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ABSTRACT
Functional Singular Spectrum Analysis and the Clustering of Time-Dependent Data

Jordan Trinka
Marquette University, 2019

The present work extends the application of the recently submitted functional singular spectrum
analysis (FSSA) into the realm of structure level subsequence clustering. We begin with a
comprehensive review of principal component analysis (PCA), functional principal component
analysis (FPCA), singular spectrum analysis (SSA), and the recently submitted FSSA. We
computationally show that the novel FSSA-FPCA hybrid clustering technique can be employed
as an effective structure-based subsequence clustering method for call-center functional time
series data where the method behaves as a dimension reduction technique for time-dependent data.
Metrics, such as the F-ratio from k-means clustering, the w-correlation between reconstructed
functional time series, and the Rand index are offered to determine the quality of clustering
results of labeled functional data. We find that these outcomes are dependent on the grouping
stage of FSSA for the call-center data. We also find that our measurements are not significantly
sensitive to changes in groupings. Our investigations show that FSSA behaves as a type of
temporal to frequency domain transformation similar to that of a Fourier analysis. The results
shown in the present essay can be used to extend FSSA in its maturation and offer insight into
how the hybrid method should be used and the challenges one faces with it.
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1 Introduction

Functional data analysis can be seen as an area of study that extends modern statistical techniques

from the finite dimensional realm to the infinite dimensional realm. This allows for a functional

approach to data that has a strong theoretical background in infinite dimensional vector spaces.

One such technique that has been extended is principal component analysis (PCA) which reduces

the dimension of the data that one is working with so that we describe the data with fewer, non-

parametric variables. The functional extension of PCA is functional principal component analysis

(FPCA) which takes a collection of functional objects and works to find the key functional

components that best describe the vector space spanned by those objects. FPCA has been often

used in clustering of subjects in order to determine the number of groups present in an unlabeled

data set. Another approach just recently extended to the functional realm is singular spectrum

analysis (SSA) which acts similar to PCA in the fact that it finds new variables that describe

the key components of a time series. SSA has a corresponding functional counterpart known as

functional singular spectrum analysis (FSSA) [1] which finds the key components of a functional

time series such as trend and seasonality.

Preliminary work shows that the coupling of FSSA and FPCA in a hybrid clustering technique

leads to better results for time series data than just applying FPCA directly to the functional time

series [1]. The present work aims to give the novel hybrid clustering technique better traction

by showing the relationship between FSSA groupings and clustering of time series data. The

rest of the paper is organized to first introduce the reader to the background of the problem, give

the current state of the problem, describe the methodologies used to achieve our goals, results, a

discussion of those outcomes, and a conclusion.

2 Background

In order to fully develop an idea of how the new hybrid technique works, one needs to understand

the ideas behind principal component analysis and how this work leads into FPCA and FSSA.

2.1 PCA

PCA is a non-parametric dimension reduction technique that works to find the components that

explain most of the data in an n by p data matrix, X , where n is the number of subjects and p

is the number of covariates. For this particular problem, we consider each observation to have
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had the mean of observations subtracted from it such that E[Xi] = 0 for all i = 1, ..., n. One

particular technique to achieve the goal of finding the principal component that explains most of

the variability, and thus information, in the data is to find the unit vector, ξ, that points most in

the direction of all n of the 1 by p subjects [2]. This problem can be stated as

1

n
max
‖ξ‖Rp=1

n∑
i=1

(Xi · ξ)2 (1)

where Xi · ξ is the dot product between the ith subject and ξ and ‖ · ‖Rp is the norm of Rp

induced by the dot product. As according to [2], we rewrite (1) as

1

n
max
‖ξ‖Rp=1

ξTXTXξ =
1

n
max
‖ξ‖Rp=1

ξTCξ =
1

n
max
‖ξ‖Rp=1

〈ξ, Cξ〉Rp (2)

where C is the p by p variance/covariance matrix and 〈·, ·〉Rp is the dot product. From [3],

the problem presented in equation (2) is equivalent to finding the numerical radius of C defined

as ρ(C) = max
‖ξ‖Rp=1

|〈ξ, Cξ〉Rp |. Proposition 10.2.5 in [3] tells us that since C is symmetric (self-

adjoint), ρ (C) = |λ| where λ is the largest eigenvalue of C. Notice that if ξ is the eigenvector

that corresponds to λ, then we get

〈ξ, Cξ〉Rp = |λ|〈ξ, ξ〉Rp = |λ|‖ξ‖2Rp = |λ| = ρ (C) . (3)

Thus, our problem becomes that of finding the eigenvector ξ of C that corresponds to λ. To

get the remaining components we solve the same maximization problem presented in (2) but

now subject to a new constraint that 〈ξk1 , ξk2〉Rp = 0 ∀ k1 < k2 [2]. This process repeated to

completion where k2 = p will form an orthonormal basis that spans Rp.

Using the basis of principal components {ξi}pi=1 we find the set of principal component scores,

{ci,j}pj=1 = {〈Xi, ξj〉Rp}pj=1, for each observation i = 1, ..., n. These principal component

scores are important in describing how much of each data point Xi ∈ Rp are in the direction of

each ξj ∈ Rp [2]. Using these scores and their principal components we have the following finite

Karhunen-Loeve representation of each data point [3] given by

Xi =

p∑
j=1

〈Xi, ξj〉ξj , i = 1, ..., n. (4)

These principal component scores (PCS) are useful because we determine from them which

subjects behave similarly. As such, these scores can be used in an unsupervised fashion for
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clustering to determine the number of groupings of unlabeled subjects and also the reasons for

these groupings [4]. We extend these ideas to the functional realm to obtain FPCA which is used

extensively for clustering of functional data.

2.2 FPCA

Let H be a Hilbert space such that it fulfills all of the requirements of a complete inner product

space of functions where the domain of those elements is τ . We can think of FPCA as the

decomposition of the space spanned by a finite collection of functions {fi}ni=1 ∈ H into functional

principal components. Each fi should be seen as a subject that lives in our Hilbert space. By [2],

the maximization problem given in (2) becomes

1

n
max
‖ξ‖2H=1

〈ξ,Γξ〉H (5)

where Γ is the compact, linear, and self-adjoint variance/covariance integral operator over H

and 〈·, ·〉H is the inner product over H. We define the image of Γ as

Im (Γ) = {Γg(u) ∈ H : Γg(u) =

∫
τ
ν(s, u)g(s)ds} (6)

where g ∈ H [2]. We also have that the kernel of Γ, denoted as ν, is seperable such

that ν(s, u) = 1
n

∑n
i=1 fi(s)fi(u) [2]. By the Hilbert-Schmidt theorem [5], there exists an

orthonormal basis {ξi}∞i=1 and corresponding family of scalars {λi}∞i=1 where (λi)
∞
i=1 → 0

monotonically such that

(Γg)(u) =
∞∑
i=1

λi〈g, ξi〉Hξi(u) (7)

Again, the problem statement in (5) boils down to finding the numerical radius of Γ and

since Γ is a compact and self-adjoint, we have ρ(Γ) = |λ1| = ‖Γ‖op [3] where λ1 is the leading

eigenvalue of Γ, and ‖ · ‖op is the operator norm for bounded operators in H. As a result, we

use the eigenfunction, ξ1 ∈ H that corresponds to λ1 to find our solution to the maximization

problem. Thus, the Hilbert-Schmidt theorem provides us with our orthonormal basis that is our

functional principal component basis. In application, we use the technique presented in [6] to

solve the homogeneous Fredholm integral equation of the second kind given by
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(Γξi)(u) = λiξi =

∫
τ
ν(s, u)ξi(s)ds (8)

to find {ξi}Ki=1 and {λi}Ki=1 where we truncate at theK th component. Our functional principal

component scores, ci,j , can be expressed as {ci,j}Kj=1 = {〈fi, ξj〉H}Kj=1 for each i = 1, ..., n.

Without truncation, we obtain the following Karhunen-Loeve representation of each fi ∈ H [3]

as

fi =

∞∑
j=1

〈fi, ξj〉Hξj , i = 1, ..., n. (9)

This is one technique that can be used to derive the functional principal components and

corresponding scores. There has been another technique that was developed by [7] which

uses penalized low rank approximations in order to try to minimize the difference between the

estimations and the original collection of functions. This can be seen as the functional version of

minimizing the reconstruction error between a matrix A ∈ Rn×p and its low rank approximation

A∗ ∈ Rn×p. Regardless of how the functional principal component scores are obtained, they can

be used to cluster subjects in our Hilbert space. One particular realm that multivariate FPCA

(MFPCA), has seen some success is in clustering daily traffic flow patterns [8]. The issue with

this approach is that FPCA and MFPCA assume independence of data from time where traffic

flow data very much is dependent on the time of day. SSA satisfies this need for a dimension

reduction technique that is applicable to time series.

2.3 SSA

A time series is a collection of data points observed over some measure of time that often have

characteristics such as a mean function, seasonality, noise, etc. The goal of SSA is to separate

out these characteristics from one another for reconstruction, forecasting, dimension reduction,

and other purposes [9]. SSA can be broken up into the four steps of embedding, decomposition,

grouping, and reconstruction.

1. Embedding: Let yN = {yi}Ni=1 be a time series with N entries. The first step of SSA is

to use a window length parameter, 0 < L < N
2 , to construct an L by K = N − L + 1

trajectory matrix X given by
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X =



y1 y2 y3 . . . yN−L+1

y2 y3 y4 . . . yN−L+2

y3 y4 y5
. . .

...
...

...
...

. . .
...

yL yL+1 yL+2 . . . yN


. (10)

We call the columns of X , L-lagged vectors. Notice that X is Hankel such that the

antidiagonal elements are equal [9]. As such, the embedding step is a linear bijection

T : RN → RL×KH where RL×KH is the collection of Hankel matrices that operate over RK .

In this sense, we see that X = TyN .

2. Decomposition: Let X∗ be the transpose of X and C = X∗X be the variance/covariance

matrix of L-lagged vectors. In the second step of SSA we use PCA to decompose C to find

the principal component eigenbasis {ξi}Ki=1 and corresponding eigenvalues {λi}Ki=1 used

for grouping. This decomposition offers us components and corresponding eigenvalues

that allow us to determine how we can best separate the characteristics of the time series

yN .

3. Grouping: In this step, we use our decomposition from step 2 to group principal compo-

nents together for reconstruction. Let {Xi}Ki=1 = {Xξiξ∗i }Ki=1 be the collection of rank

one matrices that approximate X such that

X =
K∑
i=1

Xi (11)

We find M ≤ K groupings of these rank one matrices such that X̂m =
∑

j Xj where

j ∈ 1, ...,K for m = 1, ...,M . As such, equation (11) becomes

X =
M∑
m=1

X̂m (12)

We decide on which Xj’s for j = 1, ...,K to include in our sum to build each X̂m based

on eigenvalues that have similar intensity, geometry in pair-plots of principal components,

and so that each X̂m is approximately Hankel [9]. In doing this we form separated X̂m

trajectory matrices that each describe a portion of the original trajectory matrix X .
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4. Reconstruction: We reconstruct these additive X̂m trajectory matrices into additive time

series, ỹ(m)
N , for each m = 1, ...,M such that

yN =
M∑
m=1

ỹ
(m)
N . (13)

We Hankelize each X̂m using the processes described in [9] such that each entry of a

Hankelized trajectory reconstruction matrix X̃m, is given by

x̃
(m)
i,j =



1
s−1

∑s−1
l=1 x̂l,s−l for 2 ≤ s ≤ L− 1

1
L

∑L
l=1 x̂l,s−l for L ≤ s ≤ K + 1

1
K+L−s+1

∑L
l=s−K x̂l,s−l for K + 2 ≤ s ≤ K + L

(14)

where x̂i,j is the i, jth element of X̂m. One can view this diagonal averaging as a

Hankelization of X̂m where we apply a linear operation H : RL×K → RL×KH and

this sense, we obtain X̃m = HX̂m. As a result, we get the separated, additive components

of yN given by ỹ(m)
N = T−1X̃m for m = 1, ...,M .

One measure of how well the components are separated is given by the w-correlation (weighted

orthogonality) measure, given by

ρ(w)
(
ỹ
(m1)
N , ỹ

(m2)
N

)
=

(
ỹ
(m1)
N · ỹ(m2)

N

)
w√(

ỹ
(m1)
N · ỹ(m1)

N

)
w

√(
ỹ
(m2)
N · ỹ(m2)

N

)
w

(15)

for m1,m2 ∈ 1, ...,M where

(
ỹ
(m1)
N · ỹ(m2)

N

)
w

=
N∑
i=1

wiỹ
m1
i ỹm2

i . (16)

The weights are given by

wi =


i+ 1 for 0 ≤ i ≤ L∗ − 1

L∗ for L∗ ≤ i ≤ K∗

N − i for K∗ ≤ i ≤ N − 1

(17)

where L∗ = min ({L,K}) and K∗ = max ({L,K}) [9]. A w-correlation close to 0 is

desired since we want to separate the original time series out into the different components that
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make it up.

SSA, as a technique, has been used on data where noise is present and showed that the

results are highly dependent on the type of time series and corresponding choice in L [10]. An

application that multivariate SSA (MSSA) has seen success is in phase synchronization in a

large system of coupled oscillators with high observational noise where the algorithm was able

to detect many different oscillatory patterns [11]. The algorithm was also able to detect which

patterns are “shared by clusters of phase-and-frequency locked oscillators."[11]. SSA has seen

success in its use but there has been a need to extend this method to account for functional time

series data.

2.4 FSSA

The extension of SSA into the functional realm is similar to the process of extending PCA to

FPCA. FSSA is an algorithm that decomposes a functional time series, FN = {f1, ..., fN} where

fi ∈ L2 ([0, 1]) [1], into the additive components that make it up. As was the case in SSA, the

process is broken down into four steps.

1. Embedding: We define HL to be the Hilbert space built from the direct product of L copies

of H = L2 ([0, 1]) such that the inner product of some g,h ∈ HL is given by

〈g,h〉HL =

L∑
i=1

〈gi, hi〉H. (18)

For an integer 0 < L < N
2 define an L-lagged functional time series vector as xj(s) =

{fj , fj+1, . . . , fj+L−1} ∈ HL for j = 1, ...,K where s ∈ [0, 1].

Defining HN to be the Hilbert space created by the direct product of N copies of H and

HL×K
H to be the collection of bounded, Hankel operators, we define the linear bijection

T : HN → HL×K
H . The embedding process then forms the trajectory operator X = T FN

where X : RK → HL such that for every a ∈ RK , we have

Xa =
K∑
j=1

ajxj =



∑K
j=1 ajfj∑K
j=1 ajfj+1

...∑K
j=1 ajfj+L−1


. (19)
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Notice that if we evaluate Xa at some s ∈ [0, 1], we obtain a matrix product [1] between

X which is an L by K matrix and a where

X(s) =

[
x1(s), . . .xK(s)

]
. (20)

By proposition 3.1 [1] that an adjoint of X is a linear operator

X ∗ : HL → RK where for all z ∈ HL, we have

X ∗z =



∑L
i=1〈fi, zi〉∑L
i=1〈fi+1, zi〉

...∑L
i=1〈fi+k−1, zi〉


. (21)

2. Decomposition: Define S = XX ∗ to be a linear variance/covariance integral operator

where S : HL → HL such that

Sz =
K∑
i=1

L∑
i=1

〈fi+j−1, zi〉xj =
K∑
j=1

〈xj , z〉HLxj =
K∑
j=1

(xj ⊗ xj) z. (22)

As stated in [1], S can be seen as an L by L matrix with operator entries

Si.j : H→ H where for a component zj of z, we have

Si,jzj(u) =

∫ 1

0
ci,j(s, u)zj(s)ds. (23)

We also have that ci,j(s, u) is a separable kernel [1] such that

ci,j(s, u) =
K∑
k=1

fi+k−1(s)fj+k−1(u), for s, u ∈ [0, 1]. (24)

For u ∈ [0, 1] we write

Sz(u) =

∫ 1

0
C(s, u)(z)(s)ds =


∑L

i=1

∫ 1
0 ci,1(s, u)zi(s)ds

...∑L
i=1

∫ 1
0 ci,L(s, u)zi(s)ds

 (25)

where C(s, u) = X(s)X(u)∗ [1]. According to proposition 3.2 [1], S is self-adjoint,
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positive, bounded, continuous, and compact. Using the Hilbert-Schmidt theorem [5],

we have that there exists an orthonormal eigenbasis {ξi}∞i=1 ∈ HL and corresponding

eigenvalues {λi}∞i=1 so that

Sz(u) =
∞∑
i=1

λi〈z, ξi〉HLξi. (26)

The eigenbasis is our functional principal component basis that also gives us our functional

principal component scores of {ci,j}∞i=1 = {〈ξi,xj〉HL}∞i=1 for j = 1, ...,K. By [1], we

define the rank one, elementary operator as Xi : Rk → HL where

Xi = (ξi ⊗ ξi)
K∑
j=1

ajxj . (27)

Proposition 3.3 [1] guarantees that each Xi is linear, bounded, of rank one, and that the

following equality holds

X =
∞∑
i=1

Xi (28)

As such, in the grouping stage we group these rank one operators.

3. Grouping: We follow similar grouping techniques as those in the grouping step of subsec-

tion 2.3 to obtain m = 1, ...,M separated trajectory operators

X̂m : Rk → HL such that

X =
M∑
m=1

X̂m. (29)

where

X̂m =
∑
j

Xj , for some j ∈ N. (30)

4. Reconstruction: To finish, we reconstruct each X̂m into corresponding additive functional

time series components, F̃(m)
N for m = 1, ...,M . We define the Hankelization operator

H : HL×K → HL×K
H . Then X̃m = HX̂m for m = 1, ...,M are our reconstructed additive

trajectory operators. This linear transformation is given by
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x̃
(m)
i,j =

1

ns

∑
(k,l):k+l=s

x̂
(m)
k,l (31)

where s = i + j and ns is the number of (l, k) pairs such that l + k = s [1]. Applying

F̃(m)
N = T −1X̃m for m = 1, ...,M gives us our additive functional time series components

that sum to FN .

As was the case in SSA, we measure how well we did in separating out the additive compo-

nents in the grouping stage, so we have a measure of separability given by

ρ(w)
(

F̃(m1)
N , F̃(m2)

N

)
=

〈F̃(m1)
N , F̃(m2)

N 〉w√
〈F̃(m1)
N , F̃(m1)

N 〉w
√
〈F̃(m2)
N , F̃(m2)

N 〉w
(32)

for m1,m2 ∈ 1, ...,M where

〈F̃(m1)
N , F̃(m2)

N 〉w =

N∑
i=1

wi〈F̃
(m1)
N , F̃(m2)

N 〉H. (33)

The weights are given by wi = min{i, L,N − i+ 1} [1]. If ρ(w)
(

F̃(m1)
N , F̃(m2)

N

)
= 0, then

we call F̃(m1)
N and F̃(m2)

N w-orthogonal which is desirable.

2.5 Clustering Time Series

Clustering of time series data can be viewed in two forms. The first involves whole clustering

where if we have a set of K time series {y(k)N }Kk=1 from possibly different processes the goal is

to cluster these time series together based on likeness over their time periods [12]. The second

form is known as subsequence clustering where one uses a sliding window to try to find similar

or different behavior over time periods for one time series [12]. The focus of our work is on the

latter with the goal. The way we measure similarity of time series is either through the shape

level or the structure level where shape level clustering is used for short timer series. Shape-based

methods tend to perform poorly on long time series and so we turn to structure-based methods

which extract underlying features of the time series such as trend and seasonality.

Work has been done in structure level clustering of long time series by using self-organizing

map (SOM) which reduces the dimension of a high dimensional time series [12]. Another

approach that has been used in structure-based clustering of time series data is that of the discrete

Fourier transform which transforms the series from the temporal realm to the frequency realm and
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reduces the dimension in the process [13]. We have also seen the comparison of other clustering

techniques such as k-means and shape-based clustering methods applied to time series data to try

to determine the periods of time-varying operations in complex energy systems [14]. Another

approach involves estimating the spectral density functions for a collection of stationary time

series that share features and clustering on those features [15]. The structure based methods all

revolve around some sort of feature selection or feature extraction where clustering is performed

using those features and as such, PCA seems applicable. The issue is that PCA is not an effective

structure level clustering technique for time series because it assumes independence of data from

time [16].

FSSA is the answer to the need for a subsequence structure-based dimension reduction

technique for time-dependent functional data that can be coupled with FPCA for clustering

purposes. Our goal is to show that the performance in the FSSA-FPCA hybrid clustering method

depends on how the grouping step in FSSA is performed. We execute the hybrid method by first

separating a functional time series into its additive features by using FSSA. We then perform

FPCA on those additive elements and cluster the resulting functional principal component scores

(PCS) within each additive component individually. Preliminary work has been done in an earlier

version of [1] which uses this hybrid clustering method for time-dependent daily call-center

data. They observed better separation of daily call-center behavior with the FSSA-FPCA hybrid

method than with straight application of FPCA to the same time series as shown in the following

figure.

Figure 1: Direct FPCA vs. Hybrid FSSA-FPCA Clustering [Haghbin; submitted 2019]
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We graphically see better separation between daily call-center behavior and there is a need

for metrics that can be used to measure the quality of clustering using the FSSA-FPCA hybrid

method as we change how we perform step three of FSSA.

3 Research Problem

In the grouping step of FSSA, we choose how to group functional principal components together

for reconstruction purposes. Metrics used to measure quality of separation of reconstructions and

clustering will depend on how this grouping is done and so we break our goal into the following

pieces:

1. Recreate the results from the earlier version of [1] using the call-center data

2. Study the connections between the quality of groupings and the w-correlation as well as

the clustering results

3. Show the connection between the w-correlation score between two reconstructions from

FSSA and clustering results of FPCA scores from those same groupings using the call-

center example

4 Methodology

The idea here is to treat the grouping of functional principal components in the third step of

FSSA as our independent variable and our metrics of clustering quality and w-correlation as our

dependent variables.

4.1 FSSA-FPCA on Call-Center Data Background

The steps to recreate the results shown in Figure 1 are as follows:

1. We partition the daily call-center data into 24 hour time periods which results in 365 days

of call-center daily behavior. To this end, we cast the original time series, y87,600, into a

data matrix, X , which is 240 by 365 where each column contains 240 discrete samples of

a continuous function fi ∈ L2([0, 1]). We have 240 discrete samples since each record in

our time series is a the number of calls received in a 6-minute time interval. For scaling

purposes, we scale down by taking the square root of each observation.
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2. We use the “fda" package [17] , to estimate each daily function to obtain our functional

time series FN = {fi}Ni=1 where N = 365. The following figure shows a plot of these

functions.

Figure 2: Elements of FN

3. Next, we apply FSSA to FN with L = 28 to obtain our truncated set of orthonormal

functional principal components {ξi}50i=1 and corresponding eigenvalues {λi}50i=1 of S

which will help us decide on groupings.

4. We achieve our groupings by using the following respective plots of {
√
λi}50i=1 and paired

plots of the eigenfunctions.

Figure 3: The Singular Values of X
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Figure 4: Mean Paired Plot of Eigenfunctions

Due to the alike intensities shown in the singular values and the geometry in the pair plots,

we group the first functional principal component for reconstruction by itself, the second

with the third, the fourth with the fifth, the sixth with the seventh, and all other {ξi}50i=8

components together as noise.

5. Using these groupings and the "FSSA" package [18], we reconstruct a set of five functional

time series, F̃(i)
N , i = 1, ..., 5 given in the following table.

Table 1: FSSA Reconstructions and Components Used to Create Reconstruction

FSSA Components

F̃(1)
N ξ1

F̃(2)
N {ξ2, ξ3}

F̃(3)
N {ξ4, ξ5}

F̃(4)
N {ξ6, ξ7}

F̃(5)
N {ξi}50i=8

The following plots show the elements of each functional time series reconstruction.
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Figure 5: Plots of Additive Elements of FN

We then apply FPCA to F̃(i)
N for i = 2, 3, 4 since these groupings are the only ones that

capture daily behavior in a week as shown in Figure 4.

6. We cluster the subjects based on their resulting first and second FPC scores for each FSSA

reconstruction as according to results shown in 1. To achieve this, we apply k-means

clustering which searches for each cluster’s centroid given a preset number of clusters to

search for [4]. We apply this particular algorithm here since we expect to see 7 clusters

representative of different call-center behavior on each of the 7 days in a week. This

two-step approach of FPCA then clustering has also been used in clustering functional

principal component scores as according to [19]. K-means also provides us a measure of

how well the clustering was done defined by

F =
SSbetween

TSSwithin
(34)

where SSbetween is the sum of square error between clusters and TSSwithin is the total sum
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of square error within clusters. As is the case with F-statistics, the goal is to maximize

(34). We also employ another measurement known as the Rand index as a measure of

how well clustering was performed by comparing to the known true groupings [20]. We

let X = {X1, ..., X7} be seven groupings we obtain from using k-means and we let

Y = {Y1, ..., Y7} be the seven true groupings. Let a be the number of pairs in the same

Xi that have corresponding matching pairs in some Yi and let b be the number of pairs

different in some Xi that have corresponding non-matching pairs in some Yi. The Rand

index that compares the clustering of k-means and the true groupings is given by

RI =
a+ b(
n
2

) (35)

where a Rand index close to one is desired. We compare the clustering of subjects using

k-means on the functional principal component scores for an FSSA reconstruction and the

true groupings and we compare the performance of k-means on the functional principal

component scores of FN versus the true groupings in the following figure.
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Figure 6: K-Means Clustering using FPCA Scores vs. True Groupings

The following table shows the resulting F-ratio value and Rand index for k-means clustering

of FPC scores using reconstructions F̃(2)
N , F̃(3)

N , F̃(4)
N , and FPCA directly applied to FN .
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Table 2: Clustering Results For K-Means

F̃(2)
N F̃(3)

N F̃(4)
N FN

F-Ratio 42.10 34.43 59.30 33.88

Rand Index 0.93 0.992 1 0.798

As reflected in these results, k-means clustering performed best on the fourth reconstruction

due to the fact that it is a locally based method that performs best when there is large

separation between clusters [4].

4.2 Noise Groupings vs. F-Ratio, w-Correlation, and the Rand Index

We use new reconstructions that include the FSSA components of F̃(4)
N to computationally build a

relationship between the grouping done in the third step of FSSA and the F-ratio, w-correlation,

and Rand index. We choose F̃(4)
N as the reconstruction to apply our computational techniques to

since k-means performed best on its FPCA scores.

Recall we used {ξ6, ξ7} to build F̃(4)
N and {ξi}50i=8 to build F̃(5)

N . We expect that if we use

functional principal component terms associated with noise and principal component terms

{ξ6, ξ7} to reconstruct a new functional time series, then clustering results will suffer due to the

creation of a more noisy reconstruction. To this end we build a new reconstruction F̃(p)
N made

from FSSA components {ξi}p1i=6 with p1 = 7, ..., 50. We expect that the F-ratio will decrease,

the w-correlation between F̃(p1)
N and F̃(5)

N will increase, and the Rand index will decrease. Our

proposed technique to estimate a model for these relationships is as follows:

1. Use FSSA principal components {ξi}pi=6 to reconstruct F̃(p)
N

2. For the F-ratio, we apply FPCA to F̃(p)
N and cluster resulting FPCA scores using k-means

3. For the w-correlation score, we just directly measure ρ(w)
(

F̃(p)
N , F̃(5)

N

)
4. We measure the Rand index between the k-means clustering of FPCA scores from the

decomposition of F̃(p1)
N and the true groupings

5. Repeat steps 1-3 for p1 = 7, ..., 49
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4.3 Non-Noise Groupings vs. the Rand Index

We investigate how the Rand index changes as we include non-noise components in our recon-

struction of the original time series. We expect that clustering results will be worse because as we

add more components in, we will be approximating FN and we will simply recreate the results

shown in the direct FPCA method of Figure 1. We do not consider the F-ratio or w-correlation

here because the k-means algorithm is local algorithm that will find false groupings which inflates

F and the w-correlation will oscillate due to true FSSA non-noise groupings being orthogonal to

one another. To this end, we employ the following steps.

1. Build reconstruction F̃(p2)
N using {ξ6, ξ7} ∪ {ξi}p2i=1.

2. Measure the quality of the k-means clustering of the FPCA functional principal component

scores from the FSSA reconstruction F̃(p2)
N as compared to the true groupings using the

Rand index

3. Repeat steps 1-2 for p2 = 1, ...5

5 Results

In general, we expect to see worse clustering performance, reflected in our metrics, as we use

improper groupings in our FSSA reconstructions.

5.1 Results for Groupings vs. the F-Ratio, w-Correlation, and Rand Index

Using the technique covered in subsection 4.2, we obtain the following plot of the number of

noise components included in the grouping versus the F-ratio.
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Figure 7: Plot of F-Ratio as More Noise is Added

As expected, increasing the number of noise components in the reconstruction of F̃(p1)
N

decreases the F-ratio. We fit an exponential model to the data points in Figure 7 to estimate

F (k) = eβ0+β1k for k ∈ N (36)

where F is the F-ratio as a function of k noise components included in the reconstruction.

We also obtain the following summary table which gives the results of this exponential fit.

Table 3: Exponential Model Results for F-ratio vs. Noise

Estimate Standard Error t-value p-value

β0 3.081 0.105 29.46 2× 10−16

β1 -0.415 0.035 -11.72 1.13× 10−14

As we see from Table 5.1, we fail to reject that null hypothesis that there is no exponential

relationship between F and k and as such we believe there is an exponential relationship present.

Using the same technique, we obtain the following plot of number of noise components

included in the reconstruction vs. the w-correlation between F̃(p1)
N and F̃(5)

N .
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Figure 8: Plot of w-Correlation between F̃(p1)
N and F̃(5)

N

As we expected, we get worse separation between F̃(p1)
N and F̃(5)

N as p1 gets larger.

The following is a visual of how the Rand index changes as we increase the number of noise

components included in the reconstruction of F(p1)
N .

Figure 9: Plot of the Rand Index as More Noise is Added

Similar to the F-ratio, there appears to be an exponential relationship between the Rand index

and the number of noise components included in the reconstruction of F̃(p1)
N and so we fit the

model given in the right-hand side of equation (36) and obtain the following table summarizing

the fit.
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Table 4: Exponential Model Results for Rand Index vs. Noise

Estimate Standard Error t-value p-value

β0 -0.031 0.007 -4.487 5.75× 10−5

β1 -0.044 0.002 -18.69 2× 10−16

We see that there does seem to be an exponential relationship between the Rand index and

the number of noise components included in the reconstruction.

Notice that our hypothesis that as the w-correlation increases, the F-ratio decreases is

computationally confirmed as illustrated in the following figure.

Figure 10: F-Ratio vs. w-Correlation

5.2 Results for Rand Index vs. Non-Noise Components

We expect that as the number of non-noise components we include in our reconstruction of FN

that the clustering results will suffer simply because as more components are added, we will be

regenerating the results seen in Figure 1. Clustering using different FPC scores of a reconstruction

will also change the F-ratio and Rand index since we may capture seasonal behaviors in different

pairwise components. For the purpose of deciding which FPCA functional principal components

should be used in clustering for each reconstruction, we calculate the percentage of variability

explained by each component for each reconstruction in the following table.
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Table 5: Percent of Variability Explained by Each FPC for each Reconstruction F̃(p2)
N

Reconstruction {ξ1, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ3, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ3, ξ4, ξ6, ξ7} Reconstruction {ξ}7i=1

FPC 1 79.00% 73.28% 83.62% 83.54% 83.55%

FPC 2 19.73% 25.27% 15.60% 15.69% 15.73%

FPC 3 1.26% 1.35% 0.70% 0.67% 0.59%

FPC 4 9× 10−4% 0.07% 0.05% 0.05% 0.05%

As according to Table 5, most of the variability in the data is explained in the first three

components with a little present in the fourth. For graphical investigative purposes, we plot

k-means clustering results using the first two FPCA functional principal components that arise

from varying FSSA reconstructions of F̃(p2)
N and we plot the true groupings.
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Figure 11: Clustering FPCA Scores with Various FSSA Reconstructions of F̃(p2)
N

As we graphically see, k-means clustering results are suffering as we include more non-noise

components in our reconstruction. We use the Rand index to measure the quality of clustering for

each reconstruction using combinations of the first four FPC scores and we obtain the following

table.
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Table 6: Rand Index from Clustering Based on Varying Reconstructions and FPC’s
Reconstruction {ξ1, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ3, ξ6, ξ7} Reconstruction {ξ1, ξ2, ξ3, ξ4, ξ6, ξ7} Reconstruction {ξ}7i=1

FPC {1, 2} 0.9493 0.9107 0.9606 0.8985 0.8276

FPC {1, 3} 0.9490 0.9137 0.9618 0.9055 0.8484

FPC {1, 4} 0.9490 0.9140 0.9643 0.9055 0.8484

FPC {2, 3} 0.8299 0.9312 0.9471 0.9573 0.8874

FPC {2, 4} 0.8299 0.9312 0.9487 0.9591 0.9111

FPC {3, 4} 0.7508 0.7779 0.8662 0.8860 0.8551

We see that none of the reconstructions we used have a Rand index of one and therefore,

the best clustering results appear when we reconstruct F̃(p2)
N with components ξ6 and ξ7. Recall

that the first FSSA principal component captures mean behavior and not weekly behavior as

shown in Figure 5. Including this component in our reconstructions for this example weakens

our clustering results by decreasing the locality of clusters as seen in the following figure.

−10 −5 0 5 10

−
2

−
1

0
1

2

True Groupings of Reconstruction {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7}

Second FPCA PCS

T
hi

rd
 F

P
C

A
 P

C
S

−10 −5 0 5 10

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0
True Groupings of Reconstruction {ξ2, ξ3, ξ4, ξ5, ξ6, ξ7}

Second FPCA PCS

T
hi

rd
 F

P
C

A
 P

C
S

Figure 12: Comparing Reconstructions

The reason for this poor performance in clustering is due to the fact that more energy is

introduced into the reconstruction causing a wider spread in the data. We take the first component

completely out of reconstructions to try to improve on locality issues however, we find that
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k-means performs even worse simply because k-means searches for spherical clusters as shown

in the following figure.
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Figure 13: K-Means vs. True Groupings First Component Left Out

6 Discussion

As we see, from section 5, if we execute the grouping step of FSSA poorly, we obtain worse

clustering results.

6.1 Sensitivity Analysis

In order to estimate by how much the F-ratio will change as we add another noise functional

principal component into our reconstruction of F̃ (p)
N , we employ

Si =
|∆Fi|
|∆k|

= |∆Fi|. (37)

We consider measuring the discrete sensitivity of the results shown in Figure 7 and we obtain
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the following Figure

Figure 14: Sensitivity of F-Ratio with Added Components

Recall that the first data point corresponds to the F-ratio when no noise terms are added into

the reconstruction of F̃(p1)
N . As we see, our measure of the F-ratio is not very sensitive to changes

in the number of noise components past the addition of the first noise component. We expect

similar sensitivity behavior in the w-correlation between F̃(p1)
N and F̃ (5)

N and the Rand index since

these measurements do not change much for larger amounts of noise components as shown in

Figures 8 and 9.

For the sensitivity of the Rand index as compared to the grouping and FPCA components

used for the k-means clustering, we employ a method where we measure the change in the Rand

index across the rows of Table 6. Labeling the first column of Table 6 reconstruction 1, the

second as reconstruction 2, the third as reconstruction 3, the fourth as reconstruction 4, and the

fifth as reconstruction 5, we obtain the following table of sensitivities and average sensitivities of

the Rand index as we change the reconstruction of F̃ (p2)
N .

Table 7: Sensitivity of Rand Index
Reconstruction 1 to 2 Reconstruction 2 to 3 Reconstruction 3 to 4 Reconstruction 4 to 5 Average Sensitivity

FPC {1, 2} 0.0386 0.0499 0.0621 0.0709 0.0554

FPC {1, 3} 0.0353 0.0481 0.0563 0.0571 0.0492

FPC {1, 4} 0.0350 0.0503 0.0588 0.0580 0.5053

FPC {2, 3} 0.1014 0.0158 0.0102 0.0688 0.0491

FPC {2, 4} 0.1014 0.0174 0.0104 0.0480 0.0443

FPC {3, 4} 0.0271 0.0884 0.0200 0.0301 0.0413

We see all of our average sensitivities are below 0.10 thus our Rand index measurement is

not very sensitive to changes in the groupings.
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6.2 Future Work

There are a lot of avenues to explore further with this work. The first being that of using a

different clustering algorithm to try to avoid the issue of locality in k-means. One of these other

methods we can apply is hierarchical clustering which will allow us the flexibility of not selecting

a set number of clusters to search for. This can be very helpful in clustering unlabeled data. This

leads into another avenue of work where we apply this same analysis to other functional time

series data where we do not know the proper labels. We can also experiment with clustering based

off of the FSSA principal component scores themselves. Even though our reconstructions are

additive functional time series components, we see that FPCA performed on these reconstructions

gives us good clustering results. As such, our reconstructions seem to not be dependent on time

and FSSA appears to be behaving as a temporal to frequency domain transformation similar to

that of a Fourier analysis which needs to be expanded upon.

7 Conclusion

In this work we first covered the literature review necessary to do research using the new FSSA

algorithm presented in [1]. One particular area FSSA has seen some use is in the realm of

subsequence clustering on a structural level where it was shown in [1] that the novel FSSA-FPCA

algorithm has done a better job in clustering FPCA scores of reconstructed time series rather than

FPCA applied to the original functional time series. The present work extended this example

further and shows that the quality of clustering in the new hybrid algorithm depends on how

well the grouping of functional principal components for reconstruction is done in the third step

of FSSA. We also showed that there’s a connection between the w-correlation score between

reconstructions of the original time series and the clustering results using k-means. Using this

work, we have been able to obtain the clues to pursue theoretical work in this field to further

mature the idea of FSSA.
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