
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

GSBS Dissertations and Theses Graduate School of Biomedical Sciences 

2017-11-13 

Characterization of Adipose Tissue Inflammation in Alcoholic Characterization of Adipose Tissue Inflammation in Alcoholic 

Liver Disease Liver Disease 

Melissa A. Fulham 
University of Massachusetts Medical School 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/gsbs_diss 

 Part of the Digestive System Diseases Commons, and the Nutritional and Metabolic Diseases 

Commons 

Repository Citation Repository Citation 
Fulham MA. (2017). Characterization of Adipose Tissue Inflammation in Alcoholic Liver Disease. GSBS 
Dissertations and Theses. https://doi.org/10.13028/M2V968. Retrieved from 
https://escholarship.umassmed.edu/gsbs_diss/940 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in GSBS Dissertations and 
Theses by an authorized administrator of eScholarship@UMMS. For more information, please contact 
Lisa.Palmer@umassmed.edu. 

https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/gsbs_diss
https://escholarship.umassmed.edu/gsbs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/gsbs_diss?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/986?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1003?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1003?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.13028/M2V968
https://escholarship.umassmed.edu/gsbs_diss/940?utm_source=escholarship.umassmed.edu%2Fgsbs_diss%2F940&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


 

CHARACTERIZATION OF ADIPOSE TISSUE INFLAMMATION IN 
ALCOHOLIC LIVER DISEASE 

A Dissertation Presented 

By	

MELISSA ANN FULHAM 

Submitted to the Faculty of the 	
University of Massachusetts Graduate School of Biomedical 

Sciences, Worcester  
in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

NOVEMBER 13, 2017 

INTERDISCIPLINARY GRADUATE PROGRAM  



 

CHARACTERIZATION OF ADIPOSE TISSUE INFLAMMATION IN 
ALCOHOLIC LIVER DISEASE 

A Dissertation Presented  

By 

MELISSA ANN FULHAM 

This work was undertaken in the Graduate School of Biomedical 
Sciences  

Interdisciplinary Graduate Program 

Under the mentorship of 

Pranoti Mandrekar, Ph.D., Thesis Advisor 

Brian Lewis, Ph.D., Member of Committee 

Roger Davis, Ph.D., Member of Committee 

Evelyn Kurt-Jones, Ph.D., Member of Committee 

Cynthia Ju, Ph.D., External Member of Committee 

Silvia Corvera, M.D., Chair of Committee 

Anthony Carruthers, Ph.D., 	

Dean of the Graduate School of Biomedical Sciences 

November 13, 2017



 iii 

Dedication 

This work is dedicated to my late aunt, Maureen Boyden. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With pride 
  



 iv 

Acknowledgements 

 First and foremost, I have to thank my advisor, Dr. Pranoti Mandrekar. 

She welcomed me into her lab and encouraged me to pursue this project, which 

challenged me every day. I have learned so much during my time in her lab and 

am a better, more independent scientist because of it. I am truly grateful for her 

support. 

 I thank Arlene Lim, our lab manager. Her technical expertise is invaluable 

and I am immensely thankful for all of the assistance she has given me during 

my time in the lab, as well as the friendship and camaraderie we have shared. I 

also thank the current members of the lab, Dr. Asmita Choudhury and Dr. 

Anuradha Ratna for their help with experiments and moral support. I would also 

like to thank former members of the lab, Dr. Sujatha Muralidharan and Dr. 

Meghna Talekar for their help and wisdom as well. I am indebted to two former 

lab members, Dr. Aditya Ambade and Donna Catalano, who both helped to train 

me when I joined the lab and continue to give me advice. 

 I would like to thank the Department of Medicine, including the many 

colleagues I have gained during my time here. I thank our lab neighbors, the 

members of Dr. Gyongyi Szabo’s lab for their experimental advice as well as use 

of their equipment, which was essential for my project. I thank the members of 

Dr. John Harris’ lab, especially Dr. Jillian Richmond and James Strassner for 

their assistance with my flow cytometry experiments. 



 v 

 I thank the Department of Animal Medicine, including Melissa Little and 

Greg Cottle. I would not have been able to do my experiments without their vital 

help. I would also like to thank Dr. Carol Schrader from the Flow Cytometry Core 

for her assistance in designing my flow cytometry panels.  

 I thank the faculty who have served on my TRAC and have guided my 

journey here in graduate school: Dr. Roger Davis, Dr. Kate Fitzgerald, Dr. Brian 

Lewis, my TRAC chair, and Dr. Silvia Corvera, my defense chair. I thank Dr. 

Evelyn Kurt-Jones for joining the group for my defense. I would also like to thank 

Dr. Cynthia Ju for traveling to UMass to serve as the external examiner for my 

defense. 

 I want to thank all of the friends I have met here, especially the gang from 

lunch. The lunch table has seen many of us come and go over the years, but it 

has always been a spot for all of us to commiserate about the struggles of grad 

school and fantasy football.  

I thank my friend and former roommate, Dr. Sally Trabucco. We share a 

passion for baking and science; the former played a big part in handling the ups 

and downs of the latter. 

 My parents, Mark and Martha, my sister Meghan and her husband Marc, 

and my sister Mollie deserve the biggest thank you. Their unconditional love and 

support have carried me through this whole journey. I also want to thank the rest 

of my family, especially my grandparents, Robert and Janice. I am grateful to my 



 vi 

friend Lauren Naujalis for her unending support and always helping me to find 

happiness and joy in all that I do. 

 Finally, I want to thank my fiancé, Dr. Brendan Hilbert. I don’t know how I 

would have made it through all of this without your support. I can’t wait for our 

next adventure. 

 

  



 vii 

Abstract 

Adipose tissue inflammation has an impact on liver health and it has been 

demonstrated that chronic alcohol consumption leads to the expression of pro-

inflammatory markers in the adipose tissue. A thorough characterization of 

alcohol-induced adipose inflammation is lacking, and is important to understand 

in order to identify immune-related mechanisms that drive this phenomenon. 

Current therapeutic regimens for alcoholic liver disease are ineffective. It is 

critical to understand how other organs influence liver injury in this disease when 

developing novel and effective therapies in the future. 

Alcoholic liver disease exhibits a sexual dimorphism; women are more 

susceptible to liver injury than men and the same paradigm exists in rodent 

models. Here, I demonstrate that female mice have greater alcohol-induced 

adipose tissue inflammation than male mice, evidenced by greater expression of 

pro-inflammatory cytokines and cell markers. Further, female mice also exhibit 

higher expression of toll-like receptor genes in the adipose tissue, suggesting a 

potential role for the innate immune system in alcohol-induced adipose 

inflammation. 

 Toll-like receptor 4 (TLR4) has been demonstrated to drive inflammation in 

both the liver and adipose tissue. I used both germline and conditional knockouts 

of Tlr4 to characterize alcohol-induced changes in the immune cell composition 

of adipose tissue. Alcohol increased the number of pro-inflammatory adipose 

tissue macrophages. This macrophage phenotype switching is partially 



 viii 

dependent on TLR4; germline, but not myeloid-specific, Tlr4-deletion prevents 

macrophage phenotype switching. Overall, my work demonstrates that alcohol-

induced adipose tissue inflammation is related to liver injury and that TLR4 

contributes to adipose macrophage phenotype switching.  
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CHAPTER I 

Introduction  
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Alcoholic Liver Disease 

Epidemiology 

Prevalence of Alcoholic Liver Disease 

 The ubiquitous consumption of alcohol in our society has severe health 

consequences. According to the World Health Organization, in the United States 

approximately 25% of adult drinkers exhibit heavy, episodic drinking (at least 60 

grams of ethanol consumed in one occasion) (1). 90% of alcoholics, who drink 

more than 60 grams of ethanol per day, will develop the first stage of alcoholic 

liver disease (ALD): steatosis (2, 3). In the previous decade, the number of 

hospitalizations due to alcoholic hepatitis (AH) rose from 249,884 cases in 2002 

up to 326,403 cases in 2010. Over the same time period, the cost of 

hospitalization increased from $25,276 up to $40,870, despite the length of 

hospital stay remaining approximately the same (6.6 days in 2002 down to 5.9 

days in 2010) (4). ALD is a large healthcare and financial burden for our 

population. 

Alcohol-related deaths 

 Alcohol has been connected to a number of different types of mortality and 

was responsible for 30,722 deaths in 2014 in the United States (excluding 

accidents and homicides) (5). This work will focus on those relating to ALD. 

Approximately 40% of AH patients die within 6 months of disease onset (6). 

Cirrhosis, which is the end-stage of ALD, is the twelfth leading cause of death in 

the United States and among those 37,890 deaths in 2013, 48% were alcohol-
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related (7). Liver transplant is the only treatment option for cirrhosis patients and 

ALD patients account for approximately 20% of all liver transplants in the United 

States (8-10). Globally, alcohol was attributed to 80,600 deaths due to liver 

cancers, out of a total 752,100 liver related cancer deaths in 2010 (11). Data 

from the Surveillance, Epidemiology, and End Results (SEER) Program reveals 

that alcohol was a contributing factor in 21.2% of hepatocellular carcinoma 

(HCC) cases in the United States during the 1990’s (12). 

Sexual dimorphism 

 There are a number of risk factors and co-morbidities associated with 

ALD. First and foremost, drinking patterns are heavily related to development of 

ALD. Drinking outside of meals and binge drinking are both associated with an 

increased risk of ALD (3). Genetics can also influence ALD risk, with 

polymorphisms in the enzymes that metabolize ethanol (ADH, ALDH, and 

CYP2E1) increasing the risk of developing ALD (3). Lifestyle factors (i.e. 

unhealthy diet, smoking) also contribute to disease pathogenesis, as does the 

development of obesity, and other liver pathologies like Hepatitis C infection (2, 

13). In addition to the lifestyle and genetic factors, one of the clearest risk factors 

for ALD is biological sex. ALD demonstrates a sexual dimorphism; women are 

more susceptible to liver injury than men despite consuming less alcohol (2, 14, 

15). The risk for developing ALD and alcoholic cirrhosis increases for women 

when 7-13 alcoholic drinks/week are consumed and for men when 14-27 

alcoholic drinks/week are consumed. At high levels of alcohol consumption men 
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have a relative risk factor of 7 for developing cirrhosis while women have a 

relative risk factor of 17 (16). Additionally, being a female is identified as an 

independent risk factor for developing acute AH and cirrhosis (13). 

Three factors are thought to contribute to this dimorphism: first pass 

metabolism of ethanol, body water content, and sex hormones. Men have a 

greater first pass metabolism than women. Blood alcohol content (BAC) after oral 

consumption of alcohol is much lower than BAC after intravenous (I.V.) 

administration of alcohol in both men and women, which demonstrates that a 

large amount of ethanol is metabolized before reaching circulation (first pass 

metabolism). The oral BAC in men was much lower than the oral BAC in women, 

which means that men metabolize greater amounts of ethanol than women (17, 

18). This is attributed to men having greater gastric ADH activity, thereby 

metabolizing more ethanol in the stomach than women (18). Women also have a 

smaller calculated distribution volume of ethanol than men. (17, 19). This is due 

to having smaller body water content than men because of a greater body fat 

content (19). The translocation of endotoxin from the gut to the liver is considered 

to be a crucial step in disease pathogenesis (20). Estrogen supplementation 

causes endotoxin-induced mortality in rats that received a sub-lethal dose of LPS 

I.V. This is prevented when the liver resident macrophages, Kupffer cells (KCs), 

are depleted or when oral antibiotics are administered to deplete gut bacteria (21, 

22). Together, this demonstrates that the sexual dimorphism in ALD can be 

attributed, in part, to factors outside of the liver itself. 
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 This sexual dimorphism also occurs in rodent models. Female rats 

subjected to the intragastric feeding model develop greater alcohol-induced liver 

injury than male rats, based on higher serum AST values, greater hepatic 

steatosis, and a higher grade of liver inflammation (23, 24). Sex hormones have 

a clear impact on liver injury in this model. Alcohol-fed ovariectomized rats have 

reduced liver steatosis and liver inflammation when compared to normal, alcohol-

fed rats. Treating alcohol-fed, ovariectomized rats with 17, b-estradiol restores 

alcohol-induced liver injury (25). Interestingly, both estrogen and progesterone 

regulate expression of Cyp2e1 in the livers of female mice during the estrous 

cycle. Cyp2e1 expression is positively correlated with expression of the lipogenic 

factor Srebp1c (26). It is unknown, however, how sex steroids affect CYP2E1 in 

response to chronic alcohol consumption. This dimorphism is also evident in 

mice using the NIAAA model; alcohol-fed female mice have higher serum ALT 

and AST values than male mice (27). However, a thorough comparison of liver 

injury in this model is lacking.  

Altogether, these studies illustrate several possible reasons why women 

are more susceptible to ALD than men. However, they do not provide a complete 

picture and do not explore the potential role of other organs, like the adipose 

tissue, that are also impacted by chronic alcohol consumption. Therefore, other 

tissue and systems should be investigated to determine whether they also 

contribute to this dimorphism. 

Pathogenesis 



 
 

6 

Stages of liver injury 

 ALD represents a spectrum of liver injury. Most people who drink heavily 

(more than 60 grams of ethanol per day) usually will develop the first stage of 

ALD, steatosis (fatty liver), which is the accumulation of lipid within hepatocytes. 

It is reversible with alcohol abstinence (2, 3). 30% of drinkers will develop more 

severe injury, which includes fibrosis and cirrhosis (2, 3). 

 Fibrosis is a wound healing response marked by the accumulation of 

extracellular matrix proteins and collagen in the liver. The presence of a chronic 

insult, such as alcohol consumption, leads to continuous collagen production 

which can eventually progress to cirrhosis (28). Hepatic stellate cells (HSCs), 

which produce and deposit collagen, are activated by mediators released by 

hepatocytes and KCs in response to ethanol metabolism and inflammatory 

stimuli. (2, 28). About 20%-40% of heavy drinkers will develop some degree of 

fibrosis (14). 

 Around 10%-20% of heavy drinkers will develop cirrhosis, (14). Even with 

alcohol abstinence, 5%-15% of patients with liver fibrosis eventually progress to 

cirrhosis (3). The risk increases greatly in AH patients, as approximately half will 

go on to develop cirrhosis (3, 6). AH is a severe inflammatory reaction in the 

liver. Histological analysis of AH patients reveals the presence of neutrophils, 

which surround damaged hepatocytes (6, 29). Independent of developing 

cirrhosis, AH has a high mortality rate (6). 

Intestinal permeability 
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In addition to events in the liver, ALD pathogenesis also involves the 

gastrointestinal tract. Chronic alcohol consumption increases intestinal 

permeability, which allows for bacterial products, like lipopolysaccharide (LPS, 

endotoxin), to translocate to the liver (20). ALD patients with various stages of 

liver injury all had increased intestinal permeability when compared to healthy 

controls that consume low amounts of alcohol. This permeability is reversed after 

a week-long hospitalization, presumably due to the lack of alcohol consumption 

(30). Endotoxemia, the state of elevated circulating endotoxin, occurs in patients 

across the spectrum of ALD; however, there is no correlation between the level 

of endotoxin and the degree of liver injury (20). Not only does ethanol modulate 

intestinal permeability, it also sensitizes the liver to further insult. In mice, chronic 

alcohol consumption enhances TLR ligand-induced liver injury (31). Ethanol 

sensitizes KCs to LPS-mediated injury and hepatocytes to TNFa-mediated cell 

death (32, 33). Alcohol consumption enhances endotoxin translocation to the 

liver and endotoxin-mediated liver injury, both of which contribute to disease 

pathogenesis. 

Treatments 

Alcoholic hepatitis 

 The overall strategy for treatment of AH patients includes abstaining from 

drinking alcohol and treating the acute liver inflammation with corticosteroids (6). 

However, this regimen is not very effective. The mortality rate for AH is very high: 
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40% of patients with severe AH die within six months of disease onset (6, 14, 

34). 

For any patient with any stage of ALD, alcohol abstinence is crucial to 

care, symptom management, and reversal of liver injury (3). There are drugs that 

can be used to aid in alcohol abstinence, however some can be hepatotoxic, like 

disulfiram and acamprosate (2, 14). Baclofen has had some success in cirrhosis 

patients, but its impact on AH patients is unknown (2, 6, 14). Many patients are 

malnourished due to poor lifestyle choices and receive appropriate nutritional 

support (2, 6, 14). These strategies are pivotal in order for patients to recover, 

but they are not sufficient to resolve the inflammatory response in the liver. 

The use of corticosteroids to treat AH was proposed in the 1970’s; since 

then, there have been no new successful therapies developed (35). 

Prednisolone, a corticosteroid, is currently used to treat liver inflammation in 

severe AH patients. The impact of prednisolone on hepatitis patients is 

controversial; some studies indicate increased survival with the corticosteroid 

therapy while others have determined that it has no positive impact (2, 6). Re-

examining some of these data supports the use of prednisolone and it is the 

recommended treatment for AH patients by the American Association for the 

Study of Liver Diseases (2, 6, 34).  

Therapies targeting specific inflammatory mediators have also been tested 

for use in AH patients, with little success. Pentoxifylline, which inhibits the 

transcription of TNF, the gene that encodes the pro-inflammatory cytokine TNFa, 
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has mixed success in the clinic (2, 6, 34). Unfortunately, there is a subset of AH 

patients that do not respond to prednisolone or pentoxifylline therapy, therefore it 

is imperative that novel drugs are developed in order to treat these patients (36). 

Two anti-TNFa drugs, infliximab and etanercept, had promising results from 

small scale studies (2, 6). However, both drugs failed in larger, randomized trials 

because they led to increased infections and mortality in AH patients (37, 38). 

Other unsuccessful treatment strategies for AH patients include 

antioxidants to counteract the ROS generated by both ethanol metabolism and 

inflammation, as well as anabolic steroids to help increase muscle mass lost 

during corticosteroid treatment (2, 6).  

New potential therapies to control hepatic inflammation have emerged 

within the past two decades. The pro-inflammatory cytokine IL-1b is being 

considered as a potential therapeutic target. Anakinra and rilonacept, two 

different IL-1b inhibitors are currently in clinical trials for AH treatment (39). Other 

immune-centric therapies that are currently under consideration for AH treatment 

include the manipulation of the gut microbiome via probiotics and antibiotics, as 

well as the use of hematopoietic growth factors to aid in liver regeneration (39). 

These trials offer hope of developing novel therapies for AH, however, it is 

important to continue to deepen our understanding of disease pathogenesis to 

guide logical therapeutic development. 

Advanced liver injury 



 
 

10 

There are limited options for treating patients with advanced liver disease. 

There are no approved drugs for the treatment of alcoholic fibrosis (2). Liver 

transplant is the only curative treatment option for patients with alcoholic cirrhosis 

(14). Without a transplant, many patients with decompensated liver injury will die 

in 5 years, even if they abstain from drinking alcohol (40). The use of liver 

transplants to treat patients with cirrhosis can be controversial due to perceived 

or actual recidivism rates and patient non-compliance (3). In fact, while many 

patients will consume alcohol after transplant, only a small number will re-

develop heavy drinking habits. Surprisingly, ALD patients who receive a 

transplant have similar survival rates to non-ALD liver transplant patients (2, 3). 

Overall, there is a scarcity of therapies to treat those with ALD. Therefore, we are 

obligated to deepen our understanding of disease pathogenesis so that new 

therapeutic targets can be discovered. 

Ethanol metabolism causes liver injury 

Ethanol metabolism generates ROS 

 Ethanol metabolism in hepatocytes directly contributes to liver injury. 

Ethanol is metabolized in a two-step process (Figure 1.1). Under normal 

conditions, the enzyme ADH metabolizes ethanol to acetaldehyde, which is 

subsequently metabolized to acetate by ALDH. The final product, acetate, 

spontaneously breaks down into water and carbon dioxide (41). However, during 

chronic alcohol consumption, CYP2E1 is the major enzyme that breaks down 

ethanol to acetaldehyde. This process produces ROS, which can lead to tissue   
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Figure 1.1: Ethanol metabolism. Ethanol molecules are broken down in a two-
step process. Under normal conditions, ADH converts ethanol to acetaldehyde. 
Then, ALDH breaks down acetaldehyde into acetate. In chronic alcohol conditions, 
CYP2E1 catalyzes the first step, which also produces ROS as a byproduct.  

Ethanol Acetaldehyde Acetate

ADH

ALDH

CYP2E1

ROS
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damage (41, 42). CYP2E1-mediated ROS production leads to the formation of 

the lipid peroxidation products MDA and 4-HNE, which are immunogenic (39, 41, 

43, 44). In hepatocytes, ROS generated by CYP2E1 activity causes ethanol-

mediated apoptosis, which can be prevented by inhibiting either CYP2E1 or 

caspases (45). In KCs, the increased presence of ROS enhances the response 

to LPS and leads to increased production of TNFa (46). Additionally, 

acetaldehyde molecules can form protein and DNA adducts (41, 42). Adduct 

formation as a result of ethanol metabolism can activate immune cells in the liver, 

such as T cells (47). 

Lipid metabolism  

Steatosis is the first stage in ALD pathogenesis and occurs due to the 

simultaneous upregulation of lipogenesis and downregulation of fatty acid 

oxidation (2). The metabolism of ethanol in hepatocytes results in the activation 

of SRE-promoters, the increase in nuclear translocation SREBP-1c, and, 

ultimately, activation of SREBP-1c target genes (48). SREBP-1c activates 

lipogenesis by activating target genes that promote fatty acid synthesis, like Fas 

and Acc (49). Alcohol-fed Srebf1-/- (SREBP-1c knockout) mice exhibit reduced 

hepatic steatosis and liver injury compared to alcohol-fed WT mice (50). This 

supports the notion that SREBP-1c activation is an important step in alcohol-

induced liver injury. 

 Recently, another lipogenic transcription has been identified in alcoholic 

steatosis. Carbohydrate response element-binding protein (ChREBP) binds to its 
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target promoter sequences, including lipogenic factors, in response to glucose 

(51). Alcohol administration via consecutive ethanol gavages increased the 

mRNA expression of the ChREBP gene (Mlxipl) as well as hepatic steatosis. The 

subsequent increase in ChREBP binding activity was dependent on the 

metabolism of ethanol via CYP2E1. Knockdown of ChREBP expression in 

hepatocytes was associated with decreased steatosis in the mice receiving 

alcohol, thereby alleviating liver injury. However, the knockdown of ChREBP also 

increased the mortality of these mice. This could be due to the dysregulation of 

ethanol metabolism due to greater circulating concentrations of ethanol and its 

metabolite, acetaldehyde (52). 

Ethanol, more specifically the metabolite acetaldehyde, inhibits the DNA-

binding activity of PPARa (53). PPARa binds to PPREs to activate b-oxidation of 

fatty acids via upregulation of its target genes, which include Acs and the Acad 

family (54). Alcohol-fed Ppara-/- mice have greater liver injury than WT mice (55). 

Importantly, treating alcohol-fed mice with a PPARa agonist reverses hepatic 

steatosis (56). Ethanol metabolism promotes the storage of lipids in hepatocytes 

by upregulating lipid synthesis via enhanced activation of SREBP-1c and 

ChREBP and downregulating lipid breakdown via inhibition of PPARa. 

Inflammation contributes to disease pathogenesis 

Macrophages 

 Along with the metabolic changes described above, the development of 

inflammation in the liver due to the interplay of immune cells and pro-
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inflammatory cytokines and chemokines also contributes to liver injury, which is 

summarized briefly in Figure 1.2. Macrophages, more specifically the liver 

resident KCs, are considered to be the most important immune cell type to ALD. 

In non-pathological conditions, they function to maintain liver homeostasis by 

clearing away damaged cells in the liver and microorganisms from the blood (20, 

39, 43, 57, 58). During ALD, gut permeability is increased which results in 

endotoxin migrating to the liver, which will then activate KCs (20). Chronic 

alcohol consumption increases the number of macrophages in the liver of 

humans (59). In mice, chronic alcohol consumption causes the infiltration of a 

heterogeneous macrophage population into the liver. One subset of these 

macrophages produces pro-inflammatory cytokines and chemokines that lead to 

further infiltration of immune cells. The other subset expresses genes that are 

involved in tissue remodeling and repair and also act to clear away apoptotic 

hepatocytes (60) Chronic alcohol exposure also increases the sensitivity of KCs 

to endotoxin injury, partially due to increased ROS (32, 46). KCs are a major 

source of many cytokines associated with ALD, including TNFa, IL-6, MCP-1, IL-

8 (CXCL1 in mouse), and IL-1b (35, 61). They also produce the anti-inflammatory 

cytokine IL-10 (35). The pro-inflammatory cytokines directly impact other liver cell 

types (i.e. hepatocytes and HSCs) and drive the recruitment of other immune 

cells (33, 39). Depleting KCs in rats prevents liver injury in the intragastric 

feeding model and greatly improves liver steatosis, inflammation, and necrosis 

(62). Sterilizing the gut with antibiotics also reduces liver injury in rats (63). The   
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Figure 1.2: Hepatic inflammation in ALD. A combination of ethanol metabolism 
and the presence of endotoxin activates the resident KCs to produce cytokines 
and chemokines. TNFa impacts hepatocytes directly by inducing steatosis and 
apoptosis. MCP-1 production leads to further infiltration and accumulation of 
macrophages into the liver. Neutrophils are recruited through two mechanisms: 
directly through IL-8/CXCL1 and indirectly through the production of IL-1b and 
recruitment of iNKT cells. Both neutrophils and Th17 cells produce IL-17, which 
promotes IL-8/CXCL1 production in HSCs. IL-22, IL-6, and IL-10 signal through 
STAT3 to promote liver regeneration and inhibit liver injury through resolution of 
inflammation. Macrophages produce both IL-6 and IL-10, but alcohol inhibits IL-6 
mediated STAT3 activation. The combination of inflammation and hepatic 
steatosis results in liver injury. 
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use of various genetic knockouts of genes important to macrophage function, 

specifically the TLR-signaling pathways or pro-inflammatory mediators, have 

further demonstrated that KCs contribute to ALD pathogenesis (64-67). However, 

these studies use models of early alcohol-induced liver injury, which do not fully 

recapitulate human disease. It remains to be determined how KCs impact liver 

injury in later stages of ALD (43, 68). Recently, the importance of the tissue 

regenerative functions of macrophages has been highlighted, and this process 

could be important for resolution of ALD (39, 60). 

Neutrophils 

 Neutrophil infiltration into the liver in a key feature of AH in humans (29). 

Neutrophils, like macrophages, are important for clearing bacteria and dead cells 

in order to promote tissue repair, however in ALD they damage hepatocytes and 

contribute to the pro-inflammatory state in the liver (43, 69). Up until recently, it 

was nearly impossible to recapitulate this in animal models (29, 67, 68). The 

addition of ethanol binges on top of a long-term chronic alcohol diet leads to 

neutrophil accumulation in the livers of mice, which provides a platform to 

investigate how neutrophils contribute to disease pathogenesis, particularly in 

later stage models (67, 68, 70). In the NIAAA model, the use of clodronate to 

deplete KCs reduces, but does not entirely ameliorate, liver injury (67). Depleting 

neutrophils reduces liver injury, but not steatosis (70). Together, these studies 

indicate that neutrophils are contributing to disease pathogenesis in models that 

employ an ethanol binge, which represent later stages of liver injury than 
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previous models. The development of these new models that exhibit neutrophil 

infiltration could prove to be useful in the creation of novel AH therapeutics. 

Interestingly, AH patients with severe neutrophil infiltration had better short-term 

survival than patients with only mild infiltration. Whether this was due to the 

severe infiltration representing an earlier stage of hepatitis or whether neutrophils 

were promoting tissue regeneration is unclear (71). 

Lymphocytes 

 The impact of alcohol on T cells is dichotomous. Chronic alcohol 

consumption reduces peripheral and splenic conventional T cells in humans and 

rodents, respectively (44, 72). Whereas neutrophils are the predominant 

infiltrating immune cell in AH, lymphocytes are the predominate infiltrate in 

alcoholic cirrhosis (73). Both CD4+ and CD8+ T cells are localized to necrotic and 

fibrotic areas in cirrhotic livers (74). T cells that infiltrate into the liver during ALD 

are less diverse than in other liver diseases, which could be a result of 

recognizing antigens generated by protein adducts, which are byproducts of 

ethanol metabolism (47). 

Th17 cells may contribute to liver injury. ALD patients have high levels of 

circulating IL-17, when compared to hepatitis C or autoimmune liver disease 

patients. IL-17+ cells are increased in areas of fibrosis in the livers of ALD, 

hepatitis C, and autoimmune patients. However, AH and autoimmune hepatitis 

patients had the highest number of IL-17+ cells in inflammatory infiltrates. The 

expression of IL-17 is co-localized with the expression of CD3 and MPO, which 
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indicates that T cells (Th17 cells) and neutrophils are producing IL-17, 

respectively. IL-17 promotes neutrophil infiltration into the liver, but in an indirect 

manner. HSCs express the receptor for IL-17 and upon stimulation with this 

cytokine, produce both IL-8 and Groa which induce neutrophil infiltration into the 

liver (75). 

 Natural killer cells are a type of lymphocyte that can produce cytokines 

and perform cytotoxic functions (76). NK cells have anti-fibrotic effects in 

chemical-induced fibrosis models via the killing of activated HSCs (39). Chronic 

alcohol decreases the number of NK cells in the liver in alcohol-fed mice and 

circulating NK cells are decreased in alcoholics (77-79). NK cells are also absent 

in the livers of ALD patients (74). Therefore, the alcohol-mediated decline in NK 

cells could promote the progression of fibrosis. The exact role of NK cells in 

alcoholic fibrosis remains unclear. 

 Natural killer T cells (NKT cells) reside in the liver and act as a bridge 

between the innate and adaptive immune response. NKT cells can respond to 

pathogen-associated molecular patterns (PAMPs) via toll-like receptors (TLRs) 

and antigens presented via CD1d. Activated NKT cells can then go on to act 

upon both innate and adaptive immune cells, including neutrophils and 

conventional T cells (80). KC production of IL-1b recruits invariant natural killer T-

Cells (iNKT, also known as Type I NKT cells) to the liver in the NIAAA model 

(61). The iNKT cells, in turn, promote the infiltration of neutrophils. Genetic 

deletion or chemical inhibition of iNKT cells decreases neutrophil recruitment and 
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ameliorates liver injury, demonstrating that iNKT cells are crucial for alcohol 

induced liver injury and are a potential therapeutic target (61, 81, 82). 

Similar to T cells, the number of circulating B cells is lower in alcoholics 

with active liver disease than those without or non-alcoholic control patients (72, 

83). Despite this, ALD patients present with elevated serum immunoglobulin 

levels (72, 83). ALD patients also exhibit antibodies with specificity towards 

byproducts of ethanol metabolism like lipid peroxidation products, MDA, and 4-

HNE (39, 43, 44). Antibody production towards these metabolism products 

suggests that endotoxin is not the sole immunogenic component in disease 

pathology. Further, ethanol metabolism itself can result in the activation of an 

immune response. 

Pro-inflammatory cytokines and chemokines 

 ALD patients across various stages exhibit elevated circulating pro-

inflammatory cytokine and chemokine levels. Circulating TNFa levels are higher 

in AH patients than healthy controls, alcoholics without liver injury, and alcoholic 

cirrhosis patients. This phenomenon is likely reflective of the higher levels of 

acute hepatocellular damage and necrosis in AH patients. Further, TNFa levels 

are approximately 2-fold higher in AH patients that died within six weeks of 

hospital admission when compared to AH patients who survived for that same 

duration (84). TNFa was one of the first pro-inflammatory cytokines to be 

associated with liver injury in ALD models. Ethanol exposure magnifies TNFa-

mediated cell death in hepatocytes (33). TNFa also influences lipid metabolism in 
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hepatocytes. Stimulating hepatocytes with TNFa leads to the maturation and 

nuclear translocation of the lipogenic transcription factor SREBP-1c (85). 

Injecting mice with TNFa or LPS leads to hepatic steatosis, which can be 

prevented by treating with a TNFa neutralizing antibody (86). Treating alcohol-

fed rats with antiserum to TNFa reverses liver injury and inflammation (87). This 

effect is mediated by the receptor TNF-R1, as alcohol-fed TNF-R1 knockout mice 

exhibit decreased liver injury, hepatic steatosis, and liver inflammation when 

compared to alcohol-fed WT mice (88).  

Systemic MCP-1 (CCL2) is higher in severe AH patients versus alcoholic 

cirrhosis patients and healthy controls (89). Ccl2-/- mice are protected against 

alcohol-induced liver injury, inflammation, and steatosis. Interestingly, these 

effects are independent of its receptor, CCR2, because alcohol-fed Ccr2-/- exhibit 

liver injury and steatosis, similar to WT controls (90). There is evidence that 

MCP-1/CCL2 may be able to signal through another chemokine receptor, 

CCR10, but that has yet to be demonstrated in ALD models (91). 

IL-17 production by neutrophils and T cells promotes infiltration of 

neutrophils into the liver via HSCs. ALD patients have higher levels of IL-17 in 

the blood, when compared to both healthy controls and hepatitis c patients. 

However, IL-17 is lower in AH patients than non-AH patients with ALD. This 

could be due to AH patients having fewer Th17 cells in circulation and a greater 

number of IL-17-expressing cells in the liver, when compared to non-AH patients 
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(75). Alcohol-fed mice also exhibit higher circulating IL-17. Treating alcohol-fed 

mice with an IL-17-specific antibody ameliorates hepatic steatosis (92).  

IL-1b promotes the infiltration of iNKT cells into the liver, which, in turn, 

recruit neutrophils (61, 82). Circulating IL-1b is elevated in ALD patients 

compared to healthy controls (93). Alcohol boosts the production of IL-1b in liver 

mononuclear cells, which contributes to the rise of IL-1b in alcohol-fed mice. 

Alcohol-fed mice treated with IL-1Ra to counteract IL-1b signaling exhibited 

ameliorated liver injury, hepatic steatosis, and liver inflammation (61, 94). 

Systemic IL-8, a neutrophil chemoattractant, is greatly elevated in AH 

patients, compared to both healthy controls and alcoholics without liver disease. 

IL-8 levels decline in AH patients overtime with alcohol abstinence and 

amelioration of liver injury (95-97). Alcohol elevates the levels of CXCL1, the 

murine homolog of human IL-8, in circulation and expression in the liver of mice 

(67-69, 98, 99). Genetic deletion of Cxcl1 decreases neutrophil infiltration and 

liver injury, whereas treating mice with a CXCL1-neutralizing antibody can 

reverse liver injury (99). Antagonizing CXCL1 activity via blockade of its receptor 

reverses liver injury (98). 

Anti-inflammatory cytokines 

 There are three anti-inflammatory cytokines with important roles in ALD: 

IL-6, IL-10, and IL-22, all of which exert their effects through STAT3 (39). The 

impact of STAT3 on the development of ALD is cell-type dependent. STAT3 

expression in hepatocytes decreases alcohol-induced steatosis but contributes to 
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inflammation, whereas STAT3 expression in macrophages decreases 

inflammation (100). Circulating IL-6 levels are increased in ALD patients 

compared to healthy controls (93). IL-6 is crucial for liver regeneration, however 

chronic alcohol consumption impairs IL-6 mediated STAT3 activation in 

hepatocytes (101). Chronic alcohol exposure inhibits STAT3 serine and tyrosine 

phosphorylation. This occurs independent of JAK1 activation and tyrosine 

phosphatase activity, which activate or inactivate STAT3, respectively (102). It is 

unclear exactly how chronic alcohol exposure inhibits STAT3 activation, but IL-10 

may also be involved, as Il10-/- mice have enhanced phosphorylated STAT3 

when compared to WT mice (103). IL-6 also prevents apoptosis in hepatocytes 

exposed to ethanol and TNFa (104). IL-6-deficiency exacerbates alcohol-induced 

hepatic steatosis (104-106). Treating alcohol-fed mice with IL-6 reverses 

steatosis in both WT and Il6-/- animals (105, 107).  

The role of IL-10 in ALD is not straightforward. It can inhibit both pro- and 

anti-inflammatory molecules (108). Alcohol increases IL-10 in both the liver and 

circulation in mice (94). Alcohol-fed Il10-/- mice have improved liver injury and 

steatosis when compared to alcohol-fed WT mice. However, the Il10-/- mice have 

a greater inflammatory response, including the production of IL-6 and increased 

STAT3 phosphorylation. The IL-6-STAT3 axis could be a compensatory 

mechanism mediating this improved liver injury and steatosis because both IL-6- 

and hepatocyte-specific STAT3-deficiency exacerbates liver injury in the Il10-/- 
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mice (103). Interestingly, the TLR3-mediated production of IL-10 reduces 

alcohol-induced liver injury (109, 110).  

IL-22 is a hepatoprotective cytokine that acts upon epithelial cells (111). It 

promotes hepatocyte proliferation via STAT3 and is important for liver 

regeneration (111). IL-22 administration alleviates liver injury in mice subjected to 

both acute alcohol and chronic-binge alcohol models (27, 112). IL-22 therapy 

may be a viable treatment for AH patients for two major reasons. First, the 

expression of the IL-22 receptor, IL-22R, is restricted to epithelial cells; this 

specificity could prevent side effects. Second, IL-22 treatment has been 

demonstrated to improve bacterial infection and kidney injury in mouse models, 

both of which contribute to AH fatality. At the time this dissertation was written, a 

clinical trial studying the effects of a recombinant fusion IL-22 protein on acute 

alcohol hepatitis patients was recruiting participants (NCT02655510)(39). 

The development of liver inflammation in ALD is a complex process that 

involves many cell types from both the innate and adaptive immune system. The 

network of cytokines and chemokines that are modulated in response to chronic 

alcohol consumption is also crucial to disease progression. This, in part, has 

made developing targeted, effective treatments for ALD challenging. 

Toll-like receptors 

One group of proteins that has been of special interest in the development 

of ALD is the TLRs. The TLR family is a group of receptors that recognize foreign 

pathogens. TLRs are part of a larger group of pattern-recognition receptors 
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(PRRs) that detect PAMPs. Activation of TLRs ultimately results in the production 

of pro-inflammatory cytokines and/or Type I interferons, by signaling through the 

adaptor molecules MYD88 and TRIF, respectively. Each TLR recognizes a 

different type of PAMP. The TLRs expressed at the cell surface generally 

recognize PAMPs that make up the outermost part of bacteria and other 

microbes. Endosomal TLRs recognize PAMPs that are derived from foreign 

nucleic acids (113). 

Toll-like receptor 4 

TLR4 is the most well studied in the ALD field. It recognizes LPS, which is 

found on the outer wall of Gram-negative bacteria (113). TLR4 cannot bind to 

LPS alone. LPS binding protein (LBP) is a serum protein that binds to LPS and 

transfers it to CD14, a surface receptor. CD14 then transfers the LPS molecule to 

TLR4 and its co-receptor MD-2 (114). Endotoxemia occurs in ALD patients (20). 

As TLR4 is the receptor for endotoxin, it was hypothesized that it mediated the 

effects of endotoxemia in ALD pathogenesis. Many published studies support the 

hypothesis that TLR4 signaling impacts alcohol-induced liver injury. First it was 

discovered that TLR4-mutant mice subjected to the intragastric feeding model 

exhibit greatly reduced liver injury when compared to WT mice (115). This was 

also true for mice lacking either CD14 or LBP (116, 117). Subsequent studies 

using the TLR4-mutant mice or Tlr4-/- mice also produced the same results; 

alcohol-fed TLR4-deficient mice had decreased liver injury compared to WT 

mice, whether an intragastric feeding model or a Lieber-DeCarli diet was used 
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(64, 65, 118, 119). This effect can be attributed to different cell types and not just 

those of the innate immune system. Complementary bone marrow transplants 

studies reveal that the lack of TLR4 in either the hematopoietic or non-

hematopoietic compartment leads to reduced liver injury (119). However, the role 

of TLR4 may not be as clear as initially discovered. Alcohol-fed Tlr4-/- mice 

exhibit WT levels of liver complement deposition and TNFa production (120). 

Moreover, a close examination yields that TLR4-deficiency only produces a 

modest relief of liver injury, or it only appears to inhibit pro-inflammatory signaling 

cascades (64, 118). These studies raise questions as to the exact role of TLR4 in 

early, alcohol-induced liver injury, as they use different models of liver injury. 

Moreover, what role TLR4 plays in later stages of liver injury remains to be 

determined. Careful analysis of the specific pathways impacted by TLR4-

deficiency in each of these models will assist in providing more insight into this 

receptor. 

Other TLR-family members 

The roles of the other TLRs have not been fully explored in the ALD field. 

TLR2, which forms a heterodimer with either TLR1 and TLR6 to recognize 

triacylated lipopeptides or diacylated lipopeptides, respectively, has a 

controversial role in ALD models (113). In a five-week Lieber-DeCarli model, 

TLR2 was not required for liver injury. Alcohol-fed Tlr2-/- mice exhibited steatosis 

and pro-inflammatory cytokine production similar to alcohol-fed WT mice, which 

were absent in Tlr4-/- mice (64). However, in the NIAAA model, TLR2-deficient 
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mice are protected against liver injury, which was demonstrated by decreased 

serum ALT levels when compared to alcohol-fed WT controls. Interestingly, TLR2 

is important to the production of neutrophil-specific chemokines, like CXCL1, and 

neutrophil accumulation in the liver (67). TLR3 recognizes double-stranded RNA 

and the synthetic ligand polyinosinic-polycytidylic acid (poly(I:C)), which makes it 

crucial for detecting viral infection (113). TLR3 does not have a direct role in 

alcohol-induced liver injury. When alcohol was administered via daily gavage on 

top of a high-fat diet, Tlr3-/- mice exhibited liver injury similar to WT mice; both 

genotypes had increased liver injury compared to isocaloric controls. However, 

when WT mice received injections of poly(I:C), liver injury is ameliorated via the 

production of IL-10 (109). TLR9 is an intracellular receptor which recognizes 

unmethylated CpG DNA from bacteria and viruses (113). Similar to TLR2, TLR9 

is also required for neutrophil-mediated liver injury in the NIAAA model (67).  

The development of new ALD mouse models has uncovered the complex 

roles of TLRs in ALD. TLR4 may be required for early, macrophage-driven injury, 

whereas TLR2 is dispensable (64, 115). On the other hand, TLR2 and TLR9 may 

be important for more advanced, neutrophil-driven liver injury (67). This would 

explain discrepancies in results, specifically those concerning TLR2, between the 

Lieber-DeCarli model and the NIAAA model (64, 67). Together, these studies 

highlight three things. First, macrophage- and neutrophil-mediated liver injury 

could be driven by distinct (yet still related) immune mechanisms. Second, the 

field needs to re-evaluate the importance placed on TLR4 as the only driver of 
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alcohol-induced liver inflammation and whether, instead, it has a very specific 

role in early stages of pathogenesis. Third, the other TLR family members not 

discussed in detail here warrant further study using the full range of animal 

models now available. This will deepen the understanding of TLR-related 

mechanisms in ALD pathogenesis.  

Animal models of ALD 

There are a number of different methods to use alcohol to induce liver 

damage in animals. Below, I will discuss those that administer alcohol via a liquid 

diet, as that is the method by which ALD patients consume alcohol. Table 1.1 

provides a summary of the basic characteristics of each of these models. 

Lieber-DeCarli 

 A breakthrough in animal models of ALD came with the development of 

the Lieber-DeCarli diet (121). This is an ad libitum, liquid diet, which is designed 

to be nutritionally adequate for rodents and to match the average human diet, 

based on calorie-consumption (18% protein, 35% fat, and 47% carbohydrates). 

The standard rodent chow diet is withheld from the rats or mice while this liquid 

diet is administered in order to overcome the aversion to consuming ethanol. The 

ethanol concentration in the diet is slowly increased to allow the animals to 

acclimate to consuming ethanol. A control group is given the same diet, but with  

the carbohydrate calories coming from maltose-dextrin instead of ethanol. After 

24 days of up 50g/L of ethanol per day, hepatic steatosis is noted and the liver 

triglyceride content increased 5-fold (121). This diet has been modified further to   
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Table 1.1: Summary of ALD rodent models 

Name EtOH 
Administration 

Duration Liver injury Challenges 

Lieber-
DeCarli 

Liquid diet 4-6 
weeks 

-Steatosis 
-Mild inflammation 

-Long-term 
-Early stage liver 
injury 

NIAAA Liquid diet  
Ethanol binge 

3 weeks -Steatosis  
-Mild Inflammation 
-Mild neutrophil 
infiltration 

-Early stage liver 
injury 

Chronic, 
multiple 
binge 

Liquid diet  
Several ethanol 
binges 

up to 8 
weeks 

-Steatosis 
-Fibrosis 
-Inflammation 
-Neutrophil infiltration 

-Long-term 
-Many binges 
-High mortality 
rate 

Tsukamoto
-French 

Intragastric 4-12 
weeks 

-Steatosis 
-Mild inflammation 

-Difficult 
technique 
-Requires 
special 
equipment 
-Animals require 
a lot of care to 
maintain health 
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produce several iterations that have varying fat and protein content (122). While 

it was developed for rats, this model is widely used in mice, and a four-to-six-

week long feeding with the Lieber-DeCarli diet is considered the standard for the 

ALD field (123). This model easily produces hepatic steatosis and elevated 

serum liver enzymes, but it fails to produce a robust inflammatory response in the 

liver (123). This diet serves as the basis for several models that more closely 

mimic human disease and are reviewed below. 

NIAAA and Chronic, multiple-binge models 

 Recently, new models have emerged that incorporate alcohol binge 

events with chronic, ab libitum alcohol exposure. The purpose of the binge 

events is to recapitulate the drinking patterns of AH patients (124). The NIAAA 

model employs a single binge of ethanol (5g/kg bod weight) after 10 days of 

chronic alcohol consumption, using the Lieber-DeCarli model. This model has a 

shorter time span than the chronic feeding models which typically last four to six 

weeks and results in a greater induction of circulating ALT and AST levels (27, 

123). It also shows signs of neutrophil infiltration into the liver, a hallmark of AH 

(67, 70). However, similar to the chronic feeding models, the NIAAA model 

produces early liver injury and does not result in fibrosis. A second model that 

uses multiple binges over a long period of time has been able to recapitulate 

some aspects of alcoholic fibrosis. Chronic, ad libitum alcohol feeding for eight 

weeks in conjunction with twice weekly ethanol binges produces more advanced 

liver injury. Neutrophil accumulation in the liver was described in this model. Both 
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a-SMA expression and Sirius Red staining in the liver, markers of fibrosis, were 

also observed in these mice (68). The authors also examined hepatitis and 

fibrosis markers in mice given a single ethanol gavage at the end of an eight-

week chronic, ad libitum alcohol exposure. Similar to the multiple-binge model, 

neutrophils, a-SMA staining, and Sirius Red staining were all observed in these 

mice. However, the neutrophils had infiltrated the liver in a diffuse pattern, 

whereas the multiple-binge model produced discrete inflammatory foci, indicating 

that the pattern of drinking impacts liver inflammation (68). 

Tsukamoto-French 

 The development of the intragastric alcohol feeding model, commonly 

referred to as the Tsukamoto-French model, enabled researchers to control the 

amount of ethanol delivered to animals (125). Central vein cannulation allows for 

continuous monitoring of BAC and inserting a cannula directly into the stomach 

enables the delivery of the liquid diet (126). Insertion of the catheter through the 

dorsal neck allows the animals to have unimpeded mobility throughout the 

duration of the experiment (127). This model is capable of inducing massive 

steatosis, but lacks the inflammatory component necessary to recapitulate 

human disease (128). It is also technically challenging and the animals require 

close, extensive monitoring throughout to maintain their health (127). This 

intragastric model has been built upon recently to design experiments to induce 

maximum liver damage. In one example, the authors used a combination of a 

solid Western diet (high cholesterol and high saturated fat), the liquid diet with 
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ethanol via intragastric cannulation, and weekly gavages of ethanol to induce 

liver damage. This combination resulted in steatosis, inflammatory infiltration, 

and liver fibrosis (129). This model is capable of generating massive liver injury, 

but its use should be carefully considered when studying ALD due to the 

complexity of the set up. 

Adipose Tissue 

Adipose tissue biology 

Metabolic and endocrine functions 

 The primary function of adipose tissue is energy storage. Adipocytes store 

triglycerides, which can be broken down into glycerol and free fatty acids to be 

used as fuel by other tissues via the process of lipolysis (130). Adipocyte lipolysis 

is carried out in a step-wise manner by three enzymes: adipose triglyceride 

lipase (ATGL), hormone-sensitive lipase (HSL), and monoacylglycerol lipase 

(MGL) (130, 131). Lipolysis is tightly regulated and can be stimulated through 

glucocorticoid or b-adrenergic signaling and is inhibited by insulin signaling (130, 

131). 

 Energy storage is not the only function of the adipose tissue. It also acts 

as an endocrine organ and produces a number of factors, most importantly 

adiponectin (132). The adipose tissue is comprised of many different cell types, 

including various immune cells, pre-adipocytes, and endothelial cells (132). 

Adipose tissue immune cells 
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In parallel to KCs in the liver, the adipose tissue macrophage is the most-

well studied immune cell with regards to adipose tissue inflammation, which is 

summarized in Figure 1.3. Pro-inflammatory macrophage accumulation is a 

hallmark in obesity-related adipose tissue inflammation (133). Macrophages 

infiltrate into the adipose tissue in obesity-models and upregulate expression of 

the M1 macrophage marker CD11c (134-138). M1, or classically activated 

macrophages, are typically activated by inflammatory cytokines like IFNg or 

inflammatory molecules like LPS and other TLR ligands. They produce the pro-

inflammatory cytokines TNFa, IL-6, IL-1b, and MCP-1 (133). In the adipose 

tissue, these M1 macrophages are localized to the inflammatory foci “crown-like 

structures”, which surround dead or dying adipocytes (139). Deleting CD11c-

expressing cells reverses macrophage accumulation during obesity (140). On the 

other hand, MGL1-expressing M2 macrophages inhabit the space between 

adipocytes and do not localize to the crown-like structures (139). M2, or 

alternatively activated, macrophages can be further categorized into three 

general subsets: M2a macrophages participate in the wound healing response, 

M2b macrophages have immunoregulatory functions, and M2c macrophages are 

immunosuppressive (133, 141). M2 macrophages are polarized by cytokines IL-

4, IL-13, or IL-10. They are categorized by a number of cell surface markers, 

including MGL1 and CD206, and produce anti-inflammatory cytokines or wound 

repairing cytokines like IL-10 and TGFb (133, 141).  
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Figure 1.3: Adipose tissue inflammation in obesity and high-fat diet models. 
High-fat diet and obesity results in adipose tissue inflammation by regulating pro- 
and anti-inflammatory immune cells. M1 macrophages contribute to inflammation 
directly through the production of Il-1b, TNFa, and IL-6. MCP-1 production results 
in further macrophage infiltration, which is mediated by CCR2. Anti-inflammatory 
M2 macrophages control and resolve adipose inflammation through TGFb and IL-
10. High-fat diet and obesity inhibit M2 macrophages indirectly due to the 
decreased presence of eosinophils, which produce IL-4. Regulatory T cells 
(Tregs), which function to control inflammation are also reduced. High-fat diet 
increases the presence of Th17 cells. B cell accumulation leads to further 
macrophage accumulation, however regulatory B cells suppress M1 macrophages 
through the production of IL-10. IL-10 also suppresses CD8+ T cells, which are 
required for macrophage infiltration. Elastase-producing neutrophils increase M1 
macrophages. Dendritic cell (DC) accumulation is dependent on CCR2 and CCR7 
and promotes the accumulation of M1 macrophages. Both macrophages and DCs 
interact with CD4+ T cells to promote adipose tissue inflammation. CD4+ T cells 
can promote or inhibit adipose tissue inflammation, depending on the specific 
subset.  



 
 

35 

Macrophage infiltration into the adipose tissue is thought to be dependent 

on MCP-1-CCR2 signaling, as Ccr2-/- mice fed a high-fat diet have fewer 

macrophages than their WT counterparts (142). Monocyte tracking experiments 

revealed that the expression of CCR2 in monocytes and MCP-1 in non-

hematopoietic cells are both required for the infiltration of most, but not all, 

macrophages (138). A small number of macrophages do undergo proliferation in 

the adipose tissue in response to high-fat diet feeding, which demonstrates that 

macrophage accumulation in obesity is influenced by many factors (143-145). 

Adipose tissue macrophages also function as antigen presenting cells (APCs) for 

CD4+ T cells, further promoting inflammation (146-148). 

 Another type of APC is the dendritic cell (DC). The number of adipose 

tissue DCs in mice increases when the animals are fed a high-fat diet. Isolated 

DCs from high-fat diet fed mice stimulate T-cell differentiation and proliferation in 

vitro (148, 149). Adipose tissue DCs may also be involved in macrophage 

recruitment. Flt3-/- mice, which lack DCs, accumulate fewer pro-inflammatory 

macrophages than WT mice when subjected to a high-fat diet (150). Similar to 

macrophages, DC accumulation in the adipose tissue is partially dependent on 

CCR2. CCR7 was identified to be expressed in adipose DCs and not 

macrophages and is also required for DC accumulation in the adipose tissue 

(148). 

 Neutrophils are primarily considered to be “first responders” to tissue 

damage during acute inflammation. As part of the resolution of acute injury, 
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necrotic and apoptotic neutrophils are cleared away by macrophages (69, 95). 

However recent studies in chronic inflammation in the obesity field have given 

evidence for this paradigm to be reconsidered (69). Neutrophils infiltrate into the 

adipose tissue within the first few days of a high-fat diet in mice, which is 

consistent with their role in responding to tissue damage (151, 152). Interestingly, 

they persist in the adipose tissue and produce neutrophil elastase in response to 

a prolonged, high-fat diet. High-fat diet-fed, neutrophil elastase-deficient mice 

have fewer M1 adipose macrophages than WT mice, which suggests that 

adipose neutrophils may be important for macrophage infiltration (152). Together, 

this suggests that neutrophils could be functioning in two ways during adipose 

tissue inflammation. First, they infiltrate early in the course of a high-fat diet in 

response to acute tissue damage. Second, they accumulate within the tissue, 

contributing to chronic inflammation. 

 B cells also contribute to adipose tissue inflammation. B-cell deficient mice 

fed a high-fat diet have fewer M1 macrophages than WT mice and improved 

insulin sensitivity (153). Interestingly, a population of regulatory B cells, which 

produce the anti-inflammatory cytokine IL-10, control adipose tissue 

inflammation. When mice that lack IL-10 expression in B cells are subjected to a 

high-fat diet, they accumulate more CD8+ T cells and M1 macrophages in the 

adipose tissue, compared to WT mice. These mice also exhibit higher expression 

of the pro-inflammatory cytokine genes Tnf, Il6, and Ccl2 and have greater 

insulin resistance (154). 
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 Similar to macrophages, the role of T cells in adipose tissue inflammation 

is complex. Adipose tissue CD4+ T cells proliferate in response to a high-fat diet 

in mice (147, 155). MHC II expression on pro-inflammatory, CD11c+ adipose 

macrophages increases in response to a high-fat diet. Inhibiting MHC II activity 

decreases the ability of adipose macrophages to stimulate CD4+ T cell 

proliferation (147). High-fat diet fed MHCII-deficient mice have fewer adipose 

tissue pro-inflammatory macrophages and CD4+ T cells along with improved 

insulin sensitivity (146). On the other hand, Rag1-/- mice, which lack T cells, have 

aggravated insulin resistance. This is reversed with the transfer of CD4+ T cells, 

but not CD8+ T cells (155). Different subsets of CD4+ T cells may serve different 

purposes in promoting or restraining adipose tissue inflammation.  

Other T cell populations also contribute to adipose tissue inflammation. 

High-fat diet increases the number of CD8+ T cells in the adipose tissue in mice, 

an event that precedes macrophage accumulation. Depleting CD8+ T cells in 

high-fat diet-fed mice decreases pro-inflammatory macrophages, which suggests 

that CD8+ T cells also influence macrophage accumulation in the adipose tissue 

(156). The presence of regulatory T cells in the adipose tissue declines as 

obesity progresses and in vivo expansion of this cell population improves insulin 

resistance (157). Obesity also increases the number of Th17 cells in mice (149). 

High-fat diet also increases the number of natural killer (NK) cells in the 

adipose tissue. Depleting NK cells in high-fat diet-fed mice reduces the number 

of pro-inflammatory macrophages and improves insulin resistance (158). 
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Eosinophils help to maintain the M2 macrophage population via the cytokine IL-4, 

however their numbers in the adipose tissue are reduced by obesity (159). 

In addition to adipocytes and immune cells, the adipose tissue is also 

comprised of endothelial cells, fibroblasts, and preadipocytes (132). These cell 

types also contribute to adipose tissue inflammation as they are capable of 

producing and responding to pro- and anti-inflammatory cytokines (132, 160, 

161). 

Adipose tissue cytokines and chemokines 

 The adipose tissue produces pro-inflammatory cytokines, chemokines, 

and adipokines during the progression of obesity and stops producing anti-

inflammatory cytokines and adipokines (132). TNFa is expressed in the adipose 

tissue of obese rodents and neutralizing TNFa improves insulin-stimulated 

glucose uptake (162). IL-6 is a complicated cytokine because it demonstrates 

opposing roles in adipose inflammation in obesity models. IL-6 production by the 

adipose tissue, more specifically by adipocytes, directly impacts hepatic insulin 

resistance (163). On the other hand, Il6-/- mice subjected to a high-fat diet have a 

higher degree of hepatic insulin resistance than WT mice (164). High-fat diet-fed 

mice treated with sgp130FC, which partially blocks IL-6 signaling, have 

decreased pro-inflammatory macrophage accumulation in the adipose tissue, 

without any improvement in insulin sensitivity (165). However, neutralizing IL-6 

increases the ratio of M1 macrophages to M2 macrophages in adipose tissue 

explants (145). The source of IL-6 and/or the mechanisms it signals through at its 
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target tissues could determine whether it is a beneficial or harmful consequence 

of adipose tissue inflammation. Expression of MCP-1 is also increased by obesity 

(166). High-fat diet-fed Ccl2-/-  mice have fewer adipose macrophages than WT 

mice, as do mice deficient in the MCP-1 receptor, CCR2 (142, 166). Further, 

inhibiting CCR2 reverses adipose tissue macrophage accumulation in genetically 

obese mice (167). However, as with IL-6, MCP-1 also demonstrates inconsistent 

results. One study has demonstrated that Ccl2-/- mice are not protected against 

diet-induced adipose tissue inflammation (168).  

Adiponectin is a hormone expressed exclusively by adipocytes (169). It 

has both metabolic and immune impacts on the liver. The expression of 

adiponectin is downregulated in the adipose tissue during obesity in both mice 

and humans (170). Adiponectin-deficient mice display severe insulin resistance 

when challenged with a high-fat, high-sucrose diet, which is rescued by the 

administration of an adenoviral vector expressing adiponectin (171). The insulin 

resistance that genetically obese mice display is greatly improved with the 

overexpression of adiponectin, and it also decreases the levels of circulating pro-

inflammatory cytokines (172). Adiponectin polarizes macrophages towards the 

M2 phenotype; adipose tissue macrophages isolated from adiponectin-knockout 

mice have increased expression of M1 markers like Tnf and Ccl2 and decreased 

expression of M2 markers like Arg1 and Clec10a (173). Adiponectin also inhibits 

the production of TNFa in macrophages stimulated with LPS (174). Further, 

adiponectin inhibits the response of macrophages to TLR ligands, including LPS 
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(TLR4) and lipoteichoic acid (LTA, TLR2) (175). Treating genetically obese mice 

with exogenous adiponectin improves insulin sensitivity and hepatic steatosis 

(176). 

Sexual dimorphism in adipose tissue inflammation 

 Obesity-related metabolic health complications also exhibit a sexual 

dimorphism. For example, pre-menopausal women have a much lower 

prevalence of cardiovascular disease then men in the same age group. However, 

post-menopausal women lose this protection (177). In humans, body fat is 

distributed differently between men and women. Typically, men have more 

abdominal adiposity whereas women have more gluteofemoral adiposity (178). 

Gluteofemoral adiposity is protective against the development of diabetes and 

cardiovascular disease. Women that have abdominal obesity develop metabolic 

disease similar to men. Post-menopausal women exhibit more abdominal 

adiposity, presumably due to the decline in estrogen levels, which could be one 

of the causes of a higher risk of cardiovascular disease in this group (178). A 

sexual dimorphism exists in rodent models of obesity; female animals are more 

resistant to the effects of diet-induced obesity than male animals (179). Male rats 

develop glucose intolerance when fed a high-fat diet, female rats do not. 

Additionally, high-fat diet fed male rats have greater expression of inflammatory 

markers in the adipose tissue compared to high-fat diet fed female rats (180). A 

direct comparison between male and female mice fed a high-fat diet reveals that 

male mice have greater adipose tissue inflammation; they have greater numbers 
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of crown-like structures as well as greater expression of pro-inflammatory 

cytokines. Male mice also have a much greater number of CD11c+ adipose 

tissue macrophages (181). Male mice have worse glucose tolerance than their 

female counterparts, which is reversed when male mice are treated with 17, b-

estradiol (182). Recently it was discovered that housing high-fat diet fed female 

mice at thermoneutral temperature greatly increases obesity, adipose tissue 

inflammation, and hepatic steatosis. Using the thermoneutral housing 

temperature will enable the use of female mice in high-fat diet and non-alcoholic 

fatty liver disease (NAFLD) studies, but how the higher housing temperature 

overcomes the sexual dimorphism in mice remains to be determined (183). 

Adipose tissue in ALD 

Alcohol impacts adipose tissue function in humans 

 In addition to affecting the liver and gut function described above, chronic 

alcohol consumption dysregulates adipose tissue function in humans. Serum 

adiponectin is increased in ALD patients in both men and women (184). When 

alcoholic cirrhosis patients are stratified, serum adiponectin levels are much 

higher in patients with more severe disease (185). Serum adiponectin levels are 

positively correlated with daily alcohol consumption and serum ALT levels, and 

they decrease over time with alcohol abstinence (186). The adipose tissue 

expression of the cytokines TNF and IL10 is higher in acute AH patients than 

ALD patients without hepatitis (187). Cytokine mRNA expression in the adipose 

tissue correlates with liver injury scoring (187, 188). The expression of pro-
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inflammatory markers in the adipose tissue is decreased in patients with mild 

liver lesions as early as one week of alcohol abstinence (188). Chronic alcohol 

consumption leads to inflammation in the adipose tissue, however the 

mechanisms through which this occurs are unknown. The elevation of 

adiponectin in ALD patients raises questions as to the function of this hormone in 

the protection against liver injury. 

Adipose tissue function in ALD models 

Inflammation 

 The current understanding of alcohol-induced adipose tissue inflammation 

is summarized in Figure 1.4. Alcohol increases the expression of pro-

inflammatory markers in the adipose tissue of rodents. In rats, chronic alcohol 

consumption increases the expression of Tnf, Il6, and Ccl2 in the adipose tissue 

(189-192). In mice, these pro-inflammatory cytokines increase as well as the 

expression of Itgax (CD11c) (193-195). Several mediators in alcohol-induced 

adipose tissue inflammation have been identified. The adipose tissue from 

alcohol-fed Cyp2e1-/- or Bid-/- mice do not exhibit the increase in Tnf, Il6, or Ccl2 

that occurs in their WT counterparts (194). Treating alcohol-fed mice with the 

PPARg activator rosiglitazone reverses liver injury and normalizes expression of 

Tnf, Il6, and Ccl2 in the adipose tissue (193, 195). Adiponectin is also important 

to alcohol-induced adipose tissue inflammation. Similar to obesity models, 

circulating adiponectin is decreased in alcohol-fed rodents (32, 176, 190, 191, 

196). The lipid peroxidation product 4-HNE, a result of CYP2E1-mediated   
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Figure 1.4: Current model of alcohol-induced adipose tissue inflammation. 
Ethanol metabolism and/or the presence of endotoxin in the adipose tissue results 
in the expression of TNFa, IL-6, and MCP-1, which can directly contribute to the 
inflammatory milieu in the liver, and CD11c, an M1 macrophage marker. The 
production of adiponectin is increased in ALD patients and is downregulated in 
rodent ALD models. The adipose tissue also releases FFAs, which may contribute 
to hepatic steatosis. CYP2E1, Bid, C1q, and PPARg have all been demonstrated 
to mediate alcohol-induced adipose tissue inflammation. 
  

Ethanol metabolism
Endotoxin

TNFα IL-6

MCP-1

CD11c

Adiponectin

FFAsCYP2E1

PPARγ

BidC1q

Adipose Tissue Liver



 
 

44 

ethanol metabolism, inhibits the release of adiponectin from differentiated 

adipocytes (197). Adipocytes isolated from the subcutaneous depot in alcohol-

fed rats release less adiponectin than adipocytes from pair-fed controls (190). 

Administering full-length adiponectin to alcohol-fed mice reduces liver injury 

(176). This effect could be mediated in part by the impact of adiponectin on liver 

macrophages. Ethanol sensitizes macrophages to LPS-stimulated TNFa 

production. Pre-treating KCs isolated from alcohol-fed rats with adiponectin prior 

to LPS stimulation reverses this sensitization and decreases TNFa release (32, 

198). Further, ex vivo adiponectin exposure shifts KCs isolated from alcohol-fed 

rats from a pro-inflammatory M1 phenotype to an anti-inflammatory, M2 

phenotype (199). Interestingly, circulating adiponectin is increased in alcohol fed-

mice that are fed a liquid diet high in saturated fats (200). Differences in 

nutritional intake in AH patients versus animal models could be one possible 

explanation for the discrepancy in the trends of circulating adiponectin 

Metabolic Dysregulation 

 Alcohol has also been demonstrated to influence adipocyte metabolism. 

Alcohol-fed mice exhibit smaller adipocyte cell size, increased activation of HSL, 

and increased circulating glycerol or free fatty acids levels, indicating that the 

adipose tissue is actively undergoing lipolysis (193, 201, 202). A link between 

alcohol-induced adipose lipolysis and hepatic steatosis has been proposed. It 

was demonstrated, using deuterium-labeled lipids, that the presence of certain 

triacylglycerol species increases in the liver with a simultaneous decrease in the 



 
 

45 

adipose tissue. (203). Interestingly, using in vitro studies, it was determined that 

chronic alcohol exposure in fact inhibits stimulated lipolysis. Adipocytes isolated 

from alcohol-fed rats released less glycerol in response to b-adrenergic 

stimulation, compared to adipocytes from pair-fed rats (204, 205). Alcohol may 

be influencing lipolysis indirectly because it interferes with insulin-mediated 

suppression of lipolysis (204). Chronic alcohol consumption also results in 

increased hepatic glucose production and decreased insulin-stimulated glucose 

uptake in the adipose tissue, two indicators of the development of insulin 

resistance (189). The impact of alcohol on adipose tissue metabolism is unclear 

and requires further investigation. 

Overview 

 Despite decades of research, there is a dearth of effective therapies for 

ALD patients. It is paramount to uncover how alcohol impacts other organs, 

particularly those that may contribute to liver injury, such as the adipose tissue. 

Adipose tissue inflammation is heavily involved in other disease, such as 

metabolic syndrome. Understanding the role of adipose tissue in ALD 

pathogenesis will deepen our understanding of this disease. This will facilitate the 

development of novel therapies. The overall goal of this thesis was to 

characterize adipose tissue inflammation in order to understand whether alcohol 

alters adipose tissue function. This will help to determine whether alcohol-

induced adipose tissue inflammation impacts the liver, or whether it is collateral 

damage of liver injury and hepatic inflammation. In Chapter II, I establish that the 
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sexual dimorphism that occurs in response to chronic alcohol consumption is 

extended to the adipose tissue. Similar to what occurs in the liver, female mice 

have a higher degree of alcohol-induced adipose tissue inflammation than male 

mice. In Chapter III, I identify specific immune cell populations in the adipose 

tissue and determine how they are changed in response to alcohol consumption. 

Using a combination of germline and myeloid-specific TLR4 knockout mice, I 

demonstrate that alcohol polarizes adipose tissue macrophages to the M1 

phenotype. This phenotype switch is dependent on the expression of TLR4 in 

cells of non-myeloid origin. Further, I discover that TLR4 is required for pro-

inflammatory cytokine production in the liver, but not in the adipose tissue. 

Overall, this thesis characterizes alcohol-induced adipose tissue inflammation 

and uncovers a specific and limited role for TLR4. 

  



 
 

47 

CHAPTER II 

Sexual dimorphism in alcohol induced adipose inflammation relates to liver 

injury  
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Introduction 

ALD represents a spectrum of liver injury, starting with steatosis and 

progressing towards AH, fibrosis, cirrhosis, and HCC. ALD develops as a result 

of chronic, sustained drinking and is driven by both metabolic and immune insults 

(2, 34). Chronic alcohol exposure causes triglyceride accumulation in 

hepatocytes and promotes liver inflammation via endotoxin derived from the gut 

(30, 48, 53, 62, 63, 206). 

In humans it is well established that women are more susceptible than 

men to develop ALD, despite consuming lower amounts of alcohol. For any 

amount of alcohol intake, women have a greater risk of developing ALD and 

progressing to cirrhosis than men (2, 13-16). Several factors have been 

proposed that may contribute to this phenomenon. First, women have a lower 

first pass metabolism (FPM) than men due to lower gastric alcohol 

dehydrogenase activity (17, 18). Second, women have a lower volume of 

distribution of alcohol than men due to lower total body water content and higher 

body fat content (17, 19). Third, estrogen can greatly influence alcohol-induced 

liver injury. Estrogens sensitize KCs to endotoxin injury (21, 22). Rodents exhibit 

this sexual dimorphism as well (23, 24, 27). Ovariectomized rats are protected 

from early alcohol-induced liver injury and supplementing with exogenous 

estrogen reverses this effect (25). 

In addition to the direct metabolic and immune impacts on the liver, the 

influence of alcohol on adipose tissue inflammation is being studied. In both mice 
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and rats, chronic alcohol consumption induces expression of pro-inflammatory 

cytokines and chemokines in white adipose tissue (189-195). In humans, the 

production of cytokines in adipose tissue is correlated with acute AH score in a 

cohort of patients with ALD (187). Cytokine production in adipose tissue 

decreases in patients with mild liver lesions one week after cessation of drinking 

(188). Previous data has shown that chronic alcohol consumption decreases the 

production of adiponectin, a major adipokine, in rodent models (176, 207, 208). 

Infusing alcohol-fed mice with full-length recombinant adiponectin reverses liver 

injury (176). These studies demonstrate the impact of alcohol consumption on 

adipose tissue and the link between the adipose tissue and the liver. However, 

differences in body composition, with regards to women having higher body fat 

content, are not considered (19). Therefore, it remains to be determined whether 

sex-dependent consequences of alcohol consumption affect adipose tissue 

inflammation. 

The aim of this study was to determine if adipose tissue inflammation also 

exhibits a sexually dimorphic response to alcohol consumption. Here we show 

that female mice have higher liver injury compared to male mice in a model of 

ALD. Using the clinically relevant NIAAA model of chronic-binge alcohol feeding 

we establish that alcohol-induced adipose tissue inflammation occurs to a higher 

degree in female mice, compared to male mice.  
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Results 

The NIAAA ALD model induces greater liver injury in female mice despite 

lower alcohol consumption 

In order to compare the extent of liver injury between male and female 

mice, ten-week old male and female C57BL/6J mice were subjected to the 

NIAAA model of chronic-binge alcohol feeding. Over the course of the 

experiment, male mice consumed higher amounts of the 5% alcohol diet than 

female mice (Figure 2.1 A). In support of higher alcohol consumption, male mice 

had a higher serum BAC than female mice at the end of the study (Figure 2.1 B). 

Regardless of the volume of alcohol that was consumed, male and female mice 

had similar increases in liver-to-body weight ratios (Figure 2.2 A). Furthermore, 

despite consuming lower amounts of alcohol, female mice had higher serum 

alanine aminotransferase (ALT) levels than their male counterparts (~2.3-fold) 

(Figure 2.2 B). Female mice also had elevated liver triglyceride content 

compared to male mice (Figure 2.2 C), which was confirmed by Oil Red O 

staining (Figure 2.2 D). Gene expression analysis of liver pro-inflammatory 

cytokines showed a significant upregulation of Ccl2 mRNA in both male and 

female mice, however, female mice had greater Ccl2 expression than male mice. 

Il6 and Tnf expression were increased in female mice. The expression of the 

macrophage marker Emr1 was decreased in both male and female mice, but the 

change was not significant. Interestingly, the expression of the monocyte marker 

Ly6c1 was increased in male and female mice (Figure 2.2 E). Together, these   
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Figure 2.1: Male mice consume higher amounts of alcohol. Male and female 
mice were subjected to the NIAAA model. (A) Average daily consumption of the 
5% Lieber-DeCarli diet per mouse. (B) Serum BAC at the time of sacrifice. * 
p<0.05, ** p<0.01, *** p<0.001. Data are represented as mean ± SEM. EtOH-fed: 
Alcohol-fed.  
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Figure 2.2: Female mice have more severe liver injury than male mice. (A) 
Liver-to-body weight ratio. (B) Serum (ALT) levels at the time of sacrifice. (C) Liver 
triglyceride content. (D) Representative Oil Red O staining of liver sections. Scale 
bar is set to 100 μm and magnification is at 100x. Quantitation was done with Fiji. 
(E) Liver mRNA levels of Tnf, Il6, Ccl2, Emr1, and Ly6c1 were quantified by qPCR. 
* p<0.05, ** p<0.01, *** p<0.001. Data are represented as mean ± SEM.  
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data show that female mice exhibit a higher degree of alcohol-induced liver injury 

than male mice. 

Chronic-binge alcohol feeding induces greater adipose tissue inflammation 

in female mice than in male mice 

Considering the sex-dependent differences in human body fat 

composition, we wanted to determine if adipose tissue also exhibits a sexually 

dimorphic response to chronic-binge alcohol exposure. Perigonadal adipose 

tissue was collected and analyzed for expression of pro-inflammatory cytokines, 

chemokines, and immune cell markers. Pro-inflammatory cytokines and 

chemokines exhibited a sexually dimorphic profile, wherein there was a highly 

significant increase in expression of Il6 mRNA in male mice and a trend of 

increase noted in female mice. On the other hand, Ccl2 mRNA was increased 

only in female mice. Tnf mRNA levels were unchanged in male adipose tissue 

but female adipose tissue showed a trend towards increased expression (Figure 

2.3 A). Alcohol consumption increased the expression of the macrophage marker 

Emr1 and the activation markers Cd68, Itgam, and Itgax in female, but not male 

mice, without any effect on Ccr2 (Figure 2.3 B). Histological analysis showed no 

overt differences in adipose tissue morphology between the sexes (Figure 2.3 C). 

Unexpectedly, the NIAAA model did not reduce serum adiponectin levels. Here, 

alcohol increased adiponectin production in both male and female mice, with 

higher levels in female mice (Figure 2.3 D). Overall, these results show that the   
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Figure 2.3: Female mice have a higher degree of adipose tissue 
inflammation. Perigonadal adipose tissue mRNA levels of (A) Tnf, Il6, and Ccl2 
and (B) Emr1, Cd68, Itgam, Itgax, and Ccr2 were quantified by qPCR. (C) H&E 
staining of perigonadal adipose tissue. Scale bar is set to 100 μm and 
magnification is at 100x. (D) Serum adiponectin levels were measured by ELISA. 
* p<0.05, ** p<0.01, *** p<0.001. Data are represented as mean ± SEM.  
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NIAAA model induces adipose tissue inflammation in female mice concomitant to 

higher liver injury.  

Chronic-binge alcohol feeding increases circulating endotoxin and innate 

immune activation markers in female mice 

Alcohol sensitizes macrophages to endotoxin/LPS stimulation, due to 

alcohol-induced oxidative stress (32). To determine whether macrophages are 

sensitized to alcohol in a sexually dimorphic manner, we exposed bone marrow 

derived macrophages (BMDMs) from male and female mice in vitro to chronic 

alcohol and analyzed cytokine expression to a subsequent challenge by LPS. 

Female derived BMDMs produced more TNFα than male derived BMDMs in 

response to LPS, in the presence or absence of alcohol (Figure 2.4 A). However, 

alcohol sensitized male and female BMDMs equally significantly; alcohol 

increased LPS-induced TNFα production to 1.7-fold in male BMDM and 1.5-fold 

in female BMDMs, compared to LPS alone (Figure 2.4 A). 

Since alcohol-induced macrophage sensitization to LPS stimulation did 

not differ between male and female macrophages, we wanted to determine if 

there were sex-dependent differences in circulating LPS, the expression of TLRs 

that are important in its recognition, or both (209, 210). Previous data in models 

of ALD show higher circulating endotoxin in female rodents, compared to their 

male counterparts (23, 24). We show that serum endotoxin levels are unchanged 

in alcohol-fed male mice compared to pair-fed male mice, whereas a trend of 

increase in alcohol-fed female mice (approximately 1.4-fold) compared to pair-fed   
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Figure 2.4: Increased adipose tissue inflammation is due to Tlr expression. 
(A). BMDMs were cultured in the presence of 25mM ethanol for 5 days and then 
stimulated with 100ng/mL LPS for 18 hours. TNFα was measured in the cell 
supernatants by ELISA. (B) Serum endotoxin levels at time of sacrifice. (C) 
Perigonadal adipose tissue mRNA levels of Tlr2, Tlr3, Tlr4, Tlr9, and Myd88 were 
quantified by qPCR. * p<0.05, ** p<0.01, *** p<0.001. Data are represented as 
mean ± SEM.  
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female mice was noted (Figure 2.4 B). Further, female adipose tissue, but not 

male adipose tissue, showed an increase in several Tlr genes: Tlr2, Tlr3, Tlr4, 

and Tlr9, indicating either an upregulation of these genes in resident adipose 

tissue cells or an increased number of TLR-expressing cells in alcohol-fed female 

mice (Figure 2.4 C). Expression of another common adaptor gene Myd88 was 

unchanged in both sexes. These data shows that while alcohol does not 

sensitize macrophages in a sex-dependent manner, circulating endotoxin and 

increased expression of TLRs in female mice could be potential mechanisms 

contributing to the sexual dimorphism in alcohol-induced adipose tissue 

inflammation.  
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Summary 

In this chapter, I explored the differences between male and female mice 

in response to the NIAAA model. A previously published study using the same 

model only described the differences in circulating liver enzyme levels in male 

and female mice (27). The work I present here builds upon that to develop a 

more detailed analysis of the sexual dimorphism that occurs in mice in response 

to this specific model. Further, I uncovered that this sexual dimorphism extends 

to the adipose tissue; female mice have greater liver injury and adipose tissue 

inflammation despite consuming less alcohol. Lastly, I demonstrate that female 

mice have higher expression of innate immune cell markers in the adipose tissue 

in response to the NIAAA model, indicating a role for innate immune cells in 

alcohol-induced adipose tissue inflammation.  
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Materials and Methods 

Animals and experimental models 

Ten-week old male and female C57BL/6J mice were purchased from 

Jackson Laboratories (Bar Harbor, ME). Mice were subjected to the NIAAA 

model, which recapitulates the chronic-binge drinking patterns of AH patients, as 

described earlier (123). Briefly, a total of 18 mice per sex were divided into two 

groups (n=9 per group). One group was fed a 5% ethanol (v/v) Lieber-DeCarli 

diet (Bio-Serv, Flemington, NJ.) for 10 days, following a one-week ramp up 

period. On the eleventh day, mice received an ethanol gavage (5 g/kg body 

weight, 31.5% ethanol) and were sacrificed nine hours later. The other group was 

fed an isocaloric control diet during the feeding and a maltose dextrin (Bio-Serv, 

Flemington, NJ.) gavage was administered nine hours before sacrifice. Blood 

was collected for serum isolation. Perigonadal adipose tissue was chosen as a 

representative depot for visceral adipose tissue because it is associated with 

metabolic disease (211). The adipose tissue was excised and fixed in 10% 

buffered formalin or snap frozen. Livers were excised and snap frozen, preserved 

in RNAlater RNA Stabilizing Reagent (Qiagen GmbH, Hilden, Germany), fixed in 

10% buffered formalin for histological analysis, or frozen in O.C.T. Compound 

(Tissue-Tek, Sakura Finetek USA, Inc., Torrance, CA). 

Ethics statement 

All animals received proper care in accordance with the Guide for the 

Care and Use of Laboratory Animals from the National Institutes of Health. The 
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protocol was approved by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Medical School (protocol number A-2393-15). 

Animals were euthanized by carbon dioxide asphyxiation followed by cervical 

dislocation. 

Serum analysis 

BAC was measured in serum using the Alcohol Reagent and the AM1 

Alcohol Analyzer (Analox Instruments Ltd., London, UK). Serum alanine 

aminotransferase levels were measured using the Liquid ALT reagent set (Pointe 

Scientific Inc., Canton, MI). Serum adiponectin levels were measured using the 

Mouse Adiponectin/Acrp30 Quantikine ELISA kit (R&D systems, Minneapolis, 

MN). Serum endotoxin was measured using the Limulus Amebocyte Lysate 

(LAL) QCL-1000 kit (Lonza Walkersville, Inc., Walkersville, MD). 

Liver triglycerides 

Liver triglycerides were extracted and quantified as follows: liver tissue 

was homogenized in a 5% NP-40 solution. Samples were heated to 95°C for five 

minutes, cooled on ice, and then subsequently heated to 95°C for another five-

minute incubation. Samples were spun at 14,000 rpm in a room temperature 

centrifuge, and supernatants were used to quantify triglycerides with the L-Type 

TG M kit (Wako Diagnostics, Wako Life Sciences Inc., Mountain View, CA). 

Histological analysis 

Sections of formalin-fixed adipose tissue samples were embedded and 

stained with hematoxylin and eosin and were analyzed for histological features. 
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Frozen liver sections were stained with Oil Red O. Images were captured using 

an Olympus BX51 microscope (Olympus, Waltham, MA) and NIS-Elements 

Advance Research software (Nikon Instruments Inc., Melville, NY). Oil Red O 

quantitation was performed using Fiji software (Schneider 2012 Nat Methods, 

Schindelin 2012 Nat Methods). 

RNA extraction, cDNA synthesis, and qPCR analysis 

Total RNA was extracted from RNAlater preserved livers and flash frozen 

adipose tissue using the RNeasy Mini Kit (Qiagen GmbH, Hilden, Germany), 

according to manufacturer’s instructions. Adipose tissue was homogenized in 

QIAzol (Qiagen GmbH, Hilden, Germany) and subjected to a chloroform 

extraction before proceeding with RNA isolation. RNA concentration was 

measured with a NanoDrop 2000 (ThermoScientific, Wilmington, DE). Adipose 

tissue cDNA was synthesized using the Reverse Transcription System 

(Promega, Madison, WI) and liver cDNA was synthesized using the iScript 

Reverse Transcription Supermix for RT-qPCR (Biorad Laboratories, Hercules, 

CA). mRNA transcript levels were quantified using iTAQ Universal SYBR Green 

Supermix and CFX Connect Real-Time PCR Detection System (Biorad 

Laboratories, Hercules, CA) and normalized to 18s ribosomal RNA. Primer 

sequences are listed in Table 2.1. Ly6c1 expression was quantified using 

QuantiTect Primer assay #QT00247604 (Qiagen GmbH, Hilden, Germany). 

Bone marrow-derived macrophages 
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Bone marrow was harvested from the femurs of 10-week old male and 

female C57BL/6J mice. Bone marrow cells were plated in RMPI 1640 (Thermo 

Fisher Scientific, Waltham, MA) supplemented with 10% Fetal Bovine Serum 

(Gemini Bio-Products, West Sacramento, CA), 1% Penicillin Streptomycin 

(Thermo Fisher Scientific, Waltham, MA), and 1% L-glutamine 200mM (Thermo 

Fisher Scientific, Waltham, MA) (“complete RPMI”) onto non-tissue culture 

treated 10 cm plates in the presence of 50 ng/mL Recombinant Murine 

Macrophage Colony Stimulating Factor (M-CSF) (Peprotech, Rocky Hill, NJ) to 

induce differentiation. On day four of differentiation, cells were supplemented 

with fresh complete RMPI with 50 ng/mL M-CSF. On day 6, cells were harvested 

in 1mM EDTA in PBS and seeded in 6-well plates at a density of one million cells 

per well, in the presence of 50 ng/mL M-CSF and allowed to adhere overnight. 

After adherence, cells were cultured in the presence of 5 ng/mL M-CSF. To 

mimic chronic alcohol conditions, BMDMs were cultured in 25 mM ethanol in 

humidified chambers for 5 days as described previously by our group (212). Cells 

were stimulated with 100 ng/mL LPS (Sigma-Aldrich Corp., St. Louis, MO) for 18 

hours, at which point supernatants were collected and BMDMs were counted for 

ELISA analysis. The BD OptEIA Mouse TNFα (Mono/Mono) ELISA set (BD 

Biosciences, San Diego, CA) was used to measure TNFα protein in cell 

supernatants. TNFα protein concentration was normalized to cell number. 

Statistical analysis 
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Data are represented as mean ± SEM. All statistical analysis was 

performed using Graphpad Prism 6.0. Student’s t-test was used to determine the 

difference between two groups; Two-way ANOVA was used to determine the 

difference between four groups.  
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Table 2.1: List of primer sequences 5’-3’ 

Gene Sequence 
18s forward GTAACCCGTTGAACCCCATT 
18s reverse CCATCCAATCGGTAGTAGCG 
Ccl2 forward CAGGTCCCTGTCATGCTTCT 
Ccl2 reverse TCTGGACCCATTCCTTCTTG 
Ccr2 forward GTGTACATAGCAACAAGCCTCAAAG 
Ccr2 reverse CCCCCACATAGGGATCATGA 
Cd68 forward CCCACAGGCAGCACAGTGGAC 
Cd68 reverse TCCACAGCAGAAGCTTTGGCCC 
Emr1 forward TGCATCTAGCAATGGACAGC 
Emr1 reverse GCCTTCTGGATCCATTTGAA 
Il6 forward ACAACCACGGCCTTCCCTACTT 
Il6 reverse CACGATTTCCCAGAGAACATGTG 
Itgam forward ATGGACGCTGATGGCAATACC 
Itgam reverse TCCCCATTCACGTCTCCCA 
Itgax forward CTGGATAGCCTTTCTTCTGCTG 
Itgax reverse GCACACTGTGTCCGAACTCA 
Myd88 forward AGAACAGACAGACTATCGGCT 
Myd88 reverse CGGCGACACCTTTTCTCAAT 
Tlr2 forward ACAATAGAGGGAGACGCCTTT 
Tlr2 reverse AGTGTCTGGTAAGGATTTCCCAT 
Tlr3 forward AATCCTTGCGTTGCGAAGTG 
Tlr3 reverse ACCCCGGGGAGAACTCTTTA 
Tlr4 forward GCCTTTCAGGGAATTAAGCTCC 
Tlr4 reverse AGATCAACCGATGGACGTGTAA 
Tlr9 forward TCCCAACATGGTTCTCCGTC 
Tlr9 reverse GGTGGTGGATACGGTTGGAG 
Tnf forward GAAGTTCCCAAATGGCCTCC 
Tnf reverse GTGAGGGTCTGGGCCATAGA 
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CHAPTER III 

Alcohol-induced adipose tissue macrophage phenotype switching is 

independent of myeloid toll-like receptor 4 expression  
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Introduction 

ALD is a spectrum of liver injury that occurs due to chronic alcohol 

consumption. The liver is the primary site of pathogenesis, wherein the early 

stage of fatty liver, steatosis, can progress to more severe forms of liver injury, 

fibrosis and cirrhosis, with continued heavy drinking. This injury results from a 

combination of pathogenic events including inflammation in the liver, which is 

driven by immune cells including the resident macrophages, KCs, and storage of 

excess lipids in hepatocytes (2, 34). In addition to the liver, the adipose tissue 

has been considered as a secondary site of pathogenesis in ALD. Similar to the 

liver, chronic alcohol consumption drives adipose tissue inflammation and may 

also affect adipocyte metabolism (34, 189-195, 201, 213). Using different models 

of chronic alcohol exposure, several groups have established that alcohol causes 

an increase in the expression of pro-inflammatory cytokines and immune cell 

markers in the adipose tissue (189-195, 213). Factors including PPARg, 

CYP2E1, Bid, and C1q have all been suggested as potential mediators of 

adipose tissue inflammation (193-195). However, specific immune cell types 

involved and related mechanisms that drive alcohol-induced adipose tissue 

inflammation remain largely unknown. 

Adipose tissue inflammation has well been characterized in obesity 

models. As obesity progresses, pro-inflammatory immune cells, most importantly 

M1 macrophages, accumulate within the adipose tissue and drive the expression 

of pro-inflammatory cytokines and chemokines (133-136, 139, 146-153, 155, 
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156, 159, 211, 214). Concurrently, anti-inflammatory or immunosuppressive cell 

types and cytokines are decreased in adipose tissue (136, 139, 154, 157). 

Ultimately, this results in a shift to pro-inflammatory state within the adipose 

tissue that contributes to metabolic dysfunction, impacting the adipose tissue and 

the liver (132, 133, 159, 211, 214). 

The role of TLRs, more specifically TLR4, has been investigated in both 

ALD and obesity models. TLR4 is the receptor for endotoxin/LPS and drives pro-

inflammatory cytokine production (113). Endotoxemia is considered to be a key 

driver of ALD pathogenesis (2, 34). TLR4-deficient mice are protected against 

alcohol-induced liver injury (65, 115, 118, 119). Global TLR4 knockout (TLR4KO) 

mice exhibit protection against high-fat diet-induced adipose tissue inflammation 

and insulin resistance (215-217). The impact of TLR4 expression on alcohol-

induced adipose tissue inflammation is unknown. Here we use both germline and 

tissue-specific deletion of Tlr4 in mice to determine the role of TLR4 in adipose 

tissue inflammation in a model of chronic, multiple-binge alcohol exposure. In this 

model, WT mice show an increase in the number of M1 macrophages and DCs 

as well as inflammatory cytokine production following alcohol exposure. DC 

accumulation is prevented in both global and myeloid-specific TLR4KO mice. In 

contrast, global, but not myeloid-specific, TLR4KO mice are protected against M1 

macrophage phenotype switching, whereas cytokine and chemokine production 

occurs independent of TLR4. Further, changes in the neutrophil and CD8+ T cell 

populations are independent of TLR4. Our results suggest that TLR4 is one part 
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of a large network, which involves cells other than those of myeloid origin, to 

drive alcohol-induced adipose tissue inflammation.  
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Results 

Alcohol induces adipose macrophage phenotype switching through TLR4 

TLR4 has been implicated in both alcohol-induced liver inflammation and 

high-fat diet-induced adipose tissue inflammation (65, 115, 118, 119, 215-217). 

In order to identify TLR4-driven mechanisms that contribute to alcohol-induced 

adipose tissue inflammation we subjected female, C57BL/6J (WT) mice and 

global TLR4 knockout mice (TLR4KO) to the chronic, multiple-binge model of 

alcohol exposure, which is a model representative of alcoholic steatohepatitis 

(ASH) (68). Previously we have shown that the NIAAA model of chronic, single-

binge alcohol exposure causes adipose tissue inflammation in female mice, 

which includes increased expression of pro-inflammatory cell markers (213). 

Here, we used flow cytometry in order to identify the specific cell populations that 

contribute to alcohol-induced adipose inflammation. The stromal vascular fraction 

(SVF) was isolated from perigonadal white adipose and stained for flow 

cytometry analysis. CD45+ leukocytes were identified and separated into myeloid 

and lymphoid populations (Figure 3.1 A). Macrophages (CD11b+F4/80+) were 

identified in the myeloid population (Figure 3.1 B). The number of total 

macrophages (CD11b+F4/80+) relative to the total number of SVF cells was 

unchanged in WT and TLR4KO alcohol-fed mice, compared to their respective 

pair-fed controls (Figure 3.1 C). 

In obesity models, adipose tissue macrophage phenotype switching 

occurs wherein CD11c-expressing M1 macrophages become the predominant   
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Figure 3.1: Chronic, multiple-binge alcohol increases adipose M1 
macrophages in WT but not TLR4KO mice. WT (C57BL/6J) and TLR4KO mice 
were subjected to the chronic, multiple-binge alcohol model and the SVF isolated 
from perigonadal adipose tissue was analyzed by flow cytometry. (A-B) 
Representative gating strategy. (A) Total SVF cells are defined as singlets (left), 
leukocytes as CD45+ cells (middle), and myeloid and lymphoid populations were 
identified based on forward- and side-scatter (right). (B) The myeloid population 
was gated on CD11b and F4/80 to identify total macrophages (CD11b+F4/80+) 
(left) and macrophages were further gated on CD206 and CD11c to identify M2 
macrophages (CD206+CD11c–), intermediate macrophages (CD206+CD11c+), 
and M1 macrophages (CD206–CD11c+) (right). Quantification of (C) total 
macrophages, (D) M1 macrophages, (E) Intermediate macrophages, and (F) M2 
macrophages as a percentage of total SVF cells. n=5-6. Data are represented as 
mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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cell type over CD206-expressing M2 anti-inflammatory macrophages (133, 136, 

139, 159, 214). Here, we identified three different macrophage phenotypes along 

this spectrum: M1 (CD206-CD11c+), an intermediate (Int.), mixed phenotype 

(CD206+CD11c+), and M2 (CD206+CD11c-) (Figure 3.1 D-F). Chronic, multiple-

binge alcohol exposure increased the number of M1 macrophages in WT, but not 

TLR4KO mice, compared to pair-fed controls (Figure 3.1 D). The number of 

intermediate and M2 macrophages were both unchanged in alcohol-fed WT and 

TLR4KO mice (Figure 3.1 E and F). Alcohol-fed TLR4KO mice had fewer 

intermediate macrophages than alcohol-fed WT mice (Figure 3.1 E). 

Alcohol changes the immune cell composition of adipose tissue 

Adipose tissue inflammation is not dependent solely on macrophages; 

other immune cell types such as DCs, neutrophils, B, and T cells have been 

implicated in the inflammatory process (159, 211, 214). We analyzed the SVF for 

the presence of these immune cell populations (Figure 3.2 A and Figure 3.3 A). 

Alcohol increased the number of DCs (F4/80-CD11b+CD11c+) in WT, but not 

TLR4KO mice, similar to M1 macrophages (Figure 3.2 B). The number of 

neutrophils (F4/80-CD11b+Gr1+) showed a trend of increase in both alcohol-fed 

WT and TLR4KO mice when compared to pair-fed mice (Figure 3.2 C). Both 

macrophages and DCs act as APCs in the adipose tissue by engaging the 

adaptive immune response (146, 147, 149). We quantified the number of B and T 

cells to assess whether this model results in the activation of the adaptive 

immune system in the adipose tissue (Figure 3.3 A). The number of B cells   
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Figure 3.2: Chronic, multiple-binge alcohol increases adipose DCs in WT but 
not TLR4KO mice. WT (C57BL/6J) and TLR4KO mice were subjected to the 
chronic, multiple-binge alcohol model and the SVF isolated from perigonadal 
adipose tissue was analyzed by flow cytometry. (A) Representative gating 
strategy. Non-macrophage myeloid cells (CD11b+F4/80-) (left) were gated on 
CD11b and CD11c to identify DCs (CD11b+CD11c+) (middle) and CD11b and 
Gr1to identify neutrophils (CD11b+Gr1+) (right). Quantification of (B) DCs and (C) 
Neutrophils as a percentage of total SVF cells. n=5-6. Data are represented as 
mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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Figure 3.3: Chronic, multiple-binge alcohol increases adipose B-cells in WT 
but not TLR4KO mice. WT (C57BL/6J) and TLR4KO mice were subjected to the 
chronic, multiple-binge alcohol model and the SVF isolated from perigonadal 
adipose tissue was analyzed by flow cytometry. (A) Representative gating 
strategy. Lymphoid cells were gated on CD45 and CD19 to identify B-cells 
(CD45+CD19+) (left) or CD45 and CD3 to identify total T-cells (CD45+CD3+) 
(middle). T-cells were further gated on CD4 and CD8 to identify CD4+ (CD4+CD8-

) or CD8+ (CD4-CD8+) T-cells (right). Quantification of (B) B-cells, (C) T-cells, (D) 
CD4+ T-cells, and (E) CD8+ T-cells as a percentage of total SVF cells. n=5-6. Data 
are represented as mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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(CD45+CD19+) increased in alcohol-fed WT mice, but this elevation was absent 

in alcohol-fed TLR4KO mice (Figure 3.3 B). There was a trend of increase in the 

number of T cells in alcohol-fed WT mice (CD45+CD3+), more specifically CD4+ T 

cells when both populations are compared to their respective pair-fed controls, 

but this was not significant (Figure 3.3 C and D). On the other hand, these 

populations were unchanged in alcohol-fed TLR4KO mice. However, the number 

of CD4+ T cells in alcohol-fed TLR4KO was significantly lower than alcohol fed 

WT mice (Fig 3.3 D). Alcohol did not change the number of CD8+ T cells in WT or 

TLR4KO mice (Figure 3.3 E). Together, this data shows that in addition to 

macrophage phenotype switching, increases in DCs, and to some extent B cells 

and T cells, also contribute to alcohol-induced adipose inflammation. 

Alcohol induces the expression of pro-inflammatory cytokines and 

chemokines in the SVF 

To assess whether the M1 macrophages and other cell types in the 

adipose tissue produce cytokines during alcohol-induced inflammation, we 

measured the expression of pro-inflammatory cytokines and chemokines 

important to adipose inflammation (133). Chronic, multiple-binge alcohol 

increased the expression of both Il6 and Ccl2 in the SVF of WT and TLR4KO 

mice compared to pair-fed controls (Figure 3.4 A and B). This is similar to 

previous data obtained using the NIAAA model from whole adipose tissue 

analysis (213). Alcohol did not increase the expression of Il1b in WT or TLR4KO 

SVF (Figure 3.4 C). CXCL1 is a chemokine important for neutrophil chemotaxis   
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Figure 3.4: TLR4KO mice are not protected against inflammatory cytokine 
production. WT (C57BL/6J) and TLR4KO mice were subjected to the chronic, 
multiple-binge alcohol model and the SVF isolated from perigonadal adipose tissue 
was analyzed qPCR. mRNA expression of (A) Il6, (B) Ccl2, (C) Il1b, and (D) Cxcl1. 
Each genotype is normalized to respective pair-fed controls. n=7-9, some data 
points are the result of pooling SVF from two individual mice. Data are represented 
as mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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and recent studies in the ALD field have demonstrated the importance of 

neutrophils in alcohol-induced liver inflammation (67, 68, 70). Alcohol increased 

the expression of Cxcl1 in the SVF of WT and TLR4KO mice (Figure 3.4 D). 

Together, our data shows that alcohol-induced cytokine/chemokine expression in 

the adipose tissue occurs independent of TLR4 and likely involves cells other 

than myeloid cells. 

Characterization of myeloid-specific TLR4 knockout mice 

 In order to further understand how TLR4 expression on myeloid cells 

contributes to alcohol-induced adipose tissue macrophage phenotype switching, 

we generated myeloid-specific TLR4 knockout (M-TLR4KO) mice. Mice 

expressing the myeloid-specific Cre recombinase, LysMCre+/+, were crossed to 

mice with exon 3 of the Tlr4 gene flanked by LoxP sites (Tlr4f/f) to generate 

myeloid-specific TLR4 knockout (LysMCre+/-; Tlr4f/f; M-TLR4KO) mice (218, 219). 

TLR4 was absent at the cell surface of peritoneal macrophages isolated from M-

TLR4KO (Figure 3.5 A-C). Additionally, peritoneal macrophages from M-TLR4KO 

mice had a greatly reduced TNFa response when stimulated with LPS compared 

to macrophages isolated from WT littermates (LysMCre-/-;Tlr4f/f). M-TLR4KO 

macrophages maintained WT level responses to a TLR2 ligand, Pam3CSK4 

(Figure 3.5 D and E). Further, intracellular staining revealed that peritoneal 

neutrophils isolated from M-TLR4KO also had decreased TNFa production in 

response to LPS compared to WT littermate neutrophils, but maintained TNFa 

production in response to Pam3CSK4 (Figure 3.5 F-H). Thus, both macrophages   
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Figure 3.5: TLR4 is deleted in macrophages and neutrophils from M-TLR4KO 
mice. (A) Representative gating of elicited peritoneal macrophages, which were 
first gated on singlets. (B) Representative surface staining of TLR4 on elicited 
peritoneal macrophages from WT littermate (WT), Myeloid-TLR4 knockout (M-
TLR4KO), and global TLR4 knockout (TLR4KO) mice. (C) TLR4 surface 
expression of WT, M-TLR4KO, and TLR4KO mice, n=3 for each genotype. (D) 
TNFa ELISA of cell supernatants from elicited peritoneal macrophages that were 
stimulated 2 µg/mL LPS, n=3 for each genotype. (E) TNFa ELISA of cell 
supernatants from elicited peritoneal macrophages that were stimulated with 1 
µg/mL Pam3CSK4, n=3 for each genotype. (F) Representative gating of elicited 
peritoneal neutrophils. The granulocyte population was identified by gating singlets 
on forward and side scatter (left) and then was gated on CD11b and Ly6g to 
identify neutrophils (CD11b+Ly6g+) (right). (G) Representative intracellular TNFa 
staining of elicited peritoneal neutrophils stimulated with either LPS or Pam3CSK4 
in WT, M-TLR4KO, and TLR4KO mice. (H) Intracellular TNFa in peritoneal 
neutrophils of WT, M-TLR4KO, and TLR4KO mice stimulated with 1 µg/mL LPS, 
n=3 for each genotype. (I) Intracellular TNFa in peritoneal neutrophils of WT, M-
TLR4KO, and TLR4KO mice stimulated with 1 µg/mL Pam3CSK4, n=3 for each 
genotype. Data are represented as mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, 
**** p<0.0001.  
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and neutrophils from M-TLR4KO are unresponsive to LPS stimulation due to the 

absence of TLR4. 

Myeloid-TLR4 does not regulate alcohol-induced macrophage phenotype 

switching 

To determine whether myeloid-specific TLR4-deficiency directly impacts 

macrophage phenotype switching, the M-TLR4KO mice and their WT littermates 

were subjected to the chronic, multiple-binge alcohol exposure model and the 

SVF was isolated and stained for flow cytometry analysis. The number of total 

macrophages was unchanged in alcohol-fed WT littermates or M-TLR4KO mice, 

compared to their respective pair-fed controls (Figure 3.6 A). Interestingly, the M-

TLR4KO mice were not protected against the alcohol-induced M1 phenotype 

switch; alcohol-fed M-TLR4KO mice had a greater number of M1 macrophages 

compared to pair-fed mice, which is in contrast to the global TLR4KO mice 

(Figure 3.6 B). The number of intermediate and M2 macrophages were not 

increased in alcohol-fed WT littermates or alcohol-fed M-TLR4KO mice when 

compared to pair-fed WT littermates or M-TLR4KO mice, respectively (Figure 3.6 

C and D). This suggests that adipose tissue macrophage phenotype switching is 

independent of myeloid TLR4 and that TLR4 expression on cells other than 

myeloid cells may be important. 

The number of DCs, neutrophils, B cells, and T cells were also quantified 

in these mice. We observed differences in the immune cell composition of 

alcohol-fed C57BL/6J WT mice and alcohol-fed WT littermates of M-TLR4KO   
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Figure 3.6: M-TLR4KO mice are not protected against adipose macrophage 
phenotype switching. WT littermates and M-TLR4KO mice were subjected to the 
chronic, multiple-binge alcohol model and the SVF isolated from perigonadal 
adipose tissue was analyzed by flow cytometry. Quantification of (A) total 
macrophages, (B) M1 macrophages, (C) Intermediate macrophages, and (D) M2 
macrophages as a percentage of total SVF cells. n=4-7. Data are represented as 
mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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mice, which could be attributed to LoxP sites inserted in the Tlr4 gene (219). 

Similar to the C57BL/6J WT mice (Figure 3.2 B), the number of DCs in alcohol-

fed WT littermates showed a trend of increase, whereas DCs from alcohol-fed M-

TLR4KO did not increase compared to the pair-fed controls (Figure 3.7 A). 

Neutrophil numbers were increased in alcohol-fed WT littermates, and there was 

a trend of increase in the alcohol-fed M-TLR4KO mice when compared to pair-

fed controls but this was not significant (Figure 3.7 B). This differs slightly from 

the alcohol-fed WT C57BL/6J mice, which exhibit a trend of increase in adipose 

neutrophils (Figure 3.2 C). The number of B cells, total T cells, and CD4+ T cells 

did not exhibit significant changes in alcohol-fed WT littermates and M-TLR4KO 

mice (Figure 3.7 C, D, and E). On the other hand, CD8+ T cells were decreased 

in both alcohol-fed WT littermates and M-TLR4KO mice, compared to their 

respective pair-fed controls (Figure 3.7 F). Together, this data shows that 

chronic, multiple-binge alcohol modulates the immune cell composition of the 

adipose tissue and leads to the increased number of M1 macrophages, DCs, and 

neutrophils, but fewer CD8+ T-cells. Tlr4 is required for macrophage phenotype 

switching and the increase in DCs, but the mechanism is independent of myeloid 

TLR4 expression. Interestingly, neutrophil accumulation and the decrease in 

CD8+ T cells are both independent of TLR4 expression. 
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Figure 3.7: Chronic, multiple-binge alcohol decreases CD8+ T-cells in WT and 
M-TLR4KO mice. WT littermates and M-TLR4KO mice were subjected to the 
chronic, multiple-binge alcohol model and the SVF isolated from perigonadal 
adipose tissue was analyzed by flow cytometry. Quantification of (A) DCs, (B) 
neutrophils, (C) B-cells, (D) T-cells, (E) CD4+ T-cells, and (F) CD8+ T-cells as a 
percentage of total SVF cells. n=4-7. Data are represented as mean ± SEM, * p 
<0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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TLR4 partially mediates hepatic inflammation, but not steatosis, in the 

chronic, multiple-binge model. 

In order to determine whether TLR4 mediates liver injury in the chronic, 

multiple-binge model, we assayed several parameters of liver injury in WT and 

global TLR4KO mice. Serum ALT and AST levels were elevated in alcohol-fed 

WT and TLR4KO mice, when compared to their respective pair-fed controls. Both 

ALT and AST levels were reduced in alcohol-fed TLR4KO compared to alcohol-

fed WT mice (Figure 3.8 A and B). Hepatic triglycerides were also elevated in 

both alcohol-fed WT and TLR4KO mice, however there was no difference 

between those two groups (Figure 3.8 C). Next, we wanted to determine whether 

TLR4-deficiency impacts liver inflammation in this model by measuring the 

expression of pro-inflammatory cytokines and chemokines. The expression of Il6 

and Ccl2 were elevated in alcohol-fed WT, but not alcohol-fed TLR4KO mice, 

compared to pair-fed controls (Figure 3.8 D and E). The expression of Il1b was 

induced in alcohol-fed WT and alcohol-fed TLR4KO mice compared to their 

respective pair-fed controls, but the expression in alcohol-fed TLR4KO mice is 

much lower compared to alcohol-fed WT mice (Figure 3.8 F). Together, this 

demonstrates that TLR4KO mice are protected against liver inflammation, but not 

hepatic steatosis, in the chronic, multiple-binge model and they have reduced 

overall liver injury. 

 In order to determine whether myeloid TLR4 mediates the reduced 

cytokine expression seen the livers of alcohol-fed global TLR4KO mice, we   
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Figure 3.8: TLR4 partially mediates liver injury. WT and TLR4KO mice were 
subjected to the chronic, multiple-binge alcohol model. Blood and liver were 
collected. Serum was used to quantify (A) ALT and (B) AST levels. (C) Liver 
triglyceride quantification. qPCR was used to quantify liver mRNA expression of 
(D) Il6, (E) Ccl2, and (F) Il1b. Each genotype is normalized to respective pair-fed 
controls. n=15-19 from three independent experiments. Data are represented as 
mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, **** p<0.0001.  
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assayed liver injury parameters in M-TLR4KO mice and their WT littermates. 

Serum ALT levels were elevated in alcohol-fed WT littermates compared to pair-

fed WT littermates, but not in alcohol-fed M-TLR4KO mice (Figure 3.9 A). Serum 

AST levels were elevated in both alcohol-fed WT littermates and alcohol-fed M-

TLR4KO compared to their respective pair-fed controls, but there was no 

difference between the two groups (Figure 3.9 B). Hepatic triglycerides were 

elevated in alcohol-fed WT littermates compared to pair-fed WT littermates. 

There is a trend of increase in alcohol-fed M-TLR4KO mice compared to pair-fed 

M-TLR4KO mice, but this was not significant. This could be due to the increased 

level of triglycerides in the pair-fed M-TLR4KO mice (Figure 3.9 C). Expression of 

Il6 is unchanged in both alcohol-fed WT littermates and alcohol-fed M-TLR4KO 

mice (Figure 3.9 D). Similar to the global TLR4KO mice, expression of Ccl2 is 

induced in alcohol-fed WT littermates, but not alcohol-fed M-TLR4KO mice, when 

compared to pair-fed controls (Figure 3.9 E). Expression of TLR4 on myeloid 

cells impacts hepatic inflammation but does not influence hepatic steatosis or 

overall liver injury in the chronic, multiple-binge model. 
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Figure 3.9: Myeloid TLR4 partially mediates liver injury. WT and M-TLR4KO 
mice were subjected to the chronic, multiple-binge alcohol model. Blood and liver 
were collected. Serum was used to quantify (A) ALT and (B) AST levels. (C) Liver 
triglyceride quantification. qPCR was used to quantify liver mRNA expression of 
(D) Il6 and (E) Ccl2. Each genotype is normalized to respective pair-fed controls. 
n=4-7. Data are represented as mean ± SEM, * p <0.05, ** p <0.01, ***p<0.001, 
**** p<0.0001.  
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Summary 

 In this chapter, I used flow cytometry to identify specific immune cell 

populations and determined whether they changed in response to the chronic, 

multiple binge model. Previous analysis of adipose tissue inflammation was 

limited to gene expression analysis and immunohistochemistry. The data I 

presented here builds upon this work and confirms the presence of pro-

inflammatory M1 macrophages in the adipose tissue. Moreover, I demonstrated 

that the chronic, multiple-binge alcohol model also modulates adipose tissue 

DCs, neutrophils, and CD8+ T cells. Additionally, I established that TLR4 

influences alcohol-induced adipose tissue macrophage phenotype switching, but 

surprisingly, through cells other than macrophages and neutrophils. Lastly, I 

determined that TLR4 has a limited role in liver injury in this model and that pro-

inflammatory cytokine production depends on TLR4 in the liver but not in the 

adipose tissue.  
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Materials and Methods 

Animals and experimental models 

Experiments were approved by the Institutional Animal Care and Use Committee 

of the University of Massachusetts Medical School and conducted in accordance 

with the Guide for the Care and Use of Laboratory Animals from the National 

Institutes of Health. To generate the myeloid-specific Tlr4 knockout mice, 

LysMCre+/+ mice purchased from The Jackson Laboratory (strain 004781) were 

crossed to Tlr4f/+ mice, which were provided by the University of Cincinnati Gene 

Targeting Mouse Core Facility, to produce LysMCre+/-;Tlr4f/+ (219). The resulting 

offspring were interbred to produce LysMCre+/-;Tlr4f/f (M-TLR4KO) and wild-type 

(WT) littermates; LysMCre-/-;Tlr4f/f. For the chronic alcohol consumption 

experiments, nine- to ten-week old female C57BL/J mice were purchased from 

The Jackson Laboratory (strain 000664). Conventional TLR4KO mice (global 

TLR4KO) on the C57BL/6 background were maintained in house (220, 221). 

Eight- to 16-week old female mice were subjected to a chronic, multiple-binge 

model of alcohol exposure modified from an early stage alcoholic steatohepatitis 

model (68). Mice were assigned to two groups. The first group had ad libitum 

access to a 5% ethanol (v/v) Lieber-DeCarli diet (Bio-Serv, #F1258SP) for five 

weeks, following a one-week period of ethanol acclimatization. After 10 days of 

5% ethanol, mice received an ethanol gavage (5 g/kg body weight, 31.5% 

ethanol), as reported in the NIAAA model once per week for the duration of the 

feeding for a total number of five gavages (123). The second group were an 
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isocaloric Lieber-DeCarli control diet (Bio-Serv, #F1259SP) and received an 

isocaloric gavage of maltodextrin (Bio-Serv, #3585). Mice were euthanized nine 

hours after the final gavage by CO2 inhalation followed by cervical dislocation. 

Perigonadal adipose tissue was excised and stored at 37°C in HBSS (Gibco, 

#14025) supplemented with 3% (w/v) bovine serum albumin (Sigma, #A7030). 

For peritoneal cell experiments, 15-19-week old female, M-TLR4KO, their WT 

littermates, and TLR4KO mice were injected intraperitoneally with 1 mL of a 4% 

thioglycollate medium brewer modified solution (Becton Dickinson, #211716). 

Mice were euthanized by CO2 inhalation followed by cervical dislocation four 

hours later to harvest elicited neutrophils and four days later to harvest elicited 

macrophages. 

Adipose tissue fractionation 

Adipose tissue was minced and digested with a 1 mg/mL collagenase solution 

(Sigma, #C6885) in a 37°C shaking water bath for one hour. The collagenase 

was deactivated by adding 10% (v/v) FBS (Gemini Bio-Products, #100-500). 

Samples were filtered through a 100 µm cell strainer (Corning, #352360) and 

centrifuged at 800 xg for six minutes at room temperature. The adipocyte layer 

was collected, washed, and lysed in QIAzol Lysis Reagent (Qiagen, #79306). 

The pelleted stromal vascular fraction was treated with ACK Lysing buffer (Gibco, 

#A10492-01) and lysed in RLT lysis buffer and homogenized via QIAshredder 

(Qiagen, #79654) for RNA extraction or washed in staining media (1 mM EDTA 

(Corning, #46-034-Cl) and 3% FBS in HBSS (Gibco, #14175)) for flow cytometry. 
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The SVF was blocked with anti-mouse CD16/32 Clone 2.4G2 (Bio X Cell, 

#CUSTOM24G2) for 15 minutes at 4°C and then was subsequently incubated 

with primary antibodies or isotype controls for 20 minutes at 4°C in the dark. 

Antibodies and isotype controls used are listed in Table 3.1. The SVF was 

washed and fixed with 1% formaldehyde (ThermoScientific, #28908) for 20 

minutes at 4°C in the dark. After fixation, the cells were washed and analyzed on 

a BD LSRII Cytometer (BD Biosciences). Data was analyzed using FlowJo (Tree 

Star, Inc.). In some experiments, Zombie Aqua Fixable Viability kit (Biolegend) 

was used to exclude dead cells. Gates were set based on fluorescence minus 

one (FMO) and isotype controls. 

Peritoneal macrophages 

Four days after thioglycollate injection, macrophages were collected as 

previously described (222). Briefly, macrophages were harvested by washing the 

peritoneal cavity with DPBS (Gibco, #14190) and treated with ACK Lysing Buffer. 

For flow cytometry analysis, cells were washed in staining media, blocked, and 

incubated with primary antibodies or isotype controls as described above. 

Antibodies and isotype controls used are listed in Table 3.2. Data was analyzed 

as described above. For the TLR ligand experiment, cells were washed in 

DMEM/F12 (Gibco, #11320) supplemented with 10 mM L-glutamine (Gibco, 

#25030) and 100 U/mL penicillin/100 µg/mL streptomycin (Gibco, #15140) and 

plated at 3x105/well in 12-well plates in media with 10% FBS and rested for 2 

hours. Media was changed and cells were stimulated with 2 µg/mL LPS-EB 
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Ultrapure (Invivogen, #tlrl-3pelps) or 1 µg/mL Pam3CSK4 (Invivogen, #tlrl-pms) 

for five hours. Cell supernatants were collected and the BD OptEIA Mouse TNFα 

(Mono/Mono) ELISA set (BD Biosciences, #555268) was used to quantify TNFα 

production. 

Peritoneal neutrophils 

Four hours after thioglycollate injection, neutrophils were collected as previously 

described (223). Briefly, the peritoneal cavity was washed with cold RPMI (Gibco, 

#11875). Neutrophils were treated with ACK Lysing Buffer and then washed in 

RPMI. Neutrophils were aliquoted to 5 mL polypropylene cell culture tubes at a 

density of 6x105/mL in RPMI supplemented with 10% (v/v) FBS, 100 U/mL 

penicillin/100 µg/mL streptomycin, and 2 mM L-glutamine (Gibco, #25030) at a 

final volume of 0.5 mL. Cells were incubated with 1 µg/mL LPS-EB Ultrapure or 1 

µg/mL Pam3CSK4 for 10 minutes and then treated with GolgiPlug (BD 

Biosciences, #555028) for 2 hours. Neutrophils were stained for intracellular 

TNFα as previously described (224). Briefly, cells were washed with staining 

media, blocked, and incubated with primary antibodies as described above. 

Antibodies and isotype controls used are listed in Table 3.3. Neutrophils were 

washed and then fixed and permeabilized with BD Cytofix/Cytoperm Plus (BD 

Biosciences, #555028) according to the manufacturer’s instructions and then 

washed again. Cells were incubated with either the TNFa antibody or the isotype 

control for 30 minutes on ice. Cells were washed in staining media and analyzed 

as described above. 
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RNA extraction and Real-Time qPCR 

Adipocyte RNA was extracted using the RNeasy Lipid Tissue Mini Kit (Qiagen, 

#74804) and SVF RNA was extracted using the RNeasy Mini Kit (Qiagen, 

#74104) following the manufacturer’s instructions. RNA concentration was 

measured with a NanoDrop 2000 (ThermoScientific) and cDNA was synthesized 

using the Reverse Transcription System (Promega, #A3500) or the iScript 

Reverse Transcription Supermix (Bio-Rad, #1708841). mRNA transcript levels 

were assayed using the iTAQ Universal SYBR Green Supermix (Bio-Rad, #172-

5121) and the CFX Connect Real-Time PCR Detection System (Bio-Rad). All 

data was normalized to 18s ribosomal RNA. Primer sequences are listed in Table 

3.4. 

Statistical analysis 

Data are presented as mean ± SEM. ANOVA was used to determine differences 

between groups. Grubbs’ test was used to exclude outliers. All statistical analysis 

was performed using GraphPad Prism 7 (GraphPad). 
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 Table 3.1: List of flow cytometry antibodies for SVF 

Antibody Company Catalog # Clone 
CD45-APC/Fire 750  Biolegend 103154 30-F11  
CD11b-PerCP/Cy5.5  Biolegend 101228 M1/70 
F4/80-Brilliant Violet 650  Biolegend 123149 BM8 
CD206-Brilliant Violet 421  Biolegend 141717 C068C2 
CD11c-PE Biolegend 117307 N418 
Ly6G (Gr-1)-APC eBioscience  17-5931-81 RB6-8C5 
CD3-PerCP/Cy5.5  Biolegend 100218 17A2 
CD4-PE  Biolegend 100512 RM4-5 
CD8a-Brilliant Violet 421  Biolegend 100753 53-6.7 
CD19-APC  BD Biosciences 561738 1D3 
Isotype Company Catalog # Clone 
APC/Fire 750 Rat IgG2b  Biolegend 400669 RTK4530 
PerCP/Cy5.5 Rat IgG2b  Biolegend 400631 RTK4530 
Brilliant Violet 650 Rat IgG2a  Biolegend 400542 RTK2758 
Brilliant Violet 421 Rat IgG2a  Biolegend 400535 RTK2758 
PE Armenian Hamster IgG  Biolegend 400907 HTK888 
APC Rat IgG2b  eBioscience  17-4031-81 eB149/10H5 
PE Rat IgG2a  eBioscience  12-4321-41 eBR2a 
APC Rat IgG2a  Biolegend 400511 RTK2758 
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Table 3.2: List of flow cytometry antibodies for peritoneal macrophages 

Antibody Company Catalog # Clone 
CD11b-PerCP/Cy5.5  Biolegend 101228 M1/70 
F4/80-Brilliant Violet 650  Biolegend 123149 BM8 
TLR4-PE  Biolegend 145403 SA15-21 
Isotype Company Catalog # Clone 
PerCP/Cy5.5 Rat IgG2b  Biolegend 400631 RTK4530 
Brilliant Violet 650 Rat IgG2a  Biolegend 400542 RTK2758 
PE Rat IgG2a  eBioscience 12-4321-41 eBR2a 
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Table 3.3: List of flow cytometry antibodies for peritoneal neutrophils 

Antibody Company Catalog # Clone 
CD11b-PerCP/Cy5.5  Biolegend 101228 M1/70 
Ly6g-APC Biolegend 127613 1A8 
TNFa-PE Biolegend 506306 MP6-XT22 
Isotype Company Catalog # Clone 
PerCP/Cy5.5 Rat IgG2b  Biolegend 400631 RTK4530 
APC Rat IgG2a  Biolegend 400511 RTK2758 
PE Rat IgG1 Biolegend 400407 RTK2071 
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Table 3.4: List of primer sequences 5’-3’ 

Gene Sequence 
18s forward GTAACCCGTTGAACCCCATT 
18s reverse CCATCCAATCGGTAGTAGCG 
Ccl2 forward CAGGTCCCTGTCATGCTTCT 
Ccl2 reverse TCTGGACCCATTCCTTCTTG 
Cxcl1 forward TGCACCCAAACCGAAGTC 
Cxcl1 reverse GTCAGAAGCCAGCGTTCACC 
Il6 forward ACAACCACGGCCTTCCCTACTT 
Il6 reverse CACGATTTCCCAGAGAACATGTG 
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CHAPTER IV 

Discussion  
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Sexual dimorphism in liver injury and adipose tissue inflammation 

The sexual dimorphism in human ALD is well known; women are more 

likely than men to develop ALD, despite consuming less alcohol (2, 13-16). 

Human studies and rodent models indicate differences in first-pass metabolism, 

body water content, and hormones may contribute to the sexual dimorphism in 

ALD (17-19, 21, 22). Whether sexual differences play an important part in alcohol 

mediated adipose tissue inflammation and its impact on liver disease is not yet 

considered. The studies presented in Chapter II of this thesis show that chronic 

alcohol consumption causes adipose tissue inflammation in a sex-dependent 

manner. 

Here I provide an analysis of the sexual dimorphism in adipose 

inflammation that occurs in mice when subjected to the NIAAA model of chronic-

binge alcohol exposure. This model employs a single binge of alcohol delivered 

at the end of the study, which mimics a binge event common in AH patients 

(123). My studies show that male mice consume higher volumes of the 5% 

alcohol diet and had a higher BAC than their female counterparts on an ad 

libitum diet. Despite this, female mice have greater liver injury, as shown by 

elevated serum ALT and high liver triglycerides, similar to previous studies from 

Ki and colleagues (27). From these studies, it is apparent that increased serum 

ALT and triglycerides occur despite lower alcohol consumption and BAC in 

female mice. 
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The production of pro-inflammatory cytokines and chemokines in the liver 

has been reported in male and female mice subjected to the NIAAA model (27, 

70, 225). Here I show a direct comparison of cytokine, chemokine, and 

monocyte/macrophage marker mRNA expression between male and female 

mice. I report an increase in Tnf, Il6, and Ccl2 mRNA in alcohol-fed female mice 

whereas alcohol-fed male mice exhibit an increase in Ccl2 mRNA. Furthermore, 

alcohol-fed female mice have greater Ccl2 expression than alcohol-fed male 

mice in the liver. Previous studies using male mice have shown minimal or lack 

of expression of Tnf, Il6, and Ccl2 mRNA in the liver (226, 227). Expression of 

the macrophage marker Emr1 is decreased in both male and female livers. This 

decrease has been reported in other chronic alcohol models and is likely a result 

of the resident KCs undergoing apoptosis (70, 228). Ly6c1 mRNA, a marker of 

pro-inflammatory monocytes, is increased in alcohol-fed male and female livers, 

indicating that there is infiltration of monocytes into the livers of these mice. This 

is in agreement with previous studies showing that chronic alcohol consumption 

increases the presence of Ly6C-expressing monocytes in mouse livers and that 

this increase is enhanced further with the administration of an ethanol binge (60). 

Overall, my results show that alcohol-fed female mice exhibit higher expression 

of pro-inflammatory cytokines than male mice. 

Adipose tissue biology has been extensively studied in the context of 

obesity. Low-grade adipose tissue inflammation is linked to the development of 

metabolic disorders, namely Type 2 diabetes. Adipose tissue inflammation is 
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characterized by the increased presence of pro-inflammatory macrophages and 

the production of pro-inflammatory adipokines (132). Similar to studies on 

obesity, studies in ALD models have shown that chronic alcohol consumption 

can induce pro-inflammatory responses in the adipose tissue. Female mice on an 

ad libitum alcohol diet produce cytokines in the adipose tissue and exhibit 

increased expression of the pro-inflammatory macrophage marker Itgax (CD11c) 

(194). In other chronic ALD models, male rats fed alcohol ad libitum for four 

weeks exhibit increased Tnf, Il6, and Ccl2 production in adipose tissue (189, 

190). Male mice fed alcohol for four to eight weeks also reveal increases in 

adipose tissue cytokine production (193, 195). My data show higher expression 

of Tnf, Il6, and Ccl2 in female adipose tissue, whereas increased Il6 but not Tnf 

or Ccl2 is observed in male adipose tissue using the NIAAA model of chronic-

binge alcohol feeding. It is likely that pro-inflammatory cytokine induction in male 

adipose tissue may further increase with a prolonged (four to eight weeks) 

alcohol-feeding regimen. Although previously published studies provide evidence 

for chronic alcohol consumption-mediated adipose tissue inflammation, they 

have not explored whether sex-dependent differences exist in alcohol-induced 

adipose tissue inflammation. 

I report for the first time that alcohol-induced adipose tissue inflammation 

occurs in a sex-dependent manner. Male and female adipose tissues have a 

distinctly different cytokine signature in response to the NIAAA model: male mice 

express high Il6 mRNA, whereas female mice express elevated Ccl2 mRNA. The 
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role of IL-6 in adipose tissue function is controversial; evidence exists in support 

of both its pro- and anti-inflammatory functions (132, 229). It is likely that the 

increase in Il6 expression in male adipose tissue exerts an anti-inflammatory 

response. On the other hand, increased Ccl2 in female adipose tissue could be 

indicative of a pro-inflammatory state, which is consistent with obesity-related 

adipose tissue inflammation (132). Increased Ccl2 expression in male adipose 

tissue, but not female, correlates to a higher degree of inflammation in high fat 

diet models, in which male mice have more severe metabolic dysfunction (181). 

Interestingly, I observe an opposite paradigm; females exhibit higher Ccl2 and 

are more susceptible than males to liver injury. In mouse models of obesity, there 

is increased numbers of pro-inflammatory macrophages in the adipose tissue 

(134, 136, 137, 139). In this data, female mice show an increase in the 

expression of a number of macrophage markers (Emr1, Cd68, Itgam, and Itgax). 

This indicates either an increase in the number of macrophages within the 

adipose tissue or increased expression of these markers, suggesting that 

resident adipose macrophages likely acquire a pro-inflammatory phenotype. 

Interestingly, H&E staining of adipose tissue sections show that adipocyte 

morphology remains unchanged between the sexes and pair-and alcohol-fed 

groups. There is an absence of crown-like structures, which indicates that 

macrophage activation is occurring without a significant change in macrophage 

numbers by alcohol (132). 



 
 

104 

Consistent with previous results, female mice have higher serum 

adiponectin in control animals than male mice (208). In contrast to previous 

rodent studies using long-term chronic alcohol consumption models, the NIAAA 

model employed here did not show reduced serum adiponectin levels (32, 176, 

191). Serum adiponectin is increased in both male and female mice, likely due to 

a compensatory mechanism. Studies in ALD patients report increased serum 

adiponectin levels when compared to healthy controls or hepatitis C patients. 

Serum adiponectin is positively correlated with severity of liver injury (184-186). 

One possible explanation for the discrepancy between the mouse models could 

be the difference in drinking patterns because the NIAAA model includes a binge, 

whereas other models do not. This model is reflective of the drinking patterns in 

AH patients, suggesting that future studies on serum adiponectin alcohol models 

employing a binge are needed (123). 

I sought to identify the underlying mechanism that contributes to the 

sexual dimorphism in adipose tissue inflammation. Chronic alcohol exposure 

increases the sensitivity of macrophages to endotoxin-mediated TNFα production 

and estrogen also sensitizes liver macrophages to endotoxin injury (21, 32). Here 

I investigated the effect of chronic alcohol exposure on male- and female-derived 

BMDMs. BMDMs exposed to chronic alcohol conditions in vitro increased LPS-

induced TNFα production; however, the extent of increase due to alcohol 

exposure is similar between both male- and female-derived BMDMs. It is likely 

that the increased expression of macrophage markers in the adipose tissue is 
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regulated to some extent by the infiltration of bone marrow-derived immune cells 

during alcohol exposure. Furthermore, circulating endotoxin show higher trends 

in alcohol-fed female mice compared to male counterparts. The increased 

endotoxin could contribute to adipose inflammation in female mice. Moreover, the 

expression of several Tlr genes is increased in the adipose tissue of female, but 

not male mice. This indicates either an increased presence of Tlr-expressing 

cells or an upregulation of these genes in resident macrophages in females but 

not in males. The exact mechanism of sex-dependent upregulation of TLRs 

during alcohol exposure remains to be further explored. Overall my data provides 

some insights regarding how the propensity of increased circulating endotoxin in 

alcohol-fed female mice could lead to greater adipose tissue inflammation, 

dependent on mechanisms that are associated with increased TLR expression 

and/or macrophage activation. 

There are other factors related to biological sex that could contribute to the 

sexual dimorphism in ALD and ALD rodent models. Estrogen signaling in the 

adipose tissue of female, but not male, mice could contribute to the differential 

expression of Il6 (Figure 2.3 A). 17, b-estradiol inhibits IL-6 production in 

response to IL-1b and TNFa stimuli (230). This inhibition is also demonstrated in 

macrophages isolated from mice subjected to a thermal injury combined with 

ethanol exposure; 17, b-estradiol treatment decreased the production of IL-6 

(231). There may also be sex-dependent differences in the gut microbiome that 

could influence alcohol-induced adipose tissue and liver inflammation. The gut 
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microbiota composition differs between male and female mice on both chow and 

high-fat diets (232). In humans, the gut microbiota composition is influenced by 

gender (233). There has been recent interest in examining the relationship 

between the gut microbiome and the liver within the context of ALD, but it is 

unknown whether biological sex impacts this axis (234-236). 

This work highlights the role of adipose tissue inflammation within the 

context of sexual dimorphism that is observed in human ALD. In conjunction with 

the studies presented here, it will be imperative that all forthcoming alcohol 

studies carefully consider biological sex as an experimental variable. This will be 

important particularly in interpreting current and future studies that attempt to 

target adipose tissue as a means of resolving alcohol-induced liver injury. It is 

crucial that therapeutic strategies for AH patients are designed considering 

appropriate targets and the biologic sex of the patient. 

 Since the publication of Chapter II as a manuscript, there have been no 

new studies exploring the sexual dimorphism in ALD to report. A recent 

epidemiological study confirmed that being female is an independent risk factor 

for mortality in decompensated ALD patients and those with ASH (237). 

 Using the correct pre-clinical model for developing new ALD treatments 

will be crucial for making progress in the search for new and effective therapies. 

In Chapter II of this thesis, I demonstrate that the sexual dimorphism in mice that 

occurs in response to alcohol consumption extends to the adipose tissue. Three 

therapeutic strategies related to the adipose tissue have been tested in rodent 
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models of ALD to reverse liver injury. Exogenous adiponectin administration 

reverses liver injury in alcohol-fed mice (176). Taurine supplementation prevents 

the alcohol-mediated production of Il6 and Ccl2 mRNA in the adipose tissue of 

rats, as well as the alcohol-mediated decrease in circulating adiponectin. This 

also coincides with a reversal of hepatic steatosis and TNFa production in the 

liver (191). Rosiglitazone, a PPARg agonist, improves liver injury, circulating 

adiponectin, and adipose tissue inflammation in alcohol-fed mice (193, 195). 

Together, these studies help to support the connection between alcohol-induced 

adipose tissue inflammation and liver injury. They also provide evidence for 

targeting adipose-related mechanisms to alleviate alcohol-induced liver injury. 

However, only male animals were used to test these therapies. It remains to be 

determined how efficacious adiponectin, taurine, and rosiglitazone are in female 

animals, which have a much higher burden of injury than male animals. This will 

help to determine the overall effectiveness of these strategies and whether they 

will be suitable for potential use in human patients. 

Adipose macrophage phenotype switching is independent of TLR4 

expression in myeloid cells 

Adipose tissue inflammation is well-characterized in obesity models, but is 

an emerging area of investigation in ALD. Previous studies from our lab and 

others, have reported that alcohol increases the presence of innate immune cells 

within the white adipose tissue, using gene expression analysis and 

immunohistochemical staining (189, 194, 213). In Chapter III of this thesis, I 
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employed flow cytometry to identify and characterize both innate and adaptive 

adipose immune cells using a model of ASH established by Xu and colleagues 

(68). My studies report for the first time that alcohol increases the number of pro-

inflammatory M1 macrophages and DCs in the perigonadal adipose tissue. I also 

report that alcohol impacts other immune cell populations, such as neutrophils 

and CD8+ T cells. These mechanistic studies reveal that while TLR4 signaling is 

required globally for macrophage phenotype switching, myeloid TLR4 signaling is 

dispensable. Interestingly, alcohol mediated adipose inflammatory cytokine 

induction is independent of TLR4, as is the change in neutrophils and CD8+ T 

cells (Figure 4.1). These studies suggest alcohol mediated adipose inflammation 

is independent of myeloid TLR4 expression and future studies will be required to 

determine whether this inflammation involves non-immune cells, such as 

adipocytes, pre-adipocytes, or endothelial cells. 

During high-fat diet driven inflammation, the adipose tissue becomes 

populated with pro-inflammatory immune cells, specifically M1 macrophages that 

express CD11c (133-136, 139, 211). Depleting CD11c-expressing cells 

ameliorates adipose tissue inflammation (140). Alcohol-induced adipose tissue 

inflammation has been characterized by the increased expression of pro-

inflammatory cytokines as well as innate immune cell markers, including CD11c 

(Itgax) (189-195, 213). Recently it has been demonstrated that DCs, which also 

express CD11c, contribute to obesity-related adipose inflammation, but it is 

unknown if chronic alcohol exposure can modulate the DC population in the   
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Figure 4.1: Alcohol-induced adipose tissue inflammation is partially 
mediated by TLR4. Ethanol metabolism and/or the presence of endotoxin results 
in the expression of CXCL1, MCP-1, and IL-6 in the SVF. TLR4 expression on the 
SVF and/or adipocytes results in macrophage phenotype switching to the M1 
macrophage, which could be mediated by TNFa. Dendritic cell (DC), B cell, and 
CD4+ T cell accumulation are mediated by TLR4; neutrophil accumulation occurs 
independently of TLR4. The number of CD8+ T cells decreases, independent of 
TLR4. 
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adipose tissue (148-150). Previous studies from our lab have shown that 

moderate alcohol exposure impairs peripheral DC function and induces T-cell 

anergy (238). Here I show that in addition to the increased numbers of pro-

inflammatory M1 macrophages, DCs are also increased in alcohol-fed WT mice. 

On the other hand, global TLR4-deficiency prevents an increase in either M1 

macrophages or DCs when compared to pair-fed controls. Notably, the deletion 

of TLR4 from myeloid cells, including macrophages and neutrophils, in alcohol-

fed mice does not impact the number of M1 macrophages when compared to 

pair-fed mice, but inhibits the accumulation of DCs. 

Reports indicate that neutrophils increase in adipose tissue during high-fat 

diet-induced inflammation, at both early and late time points (151, 152). Here, I 

observe that alcohol increases the number of neutrophils in the adipose tissue of 

WT littermates. There is also a trend of increase in alcohol-fed WT (C57BL/6J), 

TLR4KO, and M-TLR4KO mice compared to their respective pair-fed controls, 

but this was not significant. Germline deletion of TLR4 did not impact the alcohol-

induced expression of pro-inflammatory cytokines, which indicates that innate 

immune cells are not the sole producers of pro-inflammatory cytokines in the 

SVF. The SVF is comprised of a number of different cell types, including immune 

cells, endothelial cells, and preadipocytes, all of which can produce cytokines or 

other inflammatory mediators that activate immune cells (132, 160, 161). Other 

adipose tissue cell types, including adipocytes, preadipocytes, and endothelial 

cells express Tlr4 (217, 239-241). My data suggests that the interplay between 
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these resident adipose cell types and immune cells is important for macrophage 

phenotype switching to the M1 phenotype, as well as the recruitment of DCs and 

neutrophils. 

Lymphocytes are also involved in adipose tissue inflammation during 

obesity. Pro-inflammatory B cells increase in the adipose tissue of mice 

subjected to a high-fat diet, while a population of regulatory B cells, which 

produce IL-10, are decreased (153, 154). Alcohol increased the number of B 

cells in WT C57BL/6J mice compared to their pair-fed controls, but alcohol-fed 

TLR4KO and M-TLR4KO mice do not experience this increase. In a paradigm 

similar to macrophages, specific subsets of T cells are involved in either the 

progression or control of adipose inflammation. Generally, CD4+ T cells in the 

adipose tissue are associated with pro-inflammatory macrophages (146, 147, 

155). However, the presence of regulatory T cells, which are 

immunosuppressive, is decreased by the progression of obesity (157). There 

may also be a role for regulatory T cells in maintaining the M2 macrophage 

population via the production of IL-10 (242). The number of CD4+ T cells is 

increased in alcohol-fed WT C57BL/6J but not TLR4KO or M-TLR4KO mice, 

when compared to their respective pair-fed controls. Macrophages and DCs can 

act as APCs for CD4+ T cells in the adipose tissue (146, 147, 149). The alcohol-

induced increase in the number of adipose tissue CD4+ T cells appears to mirror 

the increase seen in DCs and not M1 macrophages.  
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CD8+ T cell numbers are decreased in alcohol-fed WT littermates and 

alcohol-fed M-TLR4KO mice, with similar trends in alcohol-fed WT C57BL/6J and 

global TLR4KO mice. This is opposite to what occurs in obesity models; CD8+ T 

cell accumulation precedes and is required for macrophage accumulation in 

adipose tissue during high-fat diet-induced adipose inflammation (156). One 

explanation for this discrepancy for the role of CD8+ T cells is that the 

experimental model we use here involves repeated, acute alcohol insults during 

chronic alcohol exposure. This could change the timing of CD8+ T cell 

accumulation. Time course studies to determine when CD8+ T cells appear in the 

adipose tissue in relation to acute alcohol gavages may provide some insights as 

to whether or not they are required for alcohol-induced M1 macrophage 

accumulation. 

How, exactly, TLR4 controls macrophage phenotype switching remains to 

be determined. TLR4 promotes phenotype switching, but in an indirect manner 

because expression of TLR4 on macrophages themselves is dispensable for this 

switch. A likely scenario is that another adipose cell type, like adipocytes or 

endothelial cells, which express TLR4, generate the pro-inflammatory milieu that 

leads to M1 phenotype switching (217, 240, 241). For example, TLR4 activation 

in adipocytes or endothelial cells results in the production of TNFa (217, 241). 

TNFa, in turn, promotes M1 macrophage polarization (243). Therefore, in WT 

mice subjected to the chronic, multiple-binge model, adipocytes or endothelial 

cells produce the TNFa molecules which promote adipose tissue macrophage 
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phenotyping switching. This scenario is disrupted in the global TLR4KO mice, but 

remains intact in the M-TLR4KO mice. Whether TLR4 or TNFa expression in 

adipocytes and/or endothelial cells is required for this process could be tested by 

deleting Tlr4 or Tnf specifically in either cell type (219, 244). Mice expressing Cre 

under the control of the Adipoq promoter or the Cdh5 promoter could be used to 

delete these genes in adipocytes or endothelial cells, respectively (245, 246). If 

TLR4 expression on these cells is required for M1 phenotype switching in the 

chronic, multiple-binge model, there would be no increase in CD11c+ 

macrophages in either the adipocyte- or endothelial cell-specific TLR4KO mice, 

similar to the results in the global TLR4KO mice. The same result would hold true 

if TNFa is mediating the phenotype switch; there would be no increase in the 

number of CD11c+ macrophages in the adipocyte- or endothelial cell-specific 

TNFaKO mice. 

The impact of TLR4 on liver and adipose tissue inflammation in the 

chronic, multiple-binge model 

 TLR4 is a key innate immune receptor and when it binds to endotoxin 

(LPS), a major component of the outer layer of gram-negative bacteria. Following 

binding to TLR4, a signaling cascade results in the production of pro-

inflammatory cytokines (113). Generally, TLR4-deficient mice are protected 

against alcohol-induced liver injury (65, 115, 118, 119). This effect can be 

attributed to both hematopoietic and non-hematopoietic cells, as bone marrow 

transplant studies with WT and Tlr4-/- mice show partial protection against liver 
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injury (119). However, in some studies the role is less clear as Tlr4-/- are not 

protected against early complement deposition or TNFa production in the liver, or 

the role of TLR4 is confounded when only a modest reduction in liver injury is 

seen (64, 120). Here, I demonstrate that TLR4KO mice have reduced liver injury 

in the chronic, multiple-binge model, when compared to WT mice. In the chronic, 

multiple-binge model alcohol-fed TLR4KO mice display a degree of liver injury, 

as indicated by elevated serum ALT and AST levels, when compared to pair-fed 

TLR4KO mice. This is in contrast to the studies which in which TLR4-deficient 

mice were completely protected from alcohol-induced injury, suggesting TLR4 is 

absolutely crucial for liver injury (65, 115, 119). However, the studies I present 

here show that the degree of injury in TLR4KO mice is less than that of the 

alcohol-fed WT mice. Alcohol-induced pro-inflammatory cytokine production is 

absent in the alcohol-fed TLR4KO mice; however, these animals display the 

same degree of steatosis as the alcohol-fed WT mice. These data suggest that in 

the chronic, multiple-binge model, TLR4 expression impacts only certain aspects 

of injury, such as hepatic inflammation, while others are TLR4-independent, such 

as hepatic steatosis. This partial requirement for TLR4 has also been 

demonstrated in the Lieber-DeCarli model, wherein TLR4 is dispensable for early 

complement deposition and TNFa production in the liver (120). The limited role of 

TLR4 in alcohol-induced liver injury in the more advanced chronic, multiple-binge 

model is supported by the use of the M-TLR4KO mice, in which TLR4 signaling is 

absent in macrophages and neutrophils. Alcohol-fed M-TLR4KO mice have 
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reduced hepatic Ccl2 production, but not serum AST levels when compared to 

alcohol-fed WT littermates. Together, these data demonstrate that the role of 

TLR4 in mediating alcohol-induced liver injury is restricted to the induction of pro-

inflammatory cytokines in the chronic, multiple-binge model. 

 There is also a varied response to high-fat diet insult in TLR4-deficient 

mice as well. Overall, TLR4-deficient mice exhibit some degree of protection 

against diet-induced adipose inflammation (215-217). However, in some 

experiments this protection is limited because both high-fat died fed WT and 

TLR4-mutant mice exhibit signs of macrophage infiltration into the adipose 

tissue, but TLR4-mutant mice have lower expression of Tnf and higher circulating 

adiponectin (247). Further, some studies demonstrate either a modest protective 

effect, or they are protected only on a modified high-fat diet, while others only 

demonstrate that Tlr4-/- mice have more M2 adipose macrophages (248-250). 

Myeloid-specific Tlr4 knockout mice exhibit no change in the expression of 

several pro-inflammatory cytokines and cell markers in the adipose tissue when 

subjected to a high-fat diet. Surprisingly, these mice displayed elevated 

circulating pro-inflammatory cytokines, which the authors attribute to upregulated 

TLR4 expression in other SVF cell types (251). My data also demonstrate that 

the role for TLR4 in tissue inflammation may not be as straightforward as initially 

hypothesized. Here, I demonstrate that alcohol-induced pro-inflammatory 

cytokine production in the adipose tissue is independent of TLR4. This differs 

from previously published studies that use TLR4-deficient mice in high-fat diet 
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models. Expression of the innate immune cell markers CD11b (Itgam) and 

CD11c (Itgax) as well as the cytokines TNFa (Tnf) and IL-6 (Il6) were all blunted 

in the adipose tissue of TLR4-mutant mice fed subjected to a short-term high-fat 

diet (215). High-fat diet fed Tlr4-/- mice also displayed reduced expression of 

TNFa (Tnf), IL-6 (Il6), and MCP-1 (Ccl2), compared to high-fat diet fed WT mice 

(217). Bone marrow transplant studies revealed that the adipose tissue from 

high-fat diet fed mice that lack TLR4 expression in hematopoietic cells have 

decreased production of IL-6 and TNFa, as well as fewer crown-like structures 

(216). I show that alcohol-induced phenotype switching to an M1 macrophage is 

dependent on global, but not myeloid, TLR4 expression. Further, global TLR4-

deficiency does not increase the number of M2 macrophages, as it does for mice 

fed a high-fat diet enriched with saturated fats (249). Overall, differences in the 

requirement for TLR4 in adipose tissue inflammation between high-fat diet and 

alcohol models are beginning to emerge. This suggests that high-fat diet and 

alcohol may be functioning through different mechanisms to drive adipose 

inflammation. 

The varied responses seen in both ALD and obesity models could be 

attributed to several aspects, including differences in diet composition. Recently, 

it was established that housing temperature greatly influences high-fat diet-

induced obesity. Mice in which TLR4 was deleted from the hematopoietic 

compartment exhibit protection against diet-induced liver damage at the higher, 

thermoneutral temperature, but not at the standard housing temperature (183). 
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Housing temperature likely also contributes to the varied results reported in the 

literature that use TLR4-deficient mice in both alcoholic and non-alcoholic liver 

injury models. The animals used for the work presented in this thesis were 

housed consistently at the standard temperature, however the influence of 

thermoneutral housing on ALD models has not yet been examined. 

 The role of TLR4 in alcohol and diet-induced inflammation is complex; 

previously published data reveal that TLR4 contributes to inflammation in some, 

but not all, instances which may be influenced by housing conditions. Chronic, 

multiple-binge alcohol consumption drives the expression of pro-inflammatory 

cytokines and chemokines independent of TLR4 signaling. M1 macrophage 

phenotype switching occurs, but this is dependent on the expression of TLR4 in a 

non-myeloid cell type. Alcohol-induced DC accumulation is absent when TLR4 is 

deleted globally and from myeloid cells. Both neutrophil accumulation and CD8+ 

T cell depletion are independent of TLR4. The work presented in Chapter III is 

the first to characterize the SVF in a model of chronic, multiple-binge alcohol-

induced adipose tissue inflammation by identifying specific immune cell 

populations. I have shown that similar to obesity-related inflammation, alcohol 

increases pro-inflammatory cytokine/chemokine expression as well as pro-

inflammatory cell types in the adipose tissue. Differences from diet-induced 

adipose inflammation are beginning to emerge, as 1) alcohol produces cytokines 

independent of TLR4 and 2) macrophage accumulation does not appear to 

depend on CD8+ T cells. These findings help to establish a role for adipose 
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tissue inflammation in ALD and to distinguish alcohol-induced adipose 

inflammation from high-fat diet-induced adipose tissue inflammation. 

Caveats and future directions 

 In generating the M-TLR4KO mice and their WT littermates, the use of 

both LPS and Pam3CSK4 was valuable in confirming the deletion of Tlr4. 

Macrophages and neutrophils isolated from M-TLR4KO mice did not respond to 

the TLR4 ligand LPS, as expected. The same cells did respond to Pam3CSK4, 

which is the ligand for the TLR2/TLR1 heterodimer. This demonstrates that Tlr4, 

and not another Tlr family member, such as Tlr1 or Tlr2, was deleted from 

macrophages and neutrophils. 

As noted above, there were differences observed in the immune cell 

composition between the C57BL/6J WT mice and the WT littermates (LysMCre-/-

;Tlr4f/f). One factor mentioned above that could be contributing to these 

differences is the differences in genetic backgrounds between the two sets of 

mice. The C57BL/6J mice are considered to be true WT mice, whereas the WT 

littermates have sequence changes at the Tlr4 locus due to the insertion of the 

LoxP sites (219). Future experiments should include LysMCre+/-;Tlr4+/+ 

littermates. This will assist in controlling for any off-target effects caused by the 

insertion of the Cre sequence in the M lysozyme gene (218). 

 Another potential contributor to these differences are the housing 

conditions, and ultimately the microbiome of the WT strains. The C57BL/6J mice 

were ordered from The Jackson Laboratory shortly before starting the 
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experiments. The WT littermates were bred and maintained in house. ALD is 

particularly sensitive to the status of the gut microbiome; the translocation of 

endotoxin and endotoxemia are key events in disease pathogenesis. 

Additionally, chronic alcohol consumption changes colonic mucosal microbiota in 

ALD patients and some of these changes can be reversed with alcohol 

abstinence. Rodents also exhibit intestinal dysbiosis when subjected to a chronic 

alcohol model (236). Therefore, in order to ensure that mice used in future 

experiments are all housed under the same conditions, the C57BL/6J mice 

should be bred in house, as are the WT littermates. If that is not feasible, mice 

ordered from The Jackson Laboratory should be allowed to acclimate to their 

new housing conditions and develop an intestinal microbiota similar to the 

animals maintained in house. Additionally, to help facilitate a direct comparison 

between alcohol-fed germline TLR4KO and M-TLR4KO mice, these animals 

should be subjected to the chronic, multiple-binge model at the same time. This 

will eliminate any effects caused by differences in the diet and water composition. 

Together, these steps will help to eliminate the variability observed between the 

C57BL/6J WT mice and WT littermates. 

Is adipose tissue inflammation a cause or consequence of liver injury? 

 In this thesis, I have presented data relating alcohol-induced liver injury to 

adipose tissue inflammation. This work was done in the pursuit of the answer to 

this question: does adipose tissue inflammation impact liver injury or does liver 

inflammation impact the adipose tissue? While it is clear that alcohol 
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consumption, whether chronic, acute, or both, does impact both the liver and the 

adipose tissue, what is unclear is how these two organs interact within the 

context of ALD. As the liver is the primary site of ethanol metabolism, it would be 

easy to assume that liver injury and inflammation occur first in disease 

pathogenesis. The resulting pro-inflammatory mediators, such as TNFa, MCP-1, 

and IL-1b, that are released into circulation would activate the resident adipose 

immune cells, like macrophages, and would initiate adipose tissue inflammation. 

However, adipocytes also express CYP2E1, the enzyme that metabolizes 

ethanol and produces ROS. Chronic alcohol consumption increases the 

expression of CYP2E1 in the adipose tissue in a time-dependent manner (194, 

197). When mice lacking CYP2E1 (Cyp2e1-/-) are fed alcohol, the adipose tissue 

does not produce pro-inflammatory cytokines (194). Further, enhanced 

expression of CYP2E1 in differentiated 3T3-L1 cells, a murine adipocyte cell line, 

inhibits the release of adiponectin in the presence of ethanol (197). Therefore, 

liver inflammation and adipose tissue inflammation could develop simultaneously 

in response to chronic alcohol consumption. The resulting pro-inflammatory 

milieu in each tissue then promotes inflammation in the other by elevated 

circulating pro-inflammatory cytokines and decreased circulating anti-

inflammatory cytokines. Careful time course studies will need to be carried out in 

order to confirm that inflammation, due to ROS production, develops 

simultaneously in both organs.  
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In addition to ethanol metabolism, circulating endotoxin could be another 

factor that impacts both the liver and adipose tissue. As detailed in Chapter III, 

TLR4 is required for alcohol-induced cytokine production in the liver and 

macrophage phenotype switching in the adipose tissue. It is unclear whether this 

effect is mediated by endotoxin exposure in both organs. Gut endotoxin 

translocates to the liver via the portal vein (252). It remains to be determined if 

any endotoxin not cleared by the liver reaches the adipose tissue directly via 

circulation. It could be possible for LPS to reach the adipose tissue through its 

incorporation into lipoproteins and subsequent uptake into adipose macrophages 

and adipocytes (253). LPS tracking studies, such as those employing FITC-

labelled LPS, in ALD models will need to be carried out in order to understand 

whether endotoxin directly impacts the adipose tissue in addition to the liver 

(254). 

Potential mediators of adipose-liver crosstalk 

The purpose of characterizing alcohol-induced adipose tissue 

inflammation was to understand how alcohol impacts adipose tissue function, 

with the goal of understanding how adipose tissue function impacts liver injury. A 

deeper understanding of alcohol-induced liver injury will enable the development 

of effective therapies for ALD. Ultimately, the mediators of alcohol-induced 

adipose-liver crosstalk need to be identified. Inflammatory cytokines and 

chemokines, like TNFa, MCP-1, IL-1b, and IL-6 are the first group of potential 

mediators. These cytokines and chemokines are produced by cells in both the 
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adipose tissue and liver. What remains to be determined is how cytokines 

produced in the adipose tissue specifically impact the liver, and vice versa. For 

example, IL-6 produced in the adipose tissue can cause hepatic insulin 

resistance in mice with diet-induced obesity (163). However, it is unknown how 

adipose IL-6 impacts the liver in alcohol-fed mice. Alcohol-induced IL-6 signaling 

through STAT3 has different impacts on different liver cells types; STAT3 in 

hepatocytes promotes inflammation and STAT3 in macrophages prevents 

inflammation (100). It is unknown whether the alcohol-IL-6-STAT3 axis also has 

different effects on the different cell types that make up the adipose tissue. 

Further, the receptors for IL-6 are expressed on many different cell types, so 

using IL-6 to alleviate alcohol-induced inflammation through hepatic 

macrophages is not an ideal strategy (255). MCP-1 promotes alcohol-induced 

liver inflammation, but does so independent of its receptor CCR2, thus, the exact 

mechanism through which MCP-1 functions remains to be determined (90). 

Targeting one specific cytokine or chemokine may not be sufficient to treat ALD 

or AH. Treatments that target TNFa have been largely unsuccessful (37, 38). 

Clinical trials are currently underway for inhibiting IL-1 in AH patients (39). 

However, a successful therapeutic regimen may require targeting more than one 

cytokine, or a combination of cytokines and other mediators, which are discussed 

below. 

The role of adiponectin as a mediator of adipose-liver crosstalk has been 

extensively studied. However, there is a stark difference in adiponectin 
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production in response to alcohol consumption between human studies and 

animal models of ALD. In humans, circulating adiponectin is increased in ALD 

patients and is higher in patients with more severe cirrhosis, but declines with 

alcohol abstinence (184-186). Moderate alcohol intake also elevates circulating 

adiponectin in men (256, 257). On the other hand, chronic alcohol consumption 

decreases the production of adiponectin in animal models (32, 176, 190, 191, 

196). In Chapter II, I presented data demonstrating that the NIAAA model 

increases serum adiponectin, similar to human ALD patients, which could be a 

compensatory mechanism due to the binge event in this model. A closer study of 

how acute ethanol administration on top of chronic alcohol consumption 

regulates adiponectin production will help to determine if drinking pattern impacts 

adiponectin. Both in vivo and in vitro data demonstrate that adiponectin is 

capable of alleviating liver injury in ALD models. Exogenous adiponectin 

administration reverses alcohol-induced liver injury in mice (176). This may be 

due to its impact on KCs. Adiponectin can reverse the sensitization of KCs to 

LPS by ethanol exposure and it also shifts KCs to an M2, anti-inflammatory 

phenotype, due to the downregulation of TLR4 expression (32, 198, 199, 258). 

Adiponectin may also reverse alcohol-induced liver injury through modulating 

lipid metabolism by shifting away from lipogenesis and towards b-oxidation (208). 

Exogenous overexpression of adiponectin downregulates SREBP-1c (Srebpf1) 

mRNA in rat livers (259). Adiponectin increases the response of PPARa-

responsive promoters in the presence of ethanol in a rat hepatoma cell line (200). 



 
 

124 

While adiponectin appears to be a potential therapeutic target for animal models 

of ALD, its practicality for use in humans is debatable, because ALD patients 

have elevated adiponectin levels. 

The free fatty acids and glycerol released by adipocytes during lipolysis 

are another set of candidates for mediating adipose-liver crosstalk. Alcohol 

consumption enhances adipose tissue lipolysis in mouse models of ALD (193, 

201, 202). The elevated levels of circulating free fatty acids presumably 

contribute to hepatic steatosis. Wei and colleagues demonstrate that the 

presence of specific lipid species in the adipose tissue declines with alcohol 

consumption. This coincides with the increase of lipid species in the liver. 

However, this study did not uncover a direct link between alcohol-induced 

adipose tissue lipolysis and hepatic steatosis (203). The extent to which adipose 

tissue lipolysis contributes to hepatic steatosis remains to be determined. In 

addition to contributing to steatosis, the elevated serum free fatty acids and 

glycerol could also be causing inflammation in the liver. Inhibiting lipid 

accumulation in KCs decreases the production of pro-inflammatory cytokines in a 

NAFLD mouse model (260). Whether lipid storage in KCs of alcohol-fed mice 

also contributes to pro-inflammatory cytokine production remains to be 

determined. The excess circulating free fatty acids and glycerol could also be 

acting locally within the adipose tissue to promote inflammation. Adipose tissue 

macrophages store lipids, and impairing their ability to do so can impact hepatic 

metabolism (261). Adipose tissue lipolysis induced by fasting leads to an influx of 
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macrophages (262). Whether adipose macrophage lipid storage occurs in ALD 

models and what impacts this has on liver injury remains to be determined. 

FGF21 is an example of a potential liver to adipose tissue mediator. 

FGF21 is highly expressed in the liver, and has been demonstrated to improve 

the metabolic dysfunction caused by obesity (263). FGF21 stimulates the release 

of adiponectin from adipocytes. Injecting high-fat diet fed mice with FGF21 

elevates circulating adiponectin and improves insulin resistance (264). FGF21 

makes for an interesting target, not only due to its metabolic impacts, but also 

because FGF21 transgenic mice have a greatly decreased preference for 

ethanol over their WT counterparts (265) An FGF21 therapeutic could possibly 

act to improve liver injury and deter alcohol consumption, however whether 

FGF21 modulates human drinking preferences remains to be determined. 

Recently, an FGF21 analog, PF-05231023, was demonstrated to reduce body 

weight and food intake in obese, non-human primates. Further, the same drug 

reduced body weight and improved circulating triglyceride and cholesterol levels 

in overweight and obese patients with Type 2 diabetes (266). However, FGF21 

may have an opposite role in ALD. FGF21 knockout mice (FGF21 KO) subjected 

to the NIAAA model have reduced adipose tissue lipolysis and hepatic steatosis. 

However, the alcohol-fed FGF21 KO mice have similar inductions of circulating 

ALT and AST levels, compared to alcohol-fed WT mice (201). Whether FGF21 

deficiency improves alcohol-induced hepatic inflammation in the NIAAA model 

remains to be determined. Further, the role of FGF21 in later stage ALD models, 
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such as the chronic, multiple-binge model is unexplored. Most importantly, how 

FGF21 deficiency modulates alcohol-induced adipose tissue inflammation will be 

useful in determining how FGF21 regulates adipose tissue function in ALD 

models. 

Reconsidering TLR4 in ALD pathogenesis 

In Chapter III I have shown that TLR4 has different roles for mediating 

alcohol-induced liver injury and adipose tissue inflammation. For example, 

hepatic pro-inflammatory cytokine production is dependent on TLR4. In the 

adipose tissue, pro-inflammatory cytokine production is independent of TLR4. If 

endotoxin is in fact an important mediator in ALD pathogenesis, then TLR4 may 

be more important for injury in the liver than the adipose tissue. The interplay of 

the other mediators mentioned above, like FGF21 and adiponectin, could also 

contribute to why TLR4-deficiency has a greater impact on liver injury than 

adipose tissue inflammation. 

One question raised by my work is: what is the true role of TLR4 in ALD 

pathogenesis? TLR4 signaling in the liver is considered to be absolutely crucial 

for disease pathogenesis, but the work I present here contradicts this model. The 

answer to the above question could be that TLR4 is important for early stage 

ALD models, but not for later stage models. The initial studies exploring TLR4 

employ the Tsukamoto-French model or a five-week Lieber-DeCarli model (64, 

65, 115, 118, 119). Both of these models are excellent for inducing steatosis and 

mild inflammation, but fail to reproduce the neutrophil infiltration in AH or collagen 
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deposition in fibrosis (68, 123, 127, 128). Using the chronic, multiple-binge 

model, which represents a later stage liver injury, I demonstrate that TLR4 plays 

a limited role both in liver injury and adipose tissue inflammation. In the liver, pro-

inflammatory cytokine production, but not steatosis, is absent in both the global 

TLR4KO mice and M-TLR4KO mice. In the adipose tissue, pro-inflammatory 

cytokine production is independent of TLR4, but macrophage phenotype 

switching is not. TLR4 is important for some, but not all, parameters of liver injury 

in this model.  

TLR2 is another example of a TLR family member that has different roles 

in different ALD models. With a five week Lieber-DeCarli diet, alcohol-fed Tlr2-/- 

mice exhibit hepatic steatosis and hepatic inflammation similar to alcohol-fed WT 

mice (64). In contrast, using the NIAAA model, alcohol-fed Tlr2-/- mice have 

reduced liver injury and hepatic inflammation, when compared to alcohol-fed WT 

mice (67). This demonstrates a different requirement for TLR2 in different ALD 

models.  

With the introduction of models for more advanced liver injury, the roles of 

TLRs, more specifically TLR4, should be re-evaluated. Additionally, the two 

downstream signaling pathways common to the TLR family also need to be re-

examined. TLR3 signals through the TRIF-dependent pathway, TLR4 signals 

through both the MYD88- and TRIF-dependent pathways, and all other TLR 

members signal exclusively through the MYD88-dependent pathway (113, 267). 

Alcohol-induced liver injury occurs independently of the adaptor MYD88 in a five-
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week Lieber-DeCarli model and requires the transcription factor IRF3, which is 

downstream of the adaptor TRIF (64, 110). Additionally, TRIF is required for liver 

injury in mice fed alcohol and injected with LPS (268). If the other members of 

the TLR family have greater roles in later stage ALD models, this should be 

reflected in the downstream signaling molecules as well. Interestingly, both TLR 

signaling pathways display cell-type specific effects in ALD models. Myeloid 

specific MYD88 knockout mice are protected against alcohol-induced liver injury 

and inflammation (66). On the other hand, bone marrow transplant studies reveal 

that while global IRF3 knockout mice are protected against liver injury, alcohol-

fed mice that lack IRF3 in parenchymal cells have aggravated liver injury and 

inflammation (110). Therefore, it is important to understand how TLR signaling in 

different cell types changes in the later stage ALD models. Employing models 

that represent the full spectrum of ALD will help to uncover the role of TLR4, as 

well as the other TLRs, in disease pathogenesis. 

Conclusion 

In this body of work, I have characterized adipose tissue inflammation in 

two models of ALD. I have shown that alcohol impacts several immune cell 

populations in the adipose tissue and that alcohol-induced adipose tissue 

inflammation occurs in a sex-dependent manner. Further, I have shown that, in 

contrast to others, TLR4 is important for certain stages of liver injury. The 

requirement for TLR4 is restricted to specific cell populations in the adipose 

tissue. This characterization lays the groundwork for understanding how alcohol 
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impacts the adipose tissue. Uncovering the underlying mechanisms for alcohol-

mediated adipose tissue dysfunction, in conjunction with how the adipose tissue 

impacts liver injury will broaden our understanding of ALD. This knowledge will 

help to uncover novel therapeutic targets, so that effective therapies can be 

developed to treat this disease.  
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Appendix A 

Flow cytometry analysis  
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SVF Gating Strategy 

Here, I describe the gating strategies used to analyze the data presented 

in Chapter III. During collection of the adipose tissue, a single spleen was 

collected from a WT, alcohol-fed mouse to use as a guide for leukocyte gating. 

The spleen was homogenized on a 70 µM filter, washed, and treated with ACK 

Lysing buffer alongside SVF samples as described in Chapter III. Splenocytes 

were stained, fixed, and acquired alongside SVF samples as described in 

chapter III.  

The SVF gating strategy to identify macrophages and other adipose 

immune cells is based on previous studies using flow cytometry to analyze the 

adipose tissue (143, 269-271). First doublets are excluded by gating on singlets 

(Figure A1 D). Next, CD45+ cells, leukocytes, are selected (Figure A1 E). Myeloid 

and Lymphoid populations are identified based on forward and side scatter 

properties (Figure A1 F). Here, the spleen is especially useful in delineating 

between these two populations (Figure A1 C). 

The myeloid population was gated on the markers CD11b and F4/80 to 

identify macrophages (CD11b+F4/80+) (Figure A2 A and D). In spleen, this 

analysis revealed an absence of macrophages and a predominance of 

CD11b+F4/80- cells (Figure A2 B and C). Fluorescence minus one (FMO) 

controls were used to gate on SVF macrophages (Figure A2 E and F). Once 

macrophages were identified, the phenotype was determined using CD206 and 

CD11c (Figure A2 G). Again, FMO controls were used to identify the three 
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distinct macrophage phenotypes, M1 (CD206-CD11c+), the intermediate, mixed 

phenotype (CD206+CD11c+), and M2 (CD206+CD11c-) (Figure A2 H and I). 

In order to determine which cell types make up the CD11b+F4/80- non-

macrophage population, Gr-1 and CD11c were used to identify neutrophils and 

DCs, respectively. In the SVF, non-macrophages (Figure A3 D) were gated on 

CD11b and Gr-1 (Figure A3 E) to find neutrophils, with the aid of an FMO control 

(Figure A3 G). Interestingly, using the same gating in spleen (Figure A3 A and B) 

reveals that SVF neutrophils have higher expression of CD11b than neutrophils 

in the spleen. SVF DCs were also found in the non-macrophage population 

(Figure A3 F) using an FMO control (Figure A3 H). 

From the lymphoid population, SVF B-cells were identified by gating on 

CD45+CD19+ cells (Figure A4 C and D) and using the CD19 FMO control (Figure 

A4 E), similar to the spleen (Figure A4 A and B). SVF T-Cells (total) were 

identified by gating the lymphoid population on CD45+CD3+ cells (Figure A5 D 

and E) by following the gating used for spleen (Figure A5 A and B). Total T-Cells 

were then separated into CD8+ and CD4+ T-Cells (Figure A5 G), using the same 

gating scheme as the spleen (Figure A5 C) as well as FMO controls (Figure A5 H 

and I). 
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Figure A1: Gating scheme to identify SVF myeloid and lymphoid 
populations. The gating scheme for splenocytes (A) Singlets, (B) CD45+ 
leukocytes, and (C) myeloid and lymphoid populations was applied to SVF 
samples to identify (D) singlets, (E) CD45+ leukocytes, and (F) myeloid and 
lymphoid cells.  
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Figure A2: Gating scheme to identify SVF macrophages. (A) The SVF myeloid 
cell population. Splenocyte (B) myeloid cell population and (C) CD11b and F4/80 
staining for reference. SVF myeloid cells were gated on CD11b and F4/80 to 
identify (D) CD11b+F4/80+ macrophages. (E) F4/80 FMO control for macrophages. 
(F) CD11b FMO control for macrophages. (G) SVF macrophages were stained for 
CD11c and CD206. (H) CD11c FMO control for macrophages (I) CD206 FMO 
control for macrophages.  
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Figure A3: Gating scheme to identify SVF neutrophils and DCs. (A) Spleen 
CD11b+F4/80- cells were gated on (B) CD11b and Gr-1 for neutrophils and (C) 
CD11b and CD11c for DCs. (D) SVF CD11b+F4/80- non-macrophages were gated 
on (E) CD11b and Gr-1 for neutrophils and (F) CD11b and CD11c for DCs. (G) Gr-
1 FMO control for neutrophils (H) CD11c FMO control for DCs.  
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Figure A4: Gating scheme to identify SVF B-Cells. (A) Spleen lymphoid- cells 
were gated on (B) CD45 and CD19 to for B-Cells (C) SVF lymphoid cells were 
gated on (D) CD45 and CD19 for B-Cells. (E) CD19 FMO control for B-Cells.   
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Figure A5: Gating scheme to identify SVF B-Cells. (A) Spleen lymphoid- cells 
were gated on (B) CD45 and CD3 to for T-Cells (C) T-Cells were gated on CD4 
and CD8. (D) SVF lymphoid cells were gated on (E) CD45 and CD3 for T-Cells. 
(F) CD3 FMO control for T-Cells. (G) T-Cells were gated on CD4 and CD8. (H) 
CD8 FMO control for T-Cells. (I) CD4 FMO control for T-Cells.   
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Peritoneal Macrophages Gating Strategy 

  The gating strategy for peritoneal macrophages was based on practical 

experience, gained from developing the above strategy. First, doublets were 

excluded by gating on singlets (Figure A6 A). Next, macrophages were identified 

as CD11b+F4/80+ cells (Figure A6 B), using FMO controls (Figure A6 C and D). 

Last, TLR4+ macrophages (F4/80+TLR4+) can be identified (Figure A6 E) using 

an FMO control (Figure A6 F). 
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Figure A6: Gating scheme for peritoneal macrophages. (A) Singlets. (B) 
Macrophages are CD11b+F4/80+. (C) CD11b FMO control for macrophages. (D) 
F4/80 FMO control for macrophages. (E) TLR4+F4/80+ macrophages. (F) TLR4 
FMO control for TLR4+ macrophages.  
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Peritoneal Neutrophils Gating Strategy 

 The gating strategy for peritoneal neutrophils was based on practical 

experience, gained from developing the SVF gating strategy. First, doublets were 

excluded by gating on singlets (Figure A7 A). Next granulocytes were gated 

based on forward and side scatter (Figure A7 B). Neutrophils were identified as 

CD11b+Ly6G+ cells (Figure A7 C), with aid of FMO controls (Figure A7 D and E). 

TNFa expressing neutrophils were identified (Figure A7 F) using an FMO control 

(Figure A7 G). An additional TNFa FMO control was used, in which the isotype 

control for TNFa was added to the staining cocktail to account for intracellular 

background signal (Figure A7 H). 
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Figure A7: Gating scheme for peritoneal neutrophils. (A) Singlets. (B) 
Granulocytes (C) CD11b+Ly6G+ neutrophils. (D) CD11b FMO control for 
neutrophils. (E) Ly6G FMO control for neutrophils. (F) TNFa-expressing 
neutrophils. (G) TNFa FMO control for neutrophils. (H) TNFa FMO control with the 
control isotype for the TNFa antibody. 
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Appendix B 

Myeloid-specific gp96 knockout mice are protected against alcohol-

induced adipose tissue inflammation  
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Introduction 

There has been a shortage of novel therapeutics to treat ALD in the past 

few decades, necessitating investigation into potential targets for future 

therapeutics. Our lab has demonstrated that targeting the cytoplasmic chaperone 

HSP90 with the drug 17-DMAG prevents both alcohol- and LPS-induced liver 

injury (225, 272). However, cytoplasmic HSP90 inhibitors also act upon its ER 

homolog, gp96 (273, 274). The extent to which 17-DMAG mediates the reversal 

of liver injury through gp96 remains unclear. HSP90 and gp96 share about 50% 

sequence homology and are structurally similar (275, 276). The nucleotide 

binding pocket, where 17-DMAG binds, is also highly conserved between HSP90 

and gp96 (276). Structure-based drug design has produced several molecules 

that bind selectively to gp96, which will enable future detailed mechanistic 

studies (273, 277). 

gp96, also referred to as GRP94, was initially discovered in response to 

glucose deprivation (276). Further work has demonstrated that it acts in the 

unfolded protein response (UPR) as a protein chaperone to help alleviate ER 

stress (274). Under homeostatic conditions, gp96 chaperones most members of 

the TLR family (excluding TLR3), as well as many integrin molecules (including 

CD11b and CD11c) and is required for their proper localization (278-281). 

Consequently, gp96-deficient macrophages are unable to respond to TLR 

stimulation, but still retain the ability to respond to the cytokines TNFa and IFNg 

(279). These characteristics make this model a very valuable tool for studying 



 
 

144 

immune-related mechanisms. gp96 whole body knockout mice exhibit embryonic 

lethality, therefore conditional knockouts must be used in order to study this 

chaperone (274, 276).  

Here, I use myeloid-specific gp96 knockout (gp96KO) mice to test the 

hypothesis that deleting gp96 from macrophages will decrease alcohol-induced 

adipose tissue inflammation, due to the absence of TLR4 on the surface of 

macrophages. 

Results and Discussion 

 In order to determine whether gp96 expression in macrophages impacts 

adipose tissue inflammation, female myeloid-specific gp96 knockout mice 

(gp96KO) and their WT littermates were subjected to the NIAAA model (123). In 

these mice, gp96 expression is absent in macrophages, but retained in 

neutrophils (279). Perigonadal adipose tissue was collected and used for gene 

expression analysis. The NIAAA model resulted in a robust increase in the 

expression of both Il6 and Ccl2 in the adipose tissue of alcohol-fed, but not pair-

fed, WT mice, similar to the results presented in Chapter II. Expression of Tnf 

remained unchanged in alcohol-fed mice. In contrast, the induction of both Il6 

and Ccl2 was completely absent in the alcohol-fed gp96KO mice compared to 

pair-fed controls and was significantly decreased compared to alcohol-fed WT 

controls (Figure B1 A). Alcohol-induced adipose tissue cytokine production is 

inhibited in gp96KO mice.  
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Figure B1: gp96KO mice are protected against alcohol-induced adipose 
tissue inflammation. Perigonadal adipose tissue mRNA levels of (A) Tnf, Il6, and 
Ccl2 and (B) Emr1, Cd68, Itgam, Itgax, and Ccr2 were analyzed by qPCR. * 
p<0.05, ** p<0.01, *** p<0.001, ****p<0.0001. Data are represented as mean ± 
SEM. n=6-9 from three independent experiments.  
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The expression of pro-inflammatory cell markers was also assessed in the 

adipose tissue of the gp96KO mice. The expression of Cd68, a marker of 

macrophage activation, is increased in alcohol-fed WT mice, but not alcohol-fed 

gp96KO mice. The expression of other cell markers, including Emr1 (F4/80), 

Itgam (CD11b), and Ccr2 all remained unchanged in alcohol-fed mice compared 

to pair-fed controls for both genotypes. The expression of Itgax (CD11c) was 

downregulated in alcohol-fed WT mice (Figure B1 B). This indicates that the 

resident adipose tissue macrophages are becoming activated and producing pro-

inflammatory cytokines but new macrophages are not infiltrating into the tissue. 

Alcohol-fed gp96KO mice are protected against this adipose tissue macrophage 

activation. 

Together, these data demonstrate that adipose tissue expresses pro-

inflammatory cytokines in a model of early alcohol-induced liver injury. This effect 

is mediated by the expression of gp96 in macrophages, as the adipose tissue 

from alcohol-fed gp96KO mice does not express these pro-inflammatory 

cytokines. It remains to be determined through which client proteins gp96 is 

mediating adipose tissue inflammation. In Chapter III of this dissertation, I 

present evidence that TLR4, a client of gp96, mediates some aspects of alcohol-

induced adipose tissue inflammation. Of the other known client proteins, both 

TLR2 and TLR9 have been implicated in alcohol-induced liver inflammation, but 

their role in adipose tissue inflammation is not known (67). CD11c, one of the 

integrins which gp96 chaperones, is required for diet-induced adipose tissue 
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Inflammation, and could also contribute to alcohol-induced adipose tissue 

inflammation (140). Exploring how each gp96 client protein, specifically the TLRs 

and integrins, impacts alcohol-induced adipose tissue inflammation will help to 

determine the mechanism through which gp96 promotes inflammation.  

In order to deepen my understanding of the role of gp96 in alcohol-

induced adipose tissue inflammation, I used the gp96KO mice and their WT 

littermates in the chronic, multiple-binge alcohol model described in Chapter III. 

This was done to compare the results to the NIAAA model to determine if gp96 is 

important for early adipose tissue inflammation, later adipose tissue 

inflammation, or both. Unfortunately, gp96KO mice experience a very high 

premature mortality rate when subjected to the chronic, multiple-binge 

experiment. I, as well as others in the laboratory, performed these experiments 

and demonstrated that the gp96KO mice have a premature mortality rate of 

approximately 60%-80%, compared to their WT littermates, which have a 

premature mortality rate of approximately 25%-50%. Therefore, despite multiple 

attempts, I was unable to use these mice in the multiple-binge model. 

gp96 represents a novel, potential therapeutic target for ALD because its 

client proteins are highly important molecules for immune cell function. Deleting 

gp96 from macrophages blocks alcohol-induced adipose tissue inflammation. 

However, which gp96 client proteins mediate alcohol-induced adipose tissue 

inflammation remains to be fully determined. 

  



 
 

148 

Materials and Methods 

Animals and experimental models  

Mice were subjected to the NIAAA model, which recapitulates the chronic-

binge drinking patterns of AH patients, as described earlier (123). The myeloid-

specific gp96 knockout mice (LysMCre+/-Hsp90b1f/f) and their WT littermates 

(LysMCre-Hsp90b1f/f) were provided by Dr. Zihai Li at the Medical University of 

South Carolina (279). The mice were bred at our facility for our experiments. 

Briefly, female mice were divided into two groups. One group was fed a 5% 

ethanol (v/v) Lieber-DeCarli diet (Bio-Serv, #F1258SP) for 10 days, following a 

one-week ramp up period. On the eleventh day, mice received an ethanol 

gavage (5 g/kg body weight, 31.5% ethanol) and were sacrificed nine hours later. 

The other group was fed an isocaloric control diet (Bio-Serv, #F1258SP) during 

the feeding and a maltose dextrin (Bio-Serv, #3585) gavage was administered 

nine hours before sacrifice. Perigonadal adipose tissue was excised and snap 

frozen. 

Ethics statement 

All animals received proper care in accordance with the Guide for the 

Care and Use of Laboratory Animals from the National Institutes of Health. The 

protocol was approved by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Medical School (protocol number A-2393). 

Animals were euthanized by carbon dioxide asphyxiation followed by cervical 

dislocation. 
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RNA extraction, cDNA synthesis, and qPCR analysis 

Total RNA was extracted from flash frozen adipose tissue using the 

RNeasy Lipid Tissue Mini Kit (Qiagen, #74804), according to manufacturer’s 

instructions. RNA concentration was measured with a NanoDrop 2000 

(ThermoScientific). cDNA was synthesized using the Reverse Transcription 

System (Promega, #A3500). mRNA transcript levels were quantified using iTAQ 

Universal SYBR Green Supermix (Bio-Rad, #172-5121) and CFX Connect Real-

Time PCR Detection System (Bio-Rad) and normalized to 18S ribosomal RNA. 

Primer sequences are listed in Table B1. 

Statistical analysis 

Data are represented as mean ± SEM. All statistical analysis was 

performed using Graphpad Prism 7.0. ANOVA was used to determine the 

difference between groups.  
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Table B1: List of Primer Sequences 5’-3’ 

Gene Sequence 
18s forward GTAACCCGTTGAACCCCATT 
18s reverse CCATCCAATCGGTAGTAGCG 
Ccl2 forward CAGGTCCCTGTCATGCTTCT 
Ccl2 reverse TCTGGACCCATTCCTTCTTG 
Ccr2 forward GTGTACATAGCAACAAGCCTCAAAG 
Ccr2 reverse CCCCCACATAGGGATCATGA 
Cd68 forward CCCACAGGCAGCACAGTGGAC 
Cd68 reverse TCCACAGCAGAAGCTTTGGCCC 
Emr1 forward TGCATCTAGCAATGGACAGC 
Emr1 reverse GCCTTCTGGATCCATTTGAA 
Il6 forward ACAACCACGGCCTTCCCTACTT 
Il6 reverse CACGATTTCCCAGAGAACATGTG 
Itgam forward ATGGACGCTGATGGCAATACC 
Itgam reverse TCCCCATTCACGTCTCCCA 
Itgax forward CTGGATAGCCTTTCTTCTGCTG 
Itgax reverse GCACACTGTGTCCGAACTCA 
Tnf forward GAAGTTCCCAAATGGCCTCC 
Tnf reverse GTGAGGGTCTGGGCCATAGA 
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Appendix C 

Chronic alcohol does not enhance adipose tissue lipolysis  
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Introduction 

Lipolysis is the process through which triglycerides, such as those stored 

in adipocytes, are broken down into free fatty acids and glycerol (130, 131). 

Lipolysis is upregulated in times of energy need and can be stimulated through 

glucocorticoids and b-adrenergic signaling, but is down regulated in times of 

energy excess and is inhibited by insulin signaling (130, 131). ATGL catalyzes 

the first step, converting triglycerides to diglycerides with the release of one free 

fatty acid molecule. HSL functions next in this process, catalyzing the conversion 

of diglycerides into monoglycerides, again releasing a free fatty acid in the 

process. The last step catalyzed by MGL breaks down the monoglycerides into a 

free fatty acid and glycerol (131). The free fatty acids can then be used by other 

tissues, such as muscle and liver, as an energy source (130, 131). 

Adipocyte lipolysis is dysregulated in obesity and is related to insulin 

resistance (130, 282). There are several proposed mechanisms through which 

this may occur, the most obvious being the ectopic lipid deposition in peripheral 

organs due to increased free fatty acids in circulation (282). More interestingly, 

the dysregulation of lipolysis could cause insulin resistance through adipose 

tissue inflammation (282). When mice on a high-fat diet are fasted, they exhibit 

an initial massive influx of macrophages to the adipose tissue, which wanes over 

time. This phenomenon is absent in mice that lack ATGL, one of the enzymes 

that catalyzes lipolysis (262). Further, adipose tissue macrophages can uptake 

excess lipid in the adipose tissue in order to prevent lipid uptake in peripheral 
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tissues (261, 262). There is a clear dynamic between lipolysis and adipose 

inflammation in obesity models, but whether a similar paradigm exists in ALD 

models remains to be determined. 

Using both the Lieber-DeCarli and NIAAA models, it was demonstrated 

that chronic alcohol consumption increases adipocyte lipolysis. Adipocyte 

lipolysis is usually assessed by a decrease in adipocyte size, an increase in the 

activation of the enzymes that carry out triglyceride breakdown, and an increase 

circulating glycerol or free fatty acids, all of which have been demonstrated in 

these two models (193, 201, 202). In some instances, adipocyte diameter, and 

not adipocyte surface area, was used to determine adipocyte cell size (193, 202). 

Gene expression analysis was used to determine the activation of two enzymes 

that catalyze lipolysis, Hsl and Atgl. However, lipolysis is dictated at the protein 

level by the activity of these proteins, and HSL activation is dependent on its 

phosphorylation status (193, 283). In a follow up study, this same group 

established that chronic alcohol consumption increased the levels of 

phosphorylated HSL and total ATGL (protein) in the adipose tissue (202). 

Despite the caveats in the data, these authors were able to demonstrate that 

adipose tissue isolated from alcohol-fed animals released more free fatty acids 

ex vivo than pair-fed controls, indicating that alcohol consumption primes the 

adipose tissue for lipolysis (193, 202). Mice subjected to the NIAAA model also 

display elevated plasma glycerol levels along with increased phosphorylated HSL 

and total ATGL, which corroborates the above ex vivo data (201). Together, this 
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demonstrates that in vivo alcohol administration enhances adipocyte lipolysis. 

Future studies will need to employ the correct techniques in order to enable 

mechanistic studies into this phenomenon. 

A direct link between alcohol-induced adipocyte lipolysis and hepatic 

steatosis has been proposed, but not yet fully evaluated. Supplementing alcohol-

fed mice with “heavy water” (deuterium oxide) allows for the incorporation of 

deuterium into lipid species, which subsequently are analyzed by mass 

spectrometry. Over the course of the alcohol feeding, specific lipid species were 

depleted from the adipose tissue (presumably due to lipolysis). During the same 

time period, the authors identified a number of lipid species that accumulated in 

the liver (203). However, it is impossible to determine the exact source of the 

labeled lipids in the liver. While this data does support the idea that chronic 

alcohol enhances lipolysis, which then directly contributes to hepatic steatosis, a 

direct link between the two processes remains elusive. 

A series of in vitro experiments determined that alcohol may in fact 

suppress lipolysis, contrary to the above in vivo data. Adipocytes isolated from 

alcohol-fed rats release less glycerol when stimulated with isoproterenol or 

CL316,243, two b-adrenergic agonists, when compared to adipocytes isolated 

from pair-fed animals (204, 205). However, in vivo analysis of triglyceride kinetics 

revealed that the rate of triglyceride breakdown in the adipose tissue of alcohol-

fed rats was greater than in pair-fed rats (204). Insulin signaling in adipocytes 

suppresses lipolysis (130). Using hyperinsulinemic-euglyemic clamp studies, 
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Kang et al. established the ability of insulin to decrease circulating glycerol was 

inhibited in alcohol-fed rats, compared to pair-fed rats (204). Further work is 

needed in order to reconcile the differences between how alcohol impacts 

adipocyte lipolysis in vivo and in vitro. 

Here I aimed to establish whether alcohol induces adipose tissue lipolysis, 

in order to determine if lipolysis is one of the drivers of alcohol-induced adipose 

tissue inflammation. I used mice subjected to both the NIAAA model and the 

chronic, multiple-binge model to determine if alcohol-induced lipolysis is related 

to the severity of liver injury. Last, I established an in vitro model of chronic 

alcohol exposure on the mouse adipocyte cell line, 3T3-L1, to enable further 

mechanistic studies of how alcohol exposure mediates lipolysis. 

Results and Discussion 

 I wanted to determine whether chronic alcohol exposure, with one or 

several binges, induces active adipocyte lipolysis. Lipolysis is the process by 

which triglycerides are broken down into free fatty acids and glycerol molecules 

(130, 131). I quantified glycerol in the serum from female, C57BL/6 mice 

subjected to the NIAAA model. Circulating glycerol decreased 35% in alcohol-fed 

mice compared to pair-fed animals (Figure C1 A). The same trend occurred in 

female, C57BL/6J mice subjected to the chronic, multiple-binge model; there was 

a 37% decrease in circulating glycerol. This is opposite to what has been 

published so far. Mice fed alcohol exhibit an increase in circulating glycerol (201). 

One possible explanation for the different results is that the increase in glycerol is   
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Figure C1: Chronic alcohol consumption decreases circulating glycerol. 
Serum glycerol quantified in mice subjected to (A) the NIAAA model (n=16-17 from 
two independent experiments) and (B) the chronic, multiple-binge model (n=9-12 
from two independent experiments). * p<0.05, ** p<0.01, *** p<0.001, 
****p<0.0001. Data are represented as mean ± SEM.  

A

B
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a transient phenomenon that I was not able to capture, as cell types such has 

hepatocytes, are able to uptake glycerol molecules (284). Therefore, I aimed to 

use alternative strategies in order to measure stable artifacts of lipolysis. 

Adipocytes increase in size as they store lipids and decrease in size as 

they release their contents (285). I sought to determine whether chronic alcohol 

exposure, with one or several binges, changes adipocyte size. I 

quantified adipocyte size from perigonadal adipose tissue isolated from female, 

C57BL/6J mice subjected to the NIAAA model. The distribution of adipocyte size 

was the same between alcohol-fed mice and their pair-fed counterparts (Figure 

C2 A). This is in contrast with a previously published study, in which the authors 

also used the NIAAA model; however, they used male mice in their experiments 

and the impact of sex on alcohol-induced adipocyte lipolysis remains to be 

determined (201). 

 In order to determine if long-term alcohol consumption influences lipolysis 

differently that the NIAAA model, I performed the same cell size analysis in 

female, C57BL/6J mice subjected to the chronic, multiple-binge model. Other 

studies using a long-term Lieber-DeCarli diet, without binges, have demonstrated 

a decrease in adipocyte size in alcohol-fed animals (193, 202). Similar to my 

results in the NIAAA model, the chronic, multiple-binge model does not decrease 

adipocyte cell size (Figure C2 B). Moreover, the alcohol-fed mice have a lower 

frequency of small adipocytes and a higher frequency in mid-sized adipocytes.   
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Figure C2: Chronic alcohol consumption does not decrease adipocyte size. 
Adipocyte surface area measured on H&E sections from perigonadal adipose 
tissue isolated from mice subjected to (A) the NIAAA model (n=6) and (B) the 
chronic, multiple-binge model (n=6-7). AU, arbitrary units. * p<0.05, ** p<0.01, *** 
p<0.001, ****p<0.0001. Data are represented as mean ± SEM.  

A

B
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This indicates that chronic, multiple-binge alcohol increases adipocyte size, 

which could be due to the inhibition of lipolysis. 

 Next, I wanted to determine if the absence of increased circulating glycerol 

and decreased cell size in the NIAAA model, presented in Figures C1 and C2 

was due to the modulation of the lipolytic enzymes. The expression of ATGL, 

which catalyzes the first step of lipolysis, is upregulated in response to lipolytic 

stimuli and glucocorticoid signaling. The second step of lipolysis occurs when 

HSL is phosphorylated, which happens in response to b-adrenergic signaling 

(130, 131). I used western blotting to determine if the NIAAA model increases the 

phosphorylation of HSL and/or upregulates the expression of ATGL. As shown in 

Figure C3 A and quantified in Figure C3 B, chronic, single-binge alcohol 

consumption did not activate either HSL or ATGL. In fact, the NIAAA model 

slightly decreases the levels of phosphorylated HSL, but this is not significant. 

This trend supports the above data, in which serum glycerol is decreased (Figure 

C1 A) and adipocyte cell size does not change (Figure C2 A). 

 Interestingly, while the current in vivo literature supports active adipocyte 

lipolysis in alcohol-fed mice, there is ex vivo data that demonstrates alcohol 

suppresses lipolysis (204, 205). In order to determine if in vitro alcohol exposure 

inhibits lipolysis, I cultured differentiated 3T3-L1 cells in 50 mM ethanol, which 

mimics chronic alcohol consumption. I stimulated lipolysis with isoproterenol, a b-

adrenergic agonist, for different time points and measured HSL and ATGL 

activation via western blotting and glycerol release into the cell supernatant.   
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Figure C3: Chronic alcohol consumption does not enhance activation of 
lipolysis enzymes. (A) Western blot analysis of whole-cell lysates generated from 
perigonadal adipose tissue isolated from C57BL/6 mice subjected to the NIAAA 
model. (B) Quantification of bands from (A). pHSL is normalized to total HSL 
expression; ATGL is normalized to b-actin expression. n=6. * p<0.05, ** p<0.01, 
*** p<0.001, ****p<0.0001. Data are represented as mean ± SEM.  
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Isoproterenol greatly increased the phosphorylation of HSL, but had no impact on 

the expression of ATGL (Figure C4 A and B). When the 3T3-L1 cells were 

cultured in ethanol, the isoproterenol-mediated increase in HSL phosphorylation 

was completely blocked (Figure C4A and B). Culturing the cells in ethanol also 

inhibited glycerol release over time (Figure AC4 C). This effect was not specific 

to isoproterenol because ethanol also inhibited dexamethasone (a glucocorticoid 

agonist) stimulated glycerol release (Figure C4 D). This in vitro data 

complements the previously published ex vivo data, in which alcohol suppressed 

stimulated lipolysis (204, 205). These in vitro experiments also support the above 

data that suggests chronic alcohol consumption does not increase adipocyte 

lipolysis.  
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Figure C4: Chronic alcohol exposure inhibits adipocyte lipolysis. 
Differentiated 3T3-L1 cells were cultured in 50 mM ethanol for 72 hours and then 
stimulated with either 5 µM isoproterenol for 0, 4, 8, and 24 hours (A-C) or 10 nM, 
50 nM, 500 nM, and 1 µM dexamethasone for 24 hours (D). (A) Western blot 
analysis of whole-cell lysates. (B) Quantification of bands from (A). pHSL is 
normalized to total HSL expression; ATGL is normalized to b-tubulin expression. 
Glycerol release into the cell supernatant was quantified for (C) isoproterenol and 
(D) dexamethasone-stimulated cells. Iso, isoproterenol. * p<0.05, ** p<0.01, *** 
p<0.001, ****p<0.0001. Data are represented as mean ± SD. 
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Materials and Methods 

Animals and experimental models 

Eight- to ten-week old female C57BL/6J mice were purchased from 

Jackson Laboratories (strain 000664). Two experimental models of chronic 

alcohol consumption were used. In the first, mice were subjected to the NIAAA 

model (123). Briefly, mice were divided into two groups. One group had ab 

libitum access to a 5% ethanol (v/v) Lieber-DeCarli diet (Bio-Serv, #F1258SP) for 

10 days, following a one-week ramp up period. On the eleventh day, mice 

received an ethanol gavage (5 g/kg body weight, 31.5% ethanol) and were 

sacrificed nine hours later. The other group was fed an isocaloric control diet 

(Bio-Serv, #F1259SP) during the feeding and a maltose dextrin (Bio-Serv, 

#3585) gavage was administered nine hours before sacrifice. For the second 

model, mice were subjected to a chronic, multiple-binge model of alcohol 

exposure modified from an early stage alcoholic steatohepatitis model (68). Mice 

were assigned to two groups. The first group had ad libitum access to a 5% 

ethanol (v/v) Lieber-DeCarli diet (Bio-Serv, #F1258SP) for five weeks, following a 

one-week period of ethanol acclimatization. After 10 days of 5% ethanol, mice 

received an ethanol gavage (5 g/kg body weight, 31.5% ethanol) once per week 

for the duration of the feeding for a total number of five gavages. The second 

group was under isocaloric control and was fed a control Lieber-DeCarli diet (Bio-

Serv, #F1259SP) and received an isocaloric gavage of maltose dextrin (Bio-Serv, 

#3585). Mice were euthanized nine hours after the final gavage by CO2 
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inhalation followed by cervical dislocation Blood was collected for serum 

isolation. Perigonadal adipose tissue was excised and fixed in 10% buffered 

formalin or snap frozen.  

Ethics statement 

All animals received proper care in accordance with the Guide for the 

Care and Use of Laboratory Animals from the National Institutes of Health. The 

protocol was approved by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Medical School (protocol number A-2393). 

Glycerol 

Glycerol content in mouse serum and cell culture supernatants was 

quantified using the Free Glycerol Reagent (Sigma, #F6428) according to the 

manufacturer’s instructions.  

Adipocyte size analysis 

Sections of formalin-fixed adipose tissue samples were embedded and 

stained with hematoxylin and eosin by the Morphology Core at the University of 

Massachusetts Medical School. Images were captured using an Olympus BX51 

microscope (Olympus) and NIS-Elements Advance Research software (Nikon 

Instruments Inc.). The investigators capturing the images were blinded to the 

identity of the samples. Adipocyte size was measured by importing images into 

Image J (286, 287). An automated measuring technique was used to measure 

adipocyte surface area, which has been previously described (288). The 
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distribution of cell size was calculated using Graphpad Prism 7.0 and the bin size 

was set to 4000 arbitrary units. 

Western blotting 

Protein lysates from flash frozen adipose tissue and the 3T3-L1 cells were 

boiled in Laemmli SDS-Sample buffer (Boston BioProducts, #BP-110R) to 

denature proteins. Samples were resolved on 7.5% polyacrylamide-SDS PAGE 

gels and transferred to nitrocellulose membranes, which were blocked in 5% 

non-fat milk dissolved in Tris-buffered saline plus 0.1% Tween-20. Membranes 

were probed with the following primary antibodies: Phospho-HSL (Ser660) (Cell 

Signaling, #4126), HSL (Cell Signaling, #4107), ATGL (Cell Signaling, #2138), 

anti-beta tubulin antibody (Abcam, #ab6046), Monoclonal anti-b-Actin antibody 

(Sigma, #A2228) and with the following secondary antibodies: Goat Anti-Rabbit 

IgG H&L (Abcam, #ab7051), and Goat Anti-Mouse IgG-HRP (Santa Cruz 

Biotechnology, #sc-2005). HRP was detected using the Clarity Western ECL 

Substrate (Bio-Rad Laboratories, #170-5061) and the HyBlot CL 

Autoradiography Film (Denville Scientific, #E3012). Bands were quantified using 

the Quantity One software (Bio-Rad Laboratories). 

3T3-L1 cell line 

 The 3T3-L1 cell line was provided by Dr. Michael Czech. Cells were 

seeded into 6-well plates in DMEM (Gibco, #11995) supplemented with 10% FBS 

(Gemini Bio-Products, #100-500) and 1% penicillin/streptomycin (Gibco, #15140) 

and grown to confluency for seven days. Cells were differentiated to adipocytes 
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using 4 µg/mL insulin (Sigma, #I-5500), 115 µg/mL IBMX (Sigma, #I-5879), and 

97.5 ng/mL dexamethasone (Sigma, D-1756) for 3 days, and then were cultured 

in media for an additional seven days. To mimic chronic alcohol conditions, cells 

were cultured in 50 mM ethanol for 72 hours in a humidified chamber, as 

previously described (225). To stimulate lipolysis, cells were treated with either 5 

µM isoproterenol (Sigma, #I5627) for the indicated times, or the indicated 

concentrations of dexamethasone (Sigma, #D4902) for 24 hours. Cell-free 

supernatant was collected and stored at -80°C for glycerol assay and the cells 

were lysed for western blotting analysis. 

Statistical analysis 

Data are represented as mean ± SEM or mean ± SD, as described. All 

statistical analysis was performed using Graphpad Prism 7.0. Student’s t-test 

was used to determine the difference between groups.  
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