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Abstract 
The structures and optoelectronic properties of tricarbonylrhenium(I) complexes of di(2-pyrazolyl-p-tolyl)amine 
in its neutral and deprotonated (uninegative amido) form were investigated. Reactions of the complexes with 
Brønsted acids or bases result in distinctive changes of colour and electrochemical activity owing to the non-
innocent nature of the ligand. 
 

 

Introduction 
Simple chemical species that can be dependably switched between multiple, easily-distinguishable (readable), 
electronic states by external stimuli and that retain their integrity without the need for permanent stimulation 
are highly desirable for information storage applications in the emerging area of molecular electronics.1 
Numerous organic systems such as diarylethenes, flavylium derivatives, among other more complex examples 
have been recognized or developed for such purposes.2 Recently, there has been growing interest in developing 
similar chemistry for organometallic systems owing to the attractive electronic properties associated with metal 
centres such as access to multiple oxidation states, different spin states, intense charge transfer absorptions, 
and large spin–orbit coupling constants that can potentially give rise to interesting photophysical properties.3  
 
During the course of our investigations into the coordination chemistry of new pincer ligands4 (typically 
meriodonally-coordinating and uninegative species) based on di(2-pyrazolyl-aryl)amine derivatives (left, Fig. 1), 
it occurred to us that a few of these complexes might be viable entrants for switching purposes and possibly for 
information storage applications owing to their interesting optoelectronic properties and chemical reactivity. 
That is, as diarylamines are well-known electron-donors,5 pincer ligands based on this scaffold are 
electrochemically non-innocent;6 they will increase the number of available valence states in their transition 
metal complexes. Moreover, since the electron donor capacity of these ligands relies on nitrogen being 
coordinatively unsaturated (with a lone pair of electrons), it should be possible to attenuate energetic access to 
electronic states involving this lone pair (such as any n–π* or dπ–pπ interaction) via quarternization (binding 
protons or other Lewis acids). Our choice of using pyrazolyl donors is based on the facile syntheses of nearly 
limitless structural variants that can be exploited to impart control over steric, electronic, and solubility 
properties (by changing pyrazolyl Rgroups in Fig. 1). During the course of these studies an important 
contribution was reported by Ozerov, Nocera, and co-workers7 regarding a related complex mer-(PNP)ReI(CO)3 
(A) (R = iPr; X = Me, right of Fig. 1). The yellow complex A was found to react with triflic acid to produce the 
colorless {mer-[H(PNP)]Re(CO)3}(OTf) (B) with a protonated nitrogen. Additionally, oxidation of A with AgOTf 
afforded royal blue {mer-[(PNP)]Re(CO)3}(OTf) (A+OTf−). The IR, EPR spectroscopic data and chemical reactivity of 
A+OTf−were indicative of a ligand-centred radical (with relatively weak coupling to the metal centre). The 
potential switching behaviour of A (or B), however, was not addressed despite the interesting colour changes 
and reversible redox properties.  
 

 

Fig. 1 Generic depiction of a metal complex of a NNN ‘pincer’ ligand based on di(2-pyrazolyl-aryl)amine and of a 
related PNP derivative.  
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In this communication we highlight our initial findings concerning the properties and potential switching 
behaviour of the Re(CO)3 complexes of di(2-pyrazolyl-p-tolyl)amine, HL, (R3 = R3′ = R4 = R4′ = H; X = Y = CH3, Fig. 
1). Importantly, this study also allows a comparison of the impact of changing donor groups at the 2,2′-positions 
on the diarylamine on the electronic properties of resultant (NNN)ReI(CO)3 or (PNP)ReI(CO)3 complexes. Future 
reports will more fully detail the chemistry promoted uniquely by complexes of this ligand type (and substituted 
derivatives) as well as comparisons with the remarkable known chemistry exhibited by related PNP derivatives.8  
 
As detailed in the Electronic Supplementary Information (ESI†), the pincer ligand HL is prepared in two steps 
from commercially-available di(p-tolyl)amine by first ortho-bromination with elemental bromine to give (2-Br-p-
tolyl)2NH.9 Subsequently, a CuI-catalyzed amination reaction of the latter with pyrazole gives the desired ligand 
in 70% yield.10 The amination reaction appears to occur stepwise, as small amounts of (2-pz-p-tolyl)(2-Br-p-
tolyl)NH can be isolated from incomplete reactions. As anticipated, HL is an electron donor giving an irreversible 
oxidation (ipc/ipa∼ 0.6; ΔE∼ 490 mV) at about 0.59 V versusFc/Fc+ in CH2Cl2. The syntheses and structures of the 
various fac-ReCO3 complexes is partly summarized in Fig. 2 and expanded upon in the ESI. †The colourless 
toluene-insoluble fac-ReBr(CO)3[κ2N-(HL)] (1) is obtained in high yield by the reaction between the ligand and 
Re(CO)5Br in toluene. In 1, the ligand binds rhenium in a cis-chelating fashion through two of the three nitrogen 
donors, one from a pyrazolyl arm and the other from the sp3-amino nitrogen, giving a pseudo-octahedral 
ReBrC3N2 kernel. Reaction of 1 with Tl(X = PF6 or OTf) in CH3CN affords high yields of very pale yellow {fac-
Re(CO)3[κ3N-(HL)]}(X) (2·X or simply 2) where the ligand is facially-bound to rhenium with all three of its available 
nitrogen donors. Reaction of either 1 or 2·PF6 with one equivalent of (NE4)(OH) in CH3CN immediately causes 
elimination of H2O and (NEt4)(Br or PF6) to produce bright yellow fac-Re(CO)3[κ3N-(L)] (3) with a nearly planar 
central amido nitrogen (Σ∠'s about N1 = 356°). It is noted that the low thermal stability of the lithium saltLiL 
(dec. > −15 °C) precluded the direct synthesis of 3 from Re(CO)5Br, similar to the preparation of the related PNP 
complex A. It is re-emphasized that in contrast to the PNP derivatives which possess mer-ReCO3 cores, the 
complexes of HL have only exhibited fac-ReCO3 moieties regardless of the synthetic route. As such, the three C–
O stretches of each 1–3 (Table 1) are consistent with the low symmetry of the complexes and the average 
stretching frequencies decrease in the order 2 > 1 > 3 in accord with expectations based on the increasing 
electron density at metal centres (and greater back-bonding). Interestingly, the IR data (KBr) for 2 and those 
reported for B are nearly identical despite the very different donor sets and the data for A are more consistent 
with those of 1 than those of 3. These observations can be reconciled by considering the trans-influence of 
different groups in the fac- versus mer-complexes.  
 
Table 1 IR and electrochemical data for various Re(CO)3 complexes  

Compound νC–O cm−1a,c E1/2 (V vs.Fc/Fc+)b 
1 2021, 1919, 1882; avg 1941 irr. Epa = +1.07, +0.67, +0.23 
2 2042, 1952, 1928; avg. 1974 irr. Epa = +1.17 
3 2013, 1901, 1876; avg. 1930 0.00 
Ac 2026, 1909, 1891; avg. 1942 -0.25 
Bc 2048, 1943, 1928; avg. 1973 irr. Epa = +0.93 

a. KBr pellet. 
b. CH2Cl2 (1–3) or CH3CN (A & B), 100 mV s−1, TBAH. 
c. Ref. 7 
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Fig. 2 Syntheses and structures of fac-Re(CO)3 complexes (ORTEP Ellipsoids drawn at 50% probability). Anion 
removed from 2·PF6 for clarity. Key: i. 1 eq. (NEt4)(OH) in MeOH, CH3CN, 15 min (69%); ii. Tl(PF6 or OTf), CH3CN, 
12 h (80%).  
 
Similar to the electrochemistry reported for PNP complexes A and B, that of 3 is distinct from its protonated 
derivatives 2·PF6 or 1 (Table 1). Complex 3 shows a quasi-reversible oxidation11 in CH2Cl2 at 0.00 V versusFc/Fc+ 
(ipc/ipa = 1, but ΔE = Epa−Epc increases as a function of scan rate) whereas the other two complexes have 
irreversible oxidations (ipc/ipa≪ 1 and ΔE≫ 59 mV) at higher potentials. These ligand-based oxidations in A or B 
are understandably more favourable than those in 3 and 2 given the relative inductive effects of 
PR2versuspyrazolylgroups on the diarylamine backbone.  
 
As detailed in the ESI †one-electron oxidation of 3 with AgOTf or organic oxidants forms blue-green (3+˙)(X = OTf 
or SbCl6) that appear stable as solids but very slowly decompose (t1/2 = 3 d) at 295 K in CH2Cl2 or CH3CN. 
Unfortunately, it has not been possible to obtain X-ray quality crystals of (3+˙)(X). As with A+OTf−, the IR, and EPR 
spectroscopic data along with DFT calculations (UB3LYP/LACVP*) of (3+˙) indicate a ligand-centred radical. The 
shift in average νco only increases by 41 cm−1 on traversing between 3 and 3+˙ similar to the 38 cm−1 increase for 
the PNP derivatives7 but less than the 50–100 cm−1 found for metal-centred oxidations.12 The X-band (9.65 
GHz) EPR spectra (Fig. 3) at 293 K shows a well-resolved sextet signal centred at giso = 2.0177 with aiso = 4.95(7) 
mT due to the hyperfine interaction between the electronic spin and the 185/187Re nuclei (I = 5/2). At 10 K the 
spectrum is pseudo-rhombic and can be adequately simulated with gx,y,z = 2.020, 2.020, 2.005 and aRe

x,y,z = 4.0, 
5.2, 4.0 mT with inclusion of a small quadrupole interaction P = 0.3 mT, ε = 0.1 mT. The relatively small deviation 
of g-values from that for the free electron ge = 2.0023 and small hyperfine coupling are in line with a ligand- 
rather than a metal-centred radical.7,13 These observations are also consistent with theoretical calculations that 
indicate most of the spin density is located on the ligand.  
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Fig. 3 Left: X-Band (9.63 GHz) EPR spectra (3+˙)(SbCl6) in CH2Cl2 at 293 K (top) and 10 K (bottom); Right: Spin 
density map from DFT calculations (UB3LYP/LACVP*).  
 
The significant differences in the optical spectra of 2·X, 3, and 3+˙ (Fig. 4) and the electrochemical activity of 
these species prompted further investigation into their potential chemical switching behaviour mediated by 
Brønsted acids and bases. Thus, the interconversions between 2·X and 3 using H(BF4) and (NEt4)(OH) were 
monitored by both electronic absorption and voltammetric experiments (Fig. 5). While these initial titration 
experiments showed the viability of performing switching operations, the reversibility over multiple reaction 
cycles was variable, being dependent upon the concentration mandated by the analytical technique being 
employed (10−5m3 for UV, 10−4m for CV). The more concentrated samples afforded higher reversibility as 
indicated by the quantity of acid or base required to achieve the maximum signal intensity indicative of 3. 
Currently the origin of the signal degradation is not clear and is the subject of ongoing investigations in our 
laboratory.  
 

 

Fig. 4 Overlay of absorption spectra of 2·PF6 (grey), 3 (violet), and (3+˙)(SbCl6) (red) in CH2Cl2.  

https://pubs.rsc.org/en/content/articlelanding/2010/DT/c001344g#fig4
https://pubs.rsc.org/en/content/articlelanding/2010/DT/c001344g#fig5


 

 

Fig. 5 UV-Vis spectral (top) and voltammetric (bottom, 100 mV s−1) changes attendant upon titration of CH2Cl2 
solutions of 3 first with a methanolic solution of HBF4 and then with (NEt4)(OH) in MeOH to in situ generated 2. A 
minimum of three cycles are shown for each.  

Conclusions  
The optical and electrochemical properties of tricarbonylrhenium(i) complexes of a new electroactive NNN-
tridentate ligand can be gated by reactions with Brønsted acids or bases which serve to modulate energetic 
access to the lone pair of electrons on the central nitrogen that govern the electrochemical activity and 
associated electronic (n–π* or dπ–pπ) transitions. It is hoped that appropriate modifications of the ligand on 
either the pyrazolyls or the diarylamine portion will address the current issues of small signal losses observed 
during cycling reactions. From this perspective, the PNP ligands or PNN hybrids of Fig. 1 may also offer some 
advantages for Re(CO)3-based systems that should be examined.  
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