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Abstract 
Copy number amplifications and deletions that are recurrent in cancer samples harbor genes that confer a 
fitness advantage to cancer tumor proliferation and survival. One important challenge in computational biology 
is to separate the causal (i.e., driver) genes from passenger genes in large, aberrated regions. Many previous 
studies focus on the genes within the aberration (i.e., cis genes), but do not utilize the genes that are outside of 
the aberrated region and dysregulated as a result of the aberration (i.e., trans genes). We propose a 
computational pipeline, called ProcessDriver, that prioritizes candidate drivers by relating cis genes to 
dysregulated trans genes and biological processes. ProcessDriver is based on the assumption that a 
driver cis gene should be closely associated with the dysregulated trans genes and biological processes, as 
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opposed to previous studies that assume a driver cis gene should be the most correlated gene to the copy 
number of an aberrated region. We applied our method on breast, bladder and ovarian cancer data from the 
Cancer Genome Atlas database. Our results included previously known driver genes and cancer genes, as well as 
potentially novel driver genes. Additionally, many genes in the final set of drivers were linked to new tumor 
events after initial treatment using survival analysis. Our results highlight the importance of selecting driver 
genes based on their widespread downstream effects in trans. 
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1. Introduction 
Copy number amplifications and deletions that are recurrent in cancer samples harbor driver genes that confer a 
fitness advantage to cancer tumor proliferation and survival [1]. Passenger genes that do not have a selective 
advantage are amplified or deleted along with the drivers due to their proximity to the driver and as a result, 
have similar changes in expression with respect to copy number. Due to their similar copy number and 
expression profiles, separating drivers from passengers is an important and difficult challenge. 

One of the tools to compute significant recurrent copy number alterations in a given set of samples is GISTIC. 
GISTIC relies on copy number data to detect regions of the genome that harbor likely drivers [2], [3]. GISTIC 
leveraged the notion that a region containing a driver gene should be altered significantly more than expected 
by chance. This method has proven useful in identifying regions that likely harbor candidate driver genes. 
However, it is difficult to distinguish passengers from drivers in large regions based on copy number data alone. 

Some studies have integrated copy number and gene expression data to determine the effects of copy number 
on gene expression for genes within a copy number aberration, known as cis genes [4], [5], [6], [7]. The underlying 
assumption is that driver genes will have a more altered expression due to a copy number aberration than 
passenger genes. For example, Oncodrive-CIS is a method to score the cis genes as drivers by comparing the 
gene expression of samples with the aberration to the gene expression of samples without the aberration [4]. 
The strength of the correlation between copy number and gene expression is also used to detect drivers [6], [7]. 

Some studies have identified drivers by taking into account the wider impact of a driver on downstream target 
genes located outside of the aberration, known as trans genes. For instance, Akavia et al. had the underlying 
assumption that copy number influences the driver gene expression, which in turn alters the expression of a 
group of downstream trans genes [8]. Aure et al. determined which cis genes were highly correlated to their own 
copy number [9]. The authors then determined which of these cis genes played a network perturbing role in 
cancer through expression correlation to all other genes. 

Certain biological processes are known to be disrupted in cancer such as apoptosis and cell cycle [10]. Therefore, 
identifying modules of cis and trans genes based on biological processes would allow for additional insight into 
the specific biological processes that the driver disrupts. Additionally, a driver cis gene changes the pathology of 
the cell and therefore influences the expression of many other genes in trans. Therefore, the cis genes in the 
module can also be narrowed down to a set of likely drivers based on the strength of the association of the cis 
genes with the downstream trans genes, as opposed to the strength of a cis gene's association with its own copy 
number. 

In this study, we proposed a pipelined called ProcessDriver that detects driver cis genes, associated trans genes 
and disturbed biological processes. We first find all of the differentially expressed cis and trans genes with 
respect to an aberration. For a given aberration, the pipeline creates modules of differentially expressed cis 
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genes and differentially expressed trans genes based on biological processes. The module is subject to further 
refinements to determine likely drivers from the cis genes based on the relationship between cis gene 
expression and trans gene expression. The pipeline is therefore able to determine which biological processes 
and trans genes are dysregulated by the driver gene. We found that our selected drivers were more enriched 
in cancer genes and were associated with a higher risk of new tumor events after initial treatment. Additionally, 
consistent with previous studies [4], [5], [6], [7], we found that the selected drivers were more correlated with their 
own copy number. 

2. Materials and methods 
2.1. ProcessDriver 
 
We implemented a computational pipeline called ProcessDriver in R to compute candidate copy-number driven 
driver genes by relating cis genes to dysregulated trans genes and biological processes. ProcessDriver utilizes 
gene expression, copy number alteration data and GO database. ProcessDriver consists of two main steps, 
namely GO term enrichment step and driver selection step. The entire pipeline of ProcessDriver is illustrated 
in Fig. 1. In what follows, we describe each main step of ProcessDriver. The source code for ProcessDriver is 
freely available at www.github.com/brittanybaur/ProcessDriver. 

 
Fig. 1. Flowchart of ProcessDriver. In the GO term association step, cis and trans genes that were differentially expressed 
with respect to a copy number aberration were computed. Each cis gene was associated with up to ten biological 
processes by performing a Kolmogorov-Smirnov test using the correlation between the expression of the cis gene and every 
trans gene as a score. In the driver selection step, a GO term module containing similar GO terms and associated cis and 
trans genes was formed. The sparse canonical correlation analysis and multi-task LASSO were performed to narrow down 
potential drivers of the biological processes in the module from the cis genes. 
 

2.1.1. GO term enrichment step 
 
The GO term enrichment step first identifies differentially expressed cis and trans genes for a given aberration. 
Next, cis genes are associated with biological processes through the trans genes. 

2.1.1.1. Computing GISTIC regions and differential expressed genes on GISTIC regions 
 
GISTIC 2.0 was used to detect significant recurrent somatic copy number alterations (GISTIC regions 
hereafter) [2]. A GISTIC region with a log2 ratio above 0.1 was considered amplified, and a GISTIC region with a 
log2 ratio below − 0.1 was considered deleted. A confidence level of 0.75 was used to calculate the GISTIC 
region. The differential expression analysis was performed using DESeq2 for each GISTIC region between 
samples with no significant deletions or amplifications versus amplified or deleted samples [11] (p-value < 0.001). 
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Genes were considered differentially expressed with respect to an aberration if their adjusted p-value was 
< 0.001 in DESeq2 in one or more of the GISTIC regions within an aberration. Aberrations with > 50 differentially 
expressed genes were considered. These are aberrations of interest suitable for our algorithm because of the 
widespread effects of the aberration in trans, as well as the need to determine which cis genes are drivers. Batch 
effects were taken into account using the TCGA batch IDs as a covariate in DESeq2. 

2.1.1.2. Clustering GISTIC regions into aberrations 
 
To account for co-occurring aberrations, GISTIC regions were clustered together such that more similar regions 
were considered as a single aberration containing the individual GISTIC regions. Throughout the rest of the 
manuscript, a cluster of GISTIC regions will be referred to as an aberration. To cluster GISTIC regions into 
aberrations, a distance matrix was calculated where each entry was 1 minus the Pearson correlation of the copy 
number of two different GISTIC regions across all samples. Hierarchical clustering was performed on the 
distance matrix using average linkage using the stats package in R and the resulting dendrogram was cut at half 
of the maximum distance between the inter-cluster pairs. 

The set of differentially expressed genes as determined by DESeq2 for each GISTIC region within the aberration 
were pooled together. Aberrations with > 50 differentially expressed genes were considered. These are 
aberrations of interest suitable for our algorithm because of the widespread effects of the aberration in trans, as 
well as the need to determine which cis genes are drivers. For each aberration, a differentially expressed gene is 
hereafter called cis gene if its chromosomal position was within a GISTIC region of that aberration, or 
called trans gene otherwise. 

2.1.1.3. Computing aberration-adjusted expression 
 
In the remaining steps of ProcessDriver algorithm, we related expression changes between cis genes and trans 
genes beyond the effects of copy number aberration. Both cis and trans genes expression are potentially under 
the influence of the copy number aberration of interest to varying degrees, and possibly other copy number 
aberrations in cis and trans. Due to the confounding effects of copy number aberration on gene expression, 
correlation between all gene expression will be high, making it difficult to establish relationships based solely on 
gene expression. To alleviate these copy number effects on gene expression, we computed aberration-adjusted 
expression. First we computed the variance stabilizing rlog transformation of the RNA-seq data. Then we applied 
principal component regression (PCR) between a gene's expression as a response and the copy number of all the 
GISTIC regions as predictors. The aberration-adjusted expression was the residual expression after PCR. We 
chose the PCR method as it is a suitable model to address the multicollinearity issue between the copy numbers 
of the GISTIC regions. All the remaining steps in ProcessDriver used the aberration-adjusted expression data. 

2.1.1.4. GO term association 
 
To link cis genes in aberrations to possible dysregulated biological processes in trans, each cis gene was 
associated with up to ten GO biological process terms through the trans genes. For a given aberration, the 
correlation between each cis gene's expression and each of the trans gene's expression in that aberration was 
calculated. A cis gene's correlation to all trans genes was used as a score in a Kolmogorov-Smirnov (KS) test to 
determine significant GO terms using the TopGO package in R [12]. The KS test examined whether trans genes 
annotated with a particular GO term were more correlated to the cis gene than trans genes not related to that 
GO term. KS test repeated for each cis gene in each aberration and up to ten GO terms with p-value < 0.05 were 
chosen to be associated with each cis gene. 
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2.1.2. Driver selection step 
 
The driver selection step clusters cis and trans genes to form modules based on associated biological processes. 
Next, expression data are utilized in a sparse canonical correlation analysis to filter cis and trans genes with 
canonical correlation > 0.7. Finally, cis genes are ranked as drivers using two multi-task LASSO-based methods. 

2.1.2.1. Clustering of significant GO terms into GO modules 
 
Since some of the GO terms are semantically similar to each other and closely related in the GO term hierarchy, 
for each aberration, the set of GO terms associated with the cis genes were clustered using the getTermSim 
function with the relevance measure in the GOSim package in R [13]. For each GO term cluster, we defined GO 
term module as the collection of cis genes that were significantly associated with at least one GO term in that 
GO term cluster, and the trans genes that were annotated with at least one GO term in that GO term cluster. 

2.1.2.2. Applying sparse canonical correlation analysis to refine GO term modules 
 
To further refine a GO term module to determine likely drivers, we performed sparse canonical correlation 
analysis (SCCA) between the expression of p cis genes and the expression of K trans genes [14]. Let Xijand Yij be 
the expression for patient i for cis and trans gene j, respectively. The goal of CCA is to maximize the canonical 
correlation, ρ, between two groups of variables X and Y, by finding a linear combination Yu and Xvcalled 
canonical variates, where u = (u1, … , uK) , v = (v1, …,vp), are weight vectors [15]: 

𝜌𝜌 = 𝑣𝑣′𝑋𝑋′𝑌𝑌𝑌𝑌
√𝑣𝑣′𝑋𝑋′𝑋𝑋𝑣𝑣√𝑌𝑌′𝑌𝑌′𝑌𝑌𝑌𝑌

 (1)  

SCCA maximizes the correlation [Eq. 1] while also applying penalties to uand v such that some of the weights 
become zero resulting in q < p cis genes and M < K trans genes [14]. 

If the canonical correlation was > 0.7, cis and trans genes that had non-zero coefficients were left in the GO term 
module while those with zero coefficients were removed. If the canonical correlation was < 0.7, the module was 
no longer considered. 

2.1.2.3. Applying multi-task LASSO to compute driver cis genes 
 
Multi-task LASSO was performed with the expression of the remaining trans genes as a response and the 
expression of the remaining cis genes as the predictors to rank the cis genes based on their influence on trans 
gene expression. Let X and Y now represent the remaining q cis and M trans gene expression, respectively. 
Multi-task LASSO is the multi-response version of LASSO [16]. Friedman et al., defines the multi-task LASSO model 
[Eq. 2] for q cis genes, M trans genes and N patients as: 

𝑚𝑚𝑚𝑚𝑚𝑚
�𝛽𝛽0,𝛽𝛽�∈ℝ(𝑞𝑞+1)×𝑀𝑀

1
2𝑁𝑁
� �𝑌𝑌𝑖𝑖,1:𝑀𝑀 − 𝛽𝛽0 − 𝛽𝛽𝑇𝑇𝑋𝑋𝑖𝑖,1:𝑞𝑞�𝐹𝐹

2𝑁𝑁

𝑖𝑖=1
+ 𝜆𝜆� �𝛽𝛽𝑗𝑗�2

𝑞𝑞

𝑗𝑗=1
 (2) 

In Eq. 2, Yi , 1 : M is a vector corresponding to the expression values of the trans genes in patient i and Xi , 1 : q is the 
covariate vector of cis genes. βj is the jth row of the q × M coefficient matrix corresponding to jth cis gene 
and λ is the tuning parameter controlling the strength of the penalty. 

We ranked cis genes as drivers based on the order of appearance of each of the cis gene predictors in the model 
as λ goes from largest to smallest. As λgets smaller, more cis genes will be non-zero and included in the model. 
The multi-task sharing portion involves which variables are selected. For each variable, a separate coefficient is 
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fit for each response, resulting in the q + 1 × M coefficient matrix [16]. Therefore, for all the trans genes, the 
coefficient for a given cis gene is either zero or non-zero, although the value of the non-zero coefficients will 
vary between trans genes. Therefore, this ranking will be the same for every trans gene, regardless of the non-
zero coefficient value for the included cis genes 

As an additional ranking system, the multi-task LASSO was rerun fifty times, each time resampling 90% of the 
samples without replacement. For a single resample, the value of λ used was the simplest model where the 
cross-validation error was within one standard error of the minimum cross-validation error. The number of 
times a cis gene was selected out of fifty resamples was used as a system to rank cis genes within the module. 
This ranking system would identify potential drivers that are robust to sample variation. 

2.2. Datasets to assess ProcessDriver 
 
To assess the performance of ProcessDriver, we used Illumina HiSeq 2000 RNA sequencing and level 3 
segmented copy number inferred from Affymetrix Genome-Wide Human SNP 6.0 copy number data were 
downloaded for 92 luminal A breast cancer samples, 120 ovarian cancer samples and 120 bladder cancer 
samples from the Cancer Genome Atlas (TCGA) repository [17], [18], [19]. The TCGA IDs used in this study are 
provided in Supplemental Table 1. 

3. Results 
 
We downloaded RNA-seq and segmented copy number data from the TCGA repository for 92 luminal A breast 
cancer, 120 bladder cancer and 120 ovarian cancer samples. A summary of the thresholds used for the 
parameters described throughout Section 2 is provided in Supplemental Table 2. We used GISTIC 2.0 to identify 
recurrent copy number aberrated GISTIC regions using segmented copy number data from each cancer type and 
clustered them into aberrations (see Materials and Methods section). For breast, ovarian and bladder cancer, 
175, 116 and 156 GISTIC regions were clustered into 66, 82 and 79 aberrations, respectively. DESeq2 was used 
to compute differentially expressed cis and trans genes for each aberration. Supplemental Tables 3–5 contain 
information about the cytoband locations and number of differentially expressed cis and trans genes for the 
aberrations considered in each cancer type. 

For each cis gene in each aberration, associated dysregulated GO biological process terms were computed 
(Section 2.1.1). For each aberration, GO term modules were formed (Section 2.1.2.1 and then the cis and trans 
genes were filtered with SCCA (Section 2.1.2.2). Finally, the cis genes were ranked as likely drivers with two 
multi-task LASSO-based ranking methods (Section 2.1.2.3). The number of GO terms, and the average number of 
cis and trans genes per module before and after SCCA are summarized in Supplemental Table 6. 

In the following sections, to evaluate the performance of ProcessDriver, we categorize cis genes into various 
groups namely, multiple driver, driver, semi-driver, last in λ path, and filtered. A driver gene is a cis gene that 
was selected 50 out of 50 times during resampling of multi-task LASSO and appears as the first gene in 
the λ path in at least one GO term module. A multiple driver gene is a gene that was selected as a driver in more 
than one GO term module. A cis gene that is last in the λ path is a gene that was selected last in λ path in every 
GO term module it appeared in. A semi-driverwas never selected as a driver gene, but was not last in λ path in at 
least one module. A cis gene that in the filtered group was filtered because the canonical correlation of the GO 
term module was < 0.7 (Supplemental Fig. 1) or its coefficient was 0 in a GO term module with canonical 
correlation > 0.7, and otherwise never appeared in the multi-task LASSO phase (Section 2.1.2.3). 

For comparison purposes, we imitated some of the existing methods and selected drivers based solely on the 
magnitude of correlation between their gene expression and their copy number. For each GO module, cis genes 
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with highest correlation between their expression and copy number were selected as top correlated group. This 
group served to highlight the differences between methods that take into account the relationship between 
trans gene expression and cis gene expression to select drivers and existing methods that selected drivers based 
on gene expression correlation to cis copy number. 

3.1. Multiple drivers are enriched in known cancer genes 
 
Table 1 lists the entire multiple driver genes computed by ProcessDriver using breast cancer data and 
Supplemental Tables 7 and 8 lists the multiple driver genes in ovarian and bladder cancer, respectively. For 
breast cancer, 19 out of 44 of the multiple driver genes were associated with cancer in the literature using the 
tool OncoSearch [20] as one or more publications describe their involvement in a cancer. Additionally, we found 
articles associating five more genes with cancer [21], [22], [23], [24], [25]. Seven multiple drivers were known cancer 
genes in the AGCOH or intOgen database [26], [27]. Additionally, we used the BioGRID database to find genes that 
the multiple driver interacts with and then determined which of the interacting genes are cancer genes in the 
AGCOH or intOgen database [28]. Overall, our results indicate that 27 out of the 44 breast cancer multiple drivers 
are a likely cancer gene or interact with a known cancer gene. 

Table 1. Multiple driver genes in breast cancer. The GO terms column indicates the GO terms that the multiple 
driver is associated with through the trans genes in ProcessDriver. The number of articles column lists the 
number of articles found with OncoSearch tool indicating the multiple driver's involvement in cancer as a 
biomarker, tumor suppressor or oncogene [20]. Some additional literature references were found 
manually [21], [22], [23], [24], [25]. For cancer type (CT) column, BC – breast cancer, C – cancer based on the supporting 
literature, * indicates the multiple driver is cancer gene in AGCOH [26] or intOgen databases [27]. The number of 
cancer gene interactions column indicates the number of cancer genes in AGCOH or intOgen databases that 
interact with the multiple driver gene. 

Multiple driver 
gene 

GO terms # articles CT # cancer gene 
interactions 

AURKA Mitotic cell cycle, cell cycle 71 BC* 8 
SMARCB1 Macromolecule metabolic process, RNA 

biosynthetic process 
59 C* 24 

ADAM17 Positive regulation of cellular process, positive 
regulation of nucleobase-containing compound 

32 BC – 

TRADD Purine nucleoside metabolic process 10 C 4 
CUL5 Carbohydrate metabolic process, nucleobase-

containing compound metabolic process 
6 BC 3 

ELAC2 Cellular component organization, macromolecular 
complex assembly 

5 C* 1 

PSMA7 Cellular protein metabolic process, cellular 
macromolecule metabolic process, mitotic cell 
cycle process 

5 C 4 

RBM5 Cellular response to endogenous stimulus 5 BC* – 
COPS3 Cellular component organization, cellular 

component biogenesis 
4 C 7 

TBX21 T cell receptor signaling pathway, immune system 
process 

2 C 3 

APPBP2 Cell cycle process, cellular protein localization 1 C 2 
ARFGAP1 Cellular protein metabolic process, gene 

expression, mitotic cell cycle process 
1 C* – 
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BOP1 Ribosome biogenesis, ribonucleoprotein complex 
biogenesis 

1 C* – 

DDT Macromolecule metabolic process, RNA 
biosynthetic process 

1 C – 

HAGH Organelle organization, regulation of RNA 
metabolic process 

1 C – 

MED17 Carbohydrate metabolic process, cellular response 
to stress, cellular response to DNA damage 
stimulus 

1 C* 7 

PTDSS1 G2/M transition of mitotic cell cycle 1 C – 
RBM38 Hemostasis, wound healing, regulation of protein 

metabolic process 
1 C – 

RRS1 Mitotic cell cycle, regulation of protein complex 
assembly 

1 C – 

DIDO1 Phosphorus metabolic process, phosphorylation Ref [21] C 2 
EIF4ENIF1 Macromolecule metabolic process, RNA 

biosynthetic process 
Ref [22] C – 

DSCC1 Mitotic cell cycle, cell cycle phase transition Ref [23] C – 
AZIN1 Cellular cation homeostasis, cellular ion 

homeostasis 
Ref [24] C 2 

BCL2L13 Gene expression, macromolecule localization Ref [25] C – 
COG4 Organic substance metabolic process, nucleobase-

containing compound metabolic process 
– – 1 

PSMD7 Cellular response to stress, cellular response to 
DNA damage stimulus 

– – 1 

AMDHD2 Transcription, DNA-templated, RNA biosynthetic 
process 

– – – 

C8orf55 Regulation of apoptotic process – – – 
C8orfk29 Nucleotide metabolic process – – – 
CCDC64B Negative regulation of macromolecule biological 

process, regulation of macromolecule biosynthetic 
process 

– – – 

COG6 Regulation of cellular metabolic process, regulation 
of nitrogen compound metabolic process 

– – – 

DCUN1D5 Protein transport, macromolecule localization, 
establishment of protein localization 

– – – 

DDTL Organic substance metabolic process, 
macromolecule catabolic process 

– – – 

DNTTIP1 Cellular protein catabolic process, proteolysis 
involved in cellular protein… 

– – – 

DUS2L Organic substance metabolic process, RNA 
processing 

– – – 

DYNC1LI2 Organonitrogen compound catabolic process, 
macromolecule biosynthetic process 

– – – 

GPR172A Organelle assembly, organelle organization, mitotic 
nuclear division 

– – – 

KARS Metabolic process, viral process, symbiosis – – – 
KIAA1731 Mitotic cell cycle process, DNA metabolic process – – – 
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KIFC2 Carbohydrate derivative catabolic process, 
nucleoside catabolic process 

– – – 

NAT15 Gene expression, regulation of gene expression – – – 
OSBPL2 Phosphate-containing compound metabolic …, 

negative regulation of biological process 
– – – 

RHOT2 Organelle organization, protein complex assembly, 
transcription, DNA-templated 

– – – 

STX8 Intracellular protein transport, intracellular 
transport 

– – – 

 

For ovarian cancer, 18 out of 33 multiple driver genes were associated with cancer through the literature or an 
interactor with a known cancer gene (Supplemental Table 7). Articles for nine genes were found with 
OncoSearch and supporting literature was found for seven more. The remaining two were found to have 
interactions with known cancer genes in the OCGene ovarian cancer database [29]. For bladder cancer, 17 out of 
26 multiple driver genes were a likely cancer gene or an interactor with one (Supplemental Table 8). Eight 
drivers had articles found by OncoSearch and supporting literature was found for seven more. The remaining 
two had interactions with known cancer genes in the AGCOH or intOgen databases [26], [27]. 

Our methods associated cis genes with disrupted biological process in trans. Many of the multiple driver genes 
in all three datasets were appropriately associated with biological processes that they are known to be involved 
in. For example, in breast cancer, BOP1 is required for the maturation of ribosomal RNAs [30] and was associated 
in our algorithm with “ribosome biogenesis” (Table 1). In ovarian cancer, candidate GSDMD is involved in the 
release of Interleukin 1-Beta, and was associated with out methods with “lymphocyte activation” and “response 
to cytokines” (Supplemental Table 7). HSPA9 in bladder cancer is a heat shock proteinand was associated 
“cellular response to stress” (Supplemental Table 8). These genes and others are all involved in cancer, and are 
candidate copy number drivers and respective candidate disrupted processes. 

In order to compute the enrichment of cis gene categories in known cancer gene lists, we created a list of cancer 
genes by combining 727 known cancer genes from the AGCOH database [26] and 475 known cancer genes from 
the intOgen database [27]. The overlap between all cis genes in ovarian cancer and the cancer gene list was poor 
(hypergeometric p-value = 0.28). Thus, for ovarian cancer, we used a more specific cancer list from the OCGene 
ovarian cancer database [29]. The OCGene ovarian cancer database had a stronger, but marginal overlap with the 
cis genes (hypergeometric p-value = 0.09). Cis genes in breast and bladder cancer had sufficient overlap with the 
intOgen and AGCOH database (p-value = 0.0025 for bladder and 0.11 for breast cancer). We found that drivers 
and multiple drivers had lower p-values than genes that were filtered out by ProcessDriver and cis genes that 
were the most correlated with their own copy number (Table 2). Although some of the p-values were marginal, 
the enrichment for drivers and/or multiple drivers was higher than for cis genes that were filtered out. The 
marginal p-values could be due the incompleteness of the databases. As shown in Table 1 and Supplemental 
Tables 7 and 8, additional literature was found via a manual search for some multiple drivers supporting their 
involvement in cancer, despite not being present in the databases, yet. 
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Table 2. Enrichment of cis genes with known cancer genes. Hypergeometric p-values for the enrichment of 
known cancer genes in selected drivers, cis genes that were filtered out by ProcessDriver, and cis genes that 
were the most correlated with their own copy number. Number of genes indicates the number of cis genes in 
each of the groups defined by ProcessDriver. The p-values were computed using AGCOH and intOgen databases 
for bladder and breast cancer [27], [28], and using the OCGene ovarian cancer database for ovarian cancer [29]. 

  
Multiple driver Driver Semi-driver Last in λpath Filtered Top Cor 

Bladder cancer # genes 26 89 197 43 197 120  
p-Value 0.06 0.12 0.86 0.52 0.77 0.6 

Breast cancer # genes 44 116 266 51 259 128  
p-Value 0.01 0.15 0.96 0.19 0.27 0.52 

Ovarian cancer # genes 33 82 184 45 389 138  
p-Value 0.25 0.07 0.35 0.71 0.85 0.8 

Bold indicates the minimum enrichment p -value for each cancer type. 

We tested the effect of adjusting the threshold for the canonical correlation in SCCA step on the enrichment of 
cancer genes in multiple drivers for breast cancer (Supplemental Table 9). We observed that a threshold of 0.7 
had the highest enrichment. Higher thresholds such as 0.8 and 0.9 had insignificant enrichments, suggesting that 
higher thresholds exclude too many cancer genes. Lower thresholds such as 0.5 and 0.6 had significant 
enrichment, but reduced specificity by including more multiple drivers. 

3.2. SCCA filters cis genes with a lower correlation of expression to their own copy 
number 
 
The underlying assumption in many previous studies on cancer drivers is that driver gene expression has a 
higher correlation to their own copy number than passenger genes [4], [5], [6], [7]. Although we did not use 
correlation of cis gene expression to its copy number to narrow down likely drivers, we expect that our drivers 
would have a higher correlation between their gene expression and copy number than the correlation of other 
genes' expression to their own copy number. Fig. 2 illustrates the distribution of the correlation of cis copy 
number to gene expression in the different groups of cis genes for bladder and breast cancer data and 
Supplemental Fig. 2 shows the same distribution for the ovarian cancer data. Cis genes that were filtered by 
SCCA had a significantly lower average correlation of expression with copy number than driver genes in all three 
cancers (Wilcoxon rank-sum p-value < 0.001 for ovarian and breast cancer and < 0.05 for bladder cancer). We 
also observed that for cis genes filtered by SCCA, there were still genes with extremely high correlation between 
expression and copy number. These results suggest that utilizing correlation between gene expression and copy 
number to select potential driver genes could make false positive selections. 
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Fig. 2. Correlation of copy number to cis gene expression. Violin plots representing the correlation of cis genes to their own 
copy number for selected drivers and cis genes filtered-out by ProcessDriver for (A) bladder cancer and (B) breast cancer. 
Definition of each group is in the results section. Asterisk indicates p < 0.05 in a Wilcoxon rank-sum test compared to the 
drivers group. 
 

3.3. Driver genes are associated with a higher risk of new tumor events after initial 
treatment 
 
In order to evaluate if the driver genes could predictive new tumor events after initial treatment, we performed 
survival analysis on cis genes. We fit a univariate Cox proportional hazard model for each cis gene for the 
number of days to a new tumor event after the initial treatment and used the cis gene expression as a covariate. 
If a patient did not experience a new tumor event after the initial treatment, the days until the last follow-up 
were used and the patient was censored. In the bladder cancer cohort, 97 out of 120 patients have had new 
tumor events after the initial treatment and in the ovarian cancer cohort 86 out of 120 patients have had new 
tumor events. Only two out of 92 of the luminal A patients had new tumor events after initial treatment, 
therefore luminal A was not included in this analysis. 

A hazard ratio > 1 implies that an increase of expression of the cis gene increases the risk of a new tumor event, 
while a hazard ratio < 1 implies that an increase of the cis gene expression decreases the risk of a new tumor 
event. Overall in bladder cancer, drivers had hazard ratios greater than one (Fig. 3A and C). We compared the 
mean of the hazard ratios of each group using the Wilcoxon rank-sum test. We observed that the mean of the 
hazard ratios was significantly higher in the driver group compared to the top correlated, filtered and last 
in λ path groups with p < 0.05. 

 
Fig. 3. Hazard ratios for new tumor events in a univariate Cox proportional hazards model. Violin plots of hazard ratios for 
genes filtered out or selected at various stages of the driver selection step for (A) bladder cancer and (C) ovarian cancer. 
Asterisk indicates p < 0.05 in a Wilcoxon rank-sum test in bladder cancer and F-test of variances in ovarian cancer compared 
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to the driver group. Hazard ratios were plotted for genes in the multi-task LASSO stage against the number of times they 
were selected by resampling and the rank in the λ path for (B) bladder cancer and (D) ovarian cancer. 
 

In ovarian cancer, multiple driver RAF1, a putative oncogene, had the highest hazard ratio of any cis gene of 3.2. 
However, multiple driver CASP3, which promotes apoptosis and is in a deleted region, had the lowest hazard 
ratio of any cis gene of 0.55. This highlights that the hazard ratio could be dependent on the drivers oncogenic 
or tumor suppressor activities since a lower hazard ratio implies lower risk with increased expression. We found 
that the driver group (σ2 = 0.16) had a significantly higher variance than the top correlated (σ2 = 0.07), and 
filtered (σ2 = 0.055) groups (Levenne's test p-value < 0.05). Although not significant, drivers also had a larger 
variance than the last in λ path group. This suggests that drivers of ovarian cancer have a higher or lower hazard 
ratio due to tumor suppressor and oncogenic activities. 

Bladder cancer also contains drivers with low hazard ratios. For example, multiple driver FEM1B has a hazard 
ratio of 0.8 and is a pro-apoptotic protein [31]. Fig. 3B and D illustrates the hazard ratio for new tumor events 
after initial treatment for cis genes that appeared in the multi-task LASSO phase in bladder and ovarian data 
sets, respectively. The results show that that cis genes with the highest hazard ratios were selected close to 50 
out of 50 times during resampling and had a relatively low rank in the λ path. 

4. Conclusions 
 
We designed and implemented ProcessDriver in three different cancer sets and found consistently that the most 
likely candidate drivers are more enriched in known cancer genes. For each dataset, more than half of the 
multiple drivers are known to be involved in cancer. Biological processes are associated with each driver through 
the trans genes, and all the trans genes are differentially expressed as a result of the aberration. Therefore, the 
processes associated with a driver are the ones that are likely disrupted. 

We also found that the selected drivers have more extreme hazard ratios for new tumor events after initial 
treatment with respect to new tumor events compared to cis genes filtered out by ProcessDriver and cis genes 
selected on the basis of their correlation of expression to their own copy number. Since drivers promote 
tumorigenesis, it is expected that drivers would be linked to new tumor events. 

Aside from ensuring that all cis genes and trans genes are differentially expressed with respect to an aberrated 
region, we do not use the correlation of copy number to cis gene expression in our filtering of drivers. However, 
as expected, the cis genes that were selected as drivers had expression that was more correlated to their own 
copy number compared to cis genes filtered by SCCA. This result suggests that drivers tend to have higher 
correlation to copy number. However, when we selected the cis genes that are most correlated to their own 
copy number for each GO term module, it results in a lower enrichment of known cancer genes and lower 
hazard ratios with respect to new tumor events compared to drivers selected by ProcessDriver. These results 
highlight the importance of selecting drivers based on the relationship between cis gene expression and trans 
gene expression, as opposed to selecting the cis genes based on correlation to their own copy number as in 
previous studies [4], [5], [6], [7]. 

While a couple of studies relate cis genes to other genes in trans, our approach differs from previous approaches 
in a number of ways. The statistical approaches outlined in this pipeline strongly emphasize a close relationship 
between a potential driver and downstream target trans genes and also provide insight into disrupted biological 
processes. Akavia et al. relates the expression of cis genes to downstream targets, but does not integrate 
information about biological processes [8]. Aure et al. associates cis genes with biological processes in trans. 
However, all other genes are used as trans genes [9]. In this study, all trans genes must be differentially 
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expressed with respect to the aberration. In [9] the correlation with cis genes to their own copy number is to first 
narrow down cis genes. Here, we demonstrate that the relationship between cis gene expression and trans gene 
expression is more valuable in selecting drivers than the correlation of cis genes to their own copy number. 

ProcessDriver will narrow down a list of driver genes from many genes that are cis-affected by copy number. 
This could help find drivers which could be therapeutic targets of drugs. Additionally, the algorithm associates 
drivers with biological processes through the trans genes, which could aid in gaining insight into the widespread, 
downstream effects of the driver. 
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