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Highlights 
• Cytotoxicity increases with increasing atomic number of the transition metal. 
• The trend of cytotoxicity is not cell-type dependent. 
• PZC, ion dissolution and number of surface binding sites govern toxicity. 

Abstract 
A clear understanding of physicochemical factors governing nanoparticle toxicity is still in its infancy. We 
used a systematic approach to delineate physicochemical properties of nanoparticles that govern 
cytotoxicity. The cytotoxicity of fourth period metal oxide nanoparticles (NPs): TiO2, Cr2O3, Mn2O3, Fe2O3, 
NiO, CuO, and ZnO increases with the atomic number of the transition metal oxide. This trend was not 
cell-type specific, as observed in non-transformed human lung cells (BEAS-2B) and human 
bronchoalveolar carcinoma-derived cells (A549). Addition of NPs to the cell culture medium did not 
significantly alter pH. Physiochemical properties were assessed to discover the determinants of 
cytotoxicity: (1) point-of-zero charge (PZC) (i.e., isoelectric point) described the surface charge of NPs in 
cytosolic and lysosomal compartments; (2) relative number of available binding sites on the NP surface 
quantified by X-ray photoelectron spectroscopy was used to estimate the probability of biomolecular 
interactions on the particle surface; (3) band-gap energy measurements to predict electron abstraction 
from NPs which might lead to oxidative stress and subsequent cell death; and (4) ion dissolution. Our 
results indicate that cytotoxicity is a function of particle surface charge, the relative number of available 
surface binding sites, and metal ion dissolution from NPs. These findings provide a physicochemical basis 
for both risk assessment and the design of safer nanomaterials. 

Graphical abstract 

 

Keywords 
Physicochemical properties; Metal oxide nanoparticles; Cytotoxicity; Surface binding sites; Point-of-zero 
charge; Metal ion dissolution 



1. Introduction 
There are currently more than 2800 nanoparticulate-based applications commercially available. It is 
estimated that by 2017, this field will represent a $48.9 billion market [1]. As engineered nanoparticles 
(NPs) currently occupy a significant portion of the market and are anticipated to proliferate 
commercially, there is an urgent need to study their potential impact on human health and the 
environment. 

To date, there exists no epidemiological or clinical evidence demonstrating that inhalation of NPs leads 
to adverse health effects in humans [2]. However, toxicological studies using animal models and cell 
cultures suggest that NPs are more toxic and inflammogenic than larger particles of similar composition 
and of equal mass [3]. We have demonstrated intricate relationships between NPs, production of ROS 
and changes in intracellular Ca2+ concentrations [Ca2+]in. These studies suggest that NPs can trigger cell 
death by multiple pathways [4]. NPs increase [Ca2+]in. Moderation of this increase by nifedipine suggests 
that a portion of this increase reflects the influx of extracellular calcium. Membrane disruption (e.g., as 
indicated by lipid peroxidation and membrane depolarization) may also play a role in this influx [4], [5]. 
NPs also disrupt store-operated calcium entry (SOCE) [6]. The increase in intracellular ROS may also have 
multiple sources. There exist synergistic relationships between intracellular [Ca2+] and OS as the 
increases in both can be reduced by an antioxidant. Finally, while [Ca2+]in and ROS affect each other, they 
induce cell death by distinct pathways. 

Structural defects on the NPs, which can act as electron-donor/acceptor groups, may alter the electronic 
configuration and contribute to the formation of reactive oxygen species (ROS) [7]. Particle dissolution 
has also been considered as a factor in NP-induced toxic responses [8], [9]. Particle size and morphology 
are factors that also contribute to toxicity [10], [11]. It remains unclear whether additional 
physicochemical properties of metal oxide NPs dictate the toxic responses. To elucidate these 
properties, we systematically examined an array of oxides of transition metals in the fourth period of 
the Periodic Table (Ti, Cr, Mn, Fe, Ni, Cu, Zn). These types of nanomaterials have been extensively used 
in catalysis [12], magnetocooling [13], optical and recording devices [14], [15], purification of enzymes 
and other biological materials [16], water purification devices [17], magnetic field assisted radionuclide 
therapy [18], embolics [19], [20], [21], cosmetic and skin care products, and targeted drug delivery 
agents [22], [23], [24], [25], [26], [27]. This series of NPs offers an opportunity to investigate the 
determinants of toxicity, which may lead to the design of safer nanomaterials. Toxicity can be 
investigated using in vitro and in vivo systems. Both systems provide different information for various 
scientific purposes and in many cases are complementary to each other. As there are numerous 
nanomaterials, it is improbable, though not impossible, to investigate each nanomaterials with in 
vivosystems. Therefore, in vitro systems provide an alternative to study nanotoxicity in that (1) it is cost 
efficient, (2) it provides information to prioritize animal testing, and (3) it informs computational 
toxicology in the context of quantitative structure–activity relationship (QSARS). 

We hypothesize that toxicity is a function of multiple physicochemical properties of nanoparticles. We 
selected TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and ZnO NPs from a single commercial source to minimize 
variability. In order to determine whether cytotoxic responses are cell-type specific, two human lung 
cells were studied. Cells were exposed to these NPs and cytotoxicity was measured. Isoelectric points 
(i.e., point-of-zero charge), number of available surface binding sites, and band-gap energies of the NPs 
were measured. The NPs were also subjected to kinetic experiments to determine the extent of metal 

https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0005
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0010
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0015
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0020
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0020
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0025
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0030
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0035
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0040
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0045
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0050
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0055
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0060
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0065
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0070
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0075
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0080
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0085
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0090
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0095
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0100
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0105
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0110
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0115
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0120
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0125
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0130
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#b0135


ion dissolution. Our results indicate that certain physicochemical properties of metal oxide NPs strongly 
correlate with cytotoxicity. 

2. Materials and methods 
2.1. Nanoparticles, reagents, and instrumentation protocols 
The nanoparticles, reagents, and instrumentation protocols used in the experiments are detailed in 
the Appendix A. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and 
band gap measurements were performed on the NPs. Characterizations of graphite furnace atomic 
absorption analysis (GFAA) and inductive coupled plasma-mass spectrometry (ICP–MS) of the aqueous 
solution supernatants exposed to the NPs. Correlations of observed physicochemical properties of the 
materials were correlated with cytotoxicity. 

2.2. Cell culture and exposure of cells to NPs 
Human bronchial epithelial cells (BEAS-2B) and human bronchoalveolar carcinoma-derived cells (A549) 
are in vitromodels considered as ideal for both studying the prevention of human lung carcinoma 
development and nanotoxicity testing [28]. These cells were maintained using the same procedures 
described in our previous studies [4], [5], [29], [30], [31]. 

Cells were grown at 37 °C in a 5% CO2 humidified environment. Upon reaching 85% confluence, the cells 
were seeded into 24 well plates and allowed to attach for 24 h. The cell densities used followed ATCC 
protocol recommendations, and were well within sensitivity and detection limits of the analytical 
instruments used. To reduce experimental variation and ensure accuracy, particles were dried in a 
desiccator before being weighed on an analytical balance. Particles were suspended in cell culture 
medium, vortexed vigorously, and then sonicated. A series of dilutions in cell culture medium were 
performed to achieve desired concentrations. The suspensions were immediately applied to cells to 
minimize agglomeration. Cells without NPs and reagent blanks were used as controls in each 
experiment. 

2.3. Cytotoxicity assay and apoptosis 
At the end of cell exposure to NP suspensions, the medium was discarded and the sulforhodamine B 
assay was used to determine cell viability relative to the control group [31]. Briefly, the cells were fixed 
with cold 10% trichloroacetic acid (TCA) for 1 h at 4 °C. The TCA solution was then discarded and the 
cells were washed three times with distilled water, followed by complete drying. Sulforhodamine B 
(0.2% in 1% acetic acid) was added to stain the cells for 30 min at room temperature. The staining 
solution was discarded and the cells were washed with 1% acetic acid three times to eliminate excess 
dye. After complete drying, the dye was dissolved in cold 10 mM Tris buffer (pH = 10.5). Aliquots 
(100 μL) of dye solution were transferred onto a 96-well plate, and absorbance was measured at 550 nm 
using a microplate reader (FLOURstar, BMG Labtechnologies, Durham, NC, USA). 

Apoptotic cells were stained with annexin V–FITC and 7-aminoactinomycin D (7-AAD) followed by 
quantification using a Beckman Coulter Cell Lab Quanta SC System. Morphological examination of 
apoptotic cells was performed using the same dyes and observed with an Olympus IX 51 epifluorescence 
microscope. 
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2.4. Statistical analysis 
For toxicity studies, three independent experiments were conducted, using triplicates for each 
treatment group. Data are expressed as mean ± standard deviation. The relationship between 
cytotoxicity and the physicochemical properties of nanoparticles were analyzed with Spearman’s Rank 
Correlation Analysis. 

3. Results 
3.1. Size, morphology, and specific surface area 
The approximate physical sizes (APS) of the seven commercially available transition metal oxide NPs 
ranged from 16 ± 5 nm (NiO) to 82 ± 31 nm (Mn2O3) (Table 1). The morphology of NPs observed with 
TEM was needle-like (TiO2), spherical (Mn2O3, Fe2O3), or nearly spherical (Cr2O3, NiO, CuO, ZnO) (Fig. A1). 
The specific surface area (SSA) of NPs ranged from 8.71 m2/g (Mn2O3) to 178.95 m2/g (TiO2). While TiO2, 
Fe2O3, and CuO had similar sizes, they possessed distinctly different specific surface areas. This could be 
due to variations in surface porosity and discrepancy in morphology. 

Table 1. Measured specific surface area, approximate physical size, and morphology of nanoparticles. 

 

3.2. Influence of pH in cell culture medium on cell viability 
Cytotoxicity of NPs may simply reflect changes in pH over time. To evaluate this possibility, NPs were 
added to the cell culture medium and pH was measured at 0, 6, 12, 18, and 24 h. Immediately after 
adding NPs to cells in medium, the pH became slightly elevated compared to the control cell in medium 
only. The pH fluctuated briefly, and then stabilized, except for NiO, which increased the pH between 12 
and 24 h. Very little change in pH was observed at low NP concentrations (Table A1). As concentrations 
of NPs increase, pH variations increased with all NPs. However, the extent of pH fluctuations was 
0.29 ± 0.14 and 0.31 ± 0.03 units with and without NPs, respectively. Cell morphology and size in the 
groups with NPs were similar to those in the control groups. 

3.3. Cytotoxicity and apoptosis 
Seven nanosized oxides of transition metals (Ti, Cr, Mn, Fe, Ni, Cu, Zn) from the fourth period of the 
Periodic Table of Elements were selected to test our hypothesis that certain physicochemical properties 
of NPs contribute to cytotoxicity in human cells. Two human lung cell lines, BEAS-2B and A549, were 
tested to determine whether cytotoxicity is cell-type specific. 

A 24-h study of A549 cells exposed to NPs shows a trend of toxicity, as revealed by cell viability. As the 
atomic number of the transition metal increases within the fourth period, cytotoxicity increases (Fig. 1). 
The toxicity falls into three categories: (1) TiO2, Cr2O3, and Fe2O3 have zero to minimal toxicity (close to 
100% cell viability); (2) Mn2O3 and NiO show typical dose-dependent toxicity (∼40% cell viability); and 
(3) CuO and ZnO induce potent toxicity within a narrow dose range (≲20% cell viability). A similar trend 
of toxicity is observed with BEAS cells (data not shown), albeit with slight variations. Notably, both CuO 
and ZnO cause toxicity with a steep concentration range. There is a good correlation between 
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cytotoxicity and atomic number (ρ = 0.93, Fig. 2). Cytotoxicity is observed in the form of apoptosis and 
necrosis (Fig. 3A–B). The combined populations of early apoptotic cells and late apoptotic/early necrotic 
cells treated with the highest concentrations of CuO (20 μg/mL) and ZnO (28 μg/mL) are 71.8 ± 7.6% and 
28.4 ± 11.7%, respectively. The combined populations of early apoptotic cells and late apoptotic/early 
necrotic cells of the rest of five NPs range from 2.2 ± 0.7% and 6.1 ± 0.7%. The degree of 
apoptosis/necrosis corresponds with severity of cytotoxicity. 

 

Fig. 1. Response of A549 cells to transition metal oxide nanoparticles based upon various dosimetry 
expressions: (A) particle mass/medium volume (μg/mL), (B) particle mass/seeding area (μg/cm2), and (C) 
particle specific surface area/seeding area (cm2/cm2). Cell viability was determined by the sulforhoamine 
B method. Three independent experiments were conducted, using triplicates for each treatment group. 
Data are expressed as mean ± standard deviation. 

 

Fig. 2. (A) Spearman’s Rank Correlation between cytotoxicity and atomic number of seven oxides of 
transition metals. As atomic number increases, cytotoxicity increases. The same trend occurs in both 
A549 and BEAS-2B cells. (B) Correlation between cytotoxicity of point-of-zero charge (PZC) of 
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nanoparticles. Without the outlier Mn2O3, ρ = 0.94. (C) Correlation between cytotoxicity and available 
particle surface binding sites. Experiments were conducted at pH 7.4. Available surface binding sites 
were not estimated at pH 4.5 conditions. Acid etching effects observed in this pH region would skew 
quantitative measurements of physisorbed-to-metal oxide oxygen ratios. 

 

Fig. 3. Transition metal oxide nanoparticles induced cell death in A549 cells. Cells were treated with 
nanoparticles for 24 h followed by flow cytometric analysis using annexin V–FITC (AV, x-axis) and 7-
aminoactinomycin D (7-AAD, y-axis): (A) AV positive/7-AAD negative (apoptotic) and AV-positive/7-AAD 
positive (late apoptosis, early necrosis); (B) Percentage of late apoptotic and early necrotic populations. 
Three independent experiments were conducted, using triplicates for each treatment group. 

3.4. Physicochemical properties and toxicity 
We hypothesize that cytotoxicity is a function of particle (i) surface charge, (ii) available surface binding 
sites, and (iii) dissolution of metal ions from metal oxide NPs. The particle surface charge, measured as 
PZCs, of the metal oxides are summarized in Fig. 4. Horizontal dashed lines within the PZC plot at 
pH = 4.5 and 7.4 denote the pH of the lysosomal and cytosolic environments, respectively. Noteworthy 
is the fact that as PZC increases, the cytotoxic effects of the NPs on the BEAS-2B and A549 cell lines 
increase, except for Mn2O3. Most of the PZC values cluster between 8 and 9, above both lysosomal and 
cytosolic environments, with the exception of TiO2, which had a PZC of 6.9. Fig. 2B shows a good 
correlation between cytotoxicity and PZC calculated with Mn2O3 as an outlier (ρ = 0.94), and without 
Mn2O3 as an outlier (ρ = 0.78). 

https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#f0020
https://www.sciencedirect.com/science/article/pii/S0009279713002573?via%3Dihub#f0010


 

Fig. 4. Point-of-zero charge (PZC) initial pH versus final pH plots of Mn2O3, ZnO, CuO, NiO, Fe2O3, Cr2O3, 
and TiO2 metal oxide nanoparticles. Horizontal lines at pH 7.4 and pH 4.5 denote cytosolic and lysosomal 
environments, respectively. 

The relative number of available particle surface binding sites was measured by XPS (Table A2). A 
greater physisorbed-to-metal oxide oxygen ratio denotes more adsorption sites potentially available for 
cellular molecular binding. Fig. 5 shows a stack plot of XPS spectra of the O 1s orbitals of all NPs 
following a 16 h CC reaction at pH = 7.4. The chemical oxidation state denoting metal oxide (blue trace) 
is clearly defined for each respective nanoparticle. The XPS binding energies (BE) with full-width-at-half-
maxima (fwhm) in parentheses were found to be at 530.0 (1.7), 529.6 (1.1), and 529.5 (1.4) eV, matching 
literature values for the metal oxide oxidation state for TiO2[32], Mn2O3[33], [34], and Fe2O3[35], [36], 
respectively. BEs observed at 531.9 (2.4) eV on TiO2[37], [38], [39], 530.9 (1.1) and 531.5 (4.0) eV on 
Mn2O3, and 529.5 (1.4) and 530.6 (2.4) eV on Fe2O3 are consistent with adsorbed hydroxyl species on 
these surfaces [40]. BEs of the metal oxide chemical state observed at O 1s = 529.0 (0.9), 529.7 (1.0), 
529.7 (1.0) and 529.8 (1.1) eV, matched their literature values for NiO [41], Cr2O3[42], CuO [43], [44], 
and ZnO [45], respectively. BE peak centers at 531.0 (2.3) eV on NiO, 530.7 (2.1) and 532.5 (2.3) eV on 
Cr2O3, 531.1 (1.4) eV on CuO, and 531.6 (2.2) eV on ZnO are also consistent with the presence of 
adsorbed surface hydroxyls. The peak position at ∼531.5 eV could also emanate from adsorbed 
carbonyls (from atmospheric CO2) [40]. The vertical dashed line (Fig. 5) denotes the BE chemical shift for 
the H2O oxidation state. The O 1s BE peak centers at 532.9 (1.7) eV on NiO, 532.5 (2.3) eV on Cr2O3, 
532.6 (1.3) and 532.9 (3.7) eV on CuO, and 532.9 (2.0) eV on ZnO denote adsorbed H2O on these 
surfaces [39], [40]. There was a good correlation between cytotoxicity and available nanoparticle surface 
binding sites (ρ = 0.71, Fig. 2C). According to these data, the relative number of available binding sites 
(Table A3) for each oxide is in the following ascending order: TiO2, Mn2O3, Fe2O3, NiO, Cr2O3, CuO, ZnO. 
With the exception of Cr2O3, the relative number of available binding sites correlated well with 
increased cytotoxicity and periodicity of the transition metal. 
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Fig. 5. XPS of O 1s orbitals of Fe2O3, Mn2O3, and TiO2 metal oxide nanoparticles. XP spectra were 
deconvoluted using a 70:30 Gaussian–Lorenztian lineshape and applying Shirley background 
subtractions. Blue envelopes denote the metal oxide chemical oxidation state. Red envelopes denote 
adsorbed non-metal oxide oxygen. Vertical dashed lines denote the BE position for adsorbed H2O. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 

The dissolution kinetics of metals from metal oxide NPs over a period of 24 h was determined using CC 
experiments, followed by centrifugation and membrane dialysis. The samples were subjected to ICP–MS 
and GFAA analyses. Metal dissolution of CuO and ZnO NPs was prominent at acidic conditions (pH = 4.5). 
Increasing dissolution over a period of 18 h was observed with both NPs (Fig. 6A). Dissolution of CuO 
and ZnO NPs reached 14.97 ± 6.16% and 31.99 ± 12.72%, respectively. Unexpectedly, there was a drop 
in ZnO dissolution between 18 and 24 h. At pH = 7.4, the highest dissolution of CuO and ZnO NPs was 
0.87 ± 0.85% and 0.58 ± 0.40%, respectively. Fig. 6B shows the dissolution kinetics of TiO, Cr2O3, Mn2O3, 
Fe2O3, and NiO NPs. Dissolution of NiO and Mn2O3 at pH = 4.5 and NiO at pH = 7.4 is the highest among 
them. TiO2 and Cr2O3 at both pH conditions are considered undissolvable (<< 0.006%). There was a good 
correlation between cytotoxicity and metal dissolution at both pH conditions (ρ = 0.86, Fig. 7). Table 
2 summarizes the correlations found in our study between the physicochemical property and 
cytotoxicity as measured by Spearman’s rank. 
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Fig. 6. ICP–MS and GFAA data from supernatants extracted from constant composition (CC) experiments 
of solutions in contact with metal oxide nanoparticles at pH 4.5 and pH 7.4, showing: (A) metal 
dissolution kinetics of CuO and ZnO nanoparticles and (B) metal dissolution kinetics of TiO2, Cr2O3, 
Mn2O3, Fe2O3, and NiO nanoparticles. ICP–MS analysis was performed to analyze ions of Cu, Zn, Ti, Cr, 
Mn, and Ni in solution. GFAA analysis was performed to quantify the amount of ions of Fe in 
solution. N = 3–6. Data were expressed as mean ± standard deviation. 

 

Fig. 7. Spearman’s rank correlation between cytotoxicity and metal dissolution from nanoparticles. 

Table 2. Correlation between cytotoxicity and physicochemical characteristics of transition metal oxide 
nanoparticles. 



Dependent variable Independent variable Spearman’s rank (ρ) 

Cytotoxicity Atomic number 0.93 

PZC 0.78 

# Of available binding sites 0.71 

Dissolution (at pH 7.4) 0.89 

Dissolution (at pH 4.5) 0.86 

4. Discussion 
We observe a clear trend in cytotoxicity: as the atomic number of transition metal oxide nanoparticles 
increases, cytotoxicity increases. This phenomenon is not cell-type specific as it occurs in both A549 and 
BEAS-2B cells. The response to NP exposure based upon particle mass dosimetry can be categorized into 
three toxicity groups: none to minimal (TiO2, Cr2O3, Fe2O3), moderate dose-dependent (Mn2O3, NiO), and 
strong and steep (CuO, ZnO). The highest concentration tested was 100 g/mL; above which cells become 
engulfed by NPs. It remains unclear how this physical engulfment influences cellular response and 
survivorship, further complicating explanation for cytotoxicity. 

The cell population reflects both cell proliferation and death. Thus, the reduced cell numbers observed 
in response to NPs could reflect reduced proliferation and/or increased cytotoxicity. Whether NPs 
tested in this study cause reduced proliferation was not addressed. Flow cytometric analysis revealed 
increased cell death. Both apoptotic cells and necrotic cells were observed. Microscopic examination 
(data not shown) revealed cells at different stages of dying: apoptotic budding, pre-necrotic apoptosis, 
apoptotic budding, apoptotic bodies, apoptotic shrink, and primary necrosis. The use of annexin V–FITC 
and 7-aminoactinomycin D (7-AAD) could not distinguish between cell death involving primary necrosis 
and apoptotic secondary necrosis; additional cellular biomarkers are needed in future studies to 
distinguish these processes. 

Cytotoxicity of the metal oxide NPs in both cell lines correlates with their respective PZCs measured in 
water. Noteworthy is the fact that TiO2 has a PZC of 6.9 while the pH of cell medium (with presence of 
cells) is 7.4, similar to that of the cytosol. The lowered PZC of the TiO2 NPs indicates that they would be 
populated with negatively charged species due to Coulombic attractions, leading to low cellular uptake 
that requires crossing a negatively-charged cytoplasmic membrane. The explanation of lower 
bioavailability is limited by the fact that NPs could be coated by proteins in cell culture medium to form 
protein corona which may influence surface charge. 

As size decreases, the total particle surface areas increase exponentially. The surface provides potential 
sites for interaction with biomolecules such as lipids, DNA, RNA, and protein. Using XPS to estimate the 
relative number of available particle surface binding sites, we attribute the changes in the O 1s line 
shapes (not emanating from the metal oxide oxidation state) to weakly adsorbed O-containing moieties 
at the metal oxide NP surface. The adsorbates are predominantly H2O and hydroxyl groups; however, 



carbonates, CO, and CO2 from atmosphere could also adsorb to the surface, and their binding energies 
(BEs) typically overlap with observed chemical shifts for adsorbed hydroxyls in the ∼531 eV region [40]. 
Variations in the number of available surface sites can be attributed to the atomic level structures of the 
lattice oxygens within each oxide [46]. A periodic trend of increasing adsorbed-to-metal oxide oxygen is 
observed for the series of metal oxides studied, with the exception of Cr2O3, which deviates in that it has 
a pronounced amount of adsorbed oxygen, probably an artifact of CO2 from solution exposure to the 
atmosphere. CO2 has a propensity to adsorb onto Cr2O3. The relative large XPS intensity at O 1s BE at 
531.2 eV (Fig. 5) has also been reported to emanate from a mixed complex of Cr2O3·nH2O·xCO2 formed 
from adsorbed atmospheric CO2 into the aqueous solution [47]. The most toxic of nanoparticles 
analyzed in this series also has the highest adsorbed H2O content; the vertical, dashed line denotes the 
chemical oxidation state for adsorbed H2O, ZnO, and CuO have the highest PZCs and hence greatest 
degree of “protonation” via adsorption of hydronium ions (H3O+). Under aqueous solution physiological 
conditions, the metal oxide surface would be populated by excess H3O+, in accordance with Gouy–
Chapman theory. During adsorption, the adsorbate would be electrically neutralized resulting in the 
observed, enhanced intensity denoting chemisorbed H2O at 532.9 eV on the CuO and ZnO surfaces. 
Adsorbed H2O is not pronounced on the Cr2O3, Mn2O3, Fe2O3, and NiO NP surfaces. Lesser absorption is 
observed with TiO2(Fig. 5), which has the lowest PZC in the series (below that of physiological pH), 
appearing at the leading edge of the BE envelope indicative of adsorbed hydroxyls at ∼532 eV. 

Dissolution of metals from metal oxides correlate with observed cytotoxicity. Dissolution kinetics of 
metals from metal oxide NPs suggests a significant release of Cu2+ and Zn2+ from CuO and ZnO oxides in 
acidic environment (pH = 4.5), but not neutral environment (pH = 7.4). A drop in metal dissolution of 
ZnO is observed between 18 and 24 h. We postulate that high concentrations of Zn2+ leads to re-
absorption of the released ions onto the ZnO NPs. This action could result in an incomplete separation 
of ions from oxides during sample preparation. George et al. [48] also found significant Zn2+ dissolution 
from ZnO NPs in a 1000-min. kinetics study; equilibrium was not reached at the end of the experiment. 

Metal dissolution of NiO at both pH = 4.5 and 7.4, and Mn2O3 at pH = 4.5 were lower than 1%, except for 
NiO at 24 h at pH = 4.5. Though the released Cu2+ and Zn2+ concentrations at the neutral environment 
are small, their potential effects may be significant, as these two ions are very toxic. Elevated levels of 
Zn2+ are toxic to a variety of cells, including PC-12, HeLa, and HT-29 cell lines, as well as primary cultures 
of cardiac myocytes and neurons [49]. Cu2+ increases cell death and impairs the colony-forming 
efficiency of human hepatoma cells [50]. Ni2+ released from nickel hydroxide nanoparticles plays a role 
of pulmonary toxicity in a whole-body inhalation study [51]. Additional studies have shown that 
exposure of particulate matter (PM)-associated ions, such as Cu2+ and Zn2+, elevate oxidative stress and 
induce inflammatory responses [52], [53], [54]. Many NPs have been shown to use endocytosis as a 
major route for cellular entry [55], [56]. Vesicles formed in endocytosis become early endosomes, late 
endosomes, and eventually acidic lysosomes. The time period that NPs remain in the acidic environment 
remains to be elucidated, as this factor would influence the degree of metal dissolution from the metal 
oxides. Experiments with soluble compounds such as ZnSO4 and CuCl2 can facilitate the understanding of 
the role of ions in nanotoxicity, with the limitation that kinetics of ions from these compounds differ 
from those released from transition metal oxides. 

To summarize, we note the following trends correlating NP physicochemical properties with the 
cytotoxicity. As the atomic number of the transition metal increases, cytotoxicity increases. Cytotoxicity 
is not cell-type specific and does not reflect changes in pH or material band gap. Instead, cytotoxicity 
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appears to predominantly be a function of (1) particle surface charge, (2) the number of available 
particle surface sites, and (3) metal ion dissolution from the NPs. Particle surface charge is pH 
dependent, and may thus influence the rate and routes of their cellular uptake as well as subsequent 
partitioning between organelles. The correlation of available surface binding sites with cytotoxicity 
increases the likelihood of NP interaction with biomolecules such as DNA, RNA, protein, and lipids. 
Dissolution of metals from oxides is pH dependent. Among the seven oxide NPs, release of Cu2+ and 
Zn2+ from their respective oxides is most likely to contribute to toxicity. Our observations show interplay 
of these three variables governing cytotoxicity, and highlight this important consideration for risk 
assessment and design of safer nanomaterials. 
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