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Abstract 
Finite-time state-feedback stabilization is addressed for a class of discrete-time nonlinear systems with conic-
type nonlinearities, bounded feedback control gain perturbations, and additive disturbances. First, conditions 
for the existence of a robust and resilient linear state-feedback controller for this class of systems are derived. 
Then, using linear matrix inequality techniques, a solution for the controller gain and the maximum allowable 
bound on the gain perturbation is obtained. The developed controller is robust for all unknown nonlinearities 
lying in a known hypersphere with an uncertain center and all admissible disturbances. Moreover, it is resilient 
against any bounded perturbations that may alter the controller’s gain by at most a prescribed amount. The 
paper is concluded with a numerical example showcasing the applicability of the main result. 
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1. Introduction 
Finite-time stabilization via state-feedback of discrete-time nonlinear systems with additive disturbances and 
unknown nonlinearities lying within a hypersphere of uncertain center is presented. A system is said to be Finite-
Time Stable (FTS) or more precisely Finite-Time Bounded (FTB) if, given a bound on the initial state of the system 
and the disturbance input, the state of the system does not exceed a given bound over a fixed time interval and 
for all admissible disturbances. Various developments and extensions in the field of FTS have been 
implemented, most of which have been applied to linear systems (Amato and Ariola, 2005, Amato et al., 
2010a, Amato et al., 2010b, Amato et al., 2004, Dorato et al., 1997, Garcia et al., 2009, Zhang and An, 2008, only 
to mention a few due to space limitations). However, to the best of our knowledge, the study of FTS or FTB of 
nonlinear systems is rarely addressed in the literature. Some of the work related to FTB of nonlinear systems is 
found in Amato, Cosentino, and Merola (2010), Yang, Li, and Chen (2009), and Zhuang and Liu (2010). In ElBsat 
and Yaz (2011), a robust and resilient FTB controller design for a class of discrete-time nonlinear systems with 
conic-type nonlinearities lying in a hypersphere with a known center, feedback gain perturbations, and additive 
disturbances is presented. 
 
The work presented in this technical communique is an extension of that in ElBsat and Yaz (2011). Here, the 
center of the hypersphere, which contains the set of unknown nonlinear vector functions, is described by a 
linear system with uncertainty in its dynamics. Moreover, an analysis of the upper bound on the gain 
perturbation vector as a function of the vector’s direction in a three-dimensional (3D) space is presented. The 
significance of the controller design developed here is that it requires the knowledge of a dynamical bound on 
the system’s nonlinearity rather than its exact dynamics. Thus, the controller design developed is applicable to 
all nonlinear systems which are locally Lipschitz (Khalil, 2002). Furthermore, the controller is robust for all 
nonlinearities lying within the conic bound, all admissible disturbances, and all bounded perturbations affecting 
the center of the conic bound. It is also resilient against all bounded perturbations which may affect its gain and 
which may occur as a result of computational or implementation errors (Takabashi, Dutra, Palhares, & Peres, 
2000). 
 
Next, the system and controller models are introduced. In Section  3, the main results of this communique are 
presented followed by a simulation study illustrating the use of these results. Moreover, a study of the bound on 
the gain perturbation vector as a function of the vector’s direction in a 3D space is introduced. 
 
The following notation is used: 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 is an 𝑛𝑛-dimensional vector, ‖𝑥𝑥‖ = (𝑥𝑥𝑇𝑇𝑥𝑥)1 2⁄  is the Euclidean 
norm, (⋅)𝑇𝑇 and (⋅)−1 are the matrix transpose and inverse operators, respectively, 𝐴𝐴 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 is an 𝑚𝑚 × 𝑛𝑛 real 
matrix, 𝐴𝐴 > 0(𝐴𝐴 < 0) is a positive-definite (negative-definite) matrix, 𝐼𝐼 is an identity matrix of appropriate 
dimensions, and N0 is the set of nonnegative integers. 

2. Definition: finite-time boundedness 
Generally, a system is said to be Finite-Time Bounded (FTB) if, given a bound on the initial state of the system 
and the disturbance input, the state of the system does not exceed a given bound over a fixed time interval and 
for all admissible additive disturbances. In this work, the definitions stated in the work of Amato and Ariola 
(2005) are adopted and are generalized to include nonlinear systems. Consider a system that is described by the 
following dynamics: 

 
(1) 𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) 
 
where 𝑓𝑓 is the vector function which is in general nonlinear. 
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System (1) is said to be FTB with respect to (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑤𝑤 ,𝛽𝛽,𝑅𝑅,𝑁𝑁) where 𝑅𝑅 > 0,𝛼𝛼𝑤𝑤 ≥ 0,0 ≤ 𝛼𝛼𝑥𝑥 ≤ 𝛽𝛽 and 𝑁𝑁 ∈ 𝑁𝑁0 if 
 

�
𝑥𝑥0𝑇𝑇𝑅𝑅𝑥𝑥0 ≤ 𝛼𝛼𝑥𝑥2

𝑤𝑤0𝑇𝑇𝑤𝑤0 ≤ 𝛼𝛼𝑤𝑤2
⇒ 𝑥𝑥𝑘𝑘𝑇𝑇𝑅𝑅𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽2∀𝑘𝑘 = 1, … ,𝑁𝑁. 

3. System and control model 
Consider the following discrete-time nonlinear system: 
 

(2) �𝑥𝑥𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘)
𝑤𝑤𝑘𝑘+1 = 𝛷𝛷𝑤𝑤𝑘𝑘

 

 
where 𝑥𝑥𝑘𝑘 ∈ 𝑊𝑊𝑛𝑛 ⊂ 𝑅𝑅𝑛𝑛 is the state vector, 𝑢𝑢𝑘𝑘 ∈ 𝑊𝑊𝑚𝑚 ⊂ 𝑅𝑅𝑚𝑚 is the input vector, 𝑤𝑤𝑘𝑘 ∈ 𝑊𝑊𝑟𝑟 ⊂ 𝑅𝑅𝑟𝑟 is the disturbance 
input, and 𝛷𝛷 ∈ 𝑅𝑅𝑟𝑟×𝑟𝑟, and 𝑊𝑊𝑚𝑚 are open and connected sets. The disturbance is one of the known waveforms 
(Johnson, 1980), but it does not have to be of finite-energy type. 𝑓𝑓(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) is an unknown nonlinear vector 
function whose dynamics have the following conic sector description: 
 

(3) ‖𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘 ,𝑤𝑤𝑘𝑘) − (𝐴𝐴
̃
𝑥𝑥𝑘𝑘 + 𝐵𝐵

̃
𝑢𝑢𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘)‖ ≤ ‖𝐶𝐶𝑓𝑓𝑥𝑥𝑘𝑘 + 𝐷𝐷𝑓𝑓𝑢𝑢𝑘𝑘 + 𝐹𝐹𝑓𝑓𝑤𝑤𝑘𝑘‖ 

 

for all time 𝑘𝑘 ∈ 𝑁𝑁0, 𝑥𝑥𝑘𝑘 ∈ 𝑊𝑊𝑛𝑛,𝑢𝑢𝑘𝑘 ∈ 𝑊𝑊𝑚𝑚, and 𝑤𝑤𝑘𝑘 ∈ 𝑊𝑊𝑟𝑟 where 𝐴𝐴
̃
∈ 𝑅𝑅𝑛𝑛×𝑛𝑛,𝐵𝐵

̃
∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, and 𝐹𝐹

̃
∈ 𝑅𝑅𝑛𝑛×𝑟𝑟, which are 

assumed to have the following expressions: 
 

(4) 

⎩
⎪
⎨

⎪
⎧𝐴𝐴

̃
= 𝐴𝐴 + 𝐴𝐴𝛥𝛥

𝐵𝐵
̃

= 𝐵𝐵 + 𝐵𝐵𝛥𝛥

𝐹𝐹
̃

= 𝐹𝐹 + 𝐹𝐹𝛥𝛥

such that �
𝐴𝐴𝛥𝛥𝐴𝐴𝛥𝛥𝑇𝑇 ≤ 𝜎𝜎𝐴𝐴2𝐼𝐼
𝐵𝐵𝛥𝛥𝐵𝐵𝛥𝛥𝑇𝑇 ≤ 𝜎𝜎𝐵𝐵2𝐼𝐼
𝐹𝐹𝛥𝛥𝐹𝐹𝛥𝛥𝑇𝑇 ≤ 𝜎𝜎𝐹𝐹2𝐼𝐼.

 

 
The matrices 𝐴𝐴𝛥𝛥,𝐵𝐵𝛥𝛥, and 𝐹𝐹𝛥𝛥 are unknown bounded perturbations with known scalar upper bounds 𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵, 
and 𝜎𝜎𝐹𝐹, respectively. Matrices 𝐴𝐴,𝐵𝐵,𝐹𝐹,𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓, and 𝐹𝐹𝑓𝑓 are assumed to be known for the system in consideration. 
The inequality shown in (3) implies that the unknown nonlinearity lies in an 𝑛𝑛-dimensional hypersphere whose 

center is the linear system 𝐴𝐴
̃
𝑥𝑥𝑘𝑘 + 𝐵𝐵

̃
𝑢𝑢𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘 with uncertain parameter matrices and whose radius is bounded 

by the right-hand side term of (3). Moreover, given system (2), a linear state-feedback controller with gain 𝐾𝐾 ∈
𝑅𝑅𝑚𝑚×𝑛𝑛 is considered such that 
 
(5) 𝑢𝑢𝑘𝑘 = 𝐾𝐾𝑥𝑥𝑘𝑘  
 
which leads to the following closed-loop system: 
 

(6) �𝑥𝑥𝑘𝑘+1 = (𝐴𝐴
̃

+ 𝐵𝐵
̃
𝐾𝐾)𝑥𝑥𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘 + ℑ𝑘𝑘

𝑤𝑤𝑘𝑘+1 = 𝛷𝛷𝑤𝑤𝑘𝑘
 

 

where ℑ𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘,𝑤𝑤𝑘𝑘)− (𝐴𝐴
̃
𝑥𝑥𝑘𝑘 + 𝐵𝐵

̃
𝑢𝑢𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘). 
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4. Main results 
The objective is to find a robust and resilient state-feedback controller that will render the closed-loop system 
FTB as long as the nonlinearity is within the hypersphere defined by (3). Theorem 1 states the conditions for the 
existence of a robust linear state-feedback controller for the class of nonlinear systems described by (2). 

Theorem 1 
Given sector condition   (3), matrices 𝐴𝐴,𝐵𝐵,𝐹𝐹,𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓, and 𝐹𝐹𝑓𝑓, and the upper bounds 𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵, and 𝜎𝜎𝐹𝐹, system   (6)   is 
FTB with respect to (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑤𝑤 ,𝛽𝛽,𝑅𝑅,𝑁𝑁), if there exist positive-definite matrices 𝑄𝑄1 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 and 𝑄𝑄2 ∈ 𝑅𝑅𝑟𝑟×𝑟𝑟, a matrix 
𝑌𝑌 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, and positive scalars 𝛾𝛾 ≥ 1, 𝑏𝑏1,𝛿𝛿,𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3 such that the following conditions hold: 
 
(7) 𝑀𝑀 = 𝑀𝑀𝑇𝑇 = [𝑚𝑚𝑖𝑖𝑖𝑖]𝑖𝑖,𝑖𝑖=1…8 > 0 
 

(8) �𝑄𝑄1 − 𝛿𝛿𝑅𝑅−1 0
0 𝑄𝑄2 − 𝛿𝛿𝐼𝐼� > 0 

 

(9) 𝛿𝛿𝑅𝑅−1 𝛽𝛽2𝛾𝛾−𝑁𝑁

𝛼𝛼𝑥𝑥2+𝛼𝛼𝑤𝑤2
− 𝑄𝑄1 > 0 

 
Where 
 
𝑚𝑚11 = 𝛾𝛾𝑄𝑄1,𝑚𝑚13 = 𝑄𝑄1𝐴𝐴𝑇𝑇 + 𝑌𝑌𝑇𝑇𝐵𝐵𝑇𝑇,𝑚𝑚14 = 𝑄𝑄1𝐶𝐶𝑓𝑓𝑇𝑇 + 𝑌𝑌𝑇𝑇𝐷𝐷𝑓𝑓𝑇𝑇, 
𝑚𝑚16 = 𝑄𝑄1,𝑚𝑚17 = 𝑌𝑌𝑇𝑇,𝑚𝑚22 = 𝛾𝛾𝑄𝑄2,𝑚𝑚23 = 𝑄𝑄2𝐹𝐹𝑇𝑇,𝑚𝑚24 = 𝑄𝑄2𝐹𝐹𝑓𝑓𝑇𝑇, 
𝑚𝑚25 = 𝑄𝑄2𝛷𝛷𝑇𝑇,𝑚𝑚28 = 𝑄𝑄2, 
𝑚𝑚33 = 𝑄𝑄1 − (𝑏𝑏1 + 𝛼𝛼1𝜎𝜎𝐴𝐴2 + 𝛼𝛼2𝜎𝜎𝐵𝐵2 + 𝛼𝛼3𝜎𝜎𝐹𝐹2)𝐼𝐼, 
𝑚𝑚44 = 𝑏𝑏1𝐼𝐼,𝑚𝑚55 = 𝑄𝑄2,𝑚𝑚66 = 𝛼𝛼1𝐼𝐼,𝑚𝑚77 = 𝛼𝛼2𝐼𝐼,𝑚𝑚88 = 𝛼𝛼3𝐼𝐼, 
 
and the unspecified submatrices are equal to zero matrices with appropriate dimensions. The controller gain is 
given by 𝐾𝐾 = 𝑌𝑌𝑄𝑄1−1. 

Sketch of Proof 
Assume that 𝑥𝑥0𝑇𝑇𝑅𝑅𝑥𝑥0 ≤ 𝛼𝛼𝑥𝑥2,𝑤𝑤0𝑇𝑇𝑤𝑤0 ≤ 𝛼𝛼𝑤𝑤2 , and that 𝑥𝑥𝑘𝑘𝑇𝑇𝑅𝑅𝑥𝑥𝑘𝑘 ≤ 𝛽𝛽2∀𝑘𝑘 = 1, … ,𝑁𝑁. Consider the energy function, 
 
(10) 𝑉𝑉𝑘𝑘 = 𝑥𝑥𝑘𝑘𝑇𝑇𝑃𝑃1𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑇𝑇𝑃𝑃2𝑤𝑤𝑘𝑘such that 𝑉𝑉𝑘𝑘+1 < 𝛾𝛾𝑉𝑉𝑘𝑘  
 
where 𝑃𝑃1 > 0,𝑃𝑃2 > 0, and 𝛾𝛾 ≥ 1. 
 
Moreover, consider the inequality shown in (3) which can be rewritten as follows: 
 
(11) ℑ𝑘𝑘𝑇𝑇ℑ𝑘𝑘 ≤ (𝐴𝐴𝑓𝑓𝑥𝑥𝑘𝑘 + 𝐹𝐹𝑓𝑓𝑤𝑤𝑘𝑘)𝑇𝑇(𝐴𝐴𝑓𝑓𝑥𝑥𝑘𝑘 + 𝐹𝐹𝑓𝑓𝑤𝑤𝑘𝑘) 
 
where 𝐴𝐴𝑓𝑓 = 𝐶𝐶𝑓𝑓 + 𝐷𝐷𝑓𝑓𝐾𝐾. 
 
From (10), replacing 𝑥𝑥𝑘𝑘+1 and 𝑤𝑤𝑘𝑘+1 with the equations of system (2), and applying Schur’s complement the 
following matrix inequality is obtained. 

 

(12) �
ℎ11 ℎ12
ℎ12𝑇𝑇 ℎ22

� > � 0 −ℑ𝑘𝑘𝑇𝑇𝑃𝑃1
−𝑃𝑃1ℑ𝑘𝑘 0 � 
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Where 
 

ℎ11 = 𝛾𝛾(𝑥𝑥𝑘𝑘𝑇𝑇𝑃𝑃1𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑇𝑇𝑃𝑃2𝑤𝑤𝑘𝑘) −𝑤𝑤𝑘𝑘𝑇𝑇𝛷𝛷𝑇𝑇𝑃𝑃2𝛷𝛷𝑤𝑤𝑘𝑘,ℎ22 = 𝑃𝑃1,and ℎ12 = (𝐴𝐴𝑐𝑐𝑥𝑥𝑘𝑘 + 𝐹𝐹
̃
𝑤𝑤𝑘𝑘)𝑇𝑇𝑃𝑃1. 

 
For any 𝑏𝑏1 > 0, it is true that 
 

(13) �
𝑏𝑏1−1ℑ𝑘𝑘𝑇𝑇ℑ𝑘𝑘 0

0 𝑏𝑏1𝑃𝑃12
� ≥ � 0 −ℑ𝑘𝑘𝑇𝑇𝑃𝑃1

−𝑃𝑃1ℑ𝑘𝑘 0 � . 

 
Using (13), the following is a sufficient condition for (12): 
 

(14) �
ℎ11 ℎ12
ℎ12𝑇𝑇 ℎ22

� > �
𝑏𝑏1−1ℑ𝑘𝑘𝑇𝑇ℑ𝑘𝑘 0

0 𝑏𝑏1𝑃𝑃12
� . 

 
Moreover, based on (11), (14) will still be satisfied, if the following inequality holds. 
 

(15) �
ℎ11 − 𝑏𝑏1−1(𝐴𝐴𝑓𝑓𝑥𝑥𝑘𝑘 + 𝐹𝐹𝑓𝑓𝑤𝑤𝑘𝑘)𝑇𝑇(𝐴𝐴𝑓𝑓𝑥𝑥𝑘𝑘 + 𝐹𝐹𝑓𝑓𝑤𝑤𝑘𝑘) ℎ12

ℎ12𝑇𝑇 ℎ22 − 𝑏𝑏1𝑃𝑃12
� > 0. 

 
Applying Schur’s complement to (15), substituting the expressions of ℎ11,ℎ12, and ℎ22, then rearranging the 
obtained expression in a quadratic format in [𝑥𝑥𝑘𝑘𝑇𝑇 𝑤𝑤𝑘𝑘𝑇𝑇]  yields a positive-definite matrix, which can be rewritten 
as follows: 
 

(16) �
𝛾𝛾𝑃𝑃1 − 𝑏𝑏1−1𝐴𝐴𝑓𝑓𝑇𝑇𝐴𝐴𝑓𝑓 −𝑏𝑏1−1𝐴𝐴𝑓𝑓𝑇𝑇𝐹𝐹𝑓𝑓
−𝑏𝑏1−1𝐹𝐹𝑓𝑓𝑇𝑇𝐴𝐴𝑓𝑓 𝛾𝛾𝑃𝑃2 − 𝛷𝛷𝑇𝑇𝑃𝑃2𝛷𝛷 − 𝑏𝑏1−1𝐹𝐹𝑓𝑓𝑇𝑇𝐹𝐹𝑓𝑓

� − �
𝐴𝐴𝑐𝑐𝑇𝑇𝑃𝑃1

𝐹𝐹
̃
𝑇𝑇𝑃𝑃1

� (𝑃𝑃1 − 𝑏𝑏1𝑃𝑃12)−1 �𝑃𝑃1𝐴𝐴𝑐𝑐 𝑃𝑃1𝐹𝐹
̃ � > 0. 

 
It is worth noting that the condition 𝑃𝑃1 − 𝑏𝑏1𝑃𝑃12 > 0 due to Schur’s complement will be implicitly satisfied and 
thus it would be redundant to consider it as one of the conditions for the existence of the robust controller 
developed. 
 
By applying Schur’s complement to (16), and after some algebraic manipulations and substituting for 𝐴𝐴𝑓𝑓 and 𝐴𝐴𝑐𝑐, 
we obtain 
 

(17) 

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝛾𝛾𝑄𝑄1 0 𝑄𝑄1𝐴𝐴

̃
𝑇𝑇 + 𝑌𝑌𝑇𝑇𝐵𝐵

̃
𝑇𝑇 𝑄𝑄1𝐶𝐶𝑓𝑓𝑇𝑇 + 𝑌𝑌𝑇𝑇𝐷𝐷𝑓𝑓𝑇𝑇 0

∗ 𝛾𝛾𝑄𝑄2 𝑄𝑄2𝐹𝐹
̃
𝑇𝑇 𝑄𝑄2𝐹𝐹𝑓𝑓𝑇𝑇 𝑄𝑄2𝛷𝛷𝑇𝑇

∗ ∗ 𝑄𝑄1 − 𝑏𝑏1𝐼𝐼 0 0
∗ ∗ ∗ 𝑏𝑏1𝐼𝐼 0
∗ ∗ ∗ ∗ 𝑄𝑄2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

> 0 

 
where ∗ denotes the elements that need to be added in order to have a symmetric matrix, 𝑄𝑄1 = 𝑃𝑃1−1,𝑄𝑄2 = 𝑃𝑃2−1, 
and 𝑌𝑌 = 𝐾𝐾𝑄𝑄1. 
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Substituting (4) in (17), rearranging the obtained inequality and after showing that for any positive 
scalars 𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3: 
 

(18) 

⎣
⎢
⎢
⎢
⎡−𝛼𝛼1

−1𝑄𝑄12 − 𝛼𝛼2−1𝑌𝑌𝑇𝑇𝑌𝑌 0 −𝑄𝑄1𝐴𝐴𝛥𝛥𝑇𝑇 − 𝑌𝑌𝑇𝑇𝐵𝐵𝛥𝛥𝑇𝑇 0 0
∗ 𝛼𝛼3−1𝑄𝑄22 𝑄𝑄2𝐹𝐹𝛥𝛥𝑇𝑇 0 0
∗ ∗ 𝛹𝛹 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0⎦

⎥
⎥
⎥
⎤

≤ 0 

 
where 𝛹𝛹 = 𝛼𝛼1𝐴𝐴𝛥𝛥𝐴𝐴𝛥𝛥𝑇𝑇 + 𝛼𝛼2𝐵𝐵𝛥𝛥𝐵𝐵𝛥𝛥𝑇𝑇 + 𝛼𝛼3𝐹𝐹𝛥𝛥𝐹𝐹𝛥𝛥𝑇𝑇, we arrive at condition (7). 
 
Now, we proceed to show the derivation of conditions (8), (9). Applying successive substitutions of (10)for 𝑘𝑘 =
1,2, … ,𝑁𝑁, knowing that 𝛾𝛾 ≥ 1, replacing 𝑉𝑉𝑘𝑘 and 𝑉𝑉0 with their corresponding expressions, and since 𝑥𝑥𝑘𝑘𝑇𝑇𝑃𝑃1𝑥𝑥𝑘𝑘 <
𝑥𝑥𝑘𝑘𝑇𝑇𝑃𝑃1𝑥𝑥𝑘𝑘 + 𝑤𝑤𝑘𝑘𝑇𝑇𝑃𝑃2𝑤𝑤𝑘𝑘, we obtain the following: 
 
(19) 𝑥𝑥𝑘𝑘𝑇𝑇𝑃𝑃1𝑥𝑥𝑘𝑘 < 𝛾𝛾𝑁𝑁(𝑥𝑥0𝑇𝑇𝑃𝑃1𝑥𝑥0 + 𝑤𝑤0𝑇𝑇𝑃𝑃2𝑤𝑤0). 
 
In (19), introduce the term 𝑅𝑅1 2⁄ 𝑅𝑅−1/2 to the left- and right-hand side of 𝑃𝑃1, express the right-hand side of the 
inequality in a quadratic format, and apply Rayleigh’s inequality, which states that given 𝑄𝑄 > 0, 
then 𝜆𝜆min(𝑄𝑄)𝑥𝑥𝑘𝑘𝑇𝑇𝑥𝑥𝑘𝑘 < 𝑥𝑥𝑘𝑘𝑇𝑇𝑄𝑄𝑥𝑥𝑘𝑘 < 𝜆𝜆max(𝑄𝑄)𝑥𝑥𝑘𝑘𝑇𝑇𝑥𝑥𝑘𝑘 is true, to obtain the following: 
 

(20) 𝜆𝜆min�𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2�𝑥𝑥𝑘𝑘𝑇𝑇𝑅𝑅𝑥𝑥𝑘𝑘 < 𝛾𝛾𝑁𝑁𝜆𝜆max ��
𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2 0

0 𝑃𝑃2
�� (𝛼𝛼𝑥𝑥2 + 𝛼𝛼𝑤𝑤2 ). 

 
In order for 𝑥𝑥𝑘𝑘𝑇𝑇𝑅𝑅𝑥𝑥𝑘𝑘 < 𝛽𝛽2 to be satisfied, then 
 

(21) 𝜆𝜆max ��
𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2 0

0 𝑃𝑃2
�� < 𝛽𝛽2𝛾𝛾−𝑁𝑁

(𝛼𝛼𝑥𝑥2+𝛼𝛼𝑤𝑤2 )
𝜆𝜆min�𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2� 

 
must hold. Let 𝛿𝛿−1 > 0 such that 
 

(22) 𝜆𝜆max ��
𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2 0

0 𝑃𝑃2
�� < 𝛿𝛿−1 

 
and 
 

(23) 𝛿𝛿−1 < 𝛽𝛽2𝛾𝛾−𝑁𝑁

(𝛼𝛼𝑥𝑥2+𝛼𝛼𝑤𝑤2 )
𝜆𝜆min�𝑅𝑅−1/2𝑃𝑃1𝑅𝑅−1/2�. 

 
Then, conditions (8), (9) can be obtained from (22), (23) respectively through some algebraic manipulations and 
the proof of Theorem 1 is concluded. 
 
Next, the controller gain is assumed to have additive bounded perturbations and conditions for the existence of 
a finite-time controller that is not only robust but also resilient are derived. Consider system (6) with a controller 

gain 𝐾𝐾
̃
 instead of 𝐾𝐾: 
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(24) �𝑥𝑥𝑘𝑘+1 = (𝐴𝐴
̃

+ 𝐵𝐵
̃
𝐾𝐾
̃
)𝑥𝑥𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘 + ℑ𝑘𝑘

𝑤𝑤𝑘𝑘+1 = 𝛷𝛷𝑤𝑤𝑘𝑘
 

 
where ℑ𝑘𝑘 satisfies inequality (11) and 
 

(25) 𝐾𝐾
̃

= 𝐾𝐾𝑟𝑟 + 𝐾𝐾𝛥𝛥 
 
where 𝐾𝐾𝑟𝑟 is the controller gain and 𝐾𝐾𝛥𝛥 is an unknown additive bounded gain perturbation with a scalar upper 
bound 𝜎𝜎𝐾𝐾 such that 
 
(26) 𝐾𝐾𝛥𝛥𝑇𝑇𝐾𝐾𝛥𝛥 ≤ 𝜎𝜎𝐾𝐾2𝐼𝐼. 
 

Theorem 2 
Given sector condition   (3), matrices 𝐴𝐴,𝐵𝐵,𝐹𝐹,𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓, and 𝐹𝐹𝑓𝑓, and the upper bounds 𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵, and 𝜎𝜎𝐹𝐹, 
system   (24)   is FTB with respect to (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑤𝑤 ,𝛽𝛽,𝑅𝑅,𝑁𝑁), if there exist positive-definite matrices 𝑄𝑄1 ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 and 
𝑄𝑄2 ∈ 𝑅𝑅𝑟𝑟×𝑟𝑟, a matrix 𝑌𝑌𝑟𝑟 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, and positive scalars 𝛾𝛾 ≥ 1, 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3 and 𝛿𝛿 such that 
conditions   (8),   (9), and the following hold: 
 
(27) 𝑍𝑍 = 𝑍𝑍𝑇𝑇 = [𝑧𝑧𝑖𝑖𝑖𝑖]𝑖𝑖,𝑖𝑖=1…9 > 0 
 
where 
 
𝑧𝑧11 = 𝛾𝛾𝑄𝑄1,𝑧𝑧13 = 𝑄𝑄1𝐴𝐴𝑇𝑇 + 𝑌𝑌𝑟𝑟𝑇𝑇𝐵𝐵𝑇𝑇,𝑧𝑧14 = 𝑄𝑄1𝐶𝐶𝑓𝑓𝑇𝑇 + 𝑌𝑌𝑇𝑇𝐷𝐷𝑓𝑓𝑇𝑇, 
𝑧𝑧16 = 𝑄𝑄1,𝑧𝑧17 = 𝑌𝑌𝑟𝑟𝑇𝑇,𝑧𝑧19 = 𝑄𝑄1,𝑧𝑧22 = 𝛾𝛾𝑄𝑄2,𝑧𝑧23 = 𝑄𝑄2𝐹𝐹𝑇𝑇, 
𝑧𝑧24 = 𝑄𝑄2𝐹𝐹𝑓𝑓𝑇𝑇,𝑧𝑧25 = 𝑄𝑄2𝛷𝛷𝑇𝑇,𝑧𝑧28 = 𝑄𝑄2, 
𝑧𝑧33 = 𝑄𝑄1 − (𝑏𝑏1 + 𝛼𝛼1𝜎𝜎𝐴𝐴2 + 𝛼𝛼2𝜎𝜎𝐵𝐵2 + 𝛼𝛼3𝜎𝜎𝐹𝐹2)𝐼𝐼 − 𝑏𝑏2𝐵𝐵𝐵𝐵𝑇𝑇, 
𝑧𝑧34 = −𝑏𝑏2𝐵𝐵𝐷𝐷𝑓𝑓𝑇𝑇,𝑧𝑧37 = −𝑏𝑏2𝐵𝐵,𝑧𝑧44 = 𝑏𝑏1𝐼𝐼 − 𝑏𝑏2𝐷𝐷𝑓𝑓𝐷𝐷𝑓𝑓𝑇𝑇, 
𝑧𝑧47 = −𝑏𝑏2𝐷𝐷𝑓𝑓,𝑧𝑧55 = 𝑄𝑄2,𝑧𝑧66 = 𝛼𝛼1𝐼𝐼,𝑧𝑧77 = (𝛼𝛼2 − 𝑏𝑏2)𝐼𝐼, 
𝑧𝑧88 = 𝛼𝛼3𝐼𝐼,𝑧𝑧99 = 𝑏𝑏3𝐼𝐼 
 
and the unspecified submatrices are equal to zero matrices of appropriate dimensions. The controller gain is 
given by: 
 
(28) 𝐾𝐾𝑟𝑟 = 𝑌𝑌𝑟𝑟𝑄𝑄1−1. 
 
The bound on the maximum allowable controller gain perturbation is given by: 
 

(29) 𝜎𝜎𝐾𝐾 = �𝑏𝑏2𝑏𝑏3−1.. 
 

Consider Theorem 1 and replace 𝑌𝑌 by 𝑌𝑌
̃
 where 𝑌𝑌

̃
= 𝐾𝐾

̃
𝑄𝑄1 = 𝑌𝑌𝑟𝑟 + 𝑌𝑌𝛥𝛥,𝑌𝑌𝑟𝑟 = 𝐾𝐾𝑟𝑟𝑄𝑄1, and 𝑌𝑌𝛥𝛥 = 𝐾𝐾𝛥𝛥𝑄𝑄1. Then, (7) can be 

rewritten as the equivalent condition 
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(30) 𝐿𝐿 >

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡0 0 −𝑌𝑌𝛥𝛥𝑇𝑇𝐵𝐵𝑇𝑇 −𝑌𝑌𝛥𝛥𝑇𝑇𝐷𝐷𝑓𝑓𝑇𝑇 0 0 −𝑌𝑌𝛥𝛥𝑇𝑇 0
∗ 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
where 𝐿𝐿 is the same matrix as 𝑀𝑀 with 𝑌𝑌 evaluated at 𝑌𝑌𝑟𝑟, 𝐿𝐿 = 𝑀𝑀|𝑌𝑌=𝑌𝑌𝑟𝑟. 
 
For an arbitrary 𝑏𝑏2 > 0, it is true that 
 

(31) 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑏𝑏2

−1/2𝑌𝑌𝛥𝛥𝑇𝑇

0
𝑏𝑏2
1 2⁄ 𝐵𝐵

𝑏𝑏2
1 2⁄ 𝐷𝐷𝑓𝑓

0
0

𝑏𝑏2
1 2⁄ 𝐼𝐼
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑏𝑏2

−1/2𝑌𝑌𝛥𝛥𝑇𝑇

0
𝑏𝑏2
1 2⁄ 𝐵𝐵

𝑏𝑏2
1 2⁄ 𝐷𝐷𝑓𝑓

0
0

𝑏𝑏2
1 2⁄ 𝐼𝐼
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
𝑇𝑇

≥ 0. 

 
Using (31), the following condition is sufficient for (30) to hold. 
 

(32) 𝐿𝐿 >

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑏𝑏2

−1𝑌𝑌𝛥𝛥𝑇𝑇𝑌𝑌𝛥𝛥 0 0 0 0 0 0 0
∗ 0 0 0 0 0 0 0
∗ ∗ 𝑏𝑏2𝐵𝐵𝐵𝐵𝑇𝑇 𝑏𝑏2𝐵𝐵𝐷𝐷𝑓𝑓𝑇𝑇 0 0 𝑏𝑏2𝐵𝐵 0
∗ ∗ ∗ 𝑏𝑏2𝐷𝐷𝑓𝑓𝐷𝐷𝑓𝑓𝑇𝑇 0 0 𝑏𝑏2𝐷𝐷𝑓𝑓 0
∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 𝑏𝑏2𝐼𝐼 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Now, substituting the expression of 𝑌𝑌𝛥𝛥 in (32), using (26), applying some algebraic manipulations, and 
letting 𝑏𝑏3 = 𝑏𝑏2𝜎𝜎𝐾𝐾−2, it can be shown that if (27) holds, (32) still holds. The derivation of conditions (8), (9)is the 
same as that shown in the proof of Theorem 1. This concludes the proof of Theorem 2. 
 
Given (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑤𝑤 ,𝛽𝛽,𝑅𝑅,𝑁𝑁), system (24), matrices 𝐴𝐴,𝐵𝐵,𝐹𝐹,𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓, and 𝐹𝐹𝑓𝑓, the upper bounds 𝜎𝜎𝐴𝐴,𝜎𝜎𝐵𝐵, and 𝜎𝜎𝐹𝐹, and for a 
fixed value of 𝛾𝛾, conditions (27), (8), (9) constitute a set of LMIs with unknown 
variables 𝑄𝑄1,𝑄𝑄2, 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3,𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, and 𝑌𝑌𝑟𝑟. Thus, a controller gain and a bound on the gain perturbation for 
which the LMIs are feasible can be solved for and obtained from (28), (29) respectively. In the next section, a 
numerical example is provided to illustrate the applicability of the developed controller design. 
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5. Simulation studies 
5.1. Application to Chua’s circuit 
Consider the following closed-loop system based on the discretized state-space model corresponding to Chua’s 
circuit (Chua, Wu, Hung, & Zhong, 1993). 
 

(33) �𝑥𝑥𝑘𝑘+1 = 𝐴𝐴
̃
𝑥𝑥𝑘𝑘 + 𝐵𝐵

̃
𝑢𝑢𝑘𝑘 + 𝐹𝐹

̃
𝑤𝑤𝑘𝑘 + ℑ𝑘𝑘

𝑤𝑤𝑘𝑘+1 = 𝛷𝛷𝑤𝑤𝑘𝑘
 

 

where 𝐴𝐴
̃
,𝐵𝐵
̃
, and 𝐹𝐹

̃
 are given by (4),  

 

𝐴𝐴 = �
1 − 𝑇𝑇𝛼𝛼𝑐𝑐(1 + 𝑏𝑏) 𝑇𝑇𝛼𝛼𝐶𝐶 0

𝑇𝑇 1 − 𝑇𝑇 𝑇𝑇
0 −𝑇𝑇𝛽𝛽𝑐𝑐 1 − 𝑇𝑇𝑇𝑇

� ,𝐵𝐵 = 𝑇𝑇[2 5 4]𝑇𝑇 ,𝑥𝑥𝑘𝑘 = [𝑥𝑥𝑘𝑘1 𝑥𝑥𝑘𝑘2 𝑥𝑥𝑘𝑘3]𝑇𝑇 ,𝐹𝐹 =

𝑇𝑇[1 1 1]𝑇𝑇 ,𝛷𝛷 = 0.99,  
 
and 
 
ℑ𝑘𝑘 = 0.5𝑇𝑇𝛼𝛼𝑐𝑐(𝑎𝑎 − 𝑏𝑏)(|𝑥𝑥𝑘𝑘1 + 1| − |𝑥𝑥𝑘𝑘1 − 1|)[1 0 0]𝑇𝑇  
 
𝑥𝑥𝑘𝑘𝑖𝑖  is the 𝑖𝑖th state variable at time instant  
𝑘𝑘,𝛼𝛼𝑐𝑐 = 9.1,𝛽𝛽𝑐𝑐 = 16.5811,𝑇𝑇 = 0.138083,𝑎𝑎 = −1.3659,𝑏𝑏 = −0.7408 (Azemi & Yaz, 2001), and 𝑇𝑇 = 0.05𝑠𝑠 is 
the sampling period. Since |𝑥𝑥𝑘𝑘1 + 1| − |𝑥𝑥𝑘𝑘1 − 1| ≤ |2𝑥𝑥𝑘𝑘1|, then ℑ𝑘𝑘𝑇𝑇ℑ𝑘𝑘 ≤ (𝑇𝑇𝛼𝛼𝑐𝑐(𝑎𝑎 − 𝑏𝑏)𝑥𝑥𝑘𝑘1)2, from which the values 
of 𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓, and 𝐹𝐹𝑓𝑓 in (3) can be easily derived. Moreover, the upper bound values on 𝐴𝐴𝛥𝛥,𝐵𝐵𝛥𝛥, and 𝐹𝐹𝛥𝛥 are 
considered to be 𝜎𝜎𝐴𝐴 = 0.02,𝜎𝜎𝐵𝐵 = 0.02, and 𝜎𝜎𝐹𝐹 = 0.03, respectively. Therefore, consider the following: 
 
𝐴𝐴𝛥𝛥 = 0.008𝐼𝐼,𝐵𝐵𝛥𝛥 = [0 0.019 0]𝑇𝑇,𝐹𝐹𝛥𝛥 = [0 0.029 0]𝑇𝑇. 
 
Given (𝛼𝛼𝑥𝑥 ,𝛼𝛼𝑤𝑤 ,𝛽𝛽,𝑅𝑅,𝑁𝑁), the feasibility of the LMIs while varying 𝛾𝛾−1 over the range (0,1] is examined. A solution 
exists as long as there exists at least one value of 𝛾𝛾 for which the LMIs are feasible. Otherwise, the design 
parameters must be modified. In this work, the simulations are conducted in MATLAB® (R2010a), and the LMIs 
obtained are solved using the Robust Control Toolbox™ V3.4.1 in the MATLAB®  version indicated. It is worth 
noting that as the order of the system increases, it is inherent that the dimensions of the relevant LMIs will 
increase. However, with the ongoing advances in computational capabilities and speed of computers, an 
increase in the dimensions of the LMIs to be solved does not present any computational extensiveness of the 
approach. 
 
For the system considered and the set of parameters 𝛼𝛼𝑥𝑥 = 1.5,𝛼𝛼𝑤𝑤 = 1,𝛽𝛽 = 11,𝑅𝑅 = 𝐼𝐼,𝑁𝑁 = 20, a solution for 
the controller gain is found for 𝛾𝛾 = 1.002 where 
 
𝐾𝐾𝑟𝑟 = [−3.3782 −3.4785 −0.1466]and𝜎𝜎𝐾𝐾 = 0.021. 
 
System (33) is simulated with the perturbed controller applied during the first 𝑁𝑁 = 20 time steps then 
removed. Fig. 1 shows the norm of the state of the system with respect to time in both the closed-loop and 
open-loop cases. The norm of the state remains within the prescribed bound 𝛽𝛽 = 11 for every time step over 
the interval during which the controller is applied, despite the perturbations in its gain. Thus, the controller 
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developed is performing as expected during the finite-time interval, and the system returns to its controller-free 
dynamics afterwards. 
 

 
Fig. 1. Evolution of ‖xk‖ over time for the open-loop and closed-loop cases. The vertical dashed line indicates 
where the controller is removed. 
 

5.2. Controller gain perturbation magnitude analysis 
In this section, the maximum allowable perturbation in the gain of the controller developed as a function of the 
position of the perturbation vector in a 3D space is examined. Condition (26) on the controller gain perturbation 
vector implies that ‖𝐾𝐾𝛥𝛥‖ must be less than or equal to 𝜎𝜎𝐾𝐾 in the case of a 3D system with a single input. 
 
Therefore, in a 3D space, the solution for 𝜎𝜎𝐾𝐾 obtained earlier would be the minimum norm of the perturbation 
vector for every direction of 𝐾𝐾𝛥𝛥. However, this also means that, in certain directions, ‖𝐾𝐾𝛥𝛥‖ may have a maximum 
value, which implies a possibility of a higher upper bound on the allowable perturbations in the controller gain. 
 
In order to determine ‖𝐾𝐾𝛥𝛥‖ as a function of its direction, 𝐾𝐾𝛥𝛥 is expressed in spherical coordinates as shown 
below. 
 

(34) 𝐾𝐾𝛥𝛥 = 𝐾𝐾
̄
𝛥𝛥[𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠] 

 

where 𝐾𝐾
̄
𝛥𝛥 = ‖𝐾𝐾𝛥𝛥‖,−90° ≤ 𝑠𝑠 ≤ +90°, and −180° ≤ 𝑠𝑠 ≤ +180°. 

 
Moreover, conditions (7), (8), (9) are feasible for the solution of the unknown variables, 𝑄𝑄1,𝑄𝑄2,𝑌𝑌 =
𝑌𝑌𝑟𝑟, 𝑏𝑏1,𝛿𝛿,𝛼𝛼1,𝛼𝛼2, and 𝛼𝛼3 obtained from (27), (8), (9) with the value of 𝐾𝐾𝑟𝑟 assigned to 𝐾𝐾 and, consequently, the 
value of 𝑌𝑌𝑟𝑟 assigned to 𝑌𝑌. With all the variables in (7) known, the controller gain is perturbed by adding 𝐾𝐾𝛥𝛥 to it. 

For a fixed direction of 𝐾𝐾𝛥𝛥 (i.e. one set of values of 𝑠𝑠 and 𝑠𝑠), 𝐾𝐾
̄
𝛥𝛥 is incrementally increased until (7) is no longer 

feasible. Then, the values of 𝑠𝑠 and 𝑠𝑠 are varied, and the previous steps are repeated until the ranges 
of 𝑠𝑠 and 𝑠𝑠 are covered. 
 

The result obtained is shown in Fig. 2. The minimum value of 𝐾𝐾
̄
𝛥𝛥 is 0.022, which corresponds to a 4.55% 

difference from the value obtained for 𝜎𝜎𝐾𝐾 using the inequalities developed in Theorem 2. 
Furthermore, Fig. 2 shows that, for example in the direction of 𝑠𝑠 = 75° and 𝑠𝑠 = 87°, the controller gain can be 
perturbed up to 1.305. Even though this result may reflect conservativeness in the results given in Theorem 2, it 
still shows that the controller design obtained is resilient against perturbations, whose upper bound is at least 
given by 𝜎𝜎𝐾𝐾. 
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Fig. 2. Norm of the controller gain perturbation vector 𝐾𝐾𝛥𝛥 as a function of its position in 3D space. 

6. Conclusion 
A robust and resilient FTB controller design is developed for a class of nonlinear systems with conic-type 
nonlinearities of uncertain center, known waveform type disturbances, and additive gain perturbations. A 
solution for the controller gain and the bound on the maximum allowable gain perturbation is obtained using 
LMI techniques. It is worth noting that the conditions arrived at in this paper reduce to the conditions existing in 
the literature on the finite-time bounded control of discrete-time linear systems. This fact can be shown by 
setting the right-hand side term of the conic sector condition and the bounds on the perturbations to zero. Thus, 
the class of nonlinear systems considered here and the associated results serve as a generalization of previous 
results. This is due to the fact that this class of systems, in addition to representing several nonlinearities that 
arise in the control literature, represents simple discrete-time linear systems considered by others in previous 
works. 
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