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ABSTRACT 

Controlling influenza A virus (IAV) infections remains a challenge largely due to the 

high replication and mutation rates of the virus. IAV is a negative-sense RNA virus with two 

main surface proteins — hemagglutinin (HA) and neuraminidase (NA). HA recognizes and binds 

sialic acid on host cell receptors to initiate virus entry. NA also recognizes sialic acid on host cell 

receptors but functions by cleaving sialic acid interactions to release progeny virus. Because both 

HA and NA interact with sialic acid on the host cell surface with opposing effects, their balance 

is essential for optimal viral infectivity. However, the evolutionary constraints that maintain HA 

and NA function, while conserving a functional balance, are not fully understood.  

 I adapted the comprehensive and systematic mutational scanning technology, termed 

EMPIRIC (Exceedingly Meticulous and Parallel Investigation of Randomized Individual 

Codons), to investigate the local fitness landscape of regions of HA under standard conditions 

and under drug pressure. We observed that synonymous substitutions had a higher mean absolute 

fitness effect in the signal than a neighboring HA region used as a control. Folding ∆G 

calculations revealed a hairpin loop that appeared to be differentially enriched between human 

and swine IAV variants in sequences of circulating strains. However, the molecular mechanism 

resulting in the observed host species-specific constraints remains undefined. 

Studying the fitness landscape of the receptor binding site of HA revealed the high 

sensitivity of this region to mutation. However, modulating the levels of NA activity by mutation 

and by using the NA inhibitor oseltamivir enabled the identification of HA mutations with 

adaptive potential under selection pressure by oseltamivir. These results highlight the importance 

of the HA-NA functional balance virus replication and in the development of resistance to 

oseltamivir inhibitors. These studies provide improved understanding of IAV biology, and can 

inform the development of improved antiviral agents with reduced likelihood for resistance. 
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Chapter I:  Introduction 

Influenza and global public health 

Influenza viruses are important pathogens that cause upper respiratory tract infections in 

humans and are a global public health concern. Inhaling virus-containing droplets is the most 

common mode of transmission of influenza viruses [1]. Symptoms of influenza infections 

typically last 3-5 days and include sore throat, runny nose, coughing, muscle ache, and fever. 

Complications such as bronchitis, sinusitis, and pneumonia may occur in individuals such as the 

elderly, pregnant women, and in children under 5 years of age, leading to increased morbidity 

and mortality [2, 3]. The increasing cost of treatment combined with missed work days due to 

illness make influenza infections a great burden to global economic development [4].  

The World Health Organization estimates about 3-4 million cases of severe influenza 

infections annually resulting in up to 500,000 deaths worldwide [5]. In temperate climates, 

seasonal influenza outbreaks often happen in the colder months of October to February, while 

influenza outbreaks may happen year-round in the tropics. In addition to seasonal influenza 

outbreaks, influenza caused four pandemics in the 20th and 21st centuries [6, 7]. The 1918 

Spanish flu alone caused 50-100 million deaths worldwide and remains the deadliest pandemic 

in history [6, 8]. The Asian flu of 1957 and the Hong Kong flu of 1968 caused up to six million 

deaths combined [7]. Even with this scale of mortality, effective control of influenza infections is 

yet to be achieved. As such, improved pandemic preparedness will help reduce morbidity and 

minimize mortality in preparation for the next pandemic.  

 
The causative agent 
 

Influenza infections are caused by viruses that belong to the Orthomyxoviridae family, a 

family composed of three important genera [9]. Influenza B and C are known to only replicate in 
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human hosts whereas influenza A virus (IAV) replicates in human and non-human hosts such as 

chicken, ducks, swine, horses and bats [10-13]. IAV is the most virulent genera and causes the 

most severe infections in humans. Influenza B causes significantly fewer infections each year. 

However, a recent study by the Centers for Disease Control and Prevention reports that influenza 

B infections can be just as severe as infections caused by IAV [14], unlike previous theories.  

IAV is an enveloped negative sense RNA virus that is roughly spherical in shape with a 

diameter of 100-120 nanometers [9]. The IAV genome is composed of eight single-stranded 

RNA segments, a genome organization with notable evolutionary plasticity by genetic 

reassortment. IAV genome segments are numbered by length from the longest to the shortest 

[15]. Each RNA segment is in complex with three polymerase subunits ((polymerase basic 2 

(PB2), polymerase basic 1 (PB1) and polymerase acidic (PA)), and nucleoprotein (NP) encoded 

by RNA segments 1, 2, 3, and 5, respectively [16, 17]. Segments 4 and 6 encode the 

hemagglutinin (HA) and neuraminidase (NA) proteins that form the majority of surface 

glycoproteins of IAV. HA recognizes and binds host receptors to initiate infection [18], while 

NA cleaves host-virus interactions to allow the release of progeny virus [19]. Matrix proteins M1 

and M2 are encoded by alternative reading frames on segment 7 [20]. M1 is the most abundant 

IAV protein that encapsulates viral ribonucleoprotein (vRNP) complexes [21]. M2 forms ion 

channels in the viral envelope allowing proton exchange between the virus and the cellular 

environment at low pH [22]. Segment 8 encodes the nonstructural proteins NS1 and NS2 in 

alternate open reading frames [23]. NS1 enhances the translation of viral mRNA and also 

inhibits host antiviral responses to allow viral propagation in the host [24]. NS2 mediates nuclear 

export of vRNP complexes after synthesis [25].  
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IAV is divided into subtypes based on the antigenic properties of HA and NA on the 

virus surface. Thus far 18 HA and 11 NA subtypes have been identified [13, 26]. Circulating 

viruses have different combinations of HA and NA subtypes - such as H1N1, H3N2 and H5N1. 

Most IAV strains are isolated from aquatic wild birds which serve as natural reservoirs for the 

virus [27]. Some variants such as H1N1, H3N2 and H7N2 are known to exclusively infect and 

circulate in humans, whereas H5N1 and H7N7 infect birds and are highly pathogenic. Pigs can 

be infected by both human and avian variants and therefore serve as mixing vessels for IAV. 

However, the role of viral and host factors in cross-species transmission and infectivity remain 

unclear. Understanding how IAV evolution influences virus function and infectivity in different 

host environments will help control the spread of influenza infections and inform improved 

prophylactic and therapeutic strategies.  

New viral subtypes arise because the IAV genome is rapidly evolving. The process of 

genetic drift results from the error-prone RNA polymerase of IAV that leads to the accumulation 

of up to 10-4 nucleotide substitutions per site per year [28]. Additionally, the reassortment of 

viral RNA in hosts co-infected with different viral subtypes also contributes to genome changes 

by genetic shift. Transmission of antigenically novel zoonotic IAV strains to humans has been 

associated with all four influenza pandemics of the 20th and 21st centuries [29]. For instance, 

human IAV strains that had acquired RNA segments encoding avian-like variants were 

responsible for the 1957 and 1968 pandemics [30, 31]. Recently the H5 and H7 strains 

previously crossed the avian-human interspecies barrier and were responsible for the deadly 

avian flu outbreaks in Hong Kong [32]. Understanding the complex mechanism of cross-species 

transmission of IAV will help control cross-species transmission and provide better preparedness 

for pandemic IAV. 
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HA and NA are the main surface proteins in IAV  

HA is a 75 kDa type I transmembrane protein that binds to host receptors and mediates 

virus entry into the host cell [18] (Fig. 1.1a). The 18 known subtypes of HA are classified into 2 

groups. Group 1 contains H1, H2, H5, H6, H8, H9, H11, H12, H13, H16, H17, and H18, while 

group 2 is composed of H3, H4, H7, H10, H14, and H15 [13, 33]. During virus replication in the 

host cell, HA is synthesized as the precursor protein HA0 and undergoes co-translational 

trimerization in the ER-golgi complex [34]. Translocation to the ER is mediated by the signal 

sequence that is formed by the first 14 to 17 amino acids at the N-terminal [35]. The signal 

sequence is cleaved and does not form part of the surface expressed protein. Proteolytic cleavage 

of HA0 by host serine proteases results in the HA1 and HA2 subunits that remain linked by 

disulfide bonds. After cleavage, HA1 forms the globular head composed of the first 320 amino 

acids while HA2 is composed of 222 amino acids and forms the tail [36]. Previous studies have 

shown a correlation between HA0 cleavability by host proteases and virus pathogenicity [36]. 

Maintaining protease activation to form HA1 and HA2 while rapidly accumulating mutations 

highlights one the many functional constraints shaping IAV evolution.  

 The HA1 region of HA is distal to the virus membrane and carries both the antigenic 

sites and the receptor binding site. The amino acid sequence of the antigenic sites is unique for 

each HA subtype but evolves rapidly thus leading to evasion from neutralization by host 

antibodies [37]. On the other hand, the sequence of the receptor binding site is generally 

conserved [38]. The binding site is composed of the 190-a helix loop, the 130-loop, and the 220-

loop arranged to form a receptor binding pocket [18, 38]. The interaction between the receptor 

binding site and the terminal sialic acid on host receptors determines host specificity. HA of 

human IAV is recognized by α-2,6-linked sialic acid terminating glycans on receptors while HA 
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of avian IAV is recognized by α-2,3-linked sialic acid [39]. The reason pigs can be infected by 

both human and avian strains of IAV and serve as mixing vessels for the virus is because 

epithelial cells in the porcine trachea contain both α-2,3- and α-2,6-linked receptors [40].  

Mutations in the receptor binding site that lead to a switch in host specificity have been 

identified [41]. Specifically, the laboratory-selected L226Q mutant exhibits reduced binding 

affinity to α-2,6-linked receptors and improved binding to α-2,3 receptors. Switches in host 

specificity remain of great clinical importance due to the rich abundance of α-2,3-linked sialic 

acid in the mucins from human lungs [39]. The mucus lining is thought to minimize virus 

infections yet these receptors in the human lungs have been the source of high mortality 

pneumonia in influenza complications. 

The HA2 region of HA mediates fusion between the viral and endosomal membranes that 

lead to the introduction of vRNP into the host cell. Membrane fusion is initiated by the fusion 

peptide region of HA2 [42]. This region is comprised of the first 23 amino acids of HA2 and is 

highly hydrophobic. In surface-expressed HA, the fusion peptide folds into a spring-loaded 

structure buried in the core of the trimer, giving HA a metastable conformation [43]. However, 

during membrane fusion, HA undergoes irreversible conformational change wherein the fusion 

peptide is released from the buried state and propelled to anchor onto the host membrane. Further 

structural rearrangement in HA2 ultimately leads to the fusion of viral and host membranes. As 

such, HA2 has highly conserved structural and functional requirements compared to HA1. 

Analysis of diverse HA sequences has revealed 30-70% sequence identity between different HA 

subtypes with higher conservation in HA2 than HA1 [44].   

NA is a type II transmembrane protein (470 amino acids, 240 kDa). During infection, NA 

functions as a sialidase and cleaves sialic acid interactions between the virus and the host cell to 
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prevent virus aggregation and allow the release progeny virus [45]. NA sequences are classified 

into two phylogenetic groups. Group 1 consists of N1, N4, N5 and N8 subtypes, while group 2 

consists of N2, N3, N6, N7 and N9; the newly identified N10 and N11 appear to be distantly 

related to both group 1 and group 2 [13]. Comparing amino acid sequences reveals 37.3–66.8% 

sequence identity between NA subtypes [46].  

Structurally, NA is divided into a head region that is formed by six identical antiparallel 

β-sheets and a fibrous stalk region [19] (Fig. 1.1b). Surface NA functions as a homotetramer. 

The enzymatic active site of NA is located on the head region and is highly conserved. Eight 

catalytically important residues, R118, D151, R152, R224, E276, R292, R371, and Y406 (in N2 

numbering), are conserved in all NA subtypes [47]. Due to the functional importance and high 

sequence conservation, the NA active site serves as an effective target for anti-IAV agents. NA 

inhibitors such as oseltamivir and zanamivir are used widely to treat influenza infections. 

However, the emergence of oseltamivir resistance mutations like H275Y and N295S undermine 

the dependability of NA inhibitors for long-term use against influenza infections [48]. 

Nonetheless, there is increased interest in developing universal influenza vaccines that target 

these functionally conserved residues on the active site of NA [46, 49]. While such antibodies 

have demonstrated neutralization potential in mouse models, their application in human subjects 

and the potential for neutralization evasion remains underexplored.  

 

The IAV infection cycle 

During infection, HA binds terminal sialic acid on host cell receptors to initiate viral entry (Fig. 

1.1c). At this stage of infection NA enzyme activity must be appropriately balanced to allow  
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Figure 1.1. HA and NA form the major surface proteins of IAV. A) HA functions as a homotrimer. Each 
monomer is composed of a head region (orange) and a stem region (cyan) (PDB 1RUZ). B) NA functions 
as a tetramer. Each monomer is composed of a mushroom-shaped head region and a fibrous stalk (PDB 
3BEQ). C) Illustration of the IAV infection cycle. 
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productive host-pathogen interaction culminating in receptor-mediated endocytosis [50]. A drop 

in the endosomal pH to between 5 – 6 triggers an irreversible conformational change in HA 

leading to membrane fusion and the release of vRNP into the host cell [51]. Studies have shown 

that net charge in the cavity surrounding the fusion peptide determines the pH at which 

membrane fusion occurs [42]. Mutating charged residues near the fusion peptide leads to the 

elevation of the fusogenic pH. Targeting the membrane fusion step as a therapeutic target proved 

futile as viruses quickly developed resistance against the proton pump inhibitors amantadine and 

rimantadine [52]. 

Upon entering the cytoplasm of the host cell, vRNP are trafficked to the nucleus for 

transcription and replication. Transcription of viral RNA (vRNA) is initiated by cis-acting viral 

RNA polymerase bound to the promoter region on the vRNA template [53]. The viral 

transcription mechanism relies on 5’-capped host mRNA primers acquired by cap-snatching 

[54]. IAV also depends on host splicing machinery to splice mRNA encoding matrix and non-

structural proteins. Viral factors are proposed to regulate splicing of viral mRNA, although the 

mechanism remains unknown [55, 56]. Nuclear export factor encoded by NS2 mediates the 

export of polyadenylated mRNA to the cytoplasm for translation into viral proteins [25]. IAV 

uses host translation and secretory machinery to synthesize, fold, and modify viral proteins [34].  

vRNA replication in the nucleus occurs in two steps. The first step involves copying the 

vRNA into complementary RNA (cRNA) and the second step entails using cRNA as a template 

to produce more vRNA [57]. Previous studies have shown that newly synthesized vRNA is 

selectively exported from the nucleus, yet the molecular basis of this selectivity remains unclear 

[58]. The transcription and replication machinery of IAV serve as potential targets for antiviral 
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agents. As such, understanding the molecular mechanism and the regulation of transcription and 

replication will help to facilitate the development of improved therapeutic agents against IAV.  

In preparation for the release of newly synthesized virions, segment-specific packaging 

signals in the vRNA segments promote the packaging of a complete set of unique RNA segments 

into progeny virus [59]. Budding of the host cell membrane and NA cleavage of pre-existing 

interactions between HA and sialic acid promotes the release of newly synthesized viruses from 

infected cells. However, the molecular mechanism by which IAV hijacks cellular processes and 

promotes viral replication and release while evading complete neutralization by the host is not 

fully understood. 

 

Functional balance in receptor binding by HA and receptor destroying by NA 

HA and NA both interact with sialic acid on the surface carbohydrates of host cells 

resulting in virus entry and exit, respectively. Because HA and NA share a substrate, balance 

between the receptor binding avidity of HA and the enzymatic activity of NA is important for 

productive infection. However, the influence of this functional balance on IAV pathogenicity and 

cross-species transmission remains poorly understood. Studies have shown that different HA 

subtypes bind receptors with different affinity and that different NA subtypes have different 

levels of enzyme activity [60]. It is generally accepted that circulating viruses have matched 

receptor binding and receptor-destroying activity. The fact that there are 18 HA and 11 NA 

subtypes but only a limited number of HA-NA combinations have been isolated in circulating 

variants provides evidence that some combinations are not well-suited for virus infectivity [61]. 

Zhang et al. have shown that experimental reassortment studies of the IAV genome result in 
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strains with varying titers and infectivity [62], suggesting the likely unmatched levels of HA and 

NA function. 

Studies by the Kawaoka group have shown that NA stalk length is important for optimal 

NA function. Shortening the NA stalk by introducing large deletions led to attenuated enzyme 

function [63]. However, this group showed that manipulating HA receptor binding strength by 

introducing mutations near the receptor binding site allowed the rescue of virus function. On the 

flip side, other studies have shown that mutations that alter HA receptor binding strength can 

also be rescued by mutations in NA [64-66]. These observations indicate that the HA-NA 

functional balance is often re-established following offsetting events such as mutations, thus 

highlighting its importance in virus function. 

The significance of this functional balance has been well established. However, little is 

known on the role of this functional balance in interspecies transmissibility and pathogenicity of 

IAV. For example, it is now known that the 2009 pandemic originated from the reassortment of 

two IAV strains of swine origin neither of which was suited for human-human transmission [29, 

65, 67]. Analysis of the HA and NA functional levels revealed that the 2009 pandemic strain had 

elevated levels of NA function to balance HA function. This functional balance was absent in the 

progenitor swine variants [65]. However, the molecular changes that must happen in IAV in the 

swine that enable the crossing of the human-swine interspecies barrier followed by sustained 

transmission in human hosts are not fully understood. Nevertheless, productive virus entry into 

host cells is only successful if the HA-NA functional balance at the onset of infection allows 

productive binding of HA to host receptors without interference by NA. The balance in receptor 

binding and receptor cleavage at the onset of infection remains understudied.  

 



! 11!

Cross-reactive broadly neutralizing antibodies against IAV 

Broadly neutralizing antibodies (bNAb) neutralize IAV by targeting highly conserved 

functional regions of HA and either inhibit HA binding to host cell receptors, or inhibit the 

essential pH-induced conformational changes in HA required for membrane fusion. The first 

cross-reactive bNAb, C179, was isolated in 1993 from mice vaccinated with H2N2 viruses [68]. 

Since then numerous bNAb have been described. Antibodies targeting the receptor binding site 

such as (C05, S139 and F045-092) have been shown to neutralize several strains within each 

IAV subtype [69]. The HA stem has more stringent functional requirements than the head region. 

As such, stem-binding antibodies that lock the HA stem in the pre-fusion state to inhibit the pH-

induced conformational changes in HA2 have shown heterosubtypic neutralization potential. 

CR6261, F10 and C179 are bNAbs that share an epitope that covers a conserved Trp-21 

hydrophobic pocket on the HA stem and neutralize group 1 viruses. bNAbs that neutralize group 

2 viruses, such as CR8043 and CR8020, bind a separate but overlapping epitope near the base of 

the HA stem. Heterosubtypic antibodies that neutralize both group 1 and group 2 viruses, such as 

39.29, FI6 and CR9114, have also been identified. These antibodies bind an epitope that overlaps 

that of group 1-neutralizing antibodies and extends to the base of the HA stem while excluding 

subtype-specific glycans [69]. 

Due to the potential for use of antibody-based therapies as an additional strategy to 

control influenza infections, the field of bNAb discovery has grown exponentially in the last 

decade. Several heterosubtypic anti-HA antibodies have reached various stages of clinical 

development [69, 70]. These antibodies have shown significant reductions in virus titer in 

healthy adult volunteers infected with attenuated virus [71, 72]. The bNAb 39.29 advanced to 

use in naturally infected uncomplicated patients. However, laboratory evolution studies with 
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both 39.29 and F10 have identified neutralization resistant variants ([73], and in submitted work 

by Prachanronarong et al.). The molecular mechanism and evolutionary significance of 

neutralization evasion against stem-binding antibodies is not fully understood. Studying 

resistance to broad spectrum antibodies will help facilitate the design of antibody-based 

therapies, and structure-based vaccines that can elicit production of broad spectrum antibodies 

and minimize neutralization escape.  

 

Controlling seasonal IAV outbreaks 

The most effective way to control influenza infections to date is by annual vaccination. 

There are two vaccine formulations currently in use – the trivalent influenza vaccine (TIV) and 

the live attenuated influenza vaccine (LAIV) [74]. TIV consist of two influenza A strains and 

one influenza B strain inactivated viruses. The vaccine is reformulated annually based on virus 

strains projected to dominate the upcoming flu season, and is predominantly administered as an 

intramuscular injection. LAIV also contain 3 virus strains and is administered intranasally. 

Unlike TIV, LAIV consist of functionally attenuated TIV and are currently not recommended for 

use due to ineffectiveness. Due to antigenic drift, the influenza vaccine has to be reformulated 

annually. Mismatch in the vaccine strains of IAV and the circulating strains increases the 

difficulty of controlling influenza infections. A universal vaccine that can elicit the production of 

broadly neutralizing antibodies that protect against all influenza variants will provide a solution 

to the vaccine mismatch problem. As of yet, this holy grail of influenza vaccines still remains to 

be developed.  

The most common method used to produce the influenza vaccine in the United States is 

the egg-based method [75]. This process begins when the WHO surveillance and response team 
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provides the candidate influenza strains predicted to dominate in the upcoming flu season. This 

often happens in February in the northern hemisphere and in September in the southern 

hemisphere [76]. The candidate viruses are injected into eggs and cultured to allow for virus 

replication. Virus-containing fluid is then harvested and purified. Recovered virus is inactivated 

and goes through several rounds of testing before packaging for use in administered vaccines. 

Predicting the influenza variants projected to dominate in the upcoming flu season follows the 

analysis of circulating clinical isolates. However, factors such as mismatch in the predicted viral 

strain and poor growth of certain strains in chicken eggs continue to undermine the effectiveness 

of the influenza vaccine. 

The identification of cold-adapted IAV that exhibited dominant negative properties and 

suppressed the growth of wild type viruses in cell culture proved to be a promising strategy to 

control the virus [77]. These viruses carried a mutation in the matrix protein and showed 

evidence of reduced infection when studied as a live-virus in ferrets [78]. However, this new 

approach to control IAV infections was not developed for use in a clinical setting. 

Antiviral drugs are currently used to reduce the viral load in the host helping to alleviate 

symptoms and shorten the duration of illness. Most individuals respond well to antiviral drugs. 

However, life-threatening complications may occur in immunocompromised individuals. M2 ion 

channel inhibitors, amantadine and rimantadine are some of the earliest drugs that were approved 

to treat influenza. Widespread resistance to M2 inhibitors has rendered these drugs unfit for use 

in treating influenza [52]. Oseltamivir, zanamivir and peramivir inhibit NA function therefore 

blocking viral shedding [79]. Even the relatively successful therapeutic agents such as 

oseltamivir have limitations. For instance, the initiation of treatment relative to the onset of 
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infection affects the outcome. Additionally, the emergence of drug resistant viruses following 

treatment with these drugs remains a challenge.  

 

Approaches to investigate influenza evolution 

Phylogenetic methods have been widely used to study IAV evolution [80, 81]. One 

limitation of using this method is the sparsity of sequencing data for strains that circulated in the 

early 20th century. Inadequate sampling of sequences may result in punctuated and inconclusive 

analyses of some phylogenies. Additionally, phylogenetic inferences may undermine important 

evolutionary constraints underlying the clustering of IAV variants. For instance, about 53% of 

diversity observed in HA1 of H3 variants results from the 18 codons near the antigenic sites that 

appear to be under positive selection, while the rest of the 311 residues are more conserved [82]. 

Additionally, in analyzing IAV evolution, the inability to distinguish genomic reassortment 

between related strains from genetic drift events may lead to inaccurate phylogenetic clustering 

[83]. Ultimately, phylogenetic inferences and the corresponding predictive power provide useful 

information but need to be backed by experimental data.  

Efforts to reconstitute influenza virus for study in the laboratory began in the 1980s and 

ultimately led to the isolation and characterization of replication-competent vRNP [84, 85]. 

Parvin and colleagues were able to transcribe full-length vRNA by combining purified 

polymerase with vRNP. These advances led to research using recombinant influenza virus 

recovered from cloned cDNA and helper viruses [86]. The over-abundance of helper virus in the 

pool of recovered virus greatly limited the applications of this approach. Technological 

advances, by the Newmann and Webster groups, in modifying the polymerase I systems 

combined with cloning all 8 segments of the A/WSN/1933 H1N1 strain of IAV greatly improved 
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the reverse genetics approaches used to study IAV [15, 86]. The success of this technology has 

provided an excellent platform to study IAV biology. 

The 8-plasmid system revolutionized the study of IAV evolution. Passaging viruses in 

cell culture and using Sanger sequencing to analyze mutations that emerge allowed the study of 

genetic drift and the analysis of reassortment between IAV subtypes [15]. Incorporating DNA 

manipulation technologies allowed the introduction of point mutations and sequence deletions to 

the IAV genome thus providing a better understanding of the structure-function relationships in 

IAV proteins, viral pathogenicity and evolution [87]. However, these approaches were extremely 

low-throughput allowing the analysis of a handful of mutations at a time. Additionally, these 

methods failed to sample all possible mutations similar to the mutational space available to 

circulating viruses.  

 

Massively parallel mutational scanning approaches used to protein evolution 

Alanine scans were the earliest methods used for mutational scanning [88]. Mutating 

each amino acid to alanine allowed the study of the structural and functional properties of each 

amino acid in a protein. While this approach is informative, alanine scans fail to capture the kind 

of mutations that happen in nature wherein random nucleotide mutations result in either 

synonymous or non-synonymous amino acid changes. The ability to randomize amino acids to 

all other possible amino acids would provide a more comprehensive picture of the effects of 

mutations on protein function. 

Fitness landscapes represent the fitness effects of all possible combinations of mutations 

in a protein [89]. However, even for the smallest protein, the number of variants required to 

generate a complete fitness landscape remain experimentally intractable. Studying local fitness 
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landscapes can provide information on the evolutionary process of a protein. Recently developed 

methods that combine high-throughput site-directed mutagenesis and massively parallel 

sequencing, present a comprehensive study of sequence-structure-function relationships in a 

protein. These high-throughput mutational scans, such as the exceedingly methodical and 

parallel investigation of randomized individual codons (EMPIRIC) [90] and the deep mutational 

scanning (DMS) approach [91] use methods such as error-prone PCR, cassette-based 

mutagenesis and chemical synthesis to introduce all possible mutations to parts or the whole 

protein. Expression of plasmid libraries in a genetically tractable system such as phage display, 

bacteria, yeast, virus or mammalian cells followed by bulk competition allows for the enrichment 

of functional variants and the depletion of deleterious ones. Using next-generation deep 

sequencing and barcoding technology allows the analysis of the change in mutant frequency for 

up to hundreds of thousands of mutants [90-93].  

High-throughput mutational scanning approaches have been used in directed evolution 

studies to study the effects of different selective pressures on the fitness landscape of proteins. 

Additionally, mutational data in combination with structural, biochemical and thermodynamic 

analyses has provided information on epistasis, protein evolvability and the development of drug 

resistance. However, analysis of additional viral proteins will be important in discerning whether 

or not the fitness constraints observed thus far apply to other proteins. Combining results of 

fitness scans and mathematical modeling provides improved understanding of protein evolution.  

 

Limitations of massively parallel deep sequencing approaches 

Patterns of mutational tolerance observed in experimental evolution studies occasionally 

diverge from sequence conservation patterns seen in nature [94]. Some mutations appear to have 
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minimal experimental fitness effects and yet appear to be absent in natural sequences. This may 

be due to factors such as the role of epistasis in protein evolution, differences in the 

environmental conditions tested [94, 95], differences in the time scale between natural evolution 

and experimental evolution studies, and the effective population size [96]. Despite this 

discontinuity, high-throughput mutagenesis studies enhance our understanding of protein 

function. With the rapid increase in the number of large-scale mutagenesis datasets, the future 

will see a rise in experimentally informed models that can improve protein engineering and 

enable us to predict functional consequences of mutations with confidence and therefore predict 

protein evolution. Predicting the evolution of viral proteins will allow the prediction of drug 

resistance mutations before they arise and become a public health concern.  

Advances in high-throughput sequencing technologies have made high-throughput 

sequence-based methods a cost-effective approach to study protein evolution. However, there are 

some limitations that need to be addressed in order to ensure increased accuracy in measuring 

mutational fitness effects. First, quick and affordable methods that warrant unbiased 

representation of mutants in starting plasmid libraries are yet to be achieved. Second, some 

random mutagenesis approaches generate libraries carrying a mixture of single and multiple 

mutations. These methods allow the measurement of fitness effects as averages of effects in 

closely related but not identical genetic backgrounds, thus complicating the interpretation of 

sequence-function relationships. Another challenge is in the bottleneck effects encountered 

during expression of the plasmid libraries or in the bulk competition assays. Such bottlenecks 

can be avoided by improved population management to ensure sufficient mutational diversity 

throughout the experiment thus avoiding stochastic sampling of mutations [97]. Low sequencing 

coverage and high read errors leading to high sampling noise in sequencing results pose another 
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challenge [98, 99]. Sequencing samples to sufficient read depth, using paired-end sequencing 

when possible and the use of unique barcodes have greatly improved the quality of sequencing 

results. Applying this technology to re-emerging viral diseases, such as influenza, that pose great 

threat to global public health will help inform the control of seasonal flu outbreaks and minimize 

pandemics.  

 

Using high-throughput fitness scans to study IAV 

High-throughput mutational scanning approaches have been used widely to study IAV 

function and evolution. Previous studies have used this approach to investigate effect of 

mutations on virus function [100-102] and in response to host innate immunity responses [103, 

104]. Additionally, mutational scanning approaches have also been used to study the role of 

environmental factors, such as antiviral agents and neutralizing antibodies, on IAV evolution 

[100]. However, bottlenecks incurred during the virus recovery step using the eight-plasmid 

system greatly undermined the throughput and reproducibility of these experiments on IAV. 

Techniques, such as the use of helper virus in the viral recovery step, have helped overcome this 

hurdle[101]. This improvement will allow for improved studies on virus function and the 

development of drug resistance.  

 

Scope of thesis 

 In this thesis, I use the EMPIRIC approach, developed in our lab for studying effects of 

mutations on genes, to perform a systematic and comprehensive study of the evolutionary 

constraints shaping the evolution of regions of IAV HA. Specifically, I first study effects of all 

possible single nucleotide mutations in the signal sequence of IAV HA and attempt to elucidate 
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the molecular mechanism of the observed fitness effects. I observe that, on average, synonymous 

mutations in the signal sequence had larger fitness effects compared to a neighboring region of 

HA. Additionally, the signal sequence appears to be more tolerant of non-synonymous mutations 

compared to the neighboring region used for comparison. This observation suggests that 

synonymous substitutions in HA may have greater impacts on IAV evolution than previously 

proposed. Next, I use the EMPIRIC approach to randomize a region near the HA receptor 

binding site and analyze effects of NA enzyme activity on the fitness landscape of this region of 

HA. Most mutations near the receptor binding site of HA were deleterious. However, modulating 

NA activity either by mutation or by adding the NA inhibitor oseltamivir appeared to influence 

the fitness landscape by rescuing defective HA mutations. Inhibiting NA function using 

oseltamivir has an effect great enough to allow the identification of potentially adaptive 

mutations. Modulating NA activity by mutation was not enough to discern HA mutations with 

adaptive potential. This observation underscores the importance of the HA-NA functional 

balance in shaping the evolution of IAV surface proteins. Moreover, these findings highlight the 

need to consider effects of NA inhibitors on HA fitness, and vice versa, on virus evolution and 

therefore drug resistance. 
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Chapter II: Synonymous mutations at the beginning of the influenza A virus hemagglutinin 

gene impact experimental fitness 

This work has been submitted for publication as 
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Abstract 

 

 The fitness effects of synonymous mutations can provide insights into biological and 

evolutionary mechanisms. We analyzed the experimental fitness effects of all single nucleotide 

mutations, including synonymous substitutions, at the beginning of the influenza A virus 

hemagglutinin (HA) gene. Many synonymous substitutions were deleterious in both bulk 

competition and for individually isolated clones. Investigating protein and RNA levels of a 

subset of individually expressed HA variants revealed that multiple biochemical properties 

contribute to the observed experimental fitness effects. Our results indicate that a structural 

element in the HA segment viral RNA (vRNA) may influence fitness. Examination of naturally 

evolved sequences in human hosts indicates a preference for the unfolded state of this structural 

element compared to that found in swine hosts. Our overall results reveal that synonymous 

mutations may have greater fitness consequences than indicated by simple models of sequence 

conservation, and we discuss the implications of this finding for commonly used evolutionary 

tests and analyses. 
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Introduction 

Synonymous mutations change the nucleotide sequence of a gene without changing the 

encoded protein sequence. According to a simple interpretation of the central dogma of 

molecular biology, synonymous mutations do not impact fitness because they do not change 

protein sequences. In this model, all synonymous mutations are neutral or “silent” and the 

evolution of synonymous substitutions is thus determined by mutational processes and genetic 

drift (e.g., the likelihood of different nucleotide substitutions made by replicative polymerases) 

[105]. The availability of a greater number of gene sequences has made it clear that synonymous 

mutations are subject to natural selection [106-109]. 

The signatures of selection acting on synonymous substitutions provide insights into 

evolutionary and biochemical mechanisms. For example, highly expressed genes evolve at a 

slow rate and are preferentially composed of codons that have cognate tRNA at high abundance 

[110-112]. These observations have led to the hypothesis that high expression selects for 

synonymous codons that can be translated efficiently and/or accurately in order to minimize 

fitness costs that scale with expression level [113, 114].  

Despite sequence conservation patterns indicating that natural selection commonly acts 

on synonymous mutations [106], identification of synonymous mutations with measureable 

changes in experimental fitness is rare (e.g., [115]). Many potential explanations could account 

for this apparent discrepancy [116]. These include experimental conditions that do not 

encompass the full breadth of environments encountered in nature [117], non-linear relationships 

between protein function and fitness [118-120], and dramatically different timescales for natural 

selection events to occur compared to the shorter timescales in measuring fitness experimentally 

[116]. For these reasons, when synonymous mutations are made at sites that exhibit strong 
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nucleotide conservation during natural evolution they often do not cause measureable changes in 

experimental fitness [121]. 

Distinct patterns of sequence conservation of synonymous substitutions have been 

observed at the beginning of genes [122, 123]. Rare or non-preferred codons are 

disproportionately observed in the first 90-150 nucleotides of genes. Rare codons at the 

beginning of genes can impact the efficiency of translation initiation and appear to be important 

in regulating the spacing of ribosomes on mRNA [124]. Investigation of the impacts of 

synonymous mutations on GFP expression in bacteria indicated that secondary structure at the 

beginning of the gene has a large impact on the amount of GFP protein expressed [125]. These 

observations motivated us to search for potential experimental fitness effects at the beginning of 

the hemagglutinin (HA) gene of influenza A virus (IAV). 

Because IAV has pandemic potential in the human population [126], a strong interest 

exists in understanding detailed mechanisms of how it can evolve. IAV is a negative-strand RNA 

virus with two main surface proteins, HA and neuraminidase (NA). HA and NA each bind to 

sialic acid but have opposing functions: HA mediates membrane fusion that facilitates viral entry 

[18] while NA cleaves sialic acid on host cells to release newly synthesized virions [127]. HA 

and NA both utilize host machinery for synthesis and trafficking. 

Trafficking of proteins to appropriate cellular compartments is a highly conserved 

process that viruses utilize for propagation in host cells. Signal sequences, located at the N-

terminus of proteins, often serve as molecular addresses for targeting secretory proteins to the 

endoplasmic reticulum (ER) [128-130]. During synthesis of these proteins, which include HA, 

the signal recognition particle (SRP) binds to the signal sequence and mediates co-translational 

trafficking of nascent polypeptide chains to the ER (Fig. 2.1a) [131, 132]. As for many secretory 
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proteins, the signal sequence of HA is cleaved by a host protease and does not form part of the 

mature protein [133-135]. The biochemical mechanisms of HA synthesis are clearly important 

for generating infectious IAV. Yet the sensitivity of IAV infectivity to quantitative changes in 

the efficiency of HA synthesis or the level of HA in viral particles has not been well defined. 

Because the signal sequence is ultimately cleaved off before HA exits the ER, mutations 

introduced into the signal sequence can in principle alter the amount of HA protein generated 

without changing the sequence of the mature HA protein. 

Signal sequences of different proteins often share common biophysical properties. These 

generally include three key features: positively charged amino acids, followed by a hydrophobic 

region, followed by polar amino acids [136, 137]. The signal sequence of HA ranges from 14 to 

17 amino acids in length and contains all three of these features (Fig. 2.1b), but the amino acid 

sequence is generally variable between different HA subtypes (Fig. 2.1c) [138, 139]. Previous 

studies have shown that large deletions in the signal sequence of HA affect protein maturation 

and cellular localization, underscoring this region’s crucial role [140]. However, a systematic 

analysis of the impact of signal sequence mutations on HA synthesis, surface expression, and 

viral function has not been performed.  

Several groups have used deep mutational scanning approaches to study effects of 

mutations on IAV genes, including HA and NA. The Bloom group studied mutational tolerance 

and antigenic evolvability in HA at the amino acid level by calculating the average effect of each 

mutation in a collection of mutants with closely related genetic backgrounds [101, 141, 142]. Wu 

et al. used deep mutational scanning to measure effects of HA single nucleotide mutations on 

viral experimental fitness in order to identify potential targets for vaccine and drug design [143]. 

Both groups used error-prone PCR to perform mutagenesis across the full-length HA protein.  
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Figure 2.1. Function and properties of the signal sequence of HA. (A) Functional illustration. The signal 

recognition particle (SRP) recognizes the signal sequence of nascent HA, initiating the targeting of HA to 

the ER lumen. An ER peptidase cleaves the signal sequence, excluding it from the mature protein that is 

eventually trafficked to the cell surface. (B) Amino acid sequence of the HA signal sequence for 

A/WSN/33 IAV, highlighting the hydrophobic region important for SRP binding and the peptidase cut 

site. (C) Amino acid sequence of the HA signal peptide in different HA subtypes. Consensus sequences 

were generated from 1243 pandemic H1, 1315 non-pandemic H1, 598 H2, 1506 H3, 1585 H5, 1770 H7, 

1168 H9 and 925 H10 sequences retrieved from the Influenza Research Database.  
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It is important to note here that experimental evolution studies investigate the effects of 

mutations in a limited genetic background in a controlled environmental condition. Such studies 

do not perfectly mimic natural evolution where more complex genotypes compete in varying 

environmental conditions and infect different hosts. For these reasons, the conclusions of 

experimental evolution studies should be carefully considered relative to potential distinctions 

with natural evolution. 

In the present study, we used the EMPIRIC (Exceedingly Meticulous and Parallel 

Investigation of Randomized Individual Codons) approach that we previously developed to 

investigate the experimental fitness landscapes of genes [100, 118, 144, 145] to systematically 

investigate the effects of all possible single nucleotide mutations, including all possible 

synonymous mutations, in the signal sequence of HA (Fig. 2.2a). We measured experimental 

fitness which, in our study, represents the replication capacity of each mutant calculated as the 

change in relative mutant frequency before and after bulk competition. The results of our high 

throughput screen indicated that many synonymous mutations cause large experimental fitness 

effects. Using the screen as a guide, we independently analyzed a set of synonymous mutations 

and again observed many large experimental fitness effects. To probe the physical basis of the 

experimental fitness effects, we performed biochemical analyses, including estimates of vRNA 

and mRNA abundance, and efficiency of surface protein expression on a panel of point mutants. 

 

Results 

Quantification of experimental fitness effects of mutations in the HA signal sequence 

We systematically generated and measured the relative effects of each single nucleotide 

mutation to the HA signal sequence in the A/WSN/33 H1N1 strain (Fig. 2.2). A number of 
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mutations were depleted during virus recovery from plasmid and/or during subsequent virus 

infection in the bulk competition assay to the point where the frequency change due to selection 

could not be accurately determined. While these mutations are likely deleterious, they were 

marked as “not determined” in the heatmap (Fig. 2.2b, Supplementary Fig. 2.1) as the severity of 

defects could not be quantified. Extra stop codons were included at elevated frequency in our 

mutant libraries to facilitate quantification of the depletion of null alleles. Using this approach, 

the experimental fitness effects of mutations were quantified on a scale from null (s = -1) to wild 

type (s = 0).  

Experimental fitness measurements during viral infection were generally reproducible 

with an R2 = 0.76 in replicates of the bulk competitions (Fig. 2.2c). This is the range of 

experimental reproducibility seen in similar studies (R = 0.54 to 0.78) using deep mutational 

scanning to study IAV HA [102, 141, 142]. For further validation, experimental fitness effects 

measured in bulk competition were compared to the experimental fitness effects of a panel of 22 

HA variants, including 14 synonymous substitutions, that were randomly picked and individually 

cloned (Supplementary Table 2.1). For this panel of mutants, plaque size was measured as a 

surrogate of fitness, larger plaques being indicative of higher experimental fitness. A correlation 

(R2 = 0.69) was observed between experimental fitness estimates from bulk competitions and 

plaque size measurements (Fig. 2.2d) indicating that our high-throughput experiments provide a 

generally reproducible readout of mutant effects.  

 

Properties underlying selection on the signal sequence of HA 

We examined potential similarities and distinctions in selection acting on the signal 

sequence in our experiments compared with circulating IAV. The experimental fitness effects  
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Figure 2.2. Experimental fitness effects of mutations in the signal sequence of HA. (A) Systematic 

approach to quantify the impact of all single base mutations in the signal sequence of HA on experimental 

fitness. The HA library of single nucleotide mutants was generated on plasmids that were utilized to 

recover viruses, recovered viruses were passaged in MDCK cells, and next-generation sequencing was 

used to estimate the impacts of each mutant on experimental fitness. (B) Heat map representation of the 

observed impacts of mutations in the HA signal sequence. Synonymous mutations are outlined in green 

and the wild type nucleotide at each position is shown by a green dot. (C) Reproducibility of the 

experimental fitness estimates from experimental repeats of the bulk viral expansion. Synonymous 

mutations are shown as circles, non-synonymous mutations as squares and nonsense mutations as 

triangles (R2 = 0.76, P < 0.0001, from linear regression analysis). (D) Correlation between plaque size of 

a panel of mutants measured in isolation and average experimental fitness estimates in bulk competition 
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(n=3, R2 = 0.69, P < 0.0001, from linear regression analysis). Synonymous mutations are shown as circles 

and non-synonymous mutations are shown as squares.  
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measured in A/WSN/33 were compared to mutant frequency in 4374 sequenced, non-pandemic 

H1N1 isolates from the Influenza Research Database [146, 147] (see Methods for details of 

sequence alignment and filtering). Experimental fitness measurements show a rough trend with 

mutant frequency in sequenced circulating viral isolates (Fig. 2.3a & Supplementary Fig. 2.2). 

The experimental fitness effects of mutations observed at least twice in circulating isolates shows 

a narrower distribution compared to mutations that were not observed in circulating isolates (Fig. 

2.3b). There were no mutations observed in circulating IAV that exhibited null fitness in our 

experiments with A/WSN/33, suggesting that similar biophysical properties may mediate 

selection on the HA signal sequence in our experiments and in circulating IAV. At a finer level 

of resolution, many mutations observed in circulating IAV exhibited either apparent fitness 

benefits or defects in our A/WSN/experiments (Fig. 2.3a), indicating that fitness effects of signal 

sequence mutations may depend on genetic background, or environmental conditions, and/or 

noise in our experimental fitness measurements. 

We investigated how biophysical properties previously associated with signal sequence 

function correlate with observed experimental fitness effects. The hydrophobic region of the 

signal sequence serves as the binding site for the SRP and is essential for SRP-mediated 

targeting of nascent proteins to the ER. The relationship between residue hydrophobicity in the 

hydrophobic (h-) region of the signal sequence, quantified using the Kyte & Doolittle 

hydrophobicity score [148], and virus experimental fitness measured in bulk competition was 

analyzed (Fig. 2.3b). Hydrophobicity score in the h-region explains roughly 30% (R2=0.3) of the 

variation we observed in experimental fitness. This correlation is lower than what we observed 

between experimental replicates, indicating that hydrophobicity alone does not fully explain the 

experimental fitness effects. The most hydrophobic amino acid at positions in the h-region did 
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not always provide the greatest experimental fitness, further suggesting selection on additional 

features. While mutations to slightly polar amino acids were compatible with robust 

experimental fitness at some positions, the most polar (least hydrophobic) amino acids were 

consistently strongly deleterious in our experiments. 

Because net hydrophobicity is known to be important for signal sequence function, 

experimental fitness measurements of mutations that introduced charged residues were analyzed 

and compared to uncharged mutations. Charged residues were highly depleted in recovered virus 

despite their high abundance in the plasmid library (Fig. 2.3c). This observation indicates that 

charged amino acids in the hydrophobic region are strongly deleterious, consistent with the 

sparsity of charged amino acids in this region among sequenced isolates [137].  

Previous studies have indicated that small amino acids are strongly preferred at the -1 and 

-3 sites relative to the peptidase cleavage site [134]. We assessed how amino acid size at these 

positions influenced experimental fitness effects. The molecular weight of residues at the -3 and 

-1 positions relative to the peptidase cleavage site had a significant correlation with experimental 

fitness in bulk competition (Fig. 2.3d, R2=-0.36, P=0.02). We note that the strength of this 

correlation is driven by one large amino acid mutation, A17E, that is strongly deleterious. If 

A17E is removed, the correlation is not statistically significant (Supplementary Fig. 2.3). Two 

other large amino acid mutations, T15K and T15R, were severely depleted in recovered virus; 

although precise quantification of their experimental fitness effects is hindered, the depletion 

suggests that these substitutions are also strongly deleterious. While our observations are 

consistent with the -1, -3 rule of preference for small amino acids at these sites relative to the 

peptidase cut site [133, 134], the molecular weight of amino acids near the peptidase cut site only  
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Figure 2.3. Relating experimental fitness with conservation patterns and biochemical properties. (A) 

Comparing experimental fitness measurements to mutant frequency in sequenced circulating viruses. 

Reported P = 0.003 from linear regression. (B) Correlation between experimental fitness measurements in 

bulk competition and the Kyte-Doolittle hydrophobicity scores for residues in the h-region (P < 0.0001 

calculated by linear regression). (C) Box plot showing the frequency of 119 individual mutants in the 

mutant plasmid library before virus recovery and in recovered virus. Mutant frequency for all variants is 

shown in black and the frequency of charged residues is shown in red. P = 0.01 calculated using the 

Mann-Whitney test. (D) Correlation between experimental fitness effect and amino acid molecular weight 

for residues at position 15 and 17, which correspond to the -3 and -1 positions relative to the peptidase 

cleavage site (R2 = 0.36, P value = 0.02 from linear regression).  
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explains part of the observed variance in experimental fitness effects. Other factors including 

structural context may also impact the experimental fitness effects of mutants in this region. 

 

Experimental fitness effects of synonymous substitutions 

Previous studies have found evidence of biased codon usage indicating that synonymous 

substitutions may be under selection for translation efficiency and accuracy [125, 149-153]. In 

our experiments, synonymous substitutions in the signal sequence exhibit a wide distribution of 

experimental fitness effects (Fig. 2.2), with fitness ranging from wild type-like to strongly 

deleterious. To investigate how selection on synonymous mutations may change with distance 

from the beginning of the gene, we used identical EMPIRIC procedures to quantify the 

experimental fitness effects of mutations at amino acids 32-41 of HA1. This 32-41 region is 

located on the HA stem proximal to the HA2 region involved in membrane fusion and is 

generally conserved in group 1 and 2 HA (Supplementary Fig. 2.4). HA is composed of different 

structural and functional domains that are under varying selection constraints. While the amino 

acid 32-41 region of HA does not fully represent the rest of HA, we use it here only as a 

comparison for measuring experimental fitness effects.  

In the environmental condition of our experiment, synonymous substitutions exhibited an 

elevated mean absolute experimental fitness effect in the signal sequence compared to the 32–41 

amino acid region (Fig. 2.4a), though this trend was not statistically significant (P = 0.07) at the 

95% confidence level. However, non-synonymous mutations exhibited higher mean absolute 

experimental fitness effects in the amino acid 32-41 region than the signal sequence region (P = 

0.001) (Fig. 2.4a). Using the ratio in mean absolute experimental fitness effect between non-

synonymous and synonymous mutations as an estimate of the apparent ratio of selection on the 
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protein sequence to the nucleic acid sequence, the signal sequence’s ratio was significantly lower 

than in the amino acid 32–41 region (Fig. 2.4b, P = 0.003). This difference in experimental 

fitness ratio indicates the presence of stronger selection on the protein sequence in the amino 

acid 32–41 region. Our observations are consistent with a combination of stronger selection on 

the nucleic acid sequence, but weaker selection on the amino acid sequence of the signal 

sequence relative to a nearby region of HA. 

Because of variability in our bulk competitions, we pursued independent experiments on 

individual clones to further investigate the fitness effects of synonymous mutations in the signal 

sequence of HA. Consistent with our observations of fitness defects for many synonymous 

mutations from bulk competition, we also observed that many of the synonymous substitutions in 

our panel of individual mutants exhibited diminished plaque sizes relative to the parental strain 

(Fig. 2.4c&d). Both the bulk competitions and the analyses of individual clones indicate that 

synonymous mutations in the beginning of the HA gene caused measureable defects in 

experimental fitness. 

To further investigate potential differences in the experimental fitness effects of 

synonymous mutations, infection kinetics experiments were performed on four synonymous 

substitutions, L5LCTC, L6LCTC, L6LTTG and L8LCTA picked from the panel of individually cloned 

mutants. Three of these mutants exhibited growth defects in bulk competition (L6LCTC, L6LTTG 

and L8LCTA), while L5LCTC did not exhibit a growth defect in bulk competition (Fig. 2.2). As 

individual mutants, each of these four mutants exhibited right-shifted infection growth kinetics 

relative to wild type virus (Fig. 2.4e&f).  

It is challenging to directly compare the infection kinetics results with the bulk 

competition data and to reconcile differences in results because of distinctions in the inherent  
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Figure 2.4. Synonymous mutations impact experimental fitness in the signal sequence of HA. (A) 

Beeswarm plot comparing the mean of absolute experimental fitness effects of synonymous and non-

synonymous mutations in the signal sequence and in a region of HA encoding amino acids 32–41. The y-

axis represents the magnitude of the experimental fitness effect from wild type (fitness = 0). Error bars 

represent the standard error of the mean and reported P value from multiple comparison analysis test. (B) 

The apparent ratio of selection acting on non-synonymous/synonymous mutations calculated as the ratio 
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between mean absolute experimental fitness effects of non-synonymous and synonymous mutations. 

Error bars are based on propagation of standard errors of the means and reported P value from Student’s 

t-test. (C) Average plaque size measured for a panel of individually cloned synonymous mutations. Error 

bars represent standard error of the mean. (D) Images for plaques of wild type virus and 2 synonymous 

substitutions (L6LCTC and L8LTTG) that were found to have experimental fitness defects. (E) Infection 

kinetics of wild type IAV and four variants carrying synonymous mutations in the signal sequence of HA. 

Titer was determined based on replicate plaque assays (n=2) and the error bars represent the difference 

between the two assays. (F) Comparison of viral titer on a linear scale at t = 12 h during the infection time 

course. P values from multiple comparison analysis test. 
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experimental design. In the EMPIRIC experiments, multiple viral mutants are competing against 

each other, while the infection kinetics experiments follow the expansion of a single viral clone. 

The host cells available for infection over time likely differ in each of the two types of 

experiments. To try to account for these distinctions, we compared EMPIRIC selection 

coefficients with either the viral titer at 12 h or the change in titer between 6 and 24 h from the 

kinetic experiments and observed poor correlations in both cases (Supplementary Fig. 2.5a&b). 

While we were not able to develop a simple and effective comparison between the results of the 

bulk competitions and the kinetics analyses, we noted distinctions in the kinetic behavior of 

specific mutants. For example, the L5LCTC mutant that did not show a growth defect in the bulk 

competition and had a low titer at 12 h but exhibited the most rapid expansion between 6 and 24 

h in the kinetic experiments. 

The discrepancy between the infection kinetics assay and bulk competition 

(Supplementary Fig. 2.5b) could also be due to inherent challenges in measuring experimental 

fitness effects with precision using these techniques. Consistent with our analyses of the 

reproducibility of experimental fitness measurements, it appears that our experiments can 

distinguish overall trends but are not precise enough to discern the effect of individual mutations 

with great confidence. For this reason, we have taken multiple approaches to investigate 

experimental fitness effects, as each approach has caveats. The slowed infection kinetics of three 

individual mutations that were deleterious in the bulk competitions lends evidence that 

synonymous mutations in the signal sequence can cause strong defects in viral expansion. 

To further investigate the kinetic expansion results, a phenomenological 5-parameter 

model of IAV growth kinetics [154] was used to fit the experimental data (see Methods and 

Supplementary Information for details). Sensitivity analysis of the model showed that only two 
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parameters (β and τE) could be reliably estimated (Supplementary Fig. 2.6). The β parameter 

describes the rate of infection of target cells. The τE parameter represents the average duration of 

an eclipse phase, which is the time cells are infected before virus is produced (see Methods and 

Supplementary Fig. 2.6, 2.7 for details). Consistent with the infection kinetics data, L5LCTC, 

L6LCTC, and L8LCTA demonstrated a delayed eclipse phase along with an increased infection 

rate. The L6LTTG mutant demonstrated WT-like kinetics of viral replication in this model (Table 

2.1). 

 

Signal sequence mutations may affect viral RNA structure 

It has been reported previously that the folding free energy of a 42-nucleotide long region 

beginning four nucleotides before the start codon of both bacterial and eukaryotic mRNA affects 

translation initiation efficiency [155, 156]. Additionally, in the influenza virus, packaging signals 

in HA segment vRNA span the 5’ UTR and extend for up to 45 nucleotides in the HA ORF [157, 

158]. Therefore, synonymous mutations in the 5’-end region of the HA segment, which includes 

part of the signal sequence, can be expected to alter HA expression efficiency as well as vRNA 

packaging. To investigate the relationship between possible defects in viral RNA and 

experimental fitness, the folding free energy, ΔG, of secondary structures of both mRNA and 

vRNA in the 5’ region (sense) for all synonymous HA variants was estimated using the 

ViennaRNA software [159] (Supplementary Fig. 2.8a). Local secondary structure of RNA was 

probed by restricting the sequence lengths for folding to fixed windows of several tested sizes: 

24, 36, 42, 54 and 62 nucleotides. Analysis of the correlation between experimental fitness and 

ΔG for different window sizes and positions (Supplementary Fig. 2.8B) showed a statistically 
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significant correlation between experimental fitness and ΔG for a window of size 24 nucleotides 

beginning at nucleotide 6 in vRNA (permutation test, see Methods). 

No significant correlation between the energy ΔG of mRNA structure in the HA signal 

sequence and experimental fitness was observed. Analysis of predicted vRNA structure at 

positions 6–30 revealed a small hairpin at positions 7–23 (Fig. 2.5a). The energy ΔG of mutant 

vRNA in this region has a bimodal distribution, with peaks around -4 kcal/mol (stable hairpin) 

and -1 kcal/mol (hairpin unfolded) (Supplementary Fig. 2.9). Mutant viruses predicted to be 

unstructured in this region exhibited a higher mean experimental fitness compared to viruses 

predicted to have an intact hairpin (Fig. 2.5b). While this trend was not statistically significant (P 

= 0.29), it suggests that less structured vRNA in this window may be beneficial for virus 

replication under our experimental conditions. 

To check for similar findings in sequenced HA of circulating IAV, we evaluated HA 

sequences from the Influenza Research Database [146, 147]. Targeted RNA folding for the 30 nt 

region beginning at position 6 at the 5’ end of HA segment in the vRNA was performed and the 

occurrence of different RNA secondary structures in the region was analyzed for strains isolated 

from either human or swine hosts (Fig. 2.5c). A two-sample Kolmogorov-Smirnov test indicates 

that the distributions of RNA folding energy for human-derived and swine-derived IAV are 

different (P < 0.01). While viruses from both human and swine are bimodal with peaks at ≈-0.5 

kcal/mol and ≈-4 kcal/mol, the human viruses have a higher peak for the unfolded state 

compared to the swine viruses. These observations are consistent with selection favoring the 

folded RNA state in swine hosts relative to human hosts. 

To investigate relationships between RNA structure and function, we analyzed the 

structures formed by the stable RNA state. Nearly 90% of the structures with the energy of ≈-4  
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Figure 2.5. Probing effects of mutations on viral RNA. (A) Illustration of the hairpin at nucleotide 

position 7–23 in the HA vRNA. (B) Comparing experimental fitness of mutations that disrupt the hairpin 

at nucleotide 7–23 to mutations that leave the hairpin intact (P>0.62 calculated using the Mann-Whitney 

test). (C) Frequency distribution of calculated !G for sequenced IAV isolated from either human (top 

panel) [160] or swine (bottom panel) hosts.  
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kcal/mol have similar hairpin folds centered around a 5-nucleotide long loop at nucleotides 13 to 

17 (or 3-nucleotide loop at positions 14 to 16), such as shown in Fig. 2.5a. We extracted the  

sequences of the 5-nucleotide loop from sequences of circulating strains that have the stable 

hairpin, and compared sequence occurrence with experimental fitness values in our bulk 

competition experiment. The sequence variants present in circulating HA all have WT-like 

experimental fitness, while assayed sequences that are not found in the database all have an 

experimental fitness defect (Supplementary Table 2.2). This observation indicates that EMPIRIC 

fitness measurements for this region are in agreement with trends seen in sequenced natural 

isolates. Additionally, it implies that the hairpin/loop may be important for viral fitness under 

specific conditions (e.g., when infecting a swine host), similar to the previously reported 

packaging interactions between vRNA hairpins of IAV segments 2 and 8 that encode the RNA 

polymerase subunit PB1 and non-structural protein (NS), respectively [161].   

To assess the effects of signal sequence mutations on vRNA packaging, RT-qPCR was 

used to measure HA vRNA abundance for a panel of individual cell-free mutant viruses. HA 

vRNA levels were normalized to NA vRNA and used to quantify the packaging efficiency. No 

strong correlation was found between the efficiency of packaging HA vRNA into particles and 

EMPIRIC fitness (Supplementary Fig. 2.10). This lack of correlation reveals that viral expansion 

under our experimental conditions may not be tightly coupled to packaging efficiency, or that we 

are unable to capture that relationship at our current experimental precision. However, all of the 

signal sequence mutations analyzed reduced the efficiency of HA vRNA packaging into 

particles, indicating that the wild type signal sequences facilitate highly efficient packaging. 
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Signal sequence mutations influence HA protein abundance in viral particles 

Because the HA signal sequence is cleaved and excluded from the mature protein, 

mutations in this region are likely to affect HA synthesis efficiency and expression rather than 

the ultimate function of the HA protein. ELISA was used to quantify HA protein expression for a 

panel of individual mutations to examine how signal sequence mutations impact HA protein 

abundance in cell-free viral particles (Fig. 2.6a, see Methods). All of the studied mutations 

precede the peptidase cleavage site located at amino acid 17, so mutations would result in 

identical mature HA protein. Optimal virus experimental fitness, measured in bulk EMPIRIC 

competition, was supported by a narrow range of HA expression – either too much or too little 

HA was associated with experimental fitness defects (Fig. 2.6b). The relationship between HA 

abundance and viral experimental fitness was nonlinear with R2 = 0.4 and P = 0.007, and appears 

to be under stabilizing selection. Of note, we excluded L8LTTG from the fit because its expression 

level is far removed from all other points. Nevertheless, the relationship is still statistically 

significant even if L8LTTG is included (P < 0.05). 

 

Changes in HA synthesis efficiency partly explain experimental fitness effects 

To measure effects of signal sequence mutations on HA synthesis in the absence of other 

viral RNA segments, HA was transiently expressed in 293T cells and HA synthesis quantified by 

flow cytometry (Fig. 2.7a, see Methods for details). Non-synonymous substitutions had lower 

HA expression levels compared to the wild type, while synonymous mutations either reduced or 

increased HA expression. Additionally, a statistically significant correlation was found between 

HA abundance and experimental fitness effects measured in bulk (Fig. 2.7b, P = 0.0002).  
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Figure 2.6. Relationship between experimental fitness and relative HA protein in cell-free viruses. (A) 

Experimental setup: viral particles were adhered to wells in plastic plates and HA abundance was 

quantified by ELISA. (B) Comparison of mutant impact on experimental fitness and HA abundance. 

Synonymous mutations are shown as circles and amino acid changing mutations as squares. The 

synonymous mutation of L8L (TTG), shown in grey, is excluded from the fit. R2 = 0.4 and P value = 

0.007 calculated by quadratic nonlinear fit.  
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To further discern whether experimental fitness effects arise from inherent defects in HA 

synthesis or from HA expression on virus particles, HA expression in 293T cells and HA  

abundance in viruses was compared. A significant correlation was found between HA synthesis 

and HA expression in virus particles (Fig. 2.7c, P < 0.0001). However, four synonymous  

mutations (L6LCTC, V7VGTG L8LTTG and A11AGCG) deviated far from the trend. The frequency 

of these variants in sequenced non-pandemic H1N1 isolates was analyzed and despite being 

synonymous substitutions, these variants are rare in circulating viruses. This observation 

suggests the importance of the nucleotide sequence in this region for virus function. When 

compared to wild type, these variants had wild type-like or reduced levels of HA expression in 

293T cells, but had up to three times as much HA per plaque forming unit (PFU). These 

observations are consistent with an increased ratio of non-infectious to infectious particles, 

though further confirmatory studies would be required. 

 

Multiple linear regression analysis of experimental fitness effects 

To identify measurable factors affecting bulk experimental fitness of IAV mutants, 

multiple linear regression analysis was performed. As discussed above, the viral experimental 

fitness determined in the EMPIRIC experiments is correlated with various metrics of HA in 

vitro, using either a linear or quadratic model, see Figures 2.6b and 2.7b correspondingly. To 

assess whether additional factors explain the observed variance of experimental fitness, a linear 

regression model was used with HA synthesis in mammalian cells, HA protein abundance in 

cell-free viral particles, and mRNA folding energy !G as explanatory variables. The 

combination of HA synthesis in mammalian cells and HA protein abundance in cell-free viral 

particles improved the prediction of experimental fitness, R2 = 0.68; ANOVA comparison of the  
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Figure 2.7. Relationship between experimental fitness and HA protein expression. (A) HA was expressed 

in 293T cells and HA protein expression was measured by flow cytometry. (B) Comparing experimental 

fitness to HA expression in 293T cells. P value calculated from linear regression. (C) Comparison of HA 

protein abundance in cell free viruses to HA expression in 293T cells (reported P value from linear 

regression). The points in grey exhibit the largest discrepancy between observed abundance in viruses and 

293T cells and are omitted from the fit.   
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models yielding P = 0.014. The best prediction was achieved by a linear model combining all 

three factors, HA protein synthesis, HA abundance in released virus, and mRNA ΔG, yielding R2  

= 0.752, and marginally significant P = 0.053 for ANOVA comparison of the 2 vs. 3 factor 

models. The complete set of P-values of nested linear regression models is presented in  

Supplementary Table 2.3. The folding energy of mRNA was defined as the free energy !G of the 

viral mRNA segment consisting of nucleotides -4 to 37 relative to the HA start codon, as 

described in [140]. Adding a categorical variable representing DNA library comprising a 

particular mutant did not improve the fit, suggesting the measurements were not characterized by 

batch effect. Likewise, inclusion of additional metrics such as HA vRNA abundance normalized 

to NA viral RNA, vRNA !G, and position of the mutation did not improve the predictive power 

of the multiple linear regression model for experimental fitness (data not shown). However, the 

effectiveness of additional predictors in the multiple regression was also limited by the overall 

number of available data points. 

These results suggest that the experimental fitness of synonymous mutants in IAV HA is 

affected by multiple factors including RNA secondary structure, protein synthesis and surface 

expression as well as functional interactions between the viral and host components. 

 

Discussion 

Our bulk competitions indicate increased selection on synonymous mutations in the 

signal sequence relative to a nearby region of the HA gene. Consistent with this idea, many 

individual synonymous mutations in this region caused defects in viral infectivity when analyzed 

in isolation. The finding that synonymous mutations in the signal sequence affect viral fitness 

agrees with previous studies that showed that synonymous mutations in the beginning of genes 
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can have large impacts on translation efficiency [125, 149, 156]. Biochemical analyses of a panel 

of synonymous mutations revealed that variants with reduced HA expression had lower 

experimental fitness, suggesting selection on the efficiency of protein synthesis. Signal sequence 

mutations also appeared to impact HA protein levels in viruses and during expression in the 

absence of other IAV genes in 293T cells. Our results are in agreement with selection against 

reduced HA expression that may in turn impact the ratio of infectious to non-infectious particles 

leading to apparent stabilizing selection on HA abundance per infectious particle. Yet the 

impacts of synonymous substitutions on translation efficiency appear to only partly explain the 

experimental fitness effects that we measured. 

Changes in vRNA structure also explain some of the experimental fitness effects of 

synonymous substitutions. We found that change in RNA folding energy in a 24 nt window at 

position 6 is correlated with experimental fitness. Our analyses also indicate that the hairpin loop 

at position 7–23 may have structural significance as mutations that disrupted this hairpin loop 

had higher average experimental fitness in our experiments compared to mutations that left the 

hairpin loop intact. Intriguingly, clustering of HA sequences from circulating IAV based on the 

existence of the hairpin loop revealed correlations with the host (swine versus human), in line 

with earlier reports of lineage specificity of RNA structure in IAV segments [162-164]. This 

variability in structural features across different IAV strains and lineages may be responsible for 

the lack of conserved secondary structures in IAV vRNA, as proposed by previous genome wide 

computational analysis [165].  

The panel of individual mutations analyzed experimentally caused a reduction in the 

levels of HA vRNA in virus particles compared to the wild type. This observation further 

supports the importance of the 5’ UTR in packaging of functional IAV virus [157, 158]. Features 
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beyond hairpin or unfolded conformations in this region may also be important for experimental 

fitness. While future studies will be required to understand these details further, we note the 

presence of binding interactions similar to previously reported hairpin interactions between 

vRNA of segments PB1 and NS [161]. While the correlation between mRNA folding free energy 

and experimental fitness was not statistically significant, single nucleotide synonymous 

mutations in the signal sequence may introduce subtle structural changes that are poorly resolved 

by mRNA folding models and also poorly captured by a thermodynamic metric such as ΔG. 

The effects of non-synonymous mutations on virus experimental fitness are generally 

consistent with the previously established biochemical properties of the signal sequence. Our 

results support the importance of hydrophobicity in the signal sequence [130, 137], and the 

importance of small amino acids near the protease cut site [133, 134]. Amino acid changes that 

introduce charged residues in the hydrophobic region or bulky residues near the protease cut site 

showed deleterious effects, indicative of structural and functional constraints on the amino acid 

sequence to ensure binding by the SRP. However, when compared to a region outside the signal 

sequence (amino acids 32–41), non-synonymous mutations have higher mean absolute 

experimental fitness effect suggesting that selection at the amino acid level is weaker in the 

signal sequence relative to this nearby region. This pattern agrees with previous reports that the 

amino acid sequence of the signal peptide of secretory proteins evolves up to five times faster 

than other regions [166, 167]. 

The biochemical underpinnings of selection on the signal sequence appear complex. 

Interestingly, we find measurable experimental fitness effects of synonymous mutations in the 

nucleotides encoding the HA signal peptide— a finding supported by the analysis of sequences 

from natural isolates as well. Our results demonstrate that selection acting on the signal sequence 
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is due to multiple biochemical pressures, including constraints on RNA secondary structure, 

RNA packaging efficiency, protein synthesis and trafficking. This type of selection produces a 

pattern of sequence evolution that is not readily identified by simple models of conservation. 

Specifically, our findings indicate that patterns of conservation in natural populations only reveal 

a fraction, perhaps only the tip of the iceberg, of the impacts that synonymous mutations can 

have on fitness. This result holds important implications for commonly used dN/dS (i.e., the ratio 

of non-synonymous to synonymous divergence) based statistics used for analyzing the selective 

pressures facing populations. Namely, the fundamental assumption of these approaches is that 

synonymous mutations are neutral with respect to fitness, and thus dS represents the rate of 

fixation owing to genetic drift alone (which is simply equal to the mutation rate). dS is then 

compared with dN, where a ratio larger than 1 is interpreted as evidence of positive selection on 

non-synonymous mutations. However, if synonymous mutations are indeed non-neutral as these 

results suggest, the rate of fixation of synonymous sites is no longer an appropriate proxy for 

neutrality, potentially resulting in dN/dS ratios that are greatly misleading. Thus, future 

experimental studies aimed at better defining the impacts of synonymous mutations on pathogen 

fitness and correlations with RNA structure will be of interest, in particular in pathogens with 

error-prone polymerases. 

 

Materials and methods 

Engineering plasmid libraries 

Systematic single nucleotide mutant libraries of the signal sequence of HA were generated in 

reverse engineered IAV strain WSN/33 as previously described [100, 144]. Briefly, nucleotides 

encoding amino acid 1 to 1650 of HA were transferred to the pRNDM plasmid [144] and 
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mutations were introduced using a cassette ligation strategy. In addition to single nucleotide 

mutants, we included additional stop codons at an elevated abundance as an internal control in 

anticipation of potentially strong selection that might otherwise be difficult to detect. Mutant 

libraries were transferred to the pHW2000 plasmid [168] using an engineered destination vector 

and Gibson Assembly (New England Biolabs) as described [169]. 

 

Cell culture and viral recovery 

MDCK and 293T cells were used for viral recovery and passaging as previously described [170]. 

Viruses were generated using the pHW2000-based 8 plasmid system using plasmids and protocol 

developed by Webster and colleagues [168]. Briefly, 1 µg of HA plasmid library and 1 µg of 

each plasmid encoding the rest of the A/WSN/33 genome, were transfected in a co-culture of 

MDCK and 293T cells using TransIT LT1 reagent (Mirus, Madison, WI). Cell growth media 

was changed to serum-free media 6 h post-transfection. TPCK trypsin (Sigma-Aldrich, St. Louis, 

MO) was added to a final concentration of 0.5 µg/mL 30 h post-transfection. At 72 h post-

transfection virus-containing supernatant was harvested, centrifuged at 300g for 15 minutes and 

stored at -80 °C. Viral titer of the recovered viruses was quantified by plaque assay as previously 

described [170]. Briefly, 10-fold serial dilutions of virus-containing supernatant were added to 

confluent MDCK cells and allowed to bind for 1 h at 37 °C. Unbound viruses were washed off 

with PBS and infected cells were overlaid with 0.5% agar in DMEM and incubated at 37 °C. 

Plaques were immunostained with antibody against IAV NP and visually counted 48 h after 

infection. 
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Bulk competition experiments 

Competition experiments were conducted as previously described [170]. Briefly, MDCK cells 

were plated at 106 cells per well in 6-well plates the day before infection. Cells were then washed 

with PBS followed by cDMEM Dulbecco's modified Eagle's medium, 100 U/mL penicillin, 100 

µg/mL streptomycin, and 7.5% bovine serum albumin. Recovered viruses were diluted in 

influenza virus growth medium (cDMEM/ BSA with 1 µg/mL TPCK trypsin) and infections 

were performed in triplicates at a multiplicity of infection of 0.01. Cells were incubated with 

virus for 1 h at 37°C. Unbound virus was washed off twice with PBS. Infected cells were grown 

in influenza virus growth media at 37 °C. Virus-containing supernatant was collected 48 h post-

infection and stored at -80 °C. 

 

Quantification of mutant abundances 

Mutant abundance was quantified as previously described [170]. Briefly, virus-containing 

supernatant was treated with DNase (New England BioLabs, Ipswich, MA) for 1 h at 37 °C for 

degradation of plasmid DNA. Influenza viral RNA was extracted using the QIAamp Viral RNA 

minikit (Qiagen, Germantown, MD). cDNA was generated using HA-specific RT primers and 

SuperscriptIII (Life Technologies, Beverly, MA). Sample processing for sequencing was 

performed as previously described [144]. Briefly, PCR was used to introduce cut sites for 

ligation of sample-specific adapters. Adapter-ligated samples were quantified, pooled and 

submitted for analysis of mutant abundance by Illumina single read 36-bp sequencing on a 

Genome Analyzer II. Reads with greater than 99.5% confidence were analyzed. Relative mutant 

abundance was calculated as log2(
!"#$%#

&'
). Analyzing changes in mutant frequency between the 

plasmid library and recovered viral population provided an estimate of selection during viral 
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recovery. Experimental fitness effect in bulk competition was calculated as the difference in 

relative mutant abundance before and after competition.  

 

Growth analyses of individual mutants 

Twenty-two individual mutants (Supplementary Table 2.1) were cloned and recovered as 

described for mutant libraries. The viral titer for each variant was determined by plaque assay. 

Images of plaques were acquired using a Nikon SMZ1500 microscope. For each mutant, we used 

the NIS Elements-BR Analysis program to measure the diameter of 10–20 randomly selected 

plaques. The average plaque size for each mutant was calculated and utilized as an estimate of 

the growth rate. Viral infection kinetics for a subset of mutants were determined by infecting 

MDCK cells at a multiplicity of infection of 0.01, as described earlier, and collecting virus-

containing supernatant at 6, 12, 48 and 72 h post infection. Viral titer analyzed by plaque assay 

was used to measure viral amplification over time in these experiments. 

 

Investigating the relationship between vRNA/mRNA structural variation and observed 

experimental fitness effects of synonymous substitutions 

Predicted Minimum Free Energy (MFE) of RNA secondary structure was used to test the 

connection between observed synonymous experimental fitness effects and local structural 

variation in the mRNA/vRNA of mutated HA segments. MFE was calculated for the 

synonymous HA mutations in a window of size W, sliding across the first 80 nt (30 nt UTR and 

50 nt CDS) of the HA mRNA/vRNA sequence. The Pearson correlation coefficient R was used 

to quantify the relationship between calculated MFE values and measured experimental fitness 

effects. To assess the statistical significance of this correlation, a random permutation test was 
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used, permuting the energy !G and experimental fitness for each window, window size and 

position (Supplementary Fig. 2.8). Regions of mRNA/vRNA demonstrating significant (P ≤ 

0.05) correlation between experimental fitness and MFE were subjected to additional criteria: (1) 

we set a lower limit of 10 for the number of measured experimental fitness values per folding 

window, as the number varied with size and starting position of the window (2) standard 

deviation of predicted MFE values per folding window was limited from below (σ≥1), to ensure 

sufficient structural variation in the window. Biological relevance of the regions with the 

significant correlation and both additional criteria satisfied was further investigated. The 

described analysis was performed independently for mRNA and vRNA sequences, with window 

sizes W (W=24,36,42,54,62 nt). As described by [125], we used a zero-based numbering of 

nucleotides in the mRNA and vRNA. The RNAfold program from the ViennaRNA 2 software 

package [159] was used for RNA folding with the default settings applied. 

 

Alignment of naturally occurring HA sequences 

We downloaded 4452 coding sequences (CDS) of HA segment from the NIAID Influenza 

Research Database (IRD) [147] using only H1N1 strains and excluding overrepresented 

pandemic H1N1 from the year 2009. HA sequences of sufficient length (> 50 nt) were aligned 

using TranslatorX [139], which aligns sequences of translated amino acids first and then 

translates back the amino acids using initial codons. The multiple sequence alignment was 

further filtered in order to eliminate HA sequences with insertions and deletions in the first 100 

nt near the 5’ end, resulting in 4374 HA sequences. 
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Analysis of structural variation of mRNA/vRNA in the naturally occurred HA variants 

We focused on nucleotides 6 to 30 of the sequences retrieved from the IRD, a region that appears 

biologically relevant according to our experimental and statistical analysis of WSN/33 H1N1 

strain. To test if the predicted hairpin was still supported by the naturally evolved sequences we 

folded a wider region of vRNA 0-36 nt, while restricting the size of secondary structure to 24 nt. 

 

The RNAfold program from the ViennaRNA 2 software package was used for RNA folding with 

the maxBPspan parameter set to 24 nt and otherwise default settings applied otherwise. All 

statistical testing and visualization was performed using custom Python scripts, available at 

https://github.com/sergpolly/EMPIRIC-HA and upon request. 

 

Measuring HA protein abundance in viral particles 

Indirect enzyme-linked immunosorbent assay (ELISA) was used to quantify HA abundance in 

cell free viral samples. Mutations L9LTTG, L9LCTA, A11AGCT and V13VGTC were added to the 

above panel for analysis. Recovered viruses were diluted in coating buffer (3.03 g Na2CO3; 6 g 

NaHCO3; 1 L distilled water; pH 9.6; sterile filtered) and 104 plaque-forming units per well were 

incubated in 96-well MaxiSorp plates overnight at 4 °C (Sigma-Aldrich, St. Louis, MO). 

Unbound virus was removed and wells were blocked with 5% BSA in PBS for 1 h. Primary 

antibody, influenza A virus H1N1 HA antibody (Genetex, Irvine, CA. Cat.no GTX 127357), was 

added and incubated on a rocker at room temperature for 2 h. Wells were washed and incubated 

with sheep anti-mouse IgG HRP-conjugated secondary antibody (General Electric, UK Limited) 

for 1 h at room temperature. Wells were washed again and HRP substrate (ThermoFisher 

Scientific, Waltham, MA) was added to wells and incubated in the dark at room temperature for 
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30 minutes. 2 M phosphoric acid was added to stop the reaction. Absorbance was measured at 

450 nm on a SpectraMax PLUS plate reader (Molecular Devices, Sunnyvale CA). For each viral 

stock, three ELISA replicates were performed. 

 

Measuring HA expression in mammalian cells 

In order to measure HA expression, the above panel of HA variants was cloned into the JB991 

plasmid, kindly provided by J. Bloom (Fred Hutchinson Cancer Research Center, Seattle), that 

has a GFP reporter, an ampicillin resistance gene, and a CMV promoter. These constructs were 

transiently expressed in 293T. Cells were washed and re-suspended in isotonic buffer (15 mM 

MOPS, 145 mM NaCl, 2.7 mM KCl, 4 mM CaCl2 pH 7.4. 2% heat-inactivated FBS added 

immediately before use). HA primary antibody (Genetex, Irvine, CA. Cat. no GTX 127357) was 

added to cells and incubated for 1 h at room temperature. Excess antibody was washed off twice 

with isotonic buffer. Alexa Fluor 647 goat anti-rabbit IgG secondary antibody (ThermoFisher 

Scientific, Waltham, MA) was added and incubated at room temperature for 1 h. Cells were 

washed, re-suspended in isotonic buffer and analyzed on a BD FACSCalibur. Data analysis was 

conducted using the FlowJo data analysis software package (Ashland, OR). 

 

Quantification of vRNA levels 

To measure effects of signal sequence mutations on viral RNA, virus-containing supernatant was 

treated with DNase for 1 h at 37 °C. Total viral RNA was extracted for each mutant variant using 

the QIAamp Viral RNA minikit (Qiagen, Germantown, MD). In separate reactions, cDNA was 

generated using HA- and NA-specific RT primers and Superscript III (Life Technologies, 

Beverly, MA). This cDNA was then used as template in qPCR performed using SYBR Green 
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and HA- and NA-specific PCR primers (ThermoFisher Scientific, Waltham, MA) on an 

Eppendorf MasterCycler RealPlex machine (Eppendorf). Relative HA vRNA abundance was 

calculated using the efficiency-corrected approach developed by Pfaffl [171] and normalized to 

NA vRNA. 

 

Modeling of the growth parameters of individual mutants 

We used a multi-compartment ordinary differential equation (ODE) model [154, 172] to 

compare viral yield kinetics of silent HA mutants. In the model, initial infection )*+,(0) spreads 

in a population of / susceptible target cells (0), and infects cells at a rate 1)*+,(2). Infected 

cells spend on average 34 time in an eclipse phase (5) and then, upon switching into infectious 

mode (6), start producing virus at a rate 7 for average duration of 38. Newly generated virus 

contributes to the total viral pool )*+,(2) that supports the spread of infection, and also degrades 

at a rate 9. We exclusively considered infectious particles (PFU) in this model, neglecting 

):;<(2) (for which we have no data) in the ODE system (Eq. 1 from [154]) and fit the 

experimental data by minimizing the log-scaled sum of squared residuals (SSR) between 

experimental measurements and simulated ones for a set of model parameters = =

(1, 34, 38, 7, 9):  

@@A(=) = logEF)G − logEF)*+,(2G, =)
I

JKLM

GNE

, 

where OPQR is the number of PFU measurements per mutant and )G are values of PFU measured 

at 2G =6, 12, 24, 48, 72 h. The number of compartments is fixed in our simulations S4 = S8 =

20. The size of initial target cell population was / = 10
V, with MOI= 10

WX. Supplementary 
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Figure 2.4 shows example of the viral growth measurements and the model fit with optimal 

parameters. Following Paradis et al. [154], the odeint function from scipy was used to solve the 

ODE system and the emcee python module was used to perform Markov Chain Monte Carlo 

(MCMC) simulations to extract the probability distribution of the model parameters. Initially we 

found an optimal set of parameters = = (1, 34, 38, 7, 9) for each mutant and then performed 

MCMC simulation using 100 walkers for 1000 steps. Upon convergence, data from step 600 and 

beyond was used to estimate the probability distribution, see Supplementary Figure 2.7. In order 

to assess the difference between estimated distributions, A and B, we used 7-values derived from 

a two-sample Y-test, Z

Y =
[< − [\

]<
I
+ ]\

I
, 

where for a given parameter and mutant, [ is the mean of the distribution and ] is its standard 

deviation. We used logEF of the 1 infection rate parameter for placing confidence limits on the 

estimated model parameters. 
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Tables 

Table 2.1. Viral growth kinetics parameters estimated for wild type and 4 silent HA mutants, 

described by rate of infection of target cells ", and duration of eclipse phase τE. Median values 

and 95% bootstrap confidence intervals (BCI) are shown.  

 Log10 ",Z[95% BCI] 34, [95% BCI] 

WT 

L5LCTC 

L6LCTC 

L6LTTG 

L8LCTA 

-6.28, [-6.50 -6.05] 

-4.97, [-5.26 -4.69] 

-4.85, [-5.10 -4.58] 

-6.16, [-6.40 -5.87] 

-5.11, [-5.30 -4.92] 

6.16, [5.82 7.64] 

20.8, [19.0 22.3] 

18.8, [17.1 20.0] 

8.82, [7.52 10.9] 

23.1, [22.0 24.0] 
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Supplementary Figure 1. Box plot showing the frequency of undetermined variants in the plasmid 
library and in recovered virus (n=35).
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Supplementary Figure 2. Comparing absolute experimental fitness effects with mutant frequency in
sequenced circulating viruses.
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p value = 0.45

Supplementary Figure 3. Relationship between measured experimental fitness effects and 
amino acid molecular weight at positions -3 and -1 relative to the peptidase cleavage site 
excluding the mutation A17E.
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Supplementary Figure 4. Sequence conservation for the amino acid 32–41 region in different 
HA subtypes.

TVDTILEKNV
....V.....
....V.....
....V.....
I....TNDQI
Q....M....
K...LT.RGI
....LT.TNV
I.K.LTNEQE



! 64!

 

 
  

WT
 

 
 

Fi
tn

es
s 

in
 b

ul
k 

co
m

pe
tit

io
n

L6LTTG

L5LCTC

L8LCTA

L6LCTC

0

-1
0 20000 40000 60000

Titer at 12 hpi (PFU/ml)

Rate of increase in titer (PFU/ml/h)
0 20000 40000 60000 80000

-0.5

A)

B)

Supplementary Figure 5.  Comparing mutant fitness in bulk competition and replication kinetics
of individual mutants in isolation. (A) Comparing mutant fitness in bulk competition and viral 
titer at 12 hpi (pfu/ml) from replication kinetics assay of individual mutant viruses. 
(B) Comparing mutant fitness in bulk competition and the rate of increase in titer (pfu/ml/h) of 
individual mutants.
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Supplementary Figure 7. Distributions of the kinetic model parameters β, τE, τI, p ,c estimated for the L8LCTA 

mutant using MCMC simulations of the ODE kinetic model of IAV infection. The MCMC simulation samples the
 parameter space, generating an estimate of the probability distribution for the parameters that minimize 
SSR(Θ = (β, τE, τI, p ,c)). The plots on the diagonal represent the probability distributions of the five 
individual parameters (β, τE, τI, p ,c). Qualitatively, the distributions of the parameters β and τE  (rate of 
infection and duration of the eclipse phase, respectively) exhibit a sharp response in the model fit and were
 selected. The quality of model fit was much less sensitive to the changes of the other three parameters. The 
off-diagonal panels represent the joint parameter distributions for pairs of parameters, with darker shades
 of blue corresponding to a higher probability density.
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Supplementary Figure 9. Comparing experimental fitness and RNA folding free energy ΔG. vRNA
 was folded at positions 6-30.
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Supplementary Figure 10. Relationship between changes in HA vRNA levels normalized to NA
(WT = 1) and experimental fitness measured in bulk competition.
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Mutation Codon 
K2K 
A3E 
A3T 
K4R 
L5L 
L5L 
L6L 
L6L 
L6L 
V7V 
L8L 
L8L 

Y10N 
A11A 
A11A 
A11S 
A14A 
T15I 
T15T 
D16H 
A17A 
A17E 

AAA 
GAA 
ACA 
AGA 
CTC 
CTT 
CTC 
CTT 
TTG 
GTG 
CTA 
TTG 
AAT 
GCC 
GCG 
TCA 
GCC 
ATA 
ACT 
CAT 
GCG 
GAA 

Supplementary Table 1. Panel of mutations analyzed in isolation. 
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Loop EMPIRIC fitness Count in fludb 
AUGAC 
ACGAC 
AUUAC 
AGGAC 
AAGAC 
AUGAG 
AUGAA 
AUAAC 

(wt)0.00 
0.22 

ND 
0.31 
-0.11 
-0.55 
0.07 
-0.27 

366 
7 
3 
1 
0 
0 
1 
0 

Supplementary Table 2. Comparison of the 5nt inner loops naturally occurring in HA segment of H1N1 
strains with the mutants evaluated in EMPIRIC. ND implies that the loop sequence is absent/non-
synonymous in the EMPIRIC scan. 
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Model ANOVA 
P-value 

R2 

s ~HAexpr 
s~HAvir 
s~vRNAratio 
s~'GmRNA 
s~'GvRNA 
 
s~HAexpr + HAvirus 
s~HAexpr + 'GmRNA 
s~HAexpr + 'GvRNA 
s~HAexpr + vRNAratio 
 
s~HAexpr + HAvirus + 'GmRNA 
s~HAexpr + HAvirus + 'GvRNA 
s~HAexpr + HAvirus + vRNAratio 

 
 
 
 
 
 

0.014 
0.104 
0.890 
0.574 

 
0.053 
0.700 
0.787 

0.528 
0.136 
0.014 
0.061 
0.017 

 
0.680 
0.602 
0.529 
0.537 

 
0.752 
0.683 
0.681 

Supplementary Table 3. Two-way ANOVA comparison of multiple regression models linking fitness 
effects s to possible explanatory variables: HA protein abundance in viral particles (HAvir), HA expression 
in mammalian cells (HAexpr), vRNA HA/NA ratio (vRNAratio), and folding free energies 'G of 
nucleotides -4 to 37 relative to start codon, of HA vRNA and mRNA ('GvRNA and 'GmRNA, 
respectively). Among the linear regression models with a single explanatory variable, HA expression in 
mammalian cells was the best predictor of fitness (R2=0.528). ANOVA P-values for nested, pairwise 
comparisons of models with two or three explanatory variables are shown, comparing the best model 
using n explanatory variables to all models including n-1 variables, n=2,3. Best models are highlighted in 
bold. 
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Chapter III: Modulating influenza neuraminidase function influences the fitness landscape 

of hemagglutinin 

 

This manuscript is currently under preparation for submission as 

 

Aneth S. Canale, Troy W. Whitfield, Daniel R. Caffrey, Wayne A. Marasco, Celia A. Schiffer, 

Timothy F. Kowalik, Jeffrey D. Jensen, Robert W. Finberg, Konstantin B. Zeldovich, Jennifer P. 

Wang#, and Daniel N. A. Bolon#. “Modulating influenza neuraminidase function influences the 

fitness landscape of hemagglutinin”. 
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Abstract 

Influenza A virus is an important pathogen that causes hundreds of thousands of infections 

annually and continues to pose a great threat to global public health. The interaction of influenza 

A virus with the host receptors is mediated by the viral proteins hemagglutinin (HA) and 

neuraminidase (NA). HA recognizes and binds to sialic acid to initiate infection. NA recognizes 

and cleaves sialic acid interactions to prevent virus aggregation at the cell surface and release 

newly synthesized virus. Since HA and NA interact with the same molecule on the host cell 

surface but have opposing effects, a balance in receptor binding and receptor destroying 

activities of HA and NA is critical for efficient virus replication. This functional balance has 

been implicated in cross-species transmission of IAV, yet the molecular mechanism remains 

unclear. In the present study, we used the Extremely Methodological and Parallel Investigation 

of Randomized Individual Codons (EMPIRIC) approach to systematically investigate how 

changes in NA activity influence the fitness landscape of HA. We observed that inhibiting NA 

function by mutation did not rescue mutant HA. However, using the inhibitor oseltamivir 

enabled the rescue of HA mutations that were deleterious under wild type levels of NA function. 

Identifying oseltamivir-responsive HA mutations highlights the role of the HA-NA functional 

balance in the development of resistance to NA inhibitors. 
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Introduction 

Influenza viruses are negative-sense, single-stranded RNA viruses that belong to the 

Orthomyxoviridae family. This family of viruses is composed of three main genera, influenza A, 

influenza B, and influenza C [9]. Most human influenza infections are caused by influenza A 

virus (IAV) [26]. IAV has two main surface glycoproteins – hemagglutinin (HA) and 

neuraminidase (NA) that have counteracting roles in the virus cycle [18, 19]. During infection, 

HA of human IAV preferentially recognizes and binds to alpha 2,6-linked sialic acid on host cell 

glycans, while avian IAV preferentially binds to alpha 2,3-linked sialic acid [173]. Following the 

replication of the viral genomic RNA and packaging of newly synthesized viral proteins, NA 

cleaves sialic acid interactions to release nascent virus. The differences in recognition and 

binding patterns between HA and sialic acid on host receptors and the corresponding receptor 

cleavage by NA form the basis of host-specificity in IAV infections. Because HA and NA 

recognize the same molecule but have opposing functions, balanced receptor-binding strength by 

HA and receptor-destroying activity by NA is essential for optimal viral replication (Fig. 3.1a). 

Eighteen HA and 11 NA subtypes have been identified to date [13, 26]. Without any constraints, 

198 HA-NA combinations are expected to circulate in natural influenza. However, only a 

fraction of these subtypes has been isolated thus far. Reassortment studies conducted in the 

laboratory help to explain this observation [174, 175]. These studies showed that not all HA-NA 

combinations result in viable viruses. Kaverin et al. showed that combining a human H1N1 

variant with different mammalian and avian viruses resulted in viruses with a wide array of 

infectivity. For instance, reassortants with avian HAs (H3, H4, H10, and H13) paired with 

human NA resulted in viruses that replicated poorly in embryonated chicken eggs, suggesting 

mismatch in HA and NA function [176]. These observations indicate that a balance in the levels 
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of HA and NA function is essential for viral infectivity, and is the determining factor in the 

emergence of new HA and NA combinations in circulating viruses. However, the functional 

constraints underlying genomic reassortment in IAV are poorly understood. 

Other studies have shown that matching levels of receptor binding and receptor 

destroying activities of HA and NA are critical for productive infection by IAV. By manipulating 

NA properties, studies have shown that truncating the length of the NA stalk results in reduced 

NA function ultimately leading to viral attenuation in embryonated eggs [63, 177]. However, 

attenuated viruses appeared to be rescued by two mechanisms: the first was by insertions in NA 

that restored NA stalk length, and the second was by accumulating mutations in HA [63, 178]. 

Mapping HA mutations with rescue potential to structure showed that these mutations were 

mostly located near the receptor binding site, suggesting that reduced receptor binding 

established a new HA-NA functional balance. In another study, altering HA receptor binding 

strength by manipulating the N-linked glycans near the receptor site also resulted in attenuated 

viruses [179, 180]. In this study, optimal viral replication was only observed when truncated NA 

was matched with weak binding HA, or when full length NA was matched with stronger receptor 

binding. While complementary levels of HA and NA function allowed virus rescue, the limits of 

functional rescue under selection pressure remain understudied.  
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Figure 3.1. Using the EMPIRIC approach to study the role of HA-NA functional balance in IAV 
replication. A) Illustration of the match in receptor binding strength by HA and receptor cleavage by NA 
that is essential for optimal viral replication. B) Mapping the region covered in the current study (aa 192-
210 and 222-231 in magenta) onto the HA structure (PDB 1HGG). Sialic acid is shown in yellow. C) 
Sequence conservation of the region under study over different HA subtypes. Consensus sequences were 
generated from 1243 pandemic H1, 1315 non-pandemic H1, 598 H2, 1506 H3, 1585 H5, 1770 H7, 1168 
H9 and 925 H10 sequences retrieved from the Influenza Research Database D) Illustration of the 
experimental approach utilized to systematically study HA-NA functional balance.  
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Oseltamivir is a competitive NA inhibitor that inhibits the budding of progeny virus, and 

is widely used to treat influenza infections [181, 182]. However, oseltamivir-resistant viruses 

emerged in 2007 to 2008 and continue to undermined the reliability of oseltamivir in the 

treatment of influenza infections [48, 183]. Characterization of oseltamivir-resistant viruses 

revealed a high prevalence of the H275Y mutation (N1 numbering system) in NA [184, 185]. 

This mutation is located near the active site of NA and confers resistance by reducing oseltamivir 

binding affinity [186, 187]. HA mutations that confer resistance to NA inhibitors both in the 

presence and absence of the H275Y mutation have been identified [66, 188, 189]. These 

mutations exhibited reduced receptor binding strength, yet their role in the IAV evolutionary 

trajectory is not fully appreciated. Understanding the HA-NA functional balance will help define 

the evolutionary constraints shaping IAV evolution and provide better understanding of 

interspecies transmission and the development of drug resistance. 

Taken together, these studies provide substantial evidence that the HA-NA functional 

balance is critical for productive infection by IAV and for viral adaptation to new environment. 

However, the degree to which IAV can tolerate a functional imbalance between receptor binding 

and receptor destroying while remaining infectious, and the molecular mechanism guiding the 

reinstatement of this functional balance are not well understood. Understanding the molecular 

factors governing the HA-NA functional balance under different environmental conditions will 

define what drives influenza evolution, potentially identify additional anti-influenza therapeutic 

targets, and help minimize the emergence of drug resistance.  

 In the present study, we adapted the Exceedingly Meticulous and Parallel Investigation of 

Randomized Individual Codons (EMPIRIC) approach that utilizes high-throughput mutational 

scanning in combination with bulk competition assays [90, 100, 118] to systematically 



! 79!

investigate how different NA perturbations affect the fitness landscape of HA. We modulated 

NA activity by mutation, by adding the NA inhibitor oseltamivir, and also used a combined 

mutation and drug pressure approach. We observed that inhibiting NA function by mutation 

alone was not enough to rescue HA mutations with reduced receptor binding strength. However, 

inhibition by oseltamivir alone or by NA mutation in combination with oseltamivir supported the 

rescue of HA mutations. Our results suggest that a threshold in NA function must be surpassed 

for the HA-NA tradeoff and rescue in virus function to occur.  

 

Results 

Measuring fitness effects of mutations in the HA receptor binding site 

We studied the effects of all possible single-nucleotide mutations in two 10-amino acid 

regions covering the receptor binding site of HA (Fig. 3.1b). We chose the regions to include the 

highly conserved histidine, histidine and proline residues at positions 196-199 described to 

directly interact with the host receptor (Fig. 3.1c). Viruses that were recovered using a previously 

described approach [100] were used to infect MDCK cells and next-gen deep sequencing was 

used to measure mutant frequency in the viral pool before and after bulk competition (Fig. 1d). 

Experimental fitness effects were calculated relative to wild type (s = 0) and stop codons (s = -1). 

Fitness measurements were reproducible between bulk competition replicates (R2 = 0.89, Fig. 

3.2a). Stop codons were consistently depleted during the competition and wild type synonyms 

clustered around wild type-like fitness (Fig. 3.2b). Many mutations introduced in this region 

caused a fitness defect under wild type NA (Fig. 3.2c). This observation is consistent with the 

importance of this region in binding to host receptors to initiate infection.  
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Figure 3.2. Mutations at the HA receptor binding site impact virus fitness. A) The EMPIRIC approach 
provides a reproducible approach to measure experimental fitness effects (R2 = 0.89). Synonymous 
substitutions are shown as open dots, non-synonymous substitutions as black dots, and stop codons as 
open squares. B) Fitness effects of wild type synonyms cluster near wild type-like fitness (s = 0), while 
stop codons cluster near s = -1. C) Distribution of fitness effects (DFE) of mutations at positions 192-201 
and 222-231.   
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Fitness effects of HA mutations in the presence of the NA inhibitor oseltamivir  

Oseltamivir is a NA inhibitor that binds to the NA active site and reduces enzyme activity 

thus inhibiting the release of progeny of virus. Oseltamivir remains the most common targeted 

therapy against influenza infections, despite the described resistance. Even with the widespread 

use, the effect of oseltamivir on the HA-NA functional balance remains poorly understood. To 

systematically investigate the effects of oseltamivir on HA mutations, we measured the 

experimental fitness effects of HA mutations in the presence of drug pressure from the NA 

inhibitor oseltamivir (Fig. 3.1d). 

We observed that even though oseltamivir does not bind directly with HA, this drug 

greatly influenced the fitness landscape of HA. Inhibiting NA function by oseltamivir allowed 

the identification of mutants that appeared to grow better than wild type virus (s > 0) under drug 

pressure (Fig. 3.3a). Fig. 3.3b shows the effects of oseltamivir on the distribution of fitness 

effects. Mutations that exhibited adaptive potential in the presence of oseltamivir had a wide 

distribution of fitness effects in the absence of drug pressure, ranging from wild type-like to 

highly deleterious (Fig. 3.3c). 

Mapping mutations with the highest adaptive potential in the presence of oseltamivir to 

structure shows that the most adaptive mutations cluster at an unstructured loop at the neck of the 

receptor binding pocket (Fig. 3.3d).  

 

van der Waals contacts between sialic acid and HA at the receptor binding site 

In order to investigate the role of molecular interactions at the receptor binding site in the 

observed fitness effects, MD simulations were performed on a A/WSN/33 HA model bound to 

sialic acid. Mapping average vdW energy to structure showed that the strongest interactions were 
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with residues at the bottom of the receptor binding pocket (W166 at -5.6 kcal/mol; T149 at -5.4 

kcal/mol) (Fig. 3.4a&b). Residues that bond the tightest to sialic acid were highly conserved 

between different HA subtypes (Fig. 3.4c). Of the 20-amino acid region randomized in this 

study, residues 196 – 200 were shown to interact with sialic acid (Fig. 3.4a). Mutations at these 

positions were generally deleterious under wild type levels but showed improved fitness and 

even adaptive potential under altered NA activity (Supplementary Fig. 3.1). This observation 

suggests that mutations that alter the optimized receptor binding strength were rescued under 

reduced levels of NA function. 

 

Experimental fitness effects correspond with patterns in sequenced isolates 

For these experiments, we used the 8-plasmid system to recover and study the H1N1 strain 

A/WSN/33. Due to differences in the environmental conditions and evolutionary constraints in 

natural infections compared to experimental conditions, we analyzed the relevance of our 

experimental results relative to natural evolution of IAV HA. We compared our experimental 

fitness measurements to the amino acid frequency of each mutation in a panel of 4452 non-

redundant sequences extracted from the Influenza Research Database (see Methods). We 

observed a significant correlation between experimental fitness estimates and mutant frequency 

in sequences of circulating variants (Fig. 3.5a, P = 0.02). Mutations that were highly abundant in 

circulating strains had wild type-like fitness in our bulk competition assay, whereas mutations 

that had fitness defects in our assay were rarely observed in circulating viruses. Observed 

differences maybe be due to sequence differences between our model A/WSN/33 strain and 

circulating viruses (Fig. 3.1c), as well as other factors such as epistasis between HA residues 

outside the region covered in the current study. 
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Figure 3.3. Modulating NA function using the inhibitor oseltamivir influences the fitness landscape of 
HA mutations. A) Scatter plot showing experimental fitness effects of HA mutations under wild type 
levels of NA function (light blue) and under inhibition by 1 µM oseltamivir. B) Oseltamivir alters the 
DFE of HA mutations and enables the rescue of mutant virus. C) Correlation between mutant fitness in 
the presence and absence of drug pressure. Oseltamivir responsive mutations deviate from the diagonal. 
D) Mapping HA mutations with the highest rescue potential to structure (PDB 1HGG). These mutations 
cluster on an unstructured loop region at the neck of the receptor binding pocket. 
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Figure 3.4. Using MD simulations to study van der Waals contacts between sialic acid on host receptor 
and HA residues at the receptor binding site. A) HA residues that interact with sialic acid (cut-off 0.05 
kcal/mol). B) Mapping van der Waals energies to the model structure of A/WSN/33 HA. Red shows 
strongest interactions while blue shows weak interactions. Strongest interactions were observed at the 
bottom of the receptor binding pocket while the neck of the binding pocket, which is less structured, had 
weak interactions. C) Sequence conservation of HA residues that exhibited the strongest van der Waals 
interactions with sialic acid. Sequence logo was created from 2355 H1 sequences deposited from 2007 to 
2009.  
  

Y106

V148T149
V150

W166

T168
H196

E203 L207

Q239

A)

B)

aa 
pos

- / 01/

213 )



! 85!

 Measuring the fitness of HA mutants under selection pressure by oseltamivir showed that 

oseltamivir influences the fitness landscape of HA. In order to investigate the relevance of the 

effects of oseltamivir observed in our bulk competition study we analyzed 2355 H1 sequences 

retrieved from the Influenza Research Database from the years 2007 – 2009 when oseltamivir 

was widely used to treat influenza infections. We observed a switch in amino acid preference at 

positions 195, 199, 200, and 201 near the receptor binding sites, as well as at positions 223, 224, 

and 225 distal from the binding site (Fig. 3.5b&c) and that may coincide with the onset of 

widespread use of oseltamivir. Our experimental fitness measurements also show that lysines at 

positions 224 and 225 were deleterious under wild type levels of NA activity but became 

beneficial in the presence of oseltamivir. 

 

Biochemical properties of amino acids partly explain observed fitness effects 

 We used the BLOSUM62 substitution matrix to investigate the role of amino acid 

similarity in the observed fitness effects (Supplementary Fig. 3.2a). Amino acid properties 

explained about 15% of the observed fitness effects under wild type NA (P = 0.007). 

Substitution to a biochemically similar amino acid generally resulted in minimal fitness defects, 

while substitution to a dissimilar amino acid resulted in a wide distribution of fitness effects. 

However, in the presence of selection pressure by oseltamivir, this pattern disappears 

(Supplementary Fig. 3.2b). This suggests that other factors, such as binding interactions and the 

local environment, may also influence fitness under stress conditions. 
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Figure 3.5. Experimental fitness effects measured in bulk competition correspond with patterns seen in 
circulating viruses. A) A significant correlation exists between experimental fitness measurements and 
mutant frequency observed in sequenced circulating isolates (P = 0.02). B) Comparing HA sequences 
before the widespread use of oseltamivir and sequences isolated in 2007-2009. Sequence variations are 
observed at positions 195, 199, 200, 201, 224, 225, and 227. C) Mapping regions with sequence variation 
to structure (PDB 1HGG). Some of these mutations cluster on the unstructured region of the receptor 
binding pocket, while residues 224, 225, and 227 are distal from the receptor binding pocket and do not 
interact with sialic acid. 
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Analyzing positional tolerance to mutation 

We studied the effects of all possible single nucleotide mutations for a 20-amino acid 

region at the receptor binding pocket of HA. Calculating the average fitness effect of all 

mutations at each position revealed the sensitivity of each position to mutations (Supplementary 

Fig. 3.2c). We observed that most positions in this region were sensitive to substitutions. 

However, most positions had improved fitness in the presence of oseltamivir with positions 200 

and 228 showing the greatest fitness advantage under drug pressure. Residues 194, 195, 196, 226 

and 231 showed minimal response to oseltamivir. Analysis of sequenced isolates showed that 

residues 194, 195, and 196 are highly conserved in all HA subtypes (Fig. 3.1c) and have been 

shown to interact with sialic acid [190]. Positions 226 and 231 appear to only be conserved in H1 

HA and have not been implicated in receptor binding (Fig. 3.1c).  

 

Modulating NA function by mutation influences the HA fitness landscape 

 Previous studies have shown that a functional balance in receptor binding strength by HA 

and receptor cleavage by NA is important for productive infectivity by IAV [179, 191]. 

However, a systematic and comprehensive investigation of this functional balance has not yet 

been performed. In order to study the molecular mechanism of the HA-NA functional balance, 

we measured the experimental fitness effects of HA mutations under different levels of NA 

function (Fig. 3.6a). We studied effects of modulating NA activity by introducing one of the 

following mutations: I223M, H275Y, Y276F or N295S (Fig. 3.6b). We chose these mutations 

because of their relevance in oseltamivir resistance in circulating viruses [192, 193]. 
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 Perturbing NA activity by mutation had minimal effect on the fitness landscape of HA 

(Fig. 3.6c). We observed that the distribution of fitness effects had a bimodal distribution with a 

big peak near the fitness effect of the NA mutation and another peak at null fitness. Inhibiting 

NA function by mutation failed to identify HA mutations with adaptive potential, as seen in the 

presence of oseltamivir (Fig. 3.6c, d, e, f). Although present, beneficial mutations under mutant 

NA background have modest fitness benefits. Interestingly, there were no overlap between 

adaptive mutations in oseltamivir and adaptive mutations under mutant NA (Supplementary Figs.  

3.3 & 3.4). This trend suggests that there may be two different mechanisms to adaptation when 

modulating NA function by drug compared to modulation by mutation. However, comparing HA 

fitness under different NA mutations showed some correlation (Supplementary Fig. 3.5), 

indicating that these mutations may have similar effects on the fitness landscape of HA. 

 

Combined effects of mutation and drug pressure on NA has rescue potential 

 We analyzed the effects of different NA perturbations on the HA fitness landscape. Our 

results show that the means of modulating NA function does influence the resulting fitness 

landscape. The mutations we have used in our study impact virus growth by 25-30%. We used 

oseltamivir concentrations that inhibit virus growth by 50% under wild type conditions. As such, 

we were interested in studying the combined effects of these pressures on virus function (Fig. 

3.6a). We previously observed that NA mutations alone had limited potential to identify adaptive 

HA mutations (Fig. 3.6c, d, e, f). However, under the influence of both mutation and drug 

pressure, we identified more mutations with even greater adaptive potential than in either 

condition alone (Fig. 3.7a). Analyzing the correlation between different NA backgrounds in the 

presence of oseltamivir revealed common adaptive mutations (Fig. 3.7b). For the NA mutations  
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Figure 3.6. Modulating NA function by mutation shifts the DFE towards deleterious effects. A) 
Modifying the EMPIRIC approach to study effects of NA mutations on the fitness landscape of HA. B) 
Fitness effects of the NA mutations used in the study in the presence and absence of oseltamivir [100]. C-
F) DFE of HA mutations under mutant NA backgrounds. 
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H275Y and N295S, oseltamivir appears to rescue mutations with wild type-like fitness, whereas 

under I223M and Y276F oseltamivir appears to mostly rescue deleterious mutations 

(Supplementary Fig. 3.6). 

 

Positional sensitivity to oseltamivir under varying levels of NA function 

In order to further investigate HA sensitivity to oseltamivir we compared the average 

fitness of all HA mutations for each position across different levels of NA function conferred by 

either mutation or by the combined effect of mutation and oseltamivir. We observed that under 

mutant NA, the oseltamivir insensitivity at the receptor binding site largely disappears 

(Supplementary Fig 3.7). This may indicate that inhibiting NA activity by both mutation and 

drug pressure may eliminate the need for the previously optimized strong binding to the receptor.  

 

Validating bulk fitness measurements by studying individual clones in isolation  

In order to validate experimental fitness effects measured in bulk competition, we 

measured the fitness of a panel of 22 individually cloned HA mutants (Table 3.1). For further 

analysis in isolation we chose mutations that were deleterious under wild type levels of NA 

function but were generally beneficial at non-wild type NA levels. Under unmodified levels of 

NA function, all of the mutants analyzed had smaller plaques compared to wild type (average 

radius = 123.66 ±Z5.915 µm), except for the mutant N223I (Fig. 3.8a & b) (average radius = 

129.37 ±Z4.14 µm). In the presence of oseltamivir, all viruses had much smaller plaques (average 

radius = 16.3 µm), including the wild type (average radius = 11.48 ±Z2.58 µm). Interestingly, in  
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Figure 3.7. Combined effects of NA mutations and oseltamivir result in the rescue of HA mutants. A) 
Summary of the experimental fitness effects of HA mutants under wild type and mutant NA both in the 
absence (light hues) and presence (dark hues) of oseltamivir pressure. B-E) DFE of HA mutations under 
the combined pressure of NA mutations and oseltamivir.  
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the presence of oseltamivir, viruses carrying the N295S NA mutation had plaques that were more 

than double the size of wild type viruses under oseltamivir (average radius = 24.17 ± 3.2 µm) 

(Fig. 3.8c). We observed high reproducibility between our fitness measurements in bulk 

competition and mutant fitness measured in isolation (R2 = 0.82 Fig 3.8d). Fitness effects were 

dependent on the environmental condition tested (see Fig 3.8e).  

 

Rescued HA mutations exhibit reduced receptor binding 

 Functional balance in the receptor binding strength of HA and the sialidase activity of 

NA are important for the initiation and propagation of infection by IAV. Mutations that offset 

this balance have been shown to confer a fitness defect [63, 66]. However, previous studies have 

shown that over time new mutations in the virus will lead to the reinstatement of the HA-NA 

functional balance. As such, we speculate that inhibiting wild type NA function by using 

oseltamivir allows the identification and rescue of HA mutations with reduced receptor binding 

strength to match the reduced levels of NA function. 

 We used the hemagglutination assay to measure receptor binding normalized to virus titer 

for 5 mutations H197N, H197Y, S200N, N223Y and P228A under wild type and mutant NA 

(Fig 3.9a). We calculated receptor binding potential as the ratio between virus titer (pfu/ml) and 

hemagglutination units (HAU). Weak binding corresponds with a high pfu/HAU ratio, and vice 

versa. All mutations exhibited reduced receptor binding strength relative to wild type virus, 

except for the H197N mutation. There was no clear trend between receptor binding strength, 

calculated as pfu/HAU, and experimental fitness (Fig 3.9b, p value > 0.05). We compared 
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Figure 3.8. Validation of bulk fitness measurements by studies on individual IAV clones. A) Plaque size 
measurements of individual mutants in isolation. In blue are plaque size of HA mutants under wild type 
NA in the absence (light blue) and presence (dark blue) of oseltamivir. Plaque sizes were also measured 
under I223M, H275Y and N295S NA mutations. The panel of mutations carrying the N295S mutation 
was studied in the absence and presence of oseltamivir. B) Distribution of plaque sizes based on NA 
background. Color legend as in panel A. C) Images of plaques of wild type virus in the absence and 
presence of oseltamivir, and for the S200N mutation under N295S mutation in the presence and absence 
of oseltamivir. D) Results show high reproducibility between experimental fitness effects in bulk 
competition and plaque size normalized to wild type. Plaque size measurements in the absence of 
oseltamivir are shown as black dots and measurements in the presence of oseltamivir as shown as open 
dots. E) Plaque size measurements in the presence (open dots) and absence (black dots) of drug pressure. 
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receptor binding strength and NA activity previously measured by the enzymatic MUNANA 

assay (Fig 3.9c). Our results are inconclusive due to the number of data points available, but the 

trend suggests that HA mutations under wild type NA shift the HA-NA functional balance away 

from wild type, thus conferring a fitness defect. However, under the N295S NA mutation we see 

a modest increase in virus fitness at new levels of HA-NA ratios (Fig 3.9d). Further studies will 

help elucidate the functional constraints governing the observed balance in HA-NA function and 

the functional constraints governing this pattern of rescue. 

 

Mutant plaque size corresponds with rescue potential 

 We speculated that when NA function is perturbed, the tradeoff in HA-NA function is 

condition-specific and only comes into play when a certain threshold in NA function is crossed. 

In order to test this hypothesis, we analyzed the number of adaptive HA mutations under each 

NA condition (Fig 3.10). Inhibiting NA function by mutation alone may not have reached the 

functional threshold to trigger the rescue of HA mutations. Inhibiting NA function by oseltamivir 

and by combining oseltamivir with mutation surpassed the threshold and enabled the rescue of 

HA mutations. 
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Figure 3.9. Mutations near the receptor binding site influence receptor binding. A) Receptor binding 
potential represented by the ratio between viral titer and hemagglutination units. HA mutations were 
analyzed under wild type and N295 NA backgrounds. B) The correlation between fitness measured in 
bulk competition and receptor binding potential was not significant (p value > 0.05). C) Previously 
quantified enzyme activity of NA mutations used in this study [100]. D) Relationship between mutant 
fitness measured in bulk competition and HA-NA activity represented by the ratio between receptor 
binding potential and NA enzyme activity measured by MUNANA.  
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Figure 3.10. Relationship between NA activity and the rescue of HA mutations. A and B) Number of 
adaptive HA mutations correspond with the absolute effect of NA activity on virus function.   
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Discussion 

We adapted the EMPIRIC approach to systematically investigate the functional balance 

between receptor binding by HA and receptor cleavage by NA. Results from bulk competition 

assays show that most mutations at the HA receptor binding site impact virus fitness. This 

observation agrees with previous findings that disturbing the HA-NA functional balance leads to 

reduced virus replication [179, 194, 195]. We validated the observed fitness effects by studying 

the fitness of a panel of individually cloned mutations in isolation. Mutant fitness effects were 

highly reproducible between bulk competition measurements and in studies on individual 

mutants in isolation. Experimental fitness effects measured by bulk competition were consistent 

with patterns of mutant frequency observed in sequenced circulating variants, suggesting that the 

EMPIRIC approach captures the constraints present in nature. 

Previous studies have shown that compatible levels of HA and NA function are important 

for virus function. We speculated that modulating NA activity, either by using NA inhibitors or 

by introducing mutations, will lead to the rescue of HA mutants with reduced function. To test 

this hypothesis, we investigated how changes in the level of NA activity affect the fitness 

landscape of HA. In the presence of oseltamivir, we observed the rescue of HA mutations that 

had reduced fitness at wild type levels of NA function, indicating that HA-NA functional balance 

is more important than HA and NA activity levels for virus function [176, 195]. We identified 

oseltamivir-responsive HA mutations that may be involved in maintaining the HA-NA functional 

balance. These mutations appear to compensate for the reduced NA function thus allowing virus 

growth in the presence of oseltamivir. Some of these variants were observed in HA following the 

introduction of oseltamivir in 2007.  
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Investigating the rescue potential of mutant NA revealed that inhibiting NA function by 

mutation had minimal potential to rescue HA mutations under standard conditions. This 

observation indicates that the means of modulating NA activity does affect the resulting fitness 

landscape of HA. However, examining the combined effects of inhibiting NA function by 

mutation and by oseltamivir revealed greater rescue potential when compared to inhibition by 

oseltamivir alone. The improved fitness of the NA mutations used in this study in the presence of 

oseltamivir may have contributed to the increased rescue potential seen under drug pressure, but 

the mechanism is unclear.  

In order to examine the limitations in HA rescue, we analyzed the relationship between 

the level of NA function and the number of HA mutations rescued. There was a sigmoidal non-

linear relationship between NA activity, measured by mutant plaque size, and the potential to 

rescue HA mutations. This relationship suggests that reducing NA activity will only rescue HA 

mutations once a certain threshold level of NA activity is surpassed, after which the rescue 

potential plateaus. Further studies will be needed to further characterize this rescue pattern and to 

explain the role of this rescue pattern in cross-species transmission and infectivity.  

HA-NA functional balance is often altered by genetic drift, antiviral agents that inhibit 

NA function, and during adaptation to a new host following cross-species transmission of IAV 

[60, 196]. Due to the high mutation rate inherent in IAV, the virus establishes a new balance that 

allows continued virus replication. Understanding the functional constraints shaping the re-

establishment of the HA-NA functional balance can help inform the control of cross-species 

transmission of IAV, help to combat the ongoing problem of resistance to oseltamivir inhibitors, 

and help inform the design of more effective therapeutic agents.  
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Materials and methods 

Engineering plasmid libraries 

Single nucleotide mutant libraries were generated, as previously described, for a 20-amino acid 

region (aa 192-202 and 222-231) surrounding the receptor binding site of HA [90]. Briefly, 

nucleotides encoding amino acid 1 to 1650 of IAV strain WSN/33 HA were transferred to the 

pRNDM plasmid and mutations were introduced using a cassette ligation strategy. We included 

additional stop codons at an elevated abundance as an internal control for each 10-amino acid 

window to allow detection even in the presence of potentially strong selection. Mutant libraries 

were transferred to the pHW2000 plasmid using an engineered destination vector and Gibson 

Assembly (New England Biolabs) as described [100]. 

 

Virus recovery and quantification 

The pHW2000-based 8-plasmid system developed by the Webster group was used to 

recover viruses [15]. Briefly, MDCK and 293T cells were cultured and passaged as previously 

described [100]. Virus recovery was performed using 1 µg of HA plasmid library and 1 µg of 

each plasmid encoding the rest of the A/WSN/33 genome. These plasmids were transfected in a 

co-culture of MDCK and 293T cells using TransIT LT1 reagent (Mirus, Madison, WI). 

Transfection media was changed to serum-free media 6 h post-transfection. At 30 h post-

transfection TPCK  

trypsin (Sigma-Aldrich, St. Louis, MO) was added to the serum-free media to a final 

concentration of 0.5 µg/mL. Virus-containing supernatant was harvested at 72 h post-

transfection, centrifuged at 300g for 15 minutes, aliquoted and stored at -80ºC. Viruses were 
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recovered in two genetic conditions: with wild type NA or with either one NA mutation (I223M, 

H275Y, Y276F or N295S). 

Plaque assays were performed to quantify viral titer of the recovered virus as previously 

described [197]. Briefly, virus-containing supernatant was diluted in a 10-fold serial dilution and 

added to confluent MDCK cells. Virus was allowed to bind to MDCK cells for 1 h at 37ºC 

followed by washing off of unbound viruses with PBS. Infected cells were overlaid with 0.5% 

agar in DMEM and incubated at 37ºC for 48 h. Plaques were stained with antibody against IAV 

NP and visually counted. 

 

Growth competition experiments in cell culture 

Bulk competition experiments in culture were conducted as previously described [100]. Briefly, 

MDCK cells were plated in 6-well plates at 106 cells per well about 24 h before infection. Cells 

were washed with PBS right before infection, followed by cDMEM Dulbecco's modified Eagle's 

medium, 100 U/mL penicillin, 100 µg/mL streptomycin, and 7.5% bovine serum albumin. 

Viruses were diluted in influenza virus growth medium (cDMEM/ BSA with 1 µg/mL TPCK 

trypsin) and used to infect MDCK cells at a multiplicity of infection of 0.01, in triplicates, either 

in the presence or absence of 1 µM oseltamivir. Cells were incubated with virus for 1 h at 37ºC. 

Unbound virus was washed off with PBS. Infected cells were grown in influenza virus growth 

media in the presence or absence of oseltamivir at 37ºC. At 48 h post-infection, virus-containing 

supernatant was harvested, centrifuged at 300g for 15 minutes and stored at -80ºC. 
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Quantification of mutant frequency 

Mutant frequency following bulk competition was quantified as previously described [100]. 

Briefly, harvested supernatant was treated with DNase (New England BioLabs, Ipswich, MA) 

for 1 h at 37ºC in order to degrade plasmid DNA. Viral RNA was extracted using the QIAamp 

Viral RNA minikit (Qiagen, Germantown, MD) and eluted in 40µl of elution buffer. HA cDNA 

was generated using Superscript III (Life Technologies, Beverly, MA) and HA-specific RT 

primers. Sample processing for sequencing was performed by using PCR to introduce restriction 

sites, followed by digestion and ligation of sample-specific adapters. Adapter-ligated samples 

were quantified, pooled and sequenced on the Illumina single read 36-bp sequencing on a 

Genome Analyzer II. Reads with greater than 99.5% confidence were analyzed. The relative 

abundance of each mutant was calculated as log2(mutant/WT). Fitness effect in bulk competition 

was calculated as the difference in relative mutant frequency before and after competition.  

 

Validation of mutant fitness in clonal isolates 

A panel of 22 individual mutations were cloned and virus recovery was performed as described 

above. The titer for each recovered viral variant was determined by plaque assay with minor 

modifications. Briefly, virus was diluted either in the presence or absence of 1 µM oseltamivir 

and incubated for 1 h at 37ºC. In the drug-treated condition, 1 µM oseltamivir was also added in 

the agar overlay. Plaques were visualized after 48 h and images were acquired using a Nikon 

SMZ1500 microscope. The NIS Elements-BR Analysis program was used to measure the radius 

of about 10-15 plaques from the same quadrant in each well. The average plaque size for each 

mutant was calculated and used as an estimate of viral growth.  
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Using molecular dynamics simulations to study molecular interactions  

Molecular dynamics simulations were performed to calculate van der Waals contacts between 

sialic acid and HA at the receptor binding site. A homology model of A/WSN/33 HA was 

created using the SWISS-MODEL modelling server using the 1918 HA (PDB 1HGG) as the 

template. Heteromultimer assembly and ligand docking was performed using the Prime Structure 

Prediction panel on Schrodinger [198]. Molecular dynamics simulations were performed as 

previously described [199]. Briefly, the modeled structures were prepared for simulation using 

the octahedron solvent box. Desmond was used for all simulations using the OPLS2005 force 

field. All simulations were performed for 10 ns. 

 

Alignment of naturally occurring HA sequences 

We retrieved 4452 HA sequences from the Influenza Research Database (IRD) [146] containing 

only H1N1 strains and excluding overrepresented pandemic H1N1. These sequences were 

aligned and filtered to eliminate HA sequences with insertions and deletions near the 5’ end, 

resulting in 4374 HA sequences. The frequency of each codon at each position was calculated 

and compared to fitness data from our bulk competition experiment. 

 

Hemagglutination assays to measure receptor binding 

Human red blood cells were isolated by centrifuging serum at 875 rpm for 15 minutes. The 

supernatant was carefully removed and the pellet containing isolated red blood cells was washed 

three times with 10 ml PBS. A round-bottom 96-well plate was set up with duplicates of 2-fold 

serially diluted virus to a total of 50 µl. A negative control containing PBS only was also 

included. 50 µl of diluted red blood cells were added to each well and mixed carefully. Plates 
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were incubated at 4ºC for 45 minutes. Plates were visualized using a magnifying mirror. Wells 

with uniform red color were considered positive while wells with a red button at the center of the 

well were considered negative for hemagglutination. Resulting hemagglutination units were 

normalized to viral titer. 

 

Measuring NA activity in vitro 

Measurements of NA enzyme activity were previously performed in [100] using the fluorogenic 

2,-(4-methylumbelliferyl)-α-D-N-acetylneuraminic acid (MUNANA) substrate following 

instructions provided by the manufacturer (Life Technologies, Carlsbad, CA). Briefly, 

recombinant viruses were incubated with MUNANA substrate at a final concentration of 0.1 mM 

for 1 h at 37 °C with shaking. Fluorescence was then measured using a Victor X5 plate reader 

(PerkinElmer, Waltham, MA) with a 355 ± 10 nm excitation filter and a 460 ± 20 nm emission 

filter. Relative fluorescence was normalized to virus titer determined by plaque assay. 
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Variant 
H197N 
H197Y 
S199Y 
S200N 
N223I 
N223Y 
P228A 
H197NI223M 
H197YI223M 
S200NI223M 
N223YI223M 
P228AI223M 

H197NH275Y 
H197YH275Y 
S200NH275Y 
N223YH275Y 
P228AH275Y 

H197NN295S 
H197YN295S 
S200NN295S 
N223YN295S 
P228AN295S 

Table 3.1. Mutants analyzed as individually cloned variants. 
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Supplementary Fig 3.1. Average experimental fitness effects of mutations at HA residues that interact 
with sialic acid that were covered in the present fitness scan. Mutations at these residues were deleterious 
under standard conditions (no drug) in wild type and in mutant NA backgrounds. In the presence of 
oseltamivir, mutations at these positions rescued virus function. 
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Supplementary Figure 3.2. Analyzing properties of HA mutations. A) Relationship between amino acid 
similarity and mutant fitness in bulk competition. B) Comparing amino acid similarity and mutant fitness 
under selection by oseltamivir. C) Analyzing positional sensitivity to mutation in the presence (purple 
dots) and absence (black dots) of drug pressure (wild type fitness = 0).  
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Supplementary Figure 3.3. Comparing the effects of inhibiting NA function by oseltamivir and by 
mutation A) I223M, B) H275Y, C) Y276F, and D) N295S.  
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Supplementary Figure 3.4. Comparing effects of inhibiting NA function by oseltamivir and by the 
combined effect of oseltamivir and mutation A) I223M, B) H275Y, C) Y276F, and D) N295S in NA. 
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Supplementary Figure 3.5. Comparing effects of different NA mutations on the fitness of HA mutations. 
A) Comparing the effects of I223M and H275Y. B) Comparing the effects of I223M and Y276F. C) 
Comparing the effects of I223M and N295S, D) Comparing the effects of H275Y and Y276F. E) 
Comparing the effects of H275Y and N295S. E) Comparing the effects of N295S and Y276F. 
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Supplementary Figure 3.6. Comparing the effects of oseltamivir under different NA backgrounds. A) 
I223M, B) H275Y, C) Y276F, and D) N295S. 
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Supplementary Figure 3.7. Analyzing positional sensitivity of HA to mutation under different levels of 
NA activity mediated by mutation alone or by mutation and inhibition by oseltamivir. A) I223M, B) 
H275Y, C) Y276F, and D) N295S – black dots show fitness under the respective mutant NA and purple 
dots show fitness under mutant NA in the presence of oseltamivir (wild type fitness = 0). E) Summarizing 
the effects of oseltamivir on HA fitness (sdrug - sno drug) under difference NA backgrounds.  
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Chapter IV: Discussion 

Overview 

IAV is a rapidly evolving virus that continues to threaten global public health, yet the 

functional constraints shaping the evolutionary trajectory of the virus are not fully understood. 

My dissertation research focused on adapting EMPIRIC, an approach that utilizes high 

throughput mutagenesis, bulk competition assays, and next-generation deep sequencing, to study 

the evolutionary constraints shaping IAV evolution and adaptation under different environmental 

conditions. In chapter II, I used EMPIRIC to study the effects of all possible single nucleotide 

mutations in the signal sequence of the IAV HA protein. We observed that both synonymous and 

non-synonymous substitutions in this region impacted viral fitness. Comparing effects of 

mutations in the signal sequence to a region outside the signal sequence showed that 

synonymous mutations had larger effects in the signal sequence than in the control region. The 

signal sequence also appeared to tolerate non-synonymous substitutions better than the control 

region. Analyzing synonymous substitutions revealed that RNA structural elements in this 

region, that appear to be species-specific, may be important for virus function. Other factors, 

such as protein synthesis efficiency and protein abundance in viral particles, were also correlated 

with fitness. We observed evidence of stabilizing selection on HA abundance in virus particles. 

Both too much or too little HA appeared to negatively impact virus fitness. In chapter III, I used 

the EMPIRIC approach to investigate how changes in NA activity influence the HA-NA 

functional balance, and to investigate the effect of these changes on virus fitness. I used two 

different methods to modulate NA function – by mutation, and by using the NA inhibitor 

oseltamivir. Treatment with oseltamivir yielded much smaller plaques than viruses carrying 

mutant NA. This suggests that oseltamivir has larger effects on virus replication than the 
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analyzed NA mutations. In agreement with this observation, analyzing the effects of reduced NA 

activity revealed that inhibiting NA function by mutation had minimal effect on the fitness 

landscape of HA. We observed a shift in the distribution of fitness effects of mutations, but 

observed that inhibiting NA function by mutation failed to rescue HA mutations. However, 

inhibiting NA function either by oseltamivir alone or by mutation combined with oseltamivir led 

to the rescue of HA mutations. The combined effects of mutation and drug pressure by 

oseltamivir exhibited improved rescue potential. The plaques of the rescued mutations were up to 

three times as big as wild type plaques in the presence of oseltamivir. We observed a non-linear 

relationship between NA activity and the potential to rescue HA function in virus. These results 

suggest that the HA-NA tradeoff is observed when a certain threshold in NA function is crossed. 

In summary, we observed that majority mutations introduced in IAV HA conferred a fitness cost 

under standard conditions. Analyzing the patterns of mutational sensitivity combined with 

biochemical assays on a panel of individually cloned mutations began to explain the molecular 

mechanism underlying the observed fitness effects. Under drug pressure by oseltamivir, we 

identified HA residues that respond to changes in NA function leading to the rescue of virus 

replication. 

 

Synonymous substitutions exhibit greater fitness effects in the signal sequence  

Secretory proteins typically have a signal sequence that serves as a molecular address 

targeting these proteins to the ER for trafficking and secretion [130, 132, 200]. The first 14 to 16 

amino acids of the influenza A HA protein form the signal sequence. Previous studies have 

shown that large deletions in this region result in cytoplasmic accumulation of HA, suggesting 

the importance of the signal sequence in trafficking and surface expression [34, 140]. Analyzing 
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the amino acid sequences of the signal compared to the mature HA revealed higher sequence 

diversity in the signal sequence compared to the rest of HA. However, the evolutionary 

constraints shaping the evolution of the HA signal sequence remain unclear. 

 We used the EMPIRIC approach to study effects of mutations in the signal sequence of 

HA. Focusing on a small region of HA led to improved sensitivity and resolution of the fitness 

measurements. The improved resolution of this experimental setup allowed the measurement of 

the effects of both synonymous and non-synonymous substitutions on virus fitness. The observed 

fitness effects were also validated by studying individual mutations in isolation. When analyzed 

in isolation, synonymous mutations that exhibited deleterious effects in bulk competition also 

had smaller plaques compared to wild type. Effects of synonymous substitutions were further 

validated by studying their effects on the growth kinetics of viruses. Deleterious synonymous 

substitutions analyzed in isolation either exhibited a longer eclipse duration or reduced 

replication rate, leading to slower infection kinetics compared to wild type virus. 

 In order to quantify selection acting on the HA signal sequence relative to a neighboring 

region of HA, we compared the distributions of fitness effects of synonymous and non-

synonymous mutations. Synonymous substitutions had larger effects in the signal sequence than 

in the neighboring region used for comparison. Non-synonymous mutations were more tolerated 

in the signal than the neighboring region. Calculating the apparent ratio of selection between the 

two regions indicated that amino acid sequence of the signal may be evolving faster than that of 

the control region. This observation is consistent with the high sequence diversity observed in 

the signal peptides of sequenced circulating IAV variants. 

 Studying the molecular basis of the observed fitness effects revealed that majority of the 

synonymous mutations analyzed impacted protein synthesis efficiency in cell culture. This 
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observation was consistent with the previous observation that rare codons at the N-termini of 

proteins regulate translation [107, 124, 153]. However, analyzing protein abundance in released 

viruses showed apparent stabilizing selection on HA abundance per plaque forming unit. Further 

studies will be necessary to elucidate how changes in HA synthesis affect the ratio of infectious 

to non-infectious viruses per plaque forming unit, and to explain how this change shaped IAV 

evolution.  

 Results of the fitness effects of mutations in the HA signal sequence demonstrated that 

RNA structure may also be shaping the evolution of this region. Moss and colleagues studied the 

structural components of the IAV genome by performing RNA structure predictions based on 

suppression of synonymous codon usage and unusual thermodynamic stabilities [201]. The HA 

segment appeared to be less structured than the rest of the genome. However, this study 

combined IAV genome sequences from human, avian and swine hosts for their analyses, and 

may have missed species-specific structural components of the IAV genome. Our fitness scan 

using the EMPIRIC approach combined with analysis of sequenced circulating isolates from 

different hosts revealed species-specific differential preferences for a structured or unstructured 

loop at nucleotide positions 7 – 23. This region is part of a larger region that has been implicated 

in virus packaging [158, 161]. However, species-specific differences in IAV packaging are not 

fully understood. Studying the role of host factors in constraining this region will help our 

understanding of influenza function and cross-species transmission. 

 Overall, this study highlights that synonymous mutations are not evolutionarily neutral as 

proposed by previous theories. Synonymous mutations often impact fitness, thus necessitating 

the need to re-valuate the expression dN/dS that is widely used to measure the strength of natural 
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selection acting on protein-coding genes. As such, it is important to consider effects of 

synonymous mutations when calculating and predicting the evolution rate of different proteins. 

 

Adapting the EMPIRIC approach to study HA-NA functional balance 

 Many studies have shown the importance of the functional balance between receptor 

binding by HA and receptor cleavage by NA. Altogether, these studies show that productive viral 

infection is supported by matching levels of HA and NA activity. Viral evolution studies in the 

laboratory, as well sequence analysis of circulating viruses have shown that when this balance is 

perturbed, mutations in the virus that re-establish this balance will fix in the virus population [66, 

195]. However, the molecular mechanism, and the role of this balance in shaping IAV evolution 

remains unclear. 

 We adapted the EMPIRIC approach to investigate how changes in the level of receptor 

cleavage activity of NA influences the fitness landscape of HA mutations near the receptor 

binding site. We also sought to study whether the means of modulating NA function – by 

mutation or using the NA inhibitor oseltamivir - impacted the resulting fitness landscape. We 

observed that inhibiting NA function using oseltamivir had a larger effect than inhibition by 

mutation. Oseltamivir allowed the identification of HA mutations with adaptive potential in the 

presence of drug pressure. The fitness trends seen in our bulk competition results in the presence 

of oseltamivir were consistent with mutant frequencies observed in circulating viruses following 

the introduction of oseltamivir in the clinic.  

Our results show that there was a non-linear relationship between NA fitness effect, as 

measured by plaque size, and the potential to rescue HA mutations. Inhibiting NA function by 

mutation alone was not sufficient to rescue HA function, however it appears that oseltamivir 
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lowered NA function enough to establish a functional match with HA mutations. Previous 

studies have shown that IAV infection is initiated by many weak interactions between HA and 

sialic acid at the host cell receptor [202, 203]. However, the limitations in the range of HA 

binding strength to ensure successful virus binding and internalization remain unknown. 

Investigating the effect of HA and NA mutations on the HA-NA functional balance combined 

with phylogenetic analyses can elucidate the role of this balance on IAV evolutionary 

trajectories.  

The HA-NA functional balance has been implicated in the development of resistance 

against oseltamivir inhibitors [66]. In the current study, we use a systematic approach to identify 

HA mutations that respond to oseltamivir. Expanding this mutational scan to study the whole HA 

protein, and to study the effects of different drug pressures, such as zanamivir, will further 

explain the role of the HA-NA functional balance on the development of resistance against 

oseltamivir inhibitors. Understanding the molecular underpinnings of the HA-NA functional 

balance in IAV may help explain the functional balance between virus entry and exit in other 

viruses in the paramyxoviridae family, such as measles, sendai, and newcastle viruses. 

 

Using EMPIRIC to study protein function and evolution 

EMPIRIC is a high throughput mutational scanning approach that has been used widely 

to study sequence-structure-function relationships of proteins in the yeast system [90, 117-119], 

to study disease-causing genes in cell culture [204, 205], and to study viral proteins [100, 206]. 

This approach uncovers positional sensitivity of a protein to mutation, both under normal 

conditions and under different selective pressures. Combining results from EMPIRIC fitness 
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scans and structural and biochemical analyses began to explain the molecular mechanisms 

underlying protein function [119] and the development of drug resistance [170]. 

Compared to other mutational scanning approaches, EMPIRIC provides a high 

throughput approach that is also systematic and comprehensive. Cassette-based mutagenesis 

provides more control on the frequency and coverage of mutations in mutant plasmid libraries 

compared to error-prone PCR. Combining this method of library preparation and straightforward 

functional assays, EMPIRIC results in highly reproducible fitness measurements. However, due 

to current technological advances and reduced cost, plasmid library preparation in mutational 

scanning studies is shifting towards the use of parallel oligonucleotide synthesis [207]. This, and 

other similar approaches, will enable the production of high diversity barcoded libraries that will 

in turn increase throughput.  

Like all mutational scanning approaches, the EMPIRIC approach has shortcomings. The 

translation of EMPIRIC results to fitness effects of mutations in nature is dependent on the 

functional assay used. If the experimental conditions deviate from those of the natural function 

of the protein, then the fitness results obtained may be misleading. Additionally, the nature and 

strength of selective pressures that form part of the environmental condition under study must be 

in line with the pressures that will shape the evolution of a protein in nature. The EMPIRIC 

approach has additional limitations when used to study virus evolution. Bottlenecks such as 

during virus recovery from plasmid and during bulk competition assays can lead to inaccurate 

results. The presence of these bottlenecks often leads to limited throughput. Despite these 

drawbacks, the EMPIRIC approach provides a useful tool to study protein function and evolution 

under different environmental conditions.  
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On extrapolating EMPIRIC findings to circulating IAV 
 

Results from EMPIRIC studies on HA generally agree with patterns seen in sequences 

circulating viruses (P < 0.05). In these comparisons mutations with large fitness defects were 

present at a low frequency or were absent in sequences of circulating viruses. On the other hand, 

mutations that show minimal effects of virus fitness were abundant in circulating viruses. We 

acknowledge that the EMPIRIC approach provides information on the general trends of the 

fitness effects of mutations, and not the absolute fitness of each mutation. Studying effects of 

mutations in individual virus clones in isolation helps to validate fitness measurements from bulk 

competition experiments, indicating that this approach generally captures trends of virus 

evolution present in nature.  

 IAV is a rapidly evolving virus. As such, sequence differences between the laboratory 

strain A/WSN/33, that is commonly used for experimental evolution studies, and circulating 

strains may limit the dependability of results from mutational scanning studies. Ideally, 

performing IAV evolution experiments using viruses derived from the currently circulating 

viruses will provide the most accurate information on the evolutionary trajectory and potential 

for drug resistance in IAV. However, with the high rate of influenza virus evolution and failure 

to accurately predict predominant circulating variants has deemed this approach unfeasible. 

Nevertheless, information garnered from the current experimental setup provides insight into 

virus function and evolution. 

 
Future directions 
 
 In this dissertation project, I used the EMPIRIC approach to investigate the evolutionary 

constraints shaping IAV evolution. Specifically, I studied how mutations in the signal sequence 
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of IAV HA affects virus replication, and examined how the HA-NA functional balance 

influences virus function and evolution. 

 
Studying effects of signal sequence mutations on IAV replication 
 
 Studying effects of mutations in the signal sequence of HA showed that there is a 

complex relationship between viral factors, at the RNA and protein levels, and host factors that 

influence virus fitness. Future studies investigating host factors such as receptor specificity, 

tissue specificity, and antiviral responses may further explain the observed host-specific 

differences. Expanding these studies to the whole HA protein may reveal other host-specific 

structural constraints that as of yet remain unknown.  

 These studies also show that IAV may be under stabilizing selection for HA abundance in 

infectious particles, however, effects of changes in HA expression have not been explicitly 

investigated. Future studies analyzing the effects of changes in HA expression, by using different 

expression promoters for instance, in different IAV strains may explain virus function. 

Alternatively, similar studies investigating the effects of changes in NA abundance on virus 

function will be of interest. Since HA and NA are the main surface proteins of IAV, these studies 

may also elucidate virus antigenicity and host responses to IAV infection.  

 
Investigating HA-NA functional balance 
 
 The balance in HA and NA function is critical for virus replication, yet remains 

underexplored. Our results show that modulating NA function by oseltamivir enables the rescue 

of HA mutations, and that there is a non-linear relationship between NA activity and rescue 

potential. However, the molecular mechanism underlying this balance remains unknown. Future 

studies using modern strains such as A/Brisbane/59/2007 will show whether the observed rescue 
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pattern is a general phenomenon or whether the pattern is specific for the A/WSN/33 strain used 

for these studies. Additionally, using viruses with a different receptor specificity – a2,3-linked 

sialic acid instead of a2,6-linked sialic acid – may explain the role of this functional balance 

across different IAV host species.  

 

Conclusion 
 

IAV remains a public health threat largely because we do not fully understand its 

evolution. Learning the evolutionary constraints governing the function and evolution of IAV 

proteins is important for the efficient control of influenza infections. To date, the most effective 

way to control influenza infection is by vaccination. However, mismatch between IAV variants 

contained in the vaccine and circulating viruses continually undermines the effectiveness of the 

vaccine. Antiviral agents that inhibit NA function are the common place therapies used to treat 

influenza infections. Resistance to oseltamivir inhibitors that are widely used to treat influenza 

infections makes the control of IAV a challenge. In this dissertation, I used the EMPIRIC 

approach to study the evolutionary constraints shaping the evolution of the HA signal sequence. 

Results indicate that there is a complex interaction between viral, environmental, and host factors 

that facilitate virus function. I also used the EMPIRIC approach to study the role of the HA-NA 

functional balance in virus function, and in adaptation to drug pressure in the environment. This 

study highlighted the need to focus on both NA and HA in investigating resistance to oseltamivir 

inhibitors. Understanding the role of HA in drug resistance can inform the design of antiviral 

agents with reduced chance for resistance, and help identify new targets for IAV therapies. 
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Appendix - Mutations proximal to the signal peptidase cleavage site of influenza A virus 

hemagglutinin exhibit dominant negative properties 

 

This work was performed as a preliminary analysis to investigate the potential dominant negative 

properties of a list of HA mutations identified in a previous study. Follow-up experiments are 

required to elucidate the observed effects of HA mutations on the function of wild type protein. 
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Abstract  

Dominant negative mutations are mutations that disrupt protein function when co-expressed with 

wild type protein. Cold-adapted influenza A virus that exhibited dominant negative properties 

were identified in the early 1990s. Exploiting these dominant negative properties provided a new 

strategy for producing an attenuated live-virus vaccine for use in immunocompromised 

individuals, and provided an alternative approach for the design of antiviral agents. This 

approach showed promising results in ferrets that were co-infected with a virulent strain of 

influenza A virus. The development of these constructs for use in the clinic has not been a 

success. In this study, we identified mutations in the signal sequence of IAV HA that exhibited 

dominant negative properties. These mutations caused up to 300-fold reduction in virus titer in 

mixed transfections with wild type. Studying their effects on wild type HA expression revealed 

up to 50% reduced HA expression in mammalian cells. Dominant negative mutations in HA, the 

most antigenic influenza protein, can help inform vaccine development. 
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Introduction 

The N-terminus of the hemagglutinin protein of influenza A virus consists of a signal 

sequence that targets nascent HA to the endoplasmic reticulum (ER) for trafficking [135, 140]. 

Like many signal sequences, the HA signal sequence is composed of a positive charged amino 

terminal followed by a hydrophobic region and a polar region [130, 134]. Targeting of nascent 

HA to the ER is initiated by the signal recognition particle (SRP) binding to the hydrophobic 

region of the signal sequence which anchors at the SRP receptor on the ER membrane allowing 

insertion of the emerging protein into the translocon [132, 208]. A trypsin-like signal peptidase 

cleaves the signal peptide before HA exits the ER [134, 209]. HA trafficking mediated by the 

signal sequence has been shown to be critical for proper virus function as deletion mutations in 

the signal sequence show impaired function [140]. The amino acid sequence of the HA signal 

peptide is variable between different HA subtypes, yet the structural and biochemical properties 

are highly conserved. However, the role of the signal sequence in virus function and evolution 

remains understudied. 

Mutations with dominant negative properties have the ability to disrupt wild type protein 

function when overexpressed in a polypeptide [210]. Since dominant negative mutants result in 

attenuated wild type phenotype, they provide a useful tool to study protein function [211, 212] 

and have exhibited therapeutic potential [77, 213]. For instance, influenza A viruses carrying 

mutations in the matrix gene were shown to harbor dominant negative properties and present a 

potential novel class of antivirals against influenza [214]. Exploring the molecular properties of 

dominant negative IAV mutations for therapeutic purposes is of high importance especially with 

the increasing prevalence of resistance against the currently used drug oseltamivir. However, 
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identifying and characterizing IAV mutations with dominant negative properties for candidates 

as therapies, and how host factors respond to these properties remains underexplored. 

In the present study, we aim to identify signal sequence mutations that may have 

dominant negative effects on HA trafficking to the ER for surface expression. We used the 

dataset generated previously using the EMPIRIC (Exceedingly Meticulous and Parallel 

Investigation of Randomized Codons) approach to study effects of mutations in the signal 

sequence of IAV HA. We focused on mutations that were present in the plasmid library but were 

strongly depleted in the recovered virus population. In order to distinguish lethal from dominant 

negative mutations, we hypothesized that when studying these mutations in isolation only 

dominant negative mutations will disrupt wild type function. Furthermore, we speculated that 

wild type trafficking and surface expression will be greatly impacted by dominant negative 

mutations that inhibit signal peptide cleavage. We identified signal sequence mutations that 

caused up to 300-fold titer reduction in mixed transfections with wild type HA. These mutations 

also disrupted the surface expression and cellular localization of wild type HA.  

 

Results and discussion 

Mutations in the HA signal sequence disrupt wild type function 

The signal sequence is generally hydrophobic and has low molecular weight residues 

near the peptidase cut site [215] (Fig. 5.1a). While studying effects of mutations in the HA signal 

sequence, we observed that some mutations were abundant in the plasmid library but were highly 

depleted in recovered viruses (Fig. 5.1b). In order to study the dominant negative potential of 

these mutants, we performed mixed transfection assays with wild type plasmid and compared 

virus titer to true wild type. Mutations L6R, V7D, V7G and L8R had no impact on wild type titer  
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Figure 5.1. Mutations in the HA signal sequence can have dominant negative effects. A) Amino acid 

sequence of the A/WSN/33 HA signal sequence. The SRP binds at the hydrophobic region. The signal 

sequence is cleaved by host proteases and does not form part of the mature protein. B) Relative mutant 

abundance of highly depleted mutants in plasmid library and in recovered virus. C) Effects of a panel of 

individually cloned variants on wild type titer. D) Of the mutants in panel C, 5 variants were chosen for 

further analysis. 
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suggesting that these mutations may be lethal and not dominant negative. Mutations with the 

largest effect in mixed transfections were A11E, V13L, A17E, D18N and T19P (Fig. 5.1c). Our 

results show that T19P reduced wild type titer by about 300-fold. From this panel, we chose 

these 5 mutants for further analysis (Fig. 5.1d).  

 

Candidate mutations interfere with wild type HA expression in mammalian cells  

In order to study the effects of this panel of mutations on HA expression, we used a 

surface-display plasmid and co-expressed wild type and mutant plasmids in 293T cells (Fig. 

5.2a). When expressed alone, each of these mutations exhibited reduced surface expression, with 

the A11E mutant expressing about 25% of wild type HA levels. When co-expressed with wild 

type, all mutations appeared to disrupt wild type expression. V13L reduced wild type expression 

to about 50% (Fig. 5.2b). A17E and T19P mutations had the least effect on surface expression 

(Fig. 5.2b). Since these mutations had the largest effects on wild type titer but exhibited minimal 

effect on HA expression, we speculate that A17E and T19P mutations may impact the function 

of surface expressed protein. Further studies will help elucidate the molecular mechanism of the 

observed effects. However,  

We performed western blots to further investigate effects of mutations on HA expression. 

Consistent with our FACS results, all the mutants analyzed showed reduced HA expression (Fig. 

5.2c). A11E had the lowest levels of surface expression and appeared to affect the 

oligomerization of wild type HA. 

Previous studies have shown that the evolutionary trajectories of the IAV genome are 

significantly impacted by host proteostasis [216]. Although the molecular mechanism of the 

observed effects remains unknown, we speculated that abnormal signal sequence cleavage of  
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Figure 5.2. Candidate mutations disrupt HA expression in mammalian cells. A) Experimental approach to 

study effects of mutations on HA expression. B & C) Effects of HA mutants on wild type HA expression 

measured by flow cytometry (B) and by western blot (C). In (B) Blue bars show single-variant expression 

and magenta bars show co-expression of wild type and mutant variants. D) Analyzing effects of HA 

mutations on calreticulin expression. In C & D, a red star denotes mutant HA alone and a yellow star 

denotes co-transfected wild type and mutant HA. 
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these variants may trigger the protein folding stress response in mixed transfections. There were 

no changes in calreticulin expression in single and mixed transfections when compared to wild 

type (Fig. 5.2d). Studying other chaperones in the ER, specifically calnexin and BiP, may 

confirm whether or not these signal sequence mutations trigger the protein misfolding response.  

 
Using immunostaining to study cellular localization of mutant HA 

 We used immunostaining and fluorescence microscopy to analyze effects of candidate 

mutations on expression levels and cellular localization of wild type HA. Wild type HA was 

highly expressed, and was localized along the cell membrane (Fig. 5.3a). Mixed transfections of 

wild type and mutant HA showed reduced HA expression on the cell surface with A11E showing 

the least expression (Fig. 5.3b – f). The mutation D18N appeared to change cellular localization 

to a punctate distribution. Further studies using quantitative confocal microscopy will provide 

further information on the changes in expression and cellular localization observed.   
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Figure 5.3. Comparing cellular localization and expression levels of wild type HA and wild type co-

transfected with mutant HA. A) Wild type HA appears to localize along the plasma membrane. B – F) 

Analyzing expression of wild type HA co-expressed with mutant HA, A11E – B, V13L – C, A17E – D, 

D18N – E and T19P – F. 
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Materials and methods 

Cell culture  

MDCK cells were maintained in cell culture media consisting of Eagle’s Minimal Essential 

Media supplemented with 10% fetal bovine serum, 100U/mL penicillin and 100µg/mL 

streptomycin grown at 37°C and 5% carbon dioxide. 293T cells were maintained in Opti-MEM I 

media supplemented with 5% fetal bovine serum, 100U/mL penicillin and 100µg/mL 

streptomycin grown at 37°C and 5% carbon dioxide. 

 

Virus recovery  

Mutations of interest were identified from a previous high-throughput mutational scan (in 

publication) that used next-gen deep sequencing to measures effects of all possible single 

nucleotide mutations in the HA signal sequence. A panel of 19 variants was generated using the 

pHW2000-based 8-plasmid system developed by Webster and colleagues [15]. Briefly, 1 µg of 

wild type HA plasmid library and 1 µg of each plasmid encoding the rest of the A/WSN/33 

genome, were transfected in a co-culture of MDCK and 293T cells using TransIT LT1 reagent. 

For the mutants of interest 0.5 µg of wild type HA was mixed with 0.5 µg of mutant HA and 

transfected with plasmids encoding the rest of the genome. Media was changed to serum-free 

media 6 h post-transfection. At 30 h post-transfection, TPCK trypsin was added to a final 

concentration of 0.5 µg/mL. Virus-containing supernatant was harvested at 72 h post-

transfection, centrifuged at 300g for 15 minutes and stored at -80°C.  
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Titer reduction assay 

Viral titer of recovered viruses was quantified by plaque assay as previously described [100]. 

Briefly, 5x105 MDCK cells per well were seeded 24 h before infection. Harvested virus was 

diluted in a 10-fold serial dilution in wash buffer and added to cells. Cells were incubated with 

virus for 1 h. Virus was removed from cells and replaced with agar overlay. Infected cells were 

incubated for 48 h at 37°C and 10% CO2. Immunostaining of plaques was performed with anti-

NP antibody, and plaques were visually counted and plaque size measured using a Nikon 

SMZ1500 microscope. 

 

HA expression in mammalian cells 

HA variants were cloned into the JB991 plasmid, kindly provided by J. Bloom (University of 

Washington, Seattle), that has a CMV promoter, a GFP reporter, and an ampicillin selection 

marker. HA clones were transiently expressed in 293T. Cells were harvested 24 h post-

transfection, washed and resuspended in isotonic buffer (15 mM MOPS, 145 mM NaCl, 2.7 mM 

KCl, 4 mM CaCl2 pH 7.4. 2% heat-inactivated FBS). Cells were stained with rabbit HA antibody 

for 1 h at room temperature followed by Alexa Fluor 647 goat anti-rabbit IgG secondary 

antibody. Stained cells were washed, resuspended in isotonic buffer and analyzed on a BD 

FACSCalibur. Data analysis was conducted using the FlowJo data analysis software package. 

 

Studying cellular localization using immunofluorescence microscopy 

HA variants were cloned into the JB991 plasmid and transiently expressed in 293T. At 24 h post-

transfection, cells were fixed using 4% paraformaldehyde in PBS and stained with influenza A 

virus H1N1 HA primary antibody, followed by Alexa Fluor 647 secondary antibody, anti-
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calreticulin antibody and Alexa Fluor 549 secondary antibody. Images were acquired using a 

Nikon Eclipse Ni-U microscope at 40x magnification using NIS-Elements imaging software 

(version 4.13). 

 

Western blot analysis 

HA variants were transiently expressed in 293T cells. Cells were washed and lysis buffer 

supplemented with PMSF was added to cells and incubated for 15 mins at 25°C. Cells were then 

scraped from wells and centrifuged at 1200 rpm for 2 mins. Cell lysates were collected and 

stored at -80°C. 20µg of total protein was loaded per well and blotted using HA antibody, 

calreticulin antibody and alpha-actin antibody.  
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