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Abstract 

(βα)8 TIM barrel proteins are one of the most common structural motifs 

found in biology. They have a complex folding free energy landscape that 

includes an initial off-pathway intermediate as well as two on-pathway 

intermediates. The formation of these intermediates is hypothesized to be driven 

by large clusters of the branched chain amino acids, isoleucine, leucine, and 

valine (ILV).  

All-atom MD simulations and circular dichroism experiments on polar 

mutants of the hydrophobic clusters of α-Trp synthase, a TIM barrel protein, 

revealed the importance of dehydrating the clusters on intermediate states. 

Custom, single-piece microfluidic chips were interfaced with small angle x-ray 

scattering and time resolved FRET experiments to monitor the role of a large ILV 

cluster on the microsecond timescale in a second TIM barrel protein, sIGPS. 

Dimensional analysis of the initial misfolded intermediate showed an ILV cluster 

was responsible for the initiation of structure in the intermediate. Early structure 

formation in the ILV cluster was confirmed by coarse grained simulations. Native 

state hydrogen exchange experiments were used to probe the higher energy 

species that are in equilibrium with the native state. Results from the NMR 

experiment complement the kinetic studies as the core of stability found by NMR 

mapped back to the same region of the ILV cluster that was found to initiate 

folding.  

When taken together, the results show the importance of hydrophobic 

clusters on the entire free energy surface of TIM barrel proteins. 



vi 
 

 
 
 

Contents 
Dedication ...................................................................................................................................... iii 

Acknowledgments ........................................................................................................................ iv 

Abstract ........................................................................................................................................... v 

List of Figures ............................................................................................................................. viii 

List of Tables ................................................................................................................................. ix 

List of Abbreviations ..................................................................................................................... x 

Chapter I: Introduction ................................................................................................................ 11 

Interactions that drive folding and models of protein folding .................................................. 12 

Sequence, Topology and the BASiC hypothesis ......................................................................... 15 

TIM barrels as a model system .................................................................................................. 16 

The α-subunit of tryptophan synthase from E. coli ............................................................... 17 

Indole-3-glycerol phosphate synthase from S. solfataricus ................................................... 19 

Scope .......................................................................................................................................... 20 

Chapter II: The relationship between desolvating hydrophobic side chains and stability 23 

Introduction ............................................................................................................................... 24 

Results ........................................................................................................................................ 27 

MD Simulations of Hydration in ILV Clusters ......................................................................... 28 

Experimental Analysis of Structure and Stability for Hydration Mutations in ILV Clusters. .. 36 

Discussion .................................................................................................................................. 46 

Materials and Methods .............................................................................................................. 52 

Molecular Dynamics Simulations ........................................................................................... 52 

Site-directed Mutagenesis ..................................................................................................... 53 

Equilibrium and Kinetic Unfolding Experiments .................................................................... 54 

Chapter III: The role of ILV clusters during the early events of folding ............................... 55 

Introduction ............................................................................................................................... 56 

Results ........................................................................................................................................ 59 

Measuring global dimensions by small angle x-ray scattering (SAXS) ................................... 59 

Pair-wise dimensional analysis by time resolved FRET .......................................................... 63 



vii 
 

Maximum Entropy Modeling ................................................................................................. 66 

Ensemble Averaged Folding Properties from Simulations .................................................... 69 

Simulations reveal frustration in folding ............................................................................... 73 

Folding mechanism inferred from the simulations................................................................ 75 

Discussion .................................................................................................................................. 78 

Materials and Methods .............................................................................................................. 83 

Site-Directed Mutagenesis ..................................................................................................... 83 

Protein Expression and Purification ....................................................................................... 83 

Protein Labeling ..................................................................................................................... 84 

Small angle x-ray scattering ................................................................................................... 85 

Time Correlated Single Photon Counting............................................................................... 85 

MEM ....................................................................................................................................... 86 

Gō model simulations ............................................................................................................ 86 

Chapter IV: Probing cores of stability in the higher energy states of sIGPS ...................... 88 

Introduction ............................................................................................................................... 89 

Results ........................................................................................................................................ 91 

Thermodynamic and kinetic studies ...................................................................................... 91 

NMR Hydrogen Exchange ...................................................................................................... 93 

 ................................................................................................................................................. 100 

Discussion ................................................................................................................................ 100 

Methods ................................................................................................................................... 104 

Protein Purification .............................................................................................................. 104 

Thermodynamic and Kinetic Studies ................................................................................... 105 

Exchange Studies ................................................................................................................. 106 

Chapter V: Conclusion and Future Directions ...................................................................... 107 

Summary .................................................................................................................................. 107 

Discussion ................................................................................................................................ 110 

Perspective ............................................................................................................................... 112 

References ................................................................................................................................. 114 

 



viii 
 

 

 

List of Figures 

Figure 1.1 Mechanism of folding for αTS 
Figure 1.2 Mechanism of folding for sIGPS 
Figure 2.1 Ribbon Diagrams of αTS  
Figure 2.2 Dewetting transitions of the N-terminal ILV Cluster 
Figure 2.3 In silico alanine mutations 
Figure 2.4 Water density of polar mutants in the N-terminal Cluster 
Figure 2.5 Water density of C-terminal ILV cluster 
Figure 2.6 Far and Near UV spectra of hydration mutants 
Figure 2.7 Equilibrium unfolding profiles of hydration mutants 
Figure 2.8 Free energy differences of intermediate and relative CD signal of the  
  intermediate 
Figure 2.9 Urea dependence of unfolding  
Figure 3.1 Ribbon diagram of sIGPS  
Figure 3.2 SAXS profiles of the Native, IBP and unfolded states 
Figure 3.3 Average Trp lifetimes and distance distributions 
Figure 3.4 Average Rg and Qtotal during simulations 
Figure 3.5 P(r) of the ensemble of structures during folding 
Figure 3.6 Contact maps of folding 
Figure 3.7 Fractional contacts of the 4-fold symmetry units 
Figure 3.8 Folding Mechanism from simulations 
Figure 4.1 Equilibrium and Kinetic profile of sIGPS at 35C 
Figure 4.2 Ribbon diagram highlighting the exchange data 
Figure 4.3 Representative exchange curves of Class II and Class III 
Figure 4.4 pH dependence on exchange rates 
Figure 4.5 Protection pattern of the beta barrel 



ix 
 

 

 

 

 

 

 

 
 

 

 

 

List of Tables 

 

Table 2.1 Thermodynamic parameters of hydration mutants 
Table 2.2 Urea dependence values of unfolding 
Table 4.1 Exchange rates and calculated stabilities 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



x 
 

List of Abbreviations  
 

BASiC: Branched Aliphatic Side Chain  

ILV: Isoleucine, Leucine, Valine 

αTS: Alpha subunit of Tryptophan Synthase 

sIGPS: Indole-3-glycerol phosphate synthase 

BPHC: 2,3-dihydroxy-biphenyl dioxygenase 
FRET: Förster resonance energy transfer 
SAXS: Small angle x-ray scattering 

CD: Circular dichroism 

HX: Hydrogen exchange 

MD: Molecular dynamics 

CF: Continuous flow 

MRE: Mean Residue Ellipticity 

θN: Native MRE Signal 

θI: Intermediate MRE signal 

θU: Unfolded MRE signal 

TSE: Transition State Ensemble 

Rg: Radius of gyration 

µs: Microsecond 

ms: Millisecond 

MEM: Maximum Entropy Modeling 

TCSPC: Time correlated single photon counting 

q: Scattering angle 

Q: Fraction native contacts 

 

 



11 
 

 

Chapter I: Introduction 
The proteomes of single cell and multicellular organisms are dynamic and 

complex. Proteins catalyze chemical reactions, provide structural support to the 

cell, and receive and transmit extracellular signals to ensure organism survival1–3.  

The majority of all proteins involved with such functions require a competently 

structured and folded form. This initial folding reaction occurs at the stage of 

translation where, as the genetic code is translated, the newly synthesized 

polypeptide chain folds spontaneously, or with the help of chaperones, to achieve 

its native functional state4.  How a polypeptide chain spontaneously folds is not 

well understood and has been a major question in structural biology since the 

initial crystal structures of proteins were determined. It is important to understand 

how the polypeptide chain spontaneously folds as the unfolded state will be 

sampled with some frequency under a dynamic equilibrium. Populations of 

unfolded or intermediate states can lead to misfolding and aggregation, which 

have been previously implicated in a number of disease such as ALS, 

Alzheimer’s, phenylketonuria, and cystic fibrosis5–8. As more protein-based 

therapeutics are developed, a better understanding of the relationship between 

sequence, stability, and function will allow for better engineering of these 

therapeutics. 

The crystal structure of myoglobin was solved to 6 angstroms in 1958 by 

Kendrew and colleagues9.  In reporting the findings, the authors point out that 
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one of the most surprising aspects of the protein’s structure was the lack of 

symmetry. Due to the lack of symmetry, they could not postulate how the protein 

folded properly to achieve its native state solely based on the native structure. 

Christian Anfinsen’s work with Ribonuclease A meanwhile focused on the 

relationship between enzyme activity and tertiary structure10,11. Anfinsen and his 

colleagues showed that purified enzyme lost activity upon the addition of 

denaturant and reducing agents. Surprisingly, a large fraction of the activity was 

regained when the denaturant was diluted out and the disulfide bonds formed by 

oxidation. Because the random formation of all possible disulfide bonds would 

have resulted in ~1% recovery of activity, the sequence of the protein contains all 

the information required to direct the formation of the native state. This work 

formed the foundation for the thermodynamic hypothesis of protein folding - the 

three-dimensional shape of a protein was determined by the lowest energy 

state12. Cyrus Levinthal noted the process of going from the unfolded state to the 

native state could not be a random search as if the polypeptide chain searched 

through all possible confirmations, folding would not take place on a biologically 

relevant timescale.  Therefore, Levinthal proposed that folding was biased 

through a preferred pathway13.    

 

Interactions that drive folding and models of protein folding 

Even before the first crystal structure was solved, Linus Pauling theorized 

that hydrogen bonding of the peptide backbone must drive folding14.  While some 

contemporary studies suggest that backbone hydrogen bonding plays an 
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important role in folding15, it cannot be the sole determinant as the homogenous 

chemical diversity of backbone hydrogen bonding is, alone, insufficient to 

describe all three dimensional shapes proteins take within nature. Rather, it is the 

twenty different side chains of the primary sequence that encodes the secondary 

and tertiary structure12,16. The ability to change the primary sequence and 

therefore the ionic, hydrophobic, and van der Waal interactions of the side chains 

allows proteins to adopt many different folds required to complete the various 

biological activities.  Due to the relatively low stability of the folded, native state 

when compared to the unfolded state, one must consider all these different 

interactions when studying how proteins fold as subtle changes to hydrogen 

bond networks and side chain packing can greatly affect the process17. 

Hydrophobic interactions have been known to be important to the folding 

of proteins for many years due to the energetic penalty of solvation in aqueous 

solution18–20. It was argued that the backbone hydrogen bonds could not drive 

folding as the it would be energetically neutral to break the intermolecular 

backbone-water hydrogen bonds to form intramolecular hydrogen bonds.  

However, because the process of burying hydrophobic side chains is non-

specific, that force alone could not wholly account for structural specificity in 

folding12.  Thus, several models of protein folding based on structure formation 

were developed in an attempt to describe the folding process.   

There were three initial models to describe the folding process. In the 

nucleation-condensation model 21 and the framework model 22, secondary 
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structure within the polypeptide chain is assumed to form rapidly. The framework 

model then assumes that the tertiary structure of the protein is achieved through 

simple diffusion with the joining of multiple elements of secondary structure being 

rate limiting23.  The nucleation model assumes that after the nucleation site 

forms, further secondary structure and tertiary structure forms in a hierarchical 

manner21. In the hydrophobic collapse model, entropic gains of quickly, but not 

necessarily specifically, burying hydrophobic side chains are thought to rapidly 

collapse the peptide chain to a relatively dense structure.  This rapid collapse of 

the chain limits the conformational search with secondary structure and tertiary 

structure forming after the collapse24.  

As computational and theoretical studies of protein folding advanced, new 

three dimensional models, called free energy landscapes, based on entropy and 

enthalpy were developed25,26.  Free energy landscapes propose that there are 

multiple pathways that the polypeptide chain can take to reach the native state 

and can be represented pictorially by a funnel.  In the unfolded state, many 

states that are in rapid equilibrium with each other are present and as the chain 

begins to fold, the path of least resistance to the native state is taken.  As the 

protein folds and chain entropy decreases, intermediates can be described as 

local minima in the funnel. While intermediates may slow the overall rate at which 

the protein folds, the formation of the intermediates limits the possible number of 

conformations the chain can take27. The existence of multiple pathways for 

folding creates an issue, however, as experimental folding kinetic data follows 
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simple exponentials.  The issue of multiple pathways not being seen by 

experiments is thought to reflect the sensitivity of the experiments only to the 

slowest timescales of each reaction28.  

 

Sequence, Topology and the BASiC hypothesis 

 In nature, proteins with varying topologies are found to have vastly 

different folding rates.  It is theorized that the differing rates are due to the 

complexity of the folded native state in different topologies29.  Calculating the 

absolute contact order of the protein, a parameter that calculates the distance in 

chain length from atoms that are in contact with each other averaged over all 

contacts and normalized for the total chain length, can give a rough estimate of 

the expected folding rate30.  However, even when looking within one protein 

topology family, different rates are found.  These differences are thought to be 

due to the differences in sequences, as even single point mutations within a 

protein can cause drastic changes.   

 Despite the changes in the sequences within a topology family, proteins 

are often found to densely pack their cores with hydrophobic residues19.  This 

provides multiple, energetically favorable interactions, the burial of the 

hydrophobes and formation of multiple van der Waal interactions. Based upon 

the side chain partitioning scales 31, the Branched Aliphatic Side Chain (BASiC) 

hypothesis was developed to describe the relationship between hydrophobic side 

chain burial and protein stability32. Through the burial of isoleucine, leucine, and 



16 
 

valine (ILV) residues, the protein is able to exclude water from its core and in turn 

lower the local dielectric constant 33. The drop in dielectric constant strengthens 

the underlying hydrogen bond network and as a result decreases the volume and 

increases the packing density34.  As a result, van der Waal interactions are 

increased creating link between secondary and tertiary structure formation. The 

exclusion of water from tightly packed ILV residues therefore enhances the 

cooperativity of the folding reaction, for both the formation of intermediates as 

well as the native state32. The clusters of ILV residues are able to serve as cores 

of stability for both the native and intermediate states35–37. 

 

TIM barrels as a model system 

 The TIM barrel (βα)8 family of proteins is one of the most common folds 

found in biology1.  They are often involved in metabolic pathways and perform a 

variety of chemical reactions. The canonical TIM barrel fold is made up of eight 

central hydrophobic beta strands that form a barrel and is surrounded by eight 

amphipathic alpha helices. The beta strands and alpha helices are connected by 

long βα loops that contain the active site and short, tight αβ loops that are 

thought to provide stability to the protein38. The TIM barrel motif is a useful target 

for folding studies due the large number of sequences with the same structural 

motif.  This allows for a test of the BASiC hypothesis as evolution as caused the 

sites of ILV clusters within the TIM barrel family to change in size and location. 

 The TIM barrel family has a highly conserved folding mechanism that 

contains an off-pathway intermediate that is followed by two on-pathway 
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intermediates. The folding model appears to be determined by the topology as 

proteins with vastly different protein sequences maintain the mechanism36,37,39,40, 

including artificial TIM barrels that have been synthesized by other groups41.  Of 

interest is the off-pathway intermediate that forms during the burst phase of 

stopped-flow kinetic experiments.  The intermediate is considered off-pathway 

due to the unfolding-like kinetic phase that is found on the millisecond during 

protein refolding experiments39. The unfolding reaction under refolding conditions 

indicates that the intermediate is at least partially unfolding or structurally 

rearranging during the reaction due to improper contacts. While topology 

determines the overall folding mechanism, the protein sequence determines the 

location of structure in the intermediate states.  In particular, the location of large 

clusters of branched aliphatic residues determines where the structure forms36,42. 

 

The α-subunit of tryptophan synthase from E. coli 

 The α subunit of tryptophan synthase (αTS) is responsible for the 

synthesis of indole from indole-3-glycerol phosphate43. Its folding mechanism has 

been well characterized using multiple spectroscopic techniques39,44,45.  The 

protein has one off-pathway intermediate, IBP, and two on-pathway intermediates, 

I2 and I1. The initial step in folding is the formation of the off-pathway intermediate 

which has been shown to form on the microsecond timescale46.  The unfolding of 

this intermediate controls the formation of the I2 intermediate which then 

progresses through the I1 intermediate. Three prolines, P28, P217, and P261, 
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are known to isomerize and slow the interconversion of the intermediates and act 

as rate limiting step to reach the native state 47.   

 αTS has three ILV clusters, a large N-terminal cluster containing 31 

residues, a cluster internal to the barrel containing 8 residues, and a C-terminal 

cluster containing 12 residues. Native state hydrogen exchange experiments 

have shown strong protection in the N-terminal half of the protein, corresponding 

to the large ILV cluster for the IBP intermediate, suggesting that there is significant 

secondary structure in that region for the intermediate45.  This was confirmed by 

monitoring the sub-millisecond folding reaction by time resolved FRET and SAXS 

which found near native like distances for the N-terminal region of the protein 

within 50 microseconds 46.  The rapid formation of N-terminal region has been 

attributed to the proper formation of the ILV cluster as simple alanine mutations 

to a subset of the 31 ILV residues in the N-terminal cluster have been shown to 

eliminate the IBP intermediate35. 
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Indole-3-glycerol phosphate synthase from S. solfataricus 

 The indole-3-glycerol phosphate synthase (sIGPS) is responsible for the 

conversion of 1-(2-carboxyphenylamino)-1-deoxyribulose 5 phosphate to 3-

glycerol phosphate.  For stability reasons, the first twenty-five residues have 

been cut off for the work in this dissertation48.  Like αTS, the folding mechanism 

of sIGPS has previously been studied extensively. It has been confirmed to 

initially fold via an off-pathway intermediate that forms faster than 5 milliseconds.  

This intermediate at least partially unfolds before traversing through two on 

pathway intermediates36,49,50.   

 Unlike αTS, sIGPS has a single large ILV cluster that spans roughly from 

β3 through β6.  When monitored by pulse quench hydrogen exchange mass 

(A)                                                (B) 

Figure 1. 1 (A) Folding mechanism of αTS including the proline isomerization 
reactions. The mechanism contains multiple parallel channels due to prolines 
contained within the sequence. (B) Ribbon diagram highlighting the 3 ILV clusters 
of αTS located at the N-terminal half (blue spheres), internal to the barrel (green 
spheres), and the C-terminal cluster (orange spheres).  

Figure 1A is adapted from “Folding Mechanism of the α-Subunit of Tryptophan 
Synthase, an αβ Barrel Protein: Global Analysis Highlights the Interconversion of 
Multiple Native, Intermediate, and Unfolded Forms through Parallel Channels” 
copyright Biochemistry, 1999 
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spectrometry, it was this region that showed protection in 75 milliseconds with 

the strongest protection in the (βα)4 region.  The strong protection in this βα pair 

is thought to be due to the high concentration of branched aliphatic residues, with 

11 out of 22 being I, L, or V.  The central region of the protein seems to act as a 

nucleation site for folding as the on-pathway intermediates showed protection 

patterns that expanded out to cover β2 though β7
36.    

 

 

 

 

Scope 

 The scope of the dissertation is to better understand the role of clusters of 

branched aliphatic residues in contributing stability to TIM barrel proteins 

throughout the entire free energy landscape. The hydrophobic packing of I, L, 

and V residues are thought not only are important to the native state but also the 

I
BP

 ⇌ U ⇌ I
A
 ⇌ I

B
 ⇌ N 

Figure 1. 2 Folding mechanism and ribbon diagram of sIGPS highlighting the large 
ILV cluster. The protein first folds from the unfolded state (U) to the off-pathway 
intermediate (IBP).  IBP must then at least partially unfold before the on-pathway 
intermediates IA and IB form. The ILV cluster (orange spheres) spans from the β3 
through β7 region. 
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formation of the intermediates on the folding pathway. The work in the 

dissertation focuses on two members of the TIM barrel family, αTS and sIGPS. 

As they are members of the TIM barrel family, both fold via one off-pathway 

intermediate and two on-pathway intermediates. Despite similar native 

topologies, their respective ILV clusters are quite different. The work will look at 

the contributions of the ILV clusters and how cluster size and location may be 

affecting the free energy landscape. 

 In Chapter II, the role of desolvating the hydrophobic clusters is 

investigated through the introduction of isosteric polar mutations to the ILV 

clusters of αTS. The equilibrium studies in Chapter II are complemented by 

simulation work performed by Ruhong Zhou’s group at the IBM Watson Center. 

Both experiments and simulations show the importance of properly desolvating 

the large N-terminal ILV cluster of αTS for both the formation of the equilibrium 

intermediate and the native state. 

 Chapter III examines the earliest folding events of sIGPS and the role the 

large ILV cluster plays in initiating the folding process.  Experimentally, sub-

millisecond kinetics are studied using custom microfluidic chips interfaced with 

time resolved small angle x-ray scattering and time resolved Forester resonance 

energy transfer experiments.  Additional structural insights on the folding 

intermediates are gained by Gō-simulations performed by Charles Brook’s 

laboratory at the University of Michigan.      
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 In Chapter IV, the role of the ILV clusters to sIGPS are probed by native 

state hydrogen exchange monitored by nuclear magnetic resonance (NMR).  

Due to the high kinetic stability of sIGPS, we are able to monitor the native basin 

of the free energy landscape and gain insights to the cores of stability and the 

role of ILV clusters. 

 The final chapter, Chapter V, discusses the role of ILV clusters and how 

they are important across the entire folding free energy landscape.  Preliminary 

data on methionine based labeling is presented, along with a brief discussion of 

how the technique might be used in future experiments to address issues in early 

folding events. 
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Chapter II: The relationship between desolvating 

hydrophobic side chains and stability 
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Introduction  

The folding of proteins following synthesis on a ribosome or dilution from a 

chemically-denatured state involves the formation of numerous van der Waal’s 

interactions, hydrogen bonds and electrostatic interactions that stabilize the 

compact native conformation. It is widely accepted that a necessary structural 

consequence of the protein folding reaction is the exclusion of water from the 

side chains and main chains that become buried in the native state.  The 

thermodynamic consequence of the dehydration reaction reflects the substantial 

gain in entropy realized by freeing water during folding.  

The role of water in protein folding reactions has been examined by both 

experimental and computational approaches.  Mutational analyses, in which 

nonpolar side chains are replaced with isosteric polar side chain analogs, have 

shown that water is selectively shed prior to the appearance of the native state to 

enable the formation of critical cores of stability in early intermediates51 or 

transition state ensembles52,53.  By contrast, time-resolved infrared spectroscopy 

analysis revealed dehydration of the main-chain amides in the final step of 

folding from the alkaline-denatured states of both α-helical54 and β-sheet 

proteins55. A third experimental approach towards examining the role of water in 

folding monitors the protection of main chain amide hydrogens against exchange 

in deuterated water in partially-folded states56,57 and folding intermediates36,58,59.  

When hydrogen exchange (HX) techniques were applied to a pair of (βα)8 TIM 

barrel proteins36,45, protection against exchange in folding intermediates was 

found to be selectively associated with clusters of branched aliphatic side chains, 
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isoleucine, leucine and valine (ILV).  The molecular rationale for this behavior 

was ascribed to the preferential partitioning of side chain analogs of saturated 

hydrocarbon moieties into the vapor phase, relative to their aromatic, sulfur or 

polar-containing counterparts that spontaneously dissolve in water31.  The 

Branched Aliphatic Side Chain (BASiC) Hypothesis was formulated on the basis 

of these differential solubilities and proposes that clusters of ILV side chains play 

crucial roles in stabilizing folding intermediates in TIM barrel proteins by 

selectively excluding water from their interiors35,60.   

From a computational perspective, nanoscale dewetting transitions61–63 

between hydrophobic surfaces have long been of interest for both physical62,64–68 

and biological systems62,65,69–73.  Previous molecular dynamics (MD) simulation 

studies have identified several proteins or peptides in which a dewetting 

transition was observed prior to the docking of preformed elements of secondary 

structure. For example, a remarkable dewetting transition was observed within 

the nanoscale channel between the four melittin α-helices each of whose 

hydrophobic interface comprises 3 isoleucines, 4 leucines, 1 tryptophan and 2 

valines73. A subsequent study on a variety of protein complexes (dimers, 

tetramers and two-domain proteins) found that dewetting required large 

complementary hydrophobic surfaces with significant contributions from 

isoleucines, leucines and valines71.  In contrast, a marked decrease in water 

density was not detected at the domain interface in the two-domain 2,3-
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dihydroxy-biphenyl dioxygenase (BPHC)69.  The domain interface in BPHC is 

relatively heterogeneous in nonpolar side chains. 

Building on the results of the previous experiments and MD simulations, 

we adopted a combined experimental and computational approach to test the 

conjecture that large ILV-rich clusters in TIM barrel proteins are prone to undergo 

dewetting from their interiors.  As a target, we chose the alpha subunit of 

tryptophan synthase, αTS, a ~28 kDa TIM barrel (βα)8 protein that is a 

component of the α2β2 tetrameric tryptophan synthase complex. Previously, the 

protein was observed to offer strong and selective protection against HX in an 

on-pathway intermediate associated with a large N-terminal ILV cluster57. A 

smaller C-terminal ILV cluster does not offer protection against HX and provides 

an internal control.  As a surrogate for the polarity introduced by water, two 

buried leucines in the N-terminal cluster and a single leucine in the C-terminal 

cluster were individually replaced with the isosteric and polar asparagine. The 

effects of these mutations on the water density within the clusters were predicted 

by MD simulations of artificially-displaced versions of their preformed β-sheet and 

α-helical components.  These predictions were then compared with the effects of 

the mutations on the experimentally-determined stabilities and structures of the 

native state and the folding intermediate.  The possibility that wetting could also 

be enhanced by replacing a buried cysteine adjacent to the N-terminal ILV 

cluster with an asparagine was also studied.  The combined results support the 

conclusion that the drying of the large N-terminal ILV cluster is crucial to the 
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stability and structure of the native state and of a productive folding intermediate 

in a TIM barrel protein. 

 

 

Results 

A ribbon diagram of αTS and the location of its three ILV clusters are 

shown in Figure 2.1a.  Cluster 1, containing 31 ILVs, forms the interface between 

the exterior of the β-barrel and the interior of the α-helical shell in (βα)1-4. Cluster 

2, containing 12 ILVs, is found at the interface between the β-barrel and the α-

helical shell in (βα)5-6. Cluster 3 is located in the interior of the cylindrical barrel 

and is formed from 8 ILVs individually contributed by 7 of the 8 β-strands and α-

helix 0 at the N-terminus. 

 

Figure 2.1 Ribbon diagrams of αTS (a) highlighting the three hydrophobic clusters 
formed by the ILV residues [cluster 1 (blue), cluster 2 (orange) and cluster 3 (green)] (b) 
showing the location of hydration mutations in the crystal structure [Leu50 in β2 (purple), 
Cys81 in α2 (blue), Leu99 in β3 (green), and Leu176 in β6 (orange)]. Coordinates of 
αTS from Salmonella typhimurium were used to generate the figure from a refined 
version of PDB entry 1BKS 
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MD Simulations of Hydration in ILV Clusters 

   Hydration in Cluster 1. A cavity inside Cluster 1, with an estimated volume 

of ~1300 Å3, was created by pulling the α1 and α2 helices away from the β1, β2 

and β3 strands by a separation distance d varying from 4 to 6 Å (Figure 2.2a) and 

filled with water molecules.  Previous work have reported nanoscopic dewetting 

transitions in proteins with cavity volumes of a similar order70,74. During the 16 ns 

simulation time, the water molecules were free to move, but the protein heavy 

atoms remained fixed. Figure 2.2b shows the water density plots as a function of 

simulation time for Cluster 1 at separation distances of 4 Å and 6 Å. The cavity 

undergoes intermittent transitions between wet and dry states at a separation 

distance of 4 Å, however, no drying transition was observed at d = 6 Å. These 

drying transitions typically occur in 200-300 ps. To check the convergence of our 

results and if the system reached equilibrium, we started the simulations from 

two different initial states with d = 4 Å: one from the ‘wet’ state and a second 

starting from a ‘dry’ state, in which all of the initial water molecules were removed 

manually to create a dry cavity (Figure 2.2c)   
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Figure 2.2(a) Ribbon representations of ILV cluster 1, in which the helices (shown in 
cyan) are manually separated from the β-strands (shown in yellow) by a separation 
distance d to create a hydrophobic cavity. The cavity was initially filled with water 
molecules (red spheres). The observation volume of ∼1300 Å3 is shown with black lines. 
Branched aliphatic side chains (heavy atoms only) are shown as sticks and as molecular 
surfaces. The cluster is oriented in such a way that the bottom of the figure is the N-
terminus of the β-strands. (b) Plots of normalized water density as a function of 
simulation time of ILV cluster 1 for d = 4 Å (black) and 6 Å (red). The normalized water 
density was obtained by dividing the number of water molecules by the maximum 
number of water molecules inside the cavity (Nw,max = 30). (c) Plot of water density as 
a function of simulation time for four different trajectories, two starting from the “wet” 
initial state and two others starting from the “dry” initial state, with d = 4 Å. (d) Plots of 
normalized water density as a function of simulation time for the three ILV clusters of 
αTS (cluster 1 in black, cluster 2 in red, and cluster 3 in green). 
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Within the first 1-4 ns, the cavity underwent wetting/dewetting transitions in which 

the normalized water density inside the cavity switched between a maximum of 

0.8 (wet) and a minimum of 0.2 (dry) from both initial states.  The normalized 

water density is obtained by dividing number of water molecules with maximum 

number of water molecules inside the cavity. Snapshots of the cavity in the wet 

and dry states suggested that the water density was lowest near the center of the 

cavity, as a vapor bubble was frequently formed in this region and was stable for 

several nanoseconds. The two termini of the β-strand triplet remained relatively 

wet, the N-terminus being drier than the C-terminus. The latter results are 

consistent with the stronger protection against amide hydrogen exchange (HX) 

with solvent in this region observed in native-state HX experiments45.   

To provide insight into the role of individual ILV side chains to the 

dehydration observed in Cluster 1, 10 of its constituent members were 

individually substituted with alanines, and the simulations were performed on 

these alanine mutants. The residues selected (Figure 2.3a), V23, L25, I37, I41, 

L48, L50, L85, I95, I97 and L99, have previously been shown to eliminate an 

early kinetic trap in folding when replaced by alanine and all but I41A and L85A 

significantly destabilize the on-pathway equilibrium intermediate35.  The minimal 

effects of the I41 and L85 variants are thought to reflect their location in helices 

α1 and α2, self-contained elements of secondary structure on the surface of the 
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protein that can more readily mitigate the effect of mutations on stability than 

their β-barrel counterparts.  

 

 

Figure 2. 3 (a) Ribbon diagram of the interior of cluster 1, with the ILV side chains 
selected for alanine-scanning mutagenesis portrayed in space-filling format. (b) 
Histograms of water density inside cluster 1 for the wild-type protein and the 10 alanine 
variants. 

 

Figure 2.3b plots the histograms showing the probability of the water 

density within of the cavity for Cluster 1 of the wild-type protein and all ten 

alanine mutants. The histogram for the wild type protein shows a bimodal 

distribution, confirming that the cavity undergoes transitions between a dry (water 

density ~0.3) and a wet state (water density ~0.65), the dry state being more 

probable over the wet state. Apart from V23A, L50A and L99A, the cavity in the 

mutated proteins experienced complete or nearly complete loss of dewetting 

(Figure 2.3b).  The histograms of water density for these mutants are gaussian in 

nature with peaks centered at a water density of 0.6-0.7, showing that the cavity 
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largely wets upon alanine substitution. These findings show that Cluster 1 in wild-

type protein has evolved to favor a dry cavity to provide stability. Subtle changes 

in the surface topography and chemistry (e.g. single mutation I/L to A) can tip the 

balance of the cavity to a more wet state, potentially lowering the stability of the 

cluster and protein. In contrast, alanine replacement to residues V23, L50, and 

L99 resulted in partial loss of dewetting, with the L99A mutation being most 

resistant to wetting. The histograms of these three mutants show a considerable 

population of the low water density states (Figure 2.3b). These β-strand residues 

are centrally located in the cluster, facing the helical shell and are surrounded by 

neighboring ILV residues (Figure 3a).  To further ‘wet’ the cavity inside Cluster 1, 

we performed a more radical perturbation on the hydrophobic surface by 

substituting L50 and L99 with their isosteric and polar counterpart, asparagine. 

The water density histograms of L50N and L99N mutant proteins illustrate that 

the introduction of a polar side chain at positions 50 and 99 results in a complete 

or significant loss of dewetting (Figure 2.4b-c).  
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Figure 2. 4 (a) Position of Leu50 (red), Cys81 (orange), and Leu99 (blue) within ILV 
cluster 1. Mutation sites are shown as van der Waals spheres. (b–d) Histograms of 
water density inside the cavity of cluster 1: (b) L50 with WT in black, L50A in green, and 
L50N in red; (c) L99 with WT in black, L99A in green, and L99N in red; (d) C81 with WT 
in black, C81I in green, C81V in blue, and C81N in red. 
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The histograms for those two asparagine mutants have a water density peak 

centered at 0.6-0.7; the shoulder near 0.4 for L99N shows a limited propensity for 

dewetting. As will be confirmed experimentally, these results led to the 

expectation that native states and the folding intermediates for the L50N and 

L99N variants of αTS would be substantially destabilized relative to their wild-

type counterpart.   

    Probing Non-ILV Positions for Effects on Hydration of Cluster 1. Inspection 

of the simulations for wild-type αTS found residual water density near C81, which 

is adjacent to Cluster 1 in helix α2 and near the C-termini of strands β3 and β4 

(Figure 2.4a).  To discover the effect of side chains proximal to Cluster 1 on 

hydration, C81 was substituted with isoleucine, valine, and asparagine, 

respectively. The simulated water density distributions of C81I and C81V mutants 

(Figure 2.4d) showed a cavity that fluctuates between wet and dry states, C81V 

making the cavity noticeably drier compared to the wild-type protein. These 

results suggest that C81V mutation would be the best candidate to further dewet 

Cluster 2. Unfortunately, the larger steric bulk of valine versus cysteine precludes 

an unambiguous experimental test of this conjecture. In contrast, the cavity in the 

C81N variant favors the wet state with the maximum of water density probability 

around 0.6 (Figure 2.4d). These findings illustrate the sensitivity of water 

probability inside the cavity to the local environment.   

    Hydration in Clusters 2 and 3. We also compared the water density 

fluctuations of the two other ILV clusters of αTS for the separation distance of 4 Å 
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(Figure 2.2d). The ~ 500 Å3 cavities for Cluster 2, created by displacing the α5 

and α6 helices and the β5, β6 and β7 strands, experienced strong fluctuations in 

water density during the 16 ns simulation time. However, this cluster did not 

experience extended periods of dehydration at a separation distance of 4 Å. The 

~700 Å3 cavities in Cluster 3 was created by pulling the α0 helix away from the β1 

and β8 strands. This cluster showed hydration even at a separation of 4 Å for 

most of the simulation time (Figure 2d); thus, Cluster 3 was not considered 

further.  In contrast to the behavior of Cluster 1, the cavity in Cluster 2 primarily 

remained in the wet state even at a small separation distance of 4 Å. Closer 

inspection showed that drying is more favored toward the C-terminus of β-

strands. In particular, residue L176 protrudes from β6 toward the α5 and α6 

helices, acting as a barrier inside the cavity (Figure 2.5a).  

 

Figure 2.5 Dewetting of ILV cluster 2. (a) Snapshots of typical wet (left) and dry (right) 
states of cluster 2 populated during the simulation. The cluster is oriented in such a way 
that the bottom of the figure is the N-terminus of the β-strands. The separation distance 
was 4 Å. The maximum number of water molecules within the observation volume of 
∼500 Å3 was 17. (b) Histograms of water density inside ILV cluster 2 for the wild-type 

protein (black) and its two mutants, L176A (green) and L176N (red) 
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To check the sensitivity of this position to mutation in terms of dewetting, we 

performed two in silico mutations, L176A and L176N. The water density 

distribution of the wild type protein indicated that the cavity in Cluster 2 prefers 

the wet state; however, there was a small but not insignificant probability for 

drying (Figure 2.5b). Both mutations resulted in enhanced wetting of the cavity, 

as the water density distributions shift to the high-density side with a peak around 

0.7 (Figure 2.5b). The distributions of the two mutants appear almost identical, 

suggesting that an alanine substitution is sufficient at position 176 to further wet 

the cavity.  This behavior contrasts with that for positions L50 or L99 in Cluster 1, 

where a much stronger perturbation, such as mutation to asparagine, is needed. 

    Experimental Analysis of Structure and Stability for Hydration 

Mutations in ILV Clusters. The effects of the asparagine hydration mutations on 

the structural properties of αTS were determined by CD spectroscopy.  The far-

UV CD spectra of the Cluster 1 variants L50N, C81N, L99N, and the Cluster 2 

variant L176N all display a broad negative minimum between 222 nm and 208 



37 
 

nm and a positive band at 195 nm (Figure 26a), indicative of α-helix and β-sheet 

contributions.   

Figure 2. 6 (a) Far-UV CD spectra of wild-type αTS and the L50N, C81N, L99N, and 
L176N variants from 190 to 260 nm with protein concentrations ranging from 3 to 7 μM. 
(b) Near-UV spectra of wild-type αTS and the L50N, C81N, L99N, and L176N variants 
from 250 to 320 nm. 

 

However, the reductions in the ellipticities at 195 and 222 nm for the variants 

show the introduction of a polar side at all four positions disrupts the secondary 

structure to varying degrees.  The C81N and L176N mutations decrease the 

ellipticity at 222 nm by 20%.  Surprisingly, the L50N and L99N mutations have a 

more dramatic effect, decreasing the ellipticity by 70% and 40%, respectively.  

The near UV-CD spectra, which provide insight into the chiral packing of 

aromatic side chains, reveal that all of the hydration variants have altered tertiary 

structures (Figure 2.6b).  The positive band observed for tyrosines between 270 

and 285 nm for wild-type αTS becomes negative for C81N and L176N and is 

eliminated for L50N and L99N.  The phenylalanine bands between 255 and 270 
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nm are present for all of the variants, however, the bands at 265 nm are 

comparably reduced in magnitude vs. wild-type αTS for L50N and L99N. 

    The effects of the mutations on the thermodynamic properties were 

determined by monitoring the far-UV CD spectrum as the proteins were 

denatured with urea.  The equilibrium unfolding transitions, as illustrated by the 

changes in ellipticity at 222 nm, are shown in Figure 2.7.   
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Figure 2. 7 (A) Urea-induced equilibrium unfolding profiles for wild-type αTS and the 
hydration variants L50N, C81N, L99N, and L176N. The continuous lines represent fits of 
the data to a three-state model. (B) The residuals for the C81N fit of the raw data before 
conversion to MRE are shown in the for the two state (red) and three state (blue) 
models.  The large deviation from 2 M urea onward in the 2 state fit indicates a poor fit to 
the 2 state model.  
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All the variants display a nearly urea-independent baseline indicative of a 

thermodynamically stable state in the absence of denaturant.  As previously 

observed for wild-type αTS35, the equilibrium unfolding reactions of the four 

hydration variants are well-described by a 3-state model, N ⇌ I ⇌ U, to fit the CD 

data. For the L176N variant with a limited native baseline, the stability of the N ⇌ 

I transition was determined by measuring the amplitude of the rate-limiting N → I 

unfolding phase as a function of the initial urea concentration while jumping to 

the same final urea concentration. Because the amplitude is proportional to the  
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Table 2.1: Thermodynamic parameters for urea-induced unfolding of wild-type and hydration variants of αTS(a) 

 ΔGNI°(H2O)(b,c) -mNI Cm(NI) ΔGIU°(H2O) -mIU Cm(IU) Z-value ΔG(total)°(H2O) -mtotal 

WT 6.60±0.10 2.05±0.03 3.22±0.06 4.59±0.54 1.09±0.09 4.21±0.60 0.68±0.05 11.19±0.55 3.14±0.10 

L50N 3.01±0.13 2.30±0.09 1.31±0.07 1.90±0.25 0.72±0.06 2.64±0.41 0.58±0.05 4.91±0.28 3.02±0.11 

C81N 6.47±0.16 2.29±0.06 2.83±0.10 2.30±0.19 0.57±0.05 4.04±0.48 0.80±0.00 8.77±0.25 2.86±0.07 

L99N 3.77±0.05 2.36±0.03 1.59±0.03 3.27±0.21 1.03±0.05 3.17±0.26 0.75±0.02 7.04±0.22 3.39±0.05 

L176N 0.65±0.19(d) 0.72±0.11(d) 0.90±0.30 3.13±0.12(e) 0.94±0.03(e) 3.33±0.15 0.86±0.05(e) 3.78±0.22 1.66±0.11 
(a) The equilibrium unfolding data were fit to a three-state model, N⇌ I⇌ U.  ΔG°(H2O), m, and Cm represent the free energy of unfolding in the absence 
of urea, the urea dependence of the free energy of unfolding and the concentration of urea at the midpoint of transition, respectively.  
(b)Units are as follows: ΔG°(H2O), kcal mol−1; m, kcal mol−1 (M urea)−1; Cm, M (urea).  
(c)Errors for ΔG°(H2O) and m are standard errors from the fits. Errors in Cm, ΔG(total)°(H2O) and –mtotal were obtained by standard error propagation of the 
equation: Cm=ΔG°(H2O)/m; ΔG(total)°(H2O) = ΔGNI°(H2O)+ ΔGIU°(H2O); -mtotal= -mNI + -mIU 

(d)Values obtained from fitting the amplitudes of the N → I kinetic unfolding reaction to a two state model. 
(e)Values obtained from equilibrium data with the N ⇌ I transition constrained by the values found from the kinetic unfolding experiment. 
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fraction of the native state at the initial urea concentration, the fit of the 

amplitude to a 2-state model yields the desired thermodynamic parameters.    

    The free energy differences for the N ⇌ I and I ⇌ U transitions for the 

variants are shown in Figure 2.8A and Table 2.1. The stability of the N state vs. 

the I state is substantially decreased for the L50N, L99N and L176N mutations, 

  

Figure 2. 8 (a) Bar graph showing the free energy differences for the N ⇄ I (solid bars) and I ⇄ 
U (hatched bars) transitions obtained by fitting the data for the hydration variants to a three-
state model. (b) Bar graph showing the differences between the mean residue ellipticities of the 
intermediate (I) and unfolded (U) states at 222 nm (ΔMRE) for wild-type αTS and the L50N, 
C81N, L99N, and L176N variants. 

 

however, the C81N mutation leaves the stability virtually unchanged. In addition 

to the stability, the fits also provide the m-value, a measure of the sensitivity of 

the folding free energy to the denaturant concentration that is proportional to 

the change in buried surface area.  The average of the m-values of the N ⇌ I 

transition for the L50N, C81N and L99N variants, <m> = 2.32 ± 0.04 kcal mol-1 

M-1, is larger than for the wild-type αTS, 2.05 ± 0.03 kcal mol-1 M-1, suggesting 

that all three are less well-folded in the I state (Table 2.1).  The smaller m-value 
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for the N ⇌ I transition for L176N, 0.72 ± 0.11 kcal mol-1 M-1, could reflect a less 

compact folded state or the existence of additional intermediates in the 

conversion of N to I.  If present, the additional species would lead to an 

overestimation of the perturbation in stability for the native state.  

  The stability of the I state vs. the U state is reduced for all four αTS 

variants, indicating that both clusters are sensitive to the state of hydration of 

the mutated side chains. The reductions in the m-values for the I ⇌ U transition 

for L50N and C81N are very similar in magnitude to the increases seen for the 

N ⇌ I transition (Table 2.1), again suggesting a less well-folded I state.  The 

L99N variant, however, does not display this behavior and, with a total m-value 

of 3.39 ± 0.05 kcal mol-1 M-1 versus an average of 2.94 ± 0.07 kcal mol-1 M-1 for 

the wild-type, L50N and C81N variants, may experience a disruption of residual 

nonpolar structure in the U state.  The unfolding of the intermediate for the 

L176N variant exposes a comparable amount of buried surface area as the 

wild-type protein.  

Insights into the impact of the mutations on the secondary structure of 

the intermediate can be calculated from the Z parameter employed in the 3-

state fits to the equilibrium unfolding data (Materials and Methods).  The Z 

parameter reflects the normalized change in ellipticity of the intermediate state 

relative to the unfolded state and is defined as Z = (θI – θN ) / (θU – θN).   Rear-

ranging to extract θI, the ellipticities of the intermediates vs. their respective 

unfolded states for all three polar replacements in or near Cluster 1 were found 
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to decrease by 2-3 fold (Figure 2.8b).  By contrast, the ellipticity of the 

intermediate for the L176N variant is very similar to its wild-type counterpart. 

    Although all the asparagine replacements retain a 3-state unfolding 

profile, the disruption of as much as 70% of the ellipticity in the L50N variant 

raises the possibility that their folded states no longer reside in the native basin 

for wild-type αTS. To explore this issue, denaturant jumps from the native state 

to the  

Figure 2. 9 Semi-log plot of the urea-dependence of the observed unfolding phase 
monitored by manual mixing CD for WT αTS and the hydration variants. The slopes 
are within 10% for the mutants in the large N-terminal cluster.  

 

unfolded state were employed to monitor the rate limiting, N → I, unfolding 

reaction.  All of the variants display a slow unfolding reaction whose relaxation 

times differ less than a factor of 5 from that for the wild-type protein and, similar 
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to wild-type αTS, decrease exponentially with increasing denaturant 

concentration (Figure 2.9).  The denaturant dependence of the observed 

relaxation times for the L50N, C81N and L99N variants varies less than 10% 

from that for wild-type αTS (Table 2.2).   

 

 

 

 

 

 

The minimal perturbation of the N →I unfolding dynamics for these L → N 

variants, all in or near Cluster 1, vs. the wild-type protein, implies that the 

mutations have a very similar effect on the energies of the native state and the 

transition state ensemble (TSE).  The similar denaturant dependences for these 

variants imply the exposure of a comparable amount of buried surface to 

access the TSE. By contrast, the L176N variant has a 50% reduction in the 

denaturant dependence for its unfolding reaction (Table 2.2). When considered 

with the more than 50% decrease in the m-value for the N → I reaction at 

equilibrium (Table 2.1), the folded state of L176N must be less compact than 

for wild-type αTS.  The retention of the 3-state unfolding model, a similar 

degree of compaction implied by the total of the m-values for the two transitions 

(with the exception of the L176N variant) (Table 2.1) and the same barrier to 

Table 2.2: Unfolding kinetics m-values (kcal  mol-1 (M urea)-1) 

Wild type -0.56±0.01 

L50N -0.60±0.03 

C81N -0.57±0.01 

L99N -0.54±0.04 

L176N -0.28±0.07 
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unfolding all argue that the variants occupy the same native basin as wild-type 

αTS. 

 

 

Discussion 

We have characterized the relationship between nanoscale dewetting 

transitions and the stability and structure of αTS, a TIM barrel protein, using a 

combined molecular dynamics simulations and experimental approach.  

Simulations reveal that cavities created inside the two large hydrophobic ILV 

clusters of αTS undergo either intermittent or strong water density fluctuations, 

depending on the size and composition of the cluster. The largest ILV cluster 

(Cluster 1) was found to be optimized in terms of dehydration.  Substituting 

selected ILV residues with alanine was found to weaken or completely diminish 

dewetting, which strongly depends on the local environment of the mutation 

site.  Our simulations also showed that the replacement of buried leucines in 

both clusters with asparagines is sufficient to completely wet their cavities.   

The experiments performed in this study suggest a folding mechanism in 

which segments of large ILV clusters adopt folded-like conformations prior to 

final collapse and expulsion of water. In our simulations, we introduced a cavity 

by separating α-helices from β-strands of the ILV clusters in their native 

structures to capture how single amino acid substitutions to the critical ILV 

residues affect this final stage of folding.  Additionally, we did not observe any 

significant conformational changes upon mutation from ~100 ns long “folding” 
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simulations of the wild-type protein and the L50N and L99N mutants, which was 

not unexpected because the conversions of the U state to the I state and the I 

state to the N state occur on the millisecond time scales39.   

As found in our simulations, ILV Cluster 1 experiences frequent 

transitions between a wet and a dry state, whereas Cluster 2 sits on the wet 

side.  Previous studies have shown that small perturbations, such as single 

amino acid substitutions, can shift the protein from a dry state to a wet state73. 

For example, a single I2A or I2V mutation can tip the protein melittin tetramer 

channel from dry to wet.  Along this line, recent simulation studies by Garde 

and coworkers also show that water near protein surfaces can be sensitive to 

subtle changes in surface conformation, topology, and chemistry, and small 

changes can tip the balance from dry to wet or vice versa. That is, the protein 

can be “sitting at the edge” of the dewetting transition75.  For example, melittin 

sits on the dry side of a dewetting transition, while another protein BPHC on the 

wet side. It is possible to tip the balance to the other side for both melittin and 

BPHC proteins by introducing additional perturbations, e.g. point mutations. 

Taken together, these findings by Garde and coworkers and our current results 

suggest that biomolecules often sit at the edge of dewetting transitions and are 

sensitive to perturbations75. We further show that such sensitivity to 

perturbations can be readily manipulated by protein engineering, which allows 

the TIM barrel protein to fine-tune its stability and folding. 
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Experimental analysis of leucine to asparagine mutations in the N-

terminal ILV cluster in αTS not only demonstrated dehydration in both native 

and intermediate states but also revealed that the introduction of polarity 

substantially decreased the stabilities and had a dramatic effect on the 

structures of both states.  The substitution of an acetamide group for an 

isobutyl group at L50 and L99 reduced the secondary structure of the native 

state by 40-70% and appeared to mobilize the tyrosine side chains.  The 

secondary structures of the corresponding intermediate states were also greatly 

diminished for these variants.  The results are consistent with the prediction 

that the interior of this cluster strongly prefers to dewet in a TIM barrel 

configuration and the conclusion that this configuration also exists for the 

intermediate state. What is very surprising, however, is that these mutations do 

not simply destabilize the TIM barrel fold or its folding intermediate. Rather, the 

presence of the polar side chain leads to distinct high-energy thermodynamic 

states in the native basin on the TIM barrel folding free energy surface.  In the 

case of Cluster 1, there appears to be sufficient driving force from the need to 

sequester the remaining 30 aliphatic side chains from solvent to populate these 

alternative states. The substantial decrease in the CD signal at 222 nm and 

loss of signal at 280 nm could reflect a highly dynamic α-helical shell that 

enables the partial exposure of the asparagine side chains at positions 50 and 

99 to water while retaining buried surface area.        
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Interestingly, the C81N mutation in helix α2 and adjacent to Cluster 1 had 

a lesser effect on the secondary structure and left the stability of the native 

versus the intermediate state virtually unchanged (Table 2.1). Although the 

midpoint of the urea-induced transition, 2.83 M, is lower than wild-type, 3.22M, 

the larger m-value for C81N results in a stability that is coincidently the same as 

wild-type. As noted above, the increased m-value reflects a less well folded I 

state.  The ready adaptation to the polar side chain at position 81 is similar to 

the previously-described response of the L85A mutation, also in helix α2, 

reflecting the conformational adaptability of a surface helix35.  The stability of 

the I state versus the U state and the m-value, however, were markedly 

reduced.  The lower inherent stability of the I state apparently does not provide 

sufficient driving force to accommodate the asparagine side chain and maintain 

the secondary structure and compactness for the C81N variant. 

Although an asparagine mutation in Cluster 2 had a lesser effect on the 

secondary structure in the native state and little or no effect on the 

intermediate, the L176N variant could not achieve the same stability or degree 

of compactness in the native state as the wild-type protein.  The distinct 

changes in the near-UV CD spectrum might reflect perturbations in the packing 

of the adjacent Y173 and Y175 inside the β-barrel as well as more global 

effects accompanying the decreased packing efficiency.  In contrast to the 

predictions of the simulations, the wet state favored for the interior of this 

cluster was not capable of supporting the presence of the polar side chain in 
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the native conformation. The contradiction may reflect the smaller size of 

Cluster 2, leading to only marginal drying of the cavity in the simulations (Figure 

2.5).  The limited effect of the L176N mutation on the stability and secondary 

structure of the intermediate state, in contrast to the substantial effects on the 

native state, suggests that the side chain is only partially dehydrated at this 

stage of folding. All of these findings are consistent with the previous conjecture 

that the region encompassing Cluster 1 is well packed in the intermediate state 

while Cluster 2 is best described as a loosely-folded, molten globule-like 

structure46,76. 

It was surprising that the MD simulations for the entire set of 10 ILV → A 

mutations in Cluster 1 resulted in the wetting of the cavity.  One might have 

expected that the removal of 2-3 carbons from a cluster of 31 branched 

aliphatic side chains would have little effect on the propensity of water to 

occupy the exposed nonpolar volume. However, the sensitivity of drying to the 

composition and/or structure of the cavity may be the explanation for the 

previous experimental observation that these same alanine replacements 

substantially reduce the stability of the intermediate in αTS35. The simulations 

suggest that the enhanced propensity of the alanine variants in Cluster 1 to 

wet, i.e., favor a less well-folded state, is, along with the loss of packing 

interactions, a mechanism for destabilizing the intermediate.  The tendency of 

the cavity in Cluster 2 to wet in the wild-type αTS would mitigate any enhanced 
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hydration from alanine replacements and minimize the perturbation on the 

stability of the intermediate, as observed.  

An unanticipated outcome of creating the L50N and L99N variants was 

the discovery of discrete thermodynamic states that have substantially 

disrupted secondary structure and the apparent loss of tight packing around the 

7 tyrosines with a compactness comparable to the wild-type protein. Although 

further experiments are required to rule out the coincidental cancellation of 

positive and negative bands for the tyrosines and confirm their putative 

dynamic properties, native-like compactness with mobile side chains are 

characteristics of the “dry molten globule”77. The dry molten globule was initially 

proposed as a model for folding transition states or to arise in a membrane 

environment40 and, subsequently, as a discrete state in the native basin78–80.  

The putative dry molten globule states for the L50N and L99N variants of αTS, 

however, do not unlock all of the phenylalanines and have a substantially 

altered secondary structure compared to the canonical TIM barrel.  Further 

studies are required to determine if the folded states of the L50N and L99N 

variants are indeed dry molten globules, as envisioned by Shakhnovich and 

Finkelstein40, or represent related high energy states in the native basin.   

Intriguingly, the existence of such states might provide a path for the evolution 

of the sequence to produce TIM barrels with alternative locations for their ILV 

sequences49.   
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The results of this combined experimental-simulation study on αTS 

demonstrate the critical role of dehydration in a large hydrophobic ILV cluster in 

determining the stability and structure of a TIM barrel fold and a critical folding 

intermediate.  ILV clusters are common in the other (βα)-repeat motifs, such as 

the flavodoxin-fold and the Rossmann-fold families81, and they also define 

coiled coils82,83, repeat-sequence proteins84–86, β-sandwich motifs87, and anti-

parallel β-sheet arrays found in amyloidogenic peptides88.  Thus, our findings 

may provide useful insights into the link between hydrophobicity, dewetting, and 

stability of a large number of protein motifs.     

 

 

Materials and Methods                

Molecular Dynamics Simulations. The initial structures of the ILV 

clusters were taken from the crystal structure deposited in the Protein Data 

Bank (PDB ID code 1BKS). The clusters were determined using the same 

protocol described previously35. Three ILV hydrophobic clusters are found 

within the αTS native structure: (i) a large external-to-the-barrel cluster 

spanning the N- and the C-termini (Cluster 1); (ii) a second external-to-the-

barrel cluster in the C-terminal region (Cluster 2) and (iii) an internal-to-the 

barrel cluster (Cluster 3) (Figure 2.1a). The helical parts of the clusters were 

pulled 4-6 Å away from the β-sheet region to create the cavity for investigating 

dewetting. The system was solvated in a box of TIP3P water. The initial state 

for the cavity for all systems was set to be wet, unless otherwise stated. The 



53 
 

resulting systems were minimized for 10000 steps followed by a 16 ns MD 

simulation at 310 K and 1 atm. During this simulation, the protein heavy atoms 

were constrained, whereas water molecules were free to move. The particle-

mesh-Ewald (PME) method was used for the long-range electrostatic 

interactions, while the van der Waals interactions were treated with a cutoff 

distance of 12Å. The CHARMM (c32b1 parameter set) force field was used and 

simulations were performed using NAMD2 molecular modeling package with a 

2 fs time step. At least 15 different trajectories were run for Cluster 1 and 

Cluster 2 of the wild type protein and its C81, L99, and L176 mutants (in silico 

variants). For all other systems, at least three different trajectories were run. 

The total aggregate simulation time was about 5 µs. Additionally, we performed 

~100 ns long “folding” simulations, in which both main chain and side chains 

atoms were free to move.  

Site-directed Mutagenesis. The codon-optimized αTS WT gene was 

synthesized by Genscript in pUC 57 and re-cloned into a modified pGS-21a 

vector with an N-terminal 6X His tag and TEV protease site using EcoRV and 

BamHI restriction sites. Various hydration mutations were made using 

mutagenic oligonucleotides purchased from Integrated DNA Technologies 

using the Stratagene Quick-change site-directed mutagenesis kit and mutations 

were confirmed using DNA sequencing. The pGS-21a plasmid DNA was 

transformed into BL21 (DE3) pLysS cells for protein expression and 

purification. 
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    Equilibrium and Kinetic Unfolding Experiments. The thermodynamic 

properties of both wild-type αTS and various hydration mutants were 

determined by urea titrations on a Jasco J-810 spectropolarimeter. Samples at 

varying urea concentrations were prepared using a Hamilton 540B automatic 

titrator and were incubated overnight at 25 °C for complete equilibration. Data 

were collected using a 2 mm pathlength quartz cuvette and a 2.5 nm 

bandwidth. The spectra were recorded at every 1 nm in the wavelength range 

from 215 nm to 260 nm with a scan speed of 50 nm min-1 and an eight second 

averaging time. The denaturant dependence of the ellipiticities for αTS and its 

variants was fit to a three-state model using Savuka, an in-house nonlinear 

least squares program, and assuming a linear dependence of the free energy 

of unfolding on the denaturant concentration39. These fits provided the free 

energy differences between the three thermodynamic states, the denaturant 

dependences of these free energy differences and the Z parameter required to 

estimate the ellipticity of the intermediate44.  

The manual-mixing kinetic unfolding jumps began in the absence of 

denaturant and ended between 4.0 M to 6.0 M urea, with the final protein 

concentration ranging from 3-5 μM. Data were collected at 222 nm and at 25 °C 

in a 1 cm pathlength cuvette. The relaxation times were obtained by fitting the 

kinetic traces to a single exponential function in Savuka39. 
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Chapter III: The role of ILV clusters during the early 

events of folding 

 

 

 

 

 

 

 

This chapter presents results from a collaboration with Dr. Brooks’ Lab at the 
University of Michigan and Dr. Srinivas Chakravarthy and Dr. Tom Irving at the 
BioCAT beamline at APS. The simulations were performed by Yanming Wang 
and Dr. Karunesh Arora while I performed the experiments with the help from 

the team at BioCAT and Dr. Osman Bilsel. 
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Introduction 

Protein folding energy landscapes have been driven by evolution to 

minimize the energetic and topological frustration experienced during the 

folding reaction26,89. Small, two-state folding proteins, whose folding rates vary 

inversely with the complexity of their topologies, are a very good example of 

this evolution at play90,91.  However, larger proteins are often found to have 

intermediates populated along their energy landscape, some of which may be 

misfolded or off-pathway39,60,92–95. 

Simulations have shown that premature formation of structures can lead 

to topological frustration. As a result, such proteins are unable to reach their 

proper transition state and must at least partially unfold in order to continue 

proceeding on their kinetic pathway to the native state.  Experiments and 

simulations have revealed that these intermediates may be native-like in 

secondary structure but contain nonnative interactions96 or  structural elements 

not found in the native structure 97. Experimentally, early folding intermediates 

are difficult to study as the timescales associated with their formation are 

typically in the time range of 10s of microseconds or faster 46,92,98–100.  

  (βα)8 TIM barrel proteins, one of the most common motifs in biology1, are 

one such class of proteins to have a misfolded intermediate 36,46.  Previous 

folding studies on several homologs TIM barrels with low sequence identity 

have shown that the general folding mechanism is conserved across the barrel 

architecture indicating the topology of the protein determines the general free 
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energy landscape 37,39,49.  Hydrogen exchange experiments on several barrels 

have highlighted the important role individual sequences play in determining the 

structures formed along the landscape as the regions of strong protection 

formed during the folding reaction vary from barrel to barrel 37,45,50. One 

hypothesis is that large, sequence-local clusters of isoleucine, leucine, and 

valine (ILV) residues that vary in location from protein to protein drive the 

formation of the intermediates, including the initial off-pathway intermediate 32.  

To continue our assessment of the formation of structure throughout the 

folding of TIM barrels, especially at early times, we are expanding our studies 

on the indole-3-glycerol phosphate synthase from S. solfataricus (sIGPS).  The 

folding pathway of sIGPS has previously been shown to follow the expected 

mechanism of TIM barrel proteins with the formation of an off-pathway kinetic 

trap followed by two on pathway intermediates before the native state49. 

Stopped-flow circular dichroism experiments revealed that within 5 milliseconds 

the protein has acquired roughly two thirds of its native CD signal. This early 

intermediate is predicted to have a stability of 3.5 kcal mol-1. However, stopped-

flow fluorescence experiments showed that this early intermediate was a kinetic 

trap as there was a “rebound” reaction on the timescale of 100s of 

milliseconds36. The structure of the kinetic trap and on-pathway intermediates 

were probed by quench-flow hydrogen exchange experiments.  The early 

kinetic trap displayed strong protection in the central region of the protein (βα4) 

within the 75 ms dead time of the experiment. Longer time points showed a 
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progression of protection out to the N and C termini of the protein with (βα)1 and 

(βα)8 being the last to show strong protection.  This would suggest the protein 

folds via a nucleation and condensation mechanism 21 with the central module 

of the 4-fold pseudo-symmetry (βα)3-4 serving as the nucleation site of structure 

formation.  

 

 

 

 

Figure 3. 1 Ribbon diagram of sIGPS with the side chains of the large ILV cluster 
highlighted with green spheres.  The two sets of FRET pairs are highlighted in the 
right structure with the 63-238 pair in purple and 112-140 pair in red.  The FRET 
pairs were chosen to look at the role of the ILV cluster as well as the barrel 
closure process. The consensus folding mechanism for the TIM barrel is below the 
structures.  
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The formation of the kinetic traps is not well understood in protein folding 

and with advances in mixing techniques over the past few years101, it is now 

possible to probe these intermediates with multiple techniques on the sub-

millisecond timescale. To monitor the formation of structure in the kinetic trap in 

sIGPS we have performed continuous flow kinetic experiments interfaced with 

time resolved small angle x-ray scattering (trSAXS) and time resolved Förster 

resonance energy transfer (trFRET). Gō model simulations have provided 

insights into potential structures formed throughout the folding reaction while 

providing insights into the cause of frustration in the early off-pathway 

intermediate. The combined experimental and computational approach towards 

probing the folding mechanism of one of the most common protein folds in 

biology has revealed shared and distinct features that enable detailed insights 

into the potential sources of frustration in folding in TIM barrel proteins. 

 

Results 

Measuring global dimensions by small angle x-ray scattering (SAXS) 

To obtain structural insights on a global level of the intermediates, SAXS 

profiles were obtained under equilibrium and kinetic refolding conditions.  At 

equilibrium, the native state of the protein has a calculated radius of gyration 

(Rg) of approximately 18 Å.  The unfolded state, under native conditions, 

extrapolates to about 46 Å (Figure 3.2). Unfortunately, due the high protein 

concentrations required for the scattering experiment, insights into the  
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Figure 3. 2 (A) Rg as a function of [urea] shows a single transition from the native to the 
unfolded state. (B) Calculated Rg values from the continuous flow data set.  Dashed lines 
at ~45A and 18A represent the unfolded and native state Rgs. (C) Dimensionless Kratky 
plot of the unfolded (blue), IBP intermediate (red) and native state (black). (d) The P(r) of the 
unfolded (blue), IBP intermediate (red) and native state (black). The Kratky and P(r) for the 
burst phase intermediate show partial globularity. 
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equilibrium intermediate state was not possible due to dimerization of the IA 

intermediate, which was previously known to dimerize49.  

Previous stopped-flow CD experiments revealed a significant amount 

secondary structure, ~60% of the native signal, was formed within the 5 ms 

deadtime. The large amount of CD signal indicates that the polypeptide chain 

has undergone a large-scale contraction to form a significant amount 

secondary structure. To test the dimensions of the burst phase intermediate 

were measured by inducing ten-fold dilution kinetic jumps initiated from 8 M 

urea using custom, single piece microfluidic mixers.  The scattering profiles 

starting from as early as ~150 μs were transformed to calculate the Rg, the 

Kratky plot and the P(r) function for the off-pathway burst phase intermediate 

from ~150 µs to ~4 ms (Figure 3.2).  Based upon Rg, the protein chain 

collapses from the denatured, unfolded Rg of ~46 Å down to 26 Å within the 

dead time of the mixer.  Unfortunately, no kinetics were observed in the mixer 

on the experimental timescale (~150 μs- 4 ms) as no change in Rg was 

measured (Figure 3.2B).  

As no kinetic phases were seen over the experimental timescale, the 

measured collapse in the chain may be due to the change in solvent and not 

the formation of a discrete thermodynamic state. If the chain was collapsing 

solely due to the rapid change in solvents, the Rg would increase if weaker 

refolding jumps were performed due to swelling of the chain. However, weaker 

refolding jumps initiated from 8 M to a final of 1.2 M and 1.6 M urea show no 
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measurable change in Rg, 26 Å, when compared to the 0.8 M final refolding 

jump.  This would indicate that the collapse of the chain to a Rg of 26 Å is due 

to the formation of a thermodynamically stable state. Now, because no kinetic 

phase was seen during the experiment, it can be inferred that the reaction of 

the unfolded state to the IBP intermediate is much faster than the 150 μs dead 

time.    

Transforming the 0.8 M urea equilibrium scattering curve to a 

dimensionless Kratky plot shows the typical globular parabolic shape with the 

maximum at (√3, 1.1) as expected by Guinier’s approximation (Figure 3.2C). 

The 8 M equilibrium sample shows an extended random coil like profile with the 

expected hyperbolic plateau shape. However, the curve from the continuous 

flow refolding kinetic jump to 0.8 M urea shows the IBP intermediate has a peak 

shift on the x-axis to a qRg of approximately 2 with a maximum of 1.25 within 

150 µs. This indicates a deviation from Guinier’s approximation and that the 

protein has regions that are not yet fully globular.   The P(r) distribution for the 

IBP intermediate confirms that there is a large collapse of the chain as the peak 

of the distribution is at 26 Å. The maximum distance between a set of any two 

atoms, Dmax, also decreases from 130 Å to 80 Å, however, there is a significant 

shoulder to the curve (Figure 3.2D). The Rg as calculated from the P(r) 

matches that of the Guinier analysis. Taken together, the backbone contracts 

significantly from the unfolded to the IBP state, however, the intermediate is not 

yet fully globular or there are still extended regions of the protein. 
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Pair-wise dimensional analysis by time resolved FRET 

To complement the global structural data obtained by SAXS, two sets of 

pair-wise distances were measured by time resolved tryptophan-AEDANS 

Förster resonance energy transfer (trFRET). By using trFRET, we are able to 

measure the lifetimes of the tryptophan donor and use that information to build 

distributions of distances, unlike total intensity FRET where only single 

distances can be measured. The first FRET pair was positioned at 63 and 238 

(α1 and α8) to monitor the N- and C-termini and barrel closure (Figure 3.1). 

Based upon the ILV cluster map and the HX-MS data set 36, the second pair 

was positioned at 112 and 140 to cover the α3-α4 region (Figure 3.1).  The (βα)4 

region showed the strongest protection against exchange within 75 ms and 

contains a very hydrophobic stretch of amino acids with 11 out of 22 residues 

being I, L, or V. 

The average Trp lifetime for the 63-238 pair as measured under 

equilibrium conditions shows no significant FRET in the denatured unfolded 

state at 8 M urea as expected for a Trp-AEDANS FRET pair (R0 = 22 Å) that is 

175 residues apart.  A similar microfluidic mixer from the SAXS experiments 

was used in the trFRET experiments to assess the distances between FRET 

pairs in the burst phase intermediate. The continuous flow trFRET data for the 

63-238 pair shows a rapid change to a non-native-like lifetime, 4.5 ns for the 

donor only sample and 3.3 ns for the donor-acceptor, within the dead time of 
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the mixer (~50 μs) for refolding jumps to 0.8 M final urea. (Figure 3.3). As was 

the case in the Rg measurements, there are no significant changes in lifetimes 

within both the donor only and donor-acceptor samples measured during the 

experiment from ~50 µs out to ~1 ms.  This confirms that the IBP intermediate 

forms much faster than the 50 µs dead time of the experiment. However, 

because the burst phase intermediate does show a difference in lifetimes 

between the donor only and donor-acceptor samples, measurable FRET is 

taking place.   

The 112-140 FRET pair in the α3-α4 region, showed limited FRET signal 

in the unfolded state. During the rapid mixing refolding jumps to 0.8 M urea, 

non-native-like lifetimes are measured for the donor only and donor-acceptor, 

4.6 ns and 3.7 ns respectively. Once more, the continuous flow kinetic 

experiment shows all the changes in the lifetimes for the donor only and donor 

acceptor pair takes place during the dead time of the experiment.  Like the 63-

238 pair, the donor only and donor acceptor samples for the 112-140 pair show 

differences in their average lifetimes during the experiment indicating FRET is 

taking place.  
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Figure 3. 3 (A/B) The average tryptophan lifetimes for the 63-238 and 112-140 FRET 
pairs during the continuous flow experiments. The kinetics of the unfolded state to IBP 
were detected (C/D). The distance distributions from the MEM analysis for the unfolded 
(black), IBP Intermediate (blue), and the native state (red).  Areas in the shaded regions 
represent distances outside the optimal distances for the Trp-AEDANS fret pair. The 112-
140 pair appears to have native-like distances within the deadtime of the experiment 
while the 63-238 pair has a compact and an extended conformation present. 
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Maximum Entropy Modeling  

Obtaining distance distributions from simultaneous analysis of donor-

only and donor-acceptor time-resolved fluorescence decays when multiple sub-

populations are present can be challenging with established analytical 

approaches102,103. A limitation of these approaches is that they often assume a 

functional form for the distance distribution, assume the donor lifetime to be the 

same for all sub-populations or impose the same distribution on all sub-

populations.  These assumptions are not broadly applicable and the limitations 

of these assumptions may not be readily apparent in the analysis.  The 

breakdown of these assumptions is of particular concern when tryptophan is 

used as the donor owing to the multiple rotamers often present in collapsed 

states.  The multiple rotamers will have different lifetimes for each rotomeric 

state and cause difficulty in fitting the data to a single functional form. Other 

fluorophores also exhibit donor excited state decay rates that are sensitive to 

changes in the local environment104,105. 

The two-dimensional maximum entropy (2D-MEM) approach46 

overcomes many of these limitations by fitting the donor-only and donor-

acceptor excited state decay traces using a two-dimensional grid of donor-rates 

and energy transfer rates.  No assumptions are made about the number of 

donor rates and sub-populations or the functional forms of the donor rate 
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distribution and the distance distribution.  The distributions are regularized by 

maximum entropy, ensuring that sub-populations are identified and associated 

with a corresponding energy transfer rate only if warranted by the data.  The 

2D-MEM approach avoids over-parameterization and identifies regions of the 

two-dimensional rate space (i.e., kdonor vs. kET) where the information content is 

limiting106. 

Additionally, in cases where the donor exhibits multiple populations and 

multiple excited state decay rates, the association between the donor lifetimes 

and energy transfer rates provides the necessary information to correct for 

variations in quantum yield when generating a distance distribution.  Distance 

distributions can be constructed for specific sub-populations separated by their 

donor decay rate.  Alternatively, a distance distribution can be obtained which 

contains contributions from all sub-populations, appropriately weighted by their 

relative quantum yields. 

Both sets of FRET pairs were analyzed for the unfolded state (8 M urea), 

the IBP intermediate (CF kinetics), and the native state (0 M urea) (Figure 3.3).  

The IBP intermediate state kinetics were binned in 50 µs time bins to have 

sufficient photons in the decay traces for fitting.   

The unfolded state for both the 63-238 and the 112-140 FRET pairs 

show very little amplitude from 12 to 35 Å, the distances most sensitive to 

FRET for the Trp-AEDANS pair.  This was expected as the distances from 

donor and acceptor are predicted to average 115 Å and 40 Å apart if the protein 



68 
 

is expected to behave as a self-avoiding random coil in 8M urea. The native 

state for the 112-140 FRET pair has a major peak around 19 Å which 

corresponds well to the expected distance bewtween Cβs in the crystal 

structure, when accounting for the additional length of the EADANS moiety 

attached to the cysteine residue.  The native protein for 63-238 pair measured 

about 13 Å, also is in agreement with the expected distance of 12 Å from the 

crystal structure. 

The 112-140 pair continuous flow data shows a single major distribution 

around 20 Å that closely matches that of native protein (Figure 3.3D). The 

difference between the IBP and native states comes in the widths as the IBP 

state has a broader distribution.  This is not surprising as the IBP species is a 

transient kinetic intermediate. The tryptophan at 112 or the AEDANS at 140 

may be more dynamic than in the native state and therefore contribute to the 

broader distribution of distances. The 63-238 pair during the kinetic experiment 

shows two distributions, one very high FRET state with a distance at 

approximately 10 Å and a second much broader distribution.  This indicates 

that there are two species present during the kinetic refolding experiment. The 

two species might reflect the presence of the IBP intermediate and the IA 

intermediate.   

 



69 
 

Ensemble Averaged Folding Properties from Simulations 

Using a native-centric coarse-grained Gō model, extensive refolding 

simulations were carried out with an unfolded initial structure just below the 

folding temperature. One hundred independent trajectories were generated and 

used for further analysis. Conventional folding reaction coordinates, radius of 

gyration (Rg) and fractional native contacts (Q), were used to monitor the 

folding process. Not surprisingly, multiple intermediates were observed to form 

as characterized by plateaus with various magnitudes of fluctuations (Figure 

3.4). Interestingly, there appears to be three major plateaus (Q = 0.5-0.6, Q = 

0.7-0.8 and Q ~0.85) before the native state is achieved during the trajectories 

which matches experimental results with the formation of three intermediates, 

IBP, IA, and IB. When looking at all one hundred trajectories, it became clear that 

not all reached the native state and plateaued at an Rg just over 20 Å and Q of 

about 0.8 (Figure 3.4). Another set of trajectories were started from this point 

and allowed to go for another 8000 time steps with the majority of the 

trajectories still not reaching the native state. It is not clear if the presence of 

this “trapped” intermediate is a result of the IBP intermediate having native like 

structures despite being off-pathway or if the long lifetime of the “stuck” 

intermediate during the simulations reflects the experimentally known rate 

limiting step in folding of the IA to IB taking 100s of seconds. 

 

 



70 
 

 

 

 

The probability of pair-wise distances, P(r), for the alpha carbons were 

calculated based on the Gō model simulations and binned into a histogram for 

different fractional times (Figure 3.5). In addition, to monitor the sequence of 

the assembly of secondary structure units contact maps averaged over all 

Figure 3. 4 Time evolution of Rg (A and C) and fractional native contact (B and D) from 
representative folding trajectories of sIGPS. For clarity, kinetic traces are shown as 
moving averages of 30 successive snapshots. The leveling off at various Rg and Q 
values indicates multiple intermediates are formed during the simulations. 
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trajectories at the same time steps were examined (Figure 3.6). At time 0, most 

long-range native contacts were not formed and the protein was in the unfolded  

 

Figure 3.5 pair distribution functions at different time calculated from MD trajectories 
shows a progressive contraction of the r max with time. The decrease in amplitude of 
the shoulder of the distribution as the simulation time progresses indicates the 
formation of globular structure. 
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Figure 3.6 Ensemble averaged contact maps at different time relative to the total 
simulation time T. The red points on the lower right side of each subplot indicate the 
native contacts and the possibilities of forming native contacts are indicated by colors 
on the upper left side of each subplot. Formation is found to occur with the central 
region of the protein and progress outwards.  The N-terminal helix α0 is the last 
structure to form. 

 

 

state. At time 0.05T, where T is simulation time, possibilities of forming native 

contacts began to increase in the (αβ)2-5 region indicating the central region of 

the chain folds first. This small change in contact probability is apparent in the 

P(r) as a shift to a more distinct peak at smaller values of r. As time increases, 

0.1T to 0.3T, more native contacts formed in the central region and expanded 

outwards from the (βα)3-4 region.  The calculated P(r) at this time matches what 
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is seen in 150 µs by the continuous flow SAXS experiments with a peak at an r 

just over 20 Å with a tail extending out to longer distances due to the N and C 

termini not having formed their proper native contacts. The ensemble folds the 

(βα)2-8 region within 0.50 of the total simulation time. The contact map did not 

show significant changes from 0.50T to 1.00T, because a large portion of the 

trajectories were trapped “stuck” intermediate. From the contact maps, 

however, we can conclude the α0β1 region is last to fold.  

 

Simulations reveal frustration in folding  

The formation of native structure was also measured by plotting the 

fractional native contacts within a βαβα module107 against the total fractional 

native contacts (Figure 3.7). As was the case in other βα repeat proteins108, 

back tracking or a loss in fractional native contacts within a segment of the 

protein chain can be seen throughout the folding reaction. Though the loss of 

native contacts in the simulations is counterproductive, if the loss is paired with 

a gain of contacts in another critical region, i.e. regions responsible for the 

transition state, it will drive the folding reaction forward. The first back tracking 

event takes place just prior to a Qtotal of 0.4, when the first, third, and fourth 

βαβα modules lose contacts and the second module, (βα)3-4, quickly gains 

native contacts.  This would argue that it is the second module that is important 

for the formation of the initial intermediate state.  A second back tracking event 

follows in the first module at a Qtotal of ~0.5 which allows the two C-terminal 
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modules to achieve an increase in native contacts.  The two C-terminal 

modules then experience back-tracking at ~0.6 and 0.75 Qtotal allowing the first 

module to catch up in the folding reaction.  Throughout these events, the (βα)3-4 

module experiences only minor back tracking events in comparison to the other 

three modules.  This matches the experimental FRET dataset which saw the 

112-140 FRET pair reach native like distances within 50 µs. Also, it appears 

that proper barrel closure is an important step for reaching the native state and 

that the process of barrel closure leads to frustration and back tracking events 

in the simulations. 
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Folding mechanism inferred from the simulations 

After examining each individual trajectory, the one hundred trajectories 

could be used to propose a general folding mechanism based upon the 

assembly of secondary structural units (Figure 3.8). All trajectories adopted a 

similar folding pathway in the early stage before entering an intermediate state, 

I1, with a folded (βα)3-6 unit. After the maturation of (βα)3-6, there were two major 

folding pathways depending upon the folding order of α0β1. A trapped 

Figure 3. 7 Fractional native contacts of the four βα modules plotted vs. total fractional 
native contacts. Frustration events are seen in the modules by the decrease in 
fractional native contacts.  Each frustration event is correlated with a strong folding 
event in a different module. 
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intermediate, Itrap would form if the α0β1 did not fold earlier than the C-terminal 

module. If the C-terminal module, (βα)7-8, folds and docks on the intermediate 

I1, the barrel prematurely closes and locks β1 out of the barrel.  Upon additional 

sampling, α0 could occasionally dock on the bottom of the barrel, Itrap2, and as a 

result β1 could slip though the helical shell and form proper contacts with β2 and 

β8. However, this was a rare event and most simulations would end with the β1 

locked out of the barrel. If the α0β1 folds before the C-terminal module, the 

protein always achieved the native state.  The α0β1 could either dock on the I1 

intermediate followed by the C terminal module folding and closing the barrel or 

the α0β1 could form native contacts with the C-terminal module forming a half 

barrel.  The two halves then come together to form the native state.  In either 

case, it is evident again that proper barrel closure is the critical step in folding 

and the competition between the N and C-termini cause frustration in the 

simulations.    
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Figure 3. 8 Folding mechanism of sIGPS from Gō model simulations. From unfolded 
state (U) to native folded state (N), all trajectories first have a folded (αβ)4 unit (I1). The 
pathway then branches into two folding pathways: 1. folding pathway with less 
frustration through two possible intermediates Ion1 or Ion2 with α0β1 folded earlier. 2. 
folding pathway by first forming a kinetic trap intermediate Ioff1 with unfolded α0β1 and 
then folded to native state through an intermediate Ioff2.  
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Discussion 

The combined experimental and simulation results presented here 

provide insight into folding of one of the most common motifs in biology. Rapid 

mixing experiments using microfluidic devices revealed the formation of a 

structured intermediate within the dead time the experiments, 50 µs. The 

simulations meanwhile find extensive competition between βα modules at the N 

and C-termini that could be leading to the formation of the off-pathway 

intermediate. 

Globally, the trSAXS data set revealed the rapid collapse of the 

backbone as seen by the large decrease in the Rg.  Interestingly, the reaction 

of the unfolded state forming the IBP state was too fast to be detected.  In 

combination with the trFRET data we can infer that the reaction must be 

happening faster than ~15 µs, as a tail of an exponential would have been 

detectable if the reaction was any slower. Meanwhile, the dimensionless Kratky 

plot of the IBP intermediate shows a decrease after a qRg of 1.5 indicating that 

the collapse is due to specific structure formation, as a collapsed unfolded state 

would have higher values at larger qRg, more like the unfolded state in 8 M 

urea (Figure 3.1). This intermediate is thermodynamically stable, as the Rg is 

insensitive out to 1.6 M urea. The P(r) would also have been a broader 

distribution with less of a distinct peak at low distances if the collapse was due 

to contraction of the unfolded state in a poor solvent. The trFRET data indicates 
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the structure formed in the IBP intermediate is centered around the central  

(βα)3-4 segment of sIGPS with the near-native distances at 50 µs.  

The (βα)3-4 segment is part of a large ILV cluster that spans both the 

(βα)3-4 and (βα)5-6 modules and contains an extremely hydrophobic stretch of 

11 out of 22 residues in (βα)4. It is most likely that this very local hydrophobic 

core is driving the rapid exclusion of water and thus forming a strong hydrogen 

bond network allowing the burst phase intermediate to form in under 15 µs. The 

rapid formation of a segment in a TIM barrel and the role of an ILV cluster 

driving that formation has been seen before in the N-terminal half of the α 

subunit of tryptophan synthase. The (βα)2-4 region was found to be well-formed 

within 50 µs46.  This region in αTS is dominated by a large ILV cluster made up 

of 31 ILV residues spanning the (βα)1-4 region.  Alanine mutations in a subset of 

the 31 ILV residues eliminated the off-pathway intermediate indicating the 

important role of properly packing the ILV cluster to the formation of the burst 

phase intermediate35. 

It was surprising to not observe any kinetic phases within the 

experimental timeframe of 50µs to 5 milliseconds. Although small two state 

folding proteins have been found to have kinetic phases on the sub 50 µs 

timescale 100,109 it was surprising for a protein over 200 amino acids to have 

such a fast-kinetic phase and then no other phase until the 100s of milliseconds 

time frame 36.  The local-in-sequence, local-in-structure nature of TIM barrels 

creates a relatively low contact order for the protein.  The low contact order in 
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combination with the high density of I, L, and V residues in the central two βα 

modules (βα)3-6 most likely is creating a nucleation site for the formation of the 

IBP intermediate 21.  A folding rate of about 10 µs is expected for a protein of 

~100 amino acids and an absolute contact order of 8.330.  Despite this rapid 

structure formation, something about the structure is non-native and must at 

least partially unfold.  

The 63-238 FRET pair shows two distributions, one with a short distance 

and a second more expanded distance. Due to the time scales of the 

experiments, we are unable to detect any transitions between the states 

leading to the differing distance distributions. The transition would have needed 

to be faster than the approximately 15 ns to be detected on the time correlated 

single photon counting (TCSPC) timescale or slower than the 50 µs dead time 

of the fluorescent experiments for us to detect the transition between the 

populations.  The presence of multiple species early in the folding reaction has 

been seen before in TIM barrels, although they were attributed to various 

proline isomerization states 39,46.  

The decrease in dead time for kinetic experiments with the use of 

microfluidic mixers has revealed complex folding free energy landscapes for 

multiple proteins 99,109–111.  Markov state models (MSMs) built from all atom MD 

simulations are also able to capture complexity early in folding 109,112,113. 

Although the MSMs built from the simulations generate many more states than 

the experiments can observe, the multiple states can be reconciled by the fact 
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that the experiments are blind to faster timescales than the rate limiting folding 

timescale 28.  Because of this, it is important when studying the early folding 

events to combine multiple techniques to probe the protein chain in various 

ways.     

Unfortunately, the size of sIGPS precludes it from study with all-atom 

MD simulations. In this work, a coarse-grained native-centric Gō model was 

applied to simulate the folding of sIGPS. The Cα only model has previously 

shown robustness in studying protein folding while keeping a very low 

computational cost 108,114.  This model was designed based on the principle that 

the protein folding code is mainly embodied in side chain solvation interactions. 

One important feature of this model is that it explicitly treats the hydrophobic 

effect by adding a desolvation penalty to the side-chain interactions described 

by Lennard Jones potential115. When this desolvation penalty was removed or 

the solvent effect was turned off, the simulations could no longer capture the 

intermediates and multiple folding pathways. The simulations could detect 

several intermediates during the folding simulations of sIGPS and were able to 

confirm the FRET data and the HDX-MS data set36 that structure first appears 

in the central region of the protein.  Based upon the kinetic model of sIGPS (IBP 

⇌ U ⇌ IA ⇌ IB ⇌ N), the transition from IA to IB is the rate limiting step of folding 

and the simulations, from the calculated contact maps, would suggest that this 

step involves the closing of the barrel.  The HDX data support this as the very 

little protection was seen in the N and C-termini for the IA intermediate and was 
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followed by an increase in protection at these locations with the IB 

intermediate36.  

Despite the simulations being native centric and unable to truly populate 

the off-pathway intermediate, they can provide insight into possible structural 

features of the intermediate.  There were several backtracking events that took 

place during the simulations which in the case of sIGPS potentially relate to the 

off-pathway intermediate. The backtracking always involved the N terminal and 

the C terminal βα modules. This would suggest that forming the proper contacts 

between the two modules, and in particular between β1 and β8, is critical for 

proper barrel formation. With the nucleation of folding taking place in the central 

region, the low contact order, and high hydrophobicity of the region due to the 

ILV cluster, it is possible that the rapid structure formation causes the N and C 

termini to be out of register and unable to fold properly.  Therefore, the chain 

must at least partially unfold to allow the folding reaction to continue. This 

unfolding event is not observable in the simulations due to the setup, however, 

it may be related to the Istuck occasionally achieving the native state over the 

long timescale. ILV clusters leading to frustration in simulations and off-pathway 

intermediates appears to be common in βα repeat proteins46,98.  

The work presented here provides insight into some of the earliest 

folding events of sIGPS. Experimentally, interfacing microfluidic mixers with 

SAXS and FRET allowed us to observe the folding reaction on the microsecond 

timescale.  Surprisingly, we did not observe any kinetic phases but could 
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determine structure first appears the central βα modules of the protein.  The 

simulations independently confirm this with a computationally inexpensive 

model.  They also allow gain insights into the cause of the off-pathway 

intermediate. ILV clusters appear to be a major driving force in early folding 

events for proteins and in the case of βα repeat motifs such as TIM barrels and 

flavodoxin folds may lead to the population of an off-pathway intermediate due 

to their low contact order. 

 

Materials and Methods 

Site-Directed Mutagenesis 

The codon-optimized sIGPS gene was synthesized by Genscript in pUC 57 and 

recloned into a modified pGS-21a vector with an N-terminal His6 tag and 

tobacco etch virus (TEV) protease site using EcoRV and BamHI restriction 

sites. Cysteine and tryptophan mutations were made with mutagenic 

oligonucleotides purchased from Integrated DNA Technologies using the 

Stratagene QuikChange site-directed mutagenesis kit. The pGS-21a plasmid 

DNA was transformed into BL21 (DE3) pLysS cells for protein expression and 

purification. 

 

Protein Expression and Purification  

Cells were grown to an OD of 0.7-0.9 in Terrific Broth (Fisher); induced with 1 

mM IPTG and harvested at 5000 rpm after 4 hours of induction. The cells were 

resuspended in buffer (2 ml per gram cell pellet) containing 25 mM Tris pH 8.0, 
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8 M urea, 10 mM imidazole, sonicated for about 5 minutes with 30 second 

pulses and centrifuged at 18,000 rpm for 1 hour to remove cell debris. The 

supernatant was filtered through a 0.22 m filter and bound onto the His-60 Ni 

SuperflowTM resin (Clontech). The column was washed with 10 column 

volumes of buffer containing 25 mM Tris, 8 M urea and 20 mM imidazole and 

eluted in 10 column volumes of buffer containing 25 mM Tris 8 M urea and 300 

mM imidazole. The protein was refolded by dialysis into buffer containing 25 

mM Tris and 1 mM βME at pH 8.0. The His tag was cleaved overnight using 6X 

His tagged TEV protease at 10:1 molar ratio at 4 °C and reloaded onto His-60 

Ni resin to trap the TEV protease. The protein was eluted and buffer exchanged 

into 10 mM KPi, 0.2 mM K2EDTA, 1 mM βME at pH 7.8 and it was further 

purified by loading onto a DEAE Sepharose Fast Flow column. The column was 

washed with 2 column volumes of wash buffer and bound protein was eluted 

with ten column volumes of a linear gradient from 0-750 mM KCl. Eluted protein 

was pooled and run over a Hi-Prep Sephacryl S100 column to ensure purity. 

Purified protein fractions were pooled, concentrated and dialyzed against 10 

mM KPi pH 7.8, 0.2 mM K2EDTA and 1 mM βME.   

 

Protein Labeling 

Purified cysteine mutants were fully reduced with 1 mM TCEP for 1 hour at 

room temperature.  Protein was then labeled with IAEDANS 

(ThermoFischer/Molecular Probes). A 10-fold mole excess of dye was added at 
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room temperature and allow to react for 2 hours.  A second 10-fold mole 

excess of dye was added and allowed to react overnight at 4 ºC. Excess dye 

was removed by filtration and dialysis over the course of several dyes.  

Labeling efficiency was calculated using a Cary 100 UV/VIS 

spectrophotometer.  Typical results were ~90% labeling efficiency. 

 

Small angle x-ray scattering 

Small-angle x-ray scattering measurements were performed at the BioCAT 

beamline at the Advanced Photon Source, Argonne, IL. Equilibrium SAXS 

measurements were performed by interfacing an autosampler running custom 

software to the standard glass sample capillary 98. Kinetic experiments were 

performed by interfacing Harvard syringe pumps with single piece quartz 

mixers from Translume (Ann Arbor, MI)99.    

 

Time Correlated Single Photon Counting.  

Details of the TCSPC apparatus equipped with a microsecond continuous- flow 

mixer have been described previously46. Flow to the microchannel mixer was 

provided by two syringe pumps (Isco) operating at a combined flow rate of 4 to 

8 ml min-1. Excitation at 293 nm with a repetition rate of 3.8 MHz was provided 

by the vertically polarized third harmonic of a Ti/sapphire laser. The mixer flow 

channel was aligned to yield excitation power that was uniform along the flow 

channel within 5%. This variation in excitation intensity was corrected by using 
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a standard N-Acetyl-L-tryptophanamide (NATA) as described. Separate 

instrument responses were recorded for each channel by recording a scattered 

light signal or by numerical deconvolution from the NATA decay curve.  

 

MEM 

Our 2D-MEM package, coded in LabVIEW 8.2 (National Instruments), 

incorporates procedures described by Kumar et. al. 106. The distribution 

p(kd,kET) was represented as a grid of rates in logarithmic rate space. In the 

MEM optimization the 2D grid of amplitudes was collapsed into a 1D array. The 

same amplitudes were used for the donor and donor– acceptor data, with 

additional terms for labeling efficiency and for normalization of protein 

concentration. An instrument response for each decay trace was taken into 

account by aperiodic convolution with the decay rate matrix.  

 

Gō model simulations 

System preparation and model: The sIGPS was modeled on the crystal 

structure of a truncated version of IGPS (Protein Data Bank ID code: 2C3Z). 

The protein-folding simulations were performed using a Cα-only Gō-like model 

developed by Karanicolas and Brooks115. The native interactions were explicitly 

favored by adding a modified Lennard-Jones like potential with a desolvation 

penalty to enhance folding cooperativity. Simulations were performed using the 

CHARMM package. The equation of motion was propagated using Langevin 
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dynamics with a friction coefficient of 1.36ps-1 and a time step of 22 fs. The 

virtual bonds lengths between two nearest Cα s were fixed using the SHAKE 

algorithm. The folding temperature Tf was first estimated as a temperature 

corresponding to the peak in the heat capacity curve Cv(T) calculated from 

replica exchange simulations. Then 100 independent folding simulations were 

each performed for 2×108 dynamics steps at 0.72 Tf.   
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Chapter IV: Probing cores of stability in the higher 

energy states of sIGPS 
 

 

 

 

 

 

 

 

This chapter is a collaborative effort with Dr. Francesca Massi’s laboratory.  I 

have worked with Dr. Asli Ertekin in set up of the NMR for the HDX 

experiments. 
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Introduction 

Kinetic studies of protein folding reactions reveal the presence of 

transient intermediates along the folding pathway from the denatured, unfolded 

state to the native state. These transient intermediates are difficult to study due 

to their short life-times, marginal stabilities and dynamic properties 46,110,116. 

However, studying the intermediates offers the possibility to better understand 

the relationship between sequence and folding by following structure formation 

along the free energy landscape. Equilibrium studies can be used to study the 

higher energy states44,50, but requires the addition of a perturbant to the 

system, i.e., a chemical denaturant, high temperature or a change in the pH. 

The intermediate must then be more stable than the native state and the 

unfolded state under these conditions to significantly populate the state. One 

must also consider the perturbant and its role in the higher energy state as the 

protein is no longer in its biologically relevant solvent system. 

Under conditions similar to the biologically relevant solvent system that 

favors the native state, higher energy states are populated, but their marginal 

stabilities are very low compared to the native state56,117. To detect the higher 

energy states, high resolution techniques are required. One such technique is 

to monitor the protection of main chain amide hydrogens from exchange with 

solvent deuterium. Protection of the amide hydrogen from exchange reflects the 

presence of significant hydrogen bonding with carbonyl oxygens due to 

secondary structure being present118,119.  If monitored over time, the protection 
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patterns reveal the hydrogen bond networks present in the rare high energy 

states that are in equilibrium with the native state.   

The folding mechanism of (βα)8 TIM barrels has been extensively 

studied due to the conserved, but complex mechanism37,39,49. The large 

sequence variation between barrels allows the opportunity to study the effect of 

sequence on the folding and the intermediate structures that form during the 

folding reaction. Clusters of branched aliphatic residues have been shown to 

acts as cores of stability for the higher energy states32 in TIM barrels through 

the exclusion of water and stabilizing the hydrogen bond network of the high-

energy states.  The clusters of isoleucine, leucine, and valine residues change 

in size and location from barrel to barrel due to the changes in sequence of the 

barrels. Hydrogen exchange monitored by NMR has been used previously to 

map the hydrogen bond networks of both the native37 and high-energy states45 

of TIM barrels. In both cases, the ILV clusters of the barrels acted as cores of 

stability. 

The indole-3-glycerol phosphate synthase from S. solfataricus (sIGPS) 

presents a unique opportunity to study both the native state as well the higher 

energy states due its moderate kinetic stability49. The extrapolated unfolding of 

the native state under native conditions is expected to be several hours which 

allows monitoring of the exchange within the native manifold before the higher 

energy states have been sampled.  However, by monitoring the protein for a 

week, the protection patterns of the higher energy states can be revealed, 
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providing insight to the structures of these states. Obtaining insights into the 

structures will allow for better insights into the progressive development that 

occurs during spontaneous folding. 

Results 

Thermodynamic and kinetic studies 

Previous thermodynamic and kinetic studies were carried out at room 

temperature, however, the NMR studies required an increase in temperature to 

allow for better resolution of the peaks and increase the rate of the hydrogen 

exchange reaction.  Therefore, the thermodynamics and kinetics at 35ºC must 

be studied prior to the NMR experiments.  The equilibrium titration with 

guanidine hydrochloride at 35ºC is shown in Figure 4.1.  The protein showes a 

denaturant independent native baseline and like the room temperature profile, 

fit to a 3-state model, N ⇌ I ⇌ U, with the equilibrium intermediate state 

assumed to be a mixture of both the IA and IB kinetic intermediates. The free 

energy differences for the N ⇌ I and I ⇌ U transitions were 6.6 ± 0.16 kcal mol-1 

and 2.88 ± 0.11 kcal mol-1, respectively.  The model also provides the 

dependence of the free energy on denaturant concentration, the m-value, which 

is proportional to the amount of surface area buried during the transition120. The 

m-value for the N to I transition is 4.5 ± 0.12 kcal mol-1 [M]-1, GdnHCl while the I 

to U transition is 1.16 ± 0.03 kcal mol-1 [M]-1, GdnHCl.  The fit to the three-state 

model also provides the Z-parameter, the normalized change in signal of the 
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intermediate relative to the unfolded state with Z = (θI – θN ) / (θU – θN).  With a 

Z-value of 0.42, the equilibrium intermediate state has  

 

 

 

a relative MRE signal of approximately -6,600 deg cm2 dmol-1. This would 

indicate that majority of the CD signal is coming from the U to I transition. 

The kinetics of both refolding and unfolding were monitored by manual 

mixing CD experiments.  All the refolding kinetic jumps, from 6 M GdnHCl to 

various final denaturant concentrations, show a single exponential phase 

(Figure 4.1).  From the chevron analysis, the extrapolated refolding time is 13 ± 

4 seconds.  The majority of native CD signal is recovered within the dead time 

of the experiment at 35°C, a feature that was also seen during room 
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Figure 4. 1 (A) The GdnHCl induced equilibrium unfolding profile of sIGPS at 35°C. 
The solid continuous curve represents the fit of the data to a three-state model. 
The red triangles are the extrapolated initial signal from the manual mixing kinetic 
traces. (B) Semi-log plot of the time constants from kinetic refolding and unfolding 
experiments. The unfolding kinetics show multiple phases from 2M to 3.2M (green 
circles).   
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temperature kinetic experiments49.  The unfolding kinetic jumps show a more 

complex response with multiple phases present when jumps to final GdnHCl 

concentrations between 2 M and 3.2 M were performed.  The faster kinetic 

phase is unable to be fit past 3.2M as the amplitude associated with the phase 

disappears due to a burst phase, with only approximately 30 percent of the 

signal from N to U being seen under strongly denaturing conditions.  The faster 

unfolding phase extrapolates to approximately 6,000 seconds in the absence of 

denaturant, while the slower phase extrapolates to 750,000 seconds.  

The two unfolding kinetic phases have different denaturant 

dependencies with the slow phase having an m value of -1.02 kcal mol-1 M-1 

GdnHCl and the fast phase having an m value of -0.61 kcal mol-1 M-1 GdnHCl.  

The two different slopes for the kinetic phases may explain why we see a small 

roll over of the time constants for jumps to high denaturant. This would suggest 

that the rate limiting step in unfolding changes when jumps to the high 

denaturant occur.  Altogether, the fast kinetic phase in unfolding might be 

reflective of the N to IB reaction while the slow phase is the IB to IA reaction. 

NMR Hydrogen Exchange 

 The protein backbone has been partially assigned providing an 

opportunity to explore the protection patterns for the higher energy states of 

sIGPS.  Unfortunately, difficulties in the assignment process have precluded 

any residues in either β5 or β8 from being assigned.  The exchange process 

was initiated by diluting a concentrated stock of protein into deuterated buffer.  
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The first spectrum was collected after 35 minutes and the reaction was followed 

for 8 days.  The sample began to slowly aggregate after the 8 day period and 

caused the amide peaks to begin to shift limiting our analysis to the first 8 days 

of the reaction. 

 The exchange kinetics of the amide protons fall into 3 major categories, 

with representatives of the two slowest categories shown in figure 4.3.  Class I 

protons were those that exchanged rapidly and were fully exchanged before the 

first spectrum or within the first few spectra acquisitions, making it difficult to get 

an accurate decay fit.  The 49 protons in Class I were primarily located within 

the loops and helical shell of the protein.  Class II protons were those that 

exchanged at an intermediate rate with rate constants, between 10-5 and 10-6 s-

1. The rate constants can be found in Table 4.1. The 43 protons in Class II were 

located at the ends of β-strands and the helical shell with the majority falling in 

α3, α4, α5. Class III protons were those that did not exchange more than 40% 

over the 8 day experiment which prohibited the exchange rate from being 

determined.  The 24 amide protons of Class III fall in the β-barrel, α0, α4, and 

α5. The 3 different exchange classes have been mapped back to the crystal 

structure in Figure 4.2. 
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 Table 4.1 List of Exchange Parameters 

Residue kobs (s-1) ΔG°HX (kcal mol-1) 

L38 2.71E-06 7.6 

E39 9.95E-06 7.5 

F40 3.14E-06 8.8 

N41 0.000101 7.8 

I45 0.000115 6.1 

K71 0.000113 7.2 

F72 2.29E-06 9.2 

E74 9.07E-05 6.1 

A77 5.24E-06 8.9 

I82 2.73E-05 7.3 

I113 9.8E-05 6.1 

V114 3.74E-05 6.3 

K115 0.00012 6.7 

Q118 1.39E-05 4.0 

I119 1.04E-05 7.7 

D120 1.83E-06 10.6 

D121 2.06E-05 7.4 

Y123 1.12E-06 10.9 

N124 3.15E-06 12.1 

V130 1.55E-06 10.6 

I133 2.02E-06 9.9 

K135 0.000109 6.8 

L137 1.88E-05 6.9 

L142 4.92E-05 6.5 

E143 3.1E-05 6.8 

L145 2.01E-06 10.9 

E147 2.01E-06 10.3 

Y148 7.41E-06 8.0 

S151 7.68E-05 8.1 

Y152 1.22E-05 8.5 

I168 3.66E-05 6.4 

L170 1.39E-06 7.8 

R171 0.000118 6.8 

A174 9.79E-05 6.9 

F176 3.24E-06 11.2 

I179 3.31E-06 10.5 

I198 7.08E-05 5.9 

V206 4.42E-05 6.4 

K207 0.000105 6.8 

E210 4.6E-05 2.8 
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Figure 4. 2 (A) Ribbon diagram of sIGPS with the Class I protons that exchange rapidly 
marked by red spheres. (B) The Class III (blue spheres) protons map primarily to the 
β-barrel as well as α3, α4, α5. The class II protons that exchange over the 8-day 
experiment are highlighted in yellow. (C) The ILV cluster is highlighted in orange.  
Together, the Class II and Class III protection patterns map closely to the ILV cluster 
(panel B and C). 
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Figure 4. 3 Example amide proton decays for members of Class II and Class 
III.  There was insufficient exchange in the Class III protons to allow the data to 
be fit due to less than 20 percent of the initial signal decaying. Class II 
residues typically exchange out by several days. 
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To assess the exchange in terms of either the thermodynamics or 

kinetics of the high energy states, the exchange mechanism (EX1 or EX2) for 

the Class II amide protons was determined by looking at the effect of pH on the 

exchange rates117.  The EX1 mechanism is dependent on the exchange 

reaction being much faster than the refolding from the exchange competent 

state back to the incompetent state.  A change in pH would therefore have no 

effect on the rate of exchange as the limiting reaction would be the unfolding 

event. The EX2 mechanism is limited by the relative stability between the non-

exchange competent and the exchange competent state. Therefore, it will have 

an off-shift on the y-axis of the log-log plot due to the acceleration of exchange 

with increasing pH56.  When the stability differences of sIGPS at pH 7.2 and 7.8 

are accounted for the Class II amide protons fall on the EX2 limit (Figure 4.4).  

 

Figure 4. 4 Comparison of 
the exchange rates at pH 
7.2 and 7.8 on a log-log plot 
for Class II protons. The 
solid line represents the 
EX1 limit and the dashed 
line represents the EX2 
limit. The Class II protons 
fall on the EX2 line, 
therefore kcl >kint and         
ΔGHX= -RT ln(kobs/kint) 
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Since the exchange is occurring via the EX2 mechanism, the relative 

stability between the exchange competent and noncompetent state can be 

extracted through the relationship ΔGºHX = -RT ln(kobs/kint). The calculated 

values for the Class II protons are found in Table 4.1.  From the chevron, the 

fast unfolding phase of N to IB would be ~6,000 seconds in the absence of 

denaturant.  For exchange to be taking place on an EX2 basis, the refolding 

reaction from IB to N must be faster than 80 milliseconds, based on the intrinsic 

rate of exchange as calculated from Sphere.  The roughly 105 difference in the 

refolding and unfolding rates would account for approximately 6 kcal mol-1 of 

stability, which closely matches the majority of the calculated ΔGºHX values. 

Due to the experiment being limited to 8 days and the extrapolated 

unfolding of the IB to IA also being 8 days, we are unable to determine whether 

the Class III amide protons are exchanging via EX1 or EX2.  The Class III 

protons were primarily found to be in the β-barrel.  Although we have no 

assignments from either β5 or β8 we would expect them to be highly protected 

as well because of the hydrogen bond network holding the barrel together. The 

network has hydrogen bonds from β4, β6, β7, and β1 that are involved with β5 

and β8 and it would be expected that residues involved in hydrogen bonding 

would have similar exchange properties. This would indicate that the barrel 

structure is intact for the IB intermediate (Figure 4.5). 
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Discussion 

 By monitoring the exchange properties of amide protons with solvent 

deuterium, protection patterns have mapped structural features of the high-

energy states of globular proteins that are in equilibrium with the native 

state45,56,118. Application of the technique to sIGPS has revealed the hydrogen 

bond network that stabilizes the higher energy states.   

 The 49 Class I amide protons that exchange rapidly were found to reside 

in loops and the helical shell.  Apart from residues I99 through I105 of α2 and 

Q194 through I201 of α6, the Class I residues found in helices were located at 

the N-terminus of the helix.  The lack of protection at the N-terminal end of a 

helix is common and most likely reflects the lack of intrahelical N-H donors for 

the first four residues of the helix121.  While the loss of protection at the C-

terminal end of α2 and α6 might be due to the lack of intrahelical hydrogen bond 

Layer 4 

Layer 1 

Layer 3 

Layer 2 

  β1       β2       β3       β4      β5        β6      β7       β8      β1 

Figure 4.5 The protection classes from the fits are mapped to the β-barrel structure (Green 
class II and blue Class III).  The hydrogen bond network of the barrel is shown by red arrows. 
The majority of the barrel is part of Class III.  The class II residues in β3,4,6 are part of a group 
that exchanges at a much higher energy state (ΔG ~11 kcal mol-1) 
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acceptors, another possibility is that the two helices are the terminal helix in a 

βαβα module. It has been thought that the modules have arisen from gene 

duplications which eventually led to the barrel structure122 with the initial βαβ 

serving as the minimum stability unit107,123.  If the last helix in the module acts 

as a linker between modules, it is possible that the fast exchange properties of 

α2 and α6 is due to the helix acting as a linker connecting one module to the 

next. 

 The Class II amide protons display a range in exchange rates on the 

order of 10-5 to 10-6 s-1 (Table 4.1).  The pH dependence test indicates an EX2 

mechanism. Because the exchange is dependent on the population of the 

higher energy state, the rate of exchange was used to calculate the ΔGºHX 

(Table 4.1). The stability values for the higher energy state were found to 

average ~7 kcal mol-1. Based on the thermodynamics and kinetics of sIGPS at 

35ºC, it is believed that exchange takes place through the IB intermediate.  Due 

to range of narrow range of stabilities, it can be inferred that there is an 

ensemble of microstates that are loosely coupled that together make up the 

thermodynamic IB intermediate. The amide hydrogens associated with these 

states in Class II are primarily located in α0, α1, α3, α4, α5, α6, α7, and α8. This 

indicates that the helical shell of sIGPS is loosely packed in the IB intermediate.  

Within this class, over half are in α3, α4, and α5.  With the underlying β-strands 

strongly protected as well, it suggests that this region of the protein is acting as 

the core of stability for the intermediate state. With α1, α2, α6, α7, and α8 being 
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loosely packed, it may explain the low m-value in unfolding of the N to IB step 

as very little surface area is exposed during the reaction120. 

 The exchange rates for the Class III protons could not be quantified due 

to the limited exchange that took place during the experiment.  When mapped 

back to the crystal structure, Class III residues fall within the β-barrel, α3, α4, 

and α5. Due to limitations of the experiment, it cannot be determined if the 

exchange is taking place out of the IA or the IBP intermediate.  The TIM barrel is 

thought to contain 4 layers1, with each layer containing the side chains from 

either the odd or the even strands.  When the protection is mapped back to the 

layers (figure 4.5), the majority of protons fall into Class III. The slow exchange 

of these residues would suggest that the barrel is fully intact in the IB 

intermediate.  The rate limiting step in folding for sIGPS is thought to be the IA 

to IB reaction.  If barrel formation is happening at the transition state during this 

step, it would explain the slow exchange of the amide protons of the β-barrel as 

the timeframe of the experiment does not allow us to monitor over the barrier 

between IB and IA. The barrel being properly formed in the first higher energy 

state above native has previously been seen in the α-subunit of Trp synthase45. 

 The BASiC hypothesis states that the native state as well as higher 

energy states are stabilized by the formation of a network of hydrogen bonds 

and van der Waal interactions due to the exclusion of water from large clusters 

of branched aliphatic residues 32. Previous hydrogen exchange experiments 

have revealed the role these clusters play in acting as stability cores for other 
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TIM barrels 36,45,50. The calculated ILV cluster map of sIGPS reveals one large 

cluster that runs from α3 through α8, including the underlying β-barrel (Figure 

4.2), with a total of 46 ILV residues being a part of the cluster 

(http://biotools.umassmed.edu/ccss/ccssv2/basic.cgi).   

It is known that the ILV cluster prediction algorithm will over predict the 

amide protons protected against exchange32, however, the algorithm is useful 

for providing insight into the role of the amino acid sequence in the higher 

energy states.  Although the large ILV cluster of sIGPS includes 46 residues, 

there is a varying degree of side chain contacts and burial within the cluster. 

When looking at the sequence and the cluster map, a stretch of 11 out of 22 

residues being I, L, or V within the (βα)4 region becomes apparent. Leucine 

132, centrally located on β4 with its side chain pointing out towards the helical 

shell, makes contacts with 5 other ILV side chains. Over the 8-day experiment, 

the amide proton of L132 only exchanges approximately 20% and is a member 

of Class III.  The surrounding protons in three-dimensional space, including 

non-ILV residues, are also strongly protected and belong to Class II or Class III. 

The high density of the ILV network in this region is most likely leading to the 

strong hydrogen bond network that is providing stability in the IB and the IA/IBP 

intermediates.  

The only helices to contain Class III protons are α3, α4, and α5.  Based 

upon the ILV cluster map, this is not surprising as the region is tightly packed 

with a high density of ILVs. The microsecond kinetics (Chapter III), revealed 

http://biotools.umassmed.edu/ccss/ccssv2/basic.cgi
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native-like distances between α3 and α4 within 50 µs.  Together, this would 

support the hypothesis that it is the ILV network within the (βα)3-4 module that is 

acting as the stability core for the early folding intermediates. 

 The native state exchange study has revealed the hydrogen bond 

networks of the partially folded high energy states that are in equilibrium with 

the native state. The experiment provided insights into the energetics of some 

of the higher energy states with results matching well with previous studies.  

Structurally, it was determined that barrel formation is complete by the IB 

intermediate. A subgroup of ILV residues within the ILV cluster of sIGPS show 

persistent resistance to exchange over the 8-day experiment. The burial of the 

hydrophobic side chains seems to be driving early folding and then providing 

sufficient stability to allow the protein to development structure in a multi-step 

manner.        

 

Methods 

Protein Purification 

WT sIGPS was purified as previously described (Chapter III).  For the NMR 

samples, uniformly 15N-labeled protein was obtained by growing the E. coli in 

M9 media containing 15N-ammonium chloride. Due to the slow growth rate in 

M9, after induction with IPTG, the growth temperature was dropped to 30 ºC 

and the cells were harvested after 12 hours of induction. 
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Thermodynamic and Kinetic Studies 

The thermodynamic properties at 35 ºC were determined by guanidine 

hydrochloride titrations on a Jasco J-810 spectropolarimeter. Samples at 

varying guanidine hydrochloride concentrations were prepared using a 

Hamilton 540B automatic titrator and were incubated overnight at 35 °C for 

complete equilibration. Data were collected using a 2 mm pathlength quartz 

cuvette and a 2.5 nm bandwidth. The spectra were recorded at every 1 nm in 

the wavelength range from 215 nm to 260 nm with a scan speed of 50 nm min-

1 and an eight second averaging time. The denaturant dependence of the 

ellipiticities was fit to a three-state model using Savuka, an in-house nonlinear 

least squares program, and assuming a linear dependence of the free energy 

of unfolding on the denaturant concentration. These fits provided the free 

energy differences between the three thermodynamic states, the denaturant 

dependences of these free energy differences and the Z parameter required to 

estimate the ellipticity of the intermediate.  

The manual-mixing refolding kinetic jumps began in 6 M GdnHCl and 

ended between 0.6 M and 2 M while the unfolding jumps started in the absence 

of denaturant and ended between 4.0 M to 6.0 M GdnHCl. The final protein 

concentration ranged from 3-5 μM. Data were collected at 222 nm and at 35 °C 

in a 1 cm pathlength cuvette. The relaxation times were obtained by fitting the 

kinetic traces to a single or double exponential function in Savuka. 
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Exchange Studies 

NMR spectra were collected on a Varian 600 MHz spectrometer. The hydrogen 

exchange reaction was started by dilution of concentrated protein with 

deuterated buffer.  The sample was filtered and transferred to a NMR tube. 

After tuning and shimming the magnet (about 10 minutes), TROSY 2D 15N-1H 

spectra were collected periodically over 8 days.  The peak intensities were than 

fit to an exponential decay to obtain kobs. ΔGºHX values were calculated from 

ΔGo
HX = -RTln(kobs/kint) with kint obtained from the SPHERE program. 

http://landing.foxchase.org/research/labs/roder/sphere/ 
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Chapter V: Conclusion and Future Directions 
 

Summary 

 As a protein chain spontaneously folds, many different interactions 

between the backbone and side chain atoms help direct the chain to form the 

proper contacts required for the native state. Due to the diversity of three-

dimensional structures, it has been impossible, as Kendrew noted, to determine 

how a protein folds from the structure alone. Over the years there has been a 

great interest in the role that hydrophobic residues play in folding of 

proteins20,35,110.  The ability to exclude water from large clusters of branched 

aliphatic residues allows for a local drop in the dielectric constant, thus allowing 

for tighter hydrogen bond formation of the backbone and tighter packing of side 

chains34. It has been hypothesized that the clusters of branched aliphatic 

residues provide cores of stability to the higher energy states of proteins32. 

 To investigate the role of large clusters of branched aliphatic residues on 

the folding free energy landscapes of proteins, the (βα)8 TIM barrel proteins 

was chosen as a model system. The TIM barrel family is one of the most 

common motifs in biology and has a complex folding free energy landscape 

that includes an initial off-pathway intermediate as well as two on-pathway 

intermediates before the native state is achieved39,49. The ability to populate 

various high-energy states allows us to test the importance of ILV clusters at 

multiple stages during the folding reaction.  
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 In Chapter II, molecular dynamic simulations and experimental 

approaches demonstrated that properly dewetting the hydrophobic ILV clusters 

in the alpha subunit of Trp synthase (αTS) is important during multiple stages of 

folding. The simulations showed strong dewetting transitions in the large N-

terminal cluster of αTS. Replacement of ILV residues with alanine, a less 

hydrophobic and smaller side chain, weakened the dewetting transition. A 

previous study showed that the alanine mutations caused a loss in stability for 

all states, including potentially destabilizing the off-pathway intermediate to the 

extent that it no longer was significantly populated during folding35. 

Replacement of leucine with asparagine, which is nearly isosteric, disrupts the 

dewetting transition and promotes water being present in the cavity.  

Experimental results examining the stability, secondary structure, and 

compactness of the intermediates showed dramatic decreases in stability, 

secondary and tertiary structure. Comparison of the polar mutations within a 

second ILV cluster, located at the C-terminus, proved to be less responsive to 

the mutation in the unfolded to intermediate state reaction. The results highlight 

the different roles ILV clusters can have on the folding free energy landscape of 

TIM barrels. 

In Chapter III, to gain insights into the early misfolding reaction in TIM 

barrels, we expanded our studies to the indole-3-glycerol phosphate synthase 

(sIGPS). With the use of custom, single-piece microfluidic chips we were able 

to study sub-millisecond folding reactions by small angle x-ray scattering and 
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fluorescence. Small angle x-ray scattering showed a rapid collapse of the chain 

in 150 μs to a compact, but not fully globular intermediate that was resistant to 

urea denaturation.  To complement the SAXS dataset, pair-wise distance 

measurements were performed using time-resolved FRET on donor/acceptor 

pairs. Within the deadtime of the experiment, 50 µs, the (βα)3-4 region was 

found to have near native-like distances.  The high density of ILV residues (11 

out of 22) are thought to be driving this early reaction.  Surprisingly, the N- and 

C-termini pair had multiple species present and may reflect both the IBP and IA 

intermediate being populated. 

 To provide additional insights, coarse grain Gō model simulations were 

performed to probe the folding landscape. The simulations revealed 

progressive contraction of the chain as the protein samples partially folded 

states along the folding reaction coordinate, with folding initiating in the same 

(βα)3-4 region of the ILV cluster. These simulations also show significant 

frustration in the N- and C-termini throughout folding. While frustration has been 

seen in Gō model simulations98 it is believed the frustration seen here is likely 

related to the rate-limiting closing of the barrel during folding.  

To probe site specifically the higher energy states of sIGPS, native state 

hydrogen exchange was employed in Chapter IV. Protection of amide 

hydrogens from deuterated solvent revealed the hydrogen bond network 

present in the high-energy states that are in equilibrium with the native state.  

Due to the limited time scales that we could monitor the exchange reaction 
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over, only the energetics of the IB intermediate could be determined. The 

protection patterns revealed the barrel is well formed in the IB state with the 

helices being dynamic. Strong protection in α3, α4, and α5 and the underlying β-

strands matched well with the ILV cluster in that region and supports the 

hypothesis that it is the ILV cluster that acts as a stability core for the higher 

energy states. 

Discussion 

One of the major outstanding questions in the protein folding field is, 

what is happening at multiple locations in the chain during the early folding 

event. One method to study the unfolded ensemble and the early events is 

through simulation. The rapid growth in computational power has led to the 

ability to sample longer timescales during folding simulations124. However, the 

ability to sample longer timescales has generated a problem: a large flux of 

data with no way to systematically analyze the data. Markov State Models 

(MSMs) have been applied to folding trajectories to analyze the data in a 

systematic and quantitative manner 28,109,112,113. The MSMs that have resulted 

from various folding studies show high energy states that are made up of many 

microstates.   

Experimentally, accessing the earliest folding events and obtaining multi-

dimensional information has been difficult because of the timescales associated 

with the folding events99,110,111,125. This is evident from the results in Chapter III 

where even with a dead time of 50 µs there was a burst phase and the reaction 
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of U to IBP for sIGPS was missed. While it may be possible to develop mixers 

with shorter dead times, another possibility is to move to single molecule 

experiments. To perform correlation spectroscopy experiments, more 

photostable dyes must be used than those used in this dissertation.  However, 

due to limitations in chemistry, typically only cysteine chemistry has been used 

to label proteins which creates issues in site-specifically labeling proteins with 

multiple dyes. 

Recently, oxaziridine derivatives have been shown to site specifically 

label the sulfur of methionine, even in the presence of cysteine126.  Through 

modification of the oxaziridine with click chemistry, one can site specifically 

label proteins with dyes and other small ligands at methionine residues. 

Following the protocol from Lin et. al., oxaziridine probes have been 

synthesized126 and sIGPS has successfully been labeled with ALEXA-594. With 

the ability to now label site specifically multiple locations within one protein 

chain, more robust distance distributions can be measured from single 

molecule experiments with the potentially to perform 3-color experiments as 

well.   

For the TIM barrel family, one of the outstanding questions in the early 

folding reaction is why the protein misfolds initially.  Despite the large sequence 

variation seen in the family, the barrels studied to date all display the formation 

of the off-pathway intermediate on the microsecond timescale. The low contact 

order of the barrel architecture, and the high number of aliphatic residues are 
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most likely responsible for the misfolding taking place.  There is still the 

question however about what in the protein is misfolded.  With the potential to 

form helices on the nanosecond timescale121, and the high content of 

hydrophobic residues, one potential method for burying the hydrophobes found 

in the strands quickly is to initially form helices45.  

Interestingly, when secondary structure predictors, such as JPred 

(http://www.compbio.dundee.ac.uk/jpred/), are used on the sequence for 

sIGPS, the β4 strand is predicted to form a helix instead of a strand. The 

potential use of helices in the burst phase intermediate has been proposed as 

in αTS based in NMR hydrogen exchange data45. Experiments using the new 

methionine labeling strategy will allow for us to look for the formation of the 

helix during the early folding events of sIGPS.  On a broader scale, a more 

informatics approach looking at location of ILV clusters within TIM barrels and 

secondary structure propensity will elucidate the potential role of burying 

hydrophobic residues through the rapid formation of helices resulting in 

improperly folded intermediates that must partially unfold to reach their native 

state.  

 

Perspective  

 A combined experimental and computational approach probing the 

folding landscape of one of the most common protein folds in biology, the (βα)8 

TIM barrel, has revealed shared and distinct features within the protein family 
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that enable detailed insights into the role clusters of branched aliphatic side 

chains play in the energy landscapes. The results presented suggest that 

certain clusters of ILV residues are critical for forming stable cores for these 

high-energy states. However, these clusters are known to change size and 

move within a protein family, indicating a general role for the sequence of a 

protein in determining the energy landscape of a protein.  Understanding the 

role sequence in defining these clusters in three-dimensional space will help 

develop more efficient design principles for the many new classes of do novo 

designed proteins, including de novo TIM barrels. High energy states of 

proteins are also of great interest in the biomedical field, as aggregation of 

proteins can lead to serious medical disorders. By understanding the forces 

that stabilize high energy states, the potential to develop effective therapeutics 

against the various diseases.    
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