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Abstract 
Thirteen autistic and 14 typically developing children (controls) imitated hand/arm gestures and performed 
mirror drawing; both tasks assessed ability to reorganize the relationship between spatial goals and the motor 
commands needed to acquire them. During imitation, children with autism were less accurate than controls in 
replicating hand shape, hand orientation, and number of constituent limb movements. During shape tracing, 
children with autism performed accurately with direct visual feedback, but when viewing their hand in a mirror, 
some children with autism generated fewer errors than controls whereas others performed much worse. Large 
mirror drawing errors correlated with hand orientation and hand shape errors in imitation, suggesting that 
visuospatial information processing deficits may contribute importantly to functional motor coordination deficits 
in autism. 

Keywords 
Motor control, Sensorimotor transformation, Coordination, Visuospatial information processing, Goal-directed 
movement  

Introduction 
Most people easily modify hand movements to compensate for computer mousing errors caused by holding the 
mouse at an angle. Compensation depends on the brain’s ability to adjust the relationship or “mapping” 
between an intended movement and the motor commands (muscle activities, joint torques) needed to perform 
it. Most actions are sensorimotor in nature in that ongoing task performance is adjusted using sensory 
information to shape the motor commands needed to compensate for deviations from the intended action. In 
this way, behavior depends on the integrity of neural mechanisms that process sensory information, those that 
process motor information and those that bridge the two information sources to generate coordinated action. 
Children with autism often exhibit clumsiness (Ghaziuddin and Butler 1998) as well as abnormalities in sensory 
information processing (American Psychiatric Association 1994; Lane et al. 2010; O’Neill and Jones 1997; 
Wiggins et al. 2009). While there is conflicting evidence supporting a general coordination deficit in autism 
(Ghaziuddin et al. 1994; Rinehart et al. 2001, 2006; Gidley Larson et al. 2008; Mostofsky et al. 2004), people with 
autism often exhibit specific motor impairments related to movement planning (Rinehart et al. 2001, 2006; 
Glazebrook et al. 2008; Schmitz et al. 2003), task sequencing (Hill 2004) and postural control (Molloy et al. 2003; 
Minshew et al. 2004). We hypothesize that sensory and motor deficits are causally linked in this population, i.e. 
that abnormal sensory information processing is a direct cause of quantifiable motor coordination deficits. 
 
We used gesture imitation and mirror drawing tasks to compare how autistic and typically developing children 
transform visuospatial goals into arm and hand motions. Imitation is a real-life behavior important for social 
interaction and the development of language skills (Iacoboni 2005)—two domains that show impairment in 
autism (American Psychiatric Association 1994; Hermelin and O’Connor 1970). Imitation requires participants to 
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direct visual attention to relevant aspects of a demonstrated movement (i.e. “encoding” see Vivanti et al. 2008), 
to commit the demonstrated movements and the visuospatial goals they represent to working memory and 
then to transform such representations into action. It is known that the ability to imitate is impaired in children 
(Rogers et al. 2003; Stone et al. 1997; Haswell et al. 2009; Ohta 1987; Bernabei et al. 2003) and adults (Leighton 
et al. 2008) with autism (for review see Williams et al. 2001). Because deferred imitation tasks have yielded 
conflicting results (Rogers et al. 2008; Dawson et al. 1998), the contribution of working memory deficits to 
impaired imitation is unclear in this population and indeed, imitation tasks alone cannot discriminate between 
deficits in working memory, sensory information processing, and/or motor execution. In contrast, mirror 
drawing—when compared to drawing with direct view of the hand—can differentiate deficits in motor 
execution from deficits in visuospatial information processing underlying the transformation of goals into action. 
Although mirror-drawing has been studied in adults with autism including savants and non-savants (Hermelin et 
al. 1994), this task has not been studied in non-savant autistic children, who constitute the overwhelming 
majority of children diagnosed with autism, nor has it been used to compare the performance of individuals with 
autism to that of persons without autism. We hypothesize that children with autism differ from typically 
developing children in how they process sensory information to transform visuospatial goals into action. 
Moreover, if deficits in visuospatial information processing contribute to performance deficits in imitation, then 
mirror drawing performance should correlate with performance in imitation. 
 

Methods 
Participants 
Twenty-seven children participated in this pilot study. Thirteen had diagnoses of autism spectrum disorder (ASD: 
autistic disorder, Asperger’s disorder, or pervasive development disorder- not otherwise specified) [2 female; 
aged 14.5 ± 1.6 years, mean ± standard deviation (here and elsewhere)] and 14 were typically developing (TYP) 
[3 female; aged 13.1 ± 1.3 years]. Children were recruited using online advertisements and by word-of-mouth 
within the Marquette University community. All children participated after informed assent and informed 
parental consent. All procedures were approved by Marquette University’s institutional review board in 
compliance with the Declaration of Helsinki. 
 
Social status was assessed with the Barratt Simplified Measure of Social Status (Barratt 2006). The ASD and TYP 
subject groups overlapped substantially in age and social status. Handedness was assessed with the Edinburgh 
Handedness Inventory (Oldfield 1971): right-handed (LI > 40), ambidextrous (−40 ≤ LI ≤ 40) and left-handed 
(LI < −40). Intelligence quotients (IQ) were measured with the Kaufman Brief Intelligence Test, second edition 
(KBIT2; Kaufman and Kaufman 2004). On average, the ASD and TYP groups had average intelligence quotients 
(IQ: 85 to 115) with no difference between groups in verbal (t (24) = −1.27; p = 0.216), nonverbal (t (25) = −1.09; 
p = 0.284) or total (t (24) = −1.24; p = 0.227) scores. (One TYP child was a non-native speaker of English, so his 
verbal/total KBIT2 scores were dropped). Autism or autism spectrum diagnoses were confirmed with the Autism 
Diagnostic Observation Schedule (ADOS; Lord, Rutter and Le Couteur 1994): a total score ≥ 7 confirmed 
presence of an autism spectrum disorder (n = 4) and a score ≥ 10 confirmed a diagnosis of autistic disorder 
(n = 9). Group statistics for age, sex, handedness, social status, KBIT2, ADOS, and medication are presented in 
Table 1. 
 

Table 1. Participant characteristics 
 

Group Participant Age Sex Laterality SS KBIT2 ADOS Medication  
     T (V, N) T (C, S) 

 

ASD 1 12.6 M 90 48 87 (84, 93) 10 (4, 6) – 
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2 13.0 M −54 60 127 (129, 

117) 
8 (1, 7) AD, AH 

 
3 14.7 M −100 59 104 (87, 119) 14 (5, 9) S  
4 13.8 M 100 38 81 (89, 78) 17 (6, 

11) 
AD 

 
5 11.4 M 100 21 107 (117, 95) 20 (6, 

14) 
– 

 
6 15.5 M 30 34 106 (100, 

110) 
7 (1, 6) AD 

 
7 16.4 F 0 45 101 (92, 109) 18 (6, 

12) 
– 

 
8 15.8 M 89 42 102 (106, 96) 9 (3, 6) AC, AP, AD  
9 15.9 M −18 51 110 (116, 

100) 
10 (3, 7) S 

 
10 15.4 F 100 64 114 (97, 126) 11 (3, 8) AD  
11 16.1 M 50 61 101 (102, 

100) 
12 (4, 8) S 

 
12 15.1 M 50 22 99 (112, 85) 11 (3, 8) AD  
13 12.7 M 26 31 115 (117, 

108) 
7 (2, 5) AD 

 
M ± SD  14.5 ± 1.6  –  36 ± 64  44 ± 14  104 ± 12  12 ± 4  –  

TYP 1 13.8 M 0 62 120 (120, 
114) 

– – 
 

2 11.0 F 100 48 94 (95, 95) – –  
3 11.6 M 90 62 * (*, 117) – –  
4 11.2 F 88 66 139 (130, 

139) 
– – 

 
5 14.5 M 58 66 116 (122, 

105) 
– – 

 
6 13.8 M 79 39 109 (101, 

117) 
– – 

 
7 14.7 M 100 53 104 (101, 

105) 
– – 

 
8 15.3 F 53 42 106 (108, 

104) 
– – 

 
9 12.7 M 88 66 117 (121, 

108) 
– – 

 
10 14.4 M 89 66 109 (111, 

104) 
– – 

 
11 12.5 M 80 18 125 (124, 

118) 
– – 

 
12 12.9 M 79 66 82 (94, 75) – –  
13 12.6 M 100 46 116 (105, 

122) 
– – 



 
14 12.8 M 100 32 100 (100, 

100) 
– – 

 
M ± SD  13.1 ± 1.3  –  79 ± 27  52 ± 15  111 ± 14  –  –  

* Non-native English speaking participant 
 
ASD autism spectrum disorder, TYP typically developing, SS social status, KBIT2 Kaufman Brief Intelligence Test, 
2nd Edition, ADOS Autism Diagnostic Observation Schedule, V verbal, N nonverbal, T total, C communication, S 
social, M male, F female, AD anti-depressant, AH anti-hypertensive, S stimulant, AC anti-convulsant, AP anti-
psychotic, M mean, SD standard deviation 
 

Experimental Procedures 
Each participant performed two experiments testing visually-guided, goal-directed motor performance in a 
single session lasting ~30 min. The experiments were designed to evaluate whether motor coordination deficits 
in autism arise from deficits in the formation of visuospatial representations of movement goals and/or in the 
utilization of these representations to guide ongoing movement. 
 

Experiment 1: Gesture Imitation 
Participants stood and watched a 12-min “interactive” video of a demonstrator who faced the camera and 
performed a set of 52 different discrete non-meaningful gesture sequences with the hands and arms. Gestures 
were presented one at a time in video form so that the demonstrated “target” gestures were the same for all 
participants. Target gestures were comprised of primitive elements including hand shape and sequences of 
movements with one or both arms. Hand shapes were derived from American Sign Language (“1”, “5”, “8”, “S”, 
“V” and “W”) and movements involved one (n = 38) or both (n = 14) arms. Single-handed movements were 
made with the demonstrator’s right hand. On average, each gesture’s video clip lasted 5 s. After each clip, the 
word ‘Copy’ appeared on a black background for 8 s, instructing participants to imitate the gesture they had just 
observed. Thus, participants were required to commit the demonstrator’s gesture to memory and then use that 
memory to guide production of their own hand and arm movements. No guidance was provided as to how 
participants should imitate the gestures, only that they should “do exactly what the demonstrator did” and thus 
the task was “goal-directed” because the participants’ goal was to replicate the demonstrated movement. After 
imitating each gesture, participants were encouraged to resume a neutral position with arms at their sides. Each 
participant’s movements were videotaped for later analysis of movement kinematics, as described below. 
 

Experiment 2: Shape Tracing With Direct and Mirrored Feedback 
Participants sat at a desk upon which six sheets of white paper were placed in succession. Each sheet was 
imprinted with a black outline of a 13 × 13 cm2 geometric shape (circle, square or 5-point star). The paper was 
centered along the subject’s midline, with the bottom edge located 10 to 20 cm from his or her torso. 
Participants were to trace the shape with a blue pen using their dominant hand while the arm rested in a 
lightweight, low-friction, chair-mounted arm support that eliminated tactile feedback between the arm and 
tabletop (MASF friction controlled mobile arm support, Jaeco Orthopedic, Inc.). Participants were instructed to 
start and stop their traces within a gray circle (5 mm diameter) printed on the perimeter of the shape. Each 
shape was traced twice, once with direct visual feedback and once with mirror feedback. During direct visual 
feedback, participants traced with direct view of their hand. During mirror feedback, an opaque shield hovered 
above the pen, blocking direct view of the hand; participants viewed their hand in a vertical mirror situated 
opposite their dominant hand, causing leftward motions to appear as moving to the right, and vice versa. The 
order of shapes and viewing conditions was randomized across participants. If participants could not return to 
the starting position or if they did not comply with task instructions, they were allowed to repeat the drawing. 
Time to complete each drawing was recorded with a stopwatch. Data from three participants (ASD5, TYP2, and 
TYP11) were discarded due to inability or unwillingness to comply with task instructions. 



 

Data Analysis 
For gesture imitation, the children’s ability to spatially align their limb segments and the motions of these 
segments with remembered target gestures was analyzed. The demonstrator was viewed from the front (i.e. 
facing the camera) and thus, target gestures were observed within a spatial reference frame rotated 180º from 
the subject’s body-image reference frame. As such, participants might adopt one of two viable imitation 
strategies. Participants could assume the demonstrator’s perspective (an anatomical strategy requiring rotation 
of the target gestures into the subject’s own body-image reference frame) or they could copy the movements as 
if in a mirror (a specular strategy requiring left–right reflection). Each child’s videotaped trials were scored for 
quality in up to five performance categories (not all categories were appropriate for each demonstrated trial; 
see Table 2): (1) limb selection (anatomical, specular or unclear); (2) hand path/sequencing direction (accurate or 
inaccurate in accord with limb selection); (3) number of path strokes (accurate, greater than or less than 
demonstrated); (4) hand shape (accurate or inaccurate with respect to that demonstrated); and (5) hand 
orientation (accurate or inaccurate). We assumed that hand path/sequencing direction followed the strategy 
established by limb selection (Medendorp et al. 2005); therefore, path direction accuracy was defined with 
respect to the limb chosen by the subject for each individual trial. Three raters (first author and two raters who 
were blind to the study hypotheses and subject groups) evaluated each child’s performance in each category. 
Inter-rater reliability was assessed with Fleiss’ kappa and a majority vote of the three raters’ scores produced a 
single score for each trial of each subject. For limb selection, we report the number of children in each group 
who chose the anatomical limb for the majority of trials. For the remaining four measures, we report the 
percentage of accurate trials out of the total number of trials per category. Performance measures were 
compared across groups using Analysis of Covariance (ANCOVA) with age, sex, and medication status (ON- or 
OFF-meds) as cofactors. Multiple correlation analysis was used to determine if total KBIT2 or ADOS scores 
correlated with any performance measure for either group. 
 
Table 2. Categories of gesture imitation 

Movement 
description 

  Scoring 
categories 

    

  Movement type # of 
trials 

Limb 
selection 

Path 
direction 

Path 
strokes 

Hand 
shape 

Hand 
orientation   

(n) (46) (26) (32) (52) (52) 
Unimanual Raise the hand by 

bending at the elbow 
12 X     X X 

 
Push the hand forward 2 X     X X  
Raise the hand, then 
open/close the fingers 

4 X     X X 
 

Abduct/adduct the 
fingers 

2 X     X X 
 

Move the hand about 
an arc by rotating at 
the elbow 

2 X X X X X 

 
Pronate/supinate the 
forearm 

4 X X X X X 
 

Sequentially 
flex/extend the fingers 

2 X X X X X 
 

Trace an invisible shape 10 X X X X X 
Bimanual Alternate rotation of 

the hands 
6     X X X 

https://link.springer.com/article/10.1007%2Fs10803-012-1631-8#Tab2
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Move right hand 
up/down over the 
stationary left hand 

4 X X X X X 

 
Move left and right 
hands in opposing 
paths 

4 X X X X X 

 
For shape tracing, the children’s ability to minimize error between their drawing and the printed template was 
analyzed. Drawings were scanned to color JPEG files (200 × 200 dpi) and processed within the MATLAB 
computing environment (The Mathworks Inc., Natick, MA). Shape templates were separated from pen drawings 
with a color threshold. Shape templates were low-pass filtered and both images were converted to binary 
format ( imfilter and imcomplement functions). The lines of each image were thickened ( imdilate function) 
using a 9 × 9 square structure element ( strel function). The centroid of the shape template was identified ( 
bwlabel and regionprops functions) and 360 equally spaced “sample points” were placed around the template’s 
perimeter. The minimum distance between each sample point and any pixel in the pen drawing was computed 
and these distances were summed to yield a conservative measure of path error. Movement time and path 
error were averaged across shapes within participants for each viewing condition. 
 
We analyzed performance separately for the direct viewing and mirror viewing conditions. During direct 
viewing, movement time and error from both subject groups were normally distributed. Therefore, performance 
measures were compared across groups using ANCOVA with age, sex, and medication as cofactors. During 
mirror viewing, data from the TYP group were normally distributed whereas data from the ASD group were non-
Gaussian with error concentrating on either side of mean ± one standard deviation of the TYP distribution. 
Therefore, to assess whether ASD children differ from TYP children in how they transform visuospatial goals into 
action, we transformed path error and movement time data into |z|-scores (a Mahalanobis distance) on the TYP 
distribution for both subject groups: 
 

|𝑧𝑧𝐴𝐴𝐴𝐴𝐴𝐴| = | 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴−𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇
𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇

|   (1) 

 

|𝑧𝑧𝑇𝑇𝑇𝑇𝑇𝑇| = | 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇−𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇
𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇

|.  (2) 

 
In each case, x corresponds to the independent variable of interest (path error or movement time), subscripts 
indicate the subject group, whereas 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇 and 𝜎𝜎𝑇𝑇𝑇𝑇𝑇𝑇 are the mean and standard deviation of the TYP 
distribution, respectively. Because Mahalanobis distance is strictly non-negative, the |z|-scores of movement 
time and path error were normalized prior to statistical testing using a Box-Cox transformation [λ = 0; 
BC = ln(|z|)] (Box and Cox 1964). ANCOVA was used to compare group performance in the mirror viewing 
condition with age, sex, and medication as cofactors. Multiple correlation analysis determined whether total 
KBIT2 or ADOS scores were correlated with raw performance measures during direct viewing or with normalized 
|z|-score measures during mirror viewing. Linear regression evaluated the relationship between the un-
normalized tracing error and duration data within each subject group. Finally, linear regression determined 
whether mirror drawing error could predict un-normalized performance in any of the imitation measures within 
each group. Statistical tests were performed using Minitab (Minitab, Inc., State College, PA) and SPSS (IBM, 
Armonk, NY) software. As this was a pilot study, we did not correct for multiple comparisons (i.e. effects were 
considered statistically significant at the p = 0.05 threshold). 

https://link.springer.com/article/10.1007%2Fs10803-012-1631-8#CR5


Results 
Gesture Imitation 
Each child responded to each demonstrated gesture. The three raters achieved significant inter-rater reliability 
(p < 0.001) for each of the performance categories: limb selection [98 % agreement; κ = 0.97], path direction 
[83 % agreement; κ = 0.75], number of path strokes [78 % agreement; κ = 0.69], hand shape [86 % agreement; 
κ = 0.63], hand orientation [81 % agreement; κ = 0.54]. Nine out of 13 children in the ASD group and 12 of 14 
TYP children chose the anatomical limb in at least half of the movements. Compared to the TYP group, the ASD 
group had fewer accurate movements as quantified by: hand shape [TYP = 89 ± 7 %, ASD = 83 ± 8 %; ANCOVA: 
F(1,22) = 10.55, p = 0.004], hand orientation [TYP = 93 ± 5 %, ASD = 77 ± 16 %; ANCOVA: F(1,22) = 29.64, p < 0.001] 
and correct number of path strokes [TYP = 80 ± 7 %, ASD = 61 ± 21 %; ANCOVA: F(1,22) = 17.05, p < 0.001] (Fig. 1). 
Children in the ASD group were as likely to produce more path strokes than needed as they were to produce 
fewer path strokes than needed [MORE = 22 ± 23 %, FEWER = 17 ± 12 %, t (24) = 0.77, p = 0.449]. Age was a 
significant cofactor for hand shape (F(1,22) = 5.18, p = 0.033) and medication status was significant for hand 
orientation (F(1,22) = 9.63, p = 0.005) and number of path strokes (F(1,22) = 5.14, p = 0.033). Limb selection scores 
revealed that children did not frequently switch between anatomical and specular strategies when transforming 
visual goals into motor actions (Fig. 1a). There was no difference between groups in the choice of hand path 
direction as defined by the selected limb [TYP = 68 ± 11 %, ASD = 65 ± 17 %; ANCOVA: F(1,22) = 0.09, p = 0.766]. 
Total KBIT2 scores were positively correlated with hand shape performance (Pearson’s r = 0.516, p = 0.046) in 
the ASD group and positively correlated with hand orientation (Pearson’s r = 0.742, p = 0.004) in the TYP group. 
 

  
 
Fig. 1 
Gesture imitation. a Histograms of percent limb selection for ASD participants (filled) and TYP participants (open) 
and b mean percentage of accurate movements for children with autism [ASD, filled] and typically developing 
children [TYP, open] during imitation for each scoring category. Dotted lines indicate separation between groups 
here and elsewhere. Vertical error bars: ± 1 SEM. *p < 0.005 
 

https://link.springer.com/article/10.1007%2Fs10803-012-1631-8#Fig1
https://link.springer.com/article/10.1007%2Fs10803-012-1631-8#Fig1
https://media.springernature.com/original/springer-static/image/art%3A10.1007%2Fs10803-012-1631-8/MediaObjects/10803_2012_1631_Fig1_HTML.gif


Five children with ASD but none of the TYP children exhibited perseveration in at least one of the movements 
(i.e. they moved their hand repeatedly along an erratic path). Even though all the demonstration gestures 
incorporated simultaneous hand shape formation and limb movement, many children in both groups performed 
gestures using separate postural adjustment and movement phases. That is, they copied the demonstrator’s 
hand shape prior to limb movement while directly looking at their own hand, then they completed the arm 
movements in a second, distinct phase. For the unimanual gestures, one child in the ASD group repeatedly 
copied the demonstrator’s hand shape with his left hand while watching the demonstration, then made the 
movement during the ‘Copy’ screen using his right hand and arm. 
 

Shape Tracing 
To address the question of whether the ASD group differed from the TYP group in their ability to execute shape-
tracing tasks, we assessed group differences in path error (TYP = 985 ± 558 mm, ASD = 819 ± 547 mm) and 
movement time (TYP = 16.1 ± 8.9 s, ASD = 23.1 ± 9.9 s) in the direct viewing condition. We found that when the 
hand was viewed directly, performance of shape tracing was similar across groups (Fig. 2) for both path error 
[ANCOVA: F(1,19) = 0.97, p = 0.337] and movement time [ANCOVA: F(1,19) = 2.26, p = 0.150]. No cofactor exerted 
significant influence over movement time or error. 
 

  
 
Fig. 2  
Shape tracing (direct view). a Drawings [thick, gray lines] and shape templates [thick, black lines] from a 
representative child with autism (ASD1) and a typically developing child (TYP1). Path error was computed as the 
sum of deviations [thin, gray lines] from 360 equally-spaced sample points along the template path. b Linear 
regressions of path error as a function of movement time for ASD (filled, solid line) and TYP (open, dashed line) 
groups. Grey dotted lines represent x¯TYP±σTYP. c Histograms of path error and movement time 
 
To determine whether the ASD group deviated from the TYP group in their capacity for visuospatial information 
processing during shape-tracing, we assessed group differences in path error and movement time in the mirror 
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viewing condition. Here, hand path errors and movement times were generally greater than those obtained 
during direct viewing (Fig. 3). But whereas path errors were normally distributed in the TYP group 
(3831 ± 2025 mm), the distribution of errors deviated from normality in the ASD group. Only 5 out of 12 ASD 
participants had path errors within ± 1 standard deviation (SD) of the TYP group: 5 were above and 2 were 
below that range. A similar group-wise difference in the distributions of movement times was also observed. 
Altogether, 8 of 13 ASD participants had mirror drawing errors and/or movement times outside the range 
established by the TYP group mean ± 1 SD (Fig. 3b, top). 
 

  
 
Fig. 3  
Shape tracing (mirror view). a Drawings, shape templates and path deviation measures from a representative 
child with autism who had low error [left; ASD6], a child with autism who had high error [middle; ASD1] and a 
typically developing child with a median level of error [right; TYP1]. Path errors were computed as described in 
Fig. 2. Regions of perseveration are highlighted with arrows. b Path error as a function of movement time for 
ASD and TYP groups. Grey dotted lines represent x¯TYP±σTYP, c Histograms of Box-Cox normalized |z|-scores 
related to path error and movement time 
 
To quantify how much the ASD group deviated from average TYP performance, we converted movement time 
and path error to |z|-scores in each group and then used a standard Box-Cox transformation [ln(|z|)] to 
normalize each distribution (see Methods). ANCOVA found that ASD participants generated path errors that 
were outside the distribution of the TYP group during mirror drawing [Box-Cox transformed |z|-scores: 
TYP = −0.51 ± 0.84, ASD = 0.43 ± 1.77; ANCOVA: F(1,19) = 4.59, p = 0.045]. This outcome lends preliminary support 
to the hypothesis that children with ASD differ from TYP children in how they process sensory information to 
transform visuospatial goals into action. A separate ANCOVA found no effect of group on movement time. Age, 
sex, and medication status were not significant cofactors for any |z|-score performance measure. 
 
Path error was correlated with total KBIT2 scores in the ASD group during direct viewing (Pearson’s r = −0.603, 
p = 0.038) but there was no such correlation between path error and total ADOS scores nor was there a 
relationship between path error and KBIT2 in the TYP group. Movement time was uncorrelated with total KBIT2 
scores in both groups and movement time was uncorrelated with total ADOS scores in the ASD group. Path error 
|z|-scores were correlated with total KBIT2 scores in the TYP group (Pearson’s r = −0.761, p = 0.007) but neither 
KBIT2 nor ADOS scores were correlated with path error |z|-scores in the ASD group during mirror viewing. 
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Movement time |z|-scores were not correlated with total KBIT2 scores in either group and were uncorrelated 
with ADOS scores in the ASD group. We found an inverse relationship between error and movement time in 
both groups during direct viewing [TYP: F(1,11) = 16.44, t (11) = −4.05, p = 0.002; ASD: F(1,11) = 6.13, t (11) = −2.48, 
p = 0.031], but not during mirror viewing. 
 
One child with autism (ASD1) exhibited ‘perseverative’ movements in which the pen was moved repeatedly in 
quasi-random motions (Fig. 3, arrows). Another child with autism (ASD3) incrementally pivoted the pen and 
hand while correcting for errors (a motion resembling that of an inchworm); this data was discarded and he 
repeated the task (without pivoting the hand) on a second day’s visit to the lab. In addition, six children with 
ASD and four children in the TYP group periodically ‘jittered’ the pen during mirror drawing. The three ASD 
children who had been using stimulants achieved errors within one SD of the mean of the TYP group. 
 
We tested the hypothesis that deficits in visuospatial information processing can predict imitation performance 
deficits by evaluating the relationship between mirror drawing error and each imitation sub-score using linear 
regression for each subject group. Mirror drawing error was correlated with hand orientation during imitation in 
the TYP group (R 2 = 72 %, t = 5.13, p < 0.001; Fig. 4a). A similar relationship was evident for the ASD participants 
(R 2 = 48 %, t = 2.86, p = 0.019; Fig. 4a) if we exclude the only ASD subject (ASD8) taking anti-psychotic and anti-
convulsant medications at the time of the study and whose performance was inconsistent with the trend 
between mirror drawing error and hand orientation established by the TYP group. Similarly, we find that mirror 
drawing error was correlated with deficits in hand shape formation in the ASD group (R 2 = 67 %, t = 4.31, 
p = 0.002; Fig. 4b). Thus, children who produced large mirror drawing errors also made more hand orientation 
errors in the imitation task in both groups and children with ASD who made large mirror drawing errors also 
made large hand shape errors during imitation. No other imitation scores were correlated with mirror drawing 
error. 
 

  

Fig. 4  
Mirror drawing errors correlate with gesture imitation performance. a Hand orientation was correlated with 
mirror drawing error in the TYP group (left, open) and the ASD group (right, filled). One child who took three 
medications (including an anti-psychotic and an anti-convulsant) on the day of the study (ASD8, *) did not 
perform in a manner consistent with the trend between mirror drawing error and hand orientation established 
by the TYP group and was dropped from the regression. b Hand shape was also correlated with mirror drawing 
error in the ASD group (right, filled) 
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Discussion 
Gesture imitation and mirror drawing revealed abnormalities in the way children with ASD transform visually-
specified goals into motor actions. During imitation, children with ASD were less accurate than TYP children in 
replicating hand shape, hand orientation, and number of constituent limb movements. These children likely did 
not suffer generally from problems with motor execution because they traced shapes with speed and accuracy 
comparable to that of TYP children when viewing the hand directly. However, when viewing the hand in a 
mirror, the magnitudes of errors in the ASD group were largely outside the distribution of errors made by the 
TYP group. Some ASD participants performed better than TYP children whereas others performed much worse. 
Moreover, mirror drawing error was correlated with hand orientation and hand shape deficits in imitation, 
suggesting that the ability to adapt to a new sensorimotor transformation was abnormal in children with ASD in 
both tasks. These results suggest that abnormalities in visuospatial information processing may contribute to 
functional motor coordination deficits in ASD. 
 
Imitation is an important skill for child development (Rogers et al. 2003) and ability to perform imitation tasks is 
correlated with social responsivity (Rogers et al. 2003) and expressive language skills (Stone, Ousley and 
Littleford 1997) in children with autism. Imitation deficits distinguish children with autism from those with other 
developmental disorders (Rogers et al. 2003; Stone, Ousley and Littleford 1997). Imitation, as studied here, is a 
complex behavior that requires directed attention and the ability to identify, remember, and execute 
movements toward visuospatial goals. The deficits we observed during imitation were not likely due to an 
inability to attend to the instructed task, because each child attempted to imitate every instructed gesture 
during the cued “copy” interval. During hand shape formation and orienting, the children had to transform a 
two-dimensional representation of the demonstrator’s hand into the three-dimensional configuration of their 
own hand, and ASD children made more errors than TYP children. These aspects of task performance require 
(but cannot differentiate between) the identification, memorization, and recall of visuospatial goals, as well as 
execution of actions appropriate to acquire those goals. Reproducing the correct number of hand path strokes 
during imitation also requires the encoding, recall, and execution of a sequence of movements between a set of 
desired spatial goals; ASD children underperformed the TYP cohort in this respect as well. In contrast, limb 
selection was a cognitive choice with no clear “right” or “wrong” classification. Most children (ASD and TYP) 
chose the anatomical limb to perform the instructed gesture in most trials, and given that choice, ASD and TYP 
children were equally consistent in directing limb movements commensurate with their selected strategy. In 
contrast, Hamilton, et al. (2007) found that young children (ASD and TYP) were more likely to use the specular 
limb in a task that followed an earlier experiment in which mirror imitation was required. Therefore, limb 
selection may be influenced by prior instructions and practice. 
 
Imitation is also impaired in ASD when visual feedback is unavailable (oral-facial imitation, Rogers et al. 2003). A 
potential limitation of our imitation task is that we did not evaluate performance without ongoing visual 
feedback of limb movement and hand shape formation. As such, we cannot determine conclusively whether the 
imitation deficits we observed were due to deficits in the ability to adapt the visuospatial sensorimotor map 
needed to transform intended movements into motor commands or whether they were due to deficits in the 
moment-by-moment visual feedback guidance of an ongoing movement, which relies on that transformation. 
Future studies should include a condition in which ongoing visual feedback is unavailable. 
 
Mirror drawing is neither typically encountered in daily life nor ecologically relevant, but it can differentiate 
deficits of attention and motor execution from those of visuospatial representation, particularly when 
contrasted with shape tracing performance during direct viewing. Group differences in error compensation 
during mirror viewing were not likely due to general deficits in either attention and/or the ongoing visual 
feedback guidance of movement (i.e. motor execution) because we found no group differences in shape tracing 
with direct view of limb movement. However, the pattern of mirror drawing errors we observed suggests 
differences in how the TYP and ASD groups form the sensorimotor maps needed to transform visuospatial goals 
into motor commands. Participants in both groups periodically “jittered” the pen, presumably in an attempt to 
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identify the novel visuospatial transformation imposed by the mirror. Jittering the pen effectively injects noise 
into the limb/pen system (Miall, Weir and Stein 1993) and by monitoring the (visual) consequence of that action, 
the participant can identify motor commands that achieve the goal under the new visuospatial transformation 
[i.e. by learning an inverse of the mapping from motor commands onto their kinematic consequences (cf. Liu et 
al. 2011)]. 
 
Viewing the hand in a mirror establishes unusual conflict between how vision and proprioception (muscle-based 
limb position sense) report the direction of hand movement in response to descending motor commands. Thus 
another possible strategy to compensate for sensorimotor transformation is to modify the relative contributions 
of vision and proprioception for motor command updating. During mirror drawing, if proprioception is blocked 
transiently (transcranial magnetic stimulation: Balslev et al. 2004) or chronically (deafferentation: Lajoie et al. 
1992) adults perform with less error than when proprioception is available. Previous research (Hermelin and 
O’Connor 1970) has shown that sensory dominance and integration are abnormal in children with autism. Thus, 
a plausible explanation for differences in mirror drawing seen here is that some children with ASD favored visual 
cues and were thus better able to reduce errors (Fig. 3a, ‘Low Error’) while others ignored visual errors in favor 
of proprioceptive cues, thereby producing large errors during mirror drawing (Fig. 3a, ‘High Error’). Future 
studies of visuospatial learning in ASD should include assessment of visuo-proprioceptive bias, which might help 
explain the elevated motor performance variability observed in this participant group. 
 
Importantly, abnormalities in mirror tracing in ASD predicted deficits of hand orientation and hand shape during 
imitation, raising the possibility of a common etiology of errors in the two tasks. Imitation and mirror drawing 
engage the frontal lobes [Brodmann area 45 (Iacoboni 2005) and dorsolateral prefrontal cortex (Imamura et al. 
1996)], which are important for executive function and which exhibit anatomical and functional abnormalities in 
children with ASD (Courchesne and Pierce 2005). It is likely that physiological abnormalities of the frontal lobes 
contribute importantly to visuospatial performance deficits in ASD. Rumiati et al. (2005) propose that imitation, 
specifically, involves distinct neural processes involved in the recall and execution of over-learned “meaningful” 
actions and the transformation of novel but “meaningless” visuospatial targets into actions. Our study only 
involved reproduction of “meaningless” actions and so we feel our findings can only speak to possible 
impairment of the dorsal processing stream identified by Rumiati et al. (2005), which includes brain regions 
thought to be involved in the representation of visual goals in proprioceptive coordinate frames (i.e. parietal 
association areas; cf. Grefkes et al. 2004) as well as areas more directly involved in goal-directed action (ventral 
premotor and primary motor cortices). 
 
In summary, the results of this pilot study support the hypothesis that impaired visuospatial information 
processing is a cause of functional coordination deficits in children with ASD. Future studies should be 
conducted to test these preliminary findings in a larger cohort of ASD participants using experimental 
approaches specifically designed to quantify the ability to process visuospatial information during goal-directed 
movement while controlling for abnormalities (and/or bias) in multimodal sensory integration. 
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