, Janet 

L. Stein and Gary S. Stein wrote the manuscript. 
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2.1 ABSTRACT 

RUNX1 is a well characterized transcription factor essential for hematopoietic 

differentiation and RUNX1 mutations are the cause of leukemias. RUNX1 is highly 

expressed in normal epithelium of most glands and recently has been associated 

with solid tumors. Notably, the function of RUNX1 in mammary gland and how it is 

involved in initiation and progression of breast cancer is still unclear.  Here we 

demonstrate the consequences of RUNX1 loss in normal mammary epithelial and 

breast cancer cells. We first observed that RUNX1 is decreased in tumorigenic and 

metastatic breast cancer cells. We also observed loss of RUNX1 expression upon 

induction of epithelial-mesenchymal transition (EMT) in MCF10A (normal-like) 

cells. Furthermore, depletion of RUNX1 in MCF10A cells resulted in striking 

changes in cell shape, leading to mesenchymal cell morphology. The epithelial 

phenotype could be restored in breast cancer cells by re-expressing RUNX1. 

Analyses of breast tumors and patient data revealed that low RUNX1 expression 

is associated with poor prognosis and decreased survival. We addressed 

mechanisms for the function of RUNX1 in maintaining the epithelial phenotype and 

find RUNX1 directly regulates E-cadherin; and serves as a downstream 

transcription factor mediating TGF-β signaling.  We also observed through global 

gene expression profiling of growth factor depleted cells that induction of EMT and 

loss of RUNX1 is associated with activation of TGF-β and WNT pathways. Thus, 

these findings have identified a novel function for RUNX1 in sustaining normal 
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epithelial morphology and preventing EMT and suggest RUNX1 levels could be a 

prognostic indicator of tumor progression. 

 
2.2 INTRODUCTION 

 Evidence is rapidly accruing for the oncogenic and tumor suppressor functions 

of the Runx family of transcription factors, RUNX1, RUNX2 and RUNX3, which are 

essential for normal lineage-specific development (Ito 2004, Blyth, Cameron et al. 

2005). In late stage cancer, including breast, prostate and thyroid, abnormal 

expression of RUNX2 drives metastasis to bone (Pratap, Lian et al. 2006, Pratap, 

Wixted et al. 2008, Pratap, Imbalzano et al. 2009). Inhibition of RUNX2 in 

metastatic breast and prostate cancer cells drastically reduces tumor growth and 

metastasis in vivo (Pratap, Imbalzano et al. 2009, Akech, Wixted et al. 2010), 

revealing Runx2 function as an oncogene. It has been well documented that 

translocations of RUNX1, the essential hematopoiesis factor, with ETO, TEL 

(ETV6) (Bhojwani, Pei et al. 2012) or other genes cause a wide range of leukemias 

(Zhang and Rowley 2006). However, little is known of RUNX1 oncogenic or tumor 

suppressor activities in solid tumors. An early microarray profiling study comparing 

adenocarcinoma metastasis with primary adenocarcinoma tumors identified 

RUNX1 as one of 17 genes signature that associate with metastasis (Ramaswamy, 

Ross et al. 2003). Recent genetic studies have identified loss-of-function somatic 

mutations or deletion of RUNX1 in breast cancer patients (Banerji, Cibulskis et al. 

2012, Network 2012). These data are consistent with evidence that RUNX1 is 

reduced in metastasis-prone solid tumors (Ramaswamy, Ross et al. 2003). There 
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is a requirement for understanding RUNX1-mediated regulatory mechanism(s) in 

breast cancer. 

 Breast cancer remains the leading cause of cancer related death in women 

worldwide (Jemal, Bray et al. 2011).  Among the different subtypes of breast 

cancer, both the basal-like and Her2-enriched subtypes are the most clinically 

challenging; they have the worst survival rates and are often associated with 

metastasis (Martin-Castillo, Oliveras-Ferraros et al. 2013). It has been speculated 

that this aggressive phenotype of basal like breast cancer is linked with the 

Epithelial to Mesenchymal Transition (EMT), which is a key biological process in 

cancer progression and is involved in the conversion of early stage tumors into 

invasive malignancies (Bill and Christofori 2015). Oncogenic EMT occurs when 

primary tumor cells undergo a switch from an epithelial phenotype, which lacks 

motility and exhibits extensive cell-to-cell contact, to a mesenchymal phenotype 

having high cellular motility, lower cellular interactions, and a non-polarized cell 

organization (Zavadil and Böttinger 2005). Several studies, using breast cancer 

cell lines and clinical samples, have demonstrated that increased expression of 

mesenchymal markers including Vimentin, Fibronectin and N-cadherin, as well as 

reduced expression of epithelial markers including E-cadherin are observed in 

basal subtype breast cancer (Ramaswamy, Ross et al. 2003, Zhang and Rowley 

2006, Banerji, Cibulskis et al. 2012, Network 2012). The specific mechanisms that 

preserve the structural and functional properties of the epithelial cells of the 

glandular tissues and protect normal epithelial cells from transitioning to 
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malignancy in basal-like breast cancer are compelling and unresolved questions. 

We therefore have focused our studies on the functional activities of RUNX1 in 

basal subtype breast cancer cells.  

 In this chapter, I hypothesize that RUNX1 maintains the normal epithelial 

phenotype and that loss of RUNX1 promotes EMT. Our results demonstrate that 

depletion of RUNX1 in mammary epithelial cells disrupts/alters cellular morphology 

and suppresses E-cadherin expression. We find that RUNX1 level decreases 

during both TGF-β-induced and growth factor starvation-induced EMT, supporting 

a crucial role for RUNX1 in preventing EMT. Furthermore, our analysis of breast 

tumors and survival data supports the above finding that loss of RUNX1 promotes 

tumor progression. Thus, these studies demonstrate that RUNX1 functions to 

preserve epithelial phenotype in mammary epithelial cells and reveal that RUNX1 

has potential to reduce tumor growth in breast cancer.  
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2.3 MATERIALS AND METHODS 

2.3.1 Cell lines and cultures 

 Human breast cancer cell lines MCF10A, MCF7, MDA-MB-231 and T47D cells 

were purchased from ATCC. MCF10AT1 and MCF10CA1a cells are a gift from 

Jeff Nickerson’s lab. 

 MCF10A cells were grown in DMEM: F12 (Hyclone: SH30271, Thermo Fisher 

Scientific, Waltham, MA, USA) with 5% (v/v) horse serum (Gibco: 16050, Thermo 

Fisher Scientific, Waltham, MA, USA) + 10 μg/ml human insulin (Sigma Aldrich, St. 

Louis, MO: I-1882) + 20 ng/ml recombinant hEGF (Peprotech, Rocky Hill, NJ, USA: 

AF-100-15) + 100 ng/ml cholera toxin (Sigma Aldrich: C-8052) + 0.5 μg/ml 

hydrocortisone (Sigma Aldrich: H-0888) 50 IU/ml penicillin/50 μg/ml streptomycin 

and 2 mM glutamine (Life Technologies, Carlsbad, CA, USA: 15140-122 and 

25030-081, respectively). TGF-β induced EMT in MCF10A cells was initiated by 

addition of 10 ng/ml TGFβ1 (R&D Systems, Minneapolis, MN, USA) to the medium. 

Growth factors starvation induced EMT in MCF10A cells was performed as 

previously described (Santner, Dawson et al. 2001). Briefly, MCF10A cells were 

plated in completed medial and at day 2, the medium was switched to DMEM: F12, 

with 5% (v/v) horse serum and 50 IU/ml penicillin/50 μg/ml streptomycin without 

added growth factors. The cells were maintained in this medium for up to 14 days 

until the morphological change was observed. 

 MCF10AT1 cells were grown in the same medium as MCF10A cells. 

MCF10CA1a cells were grown in DMEM: F12 with 5% (v/v) horse serum with 50 
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IU/ml penicillin/50 μg/ml streptomycin and 2 mM glutamine. MCF7 cells were 

maintained in Dulbecco modified Eagle medium (DMEM) high glucose (Fisher 

Scientific: Thermo Fisher Scientific, Waltham, MA, USA: MT-10-017-CM) 

supplemented with 10% (v/v) FBS (Atlanta Biologicals, Flowery Branch, GA, USA: 

S11550), 50 IU/ml penicillin/50 μg/ml streptomycin. T47D cells were maintained in 

RPMI 1640 with phenol red (Fisher Scientific: MT-10-040-CM) supplemented with 

10% (v/v) FBS and 50 IU/ml penicillin/50 μg/ml streptomycin. MDA-MB-231 cells 

were cultured in alpha minimal essential medium (α-MEM) (Life Technologies: 

A10490-01) containing 10% (v/v) FBS and 50 IU/ml penicillin/50 μg/ml 

streptomycin. MCF10CA1a cells were transfected using FuGENE-6 (Roche, 

Indianapolis, IN, USA) according to the instructions of the manufacturer. 

 

2.3.2 Lentiviral plasmid preparation and viral vector production 

 Lentivirus-based RNAi transfer plasmids with pGIPZ shRunx1 (clone 

V2LHS_150257 and V3LHS_367631, GE Dharmacon) and pGIPZ non-silencing 

(Cat No. RHS4346, GE Dharmacon) were purchased from Thermo Scientific. To 

generate lentivirus vectors, 293T cells in 10 cm culture dishes were co-transfected 

with 10 μg of pGIPZ shRunx1 or pGIPZ non-silencing, with 5 μg of psPAX2, and 5 

μg of pMD2.G using lipofectamine 2000 reagent (Life Technologies). Viruses were 

harvested every 48 h post-transfection. After filtration through a 0.45 μm-pore-size 

filter, viruses were concentrated by using LentiX concentrator (Clontech, Mountain 

View, CA, USA). 
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2.3.3 Gene delivery by transfection and infection 

 For shRNA-mediated knockdown of RUNX1 expression, MCF10A or MCF7 

cells were plated in six-well plates (1x105 cells per well) and infected 24 h later 

with lentivirus expressing shRunx1 or nonspecific shRNA. Briefly, cells were 

treated with 0.5 ml of lentivirus and 1.5 ml complete fresh DMEM-F12 per well with 

a final concentration of 4 μg/ml polybrene. Plates were centrifuged upon addition 

of the virus at 1460 × g at 37°C for 30 min. Infection efficiency was monitored by 

GFP co-expression at 2 days post infection. Cells were selected with 2 μg/ml 

puromycin (Sigma Aldrich P7255-100MG) for at least two additional days. After 

removal of the floating cells, the remaining attached cells were passed and 

analyzed. 

 

2.3.4 Western blotting 

 Cells were lysed in RIPA buffer and 2X SDS sample buffer supplemented with 

cOmplete, EDTA-free protease inhibitors (Roche Diagnostics) and MG132 (EMD 

Millipore San Diego, CA, USA). Lysates were fractionated in an 8.5% acrylamide 

gel and subjected to immunoblotting. The gels are transferred to PVDF 

membranes (EMD Millipore) using a wet transfer apparatus (Bio-Rad Laboratories, 

Hercules, CA, USA). Membranes were blocked using 5% Blotting Grade Blocker 

Non-Fat Dry Milk (Bio-Rad Laboratories) and incubated overnight at 4°C with the 

following primary antibodies: a rabbit polyclonal RUNX1 (Cell Signaling 

Technology, Danvers, MA, USA: #4334, 1:1000); a mouse monoclonal to E-
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cadherin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA: sc21791, 1:1000); 

a mouse monoclonal Vimentin (Santa-Cruz Biotechnology sc-6260, 1:1000); a 

mouse monoclonal to β-Actin (Cell Signaling Technology #3700, 1:1000); a rabbit 

polyclonal LaminB1 (Abcam, Cambridge, UK: 16048, 1:2000); a rabbit polyclonal 

N-cadherin (Santa Cruz Biotechnology sc-7939, 1:2000). Secondary antibodies 

conjugated to HRP (Santa Cruz Biotechnology) were used for immunodetection, 

along with the Clarity Western ECL Substrate (Bio-Rad Laboratories) on a 

Chemidoc XRS+ imaging system (Bio-Rad Laboratories). 

 

2.3.5 Immunofluorescence staining microscopy 

 Cells grown on coverslips were fixed with using 3.7% formaldehyde in 

phosphate buffered saline (PBS) for 10 min. Cells were then permeabilized in 0.1% 

Triton X-100 in PBS, and washed in 0.5% Bovine Serum Albumin in PBS. 

Detection was performed using a rabbit polyclonal RUNX1 antibody (Cell Signaling 

Technology #4336), a mouse monoclonal Vimentin (Santa Cruz Biotechnology sc-

6260), a rabbit polyclonal N-cadherin (Santa Cruz Biotechnology sc-7939) and a 

mouse monoclonal to E-cadherin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, 

USA). Staining was performed using fluorescent secondary antibodies; for rabbit 

polyclonal antibodies a goat anti-rabbit IgG (H+L) secondary antibody, Alexa 

Fluor® 488 conjugate (Life Technologies A-11008), was used and for mouse 

monoclonal a F(ab')2-goat anti-mouse IgG (H+L) secondary antibody, Alexa 

Fluor® 488 conjugate was used (Life Technologies A-11001). 
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2.3.6 Quantitative PCR 

 RNA was isolated with Trizol (Life Technologies) and cleaned by DNase 

digestion (Zymo Research, Irvine, CA, USA). RNA was reversed transcribed using 

SuperScript II and random hexamers (Life Technologies). cDNA was then 

subjected to quantitative PCR using SYBR Green technology (Applied Biosystems, 

Foster City, CA, USA). Sequences of primers used in the paper. RUNX1 Forward: 

AACCCTCAGCCTCAGAGTCA, RUNX1 Reverse: 

CAATGGATCCCAGGTATTGG; E-cadherin Forward: 

GGAAGTCAGTTCAGAGCATC, E-cadherin Reverse:  

AGGCCTTTTGACTGTAATCACACC; N-cadherin Forward: 

TGTTTGACTATGAAGGCAGTGG, N-cadherin Reverse: 

TCAGTCATCACCTCCACCAT; Vimentin Forward: 

AGGAAATGGCTCGTCACCTTCGTGAATA, Vimentin Reverse: 

GGAGTGTCGGTTGTTAAGAACTAGAGCT; GAPDH Forward: 

TGTGGTCATGAGTCCTTCCA, GAPDH Reverse: 

ATGTTCGTCATGGGTGTGAA; HPRT Forward: TGCTGACCTGCTGGATTACA, 

HPRT Reverse: TCCCCTGTTGACTGGTCATT; b-Actin Forward: 

AGCACAGAGCCTCGCCTTT, β-Actin Reverse: CGGCGATATCATCATCCAT. 

 

2.3.7 Tissue microarray 
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 Formalin-fixed paraffin-embedded (FFPE) human breast cancer samples were 

obtained from the UMMS tissue bank and FFPE human breast cancer tissue 

microarrays (TMA) from US BioMax (Rockville, MD, USA). TMAs (BR1503a & 

BR10010) were obtained from US BioMax. Sample information pertaining to Type, 

Grade, Stage, TNM, were provided by US BioMax. BR1503a is a primary breast 

tissue array of 150 samples of 75 patient cases: three cases of adjacent normal 

breast tissue, three cases of breast fibroadenoma, two cases of breast 

cystosarcoma phyllodes, seven cases of breast intraductal carcinoma, and 60 

cases of breast invasive ductal carcinoma. Duplicate cores per case. BR10010 is 

a breast carcinoma and matched metastatic carcinoma array of 100 samples of 50 

patient cases: 46 cases of invasive ductal carcinoma, one case of micropapillary 

carcinoma, two cases of invasive lobular carcinoma, and one case of 

neuroendocrine carcinoma. Duplicate cores per case. RUNX1 staining was done 

as previously described (Liu, Lengner et al. 2011) using RUNX1 Rabbit Polyclonal 

4334 from Cell Signaling Technology. Each tissue section was imaged and 

independent researchers blindly scored the sections based on the metric in Fig. 

2.12 A. 

 

2.3.8 Analysis of RUNX1 expression in various cancers using public data 

sets 

 RUNX1 expression was analyzed in various breast cancer subtype types using 

the TCGA database (www.cbioportal.org) (Network 2012). The PROGgene 
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database (www.compbio.iupui.edu/proggene) was used to identify the data sets 

for survival analysis and re-analyzed the public GEO data sets 

(www.ncbi.nlm.nih.gov/gds) (GSE3494-U133A). 

 

 

2.3.9 RNA-Seq, ontology, and pathway analysis 

 RNA was isolated using DirectZol RNA mini prep kit (Zymo Research), 

quantified by Qubit HS RNA assay (Thermo Fisher Scientific) and assayed for RNA 

integrity by Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Total RNA 

was depleted of ribosomal RNA, reverse transcribed and strand-specific adapters 

added following manufacturer’s protocol (TruSeq Stranded Total RNA Library Prep 

kit with Ribo-Zero Gold, Illumina, San Diego, CA, USA) with the exception that the 

final cDNA libraries were amplified using the Real-time Library Amplification Kit 

(Kapa Biosystems, Wilmington, MA, USA) to prevent over-amplification of libraries. 

Generated cDNA libraries were assayed for quality then sequenced as single-end 

100 bp reads (IlluminaHiSeq1000, UVM Advanced Genome Technologies Core). 

Sequence files (fastq) were mapped to the most recent assemblies of the human 

genome (hg38) using TopHat2 (Kim, Pertea et al. 2013). Expression counts were 

determined by HTSeq (Anders, Pyl et al. 2015) with recent gene annotations 

(Gencode v22) (Harrow, Frankish et al. 2012). Differential expression was 

analyzed by DESeq2 (Love, Huber et al. 2014). Correlation between replicates and 

differential gene expression between time points was assessed by principal 
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component analysis (PCA). RNA-Seq data have been deposited in the GEO under 

accession codes GSE85857. In addition, mRNA expression data was uploaded to 

IPA (www.ingenuity.com) and analyzed using default parameters. The expression 

heat map was generated using GENE-E (Broad Institute, MA, USA 

www.broadinstitute.org/cancer/software/GENE-E/). Fifty-eight EMT genes were 

selected by using the list from (Taube, Herschkowitz et al. 2010, Minafra, BravatÀ 

et al. 2014). 

2.3.10 ChIP-qPCR 

 RUNX1 ChIP-qPCR was performed essentially as described(O’Geen, Frietze 

et al. 2010) . Briefly, 200,000 MCF10A cells were cross-linked, lysed and sonicated 

to obtain DNA fragments mostly in the 200-1000-bp range. Immunoprecipitation 

was performed at 4°C overnight with anti-RUNX1 antibody (4334, Cell Signaling 

Technology) at a 1:15 antibody to chromatin ratio. Primers used in ChIP-qPCR are 

listed below: CDH1 Forward: CCCAACCTGACCACAGGAAT, CDH1 Reverse: 

GCTGCATGCGTAACAACACA; TGFB2 Forward: AGTCCTCCTCCCCCTAATGT, 

TGFB2 Reverse: CAGGGTATAGGCCACGACTG; TGFBR3 Forward: 

TCTTTGTAGCCTGCTGGGTT, TGFBR3 Reverse: 

CCCCCATCCTTACAAGTGGTT; ZNF333 (negative control 1) Forward: 

TGAAGACACATCTGCGAACC, ZNF333 Reverse: 

TCGCGCACTCATACAGTTTC; ZNF180 (negative control 2) Forward: 

TGATGCACAATAAGTCGAGCA, ZNF180 Reverse: 

TGCAGTCAATGTGGGAAGTC. 
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2.3.11 Statistical analysis 

 The results were reported as Mean ± S.E.M. unless otherwise indicated, and 

Student’s t-Tests were used to calculate statistical significance. 

 

The following datasets were generated: 

- RNA-sequences: 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85857, publicly 

available at NCBI Gene Expression Omnibus (accession no. GSE 85857) 

 

2.4 RESULTS 

2.4.1 RUNX1 expression is decreased in breast cancer 

 RUNX1 involvement in breast cancer was first tested using a panel of normal 

and breast cancer cell lines representing different breast cancer subtypes (Fig. 

2.1). The selected cell lines included non-metastatic luminal MCF7 and T47D 

breast cancer cells and basal-like breast cancer MDA-MB-231 cells. Compared to 

the high level of RUNX1 in normal-like basal MCF10A control cells, RUNX1 mRNA 

(Fig. 2.1A) and protein (Fig. 2.1B) were significantly decreased in all breast cancer 

cell lines tested, but less so in the triple-negative MDA-MB-231 cells. 

We next evaluated RUNX1 mRNA and protein expression in the MCF10 

progression series of MCF10A normal-like mammary epithelial cells, tumorigenic 

MCF10AT1 and MCF10CA1a cells (Santner, Dawson et al. 2001). RUNX1 mRNA 
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(Fig. 2.1C) and protein (Fig. 2.1D) expression were strikingly decreased in both 

MCF10AT1 and MCF10CA1a cells compared with MCF10A cells. In both non-

metastatic cancer cell types, loss of RUNX1 expression paralleled decreases of 

the epithelial marker E-cadherin, while the mesenchymal marker Vimentin was 

highly expressed only in the MCF10CA1a cells. These changes in EMT markers 

are consistent with the mesenchymal phenotype of the two cancer cell lines. Thus, 

decreased RUNX1 with tumor progression correlates with EMT. Together our 

findings indicate an important role for RUNX1 in normal breast epithelial cells and 

provide evidence for the emerging concept that RUNX1 may function to suppress 

tumor growth in breast cancer (Chuang, Ito et al. 2013). 
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 Figure 2.1. Decreased RUNX1 expression is related to breast cancer 

progression in cell models. (A) RUNX1 RNA expression by RT-qPCR 

for a panel of breast cancer cell lines compared to MCF10A cells show 

that RUNX1 protein is decreased in breast cancer cells. (B) Western blot 

of cell lysate for the same panel of cell lines shown in A. (C) RUNX1 RNA 

expression by RT-qPCR of normal mammary-like MCF10A cells, 

MCF10A-derived tumorigenic cell line MCF10AT1, and metastatic 

MCF10CA1a cells shows RUNX1 is decreased in the cancer cells. (D) 

Western blot comparison in the MCF10 series. All the experiments are 

performed 3 times (N=3). 
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2.4.2 TGF-β induced EMT decreases RUNX1 expression in MCF10A cells 

 The above results show that RUNX1 levels are decreased in breast cancer 

cells and that decreased RUNX1 is accompanied with EMT in the MCF10 series. 

To mechanistically address if decreased RUNX1 and EMT are coupled in breast 

cancer, we used a well-known method to induce EMT in mammary cells, by adding 

TGF-β to MCF10A cells (Xu, Lamouille et al. 2009). TGFB1-Smad signaling is the 

most frequently described inducer of EMT, and RUNX1 is known to be a 

downstream target of TGF-β signaling. Furthermore, it is well documented that 

RUNX1 forms an interaction complex with SMADs (Ito and Miyazono 2003), 

thereby regulating genes responsive to TGF-β. Taken together, we hypothesized 

that RUNX1 expression would be repressed upon treating with TGF-β.  

 MCF10A cells were incubated with 10 ng/ml TGFβ1 for 6 days, and we 

observed that the original cobblestone-like epithelial morphology with tight cell-cell 

contact was lost, and cells gained an elongated fibroblast-like morphology (Fig. 

2.2A). When the levels of epithelial and mesenchymal markers were examined by 

western blotting and immunofluorescence microscopy, the TGFβ1-treated cells 

exhibited a 50% down-regulation of the epithelial marker E-cadherin, while 

expression of the mesenchymal markers Vimentin and N-cadherin was induced 

(Fig. 2.2B, C). Significantly, in this TGF-β-induced EMT model, we observed the 

down-regulation of RUNX1 at both the protein and mRNA levels (Fig. 2.2B). 

Although the immunofluorescence results showed that not all cells acquired the 

mesenchymal phenotype (Fig. 2.2C), indicating that only a subset of the cells 
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underwent EMT, we still find that RUNX1 is decreased during EMT. As further 

evidence that loss of RUNX1 occurs concomitantly with EMT, co-

immunofluorescence reveals that the subset of cells undergoing EMT (Vimentin-

positive cells), had lower or no RUNX1 expression (Fig. 2.2D). These results 

support the idea that RUNX1 may function as a suppressor of the EMT.  
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2.4.3 RUNX1 reverses the TGF-β-induced EMT phenotype 

 To further prove a functional role for RUNX1 in preventing EMT and maintaining 

the epithelial phenotype, we examined whether overexpressing RUNX1 could 

reverse the EMT phenotype after TGF-β induction. 

 A plasmid containing HA-tagged RUNX1 was transfected into TGF-β-treated 

MCF10A cells. We observed that the cells with RUNX1 overexpression changed 

Figure 2.2. RUNX1 decreases during TGFβ-induced EMT. MCF10A 

cells treated with 10 ng/ml TGFβ for 6 days. (A) MCF10A cells treated 

with TGFβ show morphological changes toward an EMT-like state. (B) 

Western blot analyses show changes in EMT markers and RUNX1 

expression during EMT. Left lower panel: RT-qPCR of RNA from 

MCF10A cells shows decreased RUNX1 expression in TGFβ treated 

cells. Student’s t test * p value <0.05 for TGFβ-treated cells compared to 

control cells. Where error bars are shown these represent the standard 

error of the mean (SEM) from three independent experiments. (C) 

Immunostaining shows increased Vimentin and N-cadherin expression 

in the cytoskeleton during TGFβ-induced EMT. (D) Immunostaining 

shows the cells with Vimentin (Green) expression have less or no 

RUNX1 (Red) expression.  All the experiments are performed 3 times 

(N=3). 
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their morphology from mesenchymal-like back to epithelial-like (Fig. 2.3A). 

Overexpressing RUNX1 in these cells also increased E-cadherin and repressed 

Vimentin expression, suggesting that cells re-acquired an epithelial phenotype and 

that the TGF-β-induced EMT was blocked (Fig. 2.3B). This result demonstrated 

that the repression of RUNX1 is a necessary step during TGF-β induced EMT.  
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2.4.4 Decreased expression of RUNX1 during TGF-β independent EMT in 

MCF10A cells 

 We considered the possibility that RUNX1 may function in an exogenous TGF-

β-independent manner to repress EMT. We used a cell model of EMT induction 

Figure 2.3. RUNX1 reverses TGFβ induced EMT. (A) Images of 

MCF10A cells treated with TGF-β show morphological changes toward 

an mesenchymal state. Overexpressing RUNX1 in TGF-β-treated cells 

returned cell morphology to an epithelial-like state. (B) RT-qPCR of RNA 

from MCF10A cells show changes in gene expression by overexpressing 

RUNX1 in TGFβ-treated cells, which activates E-cadherin and represses 

Vimentin expression. Student’s t test * p value <0.05 for HA-RUNX1 

overexpression in MFC10A cells compared to EV control cells. Error bars 

represent the standard error of the mean (SEM) from three independent 

experiments. All the experiments are performed 3 times (N=3). 
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that is independent of treatment with exogenous TGF-β. It has been previously 

shown that withdrawal from MCF10A medium of specific factors required for 

optimal cell growth (insulin, EGF, Hydrocortisone and Cholera Toxin), changed cell 

morphology from cobblestone to spindle like (Yusuf and Frenkel 2010). Here we 

demonstrate that this morphological change (Fig. 2.4A) resembles an EMT 

process. Western blotting and qRT-PCR results show that the epithelial marker E-

cadherin was down regulated, while mesenchymal markers N-cadherin and 

Vimentin were upregulated (Fig. 2.4B and C). Importantly RUNX1 protein is not 

detected in growth factor-depleted cells by western blot and immunofluorescence 

microscopy (Fig. 2.4B and D, top panel). Compared with TGF-β-induced EMT (Fig. 

2.2C), in this exogenous TGFB independent model, all cells acquired the 

mesenchymal phenotype and lost epithelial markers and RUNX1 expression (Fig. 

2.4D). These results reveal that modifying growth medium is a more powerful 

method for inducing EMT in MCF10A cells. Based on the loss of RUNX1 during 

both exogenous TGF-β-dependent and -independent EMT, we conclude that 

RUNX1 is a key factor in repressing the EMT and maintaining epithelial 

morphology in normal-like mammary epithelial cells. 
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2.4.5 Gene expression profiling of growth factor-depleted MCF10A cells 

reveals the spectrum of EMT markers 

 To further understand the mechanisms of growth factor depletion-induced EMT, 

we carried out unbiased genome-wide expression profiling by RNA-Seq, 

comparing cells grown in normal and growth factor depleted conditions. Among 

Figure 2.4. Decreased RUNX1 during TGF-β-independent EMT. (A) 

Images of MCF10A cells grown in medium without growth factors 

(Insulin, EGF, Hydrocortisone and Cholera toxin) for 7 days show 

morphological changes from cobblestone to spindle-like. (B) Western 

blot analyses of cell lysates from MCF10A cells treated with or without 

growth factors show changes in EMT markers and RUNX1 expression 

during EMT. (C) RNA expression of the EMT markers E-cadherin, N-

cadherin and Fibronectin was quantified using RT-qPCR in MCF10A 

cells in the presence or absence of growth factors. Student’s t test 

* p value <0.05, ** p value <0.01 for growth factors depleted MCF10A 

cells compared to cells with growth factors. Error bars represent the 

standard error of the mean (SEM) from three independent experiments. 

(D) Immunostaining of E-cadherin, Vimentin, N-Cadherin and RUNX1 

reveals changes in organization of cell–cell adhesion, cytoskeleton and 

decreased RUNX1. All the experiments are performed 3 times (N=3). 
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the 1880 differentially expressed mRNAs that have a 2-fold cut off, 457 genes were 

up- and 1423 were down-regulated. Gene ontology analysis identified functional 

categories and associated pathways (Fig. 2.5). Among the top 5 canonical 

pathways that were affected, regulation of the EMT pathway was the most 

significant with 20 genes altered in the network (Fig. 2.5A and C). This observation 

further confirmed that this novel method of removing growth factors in MCF10A 

induces EMT. Other relevant pathways include cancer metastasis signaling and 

integrin-like kinase (ILK) signaling (Fig. 2.5A). Together these most significant 

signaling pathways are indicative of the MCF10A cells acquiring a more cancer 

related phenotype. 

 In addition to pathway analysis, we selected 58 epithelial and mesenchymal 

genes by using two database sources (described in Materials and Methods) and 

examined the expression patterns based on relative reads from our RNA-Seq 

profiling. The heat map constructed from these data (Fig. 2.5B) compares 

expression of EMT genes under two different growth conditions—normal and 

growth factor-depleted. Well-established epithelial genes such as DSP, Claudins 

and KRT family (Tomaskovic-Crook, Thompson et al. 2009) were down-regulated. 

We observed consistent up-regulation of common mesenchymal genes (CDH2, 

FN1 and VIM) as well as genes related to signaling pathways such as BMP/TGFB 

and WNT when growth factors were removed. We also noted that both TGFβ2 and 

Runx2 are among the up-regulated genes (Fig. 2.5B). Moreover, we found that 

expression of 43 genes in the Runx2 interaction network were altered (Fig. 2.5C), 
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consistent with up-regulation of Runx2 protein level upon growth factor depletion 

(Fig. 2.6) and its role in promoting invasion and metastasis to bone (Pratap, Lian 

et al. 2006). 

To study how loss of RUNX1 is involved in this EMT process, we also examined 

the RUNX1 interaction network and found that 20 genes (Fig. 2.5C) were altered 

upon growth factor depletion. Further pathway analysis with the 1880 differentially 

expressed genes revealed that decreased RUNX1 and the altered RUNX1 

interaction network are associated with activation of TGFβ and WNT pathways 

(Fig. 2.5D), which are known to relate to RUNX1 function (Chimge, Little et al. 

2016). The stimulated TGFβ and WNT pathways further activate the downstream 

well-studied EMT-inducing transcription factors Snail and Twist (Fig. 2.5D) 

(Tomaskovic-Crook, Thompson et al. 2009). These studies provide evidence that 

depletion of RUNX1 contributes to initiation of EMT in the normal-like MCF10A 

mammary epithelial cells. These results also indicate that Runx2 plays an 

important role during growth factor starvation-induced EMT and elucidate 

mechanisms by which RUNX1 and Runx2 are involved in EMT. Together, these 

RNA-Seq data confirm that the growth factor starvation method is a unique cell 

treatment to induce EMT in MCF10A cells without exogenous addition of TGFβ. 
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Figure 2.5. RNA-Seq reveals MCF10A cells undergo EMT upon 

growth factor removal. (A) Top canonical pathways with the most 

significant p values identified by using Ingenuity Pathway Analysis 

(QIAGEN, Hilden, Germany). (B) Relative expression heat map of 58 

EMT related genes confirming MCF10A cells undergo EMT. (C) 

Differentially expressed genes (2-fold cut off) in the EMT regulation 

pathway (p val 1.66E-06), RUNX1 interaction network (p val 2.56E-02) 

and Runx2 interaction network (p val 3.73E-09). (D) Model of RUNX1 

function in growth factor depletion induced EMT. Illustration shows the 

consequences of up and down regulated genes when RUNX1 is 

decreased upon growth factor depletion. The listed genes and pathways 

are promoting EMT by loss of RUNX1 function. Blue indicates down 

regulated genes. Red indicates up regulated genes or pathways. 

Ingenuity Pathway Analysis (QIAGEN) was used in panel A, C and D; 

GENE-E (Broad Institute, Cambridge, MA, USA) was used in panel B. 
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2.4.6 Directly Depleting RUNX1 in MCF10A cells results in loss of epithelial 

morphology and activation of EMT   

 We have shown by multiple lines of evidence that down-regulation of RUNX1 

is a key step during breast cancer EMT. However, we still could not distinguish 

whether decreased RUNX1 expression drives the activation of EMT or is an 

outcome of EMT. To address that question and understand whether RUNX1 can 

function directly to maintain normal epithelial morphology, we inhibited 

endogenous RUNX1 expression in MCF10A cells using lentivirus that contained 

short-hairpin RNA targeting RUNX1 (shRunx1) (Fig. 2.7). We generated two 

different MCF10A shRunx1 cell lines using two different shRNA sequences (shR1-

1, shR1-2). Compared to the parental and control (non-silencing) cells, we 

observed that RUNX1-depleted MCF10A cells showed an obvious shift in 

morphology from cobblestone-like cells to more spindle-shaped cells (Fig. 2.7A). 

Figure 2.6. Increased Runx2 during growth factor depleted induced 

EMT. Western blot analyses of cell lysates from MCF10A cells treated 

with or without growth factors showing changes in Runx2 activation 

during EMT. The experiments is performed 3 times (N=3). 
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Western blot and Q-PCR analysis demonstrated endogenous RUNX1 was down 

regulated at both the protein and mRNA levels (Fig. 2.7B and C). Because the 

shRunx1 cells exhibited a morphological change consistent with loss of the 

epithelial phenotype, E-cadherin expression was examined. RUNX1 knockdown 

cells showed a significant decrease of E-cadherin, as well as up-regulation of the 

mesenchymal genes Vimentin and N-cadherin (Fig. 2.7C).  
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    Taken together, these results indicate that depletion of RUNX1 directly initiates 

EMT in MCF10A cells, and establishes for the first time that RUNX1 is required to 

maintain the normal mammary epithelial phenotype. The mechanism for these 

biological activities involves RUNX1 binding to EMT-related target genes. 

Figure 2.7. Depleting RUNX1 in MCF10A cells promotes a 

mesenchymal-like phenotype. (A) MCF10A cells treated with shRunx1 

show morphological changes toward an EMT- like state. (B) Western blot 

analyses of lysates from MCF10A cells treated with shRunx1 show 

decreased protein expression of RUNX1 and E-cadherin. (C) RT-qPCR 

analyses of RNA from MCF10A cells treated with shRunx1 show 

decreased gene expression of E-cadherin and activation of 

mesenchymal marks of N-cadherin and Vimentin. Student’s t test 

* p value <0.05, ** p value <0.01 for MCF10A shRunx1 cells compared 

to the MCF10A ns cells. Error bars represent the standard error of the 

mean (SEM) from three independent experiments. (D) ChIP-qPCR 

confirmation of RUNX1 occupancy at CDH1, TGFB2 and TGFBR1. 

ZNF188 (NC1) and ZNF333 (NC2) were used as the negative control as 

RUNX1 are predicted not to bind these genes. Data obtained with 

antibodies against RUNX1 are normalized to input control. All the 

experiments are performed 3 times (N=3). 
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    Previously it has been shown that both E-cadherin (Liu, Lee et al. 2005) and 

genes in TGFB family (Hanai, Chen et al. 1999) have RUNX1 binding sites. Thus, 

to further support a direct role for RUNX1 regulation of E-cadherin and TGF-β 

signaling in MCF10A cells, a RUNX1 ChIP-qPCR was performed (Fig. 2.7D). 

Significant enrichment of RUNX1 binding on E-cadherin (CDH1), TGFB2 and 

TGFBR3 genes were observed. The positions of the amplicons on tested genes 

are shown in Figure 2.8. These results indicate that RUNX1 may directly bind to 

the E-cadherin gene and regulate its expression. Our findings also provide an 

additional line of evidence for a key function of RUNX1 in blocking TGF-β signaling 

and maintaining epithelial morphology. Further the binding of RUNX1 to the E-

cadherin gene is also associated with the H3K4ac activating histone mark (Messier, 

Gordon et al. 2016). We searched for putative RUNX1 binding sites and found 5 

consensus motif sequences that are coincident with H3K4ac peaks present in 

MCF10A cells but not in metastatic MDA-MB-231 cells Figure 2.9.  
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Figure 2.8. Schematic diagram of ChIP qPCR primers and 

amplicons over the tested gene for ChIP-qPCR. 
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2.4.7 Depleting RUNX1 in MCF7 breast cancer cells promotes EMT 

 The loss of epithelial morphology in normal-like mammary cells by knockdown 

of RUNX1 (Fig. 2.7) raises a compelling question regarding the role of RUNX1 in 

Figure 2.9. RUNX1 consensus sequences in CDH1 are coincident 

with H3K4Ac peaks in MCF10A cells. ChIP analysis showing 

significant binding of H3K4Ac (GSE69377) to a region in CDH1 genes 

with multiple RUNX1 binding motifs in MCF10A cells but not in MDA-

MB-231 cells. 
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breast cancer cells. Therefore, we tested whether this regulation also occurs in 

epithelial-like MCF7 breast cancer cells. Two shRunx1 (shR1-1, shR1-2) stable 

knockdown in the MCF7 cell line were generated. Endogenous RUNX1 was down-

regulated at both the protein and mRNA levels for both short-hairpin RNAs (Fig. 

2.10A and B). In these RUNX1-depleted MCF7 cells, western blot and qRT-PCR 

analyses revealed a significant decrease of E-cadherin expression at both the 

protein and mRNA levels and an up-regulation of the mesenchymal genes 

Vimentin and N-cadherin at the mRNA level (Fig. 2.10C). Based on these results, 

we conclude that RUNX1 is preventing EMT in both normal mammary cells 

(MCF10A) and early breast cancer cells (MCF7), consistent with its function in 

maintaining an epithelial phenotype.  

 

2.4.8 Overexpressing RUNX1 in mesenchymal like breast cancer cells drives 

mesenchymal to epithelial transition (MET) 

 To further establish a definitive role for RUNX1 function in preserving the 

epithelial phenotype, we carried out a “rescue” study to examine the consequences 

of restoring RUNX1 expression in mesenchymal like breast cancer cells (Fig. 

2.10D and E). RUNX1 was ectopically expressed in tumorigenic MCF10AT1 cells, 

which resulted in increased E-cadherin expression and decreased Vimentin 

expression (Fig. 2.10D and E). Notably, the E-cadherin level is only increased at 

the mRNA level but not the protein level under transient transfection conditions 

(data not shown). This key finding shows that overexpression of RUNX1 in 
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mesenchymal cancer cells drives the cells back to the epithelial stage. These 

observations provide direct evidence that RUNX1 prevents EMT. 
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Figure 2.10. RUNX1 controls EMT-MET in non-metastatic breast 

cancer cells. Two breast cancer cell lines MCF7 (epithelial-like) (A-C) 

and MCF10AT1 (mesenchymal-like) (D, E) were examined for RUNX1 

knockdown or ectopic expression, respectively. (A) Western blot 

analyses of lysates from MCF7 cells with RUNX1 depletion show 

decreased protein expression of RUNX1 and E-cadherin. (B) RT-qPCR 

of RNA from MCF7 cells treated with shRunx1 shows decreased gene 

expression of RUNX1. (C) RT-qPCR shows decreased gene expression 

of E-cadherin and increased gene expression of N-cadherin and 

Vimentin in RUNX1 depleted MCF7 cells. Student’s t test * p value 

<0.05, ** p value <0.01 for MCF7 shRunx1 cells compared to the 

MCF7ns cells. Error bars represent the standard error of the mean (SEM) 

from three independent experiments. (D) RT-qPCR of RNA from 

MCF10AT1 cells overexpressing RUNX1 show increased gene 

expression of E-cadherin and decreased gene expression of Vimentin. 

Student’s t test * p value <0.05 for MCF10AT1 RUNX1 overexpression 

cells compared to the MCF10AT1 EV cells. Error bars represent the 

standard error of the mean (SEM) from three independent experiments. 

(E) Western blot analyses of lysates from MCF10AT1 cells treated with 

RUNX1 overexpression show increased protein expression of RUNX1 

and decreased expression of Vimentin. All the experiments are 

performed 3 times (N=3). 
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2.4.9 RUNX1 expression in breast tumors correlates with metastasis, tumor 

subtype and survival 

 We next evaluated RUNX1 expression in breast cancer patient tissues. With a 

highly specific RUNX1 antibody, we applied immunohistochemistry to determine 

the expression pattern of RUNX1 in different types of breast cancer using a Tissue 

Microarray (TMA) of 185 tumors and 6 control normal adjacent tissue sections. 

The results identified that RUNX1 expression is associated with breast cancer 

stages and subtypes. We observed RUNX1 expression at high levels in all normal 

and benign mammary epithelial tissues (Fig. 2.11A). RUNX1 is also expressed in 

breast cancer samples including ductal carcinoma in situ and invasive ductal 

carcinoma (Fig. 2.11A). However, breast cancer cells metastatic to the lymph node 

showed significantly less RUNX1 expression compared with the primary tumor site 

(Fig. 2.11A and B). Quantification of RUNX1 levels at primary sites and lymph 

metastatic sites in 50 patients showed that RUNX1 is significantly lower (p=0.005 

using two tailed t test) in lymph samples (Fig. 2.11C). We also observed slightly 

higher RUNX1 levels in grade 1 compared with grade 2 tumors (Fig. 2.12) 

 We further investigated the relationship of RUNX1 expression to clinical 

outcomes through mining of The Cancer Genome Atlas (TCGA) database. RUNX1 

was found to be under-expressed in several breast cancer subtypes, including 

Luminal B, Her2-enriched and basal-like breast cancers, which all have a poor 

prognosis (Fig. 2.11D). Luminal A subtype, which is generally associated with a 

good prognosis, showed RUNX1 levels equivalent to normal-like breast tissue. 
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However, 5% of samples in this subtype have RUNX1 somatic mutations (Network 

2012), with the majority located in the RUNX1 DNA-binding domain, which can 

compromise RUNX1 transcriptional activity. We conclude from these data that 

RUNX1 expression is subtype-dependent and correlates with prognosis. 
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 RUNX1 expression levels were also compared with patient survival rates using 

a data set (GSE3494-U133A) in the Gene Expression Omnibus database (Fig. 

2.11E). Our analyses show that patients with low RUNX1 levels in their tumors 

exhibit poor survival relative to patients with high RUNX1 expression.  

 Taken together our data demonstrate that RUNX1 sustains the epithelial 

phenotype and preserving the epithelial integrity in normal epithelial cells. Loss of 

Figure 2.11. RUNX1 expression in breast tumors correlates with 

metastasis, tumor subtype and survival. (A) Representative tissue 

microarray images of RUNX1 in normal adjacent tissue (NAT), 

fibroadenoma, invasive ductal carcinoma, and tumor metastasis to 

lymph. (B) Representative of TMAs (n=50) showing two patients’ primary 

tumor and their lymph metastasis with RUNX1 positive cells (brown 

stain). Two tailed t test ** p<0.005 between primary tumor and lymph 

metastatic sites. (C) Distribution of RUNX1 staining scores for 50 patients 

with primary breast tumor and lymph metastasis. Using a semi-

quantitative scoring system, three researchers blindly scored TMAs. (D) 

RUNX1 mRNA is decreased in breast cancer subtypes. (E) Kaplan-Meier 

analysis showed higher overall survival in patients with higher RUNX1 

mRNA expression (GSE3494-U133A). Gehan-Breslow-Wilcoxon test 

with p value<0.0001 compared with high RUNX1 expression patients and 

low RUNX1 expression patients. 
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RUNX1 is not only accompanied with EMT (Fig. 2.2-2.5) but can also initiate the 

EMT transformation (Figs. 2.7 and 2.10). Therefore, loss of RUNX1 normal 

activities in tumor tissues may serve as an indicator of poor prognosis for breast 

cancer patients as revealed in several clinical studies (Fig. 2.11). We conclude 

from these clinical data that as tumors advance from early stage to a more 

aggressive phenotype, loss of RUNX1 may promote tumor progression.    

Figure 2.12. RUNX1 tissue microarray show that RUNX1 is 

associated with early stage tumor. (A) Representative tissue 

microarray images of RUNX1 in invasive ductal carcinoma represent 

each scoring. (B) RUNX1 in scoring in each category including normal 

adjacent tissue (NAT), fibroadenoma, invasive ductal carcinoma, and 

tumor metastasis to lymph. (C) RUNX1 scoring in grade 1 and grade 2 

tumors 
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2.5 DISCUSSION for Chapter II 

 Our study has established a crucial role for RUNX1 in maintaining the normal 

epithelial phenotype. This finding is supported by our demonstration that RUNX1 

is decreased during EMT and that loss of endogenous RUNX1 initiates and 

promotes EMT which is also accompanied by changes in the morphology of 

mammary epithelial cells. Using two independent methods to induce EMT, either 

by adding TGF-β or removing required growth factors which increases/activates 

TGF-β expression, we observed significantly decreased RUNX1 expression. 

Further, RUNX1 re-expression rescues the epithelial phenotype following TGF-β 

treatment, which assures maintenance of normal epithelial cell morphology and 

prevents EMT. By inhibition of RUNX1 in MCF10A (normal) and MCF7 (epithelial-

like breast cancer) cells, together with re-expression in MCF10AT1 (malignant 

cells with low RUNX1 levels), we provide direct evidence that loss of RUNX1 

directly contributes to the initiation of EMT in breast cancer, while the presence of 

RUNX1 restores the epithelial phenotype. Together these findings have revealed, 

for the first time, that the expression of RUNX1 has a critical function in preserving 

epithelial morphology in mammary epithelial cells and preventing EMT; thus, 

RUNX1 can be considered as a transcription factor preventing tumor initiation in 

normal epithelial cells.    

 Here we focused our study on normal mammary epithelial and epithelial-like 

breast cancer cells, and discovered a key function for RUNX1 in preventing EMT. 

We examined the mechanisms by which RUNX1 regulates EMT in cancer 
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progression. First, we show RUNX1 is a positive regulator of the epithelial marker 

E-cadherin. Upon loss of RUNX1, the expression level of E-cadherin is strikingly 

decreased. We also showed that RUNX1 directly binds to a consensus motif in the 

E-cadherin gene using ChIP-qPCR. Second, we demonstrate RUNX1 operates 

downstream of the TGF-β pathway and functions as a suppressor of TGF-β 

regulation. RUNX1 is well established to mediate TGF-β-BMP signaling by forming 

co-regulatory complexes with SMADs (Zaidi, Sullivan et al. 2002, Ito and Miyazono 

2003). Our RNA-Seq analysis of growth factor-depleted cells suggests that loss of 

RUNX1 is coupled with activation of the TGF-β pathway. This was confirmed 

experimentally by showing that RUNX1 is decreased upon TGF-β treatment and 

RUNX1 reverses TGF-β induced EMT. Supporting these molecular mechanisms, 

RUNX1 has known properties that establish cell phenotypes, including the 

hematopoietic lineage (Tober, Yzaguirre et al. 2013), and regulating quiescent hair 

follicle bulge stem cells to differentiate to early progenitor hair germ cells (Lee, 

Sada et al. 2014). Very recently RUNX1 was shown to be transiently upregulated 

early in hESC differentiation to mesendodermal lineages via RUNX1-TGFB2 

signaling and that loss of RUNX1 impaired epithelial differentiation 

(VanOudenhove, Medina et al. 2016). Thus, our studies, which have now identified 

a cellular function for RUNX1 in normal mammary cells, is consistent with these 

other normal tissues to support their cell type specific phenotype. We have further 

studied the consequence of disturbing normal RUNX1 function in breast cancer 
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cells and provided evidence that RUNX1 loss of function has a significant effect on 

cancer-related mechanisms. 

 Repression, overexpression, and/or deregulated functioning of RUNX1 have 

been shown to cause cancers (Ito, Bae et al. 2015). TGF-β is a well-known EMT 

inducer and has a dual role in breast cancer progression (David, Huang et al. 2016). 

In normal epithelial cells and early stage breast cancer, TGF-β acts as a tumor 

suppressor, yet at later stages of tumor progression can promote cancer cell 

migration, invasion and metastasis (Padua and Massague 2009). Our results have 

provided evidence that TGF-β is an upstream regulator of RUNX1. Because 

RUNX1 is downstream of TGF-β, RUNX1 may also have different functions 

depending on the specific cellular context (Browne, Taipaleenmäki et al. 2015). 

For example, while RUNX1 has been shown to function as a tumor suppressor in 

prostate cancer (Takayama, Suzuki et al. 2015), it acts as an oncogene in ovarian 

cancer (Keita, Bachvarova et al. 2013) and in a mouse model of breast cancer 

(Browne, Taipaleenmäki et al. 2015). Our identification of TGF-β as a RUNX1 

upstream regulator provides insight into the compromised mechanisms of RUNX1 

function that are associated with breast cancer. 

 RUNX1 is also subject to the hormonal status of cells. Treating ER+ breast 

cancer cells with 17β-estradiol promotes EMT (Huang, Fernandez et al. 2007) and 

also decreases RUNX1 expression (Vivacqua, De Marco et al. 2015). In turn, 

depletion of RUNX1 represses the expression of estrogen receptor α (van Bragt, 

Hu et al. 2014), suggesting a negative feedback loop in progression of ER+ breast 
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cancer. Our data show MCF7 ER+ breast cancer cells can be induced into EMT 

by RUNX1 depletion. One study using computational analysis revealed that 

RUNX1 is highly correlated with mammary stem cell differentiation (Sokol, Sanduja 

et al. 2015). Other studies showed that RUNX1 is important for mammary gland 

maturation, and its interaction with ERα is necessary for luminal development and 

may prevent breast cancer progression (van Bragt, Hu et al. 2014, Sokol, Sanduja 

et al. 2015). It also has been shown that RUNX1 represses WNT pathways, which 

allows ER to be expressed in luminal breast cancer cells (Chimge, Little et al. 2016). 

All these pieces of evidence raise the hypothesis that RUNX1 could reduce 

aggressiveness in ER-positive breast cancer; here we clearly demonstrate RUNX1 

has a direct role to prevent EMT in MCF7 ER+ breast cancer cells. 

 In addition to RUNX1-mediated mechanisms downstream of TGF-β (feedback 

loop) and upstream hormonal regulation of RUNX1, miRNAs are also a likely 

mechanism contributing to the down regulation of RUNX1 during EMT. MicroRNAs 

are known to promote/inhibit EMT (e.g., miR-200 family, miR-27 and miR-30) 

(Zaravinos 2015). Our analysis using TargetScan7.0 indicates that most of these 

miRNAs also target the RUNX1 3’UTR. It has been shown that miR27a (Tang, Yu 

et al. 2014), miR144 (Vivacqua, De Marco et al. 2015) and miR387 (Browne, 

Dragon et al. 2016), which are upregulated during breast cancer progression, are 

directly down-regulating RUNX1. The convergence of these multiple pathways that 

inhibit RUNX1 expression leads us to conclude that loss of RUNX1 is an important 

mechanistic step in breast cancer initiation and/or progression. 
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 Examination of TCGA and other public datasets identified loss of RUNX1 

correlates with poor prognosis (Fig. 2.12C) and poor survival (Fig. 2.12D). It has 

been shown in breast tumors that the majority of EMT markers are expressed in 

basal layer cells (Sarrio, Rodriguez-Pinilla et al. 2008). Also reported is that basal 

subtypes of breast cancer are more aggressive and metastatic compared to the 

luminal subtypes (Kennecke, Yerushalmi et al. 2010). TCGA data show that 

RUNX1 is expressed at the lowest level in patients with basal-like breast cancer. 

These findings are consistent with our identification of a RUNX1 function in 

preserving the epithelial phenotype in normal-like basal cells (MCF10A). Loss of 

RUNX1 expression may cause the basal cells to lose their epithelial morphology, 

phenotype integrity and become more susceptible to initiation of EMT. This 

explains why our functional studies focused on the role of RUNX1 in basal-like 

mammary epithelial cells (MCF10A). 

 Intact RUNX1 function is also important for Luminal A breast cancer. Genetic 

studies show RUNX1 is mutated in 5% of Luminal A subtype breast cancer patients 

(Banerji, Cibulskis et al. 2012, Network 2012). A recent study suggested that in 

MCF7 cells, disruption of RUNX1 function might contribute to development of 

ER+ luminal breast cancer in the context of either TP53 or RB1 loss (van Bragt, Hu 

et al. 2014). Significantly, we demonstrated that loss of RUNX1 in luminal like 

breast cancer cells (MCF7) can promote EMT (Fig. 2.10). Taken together, these 

biochemical and clinical data support the emerging concept that RUNX1 reduces 
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tumor aggressiveness and that loss of RUNX1 is associated with the progression 

of breast cancer. 

    Our studies demonstrate a clear reduction of endogenous RUNX1 in two cell 

models (MCF7 and MCF10AT1) of breast cancer. This finding is consistent with 

human TMA data that showed the strongest RUNX1 staining (66% strong or 

moderate levels) in normal cases, compared with 29% and 35% in DCIS and IDC 

samples, respectively (Sarrio, Rodriguez-Pinilla et al. 2008, Kennecke, Yerushalmi 

et al. 2010). However, this human data is in contrast to findings in the MMTV-PyMT 

mouse model of breast cancer (Browne, Taipaleenmäki et al. 2015), where Browne 

et al. reported that RUNX1 steadily increased during tumor growth. Thus, the 

decreased RUNX1 in human samples with increased disease progression 

indicates RUNX1 has distinct functional activities that differ between mouse and 

human breast tumors.   

 In conclusion, we identified RUNX1 as a key transcription factor in basal 

epithelial breast cells through its ability to maintain normal epithelial morphology. 

Our studies offer RUNX1 as a novel bio-therapeutic molecule for breast cancer 

intervention. 
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Chapter III RUNX1 Genome-wide Regulation of Normal Mammary Epithelial 

Cells: Novel Functions for Mitosis and Genome Stability 

 

A large portion of this chapter comes from the manuscript: 

Deli Hong, Andrew J. Fritz, Coralee E. Tye, Natalie A. Page, Joseph R. Boyd 

Janet L. Stein, Jane B. Lian, Gary S. Stein   

RUNX1 Global Binding and Gene Regulation in Mammary Epithelial Cells 

Revealed Novel Runx1 Mediated Cellular Activities 

 

Contribution: Deli Hong, Jane B. Lian, Janet L. Stein and Gary. S. Stein. 

conceived and designed the experiments, and analyzed data.  Deli Hong 

performed the majority of the experiments. Andrew J. Fritz built the ChIP-seq 

library. Coralee E. Tye and Natalie A. Page built the RNA-seq library.  Andrew J. 

Fritz, Coralee E. Tye and Joseph R. Boyd analyzed the RNA-seq and ChIP-seq 

results. Deli Hong created all the figures. Deli Hong, Jane B. Lian, Janet L. Stein 

and Gary S. Stein wrote the manuscript. 
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3.1 Introduction: 

    RUNX1 belongs to the Runx family of transcription factor that have been known 

for their function in balancing proliferation and differentiation during development 

(Ito, Bae et al. 2015). In particular, RUNX1 is essential for hematopoiesis, as 

Runx1-null mice die between embryonic day (E) 12.5 and E13.5 due to the lack of 

definitive hematopoiesis (Okuda, van Deursen et al. 1996, Wang, Stacy et al. 

1996). The role of RUNX1 in definitive hematopoiesis is to differentiate the 

hemogenic endothelium cells into hematopoietic stem cells through the endothelial 

to hematopoietic transition (Yzaguirre, de Bruijn et al. 2017). Disrupting normal 

RUNX1 function in hematopoietic cells promotes leukemogenesis (Sood, 

Kamikubo et al. 2017). For example, RUNX1 mutations, including translocations 

and point mutations, are frequently found in a variety of human hematological 

malignancies. These mutations function as oncogenes to promote 

leukemogenesis (Sood, Kamikubo et al. 2017).  

      In recent years, it has been revealed that the role of RUNX1 is not confined to 

the hematopoietic lineage. Multiple lines of evidence have emerged demonstrating 

that RUNX1 plays a key role in epithelial glands and in solid tumors, especially in 

breast cancer (Scheitz and Tumbar 2013, Riggio and Blyth 2017). Next generation 

sequencing studies on breast cancer tumor samples have consistently identified 

RUNX1 point mutations and deletions in human breast cancers, especially in 

luminal subtypes (Banerji, Cibulskis et al. 2012, Ellis, Ding et al. 2012, Network 

2012, Ciriello, Gatza et al. 2015). Moreover, in several studies, RUNX1 mutations 
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are characterized as cancer driver mutations, which directly contribute to tumor 

progression (Pereira, Chin et al. 2016, Kas, de Ruiter et al. 2017).  In one such 

study, insertional mutagenesis screening identified that RUNX1 truncation is 

involved in invasive lobular cancer development (Kas, de Ruiter et al. 2017).   

    Since RUNX1 mutations have been identified as driver mutations (Pereira, Chin 

et al. 2016), several studies have examined the function of RUNX1 in breast 

cancer cells (van Bragt, Hu et al. 2014, Barutcu, Hong et al. 2016, Chimge, Little 

et al. 2016). These studies have generally found that RUNX1 has a role to reduce 

aggressive phenotype in luminal subtypes of breast cancer. In ER-positive MCF7 

breast cancer cells, RUNX1 contributes to local chromatin interactions, and loss of 

RUNX1 leads to the deregulation of genes associated with chromatin structure and 

the activation of an epithelial to mesenchymal transition (Barutcu, Hong et al. 2016, 

Chimge, Little et al. 2016). Mechanistically, loss of RUNX1 activates WNT 

signaling by preventing the inhibition of AXIN1 (van Bragt, Hu et al. 2014, Chimge, 

Little et al. 2016) . Conversely, in MDA-MB-231 triple-negative breast cancer 

(TNBC) cells, RUNX1 has been shown to have tumor-promoting activity by 

supporting migration and invasion (Recouvreux, Grasso et al. 2016).   

    Compared with breast cancer, our understanding of RUNX1 function in normal 

mammary gland remains inadequate. RUNX1 levels fluctuate during physiological 

stages of mammary gland development, and in mice the highest level of RUNX1 

is observed in virgin and early-pregnant glands (van Bragt, Hu et al. 2014). In the 

mammary gland, RUNX1 is expressed primarily in the basal layer compared with 
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the luminal layer (van Bragt, Hu et al. 2014, Rooney, Riggio et al. 2017). 

Furthermore, depleting RUNX1 in mammary stem cells (MSC) leads to a reduction 

in luminal MSC and an increase in the basal MSC population (van Bragt, Hu et al. 

2014). This spatial/temporal expression pattern suggests that RUNX1 is precisely 

regulated and that its normal function is necessary for mammary gland 

development and morphogenesis. Previously, our group has demonstrated that 

RUNX1 stabilizes mammary epithelial cells by repressing the epithelial to 

mesenchymal transition (EMT) (Hong, Messier et al. 2017). Loss of RUNX1 

induces the initiation of EMT and changes the morphology of the cells. While 

limited evidence suggests that RUNX1 regulates proliferation and differentiation in 

mammary epithelial cells (Wang, Brugge et al. 2011, Sokol, Sanduja et al. 2015, 

Hong, Messier et al. 2017), the precise function(s) of RUNX1 in these cells is (are) 

unclear.  

To better elucidate the function of RUNX1 and the consequences of its loss of 

expression in mammary epithelial cells, in this chapter, I characterized the gene 

expression profile of the MCF10A cells with and without RUNX1 expression by 

RNA-seq analysis. In addition, to gain insight into RUNX1-mediated gene 

regulation, I determined RUNX1 genomic occupancy by performing RUNX1 ChIP-

seq analysis in MCF10A cells. I observed that loss of RUNX1 significantly alters 

the gene expression pattern and many aspects of cellular activities. ChIP-seq 

analysis reveals that RUNX1 binding is enriched at promoter regions and miRNA 

genes.  RUNX1 binds to a broad spectrum of up- and down-regulated genes, 
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suggesting that RUNX1 utilizes different mechanisms to regulate gene expression 

in normal mammary epithelial cells. I provided evidence that RUNX1 knockdown 

deregulates mitosis and induces genome instability in mammary epithelial cells.  

As a result, in this chapter, I provide additional insight into the underlying RUNX1 

regulatory mechanisms and the consequences of RUNX1 perturbation in 

mammary epithelial cells.  

 

3.2.  Materials and Methods: 

3.2.1 Generation of MCF10A stable cell lines and cell culture 

Human breast cancer cell lines MCF10A cells were purchased from ATCC. 

MCF10A cells were grown in DMEM: F12 (Hyclone: SH30271, Thermo Fisher 

Scientific, Waltham, MA, USA) with 5% (v/v) horse serum (Gibco: 16050, Thermo 

Fisher Scientific, Waltham, MA, USA) + 10 μg/ml human insulin (Sigma Aldrich, St. 

Louis, MO: I-1882) + 20 ng/ml recombinant hEGF (Peprotech, Rocky Hill, NJ, USA: 

AF-100-15) + 100 ng/ml cholera toxin (Sigma Aldrich: C-8052) + 0.5 μg/ml 

hydrocortisone (Sigma Aldrich: H-0888) 50 IU/ml penicillin/50 μg/ml streptomycin 

and 2 mM glutamine (Life Technologies, Carlsbad, CA, USA: 15140-122 and 

25030-081, respectively).  

Lentivirus generation and infection have been previous described in (Hong, 

Messier et al. 2017). Lentivirus-based RNAi transfer plasmids with pGIPZ shRunx1 

(clone V2LHS_150257 and V3LHS_367631, GE Dharmacon), pGIPZ EV control 

(Cat No. RHS4351, GE Dharmacon) and pGIPZ non-silencing (Cat No. RHS4346, 



	 107	

GE Dharmacon) were purchased from Thermo Scientific. To generate lentivirus 

vectors, 293T cells in 10 cm culture dishes were co-transfected with 10 μg of 

pGIPZ shRunx1 or pGIPZ non-silencing, with 5 μg of psPAX2, and 5 μg of pMD2.G 

using lipofectamine 2000 reagent (Life Technologies). Viruses were harvested 

every 48 hr post-transfection. After filtration through a 0.45 μm-pore-size filter, 

viruses were concentrated by using LentiX concentrator (Clontech, Mountain View, 

CA, USA). For shRNA-mediated knockdown of RUNX1 expression, MCF10A cells 

were plated in six-well plates (1×105 cells per well) and infected 24 hr later with 

lentivirus expressing shRunx1 or nonspecific shRNA. Briefly, cells were treated 

with 0.5 ml of lentivirus and 1.5 ml complete fresh DMEM-F12 per well with a final 

concentration of 4 μg/ml polybrene. Plates were centrifuged upon addition of the 

virus at 1460 × g at 37°C for 30 min. Infection efficiency was monitored by GFP 

co-expression at 2 days post infection. Cells were selected with 2μg/ml puromycin 

(Sigma Aldrich P7255-100MG) for at least two additional days. After removal of 

non-viable cells, the remaining attached cells were passed and analyzed. 

3.2.2 RNA-seq and analysis 

RNA was isolated using DirectZol RNA mini prep kit (Zymo Research), quantified 

by Qubit HS RNA assay (Thermo Fisher Scientific) and assayed for RNA integrity 

by Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Total RNA was 

depleted of ribosomal RNA, reverse transcribed and strand-specific adapters 

added following manufacturer's protocol (TruSeq Stranded Total RNA Library Prep 

kit with Ribo-Zero Gold, Illumina, San Diego, CA, USA) with the exception that the 



	 108	

final cDNA libraries were amplified using the Real-time Library Amplification Kit 

(Kapa Biosystems, Wilmington, MA, USA) to prevent over-amplification of libraries. 

Generated cDNA libraries were assayed for quality then sequenced as single-end 

100 bp reads (IlluminaHiSeq1000, UVM Advanced Genome Technologies Core). 

Sequence files (fastq) were mapped to the most recent human genome (hg38) 

assembly using TopHat2. Expression counts were determined by HTSeq with 

recent gene annotations (Gencode v22). Differential expression was analyzed by 

DESeq2. Correlation between replicates and differential gene expression between 

time points was assessed by principal component analysis (PCA). In addition, 

mRNA expression data was uploaded to IPA (www.ingenuity.com) and analyzed 

using default parameters. 

3.2.3 ChIP-seq and analysis 

ChIP-seq was performed as previously described (O’Geen, Frietze et al. 2010). 

We performed independent replicates for MCF10A using 10ul of antibody against 

RUNX1 (Cell Signaling Technologies, 4334BF, 1ug/ul) and 150ug of chromatin for 

each sample. Adapters were cut (cutadapt v1.11) and low-quality reads trimmed 

(Galaxy FASTQ Quality Trimmer 1.0.0; window 10, step 1, minimum quality 20). 

Reads were mapped to the human genome (hg38 canonical) using STAR version 

2.4 (Dobin, Davis et al. 2013) with splicing disabled (–alignIntronMax 1) (Dobin, 

Davis et al. 2013). Enriched regions (narrowPeak calls) for each replicate were 

generated using MACS2 (Feng, Liu et al. 2012)  and replicates were then 

evaluated using deepTools (Ramírez, Ryan et al. 2016) to correlate alignments 
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and IDR (Li, Brown et al. 2011) to evaluate peak call reproducibility. After pooling 

replicates, MACS2 (Zhang, Liu et al. 2008) was used to call narrowPeak at high 

stringency (P-value <10e-5), these peaks were further filtered according to IDR 

cutoffs.  FE wiggle tracks were generated using MACS2’s bdgcmp and UCSC’s 

bedGraphToBigwig utility. HOMER motif analysis was used to determine motifs 

within 200bp of the peak summits. ChIPBETA (Binding and Expression Target 

Analysis) was used to predict targets that are activated or repressed by RUNX1 

(Wang, Sun et al. 2013). Gene expression heatmap was generated by web-based 

tool Morpheus (https://software.broadinstitute.org/morpheus/). Venn diagrams 

were generated by BioVenn (Hulsen, de Vlieg et al. 2008).   

3.2.4 Western blotting  

Cells were lysed in RIPA buffer and 5X SDS sample buffer supplemented with 

cOmplete, EDTA-free protease inhibitors (Roche Diagnostics) and MG132 (EMD 

Millipore San Diego, CA, USA). Lysates were fractionated in an 8.5% acrylamide 

gel and subjected to immunoblotting. The gels are transferred to PVDF 

membranes (EMD Millipore) using a wet transfer apparatus (Bio-Rad Laboratories, 

Hercules, CA, USA). Membranes were blocked using 5% Blotting Grade Blocker 

Non-Fat Dry Milk (Bio-Rad Laboratories) and incubated overnight at 4°C with the 

following primary antibodies: a rabbit polyclonal RUNX1 (Cell Signaling 

Technology, Danvers, MA, USA:#4334, 1:1000); a mouse monoclonal to E-

cadherin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA: sc21791, 1:1000); 

a mouse monoclonal CDK1 (Santa-Cruz Biotechnology sc-54, 1:1000); a mouse 
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monoclonal to β-Actin (Cell Signaling Technology #3700, 1:1000), a rabbit 

polyclonal Tyr15-p-CDK1(Abcam: 47594, 1:1000); a rabbit polyclonal Cyclin 

B1(Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA: sc752, 1:1000); a rabbit 

polyclonal Cyclin A (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA: H432, 

1:1000); a mouse monoclonal Cyclin E (BD Bioscience, 554183 1:1000), a rabbit 

polyclonal Bub1 (Cell Signaling Technology, Danvers, MA, USA:#4116s, 1:1000); ), 

a rabbit polyclonal Wee1 (Cell Signaling Technology, Danvers, MA, USA:#4936S, 

1:1000); a rabbit polyclonal Cdc25B  (Santa Cruz Biotechnology, Inc., Santa Cruz, 

CA, USA: SC326, 1:1000); a rabbit polyclonal Cdc25C (Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA, USA: SC327, 1:1000);. Secondary antibodies conjugated to 

HRP (Santa Cruz Biotechnology) were used for immunodetection, along with the 

Clarity Western ECL Substrate (Bio-Rad Laboratories) on a Chemidoc XRS+ 

imaging system (Bio-Rad Laboratories). 

3.2.5 Immunofluorescence staining microscopy 

Cells were fixed with using 3.7% formaldehyde in phosphate buffered saline (PBS) 

for 10 min. Cells were then permeabilized in 0.1% Triton X-100 in PBS, and 

washed in 0.5% Bovine Serum Albumin in PBS. Detection was performed using a 

mouse monoclonal gH2AX antibody (Millipore JBW301). Staining was performed 

using fluorescent secondary antibodies; for rabbit polyclonal antibodies a goat anti-

rabbit IgG (H+L) secondary antibody, Alexa Fluor® 594 conjugate (Life 

Technologies A-11062), was used for 1:5000 dilution and 1 hour at 37 °C. Cell 

were also stained with DAPI (Sigma-Aldrich: D9542-10MG) for DNA content. 
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3.2.6 Flow cytometry analysis 

Cells analyzed by flow cytometry were fixed for 10 minutes in ice cold 70% ethanol 

for 30 mins before being stained for 30 minutes with an antibody against H3S28P 

(Alexa fluor 647-conjugated, BD Biosciences, 558609). Cells were then 

suspended in 2% FBS in PBS and stained with Propidium iodide (PI) (BD 

Pharminge 550825) for 15 minutes to determine DNA content. Flow cytometric 

analysis was performed using the LSRII instrument (BD Biosciences). FlowJo 

(Ashland, OR, http://www.flowjo.com/) version 10 was used to display DNA 

histograms and to determine the percent of cells positive for H3S28P, a marker of 

mitosis,  within the cycling cell populations. 

 

3.3 Results: 

3.3.1. RUNX1 knockdown in normal-like mammary epithelial cells results in 

aberrant gene regulation  

To investigate the role of RUNX1 in normal mammary epithelial cells, we used 

previously described normal-like mammary epithelial MCF10A cells stably 

expressing either control (non-silencing shRNA control (NS), empty vector control 

(EV)), or two different shRNAs against RUNX1 (shRunx1-1 and shRunx1-2) (Hong, 

Messier et al. 2017). I confirmed the down-regulation of RUNX1 at the protein level 

by Western blot analysis (Fig 3.1A), and then performed RNA-seq analysis using 

above cell lines and validated the quality of the RNA-seq results by principal 

component analysis (Figure 3.1B).  Two of the control cell lines (NS and EV) form 
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a cluster, which is more similar to the parental MCF10A cells than the cluster 

formed by two RUNX1 knockdown cell lines (shRunx1-1 and shRunx1-2).  

Heatmap of gene expression shows the results of three replicates within each 

condition. (Figure 3.1C) The reproducibility suggests the quality of these RNA-seq 

libraries will enable identification of genes differentially expressed upon RUNX1 

depletion.  
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 Notably, from the initial assessment of RNA-seq data, we found several 

mesenchymal markers including N-cadherin (CDH2), Fibronectin 1 (FN1) and 

Matrix metallopeptidase 13 (MMP13) significantly up- regulated upon depletion of 

RUNX1 (Figure 3.2). These findings are consistent with our previous reports that 

loss of RUNX1 initiates EMT in MCF10A cells (Chapter II). We next delineated the 

differentially expressed genes between the two control cell lines (NS, EV) and two 

shRunx1 (shRunx1-1, shRunx1-2) in MCF10A cells. Differentially expressed 

genes were defined as those with at least a 2-fold change within all 4 groups (EV 

vs shRunx1-1; EV vs shRunx1-2; NS vs shRunx1-1; NS vs shRunx1-2) (Fig. 3.3A, 

B). Overall, we identified 1209 up- and 660 down- regulated genes upon RUNX1 

depletion in MCF10A cells (Fig. 3.3A, B).   

     

Figure 3.1 RNA-seq in RUNX1 depleted MCF10A cells. (A) Western 

blot analyses of lysates from MCF10A cells treated with shRunx1 show 

decreased protein expression of RUNX1. The experiment is performed 3 

times (N=3). (B) Sample-to-sample distances. Heatmap showing the 

Euclidean distances between the samples as calculated from the 

regularized log transformation. (C) Heatmap showing the transcripts per 

million (TPM) expression values of the differentially expressed gene 

replicates. Samples were calculated from the regularized log 

transformation. 
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Figure 3.2 The expression of mesenchymal genes is increased in 

RUNX1 depleted MCF10A cells.  RNA-seq analysis of MCF10A cells 

treated with shRunx1 shows increased gene expression of CDH2, FN1 

and MMP13. Student's t test * p value <0.05, ** p value <0.01, *** p value 

<0.001, **** p value <0.0001 for MCF10A shRunx1 cells compared to the 

MCF10A NS cells. Error bars represent the standard error of the mean 

(SEM) for the three biological samples. 
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Figure 3.3   Defining differentially expressed genes in RUNX1 

knockdown in MCF10A cells showing in Venn diagram. (A) Left: 

Genes that are upregulated (> 2-fold; p<0.05) in shRunx1-1 and 

shRunx1-2 cells compared to EV control.  Middle: Venn diagram showing 

genes that are upregulated (> 2-fold; p<0.05) in shRunx1-1 and 

shRunx1-2 cells compared to NS control. Right: upregulated genes 

identified between EV control and NS control. (B) Left: Genes that are 

downregulated (> 2-fold; p<0.05) in shRunx1-1 and shRunx1-2 cells 

compared to EV control.  Middle: Venn diagram showing genes that are 

downregulated (> 2-fold; p<0.05) in shRunx1-1 and shRunx1-2 cells 

compared to NS control. Right: downregulated genes identified between 

EV control and NS control.  
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    To elucidate the cellular consequence of RUNX1 depletion in MCF10A cells, we 

performed Ingenuity Pathway Analysis (IPA) to identify pathways altered upon 

RUNX1 loss (Fig. 3.4). Several pathways involved in growth factor signaling-such 

as FGF signaling, HGF signaling and PDGF signaling-are activated upon the loss 

of RUNX1, suggesting RUNX1 is necessary for normal cell growth in MCF10A cells 

(Fig. 3.4A).  Activation of other pathways-such as NF-kB signaling, Lymphotoxin b 

Receptor signaling and FcgRIIB signaling in B-lymphocytes, implies that RUNX1 

is involved in cellular inflammation and immune response. It has been 

demonstrated that downregulation of RUNX1 activates the NF-kB pathway in both 

myeloid tumor and gastric cancer cells (Nakagawa, Shimabe et al. 2011, Wu, 

Zhang et al. 2017). The top up-regulated pathways in this analysis suggest the 

involvement of RUNX1 of inflammation in mammary tissue. We also found that 

multiple pathways linked to cell cycle regulation, including cyclins and Cell Cycle 

Regulation, Cell Cycle Regulation by BTG (B-cell translocation gene 2) and Mitotic 

Roles of Polo-like Kinase, are decreased in RUNX1-depleted cells (Fig. 3.4B). 

Moreover, many pathways related to breast cancer progression, for instance 

Hereditary Breast Cancer Signaling, Her-2 Signaling in Breast Cancer, and Breast 

Cancer Regulation by Stathmin1, are drastically altered upon loss of RUNX1, 

providing evidence that RUNX1 is involved in breast cancer biology (Fig 3.4C). 

Taken together, these results suggest that RUNX1 acts as a master 

transcriptional regulator in mammary epithelial cells, controlling the expression of 

nearly 1,900 genes. Loss of RUNX1 disturbs many aspects of cellular activities, 
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including cell cycle and cell growth, response to inflammation and immune stress 

and breast cancer progression.  
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3.3.2. RUNX1 ChIP-seq analysis identifies enriched binding at promoters     

To determine whether the differences in gene expression in RUNX1 depleted cells 

are directly related to RUNX1 binding, we performed RUNX1 ChIP-Seq in the 

parental MCF10A cells and identified 11969 reproducible peaks of RUNX1 binding.  

Next, we investigated the distribution of RUNX1 binding sites across eight different 

categories of genomic elements including promoter, exon, intron, intergenic, 

5’UTR, 3’UTR, TSS and pseudo gene regions by mapping RUNX1 sites to the 

annotated genes.  The annotation of these RUNX1 binding sites revealed that 

majority of the RUNX1 bindings are within intergenic regions (46%) and introns 

Figure 3.4 IPA canonical pathway analyses from each tier of core 

analysis. (A) Pathways upregulated in response toRUNX1 knockdown 

in MCF10A cells.  (B) Down-regulated pathways in RUNX1 knockdown 

in MCF10A cells.  (C) Top pathways based on p values, which are highly 

altered upon RUNX1 depletion in MCF10A cells.  The X axis represents 

negative log p values based on the probability that molecules in the 

uploaded dataset were included in the predefined IPA canonical 

pathways by true association as opposed to inclusion of molecules based 

on chance alone. Only the top 15 pathways in each category with the 

largest negative log p values are shown.   
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(42%), and only 8% of the peaks are located within promoter regions (Fig 3.5 A).  

However, after normalizing the peaks based on the frequency of those elements 

in the genome, we observed that RUNX1 peaks are specifically enriched in 

promoter and 5’UTR regions of protein coding genes, as well as miRNA genes (Fig 

3.5 B, C).  The binding of RUNX1 within promoters and 5’UTRs is consistent with 

the role of RUNX1 as a transcription factor, which validate further the quality of our 

ChIP-seq analysis. Notably, we also observed significant binding of RUNX1 to 

miRNA genes suggesting that RUNX1 is involved in miRNA biogenesis in 

mammary epithelial cells.  

    We next performed de novo motif analysis on these RUNX1 ChIP-seq peaks 

(Fig. 3.5D). The most significantly enriched motif was the RUNX1 motif itself (Fig. 

3.5D), validating the quality of the RUNX1-ChIP-seq data. Moreover, we identified 

additional binding motifs close to the RUNX1 binding site including AP1, TEAD4 

and STAT5 which are known to form transcription complexes with RUNX1 (Fig. 

3.5D) (Ogawa, Satake et al. 2008, Pencovich, Jaschek et al. 2011, Li, Wang et al. 

2016, Obier, Cauchy et al. 2016).  Additional several functional motifs that were 

not previously associated with RUNX1, such as ZFP410, BCL6B, NFIA and 

TFAP2B, are also present in the analysis suggesting that they might be part of 

RUNX1-mediated gene regulation (Fig. 3.5D).  Overall, our motif analysis indicates 

a complex regulatory network for RUNX1 that includes interactions with other 

transcription factors.   
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Figure 3.5 RUNX1 ChIP-seq in parental MCF10A cells. (A) Pie chart 

showing the distribution of RUNX1 ChIP-seq peak annotation.  (B). The 

enrichment of RUNX1 ChIP-seq peak annotation. (C) Normalized 

RUNX1 ChIP-seq signal intensity plot for all human UCSC genes ± 2 kb. 

(D) HOMER de novo motif analysis of the RUNX1 peaks. The motifs are 

ordered by significance from top to bottom. 
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3.3.3.  RUNX1 binds to up- or down-regulated genes  

Next, we asked whether RUNX1 binding was associated with differentially 

expressed genes. To address this question, we analyzed the RUNX1 peak 

frequency at the differentially expressed genes; although we determined that 

approximately 90% of the differentially expressed genes harbor RUNX1 binding 

within 100 kb of their TSS, only 20% of these genes have RUNX1 binding at their 

promoters (0-1kb to TSS) (Fig. 3.6A). These data indicate RUNX1 employs 

multiple mechanisms to regulate gene expression, either directly binding to the 

promoter region or binding to the distal regulatory loci. We further analyzed RUNX1 

regulatory mechanism by using ChIP-Binding and Expression Target Analysis 

(ChIP-BETA analysis), which predicts whether RUNX1 has activating or repressive 

function. ChIP-BETA analysis showed that down-regulated genes are directly 

associated with RUNX1 depletion (Fig. 3.6B). These data suggest that the primary 

function of RUNX1 is to activate gene expression and RUNX1 represses gene 

expression mainly in an indirect manner.  
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  Motif analysis on differentially expressed genes also illustrates distinctive motif 

patterns among up- and down-regulated genes, even though RUNX1 binding is 

detected in a similar percent of targets (Fig. 3.6C, D).  For down-regulated genes, 

Figure 3.6 RUNX1 regulates up- and down- regulated genes in a 

different pattern.  (A) Bar graph showing RUNX1 peak binding within 

± 100 kb of transcriptional start site (TSS), or > 100 kb of the gene bodies 

of up- and down-regulated genes or non-differentially expressed genes.   

(B) ChIP-BETA activating/repressive function prediction of the RNA-seq 

and RUNX1 ChIP-seq data set identified from the RUNX1 knockdown 

compared with NS control. The red and the purple lines represent 

upregulated and downregulated genes, respectively. The dashed line 

indicates the non-differentially expressed genes as background. Genes 

are cumulated by rank on the basis of their regulatory potential score 

from high to low. P-values represent significance comparing up- or down-

regulated group distributions with the non-differentially expressed group 

by the Kolmogorov-Smirnov test. (C) HOMER de novo motif analysis of 

the RUNX1 peaks in down-regulated genes. The peaks are ordered by 

significance from top to bottom. (D) HOMER de novo motif analysis of 

the RUNX1 peaks in up-regulated genes. The peaks are ordered by 

significance from top to bottom. 
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the top motif is Runx itself, suggesting direct binding (Fig. 3.6C).  However, for up-

regulated genes, the Runx motif is not the most significant motif; these results 

suggest RUNX1 represses genes in an indirect manner (Fig. 3.6D). Moreover, 

besides the Runx motif, no other motif is shared between up- and down-regulated 

genes, indicating that RUNX1 may utilize distinct mechanisms to activate or 

repress gene expression (Fig. 3.6C, D). We also performed the motif analysis at 

the promoter regions of the genes, which expression are not changed upon loss 

of RUNX1.  The results showed that Runx motif is still the most significant motif at 

the promoter (Fig. 3.7). This specific binding suggests RUNX1 has the potential to 

regulate those genes in other cellular contexts.  

 Overall, the RUNX1 binding pattern and motif analysis are consistent with the 

engagement of RUNX1 in both transcriptional activation and repression. 

Furthermore, it is the first time showing that RUNX1 may utilize different 

mechanisms to control target gene activation and repression. 
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Figure 3.7 HOMER de novo motif analysis of the RUNX1 peaks in 

un-differentially expresses genes. The peaks are ordered by 

significance from top to bottom.  
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3.3.4. Loss of RUNX1 affects cell cycle-related genes  

From pathway analysis, we discovered that many pathways related to cell cycle 

regulation were altered upon loss of RUNX1 (Fig.3.4). Therefore, we hypothesized 

that loss of RUNX1 dysregulates the expression of cell cycle genes and thus 

influences the overall cell cycle.  To test this hypothesis, we first generated an 

expression heatmap for the cell cycle related genes using normalized counts from 

the RNA-seq data (Fig 3.8A).  From the heatmap, we observed that there are no 

consistent patterns associated with G1 phase-related genes or G2 phase-related 

genes (Fig 3.8A).  However, the expression of genes linked to S phase and DNA 

replication is severely down-regulated upon loss of RUNX1 (Fig 3.8A). Decreased 

expression of S phase genes is consistent with previous reports that RUNX1 is 

necessary for acceleration of the G1/S transition and that RUNX1 promotes 

proliferation in mesenchymal stem cells (Bernardin-Fried, Kummalue et al. 2004, 

Kim, Barron et al. 2014).  We also observed that genes related to mitosis, such as 

Cyclin B1 and Cyclin-dependent kinase 1 (CDK1), are down-regulated in RUNX1 

knockdown cells (Fig 3.8A).  The key event that initiates mitotic entry is the 

activation of the Cyclin B1-CDK1 complex by increasing Cyclin B1 expression and 

of inactivate p-CDK1(Thr14/Tyr15) by dephosphorylation (Malumbres and 

Barbacid 2009).  To validate the RNA-seq data, we performed western blot 

analysis on proliferating cells to determine the protein levels of these cell cycle 

genes and the phosphorylation state of CDK1 in RUNX1 knockdown MCF10A cells 

(Fig 3.8B).  We observed that the level of Cyclin A is increased while Cyclin E 



	 128	

remains unchanged upon loss of RUNX1. Consistent with RNA-seq data, the level 

of Cyclin B1 is decreased with RUNX1 knockdown.  Although total CDK1 protein 

level does not decrease as dramatically as was observed in the RNA-seq data, the 

level of phospho-CDK1 (Tyr 15), which is the inactive form of CDK1, accumulates 

in RUNX1-depleted cells (Fig 3.8B).   With the lower level of Cyclin B and the 

increased level of pTyr15-CDK1, we hypothesized that RUNX1 is necessary for 

G2/M transition and mitotic entry in MCF10A cells.  However, cell cycle profiling 

showed that RUNX1 knockdown has no significant impact on overall cell cycle (Fig. 

3.8C upper and middle). We observed only very mild and not significant increase 

in the G2 population in two shRunx1 cell lines compared with NS control cells (Fig. 

3.8C bottom).  
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3.3.5. Loss of RUNX1 decreases the proportion of mitotic cells.  

Although we did not observe a significant change in overall cell cycle in RUNX1-

depleted MCF10A cells, we explored the explanation for the decreased level of 

Cyclin B1 and the accumulation of Tyr15-p-CDK1.  Therefore, we tested whether 

loss of RUNX1 specifically affects mitosis and performed flow cytometry analysis 

on the MCF10A cells labeled with the mitotic-specific marker H3S28P. We 

observed an over 40% decrease in the mitotic population, suggesting RUNX1 is 

required for mitosis (Fig.3.9A).  

Figure 3.8 RUNX1 alters the expression of cell cycle genes.  (A) Heat map 

of relative expression from RNA-seq data of cell cycle-related genes in 

MCF10A control (EV, NS) and shRunx1 (shRunx1-1, shRunx1-2) cells.   (B) 

Western blot analyses of whole cell lysates from MCF10A cells with RUNX1 

depletion show decreased protein expression of RUNX1 and alteration of 

protein expression of cell cycle related genes. Tyr15 pCDK1: Phospho-CDk1 

(Tyr15). The experiment is performed 3 times (N=3). (C) Top: Histogram plots 

of cell cycle profiles of control and RUNX1-depleted MCF10A cells were 

obtained by FACS analysis of propidium iodide (PI)-stained cells.  Middle: The 

cell cycle distribution plotted as a bar chart. Columns, mean; Error bars, SEM, 

from three independent experiments.   Bottom:  Percentage of cells in G2 

phase were plotted. Student's t test * p value <0.05.  
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 Interestingly, from RNA-seq data, the RNA levels of several components of the 

mitotic checkpoint complex (MCC), including Bub1, Bub1b and MAD2L1, are 

significantly decreased upon loss of RUNX1 (Fig 3.9B, C, Fig 3.10A).  Moreover, 

ChIP-seq data also reveal that RUNX1 binds to their promoters, indicating a direct 

regulation by RUNX1(Fig 3.9D, Fig 3.10B). Previously it has been reported that in 

leukemia cells, a RUNX1 mutant abrogates mitotic checkpoints by targeting the 

MCC component MAD2L1 (Krapf, Kaindl et al. 2010).  Here, we show that the 

native form of RUNX1 is a direct activator of several MCC components, including 

BuB1, BuB1b and MAD2L1, highlighting the importance of RUNX1 during mitosis. 

Further exploration will be required to elucidate the precise function of RUNX1 

during mitosis.  
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Figure 3.9 Loss of RUNX1 reduces the mitotic population.  (A) 

Representative flow cytometric analysis of control and RUNX1 depleted 

MCF10A cells with H3S28P versus DNA content (PI staining). The 

percentage of mitotic cells is indicated above the rectangles. The cells 

below the rectangles are the non-mitotic cells. Right: Bar graph of mitotic 

population in each condition. Error bars represent the standard error of 

the mean (SEM) from three biological samples. Student's t test * p value 

<0.05. (B) Western blot analyses of whole cell lysates from MCF10A cells 

with RUNX1 depletion show decreased protein expression of Bub1. The 

experiment is performed 3 times (N=3). (C) RNA-seq analyses from 

MCF10A cells treated with shRunx1 show increased gene expression of 

Bub1. Error bars represent the standard error of the mean (SEM) from 

three biological samples. Student's t test **** p value <0.0001. (D) ChIP-

seq genome browser view of RUNX1 binding near the transcription start 

site (TSS) of Bub1 gene.  
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Figure 3.10 RUNX1 is a direct regulator of Bub1b, MAD2L1 and APC. 

(A) RNA-seq analyses from MCF10A cells treated with shRunx1 show 

decreased gene expression of Bub1b and MAD2L1, and increased gene 

expression of APC. Student's t test ** p value <0.01, *** p value <0.001, 

for MCF10A shRunx1 cells compared to the MCF10A NS cells. Error 

bars represent the standard error of the mean (SEM) from three 

biological samples.  (B) ChIP-seq genome browser views of RUNX1 

binding at the transcription start site (TSS) of Bub1b, MAD2L1 and APC 

gene.  
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3.3.6.  Loss of RUNX1 decreases genomic stability  

It has been demonstrated that loss of Bub1 and the mitotic checkpoint complex is 

associated with genome instability (Baker, Jin et al. 2009).  Upon loss of RUNX1, 

we observed activation of genes that sense DNA damage, such as ATM and 

Rad50, and the decreased expression of DNA repair-related genes, such as 

PARP1 and members of Fanconi anemia proteins (Fig. 3.11A). Therefore, we 

hypothesized that loss of RUNX1 induces genome instability in MCF10A cells.  To 

test this hypothesis, we stained the cells with the DNA damage marker gH2AX, 

and observed no differences between RUNX1-depleted cells and control cells (Fig. 

3.11B left).  However, when comparing the DNA damage response after treating 

cells for 4 hrs with 5µg/ml bleomycin, which induces double-strand breaks, RUNX1 

knockdown cells displayed a pronounced delay of DNA repair after 24 hrs of 

induced DNA damage (Fig. 3.11B middle and right).  

    Therefore, the alteration of the genes associated with DNA damage (Fig. 3.11A) 

and repair and the delay of the DNA repair process (Fig.3.11B) demonstrate that 

RUNX1 knockdown cells exhibit the feature of genomic instability. We propose that 

the enhanced propensity of RUNX1 depleted cells to acquire chromosomal 

abnormalities may increase the potential of developing a cancer phenotype. These 

findings indicate that loss of RUNX1 is accompanied with genome instability, which 

is consistent its role to preserve the normal phenotype in mammary epithelial cells.  
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3.4. Discussion:  

The transcription factor RUNX1 is well known for its function in hematopoiesis and 

its involvement in leukemogenesis (de Bruijn and Dzierzak 2017, Sood, Kamikubo 

et al. 2017). In the past few years, using deep-sequencing technology, RUNX1 has 

been identified as one of the frequently mutated genes in breast cancer patients 

along with other well-studied tumor suppressors such as P53, PTEN and RB1 

(Banerji, Cibulskis et al. 2012, Ellis, Ding et al. 2012, Network 2012, Ciriello, Gatza 

et al. 2015). Although multiple lines of evidence support the concept that impaired 

RUNX1 function in normal mammary epithelial cells promotes breast cancer 

initiation and progression, the mechanism(s) of RUNX1-mediated gene expression 

Figure 3.11 Loss of RUNX1 slows DNA repair. (A) RNA-seq analyses 

of RNA from MCF10A cells with shRunx1 show increased gene 

expression of DNA damage sensing genes such as ATM and Rad50, and 

decreased gene expression of DNA repair genes such as FANCA and 

PARP1. Student's t test ** p value <0.01, *** p value <0.001, **** p value 

<0.0001 for MCF10A shRunx1 cells compared to the MCF10A NS cells. 

Error bars represent the standard error of the mean (SEM) from three 

biological samples.  (B) Representative images of γH2AX foci in 

untreated cells, the cells treated for 4hr with 5µg/ml bleomycin, and the 

cells stained 24h after bleomycin treatment.  Blue: DAPI staining; Red: 

γH2AX. All the experiments are performed 2 times (N=2). 
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in this cell lineage remain(s) unknown. In this chapter, we delineated the molecular 

consequences of RUNX1 loss in MCF10A cells and examined RUNX1 cellular 

functions. We also examined how loss of RUNX1 contributes to the onset and 

progression of breast cancer.    

    We investigated RUNX1-mediated genome-wide transcriptional regulation in 

normal-like mammary epithelial MCF10A cells. Loss of RUNX1 expression in 

MCF10A cells alters the expression of approximately 2,000 genes and the pathway 

analysis on these differentially expressed genes revealed that RUNX1 is involved 

in multiple aspects of cellular activities. For instance, RUNX1 is involved in cell 

proliferation by activating cell cycle-related pathways. RUNX1 is also involved in 

cellular stress response by repressing several pathways related to immune or 

inflammation response.  Combining RUNX1 ChIP-seq data in MCF10A cells and 

RNA-seq data in RUNX1 depleted cells, we observed that RUNX1 employs 

multiple mechanisms to regulation its target genes. We further demonstrated that 

loss of RUNX1 alters mitosis in mammary epithelial cells. Depleting RUNX1 

resulted in a reduced mitotic cell population and decreased expression of several 

components of the mitotic checkpoint complex. Moreover, loss of RUNX1 

increased genome instability as DNA repair is slowed in RUNX1-depleted cells. 

Overall, our results highlight the importance of RUNX1 in mammary epithelial cells.  

Loss of RUNX1 alters the expression of many genes and various aspects of 

cellular function and thus affect normal cell growth and may lead to genome 

instability.  
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     Previously, it has been well documented that RUNX1 regulates its target gene 

expression by binding to a well-defined Runx consensus sequence located within 

promoter or enhancer elements (Meyers, Downing et al. 1993, Otto, Lübbert et al. 

2003).  Now, additional lines of evidence suggest that RUNX1 regulates gene 

expression in a more complex manner, which encompasses multiple regulatory 

layers involving interaction with other co-factors or transcription factors, distal 

regulatory elements and epigenetic factors (Elagib, Racke et al. 2003, Reed-

Inderbitzin, Moreno-Miralles et al. 2006, Huang, Yu et al. 2009, Bowers, Calero-

Nieto et al. 2010, Phillips, Taberlay et al. 2017). For instance, in leukemia cells, 

RUNX1 regulates the expression of two integrins in different manners (Phillips, 

Taberlay et al. 2017). It regulates ITGA6 gene by directly binding to the consensus 

motif in its promoter (Phillips, Taberlay et al. 2017).  In contrast, RUNX1 regulates 

ITGB4 gene expression in a more complex manner, as it activates the ITGB4 

promoter without binding to the RUNX1 consensus motif (Phillips, Taberlay et al. 

2017).  Therefore, RUNX1 can utilize different mechanisms to regulate gene 

expression. Consistently, from our RUNX1 binding site analysis using ChIP-seq, 

we observed that RUNX1 might employ different mechanisms for up or down-

regulated genes. ChIP-BETA analysis revealed that the primary function of RUNX1 

is to directly activate gene expression. The exact mechanism(s) explaining 

RUNX1-mediated fine-tuning of transcription control remains to be determined. We 

propose that RUNX1, based on cellular content, either directly binds to target gene 

promoters to support competency for transcription regulation or RUNX1 scaffolds 
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with the other co-activator(s)/repressor(s) at distal loci.  Further studies will be 

critical to elucidate these roles and specify the altered protein-protein interactions 

that affect RUNX1 function in different cellular contexts.   

    From RUNX1-ChIP-seq results, we observed that RUNX1 binding is enriched 

at miRNA and other non-coding RNA genes in MCF10A cells (Fig. 3.5 B). RUNX1 

is well known as a hub of miRNA biogenesis in both normal hematopoiesis and in 

leukemic cells (Rossetti and Sacchi 2013). RUNX1 expression is not only 

controlled by hematopoietic transcription factors such as GATA2, ETS and RUNX1 

itself (Nottingham, Jarratt et al. 2007, Pimanda, Donaldson et al. 2007), but also 

by an increasing number of miRNAs (Rossetti and Sacchi 2013).  Using 

bioinformatics tools such as TargetScan, more than 60 conserved miRNAs with 

potential binding to the RUNX1 3’UTR have been predicted (Rossetti and Sacchi 

2013). Many of them, such as miR-17, miR-20a and miR-27, have been validated 

experimentally (Fontana, Pelosi et al. 2007, Ben-Ami, Pencovich et al. 2009). 

RUNX1 also controls miRNA gene expression by binding to the Runx consensus 

sequences in miRNA regulatory regions. From RUNX1-ChIP-seq data in 

hematopoietic cells, RUNX1 physically binds over 200 miRNA genes including the 

above-mentioned miR-17 and miR-27 (Ptasinska, Assi et al. 2012, Wu, Seay et al. 

2012).  In fact, the feed-back regulatory loops between RUNX1 and miRNAs are 

essential for hematopoietic differentiation and proliferation (Mi, Li et al. 2010).  The 

enrichment of RUNX1 on miRNA genes in MCF10A cells suggests that RUNX1 

may also regulate the expression of miRNAs in mammary epithelial and breast 
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cancer cells. Currently, in those mammary lineages, studies have only focused on 

identifying the miRNAs targeting RUNX1 stability, such as miR-378 and miR-144 

(Vivacqua, De Marco et al. 2015, Browne, Dragon et al. 2016). Therefore, further 

exploration of the overlap between miRNA expression arrays in RUNX1-depleted 

cells and RUNX1 ChIP-seq data from this chapter will be useful in identifying 

miRNAs regulated by RUNX1.   

For a long time, RUNX1 was postulated to control cell cycle because of its 

function in regulating cell proliferation. Studies have demonstrated that RUNX1 

contains three serine residues (S48, S303, and S424) that match the cyclin-

dependent kinase (CDK) consensus on target proteins (Biggs, Peterson et al. 

2006). Multiple CDKs such as CDK1, CDK4 and CDK6 phosphorylate RUNX1 both 

in vitro and in vivo (Biggs, Peterson et al. 2006). This phosphorylation is necessary 

for RUNX1 degradation during mitosis by the Anaphase-promoting complex (APC) 

(Biggs, Peterson et al. 2006). Later on, it was shown that RUNX1 accelerates the 

G1/S transition in hematopoietic cells and knockdown of RUNX1 reduces S phase 

cells (Bernardin-Fried, Kummalue et al. 2004, Kim, Barron et al. 2014).  Therefore, 

it is not surprising that S-phase and DNA replication-related genes are down-

regulated upon RUNX1 depletion in MCF10A cells (Fig.3.8A). However, the 

involvement of RUNX1 in mitosis is not well known. Very recently, Nyam-Osor 

Chimge et al. showed that in MCF7 breast cancer cells, loss of RUNX1 represses 

Cyclin B1 expression and accumulates cells in G2 phase, indicating a G2/M arrest 

(Chimge, Little et al. 2016). In this chapter, by labeling the cells with the mitotic 
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specific marker, H3S28P, we detected that the mitotic cell population is reduced 

by RUNX1 knockdown in MCF10A cells. This raises the compelling question of the 

mechanism(s) of mitotic reduction in RUNX1 depleted cells. Additionally, what 

triggers the degradation of Cyclin B1 and the accumulation of p-CDK1(Thr14, 

Tyr15) in RUNX1 depleted MCF10A cells (Fig.3.8B)?  During the cell cycle, CDK1 

is phosphorylated and inactivated by Wee1 and MYT1 at Thr-14 and Tyr-15, and 

the phosphoryl group in phosphorylated-CDK1 is removed by the Cdc25 

phosphatases (Pines 1999, Malumbres and Barbacid 2009).  From RNA-seq data, 

we did observe that two members of CDC25 family, CDC25B and CDC25C, are 

significantly down-regulated upon RUNX1 depletion, while Wee1 and MYT1 

expression are not changed (Fig. 3.12).  Moreover, RUNX1 directly binds to the 

transcription start site of Wee1, CDC25B and CDC25C. These data suggest that 

RUNX1 is a direct positive regulator of CDC25B and CDC25C, and without RUNX1, 

the inactive form of p-CDK1 may not be efficiently activated by CDC25B and 

CDC25C, and thus block the cell from entering mitosis. However, our western blot 

analyses on MCF10A cells are not consistent with our RNA-seq data, which shows 

a decreased level of CDC25B but increased expression of CDC25C. It is unclear 

whether the decreased CDC25B is sufficient to keep CDK1 in its inactive form.  
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Another possibility for RUNX1-mediated progression through mitosis is by 

improper regulation of mitosis related genes. In Figure 3.9 and Figure 3.10, we 

showed that RUNX1 is a positive regulator of Bub1, Bub1b and MAD2L1, which 

are components of the mitotic checkpoint complex (Lara-Gonzalez, Westhorpe et 

al. 2012). When RUNX1 is depleted, expression levels of members of the mitotic 

checkpoint complex are severely inhibited (Fig. 3.9-3.10).  It also has been shown 

that the mitotic checkpoint complex is an inhibitor of the anaphase-promoting 

Figure 3.12 RUNX1 is a direct regulator of Bub1b, MAD2L1 and APC. 

(A) RNA-seq analyses of RNA from MCF10A cells treated with shRunx1 

show only slightly altered gene expression of Wee1 and MYT1, and 

decreased gene expression of CDC25B and CDC25C. Student's t test ** 

p value <0.01, *** p value <0.001, for MCF10A shRunx1 cells compared 

to the MCF10A NS cells. Error bars represent the standard error of the 

mean (SEM) from three biological samples.  (B) ChIP-seq genome 

browser views of RUNX1 binding at the transcription start site (TSS) of 

Wee1, CDC25B and CDC25C but not MYT1. (C) Western blot analyses 

of whole cell lysates from MCF10A cells with RUNX1 depletion show 

protein expression of Wee1, CDC25B and CDC25C. The experiments 

are performed 3 times (N=3). 
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complex (APC) (Lischetti and Nilsson 2015). APC is a multi-subunit E3 ubiquitin 

ligase, which is inactive prior to entry into mitosis (Lischetti and Nilsson 2015). 

During mitosis, APC is activated through interaction with Cdh1(FZR1), and 

facilitates mitotic exit by ubiquitinating and degrading cell-cycle regulators such as 

cyclin B1 and Securin (Lischetti and Nilsson 2015, Zhou, He et al. 2016). 

Interestingly, RUNX1 is also a target of APC and is degraded during mitosis (Biggs, 

Peterson et al. 2006). The activity of APC is subject to multiple layers of regulation 

throughout the cell cycle (Lischetti and Nilsson 2015).  Our data show that RUNX1 

is a direct negative regulator of APC, as RUNX1 binds to the APC promoter region 

and loss of RUNX1 activates the expression of APC (Fig. 3.10A, B). Therefore, it 

is possible that RUNX1 is an essential repressor of APC, and a feedback 

regulatory mechanism between RUNX1 and APC is necessary for keeping APC 

activity specifically in mitosis. During normal cell cycle, RUNX1 negatively 

regulates APC expression before entering mitosis.  In mitosis, RUNX1 is degraded 

by APC, which further activates APC expression to promote Cyclin B1 degradation 

and mitotic exit (Fig. 3.13).  When RUNX1 expression is disrupted, APC is 

aberrantly activated and leads to constitutive degradation of Cyclin B1 in the cell 

cycle and thus blocks cells from entering mitosis (Fig. 3.13).  

Alternatively, the decreased mitotic population in RUNX1 depleted cells may be 

due to premature mitotic exit.  Depleted or mutated components in the mitotic 

checkpoint complex, such as Bub1, have been shown to lead to inappropriate 

chromosome segregation and premature mitotic exit which leads to aneuploidy 
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and genome instability (Goto, Mishra et al. 2011).  It is possible that loss of RUNX1 

will increase the incidence of spindle checkpoint defects and premature mitotic exit, 

resulting in a reduced population of mitotic cells.   

Despite the inconclusive mechanism(s) on how RUNX1 is involved in cell cycle, 

especially in mitosis, in this chapter we demonstrated that RUNX1 is a major 

transcription factor which regulates expression of key genes and is involved in 

various aspects of cellular activity. Further experiments based on our RUNX1 

ChIP-seq and RNA-seq data from RUNX1 depleted cells will aide in elucidating 

the function of RUNX1 in mammary epithelial cells.  These future investigations 

will provide an improved understanding of how dysregulated RUNX1 leads to 

breast cancer initiation and progression.  
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Figure 3.13 Possible mechanisms of RUNX1-controlled mitotic 

entry.  
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Chapter IV RUNX1 suppresses breast cancer stemness and tumor growth   
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4.1 Abstract:  

 Breast cancer remains the most common malignant disease in women worldwide. 

Despite advances in detection and therapies, studies are still needed for further 

understanding mechanisms underlying this cancer. Cancer stem cells (CSC) play 

an important role in tumor formation, growth, drug-resistance and recurrence. Here, 

we demonstrate for the first time that the transcription factor RUNX1, well known 

as essential for hematopoietic differentiation, represses the breast cancer stem 

cell (BCSC) phenotype and suppresses tumor growth in vivo. The present studies 

show that BCSCs sorted from pre-malignant breast cancer cells exhibit decreased 

RUNX1 levels, while overexpression of RUNX1 suppresses tumorsphere 

formation and reduces the BCSC population. RUNX1 ectopic expression in breast 

cancer cell lines reduces migration, invasion and in vivo tumor growth (57%) in 

mouse mammary fat pad. Mechanistically, RUNX1 functions to suppress breast 

cancer tumor growth through repression of cancer stem cell activity and direct 

inhibition of Zeb1 expression. Consistent with these cellular and biochemical 

results are the clinical findings that the highest RUNX1 levels occur in normal 

mammary epithelial cells in patient specimens and that low RUNX1 expression in 

tumor is associated with poor patient survival. Our key finding that RUNX1 

represses stemness in several breast cancer cell lines points to the importance of 

RUNX1 in other solid tumors and suggests RUNX1 may regulate cancer stem cells. 
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4.2 Introduction: 

Breast tumors are heterogeneous, as they are comprised of several types of 

cells, including transformed cancer cells, supportive cells, tumor-infiltrating cells 

and cancer stem cells (CSC). The CSC is acknowledged to be a significant 

component of growing tumors (Ming, Michael et al. 2015, Chaffer, San Juan et 

al. 2016). As the name implies, CSC can self-renew and reconstitute the cellular 

hierarchy within tumors (Visvader and Lindeman 2008, Meacham and Morrison 

2013). Moreover, these stem-like cells are highly chemo-resistant and 

metastatic (Abdullah and Chow 2013, Zhao 2016). Significantly, signaling 

pathways (TGF-β, WNT, Hedgehog and Notch) and transcription factors (Snail, 

Twist and Zeb) regulating stemness properties in CSC are involved in controlling 

an essential cellular process designated epithelial-mesenchymal transition (EMT) 

(Scheel and Weinberg 2012, Hadjimichael, Chanoumidou et al. 2015). The EMT 

process is linked to chemo-resistance and cancer metastasis (Singh and 

Settleman 2010, Pattabiraman and Weinberg 2014, Shibue and Weinberg 2017). 

One such example is Zeb1, a well-known EMT-activator that is also a key factor 

for cell plasticity and promotes stemness properties in breast and pancreatic 

cancers (Lehmann, Mossmann et al. 2016, Krebs, Mitschke et al. 2017). However 

there remains a compelling requirement to understand regulatory mechanisms 

that contribute to and sustain the stemness of the CSC population. Identifying 

regulator(s) that maintain or repress the cancer stem cell phenotype can provide 
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insights for novel therapeutic approaches. Recently, a list of 40 mutation-driver 

genes for which deregulation contributes directly to breast tumor progression 

has been identified (Pereira, Chin et al. 2016); among these is the transcription 

factor RUNX1, which has been shown to repress EMT. Here we address for the 

first time, the function of RUNX1 in regulating breast cancer stem cells.  

    The Runx family, including RUNX1, Runx2 and Runx3, are evolutionarily 

conserved transcription factors and function as critical lineage determinants of 

various tissues (Ito, Bae et al. 2015).  During normal development, it is well 

documented that RUNX1 plays a fundamental role in controlling the stem cell 

population in hematopoietic (Yokomizo, Ogawa et al. 2001, Jacob, Osato et al. 

2010, Wang, Krishnan et al. 2014), hair follicle (Hoi, Lee et al. 2010, Osorio, Lilja 

et al. 2011), gastric (Matsuo, Kimura et al. 2017) and oral epithelial stem cells 

(Scheitz, Lee et al. 2012). As a master transcriptional regulator, RUNX1 is a 

central player in fine-tuning the balance among cell differentiation, proliferation, 

and cell cycle control in stem cells during normal development (Wang, Jacob et 

al. 2010). In the mammary gland, it has recently been shown that RUNX1 is 

involved in luminal development (Sokol, Sanduja et al. 2015). These studies also 

showed that loss of RUNX1 in mammary epithelial cells blocked differentiation 

into ductal and lobular tissues. These findings suggest that RUNX1 is an 

essential regulator of normal mammary stem cells (Sokol, Sanduja et al. 

2015).  In addition to its essential function during normal development, disrupting 
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RUNX1 function(s) can cause cancer (Ito 2004, Ito, Bae et al. 2015).  RUNX1 is 

a frequent target of translocations and other mutations in hematopoietic 

malignancies.  For example, RUNX1 related chromosomal translocations 

including RUNX1-ETO (Hatlen, Wang et al. 2012), TEL-RUNX1 (Fischer, 

Schwieger et al. 2005) and RUNX1-EVI (Mitani, Ogawa et al. 1994) are 

associated with distinct leukemia subtypes.  

In breast cancer, RUNX1 has been shown to regulate the WNT pathway and 

key transcription factors including ERa and ELF5 (Ito, Bae et al. 2015)(van Bragt, 

Hu et al. 2014)(Chimge, Little et al. 2016)(Barutcu, Hong et al. 2016). Recent 

studies from our group have demonstrated that RUNX1 maintains the epithelial 

phenotype and represses EMT (Hong, Messier et al. 2017). RUNX1 expression 

is decreased during breast cell EMT, and loss of RUNX1 expression in normal-

like epithelial cells (MCF10A) and epithelial-like breast cancer cells (MCF7) 

initiates the EMT process. Complementary studies demonstrated that ectopic 

expression of RUNX1 reverts cells to the epithelial state. However, mechanisms 

underlying RUNX1 regulation of cancer stem cell properties and the 

consequences for tumor growth in vivo remain to be resolved.  

Based on evidence that RUNX1 regulates stem cell properties during normal 

development and that loss of RUNX1 activates partial EMT in breast cancer, we 

hypothesized that RUNX1 represses the cancer stem cell population and/or 

stemness properties in breast cancer. We investigated whether altering RUNX1 
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levels by overexpression and knockdown in breast cancer cells changes the 

stemness phenotype, aggressive properties and tumor progression in vivo.  Our 

findings have identified for the first time a significant function for RUNX1 in 

repressing the cancer stem cell population as well as tumorsphere formation, and 

demonstrated that RUNX1 represses breast cancer tumor growth in vivo.    

 

4.3 Materials and Methods 

4.3.1 Cell culture: 

MCF10AT1 and MCF10A cells were grown in DMEM: F12 (Hyclone: SH30271, 

Thermo Fisher Scientific, Waltham, MA) with 5% (v/v) horse serum (Gibco: 16050, 

Thermo Fisher Scientific, Waltham, MA, USA) + 10 μg/ml human insulin (Sigma 

Aldrich, St. Louis, MO: I-1882) + 20 ng/ml recombinant hEGF (Peprotech, Rocky 

Hill, NJ, USA: AF-100-15) + 100 ng/ml cholera toxin (Sigma Aldrich: C-8052) + 0.5 

μg/ml hydrocortisone (Sigma Aldrich: H-0888) 50 IU/ml penicillin/50 μg/ml 

streptomycin and 2 mM glutamine (Life Technologies, Carlsbad, CA, USA: 15140-

122 and 25030-081, respectively). MCF10CA1a cells were grown in DMEM: F with 

12, 5% (v/v) horse serum with 50 IU/ml penicillin/50 μg/ml streptomycin and 2 mM 

glutamine. MCF7 cells were maintained in Dulbecco modified Eagle medium 

(DMEM) high glucose (Fisher Scientific: Thermo Fisher Scientific, Waltham, MA, 

USA: MT-10-017-CM) supplemented with 10% (v/v) FBS (Atlanta Biologicals, 

Flowery Branch, GA, USA: S11550), 50 IU/ml penicillin/50 μg/ml streptomycin. 
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4.3.2 Lentiviral plasmid preparation and viral vector production 

RUNX1 cDNA was cloned into Lentivirus-based overexpression plasmids pLenti-

CMV-Blast-DEST (Addgene). To generate lentivirus vectors, 293T cells in 10 cm 

culture dishes were co-transfected with 10 μg of pGIPZ shRunx1 or pGIPZ non-

silencing, with 5 μg of psPAX2, and 5 μg of pMD2.G using lipofectamine 2000 

reagent (Life Technologies). Viruses were harvested every 48 h post-transfection. 

After filtration through a 0.45 μm-pore-size filter, viruses were concentrated by 

using LentiX concentrator (Clontech, Mountain View, CA, USA).  

4.3.3 Gene delivery by transfection and infection 

 For overexpression RUNX1, MCF10AT1 or MCF10CA1a cells were plated in 

six-well plates (1x105 cells per well) and infected 24 h later with lentivirus 

expressing RUNX1 overexpression or Empty Vector. Briefly, cells were treated 

with 0.5 ml of lentivirus and 1.5 ml complete fresh DMEM-F12 per well with a final 

concentration of 4 μg/ml polybrene. Plates were centrifuged upon addition of the 

virus at 1460 × g at 37°C for 30 min. Infection efficiency was monitored by GFP 

co-expression at 2 days post infection. Cells were selected with 2 μg/ml puromycin 

(Sigma Aldrich P7255-100MG) for at least two additional days. After removal of 

the floating cells, the remaining attached cells were passed and analyzed. 

ShRunx1 virus were generated and delivered as has been described previously 

(Hong, Messier et al. 2017). 
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4.3.4 Western blotting 

 Cells were lysed in RIPA buffer and 2X SDS sample buffer supplemented with 

cOmplete, EDTA-free protease inhibitors (Roche Diagnostics) and MG132 (EMD 

Millipore San Diego, CA, USA). Lysates were fractionated in an 8.5% acrylamide 

gel and subjected to immunoblotting. The gels are transferred to PVDF 

membranes (EMD Millipore) using a wet transfer apparatus (Bio-Rad Laboratories, 

Hercules, CA, USA). Membranes were blocked using 5% Blotting Grade Blocker 

Non-Fat Dry Milk (Bio-Rad Laboratories) and incubated overnight at 4°C with the 

following primary antibodies: a rabbit polyclonal RUNX1 (Cell Signaling 

Technology, Danvers, MA, USA: #4334, 1:1000); a mouse monoclonal to E-

cadherin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA: sc21791, 1:1000); 

a mouse monoclonal Vimentin (Santa-Cruz Biotechnology sc-6260, 1:1000); a 

mouse monoclonal to β-Actin (Cell Signaling Technology #3700, 1:1000); a rabbit 

polyclonal Twist1 (Santa Cruz Biotechnology sc-15393, 1:2000); a rabbit 

polyclonal Zeb1 (Sigma-Aldrich HPA027524-100UL, 1:1000). Secondary 

antibodies conjugated to HRP (Santa Cruz Biotechnology) were used for 

immunodetection, along with the Clarity Western ECL Substrate (Bio-Rad 

Laboratories) on a Chemidoc XRS+ imaging system (Bio-Rad Laboratories). 

4.3.5 Tumorsphere formation assay: 

Monolayer cells were enzymatically dissociated into single cells with 0.05% 

trypsin-EDTA. Cells were plated at 10,000 cells per well in a 24-well low-

attachment plate (Corning). Cells were grown for 7 days in DMEM/F12 
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supplemented with B27 (Invitrogen) in the presence of 10 ng/ml EGF and 10 ng/ml 

bFGF. Where indicated, the CDK4 inhibitor palbocilib (Sigma) was added at a final 

concentration of 100 nM. Tumorsphere-forming efficiency was calculated as the 

number of spheres divided by the number of singles cells seeded, expressed as a 

percentage. 

4.3.6 CD24/CD44 flow cytometry 

Flow cytometry for CD24 (PE-cy7, Biolegend 311120) and CD44 (APC, BD 

Pharmigen 559942) was performed using the best conditions for marker detection 

as previously described (Fillmore and Kuperwasser 2008)(Quan 2013). Cells were 

grown to sub-confluency and dissociated with Accutase. The Accutase was quickly 

neutralized with serum and 1x106 cells were washed with 1xPBS. These cells were 

then re-suspended in 475ul of 1%FBS/ 1xPBS, to which 25ul of CD44-APC and 

4ul of CD24-PE-cy7 were added and incubated at room temperature for 30 

minutes. Cells were then washed with PBS and strained (Falcon 352235) to obtain 

single cell suspensions. Isotype controls were used to gate for negative signal in 

each replicate of the experiment. 

4.3.7 Migration assays 

    For the scratch assays, cells were seeded in triplicate and when they reached 

95–100% confluence, were serum starved with 0.1% FBS-containing media for 12 

h. Subsequently, a scratch was made across the cell layer using a P-200 pipette 

tip, and cell migration was monitored by recording images at indicated time points 
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post-scratch. The area of the scratch was quantified using the MiToBo plug-in for 

ImageJ software and plotted as a percentage of total area.  

    For the transwell migration assay, cells were trypsinized and re-seeded in 

triplicate in migration chambers (BD Bioscience, Bedford, MA) in serum-free 

medium for 24 hours (MCF10AT1 cells) or 48 hours (MCF10CA1a cells) after cell 

seeding. Cells were allowed to migrate through 8 μm pores toward medium 

containing 5% Horse Serum. The experiment was performed and results quantified 

as previously described (Browne, Taipaleenmäki et al. 2015). 

4.3.8 Invasion Assay 

    For the invasion assay, cells were trypsinized and reseeded in triplicate in 

growth factor-reduced Matrigel invasion chambers (BD Bioscience, Bedford, MA) 

in serum-free medium for 24 hours (MCF10AT1 cells) or 48 hours (MCF10CA1a 

cells) after cell seeding.  Cells were allowed to migrate through 8 μm pores toward 

medium containing 5% Horse Serum. The experiment was performed and results 

quantified as previously described (Browne, Taipaleenmäki et al. 2015). 

4.3.9 Immunofluorescence staining microscopy 

 Cells grown on coverslips were fixed with using 3.7% formaldehyde in Phosphate 

Buffered Saline (PBS) for 10 min. Cells were then permeabilized in 0.1% Triton X-100 in 

PBS, and washed in 0.5% Bovine Serum Albumin in PBS. Detection was performed using 

a rabbit polyclonal RUNX1 antibody (Cell Signaling #4336), a mouse monoclonal CD24 

(Santa-Cruz sc-11406). Staining was performed using fluorescent secondary antibodies; 

for rabbit polyclonal antibodies a goat anti-rabbit IgG (H+L) secondary antibody, Alexa 

Fluor® 568 conjugate (Life Technologies A-11011), was used and for mouse monoclonal 
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a F(ab')2-goat anti-mouse IgG (H+L) secondary antibody, Alexa Fluor® 488 conjugate 

was used (Life Technologies A-11001). 

4.3.10 Animal studies 

Female SCID mice 7 weeks of age were used for mammary fat pad injection.  The 

mice were randomly divided into two groups (seven for each group). In all, 1X106 

MCF10CA1a cells suspended in 0.1 ml of saline were mixed with 0.1 ml of Matrigel 

(BD) and were injected under mammary fat pads. Bioluminescence images were 

acquired by using the IVIS Imaging System (Xenogen) 5 min after injection 150 

mg/kg of D-Luciferin (Gold BioTech, St. Louis, MO) in PBS.  All animals were 

housed in a pathogen-free environment and handled according to protocol number 

12-051 approved by the Institutional Animal Care and Use Committee at the 

University of Vermont. In conducting using animals, the investigators adhere to the 

laws of the United States and regulations of the Department of Agriculture. 

4.3.11 Analysis of RUNX1 expression and patient survival using public data 

sets 

The PROGgene database (www.compbio.iupui.edu/proggene) (Goswami and 

Nakshatri 2013) (Goswami and Nakshatri 2014) was used to identify the data sets 

for survival analysis and re-analyzed the public GEO data sets 

(www.ncbi.nlm.nih.gov/gds) (GSE37751 (Terunuma, Putluri et al. 2014), GSE7390 

(Desmedt, Piette et al. 2007), TCGA (Network 2012)). RUNX1 expression in 

different breast cancer stages was analyzed using the TCGA database 

(www.cbioportal.org). 
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4.3.12 Quantitative PCR 

 RNA was isolated with Trizol (Life Technologies) and cleaned by DNase 

digestion (Zymo Research, Irvine, CA, USA). RNA was reversed transcribed using 

SuperScript II and random hexamers (Life Technologies). cDNA was then 

subjected to quantitative PCR using SYBR Green technology (Applied Biosystems, 

Foster City, CA, USA).   

RUNX1 Forward: AACCCTCAGCCTCAGAGTCA,  

RUNX1 Reverse: CAATGGATCCCAGGTATTGG;  

FN1 Forward: CATGAAGGGGGTCAGTCCTA;  

FN1 Reverse: CTTCTCAGCTATGGGCTTGC;  

VEGF Forward: CCTTGCTGCTCTACCTCCAC;  

VEGF Reverse: CCATGAACTTCACCACTTCG;  

CXCR4 Forward: TACACCGAGGAAATGGGCTCA;  

CXCR4 Reverse: TTCTTCACGGAAACAGGGTTC;  

CXCL12 Forward: GTGGTCGTGCTGGTCCTC;  

CXCL12 Reverse: AGATGCTTGACGTTGGCTCT;  

MMP13 Forward: ATGAGCCAGAGTGTCGGTTC;  

MMP13 Reverse: GTTAGTAGCGACGAGCAGGAC;  

MMP9 Forward: ATAGACTACTACAGGCT;  

MMP9 Reverse: TAGCACGGATAGACCA;  

GAPDH Forward: TGTGGTCATGAGTCCTTCCA,  

GAPDH Reverse: ATGTTCGTCATGGGTGTGAA;  

HPRT Forward: TGCTGACCTGCTGGATTACA,  

HPRT Reverse: TCCCCTGTTGACTGGTCATT;  
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β-Actin Forward: AGCACAGAGCCTCGCCTTT,  

β-Actin Reverse: CGGCGATATCATCATCCAT. 

4.3.13 ChIP-qPCR 

    ChIP-qPCR was performed essentially as described (O’Geen, Frietze et al. 

2010). Briefly, 200,000 MCF10AT1 or MCF10CA1a cells were cross-linked, lysed 

and sonicated to obtain DNA fragments mostly in the 200-1000-bp range. 

Immunoprecipitation was performed at 4°C overnight with anti-RUNX1 antibody 

(4334, Cell Signaling Technology) at a 1:15 antibody to chromatin ratio.  Primers 

used in ChIP-qPCR are listed below:   

Zeb1 Forward: GTCGTAAAGCCGGGAGTGTC,  

Zeb1 Reverse: GCCATCCGCCATGATCCTC;  

ZNF333 (negative control 1) Forward: TGAAGACACATCTGCGAACC,  

ZNF333 Reverse: TCGCGCACTCATACAGTTTC;  

ZNF180 (negative control 2) Forward: TGATGCACAATAAGTCGAGCA,  

ZNF180 Reverse: TGCAGTCAATGTGGGAAGTC. 

4.3.14 Tissue microarray 

Tissue microarray data of RUNX1 in breast cancer patients were obtained from 

Human Protein Atlas (www.proteinatlas.org) (Uhlén, Fagerberg et al. 2015). 

4.3.15 Statistical analysis 

Each experiment was repeated at least three times. The differences in mean 

values among groups were evaluated and expressed as the mean ± SEM. A P-

value less than 0.05 was considered statistically significant (*P < 0.05, **P < 0.01, 
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***P < 0.001). Student's t-test was used to compare the expressions of cell surface 

markers, side population analysis, cell viability, relative mRNA levels, migrated 

cells and invaded cells.  

 

4.4 Results: 

4.4.1. Reduced RUNX1 expression is associated with decreased survival 

probability in breast cancer patients. 

    To investigate possible association between RUNX1 expression and breast 

cancer progression, we first examined RUNX1 expression in normal and breast 

cancer patients using the Human Protein Atlas. Within normal breast tissues, 

RUNX1 is highly expressed in the mammary gland (Fig. 4.1A).  However, in ductal 

carcinoma tissues, the level of RUNX1 is decreased in malignant regions (red 

circle) compared with normal glandular tissues (blue circle) in the same tumor 

specimen (Fig. 4.1B). In the majority of ductal carcinoma specimens (9 out 12 

samples) from the Human Protein Atlas, 75% of breast cancer tumors show low 

RUNX1 staining (Fig. 4.1C). We also analyzed TCGA data and found that RUNX1 

levels are progressively decreased across early stage breast cancer (Stage 1 vs 

Stage2; Stage 2 vs Stage 3) (Figure 4.2). These findings suggest that during breast 

cancer progression, the mammary gland loses its original structure and RUNX1 

levels are decreased. The data are consistent with our previous report that RUNX1 

is highly expressed in normal-like mammary epithelial MCF10A cells and reduced 

in a panel of breast cancer cell lines (Hong, Messier et al. 2017).  With the reduced 
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RUNX1 expression, mammary epithelial cells do not maintain their epithelial 

phenotype (Hong, Messier et al. 2017)  From these observations of low  RUNX1 

in  breast tumors and the concomitants loss of RUNX1 in  normal epithelial cells 

with loss of epithelial properties, we hypothesized that loss of RUNX1 is promoting 

a breast cancer phenotype. 
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    We therefore addressed whether there was a clinical relation of RUNX1 

expression in breast cancer patient tumors to survival. Using publically available 

mRNA expression datasets, we analyzed the correlation of mean expression levels 

of RUNX1 and survival rate in breast cancer patient tissue samples. Kaplan–Meier 

analysis of the expression of RUNX1 in three separate datasets of GSE37751- 

“Molecular Profiles of Human Breast Cancer and Their Association with Tumor 

Subtypes and Disease Prognosis” (36 high RUNX1 and 24 low RUNX1 patients), 

GSE7390-“Strong Time Dependence of the 76-Gene Prognostic Signature” (82 

high RUNX1 and 116 low RUNX1 patients) and TCGA data of breast cancer 

patients mRNAs (304 high RUNX1 and 290 low RUNX1 patients) indicated a 

statistically significant correlation (p < 0.01, p < 0.05, and p<0.01 respectively) 

Figure 4.1. Reduced RUNX1 expression is associated with 

decreased survival probability in breast cancer patients. 

(A) Representative tissue microarray images of RUNX1 in normal breast 

tissue. (B) and (C) Representative tissue microarray images of RUNX1 

in breast tumor tissues. (D) Kaplan-Meier analysis showed higher overall 

survival in patients with higher RUNX1 mRNA expression (GSE37751, 

GSE7390 and TCGA). Gehan-Breslow-Wilcoxon test with p value<0.01, 

p value<0.05, p value<0.01 respectively compared with high RUNX1 

expression patients and low RUNX1 expression patients in three data 

sets. 
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between high RUNX1 expression levels and longer patient survival time (Fig. 4.1D).  

These results suggested that reduction in RUNX1 expression is associated with 

low survival probability of breast cancer patients. Thus several in vitro studies 

combined with these clinical observations support a role for RUNX1 in repressing 

tumor growth.  

 

 

Figure 4.2.  RUNX1 mRNA is decreased during breast cancer 

progression.  TCGA data shows that RUNX1 mRNA is decreased in 

Stage 2 and Stage 3 tumors. 
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4.4.2. RUNX1 is decreased in tumors formed in mouse mammary fat pad 

To further establish if RUNX1 decreases during breast tumor growth in vivo, we 

utilized a mouse xenograft model to examine RUNX1 levels before and after tumor 

formation. MCF10CA1a cells, which are aggressive breast cancer cells, were 

injected into mammary fat pad of SCID mice and tumor growth was monitored 

weekly. Tumors formed within two weeks (Fig. 4.3A), and one month post-injection, 

mice were sacrificed and tumors were removed to analyze for RUNX1 and other 

factors at both protein and mRNA levels.  The parental MCF10CA1a cells had a 

3.3-fold higher RUNX1 protein level than the removed tumor (Fig. 4.3B, C). qRT-

PCR using human-specific primer sets confirmed that RUNX1 mRNA is also 

decreased specifically within the tumor (Fig. 4.3C). The epithelial marker E-

cadherin was decreased in tumor samples, while the mesenchymal marker 

Vimentin was increased (Fig. 4.3B). In addition to Vimentin, the mRNA levels of 

several human cancer-related genes such as VEGF, FN1, MMP13, MMP9, 

CXCR4, CXCL12 are also up regulated (Fig. 4.3B, D).  These findings indicate that 

the human breast cancer cells that formed a tumor in mouse mammary fat pads 

acquired a more aggressive phenotype and that RUNX1 expression is decreased 

during the period of tumor growth. Therefore, we have directly demonstrated that 

in this MCF10CA1a mouse xenograft model, RUNX1 expression is decreased 

during in vivo model of tumor progression.  
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Figure 4.3. RUNX1 is decreased in tumors formed in mouse 

mammary fat pad. (A) MCF10CA1a cells were injected into the 

mammary fat pad of SCID mice. Points represent mean tumor volume. 

(B) Western blot analyses show RUNX1 and E-cadherin levels are 

decreased and Vimentin level is increased in tumor samples compared 

to MCF10CA1a cells.  (C) Upper panel, Protein quantification show that 

RUNX1 is significant decreased in tumor samples compared to 

MCF10CA1a cells. Lower panel, RT-qPCR analyses of RNA from tumor 

samples show decreased RUNX1 expression of compared with 

MCF10CA1a cells. Student’s t test * p value <0.05, *** p value <0.001 

and. Error bars represent the standard error of the mean (SEM) from 

three independent experiments. (D) RT-qPCR analyses of RNA from 

tumor samples show activation of mesenchymal marks Vimentin and 

FN1 and other tumor growth related genes including MMP9, MMP13, 

VGF, CXCR4 and CXCL12 compared with MCF10CA1a cells. 

Student’s t test * p value <0.05, ** p value <0.01, *** p value <0.001 and 

**** p value <0.0001. Error bars represent the standard error of the mean 

(SEM) from three independent experiments. 
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4.4.3. RUNX1 reduces the aggressive phenotype of breast cancer cells in 

vitro. 

It has been suggested that RUNX1 reduces aggressive phenotypes in breast 

cancer (van Bragt, Hu et al. 2014, Chimge, Little et al. 2016, Hong, Messier et al. 

2017).  Based on these data and the results that RUNX1 level is decreased in the 

xenograft model (Fig. 4.3B), we further addressed whether ectopic expression of 

RUNX1 in malignant breast cancer cells reduces the aggressive phenotype. 

RUNX1 was overexpressed using a lentivirus delivery system (pLenti-CMV) in pre-

malignant MCF10AT1 and highly aggressive malignant MCF10Ca1a cells (Fig. 

4.4A). Upon overexpressing RUNX1, Vimentin expression is decreased in both cell 

lines (Fig. 4.4A). However, E-cadherin expression was not affected by RUNX1 

overexpression, suggesting that the cells have not fully transitioned back to 

normal-like stage.  
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Figure 4.4. RUNX1 reduces the aggressive phenotype of breast 

cancer cells in vitro. (A) Western blot analyses confirm RUNX1 

overexpression in MCF10CA1a (Upper) and MCF10AT1 (Lower) cells. 

Vimentin expression is repressed upon RUNX1 overexpression in both 

cell lines. (B) Representative phase contrast images (magnification 

100×) of MCF10AT1 and MCF10CA1a cells with EV control or RUNX1 

overexpression subjected to a scratch assay for times indicated. The 

area of the scratch was plotted as a percentage of total area for N = 3 

independent experiments carried out in duplicate. (C) Light microscopy 

images (mag. 12×) of stained cells from a representative (1 of N = 2) 

trans-well migration assay experiment MCF10AT1 and MCF10CA1a 

cells with EV control or RUNX1 overexpression (left); quantitation of 

migrated cells assessed by measurement of the absorbance of 

solubilized crystal violet stain retained by migrated cells (right). (D) Light 

microscopy images (mag. 12×) of stained cells from a representative (1 

of N = 2) trans-well matrigel invasion assay experiment with MCF10AT1 

and MCF10CA1a cells with EV control or RUNX1 overexpression to 

evaluate invasion (left); quantitation of invaded cells assessed by 

measurement of the absorbance of solubilized crystal violet stain 

retained by invaded cells (right). For all assays, three independent 

experiments were carried out in duplicates. All quantitative data are 

depicted as mean ± S.E. per group. *P < 0.05, **P < 0.01  
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Figure 4.5. RUNX1 overexpression does not change cell 

proliferation.  (A.) Growth curves for MCF10AT1 cells either express 

empty vector (black) or RUNx1 (blue). Line graph represents mean SEM 

from two experiments with a technical replicate each (N=4). No 

statistician difference was found (*, p<0.05). (B.) Growth curves for 

MCF10Ca1a cells either express empty vector (black) or RUNx1 (blue). 

Line graph represents mean SEM from two experiments with two 

technical replicates each (N=2). No statistician difference was found (*, 

p<0.05). 
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 Overexpressing RUNX1 in both MCF10AT1 and MCF10CCA1a cells does not 

change the proliferation (Fig.4.5 A, B). To evaluate the effect of RUNX1 in 

regulation of migration and invasion capacities of the breast cancer cells in vitro, 

we used the scratch migration and Transwell assays. Figure 4.4B shows 

representative images of the scratch assay, both at the time of the scratch and 

48 h (MCF10AT1) or 16 h (MCF10CA1a) later. RUNX1 overexpression decreases 

the ability of breast cancer cells to migrate. These results were confirmed using 

the trans-well migration assay (Fig. 4.4C). Invasion of both MCF10AT1 and 

MCF10CA1a cells was also significantly inhibited when RUNX1 was 

overexpressed (Fig. 4.4D).  We conclude from these studies that loss of RUNX1 

in MCF10A and cancer cells is detrimental in promoting EMT in vitro (Hong, 

Messier et al. 2017) and in  vivo (Fig 4.3B), while exogenous expression of RUNX1 

suppresses the migration and invasion of breast cancer cells in vitro.  

4.4.4. RUNX1 represses tumor growth in vivo 

Together our data above and the earlier studies demonstrate that RUNX1 has 

tumor suppresser activity in vitro. However, to date there are no studies showing 

that RUNX1 inhibits tumor growth in vivo.  We tested the ability of RUNX1 to alter 

tumor growth in vivo by using the metastatic MCF10CA1a breast cancer cells. 

MCF10CA1a/EV (control) and MCF10CA1a/ RUNX1- overexpression cells 

carrying a luciferase reporter (experiment) were injected into the mammary fat pad 

of SCID mice.  Eighteen days post-injection tumors appeared in the control mice, 

with an average volume of 63 mm3 (caliper measurement), while the experimental 
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group had barely palpable tumors (Fig. 4.6A). At the end point of this experiment 

(4 weeks), we sacrificed the mice, excised the tumors, and measured tumor 

volume and weight (Fig. 4.6B, C). Mice injected with MCF10CA1a/OE RUNX1 cells 

had a significantly reduced tumor size (57%) and weight (47%) compared with 

tumors from control mice. Figures 4.7A and 4.7B show the excised tumors and 

luminescence of tumors in all seven mice from each group.  MCF10CA1a cells 

with EV or OE RUNX1 were validated before injection into the SCID mice (Figure 

4.7C). Luminescent images of representative mice (Fig. 4.6D) confirm reduced 

tumor growth. Collectively, these data indicate that RUNX1 suppresses breast 

tumor growth in vivo. 
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Figure 4.6. RUNX1 represses tumor growth in vivo. (A) A total of 1 × 

106 MCF10CA1a cells with EV or RUNX1 overexpression were injected 

into mammary fat pad of SCID mice (n = 7 in each group). The points 

represent average tumor volume at each time point ± SD. P values were 

obtained by 2-tailed Student t test. *, P < 0.05; ***, P<0.001; ****, 

P<0.0001.  (B) Tumor size measured at day 28 (end point). P values 

were obtained by 2-tailed Student t test. *, P < 0.05. (C) Tumor weight at 

day 28 (end point). P values were obtained by 2-tailed Student t test. 

*, P < 0.05. (D) Representative luminescence images at 4 weeks after 

mammary fat pad injection.  
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Figure 4.7.  RUNX1 represses tumor growth in mammary fat pad. (A) 

Luminescence images at 4 weeks after mammary fat pad injection.  (B) 

Picture of excised tumors show that MCF10CA1a cells with RUNX1 

overexpression formed smaller tumors in mice mammary fat pad. (C) Western 

Blot for MCF10CA1a cells shows RUNX1 is overexpressed.  
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4.4.5.  RUNX1 level is decreased in breast cancer stem cells (BCSC). 

As breast cancer stem cells have been shown to be critical for tumor initiation and 

growth (Shibue and Weinberg 2017) and all of our data demonstrate a role for 

RUNX1 in decreasing tumorigenesis, we next investigated the potential role of 

RUNX1 in breast cancer stemness. We used fluorescence-activated cell sorting 

(FACS) to isolate BCSCs from pre-malignant MCF10AT1 cells based on 

expression of the cell-surface antigen markers CD44 and CD24. These two 

markers have been successfully used to identify putative CSCs in primary breast 

tumors or mammary cell lines (CD44high/CD24low).  We compared the BCSC cells 

with bulk cells (CD44high/CD24high) as gated in Figure 4.8. The 

CD44high/CD24low subpopulation from MCF10AT1 cells displayed lower levels of 

RUNX1 protein (33%) compared to the bulk cell population and the parental 

MCF10AT1 cells (Fig. 4.9A).  To examine whether CD24low cells have low RUNX1 

expression, we also performed immunofluorescence co-staining of RUNX1 and 

CD24 in MCF10AT1 cells. The cells with high CD24 expression also have high 

RUNX1 expression (Figure 4.10).  Moreover, the CD44high/CD24low population 

displays many CSC-like properties; they are endowed with higher expression of 

cancer stem cell markers Zeb1 and Twist1 (Fig. 4.9A) and greater long-term self-

renewal capacity as measured by tumorsphere formation assays (Fig. 4.9B). 

Collectively, these data provide evidence that cell populations with BCSC 

properties express lower levels of RUNX1 compared to the bulk and parental 

population, and suggest that RUNX1 influences BCSC properties. 
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Figure 4.8. Gate for MCF10AT1 sorting and MCF10CA1a cells have 

high BCSC population. A. Gating for BCSC and Bulk sub-population 

in MCF10AT1 cells. 
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Figure 4.9.  RUNX1 level is decreased in BCSC.  (A) Western blot 

analyses show RUNX1 is decreased and Zeb1, Twist1 and Vimentin 

level are increased in BCSC samples compared to Parental and Bulk 

MCF10AT1 cells.  Right, protein quantification shows that RUNX1 is 

significant decreased in BCSC. (B) Tumorsphere formation efficiency for 

BCSC populations is significantly higher than bulk population. **P < 0.01. 

(C) RUNX1 overexpression in MCF10CA1a cells reduces tumorsphere 

formation efficiency. *P < 0.05. Right, represent picture of tumorsphere. 

(D) RUNX1 overexpression in MCF10AT1 cells reduces tumorsphere 

formation efficiency. *P < 0.05 Right, represent picture of tumorsphere. 

(E) Western blot analyses of lysates from MCF10AT1 cells treated with 

shRunx1 show decreased protein expression of RUNX1 and E-cadherin 

and increased protein expression of Vimentin. (F) RUNX1 knockdown in 

MCF10AT1 cells activates tumorsphere formation efficiency. *P < 0.05. 

Right, represents picture of tumorsphere. All the experiments are 

performed 3 times (N=3). 
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Figure 4.10. CD24high Cells have high RUNX1 expression in 

MCF10AT1 cells. Immunostaining shows the cells with CD24 (Green) 

expression have high RUNX1 (Red) expression. All the experiments are 

performed 3 times (N=3). 
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4.4.6. RUNX1 inhibits stemness properties in breast cancer cells 

To further investigate the role of RUNX1 in regulating BCSC properties, we 

addressed the capability of RUNX1 to regulate tumorsphere formation from breast 

cancer cells. Tumorsphere formation assays were performed using non-adherent 

plates with non-serum medium. The ectopic expression of RUNX1 in both 

MCF10CA1a and MCF10AT1 cells significantly decreased the number of 

tumorsphere (p < 0.05) (Fig. 4.9C, D). To better understand if RUNX1 represses 

stemness properties in breast cancer, we used two lenti-viruses to establish 

RUNX1 knockdown cell lines in MCF10AT1 cells (Fig. 4.9E).  Depletion of RUNX1 

in these cell lines activated an epithelial to mesenchymal transition with lower E-

cadherin and higher Vimentin expression (Fig. 4.9E). Significantly, the knockdown 

of RUNX1 resulted in increased tumorsphere formation efficiency in MCF10AT1 

cells (51% and 41% respectively) (Fig. 4.9F).  This ability of RUNX1 to repress 

stemness properties was also observed in additional cell lines, including normal-

like MCF10A cells and ER positive luminal-like MCF7 cells (Figure 4.11A, B), 

which suggests that RUNX1 suppression of stemness is a universal phenotype in 

breast cancer cells.    
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Figure 4.11. Loss of RUNX1 promotes stemness in MCF10A and 

MCF7 cells. (A) RUNX1 knockdown in MCF10A cells activates 

tumorsphere formation efficiency. (B) RUNX1 knockdown in MCF107 

cells activates tumorsphere formation efficiency. All the experiments are 

performed 3 times (N=3). 
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Further evidence for the influence of RUNX1 on the cancer stem cell population 

in MCF10AT1 cells was provided by flow cytometry analysis. As shown in Figure 

4.12A, ectopic expression of RUNX1 reduced the CD44high/CD24low subpopulation 

of MCF10AT1 cells from 22.3% to 15.1% (Fig. 4.12A). Consistent with the 

consequence of RUNX1 overexpression, knockdown of RUNX1 significantly 

increased the CD44high/CD24low subpopulation of MCF10AT1 cells by more than 

two-fold (21.9% ns; 45.3% shR1-1; 45.6% shR1-2) (Fig. 4.12B). However ectopic 

expression of RUNX1 in MCF10CA1a cells did not change the percent of the 

CD44high/CD24low cancer stem cell population (Figure 4.13). The highly metastatic 

MCF10CA1a cells have a large percentage of cells (80%) that are 

CD44high/CD24low, indicating that the cells may have lost their plasticity and are 

locked into a mesenchymal phenotype (Figure 4.13). These results indicate that 

RUNX1 functions both to suppress cancer stem cell properties and reduce the 

breast cancer stem cell population.  
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Figure 4.12. RUNX1 reduces BCSC sub-population. (A) Flow 

cytometric analysis of CD44 and CD24 expression in MCF10AT1 cells 

with EV or RUNX1 overexpression. (B) Flow cytometric analysis of CD44 

and CD24 expression in MCF10AT1 cells stably expressing RUNX1 or 

non-silencing shRNAs. All the experiments are performed 3 times (N=3). 
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4.4.7. RUNX1 represses the expression of Zeb1 in breast cancer cells. 

In Figure 4.9A, we observed that decreased RUNX1 expression is coincident with 

activation of Zeb1 in BCSC in MCF10AT1 cells.  Zeb1 is well known for its function 

in promoting EMT, cancer stemness and metastasis in breast cancer (Zhang, Sun 

et al. 2015). Therefore, we tested whether RUNX1 functions by negatively 

regulating Zeb1 expression in breast cancer cells. Zeb1 protein is down regulated 

when RUNX1 is ectopically expressed in MCF10AT1 cells (Fig. 4.14A). This 

RUNX1-mediated Zeb1 repression was confirmed in MCF10AT1 RUNX1 

knockdown cells, where Zeb1 expression is enhanced (Fig. 4.14B). We did not 

Figure 4.13. Overexpression RUNX1 in MCF10CA1a cells does not 

change BCSC population. Flow cytometric analysis of CD44 and CD24 

expression in MCF10AT cells stably expressing non-silencing (Left) or 

RUNX1 (Right) shRNA. All the experiments are performed 3 times (N=3). 
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observe RUNX1 repression of Zeb1 expression in MCF10CA1a cells, which is a 

consequence of very low Zeb1 mRNA levels in MCF10CA1a cells compared to 

MCF10AT1 cells (Figure 4.15). To test whether RUNX1 can directly regulate Zeb1 

in MCF10CA1a cells, we performed ChIP-qPCR for RUNX1 in the Zeb1 promoter 

region in both MCF10AT1 and MCF10CA1a cells (Figure 4.16).  As shown in Fig. 

4.14C, RUNX1 directly binds to the Zeb1 promoter in the two breast cancer cell 

lines relative to two negative control genes ZNF333 and ZNF180.  Upon RUNX1 

overexpression, the binding of RUNX1 is enhanced on Zeb1 promoter, suggesting 

that RUNX1 has potential to directly regulate Zeb1 expression in both pre-

malignant and metastatic breast cancer cell lines.   

In summary, our findings suggest that RUNX1 reduces breast cancer aggressive 

phenotypes both in vivo and in vitro.  Both EMT and cancer stem cell properties 

are repressed by RUNX1 in breast cancer cells. We thus conclude RUNX1-

mediated repression could be through negative regulation of Zeb1 expression in 

breast cancer cells (Fig. 4.14D).  Zeb1 is well known for activating both EMT and 

cancer stem cells in breast cancer. (Zhang, Sun et al. 2015) Therefore RUNX1 

indirectly represses these two cellular processes. It has been shown that RUNX1 

can directly repress EMT in breast cancer (Hong, Messier et al. 2017).  It is 

possible that RUNX1 can directly repress cancer stem cell phenotype in a Zeb1-

independent manner (Fig. 4.14D). This study provides new insight into functional 

mechanisms of the RUNX1 transcriptional regulator in contributing to the stemness 

and the plasticity of breast cancer stem cells.  
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Figure 4.14. RUNX1 negatively regulates Zeb1 expression. (A) 

Western blot analyses show Zeb1 is decreased upon RUNX1 

overexpression in MCF10AT1 cells. (B) Western blot analyses show 

Zeb1 is activated upon RUNX1 knockdown in MCF10AT1 cells. (C) 

ChIP-qPCR confirmation of RUNX1 occupancy at Zeb1. RUNX1 binding 

is increased in RUNX1 overexpression samples. Data obtained with 

antibodies against RUNX1 are normalized to input control and ZNF188 

(NC1) and ZNF333 (NC2), which were used as the negative control as 

RUNX1 are predicted not to bind these genes.  (D) Mechanism on how 

RUNX1 represses tumor growth in breast cancer.  (EC- epithelial-like 

cells; MC-mesenchymal-like cells). All the experiments are performed 3 

times (N=3). 
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Figure 4.15. Zeb1 is expressed at low level in MCF10CA1a cells. 

Zeb1 RNA expression by RT-qPCR of normal mammary-like MCF10A 

cells, MCF10A-derived tumorigenic cell line MCF10AT1, and metastatic 

MCF10CA1a cells shows Zeb1 is expressed at a low level in 

MCF10CA1a cells. 
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4.5 Discussion for Chapter IV: 

We provide multiple lines of evidence that RUNX1 reduces breast cancer cells 

grown in mouse mammary fat pad and inhibits breast cancer stem cell phenotypes. 

RUNX1 levels are decreased in tumors grown in murine mammary fat pads. 

RUNX1 also reduces cell migration and invasion of breast cancer cells in vitro and 

tumor growth in vivo. Moreover, RUNX1 reduces the breast cancer stem cell 

population and tumorsphere formation efficiency, thus indicating that RUNX1 

represses stemness properties in breast cancer. RUNX1 overexpression and 

knockdown studies revealed that RUNX1 mediates the mechanisms of inhibition 

of breast cancer stemness and tumorigenesis through repression of Zeb1 

Figure 4.16. Schematic diagram of ChIP qPCR primers and 

amplicons over Zeb1 for ChIP-qPCR.   
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expression.  Taken together, our findings provide compelling evidence that the loss 

of RUNX1 induces increased cancer stem cells and that RUNX1 overexpression 

can suppress the CSC population, which is responsible for metastasis, treatment 

resistance and tumor recurrence in breast cancer. 

Breast cancer is ranked as the second leading cause of cancer death in 

women after lung cancer (Torre, Bray et al. 2015).  In 2017, approximately 

63,400 cases of female breast carcinoma in situ are expected to be diagnosed 

(Siegel, Miller et al. 2017). Despite the significant advances that have been 

achieved in early detection and treatment of breast cancer, understanding the 

mechanisms of breast cancer progression and metastasis still requires intensive 

study. Recently, using sophisticated next-generation sequencing technology, a 

40 mutation-driver gene list was generated in human breast cancer (Pereira, 

Chin et al. 2016). RUNX1, which is often mutated in breast tumors, is one of 

those genes.  Utilizing the TCGA clinical data sets, we found that reduced RUNX1 

levels in tumor correlate with poor survival of breast cancer patients.  Together 

these clinical findings suggest that RUNX1 may be a promising therapeutic 

biomarker for breast cancer screening and personalized medicine. 

An unresolved question is whether RUNX1 functions to promote or suppress 

tumor growth in breast cancer. Increasing evidence indicates that loss of RUNX1 

function accompanies progression of breast cancer (van Bragt, Hu et al. 2014, 

Chimge, Little et al. 2016, Hong, Messier et al. 2017), supporting the concept that 

RUNX1 suppresses tumor growth. Clinically, RUNX1 expression is decreased in 
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high histological grade tumors compared with low/mid-grade tumors (Kadota, 

Yang et al. 2010).  In the past few years, RUNX1 loss-of-function somatic 

mutations have been identified in several subtypes of breast cancer (Network 

2012)(Banerji, Cibulskis et al. 2012)(Ellis, Ding et al. 2012).  Mechanistically, loss 

of RUNX1 in ER+ breast cancer activates the WNT signaling pathway and ELF5 

expression (van Bragt, Hu et al. 2014)(Chimge, Little et al. 2016) suggesting that 

RUNX1 represses breast cancer progression.  Our previous study showed loss of 

RUNX1 promotes EMT in both normal and breast cancer cells indicating that 

RUNX1 has the potential to inhibit tumor growth (Hong, Messier et al. 2017).  In 

this study, we clearly demonstrated that the level of RUNX1 is decreased during 

tumor growth, and that ectopic RUNX1 expression suppresses tumor growth in the 

mouse mammary fat pad. Together these combined studies and our experiments 

establish that RUNX1 reduces aggressive phenotype in breast cancer.  However, 

we cannot rule out the possibility that RUNX1 may have other functions in breast 

cancer, especially in late stage disease.  For example, in the MMTV-PyMT mouse 

model, the level of RUNX1 is positively correlated with tumor progression (Browne, 

Taipaleenmäki et al. 2015) and regulates genes promoting tumor growth in late 

stage MDA-MB-231 breast cancer cells (Recouvreux, Grasso et al. 2016).  

However, in our study, we found that metastatic MCF10CA1a cells with RUNX1 

overexpression formed smaller tumors in mouse mammary fat pad indicating that 

RUNX1 functions to reduce tumor growth.  These contradictory results suggest 
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that RUNX1 has dual functions (pro- vs anti-tumor growth) in late stage breast 

cancer depending on cellular context.   

The anti-tumor growth activity of RUNX1 in breast cancer is likely through its 

properties in maintaining the normal mammary epithelial phenotype. For example, 

loss of RUNX1 causes the cells to lose their epithelial morphology and activates 

mesenchymal genes in normal-like MCF10A cells (Hong, Messier et al. 2017). 

Furthermore, depletion of RUNX1 in ER positive luminal MCF7 breast cancer cells 

transforms the cells into a partial EMT state (Hong, Messier et al. 2017). It has 

been suggested that partial activation of the EMT promotes plasticity that allows 

reprogramming of the epithelial cell to acquire both migratory and stem-like 

features (Grigore, Jolly et al. 2016).  

    We investigated whether RUNX1 might function by suppressing Zeb1, due to its 

well-known activity in increasing breast cancer stemness and as a marker of EMT. 

Our results show that RUNX1 directly binds to the Zeb1 promoter in both 

MCF10AT1 and MCF10CA1a cells and that binding is enhanced upon RUNX1 

overexpression. In MCF10AT1 cells, RUNX1 negatively regulates Zeb1 

expression at the protein level. Together these findings indicate that the binding of 

RUNX1 on the Zeb1 promoter and the suppression of Zeb1 by RUNX1 reduce 

breast cancer stemness in cells that retain plasticity. Consistent with this 

conclusion, overexpressing RUNX1 in MCF10CA1a cells does not change the 

expression of EMT markers to the same extent that it does in premalignant 

MCF10AT1 cells (Fig. 4.4A). These data and the fact that RUNX1 represses EMT 
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in normal-like MCF10A cells (Hong, Messier et al. 2017), highlight its critical 

function in repressing tumor initiation and growth in early stage breast cancer. Also 

of significance is that overexpression of RUNX1 in MCF10CA1a cells decreased 

tumor growth in vivo and tumorsphere formation efficiency in vitro, suggesting that 

RUNX1 can reduce aggressive phenotype in late stage breast cancer cells. 

In summary, our findings constitute strong experimental evidence that RUNX1 

functions to reduce aggressive phenotype of breast cancer cells. This study 

provides a novel dimension to understanding how the transcriptional regulator 

RUNX1 contributes to the stemness and the plasticity of breast cancer stem cells. 

Together, these data support a central role for RUNX1 in preventing breast 

cancer progression. Both tight control of RUNX1 expression and RUNX1 

functional integrity are required to prevent breast cancer malignancy. 

Consequently, clinical strategies should consider RUNX1 as a biomarker and 

potentially as a therapeutic candidate.  
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Chapter V Discussion and future direction 

5.1. Results summary 

The results of my dissertation studies have uncovered novel functions of RUNX1: 

a) in the regulation of normal mammary epithelial cells; b) identifying the loss of 

RUNX1 during cancer progression; and c) dysregulated mechanisms caused by 

depletion of RUNX1.  Together these findings demonstrated RUNX1 inhibits the 

breast cancer development. 

     In chapter II of this dissertation, we investigated the consequences of the loss 

of RUNX1 in both mammary epithelial and breast cancer cells. In the normal 

mammary epithelial MCF10A cells, we observed that depletion of RUNX1 changes 

the morphology of cells from epithelial-like to mesenchymal-like, and loss of 

RUNX1 initiates EMT in both normal epithelial and breast cancer cells. We also 

discovered that RUNX1 expression was lost upon induction of EMT by two different 

methods, suggesting that reduction of RUNX1 expression is a hallmark of EMT 

initiation in these cells. Mechanistically, RUNX1 functions through both exogenous 

TGF-b-dependent and -independent mechanisms indicating that RUNX1 is 

involved in multiple signaling pathways. Taken together, our studies revealed for 

that RUNX1 has anti-tumor growth activities in mammary lineage cells. The 

dissertation studies established the concept that RUNX1 preserves the epithelial 

morphology and negatively regulates EMT in both normal mammary epithelial and 
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breast cancer cells. 

In Chapter III of this dissertation, we explored whether RUNX1 regulates other 

cellular activities in normal mammary epithelial cells. To identify those putative 

functions of RUNX1 in MCF10A cells, we performed both global gene expression 

profiling and RUNX1 genome-wide binding analysis. Using high throughput 

sequencing, 1809 novel target genes that are differentially expressed upon loss of 

RUNX1 were identified. The pathway analysis for these genes indicated that 

RUNX1 regulates many aspects of cellular activities including the cell cycle and 

genome stability. We also performed RUNX1-ChIP-seq to study the mechanisms 

of RUNX1 regulated gene expression. Our results demonstrated that in normal-

like mammary epithelial cells, RUNX1 may form the complexes with some of the 

known RUNX1 co-regulatory factors, such as AP1, TEAD4 and STAT5. RUNX1 

may also interact with some factors, that have not previously been identified, such 

as NFIA. Our results also indicate that in MCF10A cells, the primary function of 

RUNX1 is to activate target gene expression. RUNX1 may primarily repress target 

gene expression in an indirect manner.  Using Flow Cytometry analysis, we 

demonstrated that RUNX1 loss results in a significant reduction of mitotic cells, 

with the percentage of mitotic cells reduced from 2.5% in parental and non-

silencing control to 1.4% in shRunx1 cells which is greater than 40% decrease. 

Consistent with G2/M arrest, commonly associated with genome instability, the 

ablation of RUNX1 decreased the expression levels of multiple DNA-repair related 

genes. Moreover, after treating the cells with a DNA-damaging agent, the DNA 
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repair process was compromised in Runx1 depleted MCF10A cells. Overall, this 

chapter discovered functions of RUNX1 in mammary epithelial cells such as 

controlling mitosis that was not previously reported. 

    In Chapter IV of this dissertation, we further elucidated RUNX1 function in breast 

cancer cells in relation to tumor growth. An important component of tumor growth, 

is the contribution of cancer stem cells (CSC). Because CSCs are associated with 

EMT, and RUNX1 is a negative regulator of EMT (Chapter II), we examined the 

cancer stem cell properties upon altering RUNX1 expression. Our results 

demonstrated that RUNX1 suppresses tumorsphere formation efficiency and the 

cancer stem cell population by negatively regulating Zeb1 expression. We 

observed that ectopic RUNX1 expression reduces migration and invasion in vitro 

and tumor growth in vivo, thus establishing RUNX1 reduces aggressive 

phenotypes in breast cancer cells. We therefore show to our knowledge for the 

first time, that RUNX1 inhibits the cancer stem cell phenotype in solid tumors, 

highlighting the potentials of RUNX1 regulating CSC in other epithelial cancers.  

5.2. Significance and clinical impact 

Breast cancer is the most common cancer and the second leading cause of cancer 

death in American women. On average 1 in 8 American women will be diagnosed 

with invasive breast cancer in their lifetime (Siegel, Miller et al. 2016). With the 

advantages of early detection and improved treatments, the 5-year survival  rate 

of breast cancer patients has increased to 90% (Miller, Siegel et al. 2016). 

However, the survival rate for patients with metastatic breast cancer remains low 
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(22%) (Siegel, Miller et al. 2016). Therefore, understanding the mechanisms of 

breast cancer initiation, progression and metastasis remains an important task. 

    In this dissertation, the functional activities of transcription factor RUNX1 in 

normal mammary epithelial and breast cancer cells were examined. The results 

from this dissertation demonstrate that RUNX1 has tumor suppressor potential in 

both mammary epithelial and breast cancer cells.   Loss of RUNX1 expression 

initiates EMT and deregulates cell cycle. Moreover, overexpressing RUNX1 in 

breast cancer cells represses cancer stem cell phenotype and tumor growth in vivo. 

The data from patient samples further suggests that RUNX1 expression and its 

normal function are clinically relevant in breast cancer prognosis. My analyses 

from public data sets showed low RUNX1 expression in patient tumors is 

associated with poor survival. Therefore, we propose that RUNX1 could translate 

into a new prognostic biomarker in breast cancer and potentially be a therapeutic 

target. 

    Mutations of RUNX1 and its partner CBFb account for 24% of adult AML cases 

(Look 1997) and 25% of pediatric ALL cases (Loh, Goldwasser et al. 2006). Thus, 

drug developments targeting the RUNX1 mutation or the interaction between 

RUNX1 and CBFb currently are a priority focus for finding treatments for various 

types of leukemia.  For instance, a small molecule AI-10-49, which selectively 

binds to a CBFβ mutant (CBFβ–SMMHC) and disrupts its binding to RUNX1, 

delays leukemogenesis in mice (Illendula, Pulikkan et al. 2015).  Another 

compound 7.44, a small molecule disrupting RUNX1-ETO tetramerization, also 
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suppresses leukemogenesis both in vitro and in vivo (Schanda, Lee et al. 2017). 

Besides above-mentioned small molecules targeting RUNX1 or CBFb mutation, 

small compounds, such as AI-4-57 and Ro5-3335, which both specifically block 

the Runx-CBFb interaction, inhibit the growth of leukemia cell lines in vitro 

(Cunningham, Finckbeiner et al. 2012, Illendula, Gilmour et al. 2016).  Therefore, 

RUNX1 is a promising target for intervention in leukemia. 

    To date, few efforts have been employed to specifically target RUNX1 in breast 

cancer cells. Therefore, developing small molecules that specifically target RUNX1 

to activate its expression can be a new therapeutic direction for breast cancer 

prevention and intervention, as indicated by our Runx1 repletion studies in mice 

(Fig. 4.5). Recently a study shows that a small molecule T63 activates Runx2 

expression and therefore attenuates the loss of bone mass (Zhao, Chen et al. 

2017).  Same strategy, identifying small molecules promote Runx1 expression, 

could apply to prevent loss of Runx1 induced disease.  

5.3. Open questions and future directions 

In this dissertation, we investigated the importance of RUNX1 in both normal 

epithelial and breast cancer cells. We identified several novel RUNX1 functions 

including repressing EMT and suppressing the cancer stem cell phenotype.  

However more work is needed to paint the full picture of function(s) of RUNX1 in 

normal mammary epithelial cells and in progression of breast cancer. 
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What are the up-steam regulators of RUNX1? 

An interesting direction for future research is to determine the upstream regulator(s) 

of RUNX1. There are many known transcription factor regulatory elements in the 

two RUNX1 promoters, as well as co-regulatory factors, histone modifications and 

enhancers which are found across the RUNX1 gene, all of which contribute to 

regulation of RUNX1 expression.  In hematopoietic cells, RUNX1 is up regulated 

by a RUNX1 intronic cis-regulatory element (+23 RUNX1 enhancer) (Bee, Ashley 

et al. 2009). This enhancer contains conserved motifs that bind various 

hematopoiesis related regulators such as Gata2, ETS, and RUNX1 itself acting in 

an auto-regulatory loop (Nottingham, Jarratt et al. 2007, Bee, Ashley et al. 2009). 

It is unclear whether this auto-regulatory mechanism also operates in mammary 

cells, and if so what factor(s) bind to +23 RUNX1 enhancer? In the mammary gland, 

RUNX1 is precisely regulated as its level fluctuates in pregnancy and lactation (van 

Bragt, Hu et al. 2014, Rooney, Riggio et al. 2017). RUNX1 is highly expressed in 

the basal lineage compared with the luminal lineage, suggesting a mechanism that 

either activates RUNX1 in basal cells or inactivates it in luminal cells (van Bragt, 

Hu et al. 2014).  However, it is unclear what transcription factor(s) control(s) 

RUNX1 expression in mammary cells, especially in basal/ myoepithelial cells. In 

breast cancer, RUNX1 is often mutated and its level is decreased compared with 

normal mammary epithelial cells (Chapter II and Chapter III).  The mechanisms 

driving the loss of RUNX1 expression in breast cancer cells are still unknown, but 

may involve multiple mechanisms including protein degradation by the proteasome, 
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inhibited translation by miRNAs, the removal of an activator, the binding of a 

repressor transcription factor, DNA hypermethylation, and(or) altered histone 

modifications.   

     We performed transcription factor binding prediction analysis on the sequences 

within 1kb upstream of the RUNX1 P1 promoter and identified potential binding 

sites of 66 transcription factors (Fig. 5.1). Among those transcription factors, some 

such as ERa, STAT，GATA1, are well known for their physical interactions with 

Runx1 protein and their roles in breast cancer (Elagib and Goldfarb 2007, Stender, 

Kim et al. 2010, Scheitz, Lee et al. 2012, Li, Ke et al. 2015, Banerjee and Resat 

2016). However, whether these 66 factors are actually functional in the mammary 

lineage, and whether they are positive or negative regulators of RUNX1 requires 

further examination. 

In Chapter II, we showed that TGF-b is one of the upstream regulators of RUNX1 

in mammary epithelial cells. The level of RUNX1 is decreased upon TGF-b 

treatment and overexpressing RUNX1 in TGF-b treated cells reversed the EMT 

phenotype. These data clearly demonstrate that RUNX1 is downstream of the 

TGF-b signaling pathway and that down-regulation of RUNX1 is necessary for the 

activation of TGF-b induced EMT. Estrogen is another upstream regulator of 

RUNX1 (Vivacqua, De Marco et al. 2015), as treating MCF7 cells with 17-b-

estradiol, decreases the level of RUNX1.  However which activators support 

RUNX1 expression in mammary lineage requires exploration; therefore, identifying 

the possible positive regulator(s) in normal mammary epithelial cells is necessary 
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for strategizing to protect RUNX1 expression in mammary gland and for breast 

cancer intervention.   
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What are the co-regulatory partners of RUNX1 in different cellular contexts? 

RUNX1 even with its co-regulatory partner CBF-b, is still not a strong DNA binding 

protein and primarily functions through interacting with diverse transcription factors, 

such as AP-1, GATA-1 and STAT (Pencovich, Jaschek et al. 2011, Scheitz, Lee 

et al. 2012, Chuang, Ito et al. 2013).  Therefore, the complexity of RUNX1 

regulatory mechanisms relies on the composition of its binding partners. The 

Runx1 binding partners are usually transcription factors, thereby giving RUNX1 the 

capability to temporally regulate target gene expression.  Motifs of some 

transcription factors, such as STAT and AP-1, were identified in our motif analysis 

on RUNX1 peaks as co-localizing with RUNX1 motif, suggesting they have the 

potential to form complexes with RUNX1.  Depending on cellular context in 

different subtypes or stages of breast cancer, RUNX1 may form transcription 

regulatory complexes with distinct co-activators or co-repressors. Thus, the 

diversity in binding of cofactors including histone modifiers, may explain the 

contradictory reports that RUNX1 has anti-tumor growth activity in mammary 

Figure 5.1 Potential RUNX1 regulators locate within 1kb upstream 

of RUNX1 promoter.  (A) List of transcription factors with predicted 

binding sites within 1kb upstream of RUNX1 promoter.  (B) Diagram of 

the location of the predicted binding sites of each transcription factor 

within 1kb upstream of RUNX1 promoter. 
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epithelial cells and is tumor-promoting in late stage triple-negative breast cancer 

{Chuang, 2013 #237}.  It would be informative to determine the components of 

RUNX1 transcription complexes by Runx1 immunoprecipitation in different breast 

cancer cell lines representing distinct subtypes and disease stages. 

Does RUNX1 have a function in mitosis? 

In Chapter III, we demonstrated that loss of RUNX1 decreases mitotic population 

in MCF10A cells by more than 40%. Therefore, is RUNX1 required for mitosis? If 

so, what function does RUNX1 play in mitotic cells?  During mitosis, some 

regulatory complexes remain bound to the condensed chromatin for rapid 

reactivation of genes following mitosis which is define as mitotic bookmarking 

(Zaidi, Young et al. 2010).  

    Runx2, another lineage specific Runx factor, is well known for its association 

with RNA Pol I-transcribed ribosomal RNA genes and RNA Pol II-transcribed 

phenotype-specific genes during mitosis (Young, Hassan et al. 2007, Young, 

Hassan et al. 2007). Is RUNX1 also involved in mitotic bookmarking? Nancy 

Speck’s group showed that in RUNX1 deficient hematopoietic stem and progenitor 

cells, ribosome biogenesis is reduced, with lower rRNA and ribosomal protein 

mRNA levels (Cai, Gao et al. 2015). Moreover, from our RNA-seq data, we also 

observed that upon RUNX1 knockdown, the transcription of majority of ribosomal 

proteins is inhibited (Fig.5.2). It will be worth investigating whether RUNX1 is a 

mitotic bookmarking factor in mammary epithelial cells and identify the genes that 

RUNX1 occupies during mitosis. One possible strategy is to perform Runx1-ChIP-
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seq in the cells blocked in mitosis with Nocodazole.  We can identify the genes be 

bound by Runx1 during mitosis. We can compare the expression of levels of these 

genes during mitosis in both control and RUNX1 depleted cells. It will be interesting 
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to test whether these genes still transcribed /translated properly without RUNX1 

binding during mitosis?  

 

 

What is the mechanism(s) of RUNX1 controlled genome stability? 

Decreased genome stability is a hallmark of cancer (Hanahan and Weinberg 2011). 

In Chapter III, we showed that loss of RUNX1 may lead to genome instability as 

DNA damage repair is slowed down in RUNX1 depleted cells. The exact 

mechanism(s) of RUNX1 controlled genome stability requires further exploration.  

Many mechanisms are involved to drive genome instability at both the 

chromosomal and nucleotide levels (Lee, Choi et al. 2016). Genomic instability at 

the nucleotide level is frequently represented in the hyper-mutation phenotype 

(Roberts and Gordenin 2014). Most of the mutations are caused by the defect of 

DNA repair pathways (Lee, Choi et al. 2016).   

Nevertheless, sequencing data from cancer patients have identified the 

existence of mutations densely clustered in short DNA segments which cannot be 

explained by DNA repair defect (Nik-Zainal, Alexandrov et al. 2012)(Roberts, 

Sterling et al. 2012).  Later, it was identified that members of Apolipoprotein B 

editing complexes (APOBECs) are cytidine deaminases (Conticello 2008) that are 

Figure 5.2 Heat map of changes in ribosome protein mRNAs. Heatmap 

of changes in ribosome protein mRNAs from control (NS, EV) or shRunx1 

(shRunx1-1, shRunx1-2) MCF10A cells.  
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responsible for generating this pattern of mutation (Roberts, Sterling et al. 2012), 

which is wide-spread in human cancers, including breast cancer (Burns, Lackey et 

al. 2013, Roberts, Lawrence et al. 2013, Kanu, Cerone et al. 2016).  HIV-1 protein 

Vif down regulates the human APOBEC3 family by targeting them for degradation 

(Wiegand, Doehle et al. 2004), which requires CBFb (Zhang, Du et al. 2011, Kim, 

Kwon et al. 2013).  Moreover CBFb is a positive regulator for APOBEC3 

transcription, as knockdown of CBFb decreases APOBEC3 mRNA (Anderson and 

Harris 2015). In human breast cancer, RUNX1 levels are decreased, which may 

generate free-state CBFb. It is possible that the free-state or increased CBFb 

promotes APOBEC3 expression and induces genome instability by generating 

mutations. Thus, RUNX1 mediated APOBEC3 repression may be a new axis for 

controlling genome stability in breast cancer. 

Is RUNX1 involved in Immune suppression? 

In the past few years, new findings have led to increased attention in the 

mechanisms by which cancer cells with EMT phenotype might contribute to 

immune suppression (reviewed in (Terry, Savagner et al. 2017)).  Multiple routes 

have been examined on the mechanisms of EMT induced tumor immune escape 

(Terry, Savagner et al. 2017). For instance, the EMT program can medicate cancer 

cell immune resistance to natural killer cells(Terry, Buart et al. 2017). Natural killer 

cells are the effector lymphocytes of the innate immune system, repressing tumor 

growth during cancer initiation and progression(Terry, Savagner et al. 2017). The 

EMT program can also activate immunosuppressive cytokines or immune 
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checkpoint ligands to modulate efficacy of immune response and its duration. For 

instance in triple-negative breast cancer, 20% of tumors activate the expression of 

one such immune checkpoint ligand, programmed cell death ligand-1 (PD-L1) 

(Wimberly, Brown et al. 2015) (Mittendorf, Philips et al. 2014) , which binds with its 

receptor PD-1 in T-cells. The binding of PD-1 and PD-L1 inhibits T-cell cytotoxic 

activity, resulting in a T-cell exhaustion state (Zou, Wolchok et al. 2016).  Antibody 

blocking PD-1/PD-L1 signal clinically restores T-cell activities and represses tumor 

growth (Alsaab, Sau et al. 2017) . To date, nivolumab or pembrolizumb (anti-PD-1 

antibody) and atezolizumab (anti-PD-L1 antibody) have been approved by the FDA 

to treat various metastatic cancers (Alsaab, Sau et al. 2017).  In cancer, several 

EMT signal pathways, such as Zeb1 and TGF-b, can drive PD-L1 expression as 

an immune escape mechanism (Chen, Gibbons et al. 2014, Chen and ten Dijke 

2016). 

   In chapter II, we demonstrated that RUNX1 blocks the initiation of EMT and we 

hypothesize that RUNX1 represses the immune surveillance both in the immune 

system and in cancer cells.  As the master regulator of hematopoiesis, RUNX1 is 

essential for T-cell maturation (reviewed in (Collins, Littman et al. 2009, Hsu, 

Shapiro et al. 2016, Ebihara, Seo et al. 2017)). Without RUNX1, development of 

T-cells is blocked resulting in the loss of functional nature killer T cells (Egawa, 

Eberl et al. 2005, Egawa, Tillman et al. 2007). Recently, it has been shown that 

Runx3 is a central regulator of CD8+ T cells by promoting T cell differentiation and 

accumulating matured CD8+ T cells in tumors (Milner, Toma et al. 2017). Given 
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the fact that both Runx1 and Runx3 is up-regulated and required for T-cell 

maturation (Yu, Zhang et al. 2017).  Runx1 may be also involved in resident 

lymphocytes in tumors.  Meanwhile, in cancer cells, our preliminary data indicate 

that RUNX1 functions as a negative regulator of PD-L1 and other immune 

checkpoint ligands.  In our MCF10A shRunx1 RNA-seq data, we found that loss of 

RUNX1 activates both PD-l1 and B7H4, another immune checkpoint ligand. 

However, it is unclear whether RUNX1 directly or indirectly regulates expression 

of these two ligands.  Taken together, these data implicate that RUNX1 is a key 

component to repress immune escape and its exact function requires further 

research. 

Is RUNX1 a regulator of long noncoding RNAs (lncRNAs)? 

Long noncoding RNAs are greater than 200 nucleotides in length and have no 

protein coding capacity.  They are often observed to be deregulated in a variety of 

cancer types.  Several lncRNAs have been well document for their function during 

breast cancer progression (reviewed in (Cerk, Schwarzenbacher et al. 2016, Wang, 

Liu et al. 2016) ).   

    Strikingly from our RNA-seq data, we observed that RUNX1 significantly altered 

the expression of several lncRNAs including NEAT1, MALAT1, XIST, HOTAIR, 

HOTAIRM1, GAS5 and ZFAS1 (Tabel 5.1). The expression patterns of these 

lncRNAs upon loss of RUNX1 are consistent with their patterns upon breast cancer 

progression. RUNX1 genomic binding analysis shows that RUNX1 directly binds 

to the promoters of many of these lncRNAs, such as NEAT1 and MALAT1, 
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suggesting transcriptional regulation by RUNX1. This may be another unidentified 

aspect of RUNX1 anti-tumor growth activity in breast cancer. It will be interesting 

to determine the extent to which RUNX1 plays a regulatory role in controlling 

lncRNA expression and how it relates to breast cancer progression.  To test this, I 

will knockdown oncogenic lncRNA by Gapmer or overexpress anti-tumor lncRNA 

by CrisprA in RUNX1-depleted cells and examine whether phenotypes induced by 

loss of RUNX1 are attenuated by specific lncRNA. 
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Table 5.1 List of LncRNAs expression of which is changed upon 

RUNX1 knockdown in MCF10A cells and their involvement in 

human breast cancer. 
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5.4.  Concluding Remarks 

This thesis describes the function of RUNX1 in both mammary epithelial cells and 

breast cancer cells. In mammary epithelial cells, RUNX1 maintains the epithelial 

phenotype and loss of RUNX1 promotes EMT. Additionally, our results 

demonstrate the anti-tumor growth function of RUNX1 in breast cancer cells by 

inhibiting the cancer stem cell population. In conclusion, my thesis work provides 

novel and significant insight into the mechanisms by which RUNX1 prevents 

transition of the mammary epithelium to breast cancer. This work impacts our 

understanding of Runx biology, mammary epithelial biology and breast cancer. Our 

findings pave the way for future investigation of the regulation of RUNX1 in other 

epithelial cancers. 
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