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Abstract 
Finite mixture models have provided a reasonable tool to model various type of observed phenomena, specially 
those which are random in nature. In this paper, a finite mixture of Weibull and Pareto (IV) distribution is 
considered and studied. Some structural properties of the resulting model are discussed including estimation of 
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the model parameters via EM algorithm. A real life data application exhibits the fact that in certain situations, 
this mixture model might be a better alternative than the rival popular models. 

1 Introduction 
The mixture distributions over the years have provided a mathematical based way to model a wide variety of 
random phenomena statistically. The mixture distributions are effective and flexible models to analyze and 
interpret random durations in a possibly heterogenous population. In many situations, observed data may be 
assumed to have come from a mixture population of two or more distributions. Application of finite mixture 
models are in medicine, economics, psychology, botany, fisheries research, life testing and reliability among 
others. As an indirect application such a mechanism (finite mixture models) one may cite cluster analysis, latent 
structure models, empirical Bayes method and nonparametric density estimation. 
 
In this paper we consider a finite mixture of two absolutely continuous distribution, a two parameter Weibull 
distribution and a three parameter Pareto (IV) distribution. In a finite mixture model, the distribution of random 
quantity of interest is modeled as a mixture of a finite number of component distributions in varying 
proportions. A mixture model is, thus, able to model quite complex situations through an appropriate choice of 
its components to represent accurately the local areas of support of the true distribution. It can handle 
situations where a single parametric family is unable to provide a satisfactory model for local variation in the 
observed data. The flexibility and high degree of accuracy of finite mixture models have been the main reason 
for their successful applications in a wide range of fields. The concept of finite mixture distribution was 
pioneered by Newcomb (1886) as a model for outliers. However, the credit for the introduction of statistical 
modeling using finite mixtures of distributions goes to Pearson (1894) while applying the technique in an 
analysis of crab morphometry data provided by Weldon (1892, 1893). For a comprehensive survey, readers are 
referred to Titterington et al. (1985), Lindsay (1995), Bohning (2000) and McLachlan & Peel (2000) and the 
references therein. The main objective here is to induce greater flexibility in modeling various types of data, 
specially in situations where these individual distributions fail to adequately fit the data separately. 
 
Insurance companies need to investigate claims experience and apply mathematical techniques for many 
purposes, including, but not limited to rating, reserving, reinsurance arrangements solvency. In order to get an 
idea about loss distributions, which are a mathematical method of modeling individual claims, one needs to 
examine what distributions can be fitted to observed claims. Claims distributions tend to be positively skewed 
and long- tailed. This is where heavy tailed distributions, such as Weibull & Pareto appears to be a good fit. 
Insurance claims are generally modeled with Weibull or Pareto (IV) distribution. Weibull distribution has a 
heavier left tail and Pareto (IV) distribution has a heavier right tails. Thus, although Weibull distribution fits well 
for the lower insurance claims, it does not fit well for the higher insurance claims. On the other hand, the Pareto 
(IV) distribution fits well for the higher insurance claims but not the lower claims. A Truncated Composite 
Weibull-Pareto distribution has been used by some authors (see, for example, Teodorescu and Panaitescu, 
2009), but estimating the parameters is extremely difficult. The proposed mixture of Weibull and Pareto (IV) is 
computationally easier and conceptually it makes sense since if there are two types of claims with one type 
fitting the Weibull and the other type fitting the Pareto (IV), the mixture model is an appropriate model. We will 
also demonstrate that truncated Weibull-Pareto is a special case of mixture model. Suppose we have the 
following model 𝑓𝑓(𝑥𝑥)  =  𝑝𝑝𝑝𝑝1(𝑥𝑥)  +  (1 −  𝑝𝑝)𝑓𝑓2(𝑥𝑥), where 𝑓𝑓𝑖𝑖(𝑥𝑥), 𝑖𝑖 =  1, 2 are densities. Clearly, 𝑝𝑝 and 1 −  𝑝𝑝 
are mixture weights (0 <  𝑝𝑝 <  1), and 𝑓𝑓(𝑥𝑥) is indeed a valid density. 
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Without loss of generality we consider the location parameters to be zero. So, our weighted distribution will 
have density 
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(1) 
The density in (1) is called the mixture of Weibull and Pareto (IV) (hereafter MWP(IV) in short) distribution. 

2 Properties of the MWP(IV) distribution 
The hazard function associated with the MWP(IV) distribution is 
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(2) 
The limiting behaviors of the pdf (probability density function) and the hazard function of MWP(IV) are given in 
the following theorem. 
 
Theorem 1. The limit of the pdf and the hazard function of MWP(IV) as 𝑥𝑥 →  ∞ is 0 and the limit as 𝑥𝑥 →  0+ is 
given by 
 

lim
𝑥𝑥→0+

𝑓𝑓(𝑥𝑥) = lim
𝑥𝑥→0+

ℎ𝑓𝑓(𝑥𝑥) = � 0, 𝛿𝛿 > 0, 𝛽𝛽 > 1
∞, 𝛿𝛿 < 0 , 𝛽𝛽 < 1 

(3) 
Proof. The fact 𝑥𝑥 >  0 and ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑∞

0 = 1, imply that lim
𝑥𝑥→∞

ℎ𝑓𝑓(𝑥𝑥) = 0, L'Hôpital's rule implies 

lim
𝑥𝑥→∞

ℎ𝑓𝑓(𝑥𝑥) = − lim
𝑥𝑥→∞

𝜕𝜕
𝜕𝜕𝜕𝜕

(log 𝑓𝑓(𝑥𝑥))  which can be shown to be equal to zero. 
 
For lim

𝑥𝑥→0+
ℎ𝑓𝑓(𝑥𝑥) = lim

𝑥𝑥→0+
𝑓𝑓(𝑥𝑥), the result in (3) follows directly from the de_nition of the hazard 

function. □ 
 
Let X be a non-negative random variable with pdf, 𝑓𝑓(𝑥𝑥) given by (1). The reliability function 𝑆𝑆(𝑥𝑥) 
corresponding to the finite mixture of 2 components of (1) is given by 
 

𝑆𝑆(𝑥𝑥) = 𝑝𝑝𝑆𝑆1(𝑥𝑥) + (1 − 𝑝𝑝)𝑆𝑆2(𝑥𝑥) 
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where 𝑆𝑆𝑗𝑗 (𝑥𝑥) , is the reliability function corresponding to the 𝑗𝑗-th component in the mixture, 𝑗𝑗 =  1, 2. One can 
write the hazard rate function of a mixture in terms of the hazard rate functions of the two components as 
follows. 
 
ℎ𝑓𝑓  (𝑥𝑥)  =  𝐵𝐵(𝑥𝑥)ℎ1(𝑥𝑥) + [1 − 𝐵𝐵(𝑥𝑥)]ℎ2(𝑥𝑥), where 𝐵𝐵(𝑥𝑥)  = 𝑝𝑝𝑆𝑆1(𝑥𝑥)

𝑝𝑝𝑆𝑆1(𝑥𝑥)+1(1−𝑝𝑝)𝑆𝑆2(𝑥𝑥) and ℎ𝑗𝑗(𝑥𝑥) are hazard rate function 

for the 𝑗𝑗-th component, 𝑗𝑗 = 1,2. 
 
On differentiating the hazard function, we get 
 

ℎ𝑓𝑓′ (𝑥𝑥) = 𝐵𝐵(𝑥𝑥)ℎ1′ (𝑥𝑥) + �1 − 𝐵𝐵(𝑥𝑥)�ℎ2′ (𝑥𝑥) − 𝐵𝐵(𝑥𝑥)�1 − 𝐵𝐵(𝑥𝑥)��ℎ1(𝑥𝑥) − ℎ2(𝑥𝑥)�2, 
 
where prime denote the derivatives with respect to 𝑥𝑥. 
 
Now, from the above, it follows that if ℎ𝑗𝑗′(𝑥𝑥) < 0, for all 𝑥𝑥, (𝑗𝑗 =  1;  2), then ℎ′(𝑥𝑥)  <  0, for 
all 𝑥𝑥. Therefore, a mixture with decreasing hazard rate components has decreasing hazard rate. 
However, if the components have increasing hazard rates, their mixture need not have increasing 
hazard rate. 
 

2.1 Reliability parameter 
The reliability parameter 𝑅𝑅 is defined by 𝑅𝑅 = 𝑃𝑃(𝑋𝑋 > 𝑌𝑌), where 𝑋𝑋 and 𝑌𝑌 are independent random variables. 
Numerous applications of the reliability parameter have appeared in the liter-ature such as the area of classical 
stress-strength model and the break down of a system having two components. Other applications of the 
reliability parameter can be found in Hall (1984) and Weerahandi and Johnson (1992). 
 
If 𝑋𝑋 and 𝑌𝑌 are two continuous and independent random variables with the cdf (cumulative distri-bution 
function) 𝐹𝐹1(𝑥𝑥) and 𝐹𝐹2(𝑦𝑦) and their pdfs 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑦𝑦) respectively, then the reliability parameter 𝑅𝑅 can be 
written as 
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Proof: From (3) and (4), we have 
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using generalized binomial expansion. 
 
So, 𝐼𝐼1  =  𝑝𝑝2(1 − 𝐴𝐴1). Following similar logic other terms can be easily evaluated. Hence the proof. □ 
 

2.2 Moments 
For any 𝑟𝑟 ≥ 1, 
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𝑟𝑟
𝛽𝛽

+ 1�, 
(11) 

Substituting (15) and (16) in (14) we get, 
 

𝐸𝐸(𝑋𝑋𝑟𝑟) = 𝑝𝑝𝑝𝑝𝜎𝜎𝑟𝑟𝐵𝐵(𝑟𝑟𝑟𝑟 + 1,𝛼𝛼 − 𝑟𝑟𝑟𝑟) + (1 − 𝑝𝑝)𝛾𝛾𝑟𝑟Γ �
𝑟𝑟
𝛽𝛽

+ 1�. 
 
Skewness & Kurtosis plays a vital role in explaining the shape and tail property of a distribution. The expressions 
of Skewness and Kurtosis (in terms of non-central moments) are given by 

• Skewness: 𝜃𝜃1 = 𝐸𝐸�𝑋𝑋3�−3𝜇𝜇𝜇𝜇2−𝜇𝜇3

𝜎𝜎3
, 

• Kurtosis: 𝜃𝜃2 = 𝜇𝜇4

𝜎𝜎4
 

where 𝜎𝜎2 = 𝐸𝐸(𝑋𝑋2) − 𝜇𝜇2 and 𝜇𝜇4 = 𝐸𝐸(𝑋𝑋4 − 4𝜇𝜇3 + 6𝜇𝜇2𝐸𝐸(𝑋𝑋2) − 4𝜇𝜇𝐸𝐸(𝑋𝑋3) + 𝜇𝜇4. 
 
In our case, from the general expression of moments, we have the following: 

• 𝐸𝐸(𝑋𝑋) = 𝑝𝑝𝛼𝛼𝛼𝛼1(𝛿𝛿 + 1,𝛼𝛼 − 𝛿𝛿) + (1 − 𝑝𝑝)𝛾𝛾1Γ �1
𝛽𝛽

+ 1�, exists iff 𝛼𝛼 > 𝛿𝛿. 

• 𝐸𝐸(𝑋𝑋2) = 𝑝𝑝𝛼𝛼𝛼𝛼2𝐵𝐵(2𝛿𝛿 + 1,𝛼𝛼 − 2𝛿𝛿) + (1 − 𝑝𝑝)𝛾𝛾2Γ �2
𝛽𝛽

+ 1�, exists iff 𝛼𝛼 > 2𝛿𝛿. 

• 𝐸𝐸(𝑋𝑋3) = 𝑝𝑝𝛼𝛼𝛼𝛼3(3𝛿𝛿 + 1,𝛼𝛼 − 3𝛿𝛿) + (1 − 𝑝𝑝)𝛾𝛾3Γ �3
𝛽𝛽

+ 1�, exists iff 𝛼𝛼 > 3𝛿𝛿. 

• 𝐸𝐸(𝑋𝑋4) = 𝑝𝑝𝛼𝛼𝛼𝛼4(4𝛿𝛿 + 1,𝛼𝛼 − 4𝛿𝛿) + (1 − 𝑝𝑝)𝛾𝛾4Γ �4
𝛽𝛽

+ 1�, exists iff 𝛼𝛼 > 4𝛿𝛿. 

Hence, on substitution of these quantities, one can get exact expressions for skewness & kurtosis respectively. It 
is to be noted that, for skewness, the index of inequality parameter, 𝛼𝛼 has to be bigger than 3𝛿𝛿, while for 
kurtosis measure, we need to have 𝛼𝛼 >  4𝛿𝛿 (for the existence of fourth order non central moment). This is quite 
a strong assumption, in the sense that, in actual data, we do not have any prior information as to whether such 



restrictions are valid or not. Alternatively, one may consider quantile measure of skewness & kurtosis, but that 
too in this case will be difficult to obtain, because of the unavailability of a proper quantile function. 
 

2.3 Mean Deviation 
The deviation from the mean and the deviation from the median are used to measure the dispersion and the 
spread in a population from the center. If we denote the median by 𝑀𝑀, then the mean deviation from the mean, 
𝐷𝐷(µ), and the mean deviation from the median, 𝐷𝐷(𝑀𝑀), can be written as 
 

𝐷𝐷(𝜇𝜇) = 𝐸𝐸|𝑋𝑋 − 𝜇𝜇| 

= � |𝑥𝑥 − 𝜇𝜇|𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
∞

−∞
 

= � (𝜇𝜇 − 𝑥𝑥)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝜇𝜇

0
+ � (𝑥𝑥 − 𝜇𝜇)𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

𝜇𝜇
 

= 𝜇𝜇 �� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝜇𝜇

0
− � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

𝜇𝜇
� − � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑

𝜇𝜇

0
+ � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

𝜇𝜇
 

= (𝐾𝐾1 − 𝐾𝐾2) − 𝐾𝐾3 + 𝐾𝐾4, 
(12) 

 

𝐾𝐾1 = � 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑
𝜇𝜇

0
 

= 𝑝𝑝� 𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑑𝑑
𝜇𝜇

0
+ (1 − 𝑝𝑝)� 𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑑𝑑

𝜇𝜇

0
 

= 𝑝𝑝 �1 − �1 + �
𝜇𝜇
𝜎𝜎
�
1 𝛿𝛿⁄

�
−𝛼𝛼

� + (1 − 𝑝𝑝) �1 − exp �− �
𝜇𝜇
𝛾𝛾
�
𝛽𝛽
��. 

(13) 
Similarly, one can get 
 

𝐾𝐾2 = 𝑝𝑝 �1 + �
𝜇𝜇
𝜎𝜎
�
1 𝛿𝛿⁄

�
−𝛼𝛼

+ (1 − 𝑝𝑝) �exp �− �
𝜇𝜇
𝛾𝛾
�
𝛽𝛽
�� , 𝐼𝐼3 = 𝑝𝑝𝐵𝐵

�𝜇𝜇𝜎𝜎�
𝛿𝛿(𝛿𝛿 + 1,𝛼𝛼 − 𝛿𝛿) + (1 − 𝑝𝑝)Γ

�𝜇𝜇𝛾𝛾�
𝛽𝛽(1 𝛽𝛽⁄ + 1, ) 

 
where 𝐵𝐵𝑥𝑥(𝑎𝑎, 𝑏𝑏) and Γ𝑥𝑥(𝑎𝑎, 𝑏𝑏) are incomplete beta and gamma functions respectively. 
 
Since, 𝐾𝐾4 = 𝐸𝐸(𝑋𝑋) − ∫ 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑𝜇𝜇

0 , and 𝐸𝐸(𝑋𝑋) = 𝑝𝑝𝛼𝛼𝛼𝛼𝐵𝐵(δ + 1,α − δ) + (1 − 𝑝𝑝)(1 𝛽𝛽⁄ + 1), (on substituting 𝑟𝑟 = 1 
in the general expression), we can write 
 



𝐷𝐷(𝜇𝜇) = 𝑝𝑝𝛼𝛼𝛼𝛼𝐵𝐵(𝛿𝛿 + 1,𝛼𝛼 − 𝛿𝛿)
+ (1 − 𝑝𝑝)𝛾𝛾Γ(1 𝛽𝛽⁄ + 1)

× �𝑝𝑝 �1 − 2 �1 + �
𝜇𝜇
𝜎𝜎
�
1 𝛿𝛿⁄

�
−𝛼𝛼

� + (1 − 𝑝𝑝) �1 − 2exp �− �
𝜇𝜇
𝛾𝛾
�
𝛽𝛽
���

+ 𝑝𝑝𝛼𝛼𝛼𝛼𝐵𝐵(𝛿𝛿 + 1,𝛼𝛼 − 𝛿𝛿) + (1 − 𝑝𝑝)𝛾𝛾Γ(1 𝛽𝛽⁄ + 1)

− 2 �𝑝𝑝𝐵𝐵
�𝜇𝜇𝜎𝜎�

𝛿𝛿(𝛿𝛿 + 1,𝛼𝛼 − 𝛿𝛿) + (1 − 𝑝𝑝)Γ
�𝜇𝜇𝛾𝛾�

𝛽𝛽(1 𝛽𝛽⁄ + 1)�. 

3 Maximum Likelihood Estimation 
In this section we address the parameter estimation of the MWP(IV) distribution. Let 𝑋𝑋1,𝑋𝑋2,⋅⋅⋅ ,  𝑋𝑋𝑛𝑛 be a random 
sample of size n drawn from the density in (1). Let 𝜃𝜃1 = (𝛼𝛼, δ,σ)′ and 𝜃𝜃2 = (𝛽𝛽, γ)′ denote the parameter vectors 
associated with 𝑓𝑓1(𝑥𝑥) and 𝑓𝑓2(𝑥𝑥), respectively. Furthermore, suppose, 𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2,𝑝𝑝)′denotes the full parameter 
vector, to be estimated given the observed data x = (𝑥𝑥1, 𝑥𝑥2,⋅⋅⋅, 𝑥𝑥𝑛𝑛)′. For clarity, we write 𝑓𝑓1(𝑥𝑥) as 𝑓𝑓1(𝑥𝑥|𝜃𝜃1), and 
𝑓𝑓2(𝑥𝑥) as 𝑓𝑓2(𝑥𝑥|𝜃𝜃2). 
 
Maximizing the likelihood function 𝐿𝐿(𝜃𝜃) directly is difficult as pointed out by Redner and Waiker (1984). We thus 
use EM algorithm (Dempster et al., 1977), considering 𝑢𝑢𝑖𝑖(=  0, 1), 𝑖𝑖 =  1, 2, ,𝑛𝑛 as missing value with 𝑖𝑖th 
observation 𝑥𝑥𝑖𝑖  drawn from 𝑓𝑓1(𝑥𝑥|𝜃𝜃1) if 𝑢𝑢𝑖𝑖 = 1, and 𝑓𝑓2(𝑥𝑥|𝜃𝜃2) if 𝑢𝑢𝑖𝑖 = 0. Thus the complete likelihood function is 
given by 
 

𝐿𝐿𝑐𝑐(𝜃𝜃) = ��𝑓𝑓1(𝑥𝑥𝑖𝑖|𝜃𝜃1)�𝑢𝑢𝑖𝑖�𝑓𝑓2(𝑥𝑥𝑖𝑖|𝜃𝜃2)�1−𝑢𝑢𝑖𝑖𝑝𝑝𝑢𝑢𝑖𝑖(1 − 𝑝𝑝)𝑢𝑢𝑖𝑖 .
𝑛𝑛

𝑖𝑖=1

 

Denoting 𝜃𝜃(𝑘𝑘)as the 𝑘𝑘𝑡𝑡ℎiterative solution, the E-step is given by 
 

𝐸𝐸�log 𝐿𝐿𝑐𝑐(𝜃𝜃)|𝑥𝑥,𝜃𝜃(𝑘𝑘) �

= �𝐸𝐸  �𝑢𝑢𝑖𝑖�𝑥𝑥,𝜃𝜃(𝑘𝑘)� log 𝑓𝑓1(𝑥𝑥𝑖𝑖|𝜃𝜃2)
𝑛𝑛

𝑖𝑖=1

+ ��1 − 𝐸𝐸�𝑢𝑢𝑖𝑖�𝑥𝑥,𝜃𝜃(𝑘𝑘)�� log 𝑓𝑓2(𝑥𝑥𝑖𝑖|𝜃𝜃2)
𝑛𝑛

𝑖𝑖=1

+ �𝐸𝐸  �𝑢𝑢𝑖𝑖�𝑥𝑥,𝜃𝜃(𝑘𝑘)� log 𝑝𝑝 + ��1 − 𝐸𝐸�𝑢𝑢𝑖𝑖�𝑥𝑥,𝜃𝜃(𝑘𝑘)�� log(1 − 𝑝𝑝)
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

 

(14) 
Note that 
 

𝐸𝐸�𝑢𝑢𝑖𝑖�𝑥𝑥,𝜃𝜃(𝑘𝑘)� =
𝑝𝑝(𝑘𝑘)𝑓𝑓1�𝑥𝑥𝑖𝑖�𝜃𝜃(1)�

𝑝𝑝(𝑘𝑘)𝑓𝑓1�𝑥𝑥𝑖𝑖�𝜃𝜃(𝑘𝑘)�+�1−𝑝𝑝(𝑘𝑘)�𝑓𝑓2�𝑥𝑥𝑖𝑖�𝜃𝜃(𝑘𝑘)�
= 𝑝𝑝𝑖𝑖

(𝑘𝑘)
 say. 

(15) 
Now following the M-step, after differentiating (19) with respect to 𝑝𝑝 and equating it to 0, we get the updated 
estimate of 𝑝𝑝 as 
 



𝑝𝑝(𝑘𝑘+1) =
1
𝑛𝑛
�𝑝𝑝𝑖𝑖

(𝑘𝑘).
𝑛𝑛

𝑖𝑖=1

 

(16) 
Similarly, differentiating (19) with respect to 𝜃𝜃1 = (𝛼𝛼, 𝛿𝛿,𝜎𝜎)′ and 𝜃𝜃2 = (𝛽𝛽, 𝛾𝛾)′, and equating the derivatives to 0, 
we get the updated estimates of �𝛼𝛼(𝑘𝑘+1), 𝛿𝛿(𝑘𝑘+1),𝜎𝜎(𝑘𝑘+1)�

′
 and �𝛽𝛽(𝑘𝑘+1), 𝛾𝛾(𝑘𝑘+1)� as the solution of 

 

𝛼𝛼 =
∑ 𝑝𝑝𝑖𝑖

(𝑘𝑘)𝑛𝑛
𝑖𝑖=1

∑ 𝑝𝑝𝑖𝑖
(𝑘𝑘)𝑛𝑛

𝑖𝑖=1 log �1 + �𝑥𝑥𝑖𝑖𝜎𝜎�
1 𝛿𝛿⁄

�
, 

𝛼𝛼 =
∑ 𝑝𝑝𝑖𝑖

(𝑘𝑘)𝑛𝑛
𝑖𝑖=1 �1 + �𝑥𝑥𝑖𝑖𝜎𝜎�

1 𝛿𝛿⁄
�
−1

∑ 𝑝𝑝𝑖𝑖
(𝑘𝑘)𝑛𝑛

𝑖𝑖=1 �𝑥𝑥𝑖𝑖𝜎𝜎�
1 𝛿𝛿⁄

�1 + �𝑥𝑥𝑖𝑖𝜎𝜎�
1 𝛿𝛿⁄

�
−1 

𝛿𝛿�𝑝𝑝𝑖𝑖
(𝑘𝑘)

𝑛𝑛

𝑖𝑖=1

= 𝛼𝛼�𝑝𝑝𝑖𝑖
(𝑘𝑘)

𝑛𝑛

𝑖𝑖=1

log �
𝑥𝑥𝑖𝑖
𝜎𝜎
� − (𝛼𝛼 + 1)�𝑝𝑝𝑖𝑖

(𝑘𝑘)
𝑛𝑛

𝑖𝑖=1

log �
𝑥𝑥𝑖𝑖
𝜎𝜎
� �1 + �

𝑥𝑥𝑖𝑖
𝜎𝜎
�
1 𝛿𝛿⁄

�
−1

, 

𝛾𝛾𝛽𝛽 =
∑ �1 − 𝑝𝑝𝑖𝑖

(𝑘𝑘)� 𝑥𝑥𝑖𝑖
𝛽𝛽𝑛𝑛

𝑖𝑖=1

∑ �1 − 𝑝𝑝𝑖𝑖
(𝑘𝑘)�𝑛𝑛

𝑖𝑖=1

, 

𝛽𝛽−1 =
∑ �1 − 𝑝𝑝𝑖𝑖

(𝑘𝑘)� log(𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖
𝛽𝛽𝑛𝑛

𝑖𝑖=1

∑ �1 − 𝑝𝑝𝑖𝑖
(𝑘𝑘)�𝑛𝑛

𝑖𝑖=1 𝑥𝑥𝑖𝑖
𝛽𝛽 −

∑ �1 − 𝑝𝑝𝑖𝑖
(𝑘𝑘)� log(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1

∑ �1 − 𝑝𝑝𝑖𝑖
(𝑘𝑘)�𝑛𝑛

𝑖𝑖=1

.  

 

(17) (18) (19) (20) (21) 

The estimates can be obtained by the following algorithm: 
 
The initial estimates are obtained as follows: Obtain�𝛼𝛼(0), 𝛿𝛿(0),𝜎𝜎(0) � assuming that the data is 
generated from 𝑓𝑓1(𝑥𝑥|𝜃𝜃1); obtain �𝛽𝛽(0), 𝛾𝛾(0)� assuming that the data in generated from 𝑓𝑓2(𝑥𝑥|𝜃𝜃2). For 
the initial estimates of 𝑝𝑝, prior information such as proportion of low claims, or in the absence of 
such information, 𝑝𝑝(0) = 1 2⁄ can be used. Estimate 𝑝𝑝𝑖𝑖

(0) equation (20). 
 
Suppose the estimates at the 𝑘𝑘𝑡𝑡ℎ  iteration are 𝑝𝑝(𝑘𝑘), �𝛼𝛼�(𝑘𝑘), 𝛿̂𝛿(𝑘𝑘),𝜎𝜎�(𝑘𝑘)�, and �𝛽̂𝛽(𝑘𝑘), 𝛾𝛾�(𝑘𝑘)�. Estimate 𝑝𝑝𝑖𝑖

(𝑘𝑘)
 using (20). 

Update 𝑝𝑝(𝑘𝑘+1) from (21). The updated solution �𝛼𝛼�(𝑘𝑘+1), 𝛿̂𝛿(𝑘𝑘+1),𝜎𝜎�(𝑘𝑘+1)� is obtained by solving equations (22)-
(24), and �𝛽̂𝛽(𝑘𝑘+1), 𝛾𝛾�(𝑘𝑘+1)� is obtained by solving (25) and (26).  
 
To solve (22)- (24), we consider the following steps: 

• Step 1: Start with a choice of 𝛿𝛿 (say, 𝛿𝛿(𝑘𝑘)), _nd 𝜎𝜎 so that the values of 𝛼𝛼 given by (22) and (23) are equal. 
• Step 2: Solve for 𝛼𝛼 using (22). 
• Step 3: Solve 𝛿𝛿 using (24). 
• Step 4: For using this new 𝛿𝛿, go back to Step 1. Continue until the iterative sequence of 𝛿𝛿converges. 

 



To solve (25) and (26), start with a given choice of 𝛽𝛽 (say, 𝛽𝛽(𝑘𝑘)), and solve 𝛽𝛽 iteratively from 
(26). Then estimate 𝛾𝛾 from (25). 

4 Numerical Results 
In this section, we present a simulation result, and use a real life data to fit the MWP(IV) distribu-tion. Note that 
the mixture distribution MWP(IV) is applicable in situations when the population distribution is a mixture of low 
values and high values. Relatively, the Weibull component of MWP(IV) describes the distribution of low values, 
and the Pareto (IV) component describes the distribution of high values. For example, if one considers income 
inequality in a particular coun-try, the MWP(IV) distribution can be used to describe the income distribution of 
the country’s population, where the Weibull component describes the distribution of low income group and the 
Pareto (IV) component describes the distribution of high income group. 

4.1 Simulation study 
The mixing parameter 𝑝𝑝 can play an important role in describing the inequality between high and low values 
such as income inequality in the above example. Thus, in our simulations, we compare the results with several 𝑝𝑝 
values. We considered nine set of values, 𝑝𝑝 =  0.1 · · ·  0.9. In each case, sample size of n = 1000 is used with 
100 simulation runs. The rest of the parameters are set at the following values: 𝛼𝛼 = 2, 𝛿𝛿 = 0.2,𝜎𝜎 = 1.5,𝛽𝛽 = 0.8, 
and 𝛾𝛾 = 1.2. We fit the simulated data by (1) MWP(IV) distribution, (2) Weibull distribution, and (3) Pareto (IV) 
distribution. We use the AIC criteria (Akaike, 1974) as a measure of goodness of fit. The Figure 1(A) shows AIC 
values for all simulation runs with Figure 1(B) showing the fits for one particular run. It is clear from the Figure 
1(A) that, when the mixing parameter p is high (≥ 0.5), the fit by Weibull distribution alone and the fit by the 
Pareto distribution alone are very poor. Thus, as in many practical cases, when the low values of the population 
is in higher proportion in comparison to high values, the Weibull distribution and the Pareto (IV) distribution will 
show very poor fits to the real data. Figure 1(B) shows how Weibull distribution and the Pareto (IV) distribution 
look way off from a simulated data when 𝑝𝑝 = 0.7. The average AIC values with standard errors are given in Table 
1, which also shows high discrepancy for high 𝑝𝑝(≥ 0.5), when comparing the average AIC under Weibull 
distribution and under Pareto (IV) distribution against the true average AIC (under the MWP(IV) distribution). In 
Table 1, we also included the fits from mixtures of two gaussian (Mix-Normal fit) and two Gamma (Mix-Gamma 
fit) distributions obtained from ’mixtools’ package in R (Benaglia et al. 2006). 
 
Table 1: Outcome of the simulation study. 
 

AIC Pareto( IV) fit Weibull fit MWP(IV) fit  Mix-Normal fit Mix-Gamma fit 
p=0.1 2646.15 (7.03) 2641.58 (7.13) 2538.28 (7.21) 3041.42 (7.03) 2641.86 (7.19) 
p=0.2 2602.64 (6.93) 2594.20 (7.51) 2513.09 (7.73) 2936.07 (7.86) 2577.50 (8.39) 
p=0.3 2575.02 (6.47) 2577.15 (6.61) 2456.81 (6.49) 2815.93 (6.57) 2513.43 (8.96) 
p=0.4 2554.05 (5.70) 2565.37 (5.94) 2359.14 (6.25) 2688.01(11.57) 2419.06(11.11) 
p=0.5 2493.81 (5.90) 2515.43 (6.76) 2224.88 (6.32) 2486.20 (9.92) 2293.28(12.83) 
p=0.6 2399.24 (6.75) 2445.87 (7.82) 2060.05 (6.83) 2271.89 (7.89) 2126.28 (14.8) 
p=0.7 2237.03 (6.36) 2325.94 (7.37) 1853.16 (5.55) 2020.86 (5.88) 1897.53(13.48) 
p=0.8 1964.57 (6.77) 2121.58 (8.97) 1604.58 (7.02) 1713.94 (5.62) 1640.01 (9.01) 
p=0.9 1535.50 (7.13) 1809.22(11.11) 1353.60 (8.47) 1392.84 (5.56) 1384.55 (6.40) 

 

4.2 Real data application 
We now consider a real data set from Brinbaum and Saunders (1969). The data set represents 
the fatigue life of 6061-Tg aluminum coupons. We _t the data by Pareto (IV) (𝛼𝛼;  𝛿𝛿;  𝜎𝜎), Weibull 
(𝛽𝛽;  𝛾𝛾), Mix-Normal (𝑝𝑝, 𝜇𝜇1,𝜎𝜎1, 𝜇𝜇1,𝜎𝜎2), Mix-Gamma (𝑝𝑝,𝛼𝛼1,𝛽𝛽1,𝛼𝛼2,𝛽𝛽2), and MWP (IV) (𝑝𝑝,𝛼𝛼, 𝛿𝛿,𝜎𝜎,𝛽𝛽, 𝛾𝛾) 
distributions. The maximum likelihood estimates are given as follows: 

• Pareto(IV) fit: 𝛼𝛼� = 1.37, 𝛿̂𝛿 = 0.11, and 𝜎𝜎� = 138.02. 
• Weibull fit: 𝛽̂𝛽 = 5.79, and 𝛾𝛾� = 142.84. 



 

 
 
Figure 1: (A) Compares the AIC for 300 simulation runs associated to 𝑝𝑝 = 0.3, 0.5 and 0.7. (B) For a randomly 
selected run, comparing the densities obtained from each model. 
 

• Mix-Normal _t: 𝑝̂𝑝 = 0.94, 𝜇̂𝜇1 = 131.36,𝜎𝜎�1 = 22.92 𝜇̂𝜇2 = 161.15, and 𝜎𝜎�2 = 4.46. 
• Mix-Gamma _t: 𝑝̂𝑝 = 0.85, = 𝛼𝛼�1 = 42.76, 𝛽̂𝛽1 = 3.10,𝛼𝛼�2 = 13.82, and 𝛽̂𝛽2 = 9.74. 
• MWP(IV) _t: 𝑝̂𝑝 = 0.83,𝛼𝛼� = 0.94, 𝛿̂𝛿 = 0.09,𝜎𝜎� = 125.48, 𝛽̂𝛽 = 17.99, and 𝛾𝛾� = 160.29. 

 
The estimates for MWP (IV) are obtained by the EM algorithm as described in Section 3. The maximum 
likelihood estimates for Pareto (IV) are obtained from the 𝑅𝑅 package VGAM (vector generalized linear and 
additive models) (Yee, 2015). Figure 2 shows the fits of all three distributions together with histogram of the 
data. The data seems to be bi-model, thus a mixture distribution could be considered. Although the AIC criteria 
show a better fit for Pareto (IV), the MWP(IV) seems to be a better fit in terms of the bi-model structure of the 
data. Also note that although AIC of MWP(IV) is higher than the AIC of Pareto, they are nearly equal. Finally, with 
respect to AIC, MWP(IV) is better than the other two mixture models. 



 
Figure 2: ML fits to the fatigue life data. 

5 Conclusion 
In this paper, we consider a simple mixture of two absolutely continuous distributions—Weibull and Pareto (IV) 
distribution. Some structural properties of the resulting distribution are discussed. The resulting model appears 
to be a reasonable choice in the sense of modeling insurance claims, in particular, where the popular choices 
(e.g., Weibull and/or Paretian distribution) fail to adequately model the observed phenomena. The highlight of 
this article lies in the fact that we have discussed in detail the problem of efficient estimation of the model 
parameters under maximum likelihood and how to efficiently induce the idea of EM algorithm. We sincerely 
hope that this particular mixture model will find many more applications in different spheres affecting human 
life. 
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