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Emergency departments (EDs) are seeking ways to utilize existing resources more efficiently as they face rising numbers of patient
visits. This study explored the impact on patient wait times and nursing resource demand from the addition of a fast track, or
separate unit for low-acuity patients, in the ED using a queue-based Monte Carlo simulation in MATLAB. The model integrated
principles of queueing theory and expanded the discrete event simulation to account for time-based arrival rates. Additionally,
the ED occupancy and nursing resource demand were modeled and analyzed using the Emergency Severity Index (ESI)
levels of patients, rather than the number of beds in the department. Simulation results indicated that the addition of a
separate fast track with an additional nurse reduced overall median wait times by 35.8± 2.2 percent and reduced average
nursing resource demand in the main ED during hours of operation. This novel modeling approach may be easily
disseminated and informs hospital decision-makers of the impact of implementing a fast track or similar system on both
patient wait times and acuity-based nursing resource demand.

1. Introduction

As health care reform is implemented across the United
States, the total number of emergency department (ED) visits
is rising [1, 2]. While evidence suggests that the Affordable
Care Act may increase overall reimbursement for low-
income cases, such as those covered by Medicaid or the
uninsured [3], the growth in visits has consequences beyond
the financial. Hospitals are challenged to serve an increasing
number of patients under limited resources and rising costs,
making it a priority to use resources effectively when caring
for patients. With more patients arriving at the ED, hospitals
observe increased wait times and increased patient length of
stay [4]. However, other negative effects include delay in care,
decreased patient satisfaction, and increased mortality [5, 6].
Other observable effects include patient beds in the hallways
and high nurse-to-patient ratios. Overall, these effects lower

the quality of care a hospital has to offer. When patients
perceive a lower quality of service or longer waiting times,
they are more likely to leave the ED without being seen
(LWBS) and go to other hospitals, resulting in negative per-
ceptions of the hospital and health risks for the patient [7–9].

The adoption of separate units within the ED for low-
acuity patients, often referred to as “fast tracks,” has been
supported by experts and national organizations within
emergency medicine [10–12]. Addition of a fast track has
also been reported to increase patient satisfaction [13]. For
hospitals that use the ESI scoring for triage, most patients
triaged with an ESI level 4 or 5 are evaluated and treated in
the fast track, while other patients with more severe cases
are seen in the main ED [14, 15]. While these fast tracks have
been implemented in many EDs nationwide, scientific
information remains limited with regard to specific criteria
and methods to effectively evaluate the need for fast track
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implementation within a specific ED [10]. Issues such as
total ED patient volume, proportion of low-acuity patients,
optimal time of day for implementation, and cost-benefit
analysis have been cited as specific areas lacking in the
current body of research [10].

Given the limitations of available published data, and
given the flexibility of computer simulation, we felt that
modeling would provide an important mechanism to sup-
port decision making regarding fast track implementation
in one of our hospitals. We developed a simulation model
that expands upon the fundamental queueing model to
account for various real-life factors such as priority queueing
and dynamic arrivals, in order to create an accurate model of
ED flow with or without the addition of a fast track. Addi-
tionally, our simulation models ED capacity by incorporating
patients’ Emergency Severity Index (ESI) levels [16] and
the number of nurses on each shift to determine current
occupancy and available capacity. This essential architec-
ture allows the simulation to evaluate the nursing resource
demand within the department from an overall patient
severity perspective, rather than the number of beds occu-
pied, which is a typical variable in most ED capacity
models [10, 17, 18]. Of note, unlike nursing in our ED,
licensed independent providers—physicians and advanced
practice providers (APPs)—were less resource constrained
at the time of modeling. ED leadership was confident that
there was capacity in this group to accommodate more
patients and that nursing was the constrained personnel
resource. Nursing was therefore the personnel factor evalu-
ated in this particular model; other personnel constraints
such as providers may be evaluated at a later time or another
institution by adjusting the resources in the simulation.

Queueing theory is the mathematical modeling of queues
or waiting lines [19]. It has frequently been utilized in hospi-
tal analysis and simulation, as its simple structure easily eval-
uates arrivals, waiting times, and service times [17, 20, 21].
Queueing theory may be combined with Monte Carlo simu-
lation or discrete event simulation to produce numerical
results for complex models [19]. However, simple queueing
models do not account for dynamic arrival rates, different
service times, and other characteristics of the ED.

A variety of other simulation techniques have also been
used to model and evaluate ED fast tracks. A 2015 study used
an agent-based simulation, which models the actions/inter-
actions of independent agents, to evaluate fast track strategies
in order to reduce wait times in a hospital ED [22]. Discrete
event simulation, which models the system as a series of
distinct events over time, was used in a 1995 study to model
the impact of a fast track on patient wait times [18]. A similar
discrete event simulation was used in a 2008 study to evaluate
buffer concepts such as a fast track [23]. While these studies
have successfully modeled a fast track in the ED, they
involved building highly complex models that lack the
simplicity of a queueing system. They also do not report the
impact on health care provider resource demand, particularly
as it relates to patient acuity.

For our simulation case site, the addition of a separate
fast track reduced wait times for low-acuity patients with
little or no impact on the wait times of other patients and

without increasing nursing resource demand. Beyond this
study, we believe that the flexibility of the model’s discrete
event architecture and its basis in queueing theory enables
it to be applied to other EDs with different staffing numbers,
arrival rates, and/or service times. Additionally, the model
enabled us to optimize the fast track hours of operation,
staffing requirements, and nursing resource demand to have
the largest impact on patient wait times without negatively
affecting the quality of service.

2. Methods

2.1. Setting and Data Sources. The case site of this study was a
two-campus, private, nonprofit medical center in central
Massachusetts. Between the two campuses, there are over
750 licensed beds and almost 4000 active medical staff and
nurses. The two EDs together see over 130,000 patients per
year. The smaller one of the two campuses, campus A,
accounts for approximately 40 percent of the total ED visits.
The ED at campus B opened a unit dedicated to low-acuity
patients, and campus A was interested in the implications
of opening a similar fast track unit, “East Pod,”multiple days
a week. The simulation model was built to model the ED at
campus A.

We obtained deidentified data from the hospital ED’s
electronic health record (EHR) and management tool (Picis
ED PulseCheck, Wakefield, MA), including major time-
stamps for each patient during their visit in addition to the
patient’s recorded ESI level. Relevant timestamps included
time of arrival, arrival time in the room, and time of depar-
ture. During data abstraction and validation, we excluded
duplicate records, patients who were dead on arrival (DOA),
and records that did not contain arrival time, departure time,
or ESI level. These exclusions accounted for less than 1% of
data received. This studywas approved by the Princeton Insti-
tutional Review Board (Princeton, NJ) (Princeton University
IRB no. 7347).

2.2. Model Design. Prior to model building, we performed
descriptive statistics on the patient records to determine
average arrival rates by ESI, hour of day, and day of week
using statistical functions in MATLAB. The distributions
of current wait and service times were also computed for
each ESI. Additionally, we evaluated the relationship between
LWBS rate and time spent in the waiting room using
regression models.

The model integrated elements of discrete event simula-
tion with queueing theory to more accurately represent the
variations in a hospital ED. It was built in MATLAB due
to the programming language’s ease of vector and matrix
operations, simple data importation/exportation tools, and
native support of advanced mathematical functions. How-
ever, the authors acknowledge that other programming
languages may be utilized to build similar models due to the
discrete nature of the queueing model. Please see Appendix
A for more details regarding this particular model structure
in MATLAB.

A multiphase queueing system best described the patient
flow process. Each patient first entered a triage/registration
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queue (first-in, first-out) and was then put into either the
regular ED queue or the fast track queue (first-come, first-
served) as shown in Figure 1. Arrivals followed a Poisson
process, which is described in detail in Appendix B.

Patients in the main ED queue were admitted by priority,
lowest ESI first. The model assumed that priority is always
maintained, regardless of the total wait times of patients in
the queue.

To model nursing resource demand, the simulation
assumed that there are five times as many service providers
available as there are nurses. The ESI score of a patient deter-
mined the number of providers he/she needs (see Table 1).
These ratios were determined through staff feedback.

Upon each patient’s arrival, the model determined the
number of required providers and the earliest time that the
number of providers is available. Providers were made
available after the previous patient departed the ED plus a
short delay for cleaning purposes. If the time of availability
was after the patient’s arrival, they were added to a waiting
queue, which was admitted by priority.

If a patient had an ESI level of 1 or 2, or if there were more
than 5 patients in the waiting queue, the number of providers
available was increased to admit the patient with highest
priority, as indicated by staff feedback and trends in historical
data. When the patient left, the number of providers in the
model returned to its original state. See Figure 2 for the
model’s decision process for admission.

The model used a left without being seen (LWBS) regres-
sion fit from campus A’s historical data for wait times to
model a patient’s probability of LWBS.

A variety of simulation scenarios were evaluated, explor-
ing variable nurse scheduling, fast track hours of operation,
and fast track days of operation. The “current state” simu-
lation used the current nurse schedule without a fast track
in operation.

The primary outcome metrics for this study were patient
wait time and nursing resource demand.

3. Results

3.1. Current State Analysis. Campus A saw 39148 ED visits
from June 1, 2014, to May 31, 2015. Approximately 57
percent of patients were female, and 1.70 percent of these
patients were LWBS. The median recorded wait time was less
than 5 minutes for non-LWBS patients, but nearly 75
minutes for LWBS patients. The median overall length of
stay was 3.78 hours. Approximately 30 percent of all patients
have ESI levels of 4 or 5 and are fast track eligible. The
percentage of LWBS patients was the highest among ESI-4
and ESI-5 patients. See Table 2 for details.

Campus A hourly arrivals followed a similar trend across
all ESI levels (Figure 3). Peak hours of operation ranged from
9:00 am to 5:00 pm, and weekdays saw more patients on
average than weekends.

3.2. Monte Carlo Analysis. The model generated 300 sets of
simulation data for each simulation scenario (see Table 3
for an abbreviated list of scenarios). Additional, nonsignifi-
cant scenario results are not discussed here for the sake of
brevity. For each set, consisting of 365 days worth of arrivals,
the model recorded the median wait time, maximum wait
time, and LWBS rate.

A Student t-test (level of signif icance = 0 05) verified that
each simulation scenario exhibited statistically significant
median wait times from the current state. There was no sig-
nificant difference between observed maximum wait times.
While there was a significant difference between LWBS rates
of the current states and the other simulation scenarios, the
current LWBS rate of the hospital was low enough that any
impact was negligible and highly variable.

The model’s wait time results varied from the historical
data due to the smoothing effect on arrivals from using
average arrival rates in the simulation. However, even across
different arrival sets, implementing a fast track had a signifi-
cant and consistent effect on median wait times, as shown in
Table 3, which is ordered from the greatest to least percent
reduction in median wait time.

Within a typical scenario, the addition of a fast track
lowered median wait times for ESI level 4 and 5 patients. If
an additional nurse was added to cover the fast track, the
median wait time was also lower for ESI-3 patients. If the fast
track nurse was reassigned from the main ED, the median
wait time for ESI-3 patients increased slightly (see Table 4).

Departure

Emergency department
(Non-fast track)

FCFS, multiple servers 

Patient arrives

Initial triage and
registration

FIFO, 1 server
Poisson arrivals 

Fast track
FCFS, 1 server

Figure 1: Emergency department queueing system.

Table 1: Provider-to-patient ratios.

Patient ESI level Number of providers

ESI-1 5

ESI-2 4

ESI-3 2

ESI-4 1

ESI-5 1
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Figure 4 describes the average nursing resource demand
or the average total number of simulation providers required
at each hour of the day divided by the number of nurses on
staff at that time. The fast track reduced the nursing demand
during hours a nurse is added in the fast track. Reassigning
one of the ED nurses to the fast track resulted in a very slight
increase in nursing resource demand.

4. Discussion

This report describes a novel modeling approach to provide
data to support fast track implementation decision making
in an ED. In the model’s simulation of our institution, the
results indicated that the addition of a fast track during peak
ED patient volume hours may reduce median patient wait
times by approximately 35 percent and over 70 percent for
the ESI-4 and ESI-5 patients. Lower wait times correlated with
improved ED throughput overall. However, the increased
throughput did not correlate with significant increased

nursing resource demand. Interestingly, the simulated maxi-
mum wait times were not significantly different for the fast
track implementation scenario compared to the current state.
This observationmay indicate that while fast track implemen-
tation benefits throughput in usual operations, it may not be
effective on its own as a solution for extreme crowding in
the ED.

Based on the results of this novel modeling approach, we
have begun work to implement a fast track at the campus A
hospital. We plan to open the unit during the observed times
of high census. It is anticipated to contain five beds, requiring
the addition of one nurse. An advanced practice provider will
shift to the area during times that it is open. Some ESI-3
patients may also be considered for the area, dependent upon
patient characteristics and the current occupancy of the area.
Medications and other supplies will be moved within the unit
to be easily accessible.

Based on our experience, we believe our modeling
strategy to be a promising mechanism to support fast track
implementation decision making. While our model has only
been studied at a single site, the model’s flexibility enables it
to be generalized to other EDs. In this regard, the model does
have some limitations that warrant discussion. The model
necessarily includes some assumptions; however, these gen-
erally were designed to conservatively impact results. First,
the model assumes that the distribution of service times, as
fit to historical data, remains the same. In practice, it is likely
that separating low- and high-acuity patients will lead to
greater efficiency in the treatment process, reducing the aver-
age service time. The model also does not account for the
flexibility the ED staff has in choosing to which unit patients

What is the patient’s ESI?

Admit to regular ED
immediately, regardless

of patient census 

Is the fast track open?

ESI-1 or -2 ESI-4 or -5

Is the regular ED full? Is the fast track full?

ESI-3

No Yes

NoYes

Admit to fast
track 

Have patient
wait until ED
provider(s)
available 

NoYes

Are there
more than
5 patients
waiting? 

Admit to
regular ED 

Admit patient
from wait

queue with
highest priority 

Yes No

Have patient
wait until ED
provider(s)
available 

Figure 2: Model decision tree for ED/fast track admission.

Table 2: Population metrics.

Non-LWBS count (%) LWBS count (%) Total count (%)

ESI-1 78 (0.20%) 0 (0%) 78 (0.20%)

ESI-2 6958 (17.77%) 32 (0.08%) 6990 (17.86%)

ESI-3 19477 (49.75%) 317 (0.81%) 19794 (50.56%)

ESI-4 9954 (25.43%) 243 (0.62%) 10197 (26.05%)

ESI-5 2015 (5.15%) 72 (0.18%) 2087 (5.33%)

Total 38482 (98.30%) 664 (1.70%) 39146 (100%)
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should go and when a patient should be admitted. In the
model, this resulted in a few outlier cases of fast track patients
with very high wait times. In practice, ED staff would have
the flexibility to balance the load between the two units. In
other words, ED staff may direct low-acuity patients to the
main ED if it is less busy than the fast track on a given day,
or they may direct some ESI-3 cases to the fast track for care,
if necessary.

It is important to note that a potential limitation of our
model’s generalizability is that it did not directly include phy-
sician and advanced practice provider resources for practical
reasons described previously. Based on the ED leadership’s

assessment of the current state at the time of this study, no
additional independent providers were anticipated to be
required should a fast track be opened, only that one may
be shifted to that area within the current provider staffing
model. Therefore in this specific hospital study, the limiting
personnel factor in the model was the number of nurses. At
other institutions in which the staffing constraints differ from
the case site (or if the staffing constraints change at this
institution in the future), the model may be adjusted easily
to reflect whichever group or, if necessary, groups of staff
act as a limiting factor. The limiting resource method we have
proposed allows one to study the queue dynamics without
allowing the results to be overly influenced by the specific
personnel constraints of any one hospital. For hospitals that
may require multiple personnel constraints to be considered,
the queueing model may be applied in successive phases,
with a number of providers equivalent to each limited
resource, to preserve its ease of build and analysis. We believe
that the principles of our novel modeling technique are gen-
eralizable, given the feasibility of simulation parameter
adjustments reflecting local personnel resource constraints.

Another potential limitation of our modeling was that it
did not directly account for the potential for variability in
the number of patients per hour seen in the main ED versus
the fast track area. While it is intuitive that patients with
lower acuity will likely have faster turnover, we had no prior
experience upon which to estimate a differential patient per
hour turnover. In the absence of data to estimate this, we felt
that the variable number of providers required to care for a
patient based on ESI score as reported by ED staff was a
suitable surrogate for this effect in our modeling.

While this model uses a similar structure to prior discrete
event simulations and notwithstanding the limitations
discussed, it offers additional insight into the effects of a fast
track installation, particularly with regard to nursing resource
demand. Previous studies saw a reduction in wait times of
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Figure 3: Average hourly arrivals by ESI for all days (campus A).

Table 3: Average percent reduction in observed median wait time
from current state.

Scenario
Average percent

reduction (%) inmedian
wait time± SD

FT nurse added, 7 days, 12 pm–8 pm 35.8± 2.2
FT nurse added, weekdays, 12 pm–8 pm 29.1± 2.2
FT nurse reassigned, 7 days, 12 pm–8 pm 24.6± 2.3
Additional ED nurse in ED, 7 days,
12 pm–8 pm

13.6± 2.4

FT nurse added, Mondays, 12 pm–8 pm 8.9± 2.3

Table 4: Median wait time by ESI and scenario.

Scenario ESI-3 ESI-4 ESI-5

Current state 21.46 16.46 16.73

FT nurse added, 7 days, 12 pm–8 pm 14.30 4.12 4.41

FT nurse added, weekdays, 12 pm–8 pm 16.55 5.27 5.49

FT nurse reassigned, 7 days, 12 pm–8 pm 21.73 4.25 4.73
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approximately 20–25 percent [18, 23], while ours saw a
greater reduction which may be due to differences in patient
population. Additionally, our model had the additional abil-
ity to evaluate nursing resource demand based on patient
acuity, which those models did not analyze beyond bed
capacity. When compared to previous agent-based simula-
tions of the emergency department, its basis in queueing
theory enabled this model to have a more simple structure
that does not necessarily require timing each individual step
of the patient care process for each agent but instead allows
it to be grouped into a few large queues. This simplified
queueing structure allows the model to be easily disseminated
and replicated in other hospital settings.

5. Conclusions

With the influx of patients from growing populations and
expanding health care coverage into EDs, hospitals face
pressure to efficiently use and adapt existing resources while
maintaining quality of care. Mathematical modeling and
simulation offer efficient, relatively inexpensive methods to
inform and evaluate proposed solutions to crowding, such
as a fast track for low-acuity patients. While a number of
studies have measured the impact of a fast track at a case site
through implementation, these cases may not transfer easily
to other hospitals seeking to make a similar decision. In pre-
vious simulation studies, the models have effectively analyzed
the effect of the fast track on wait times, but did not explore
how increased throughput affected ED staff resource demand.

In this paper, we have expanded the simple queueing
model with discrete event simulation, accounting for sto-
chastic arrival rates and service times, which enabled it to
calculate wait times. More importantly, the model evaluated
the space available in the ED based on the current nursing
resource demand, determined using the ESI levels of patients.

The results indicated that the implementation of a fast track
can reduce patient wait times without increasing nursing
resource demand.

Future work may be done in exploring and modeling
“worst case” scenarios and potential solutions. While the
queueing model presented here is relatively simple and easy
to apply tootherhospitals, themodelmaybe expandedbyadd-
ing additional units or dividingup the service time into smaller
blocks such as bedside registration, treatment, and transporta-
tion to radiology. As the model’s foundation is in queueing
theory, it may easily be applied to other health care settings
that involve lines to see service providers, particularly in cases
where one provider services multiple patients at one time.

This study provides evidence that a queue-based simula-
tion serves as a useful tool in evaluating the need and potential
impact of implementing a fast track in a hospital ED on
patient wait times and quality of service. This modeling
approach may easily be applied to other hospitals nationwide
in order to evaluate changes to the ED without the cost and
time of a physical case study.

Appendix

A. Building the Model in MATLAB

For the initial registration queue, a vector of time between
arrivals was generated using a time-dependent Poisson
process. This vector was then transformed into a vector of
all arrival times relative to t = 0. ESI was probabilistically
assigned to each arrival in a corresponding vector. Based on
the ESI of each arrival, a vector of corresponding physician
service times was generated. All arrivals then used a tradi-
tional first-in, first-out queueing model [17] to calculate
arrival times to their assigned ED queue, as determined by
ESI, time of day, and day of week.

Current state
FT nurse added, 7 days

FT nurse added, weekdays
FT nurse reassigned, 7 days
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Figure 4: Average nursing resource demand by hour during hours of fast track operation.
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The fast track queue operated as a simple first-come,
first-served (FCFS) queue with one nurse, or the equivalent
of five service providers. Using the given vectors of arrivals
and service times, the model could progress through each
arrival and calculate the patient’s wait time. Wait time was
calculated by sorting a vector of departure times associated
with each service provider, then updating the departure
times for the next available provider(s), with the number
of providers required as determined by ESI.

The regular ED queue was FCFS by priority as deter-
mined by ESI. It operated much like the fast track queue,
except the program also tracks the set of patients waiting,
and sorts this vector by ESI before their departure times
are calculated.

B. Mathematical Methodology of Poisson
Process Arrivals

The queueing systems assumed the patient population to
be infinite. Arrivals to the registration queue followed a
nonstationary Poisson process with arrival rate λ t , and
service times were exponentially distributed with average
μ=5 minutes. In the traditional queueing model, λ is
not time dependent, but this was adjusted to account for
the hospital’s hourly arrival curve. ESI score was assigned
by historical probability. The arrivals to the ED/FT queues
followed after the departure from registration with a short
delay, and the service times followed a gamma distribution
with shape k(e) and scale θ(e), which are dependent on
the patient’s ESI score.

Let T be the random time between successive arrivals at
the triage/registration queue [19]. The cumulative distribu-
tion function of T is given by

ℙ T ≤ t = 1− exp −λt B 1

Let exponential random variables X1, X2,… represent
the time between arrivals. The ith arrival is Ai = Ai−1 + Xi.
When Xi is simulated using uniform random variable Ui,

Xi = −
ln U
λ

B 2

Therefore, each arrival time Ai was described as

Ai = Ai−1 + Xi B 3

for i > 0 and where A0 = 0.
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