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Abstract 
Proteomics efforts have created a need for better strategies to functionally categorize newly discovered 
proteins. To this end, we have employed saturation transfer difference NMR with pools of closely 
related cofactors, to determine cofactor preferences. This approach works well for dehydrogenases and 
has also been applied to cyclic nucleotide‐binding proteins. In the latter application, a protein (radial 
spoke protein‐2, RSP2) that plays a central role in forming the radial spoke of Chlamydomonas 
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reinhardtii flagella was shown to bind cCMP. cCMP‐binding proteins are rare, although previous reports 
of their presence in sperm and flagella suggest that cCMP may have a more general role in flagellar 
function. 31P NMR was used to monitor the preferential hydrolysis of ATP versus GTP, suggesting that 
RSP2 is a kinase. 

1 Introduction 
With the sequencing of the human and other genomes now completed, emphasis has switched to 
determining the structure and function of the protein complement of these genomes. To this end, 
chemical proteomic methods are being developed which use ligands as probes to define protein 
function. Although, these probes are often activity‐based affinity labels 1, 2, strategies have also been 
developed to profile proteins based on the ligands they bind non‐covalently, thereby defining an affinity 
“fingerprint” 3, 4. NMR screening has recently been proposed as a means to create such a fingerprint, 
using panels of ligands 5. Herein, we apply an efficient NMR strategy to assign proteins to functional 
classes, based on cofactor specificity that is probed by screening combinations of related cofactors, 
using competitive saturation transfer difference (STD) NMR 6-8. Such data could provide annotation to 
functional genomic databases, since cofactor binding preferences provide useful insights into the 
biochemical function for an enzyme of unknown function 9. For example, dehydrogenases would be 
expected to bind NAD(P)H, kinases should bind MgATP, and so on. We have validated this strategy on 
known dehydrogenases as well as a cyclic nucleotide dependent protein kinase. We then used it in a 
functional proteomic project to identify an unexpected cCMP binding preference for a protein of 
unknown function, but known to contain a GAF domain for cyclic nucleotides 9-12. 

Cofactor fingerprinting with STD NMR is best done using mixtures of cofactors that represent the most 
commonly used cofactors in biochemistry 9. Since this strategy relies on the STD 7 NMR binding assay, 
there is no need to know an enzymatic activity or function a priori. Also, screening can be done with 
pools of cofactors that are suspected ligands for the protein in question, since STD selectively identifies 
which ligands bind. Of special relevance for our application is that the tighter binding ligand(s) will 
dominate the STD NMR spectrum, as long as binding is in “fast exchange” on the NMR chemical shift 
timescale – meaning exchange rate is greater than the differences in chemical shifts (in units of s−1) for 
resonances from free and bound ligand. Since cofactors usually bind weakly to proteins (K d> 1 μM) 9, 
and since binding (k on) is often close to diffusion‐controlled, cofactor binding/release will usually be in 
fast exchange and therefore give a strong STD signal. But, occasional cases of slow exchange will be 
easily diagnosed upon deconvolution of STD data (repeating with individual cofactors), since the STD 
experiment is being run in competition mode. A cofactor that binds so tight that it is in slow exchange 
(generally with Kd < 1 μM) will decrease the STD signal of a related but weaker binding cofactor. 

2 Materials and methods 
2.1 Protein and reagents 
RSP2 was a generous gift from Dr. Pinfen Yang (Marquette University). The full‐length RSP2 protein had 
been cloned from Chlamydomonas reinhardtii into a pET vector and overexpressed in E. coli (strain 
BL21(DE3)), then purified as described 12. Purified RSP2 was exchanged into NMR buffer using a gel 
filtration column, then concentrated using Amicon YM‐30 Centricon filters. ATP, GTP, cAMP, cGMP, and 
cCMP are from Sigma–Aldrich and D2O (99.9 at.% D) is from Cambridge Isotope Laboratories, Inc. 
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Glucose‐6‐phosphate dehydrogenase (G6PDH ) from Leuconostoc mesenteroides, lactate dehydrogenase 
(LDH) from rabbit muscle and protein kinase A (PKA) from bovine heart are all from Sigma–Aldrich. 

2.2 STD NMR studies 
STD NMR studies (Figs. 1–4 ) were performed at the NMR Facility at Madison on Varian 600 or 800 MHz 
spectrometers. Unless specified otherwise, all experiments were performed at 298 K in an NMR buffer 
of 20 mM sodium phosphate, 200 mM NaCl and 100% D2O at pH 7.4. STD NMR experiments were 
performed using the Varian cyclenoe pulse sequence, with alternating on‐resonance irradiation of the 
protein methyl region (around 1 ppm) and off‐resonance control irradiation at −2.0 ppm. None of the 
proteins analyzed had resonances in this chemical shift range and control irradiation here gave the same 
result as irradiation in the low‐field range above 10 ppm (not shown). Total irradiation time was for 4–6 
s, using a train of 100 ms pulses. All proton spectra were referenced to the residual water signal at 4.76 
ppm (at 298 K). 

 
Figure 1. Cofactor fingerprinting with STD NMR (298 K, 800 MHz), performed on G6PDH and LDH. (A) STD NMR 
spectrum of the mixture of G6PDH and NADH/NADP+. (B) 1D 1H NMR spectrum of the NADH/NADP+ cofactor 
mixture. The resonances marked with ◊ are from NADH, while those marked with * are from NADP+. (C) STD NMR 
spectrum of the mixture of LDH and NADH/NADP+. On‐resonance irradiation was applied at 0.92 ppm and off‐
resonance irradiation was applied at −2.0 ppm, each for 6 s using a train of 100 ms rectangular pulses. Spectra 
represent the average of 16 acquisitions, using a 1 s relaxation delay. 
 

 
Figure 2. Cofactor fingerprinting with STD NMR (at 298 K and 600 MHz) performed on a mixture of RSP2 (∼10 μM) 
and six cofactors (ATP, GTP, cAMP, cGMP, cCMP and 5′AMP, each 1 mM). (A) 1D STD 1H NMR spectrum of the 
mixture of RSP2 and cofactors (with 4 mM Mg2+ present). (B) 1D 1H NMR spectrum of the same mixture. The 
assignments for the proton resonances are as follows: 1, 5′ AMP; 2, ATP; 3, impurity in cAMP; 4, cAMP, ATP and 
5′AMP; 5, GTP; 6, cGMP; 7, cCMP; 8, cAMP; 9, 5′AMP and ATP; 10, cCMP; 11, cGMP; 12, GTP; 13, cCMP. On‐
resonance irradiation was applied at 1.2 ppm and off‐resonance irradiation was applied at −2.0 ppm, each for 4 s 
using a train of 100 ms rectangular pulses. Spectra represent the average of 128 acquisitions, using a 1 s relaxation 
delay. 
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Figure 3. Cofactor fingerprinting with STD NMR (at 298 K and 600 MHz) performed on the mixture of RSP2 (∼25 
μM), cAMP and cGMP. (A) 1D 1H NMR spectrum of RSP2 with 1 mM cAMP. (B) STD NMR spectrum of the sample in 
panel A. (C) 1D 1H NMR spectrum of RSP2 (∼25 μM) with 1mM cAMP and 1 mM cGMP. (D) STD NMR spectrum of 
the sample in panel C. NMR experimental parameters were as in Fig. 2. 
 

 
Figure 4. Cofactor fingerprinting with STD NMR applied to PKA and RSP2. (A) STD NMR spectrum of the mixture of 
PKA and cAMP/cGMP/cCMP. (B) 1D 1H NMR spectrum of the mixture of cAMP (*), cGMP (•) and cCMP (◊). (C) STD 
NMR spectrum of the mixture of RSP2 and the three cyclic nucleotides. NMR experimental parameters were as 
in Fig. 2. 
 

2.3 31P NMR study of ATP hydrolysis by RSP2 
31P NMR studies (Fig. 5 A) were performed on a Varian 300 MHz spectrometer operating at 121.5 MHz 
and at 290 or 298 K. Spectra represent an average of 1024 transients collected over 38 min, using a 
broad spectral width of 18 248 Hz, to provide over‐sampling for a flat baseline. Internal referencing was 
to orthophosphate. Processing was with MestRe‐C (University of Santiago, Spain), using exponential 
multiplication with a line‐broadening of 5 Hz. Sample was maintained at 4 °C between NMR 
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experiments, to minimize protein degradation. Integrated 31P NMR signals were fitted as a function of 
time to the exponential function described below (Fig. 5B), using SigmaPlot 8.0. 

 
Figure 5.  (A) 1D 31P NMR spectra (at 290 K and 300 MHz) for RSP2 (∼10 μM) and the ligand mixture used in Fig. 2, 
supplemented with 3 mM Mg2+. The 31P NMR spectrum at the bottom (time = 10 days) was the first spectrum in 
which the ADP phosphate resonances were observed. The α and γ phosphate signals of ATP and the α and β 
phosphate signals of ADP are marked. Additionally, a is the 5′AMP signal and b is the inorganic phosphate signal, 
while c is assigned to cAMP, cGMP and cCMP. (B) Corresponding fit to an exponential function to give the pseudo‐
first order rate constant for RSP2 catalyzed ATPase (R 2 = 0.96). Control sample with no RSP2 showed no ADP‐
phosphate signal after 28 days. 
 

3 Results and discussion 
3.1 Application of cofactor fingerprinting with STD NMR to dehydrogenases 
We initially applied the cofactor fingerprinting with STD NMR approach to well‐characterized proteins 
(dehydrogenases), then to a protein of unknown function, as part of a larger functional proteomics 
project 12-15. Dehydrogenases are an excellent gene family for applying functional proteomic methods, 
since they represent 3–6% of most proteomes, and are easily identified using bioinformatics tools 16, 17. 
But, it is often difficult to predict based on sequence whether there will be preference for NADH or for 
its 2′‐phosphorylated form (NADPH). Cofactor fingerprinting with STD NMR can be used to determine 
which cofactor is preferred, by screening enzyme in the presence of both, without any need to have the 
enzyme's substrate present. Since the protons on both NADH and NADPH have similar chemical shifts, it 
is necessary to use mixtures of either NADH/NADP+ or NAD+/NADPH. We applied cofactor fingerprinting 
with STD NMR to two common dehydrogenases, G6PDH and LDH, using a NADH/NADP+ mixture (Fig. 1). 
The concentration of protein and cofactor was 2 mg/mL and 1 mM, respectively. Protein was irradiated 
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at the frequency (∼1 ppm) of the methyl protons for amino acids like Val, Ile, Leu, Thr and Ala, being 
careful to not inadvertently irradiate cofactor resonances. The spectrum with on‐resonance irradiation 
at ∼1 ppm is subtracted from a spectrum with off‐resonance irradiation. As long as cofactor binding is in 
fast exchange, the STD NMR spectrum gives signal only for the cofactor that binds with highest affinity 
to the protein, thereby allowing determination of cofactor preference in a short experiment (5–10 min) 
with no more than 1 mg of protein. 

The STD NMR spectra indicate that NADP+ is the preferred cofactor for G6PDH (Fig. 1A) and NADH is the 
preferred cofactor for LDH (Fig. 1A). Consistent with these results, G6PDH is known to be specific for 
NADP(H) in the redox interconversion of glucose 6‐phosphate and 6‐phosphoglucono‐δ‐lactone, while 
LDH is specific for NAD(H) in the redox interconversion of pyruvate and lactate 9. This study therefore 
suggests the general utility of cofactor fingerprinting with STD NMR for determining cofactor 
preferences of dehydrogenases. 

3.2 Application of cofactor fingerprinting with STD NMR in functional proteomics: 
RSP2 
We next applied the cofactor fingerprinting with STD NMR strategy in a functional proteomics project, 
devoted to determining functions for the radial spoke proteins in the flagella of Chlamydomonas 
reinhardtii 12-15. One of these proteins is RSP2 (radial spoke protein‐2). RSP2 has a sequence motif 
classified as a GAF domain, which is present in a new class of cGMP receptors 11, 12. The initial hypothesis 
was therefore that RSP2 binds cGMP and/or cAMP, as is typical of GAF domains. To test this 
bioinformatic hypothesis, we applied the cofactor fingerprinting with STD NMR approach to RSP2 to 
explore preferences for cyclic nucleotides and other potential cofactors. The STD NMR spectrum for 
RSP2 in a pool of six cofactors (Fig. 2) indicates cCMP (peaks 7, 10, and 13) and 5′‐AMP (peaks 1, 4, and 
9) binding, and possibly also GTP and ATP binding. The absence of cAMP and cGMP binding was 
surprising, so these cofactors were assayed alone with RSP2, and it was found that both cAMP and 
cGMP bind to RSP2 (Fig. 3). The absence of cAMP and cGMP binding in the pool of six cofactors could be 
easily explained by the competitive displacement of cAMP and cGMP by a tighter binding cofactor in the 
pool. This was confirmed in an STD NMR experiment that included all three cyclic nucleotides (cCMP, 
cAMP, and cGMP), but showed only binding of cCMP (Fig. 4C). Thus, a competition between related 
cofactors can reveal which is preferred – in this case cCMP. To validate this strategy of determining 
cyclic nucleotide preferences, a well‐characterized model protein was also analyzed. STD NMR of PKA 
(cyclic AMP‐dependent protein kinase from bovine heart) in the presence of related cyclic nucleotides 
indicates binding of both cAMP and cGMP, suggesting a modest level of non‐specificity. cAMP showed 
the stronger STD effect (Fig. 4A), especially for the H8 proton of the adenine group, but the ribose 
glycosidic protons on cGMP and cAMP show similar STD effects. This suggests that while both cAMP and 
cGMP bind, the adenine ring (H8) is more sequestered in the protein binding site than the guanine ring. 
As demonstrated here and elsewhere, STD approaches 7, 18, 19 can also provide structural information on 
binding mode. The second messenger cAMP is well known to activate PKA by binding to regulatory 
subunits. Although, little is known regarding cGMP binding to bovine PKA, PKA is activated by both 
cAMP and cGMP in Orconectus limosis, Amblyomma americanum, Saccharomyces cerevisiae, and Pichia 
pastoris 20-23. We find that both cAMP and cGMP bind to bovine PKA, with a preference for cAMP. 
Perhaps more importantly, cAMP binds with its purine ring more sequestered in the protein than that 
on cGMP – which may be crucial for productive binding that leads to measurable activation. As 
expected, we see no cCMP binding. 
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cCMP binding to RSP2 is specific, since a control protein preparation from E. coli lacking the RSP2 
expression construct showed no STD effect (not shown). Binding cCMP in preference to cAMP and cGMP 
is unexpected, since cCMP is not a widely used cofactor in biochemistry 9. Furthermore, it had previously 
been shown that cAMP and cGMP were the cyclic nucleotides that affect ciliary and flagellar motility, 
presumably through kinases 24. Interestingly, there has been a report of a regulatory role for cCMP in 
motility of sperm flagella 25, and several other studies suggest that cCMP may play a role in cell 
development 26-28. 

To broaden the scope of the cofactor fingerprinting approach used herein, we explored the use of a 
basis set of heterocyclic rings that comprise the most commonly used cofactors in biochemistry 
(determined using the fragmentation algorithm in Pipeline Pilot 29, version 3.0.6). But, we found that the 
fragments (ex. adenine) do not bind well enough to give strong STD signals, so the preferred 
implementation of cofactor fingerprinting with STD NMR is with small pools of related and fully intact 
cofactors, as in Figs. 1–4. 

3.3 Further NMR‐based functional characterization of RSP2: slow ATPase activity 
Since earlier studies had suggested that RSP2 has kinase activity 12, 31P NMR studies were undertaken to 
determine if RSP2 is capable of catalyzing the slow hydrolysis of ATP. Such slow ATPase activity is typical 
of kinases, in the absence of the substrate that normally receives the phosphate. In cases where the 
phosphate acceptor for a suspected kinase is unknown, screening for ATPase activity is the best way to 
experimentally verify kinase activity for a purified protein. Conversion of ATP to ADP or GTP to GDP was 
monitored with 31P NMR. Simultaneous monitoring of GTPase and ATPase activity indicated a clear 
preference for ATPase activity, with a decrease in signal for the ATPγ‐phosphate occurring 
simultaneously with an increase in signal for the β‐phosphate from ADP. The 1:1 ratio of resonances at 
−4.4 and −5.2 ppm at the last time‐point reflects the complete conversion of ATP to ADP, with GTP still 
intact and serving as an internal control. That it was ATP and not GTP being hydrolyzed was confirmed 
with a similar study done in the absence of GTP (not shown). Similar changes are observed for the α‐
phosphates. The increase in α‐phosphate signal was fitted to an exponential function: 

[ADP]t = [ADP]1−∞(1 − e−k’t) 

giving a pseudo‐first order rate constant (k′) for ATPase activity of 4.5 × 10−7 s−1. This value is certainly a 
lower limit, since it is not clear if specific activity of RSP2 decreased during purification or storage, since 
there is currently no activity assay for it. The fact that hydrolysis is observed for ATP and not GTP, and 
also that no ATP hydrolysis is observed in the absence of RSP2 is evidence that RSP2, possesses ATPase 
activity, and is therefore a kinase. 

In summary, cofactor fingerprinting with STD NMR has been shown to be an efficient way to establish 
cofactor preferences for proteins. It has been validated with both dehydrogenases and with cyclic 
nucleotide‐binding proteins, and then applied in a functional proteomics project. With regard to the 
latter, it has been used to establish that Chlamydomonas reinhardtii RSP2 binds cCMP in preference to 
cAMP and cGMP, which is an unexpected cofactor preference for a GAF domain. The slow ATPase 
activity of RSP2 also suggests that it is a kinase. 
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