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ABSTRACT 
The objective of this work is to demonstrate the use of acceleration feedback to improve the performance of a 
maglev system, especially in disturbance attenuation. In the single degree-of-freedom (DOF) system studied 
here, acceleration feedback has the effect of virtually increasing inertia, damping and stiffness. It is shown that it 
can be used to increase disturbance rejection without sacrificing tracking performance. Both analytical and 
experimental results demonstrate that disturbance rejection can be improved with acceleration feedback. 

SECTION I. INTRODUCTION 
Magnetic levitation (or maglev) systems utilize electromagnetic forces to achieve levitation. They are open-loop 
unstable and inherently nonlinear. Feedback control loops are used to manipulate the electromagnetic forces to 
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counterbalance gravity. Examples of maglev technology can be found in frictionless bearings, vibration isolation 
equipment, and maglev vehicles. A classic control design approach for a maglev system is to linearize the 
nonlinear system dynamics about an operating point (equilibrium point) and design a linear controller that 
operates about that point. Although the system is designed to work at the operating point or its vicinity, 
disturbances may drive the system away from the operating point. If the disturbances are too large, the system 
will lose balance and fail to operate. 
 
Research work has been carried out to find how to attenuate disturbances and improve the performance of 
maglev systems. Investigators have proposed different control strategies. Shan and Menq [1] reported two 
disturbance rejection algorithms-internal model-based control and sliding mode control-that improved the 
dynamic stiffness of a magnetic suspension stage. Both simulation and experiments indicated that the dynamic 
stiffness of their system was increased. Fang, Feemster and Dawson [2] reported a position regulation control 
strategy developed for a magnetic levitation system operating in the presence of a bounded, nonlinear, periodic 
disturbance. They included simulation results, but no experimental data was reported. Another position 
regulation control strategy, reported by the same authors in 2006 [3], required that the disturbance be bounded 
and the period of the disturbance be known. She, Xin and Yamaura [4] described a technique called equivalent-
input-disturbance estimation. The controller, designed using H∞ control theory, generated an input signal based 
on the information from a state observer. The input signal cancelled the effect of the real disturbance. They 
provided simulation results without experimental verification. 
 
Previous research efforts show that different control strategies can be used to increase the overall performance 
of a maglev system. This research investigates an approach that improves disturbance attenuation while not 
changing the system response to a reference signal. Acceleration feedback has been studied by previous 
researchers and proved to be effective in improving system performance in disturbance rejection. However, 
prior work has not discussed the implementation of acceleration feedback on maglev systems. The primary goal 
of this paper is to show that acceleration feedback can be used on a maglev system to attenuate disturbance. 
Both analytical and experimental evaluations of the acceleration feedback technique are presented. 
 
The acceleration control type servo system was proposed as a novel design paradigm of servo systems by Hori 
[5], and was further developed as a hybrid control method for the position and mechanical impedance of robot 
actuators [6]. Experiments demonstrated the effectiveness of both systems in disturbance suppression. 
Acceleration feedback control has also been reported and used to improve the performance of DC drives [7]. It 
allows systems to achieve substantially higher overall stiffness without requiring higher bandwidths of the 
velocity and position loops. For a maglev system, it is important to note that acceleration feedback control alone 
does not guarantee stability. For that, the system needs a position regulator. The acceleration feedback changes 
the effective inertia, damping, and stiffness of the system. It increases the effective inertia of the system for 
disturbance rejection purposes. 
 
The maglev system used in this research is stabilized with a PD controller. The system serves as a baseline from 
which to make performance comparisons. Comparisons are made between the system responses with and 
without an acceleration feedback loop to a sinusoidal position command, first as a position reference signal 𝑅𝑅 
and then as a disturbance signal D, as is shown in Fig. 1. Performance is evaluated based on the magnitude ratio 
(in dB) of the output versus input signals.  

 



 

Fig. 1. Block diagram of a system subject to disturbance D 

 
In the following sections, the plant model of the maglev system is presented and the basic theory of acceleration 
feedback is introduced. The design, analysis, and simulation of the acceleration feedback controller are shown. 
Experimental results demonstrate the advantage of improved performance with acceleration feedback on the 
maglev system. 
 

SECTION II. MAGLEV PLANT AND POSITION REGULATOR 
Fig. 2 shows a free body diagram of a single degree-of-freedom (DOF) maglev device. Woodson and Melcher [8] 
proved that the attractive force acting on the ferrous object is approximated by  
 

𝐹𝐹(𝑖𝑖, 𝑥𝑥) ≅ 𝐾𝐾1 �
𝑖𝑖

𝐾𝐾2+𝑥𝑥
�
2

   (1) 

 
where 𝐾𝐾1 and 𝐾𝐾2 are parameters characterized by the geometry and construction of the electromagnet. These 
parameters are determined experimentally in this research. Equation (1) can also be derived from Maxwell's 
equations. One important assumption is that the ferrous object stays at the vicinity of the electromagnet so the 
magnetic fringe flux can be neglected.  

 

Fig. 2. Free body diagram of the maglev system 

The governing equation for the ferrous object is determined using Newton's second law. Assuming vertical 
motion only, a force balance on the levitated object shown in Fig. 2 yields  
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𝑚𝑚𝑥𝑥
¨
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Equation (2) shows the nonlinear form of the plant. In order to design a linear controller for the system, a 
linearized model is derived at the operating point where i=i0,x=x0, and x˙=0. The Taylor series of equation (2) is  
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At the operating point the system reaches equilibrium,  
 

𝑚𝑚𝑚𝑚 = 𝐾𝐾1 �
𝑖𝑖0

𝐾𝐾2+𝑥𝑥0
�
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Substituting equation (4) into equation (3),  
 

𝑚𝑚𝑥𝑥
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= 𝐾𝐾1 �
2𝑖𝑖02
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where 𝑥𝑥 = 𝑥𝑥0 + 𝛿𝛿𝑥𝑥 and 𝑖𝑖 = 𝑖𝑖0 + 𝛿𝛿𝑖𝑖. 
 
Letting  
 

𝑘𝑘𝑥𝑥 = 𝐾𝐾1
𝑚𝑚
� 2𝑖𝑖02
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and  
 

𝑘𝑘𝑖𝑖 = 𝐾𝐾1
𝑚𝑚
� 2𝑖𝑖0
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the equation of motion for the magnetic system is  
 

𝑥𝑥
¨

= 𝑘𝑘𝑥𝑥𝛿𝛿𝑥𝑥 − 𝑘𝑘𝑖𝑖𝛿𝛿𝑖𝑖  (8) 
 

Equation (8) is the linearized governing equation for the maglev system where the current 𝛿𝛿𝑖𝑖 is controlled. Fig. 3 
shows the block diagram of the open-loop system where 𝑋𝑋(𝑠𝑠) is the Laplace transform of 𝛿𝛿𝑥𝑥 and 𝐼𝐼(𝑠𝑠) is the 
Laplace transform of 𝛿𝛿𝑖𝑖.  
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Fig. 3. Block diagram of the open-loop system without acceleration feedback 
 
Taking the Laplace transform of both sides of equation (8) and assuming zero initial conditions, 
 

𝑠𝑠2𝑋𝑋(𝑠𝑠) = 𝑘𝑘𝑥𝑥𝑋𝑋(𝑠𝑠) − 𝑘𝑘𝑖𝑖𝐼𝐼(𝑠𝑠)  (9) 
 
Rearranging, the open-loop transfer function of the system is  
 

𝑋𝑋(𝑠𝑠)
𝐼𝐼(𝑠𝑠)

= −𝑘𝑘𝑖𝑖
𝑠𝑠2−𝑘𝑘𝑥𝑥

  (10) 

 
where the input is the control current and the output is the levitated object position. From equation (10) the 
system has a pair of real poles at ±�𝑘𝑘𝑥𝑥. The plant is open-loop unstable due to the positive real pole. 
 
A position regulator is needed to achieve stable levitation. In this research, a PD controller is used. If the 
levitated object moves away from the desired operating point, the controller will adjust the current passing 
through the electromagnet to provide a restoring force to attenuate the position error. From the control 
perspective, this is similar to adding “stiffness” by using the gains of the controller. Fig. 4 shows the block 
diagram of such a position feedback controller in a cascaded configuration.  
 

 

Fig. 4. Maglev system with a PD controller 
 
For such a system, the stiffness is provided solely by the controller. It is sometimes referred to as the “active 
stiffness.” (Active stiffness is added by the stiffness terms resulting from the controller gains.) Fig. 5 shows the 
block diagram of such a system with a disturbance D.  
 

 

Fig. 5. System without acceleration feedback loop with disturbance 𝐷𝐷 

The transfer function between the disturbance 𝐷𝐷 and the output position 𝑋𝑋 for this system is  
 

𝑋𝑋(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

= −𝑘𝑘𝑖𝑖
𝑠𝑠2+𝑘𝑘𝑖𝑖𝐾𝐾𝑑𝑑𝑠𝑠+𝑘𝑘𝑖𝑖𝐾𝐾𝑝𝑝−𝑘𝑘𝑥𝑥

  (11) 

 
From equation (11), it is obvious that the frequency response is shaped by the active controller gain 𝐾𝐾𝑑𝑑 and 𝐾𝐾𝑝𝑝. 
The position regulator is actively used to achieve a stable levitation as well as reduce the response of the system 
to disturbances. In order to increase the stiffness of the system, a larger controller gain is needed. Fig. 6 shows 
the Bode plot of two system with different P gains and 𝐷𝐷 gains. From the plot we can see higher controller gains 
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help to attenuate the system response to the disturbance. However, for a maglev system, increasing the 
controller gain may cause the system to be unstable. 
 
The conclusion is that in order to increase the stiffness, the controller gains need to be increased, but only 
certain gain values will maintain the stability of the system. To raise the dynamic stiffness without changing the 
controller gains requires the use of acceleration feedback.  
 

 

Fig. 6. Bode diagram of a maglev system with different controller gains 

SECTION III. ACCELERATION FEEDBACK PRINCIPLE 
Schmidt and Lorenz [7] demonstrated the principle, design, and implementation of acceleration feedback 
control to improve the performance of DC servo drives. In their research, the acceleration signal was estimated 
using an acceleration observer, scaled by a factor 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴 and fed back to the controller. The feedback loop adds 
“electronic” inertia to the system. In this research, the acceleration signal is calculated using equation (8) 
instead of measuring it with an accelerometer. Fig. 7 shows a block diagram of a maglev system with 
acceleration feedback assuming the acceleration signal is available. The acceleration calculation and acceleration 
feedback implementation will be given in the Experimental Results section. The acceleration feedback loop is 
closed by a positive feedback instead of a negative one because there is a negative sign in the open-loop 
transfer function of the plant, as is shown in equation (10).  
 

 

 
Fig. 7. Block diagram of the open-loop system with acceleration feedback 
 
With the acceleration feedback loop, the current error signal 𝑒𝑒 become  
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𝑒𝑒 = 𝛿𝛿𝑖𝑖 + 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥
¨   (12) 

 

The acceleration signal 𝑥𝑥
¨
 becomes  

 

𝑥𝑥
¨

= −𝑘𝑘𝑖𝑖𝑒𝑒 + 𝑘𝑘𝑥𝑥𝛿𝛿𝑥𝑥  (14) 
 

Substituting equation (13) into equation (12), the acceleration signal can be written as  
 

𝑥𝑥
¨

= −𝑘𝑘𝑖𝑖(𝛿𝛿𝑖𝑖 + 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴𝑥𝑥
¨
) + 𝑘𝑘𝑥𝑥𝛿𝛿𝑥𝑥  (13) 

 
Take the Laplace transform of both sides of equation (14) and rearranging, the open-loop transfer function of 
the maglev system with an acceleration feedback loop is  
 

𝑋𝑋(𝑠𝑠)
𝐼𝐼(𝑠𝑠)

= −𝑘𝑘𝑖𝑖
(1+𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝑠𝑠2−𝑘𝑘𝑥𝑥

  (15) 

 

where the input is the control current and the output is the gap distance. 
 
To ensure the transfer function between the reference single 𝑅𝑅 and output 𝑋𝑋 remains the same, the PD position 
control gains must be scaled by a factor of (1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴). The closed loop system with both a PD controller and 
an acceleration feedback loop is shown in Fig. 8.  
 

 

Fig. 8. System with a PD controller and an acceleration feedback loop 
 
The transfer function between the disturbance 𝐷𝐷 and the displacement 𝑋𝑋 is  
 

𝑋𝑋(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

= −𝑘𝑘𝑖𝑖/[(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝑠𝑠2 + 𝑘𝑘𝑖𝑖(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝐾𝐾𝑑𝑑𝑠𝑠

+𝑘𝑘𝑖𝑖(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝐾𝐾𝑝𝑝 − 𝑘𝑘𝑥𝑥]
  (16) 

 
The effect of adding acceleration feedback is the same as adding some inertia-the so-called “electronic” 
inertia. The “electronic” inertia makes the disturbance seem like it is acting on a larger mass. The resulting 
effect on the dynamic stiffness is shown in Fig. 9. (The phase shift does not change and is thus omitted 
here.)  
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Fig. 9. System responses of systems with and without acceleration feedback 
 
With acceleration feedback the dynamic magnitude response curve shifts down, which means the stiffness of 
the system has increased. The concept can be understood better by taking a look at the dynamic stiffness 
change of the system, which is the inverse of the transfer function between the disturbance and the system 
output. For a system without acceleration feedback, the dynamic stiffness is  
 

𝐷𝐷(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= 𝑠𝑠2+𝑘𝑘𝑖𝑖𝐾𝐾𝑑𝑑𝑠𝑠+𝑘𝑘𝑖𝑖𝐾𝐾𝑝𝑝−𝑘𝑘𝑥𝑥
−𝑘𝑘𝑖𝑖

  (17) 

 
For a system with acceleration feedback, the dynamic stiffness is  
 

𝐷𝐷(𝑠𝑠)
𝑋𝑋(𝑠𝑠)

= [(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝑠𝑠2 + 𝑘𝑘𝑖𝑖(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝐾𝐾𝑑𝑑𝑠𝑠

+𝑘𝑘𝑖𝑖(1 + 𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)𝐾𝐾𝑝𝑝 − 𝑘𝑘𝑥𝑥]/(−𝑘𝑘𝑖𝑖)
  (18) 

 
The denominators of equations (17) and (18) are the same and the numerators are the characteristic equations 
of the systems. By choosing an appropriate acceleration feedback gain 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴, the gains for the double derivative 
term, derivative term, and constant term can be made larger in equation (18) than those in equation (17). The 
factor ‘‘1 + 𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴

′′ makes the mass seem to be ‘‘𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴
′′ times more than its real value. This additional part is the 

so-called “electronic” inertia added to the system. In addition, the “electronic” damping coefficient 𝑘𝑘𝑖𝑖𝐾𝐾𝑑𝑑 is 
increased by ‘‘𝑘𝑘𝑖𝑖𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴

′′ times. The equivalent stiffness is also increased. It means more “effort” in disturbance 𝐷𝐷 
is needed to achieve the same 𝑋𝑋. In other words, a system with acceleration feedback will have less change 
when experiencing the same disturbance as a system without acceleration feedback. 
 
Introducing an acceleration feedback loop has the effect of increasing the effective mass, damping, and stiffness 
of the system. Experiments will show that the system response to the reference signal remains unchanged. 

SECTION IV. EXPERIMENTAL RESULTS 
For the maglev system discussed here, the position signal is available for measurement and the control current, 
which is the output of the controller, is assumed known. Equation (8) gives the expression of the acceleration 
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signal based on the position feedback signal and control current. Fig. 10 shows the block diagram of the maglev 
system with an acceleration feedback loop, in which the acceleration signal is calculated from the measured 
position signal and control current. Note that there is also a position feedback loop to achieve a stable levitation.  
 

 

 
Fig. 10. Block diagram of a maglev system with acceleration feedback 
 
The acceleration feedback controller for the maglev system is implemented in MATLAB/SIMULINK® with a 
dSpace® control design system. The dSpace® system allows high level programming using SIMULINK® blocks, and 
can automatically transfer the SIMULINK® programs into executable files. Two experiments are performed on a 
tabletop maglev testbed. The first experiment compares the response of the maglev system with and without 
acceleration feedback to a sinusoidal reference signal. The second compares the response of the maglev system 
with and without acceleration feedback to a sinusoidal disturbance signal. 
 
Fig. 11 shows the result of the first experiment. It can be seen that the maglev system responds almost the same 
whether the acceleration feedback is used or not.  
 

 

Fig. 11. System outputs of a maglev system tracking a sine command signal 
 
The experiment was repeated for reference sine signals with frequencies from 0.1 Hz to 10 Hz. Experimental 
results show that the system can track a reference signal up to about 9 Hz. If the reference signal has a 
frequency larger than 10Hz, the system fails to track the signal or loses stability. (This is because the linearized 
system does not take into consideration the nonlinear character of the components at high frequencies.) 
Although the Bode plot analysis shows results up to about 1600 Hz, the experiment validation only reached a 
maximum frequency of 9 Hz. 
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Fig. 12 shows the comparison between the system outputs with and without the acceleration feedback loop. 
The disturbance is greatly attenuated in the system with an acceleration feedback loop. Fig. 9 shows the 
magnitude ratio of the disturbance signal is about 60 dB smaller in the system with an acceleration feedback 
loop. The amplitude of the system with acceleration feedback is five times smaller than that of the system 
without it. (The signal becomes noisy when the amplitude of the system output becomes small.) The experiment 
demonstrates that an acceleration feedback loop in the system successfully attenuates the disturbance.  
 

 

Fig. 12. System outputs of a maglev system subject to a sine disturbance 

SECTION V. CONCLUSION AND FUTURE WORK 
An analytical and experimental comparison of the system responses of a maglev system with and without 
acceleration feedback loop is presented. Analytical and experimental results show that the disturbance is 
attenuated significantly for the system with an acceleration feedback loop. For the disturbance signal, adding an 
acceleration feedback loop to the system has the same effect as adding inertia, damping, and stiffness in the 
system. The performance of the system subject to a disturbance is improved. It is also shown that the system 
response to a reference signal remains unchanged whether the system has an acceleration feedback loop or not. 
 
The acceleration feedback control method has been experimentally validated to be effective on a single DOF 
maglev system where the nonlinear model of the maglev system was linearized and a linear PD controller was 
used. Future work may investigate the possibility of implementing the acceleration feedback method with a 
nonlinear controller. In addition, the use of acceleration feedback to reject disturbances may be tested on 
multiple DOF maglev systems. 
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