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ABSTRACT
DEVELOPMENT OF A QUASI-MONTE CARLO

METHOD FOR THERMAL RADIATION

Joseph A. Farmer

Marquette University, 2019

Radiative heat transfer in participating media is among the most challenging
computational engineering problems due to the complex nonlinear, nonlocal nature
of radiation transport. Many approximate methods have been developed in order to
resolve radiative heat transfer in participating media; but approximate methods, by
the nature of their approximations, suffer from various shortcomings both in terms
of accuracy and robustness. The only methods that can resolve radiative transfer
accurately in all configurations are the statistical Monte Carlo-based methods.
While the Monte Carlo (MC) method is the most accurate method for resolving
radiative heat transfer, it is also notoriously computationally prohibitive in
large-scale simulations. To overcome this computational burden, this study details
the development of a quasi-Monte Carlo (QMC) method for thermal radiation in
participating media with a focus on combustion-related problems. The QMC
method employs a low-discrepancy sequence (LDS) in place of the traditional
random number sampling mechanism used in Monte Carlo methods to increase
computational efficiency. In order to analyze the performance of the QMC method,
a systematic comparison of accuracy and computational expense was performed.
The QMC method was validated against formal solutions of radiative heat transfer
in several one-dimensional configurations and extended to three practical
combustion configurations: a turbulent jet flame, a high-pressure industrial gas
turbine, and a high-pressure spray combustion chamber. The results from QMC and
traditional Monte Carlo are compared against benchmark solutions for each case. It
is shown that accuracy of the predicted radiation field from QMC is comparable to
MC at lower computational costs. Three different low-discrepancy sequences –
Sobol, Halton, and Niederreiter – were examined as part of this work. Finally,
recommendations are made in terms of choice of the sequence and the number of
the dimensions of the LDS for combustion-relevant configurations. In conclusion,
significant improvements in computational costs and accuracy seen in the QMC
method makes it a viable alternative to traditional Monte Carlo methods in
high-fidelity simulations.
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CHAPTER 1

INTRODUCTION

1.1 Background

Heat transfer caused by electromagnetic waves is commonly referred to as

thermal radiation or radiative heat transfer. Thermal radiation can be distinguished

from conduction and convection (the other two forms of heat transfer) in a number

of ways. For example, radiative heat transfer does not require a medium nor an

interaction between adjacent environments, whereas conduction and convection do.

Conductive and convective heat transfer depend linearly on the temperature

gradient, but radiative heat transfer is biquadrately dependent on temperature.

These characteristics make radiation a distinct and significant mechanism for energy

transfer to consider in engineering applications and environmental decisions. More

intimately, thermal radiation manifests itself in a variety of ways to people e.g., the

sun is continuously radiating thermal energy to warm the earth, the heat from a fire

is felt on the side facing the fire, the color of the sky is a function of the radiative

properties of our atmosphere, and that, we feel more comfortable in a room (set to

the same temperature) on a warm summer night than during a nippy winter.

The extent and effect of combustion-related pollution as it relates to climate

change is arguably the most dire problem facing humanity. It is exciting to see the

growing research and interest in powering today’s world with renewable energy,

however, combustion continues to be the primary source of energy for society and

probably will be for the foreseeable future. For example, almost all propulsion

systems are provided thrust through the combustion of fuel, and for many of these

(e.g., aircrafts, cargo ships, trucks), there are no practical zero-carbon alternatives.

Combustion is amazingly powerful, but unfortunately its inefficiencies are one of the
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primary causes of air pollution. This has motivated the development of

high-efficiency, low-emission combustors, and, in turn, the research of high-fidelity

combustion models in order to better understand combustion physics.

Combustion physics involves a wide breadth of physics and engineering

disciplines, including fluid mechanics, chemical kinetics, and heat transfer, which

are coupled in both space and time. Because of its complex and multidisciplinary

nature, understanding and modeling combustion is an ongoing research endeavor.

Comprehensive and accurate combustion models require each sub-model of the

combustion system (e.g., fluid mechanics, chemical kinetics, and heat transfer) to be

modeled with appropriate fidelity. There has been significant improvement over the

years in flow models and chemical kinetics but thermal radiation has been

traditionally neglected or over-simplified. There is significant opportunity for

research of accurate models for heat transfer via radiation in combustion due to the

high temperature dependence of thermal radiation.

Formal solutions to the governing equation for radiative heat transfer are

unavailable in relevant engineering or combustion applications e.g., gas turbine

combustors, internal combustion engines, industrial burners, etc., which has led to

the development of a plethora of approximate methods. Although, many of the

common models are unreliable in relevant combustion applications, they are widely

used in commercial computational fluid dynamics (CFD) solvers to reduce

computational complexity. The most robust and accurate class of radiation solvers

are Monte Carlo ray tracing-based (MCRT) solvers. Monte Carlo methods are

notorious for their computational expense, but with the advent of quickly increasing

computational power, parallel computing and computationally efficient models, this

bottleneck is rapidly fading.

The specific objective of this work is to increase the computational efficiency

of a Photon Monte Carlo (PMC) method for thermal radiation. In this study, the
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PMC method is modified to a quasi-Monte Carlo (QMC) for radiation in aim of

reducing computational costs.

1.2 Motivation

Computational fluid dynamics (CFD) solvers are indespensible tools for

research, design, and development in many applications, such as in heat transfer

and combustion. In high temperature applications, thermal radiation can be the

dominant form of heat transfer and can heavily influence the prediction of many

quantities of interest e.g., pollutant formation, flame temperature, flame struture

etc. [1, 2]. There is a growing body of research showing the importance of accurate

radiation modeling in combustion systems [3, 4, 5, 6, 7, 8, 9]. However, radiation

modeling has traditionally been over-simplified so as to minimize the computational

complexity and costs in CFD simulations. Success with the QMC method will help

facilitate and push forward the ongoing research in the radiation community by

providing a computationally efficient and accurate method for solving radiative heat

transfer.

1.3 Organization

In order to present a systematic methodology for the development of a

quasi-Monte Carlo method for thermal radiation, the thesis is divided into several

sections that lay the foundations of the present knowledge in radiation theory. The

literature review is encompassed within Chapters 2 - 4. Chapter 2 introduces the

radiative transfer equation (RTE), approximations to the RTE, and spectral

models. Chapter 3 introduces Monte Carlo methods, the difference between random

and pseudorandom numbers, and the apparent advantages and disadvantages of

Monte Carlo based solvers for thermal radiation. Chapter 4 introduces the concept
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of a quasi-Monte Carlo algorithm and how it is distinguished from traditional

Monte Carlo algorithms. Chapter 5 presents validation of QMC and a comparison

of QMC and PMC. This chapter is taken almost directly from the author’s

under-review article [10]. Chapter 6 examines the effect of reflection in QMC and

compares the choice of a low-discrepancy sequence for the QMC method. Finally,

the conclusion and future work are presented in Chapters 7 and 8, respectively.
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CHAPTER 2

SOLVING RADIATION IN PARTICIPATING MEDIA

2.1 Radiative Transfer Equation

In Chapter 1 the concept of thermal radiation was introduced and the

influence of thermal radiation was emphasized in several ways. In this section, the

governing equation for radiative heat transfer in participating media, the radiative

transfer equation (RTE), will briefly be developed as done in [1]. The concepts

developed here are integral into understanding the Monte Carlo method for thermal

radiation. First, it is important to define and differentiate participating and

non-participating media. Radiative transfer between two surfaces separated by a

vacuum or a medium that does not interact with the transfer of electromagnetic

waves (or photons) refers to non-participating media. Most practical engineering

problems do not operate under such conditions, but rather, the medium participates

in the radiation by absorbing, emitting, and scattering photons.

During heat transfer via radiation, photons are emitted from participating

species or surfaces with a finite amount of energy into a specific direction. Along its

path, radiative intensity is attenuated (loses energy) through absorption and

scattering of photons to a direction outside its path (out-scattering) and augmented

(gains energy) through emission and scattering into the direction of its path

(in-scattering). The total attenuation of intensity is known as extinction and the

extinction coefficient is defined as βη = κη + σsη where κη is the absorption

coefficient, σsη is the scattering coefficient, and the subscript η is the spectral

variable – wavenumber, indicating that each are valid for only one wavenumber.

Similarly, the total augmentation is the combination of emission and in-scattering.

The emission of intensity from a given volume is proportional to the energy content
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within the volume while the contribution from in-scattering comes from all

directions.

Finally, the RTE, which is influenced by emission, absorption, and

scattering, can be defined as

dIη
ds

= ŝ · ∇Iη = κηIbη − βηIη + σsη
4π

∫
4π
Iη(ŝ)Φη(ŝi, ŝ)dΩi, (2.1)

where Iη is the radiative intensity, Ibη is the blackbody radiative intensity, Φη(ŝi, ŝ)

is the scattering phase function between ray directions ŝi and ŝ, and Ωi represents

solid angle. The first and third term on the right-hand side of the RTE represent

augmentation due to emission and in-scattering, respectively. The second term

represents the total attenuation due to absorption and out-scattering of photons.

The RTE is a five-dimensional integro-differential equation for radiative

intensity (three spatial and two directional dimensions ). The formal solution to the

RTE is only available in simple configurations like a one-dimensional slab. As such,

the difficulty to solve the RTE has led to many numerical approximations to utilize

in CFD simulations. The approximations are generally validated in simple

one-dimensional configurations. Chapter 5 presents validation results from the

quasi-Monte Carlo method for thermal radiation in a one-dimensional plane-parallel

nonscattering medium enclosed by black bounding surfaces where the formal

solution to the RTE is known. The following section introduces common solution

techniques to account for radiative heat transfer.

2.2 Radiation Solvers

Even in one-dimensional participating media the solution to the RTE is a

burdensome and challenging task because the exact solution is represented implicitly

in the form of an integral equation. Furthermore, most engineering applications are

multi-dimensional and nonhomogeneous with nonlinear spectral properties (κ, σ, β
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and Φ) that vary highly with wavenumber and thermodynamic state of the medium.

This has led to the development of many different approximations to the RTE which

can be divided into two categories: deterministic methods and stochastic methods.

The majority of deterministic methods used in practice are: the optically thin

approximation, the zonal method, the discrete ordinate method, and the method of

spherical harmonics. The statistical methods are known as Monte Carlo methods.

The choice of approximation is dependent on a variety of factors such as, but not

limited to, the accuracy required, the flame characteristics, the geometry of the

configuration, or the solution methodology of other phenomena in the simulation.

2.2.1 Optically Thin Approximation

The optically thin (OT) approximation simplifies the RTE to only the first

term on the right-hand side of Eqn. 2.1. Therefore, the OT approximation only

accounts for the emission of photons and neglects the other phenomena (absorption

and scattering) encountered in participating media. This method is advantageous

for its computational efficiency, inherent simplicity, and is appropriate to apply

when the geometry of the medium is small enough that interactions with the

medium are negligible. This method can be highly disadvantageous for large

geometries or with media that have high absorption coefficients (optically thick).

For these reasons the OT approximation will underestimate flame temperature due

to over-prediction of radiative heat loss.

2.2.2 Zonal Method

The zonal method is a common method for calculating radiative heat

transfer, first introduced by Hottel and Cohen [11], that requires division of the

domain volume into a finite number of subvolumes with isothermal and constant
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radiative properties. An energy balance between zones (exchange areas) yields a set

of nonlinear algebraic equations where radiatvie intensity can be evaluated. This

method is able to produce accurate results, however it is limited to simple geomtries

because the computational costs of this method are high and make coupling with

the fluid mechanics calculations challenging due to the fine computational zones in

the flow fields [12, 13].

2.2.3 Discrete Ordinate Method

The discrete ordinate method (DOM), or SN approximation, was first

proposed by S. Chandrasekhar [14] to resolve atmospheric radiative heat transfer. It

is among the easiest to implement and computationally economical for use in

commercial software. The DOM transforms the RTE into a series of partial

differential equations that separate directional and spatial dependence. The

distribution of radiative intensity over all solid angles is reduced to a finite number

of solid angles. That is to say, the entire solid angle of 4π is discretized into n

different ordinate directions symmetrically spanning the total solid angle range

yielding a set of n PDEs. The integral over 4π is then approximated through

numerical quadrature. Thus, the scattering integral within the RTE (which makes

the formal solution difficult) is reduced to a sum of the product of radiative

intensity and the scattering phase function and the corresponding weight factor due

to the numerical quadrature. The order of the SN approximation refers to the order

of the quadrature scheme implemented. It can be carried out to any arbitrary order

and accuracy; although, typically even-ordered schemes are used to preserve

symmetry and higher-ordered schemes are computationally prohibitive.

This method suffers from two well known drawbacks known as false

scattering and rays effects. False scattering, which is analogous to numerical
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viscosity in CFD, is a result of the spatial discretization of the domain. The

radiative intensity is smeared as the ray travels from its emission point even without

radiative scattering. The remedy for this is a finer computational mesh. On the

other hand, so-called ray effects is a result of the angular discretization when n

directional ordinates is not enough to accurately represent radiative intensity. Rays

far away from the emission zone will become far apart and some computational cells

may not receive any radiative energy. The remedy for this is a coarser mesh or an

increase in the order of the method. Using this method becomes a balancing act

between choosing the appropriate mesh size and the number of ordinate directions.

2.2.4 The Method of Spherical Harmonics

Similar to the discrete ordinate method, the method of spherical harmonics,

or PN approximation, obtains a solution of arbritrary order or accuracy for radiative

intensity by transforming the RTE into a set of PDEs. This method was introduced

to resolve radiation emitted from stars by J.H. Jeans [15] and extended further by

Modest and coworkers for use in combustion-related applications [16, 17, 18, 19, 20].

An exact representation for radiative intensity can be constructed by

decoupling spatial and directional variations of radiative intensity through an

infinite series of orthogonal spherical harmonics (function of direction only) and

intensity coefficients (function of space only). However, in practice the PN

approximation truncates the sequence to order N . It has been shown that odd

orders are more accurate than the next highest even order [1, 21]. The lowest order

PN approximation, P1, is the most common implementation used due to

complicated mathematics for higher order spherical harmonics, slow accuracy

improvements, and the associated computational costs.
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2.2.5 Statistical Methods

The statistical methods are generally referred to as Monte Carlo methods

which solve the RTE in a stochastic manner. Monte Carlo ray tracing-based

(MCRT) radiation solvers are the most robust and accurate class of radiation

solvers. These methods provide accurate treatment of the complexities of radiation

transport (e.g., nongray participating media or irregular geometries) by directly

mimicking the physical processes of thermal radiation. This is accomplished by

emitting and tracing representative energy bundles (photons) throughout the

computational domain through random-number relations. Although notorious for

their computational costs, with the advent of rapidly increasing computer power

and parallel computing, this bottleneck is quickly fading. Moreover, due to their

corresponding accuracy, as computational efficiency improves, these methods are

expected to be adopted more frequently in engineering applications. A brief

discussion of Monte Carlo-based solvers is presented in Chapter 3 followed by an

introduction to the quasi-Monte Carlo method for thermal radiation in Chapter 4.

2.3 Spectral Models

Up to this point, the specific influence of the wavenumber (η) has been

overlooked. In nongray participating media, the RTE is only valid for a given

wavenumber. Radiative properties of molecular gases are highly nonregular,

nonlinear functions that fluctuate rapidly across the spectrum, adding additional

complexity to radiation modeling. High resolution spectroscopy and detailed

theoretical calculations have made it possible to accurately gather the strength

(i.e., its intensity or absorption coefficient) and position of spectral lines. The

spectroscopic data is stored in large databases. In this work, data from the

HITEMP2010 spectroscopic database [22] is used.
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Figure 2.1: Absorption coefficient of H2O, CO2, and CO at 600 K and 1 atm

Figure 2.1 shows the variation of absorption coefficient for three important

combustion gases – H2O, CO2, and CO – at 600 K and 1 atmosphere pressure. The

strong variations in absorption coefficient has prompted the development of many

spectral models for approximation of absorption coefficient or intensity. The

accuracy of an approximate solver for radiation in participating media can be no

more accurate than the accuracy of the spectral model used.

2.3.1 Gray Model

The most basic model is to simply ignore influence of wavenumber across the

spectrum and assume a gray medium i.e., constant radiative properties. One

approximation is the Planck-mean absorption coefficient. The Planck mean is a

weighted average of κη where the weighting function is the Planck function. It is a

total absorption coefficient for the evaluation of total radiative intensity.
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2.3.2 Line-by-Line Model

Line-by-line (LBL) models are the most accurate spectral models and are

typically used as the benchmark solutions for other approximations. The radiative

properties of inidivdual species are calculated via quantum mechanics for each

wavenumber. Historically, these methods have been computationally prohibitive due

to the high resolution of gas property data required and the amount of lines

throughout the spectrum, which together, consume a lot of computing resources.

An LBL database can contain millions of lines and could require roughly a million

solutions to the RTE [2]. However, rapid increase in computational power and more

efficient models have made LBL calculations more feasible. In particular, a spectral

LBL database was developed for a Monte Carlo method for thermal radiation

through a random-number relation by Modest and coworkers [23].

2.3.3 Narrow Band Model

In narrow band analysis a small wavenumber interval ∆η is used where the

absorption coefficient or intensity is averaged over the interval. The assumption is

made that blackbody radiative intensity Ibη, scattering coefficient σsη, and

scattering phase function Φη are constant over ∆η [24]. It can be inferred from this

that the rapid fluctuations of absorption coefficient are recognized to be much more

than those of blackbody radiative intensity and the other radiative quantities. In

principle, with a small enough ∆η, narrow band models can be as accurate as

line-by-line spectral models. Although, typically the RTE will be solved for only a

few hundred ∆η’s to save computational costs. There are a number of narrow band

models but the two most popular methods are the Elsasser Model, which assumes

uniform absorption coefficient over equally spaced lines, and the statistical models
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where the absorption coefficient and/or line spacing are randomly determined

through a probability density funciton [1].

2.3.4 Full-Spectrum Model

It can be seen with close inspection of Fig. 2.1 that over a given range of

wavenumbers, the value of absorption coefficient is repeated many times. Each

solution of the RTE with the same absorption coefficient yields repeated values for

radiative intensity. Repeatedly conducting such calculations leads to the high

computational costs for these spectral models. This has led to the development of

so-called k-distributions where the absorption coefficients are reordered into a

smooth, monotonically increasing, probability density function.

Narrow band k-distributions are easily extended to full-spectrum

k-distributions (FSK). These essentially have the same accuracy as LBL

calculations with significantly fewer evalutions of the RTE (approximately 105

fewer) [2]. Over the last two decades a lot of development has been made into this

area which yielded a tabulated lookup table for precalculated k-distributions of gas

mixtures which significantly reduced costs without sacrificing accuracy. A history of

FSK for use in radiative transfer calculations can be found in [25, 26, 27, 28].

2.4 Summary

This chapter was dedicated to the development of the radiative transfer

equation (RTE), the associated complexity of the radiative heat transfer problem,

and the many approximations for both energy transfer and the determination of

spectral properties. Accurate radiative heat transfer calculations require

high-fidelity models for the radiative properties of the medium and the method

employed to approximate the RTE. Various RTE approximate models were

discussed but the two most common models utilized in CFD-based combustion
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simulations are the method of spherical harmonics and the discrete ordinate

method. However, the most robust and accurate models are the statistical methods

(Monte Carlo methods), though, these are notorious for high computational costs.

Of course, there is not one best-fit model for all applications – the choice depends

on a variety of factors e.g., accuracy required, computational availability, geometric

complexity, etc. Similarly, there are a number of spectral models to determine

radiative properties of the medium that have varying degrees of accuracy. Other

phenomena have not been addressed in this chapter such as radiative properties of

particulate media, the coupling between radiation, conduction, and convection, or,

the growing research field of turbulent-radiation interactions (TRIs). These are left

to the interested reader where two good starting points are [1, 2].
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CHAPTER 3

MONTE CARLO-BASED RADIATION SOLVER

3.1 Introduction

Mathematics is commonly recognized as being pure or applied. In many

cases, however, mathematics is independent of these denominations such that

another dichotomy represents mathematics as either theoretical or experimental.

An analogy can be drawn to the common theoretical and experimental physicists

who draw conclusions through abstraction of systems via postulates, or observations

of physical phenomena via experiments, respectively. Monte Carlo algorithms fall

within the branch of experimental mathematics by way of repeated, random

experimentation i.e., independent of the objective of the problem. They are a broad

class of statistical algorithms that numerically solve physical and mathematical

problems via repeated random sampling [29].

To illustrate implementation of a Monte Carlo method, it is common to

predict the mathematical constant π. To estimate π, random samples are uniformly

distributed in two dimensional space in the first quadrant on the interval 0 to 1.

The ratio of the area of a circle to the area of a square is represented by π/4 and is

equivalent to the ratio of the number of points sampled within the unit circle (Nin)

to the total number of points sampled (Ntot). Therefore, the estimate of π is equal

to 4Nin/Ntot. In this case, it is averaged over ten statistical analyses (ten

independent, repeated simulations). Figure 3.1 shows the progression of accuracy

for the estimated value of π with the Monte Carlo method. This illustrates the

computational complexity that accompanies Monte Carlo methods, and is clearly

not the most elegant determination of the mathematical constant.
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Figure 3.1: Samples generated in a two-dimensional space illustrating the prediction
of π

The main advantage of Monte Carlo methods is their ability to handle

complicated problems that are beyond the capabilities of theoretical mathematics.

It is often convenient to use a Monte Carlo approach in conjuction with the

underlying theoretical structure of the problem. For example, formal solutions to

some physical phenomena (e.g., the RTE) are ill-equipped to be solved by theory

alone; however, the formulation of the symbolic expression or equation provides

valuable insight into the physical processes undergone. With this insight, an

appropriate numerical model can be constructed within the framework of a Monte

Carlo approach that accounts for the physical processes of the problem.

These methods have been used in a wide vareity of fields, including science,

engineering, mathematics, finance and many more. In addition, Monte Carlo

schemes have been developed for radiative transport outside of the realm of

combustion. For example, applications include biomedical imaging, photodynamic

therapy, or radiation therapy, where the numerical model predicts patient radiation

dosage for cancerous cells [30, 31]. Similarly, Monte Carlo ray tracing is the most

accurate form of 3D rendering for computer graphics [32]. Some other interesting

application areas are: predictive weather models, such as ensemble forecasting,

where Monte Carlo methods are used to reduce uncertainty in predicted weather

patterns [33], using simulated annealing with a Monte Carlo method for the
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modeling of solar cells [34], and estimation of the partition function in common

ferromagentic models such as the Potts model [35].

Monte Carlo methods are dependent on the sampling of random numbers,

usually done via a psuedorandom number generator (PRNG). In simple

configurations, such as the estimation of π or one-dimensional radiative heat

transfer, roughly 105 samples are needed for an accurate solution. For more complex

problems such as combustion, the method could require upwards of 108 samples;

although, these are merely guidelines. To analyze the performance of a Monte Carlo

method, the statistical error (i.e., standard deviation) of a quantity of interest is

used to measure accuracy and convergence. The statistical limit of the standard

deviation is represented by O
(
N−1/2

)
where N is the number of samples.

3.2 Photon Monte Carlo Method

3.2.1 Overview

Monte Carlo methods are one of several computational methods to

approximate radiative heat transfer. Among them, the photon Monte Carlo (PMC)

method is the most accurate and can be applied to problems of arbitrary

complexity. In combustion, photons (energy) are continuously emitted from hot gas

molecules and surfaces into random direction with distinct wavenumbers [36]. The

PMC method solves the spectral RTE (Equation 2.1) by statistically mimicking the

physics of radiation i.e., emitting, absorbing, and scattering of photons throughout

the computational domain. This is accomplished by randomly emitting and

tracking a statistically significant number of representative photons (or rays).

Emission of a ray in the PMC method requires the development of six

random-number relations. Specifically, six random numbers are required to emit

each individual ray - three for the emission origin (Rx,Ry,Rz), two for the
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propagation direction (Rθ,Rψ), and one for wavenumber (Rη) [1, 36, 37]. For a

comparison between common radiation solvers and an implementation of the PMC

method used in this work please see [7, 6].

3.2.2 Random-Number Relations

Random-number relations are used in the PMC method to pick statistically

meaningful energy bundles according to probability distributions. The location,

directions, and wavenumbers of emission, are accordingly chosen from probability

distributions and will be shown from a volume Vk here.

Emission Location

The emissive energy distribution throughout a computational domain

influences the emission origin of rays i.e., hot zones will have high concentrations of

molecular gases that continuously emit rays (strong emission) while cold zones will

tend to have weak emission. In order to pick statistically significant emission points,

the PMC method must emit more rays from hot zones than cold zones. This is

achieved by relating the emission origin’s random numbers to the emissive energy.

The total emission from a volume is

Ek =
∫
Vk

4κPσT 4dV (3.1)

where κP is the Planck-mean absorption coefficient, σ is Stefan Boltamann’s

constant and T is temperature. The integral over a volume is equivalently

represented in Cartesian coordinates as

Ek =
∫ X

0

(∫ Y

0

∫ Z

0
4κPσT 4dzdy

)
dx =

∫ X

0
E ′k(x)dx. (3.2)

Equation. 3.2 can also be rewritten as a probability density function

Rx = 1
Ek

∫ x

0
E ′kdx (3.3)
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where Rx is the probability that x-coordinate location will be located between 0

and x and is known as a cumulative distribution function. By definition, the

probability that the x-coordinate location falls between 0 and ∞ is, of course,

R(x→∞) = 1. Inverting this relationship yields an emission point as a function of

random number Rx

x = x(Rx) (3.4)

A similar analysis can be done for both y and z coordinates as well which yields

y-location as a function of both Ry and x while z-location is a function of Rz, x,

and y:

y = y(Ry, x), (3.5)

z = z(Rz, x, y). (3.6)

The choices for x, y and z become independent of each other if the medium is

isothermal and has a uniform absorption coefficient.

Direction of Emission

Emission from within a medium is isotropic i.e., rays are released in all

directions with equal probability. The solid angle 4π =
∫ 2π

0

∫ π

0
sinθdθdψ contains

all possible directions for a ray to travel. The direction coordinates are

ψ = 2πRψ, (3.7)

and

θ = cos−1(1− 2Rθ). (3.8)

Similarly, most surfaces are isotropic which simplifies the surface-emission

relationship. Therefore, for a diffuse emitter, azimuthal angle remains unchanged

while the polar angle is now represented as

θ = sin−1
√
Rθ (3.9)
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Wavenumber of Emission

Generation of spectral random-number relations is a complicated endeavor.

In gray gas analyses, no spectral model is required because rays are given identical

absorption coefficeints. In nongray analyses, the Monte Carlo-based spectral model

introduced in Chapter 2 developed by Wang, Modest, and Ren [36, 37] is used to

efficiently determine wavenumber and absorption coefficient. In this model, a

tabulated random-number wavenumber database developed in [23] facilitates the

prediction of wavenumber and the corresponding absorption coefficient through the

random number Rη. The database covers relations for many important radiatively

participating combustion species (H2O, CO2, CO, CH4, and C2H4) for a

temperature range of 300 K to 3000 K and pressures up to 80 bar.

Similar to the development of the random-number relation for the

x-coordinate, the probability that an emitted ray will have a wavenumber between 0

and η is given by

Rη = 1
Etot

∫ η

0
κηIbηdη. (3.10)

and inverting this yields

η = η (Rη, x, y, z) . (3.11)

In most participating media calculations however, there exists a mixture with ns

species, where the total emission Etot from the gas mixture is

Etot =
ns∑
i=1

Ei (3.12)

with Ei being the emission from species i, which implies emission from individual

species is independent from each other. Emission from species i is defined as

Ei =
∫ ∞

0
κη,iIbηdη. (3.13)
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Now, Eqn. 3.10 can be written in terms of species s by

Rη =

s−1∑
i=1

Ei +
η∫

0

κη,sIbηdη

Etot
(3.14)

which shows that the fractional energy Rη is the ratio of the sum of Ei over all

species with index smaller than s plus the energy of species s evaluated from 0 to η

to the total emission.

The emitting species can be determined after drawing random-number Rη

according to the random-number relation:

s = j if

j−1∑
i=1

Ei

Etot
< Rη ≤

j∑
i=1

Ei

Etot
(3.15)

which ensures the wavenumbers for species i are related to the fractional emission of

the species. Then Rη is rescaled to

0 ≤ Rη,s =
RηEtot −

j−1∑
i=1

Ei

Ej
< 1 (3.16)

where Rη,s selects photons from species s with equal strength and the wavenumbers

selected for species i are found through the equivalent probability density function

in Eqn. 3.10 modified for each species by

Rη,i = π

κP,iσT
4

η∫
0

κη,iIbηdη. (3.17)

Therefore, once species s is determined, the wavenumber and corresponding

absorption coefficient can be found directly from the corresponding Rη–η database.

The database has the form of

η = fη,i (Rη,i, T, xi) , κη,i = fη,i (η, T, xi) , i = 1, 2, ..., ns (3.18)

where xi is the mole fraction of species i.
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Inversion of Random-Number Relations

Inversion of the random-number relations is not immediately obvious for the

emission points and wavenumbers because they cannot be inverted explicitly.

Consider, for simplicity’s sake, the determination of wavenumber for a flat black

surface. Equation 3.10 simplifies to

Rη = 1
σT 4

∫ η

0
Ebηdη = f(ηT ). (3.19)

Note in this example there is no dependence on x and y coordinates unlike

Eqn. 3.11. Here, the end-goal is ηT = f−1(Rη). An efficient way of achieving this

was developed in [38] where the authors implement a cubic spline to determine

values of (ηT )j for an equally spaced sequence i.e.,

(ηT )j = f−1
(
Rη = j

J

)
, j = 0, 1, ..., J. (3.20)

Therefore, if the drawn random number is between two values of the equally spaced

sequence, the ηT can be simply determined via linear interpolation.

The random-number relations developed in the prior section are depend on

additional variables. Therefore, in the general case, they will require interpolations

of increasing order for each additional dependent variable e.g., a double

interpolation for y = y(Ry, x) or triple interpolation for z = z(Rz, x, y). Within the

finite volume framework of this implementation, this is not needed. Each cell has all

uniform properties.

3.2.3 Ray Tracing

In the Monte Carlo method for thermal radiation, ray tracing is the

fundamental process for radiative energy transfer. Conceptually, ray tracing

involves tracking the history of photons through space. The path of a particular
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photon forms a ray. Ray tracing in the Monte Carlo method is realized through a

dichotomy between energy transfer and numerical scheme.

Energy Transfer

Throughout the photon’s journey, energy is traditionally deposited into an

absorbing medium, or at absorbing walls, in one of two different ways: (1) the

standard method (2) an energy partitioning scheme. In both cases, first the initial

energy content must be determined for each ray within a finite volume. The initial

energy E0 for each ray is found at each computational cell i by E0 = Ei/Ni where Ei

is the local energy content and Ni is the number of rays emitted from that cell. The

number of rays emitted from a given volume is the result of the random-number

relations for emission location developed in the previous section. When the whole

amount of energy from a given ray is attenuated, the ray is terminated and the next

ray launches.

In the standard Monte Carlo method of energy dissipation, the distance a

ray travels in participating media is predetermined by a random-number relation

(Rτ ) to the optical thickness τ . Optical thickness is a relation to the transmissivity

of a gas layer; and optical thickness based on extinction (βη) is

τη =
∫ s

0
βηds (3.21)

where s is the path length. Thus, the quantity τη measures the ability of the path

length to attenuate a photon. The path length in the standard scheme is then

s = 1
τη

lnRτ (3.22)

In this method, the energy content (E0) of the photon is donated completely to the

subvolume it is extinguished in. This comes with a few well known disadvantages.

In optically thick media, photons emitted from the interior of a medium will rarely
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travel to walls before being absorbed, when in many engineering applications, wall

heat fluxes are of primary interest. In optically thin media, it is just the opposite,

the lack of absorption within the medium results in poor statistical analysis for

open configurations and/or reflective walls.

Alternatively, to alleviate some of these issues and eliminate the need for a

random-number relation, an energy partitioning scheme is employed in this

implementation of the PMC method. This scheme continuously depletes the energy

content of each photon. The energy is attenuated by donating an amount

∆E = E0(1− e−τη) to the medium. Thus, the energy content of the ray is an

exponential decay function represented by E = E0e−τη . This guarantees, regardless

of optical thickness, that each photon will contribute to the statistics of the method

which yields faster convergence.

Numerical Scheme

The numerical scheme for ray tracing is the most computationally intensive

routine for the Monte Carlo method. In this implementation, approximately 90% of

the computational costs are due to tracing while only 10% are due to determination

of random-number relations. Ray tracing requires knowledge of the computational

mesh e.g., the types of cells (hexahedral, tetrahedral, etc.). Each ray undergoes a

thorough face-line intersection search that can be influenced by a variety of factors,

such as the energy content of the ray, the face that the ray is destined to intersect

(boundary surface or cell), or whether it passes through an intersection point of two

cells. The journey of a photon can be realized by the following 7 step iterative

process:

1. Identify emitting cell number

2. Select emitting location, direction, and wavenumber

3. Find the intersection face by checking each possible face
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4. If photon intersects a boundary surface or participating media; the ray is

absorbed, reflected, or scattered

5. If the intersection point is the face of another cell, identify new cell

6. Repeat items 3–6 until photon is terminated (left enclosure or absorbed)

7. Launch next photon.

3.3 Random and Pseudorandom Numbers for Monte Carlo Methods

Random sampling has been shown to have a decisive role in the

computational Monte Carlo method. Within the framework of a deterministic

machine (e.g., computer) the generation of “random” samples seems to be

paradoxical. After all, most programs are hopefully written with the intent to be

repeatable and predictable. In the same breath, it should seemingly be an easy task

for any decent programmer to write a program that spits out numbers. This class of

deterministic computational algorithms are coined pseudorandom number generators

(PRNG) which are designed to satisfy certain statistical properties of a uniform

random distribution [39, 40]. However fun it may be to philosophically debate this

concept of randomness, it is left behind for a more pragmatic view. In fact, true

random numbers can be generated from a device called a hardware random number

generator by means of a physical process such as thermal noise, atmospheric noise,

or shot noise. However, these are typically computationally prohibitive, so a PRNG

is preferred for most applications. The properties of a PRNG are described in detail

in literature, but in general these should uniformly generate statistically

independent numbers on the interval from 0 to 1 [40]. Additionally, F. James [39]

emphasizes that a PRNG should have a good distrbution i.e., randomness, a long

period i.e., the point at which the sequence repeats, and repeatability. Of course,

the authenticity of the randomness of a sequence can usually be distinquished a

posteriori through reason by the eye of an independent, impartial observer (e.g., see
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Kant’s: Critique of Pure Reason [41] or Knuth [42] for philosophical background

and discussion).

3.4 Advantages and Disadvantages

Historically, Monte Carlo methods have been employed for solving radiation

merely to obtain a benchmark solution for comparison with other approximate

solvers. There is rightful justification for this approach. The statistical limit of

Monte Carlo methods is represented by O
(
N−1/2

)
meaning an accuracy increase of

tenfold requires a hundredfold increase in number of samples used. This, coupled

with the fact that Monte Carlo methods are based upon repeated sampling, left

Monte Carlo methods as computationally prohibitive for use in commercial CFD

software. However, in the present we simply don’t need to worry about historical

limitations of computers. The rise in computational efficiency, parallel computing,

and efficient radiative sub-models have not only made Monte Carlo methods

feasible, but arguably preferred due to the corresponding accuracy and ease-of-use

for even the most complex geometries.

3.5 Summary

The strategy of resolving the radiative heat transfer problem via a Photon

Monte Carlo (PMC) method was discussed in this chapter. The PMC method

accurately predicts radiative energy transfer through emission and tracing of

statistically meaningful energy bundles (photons). This process directly mimics the

physics of radiation (i.e., emission, absorption, reflection and scattering) through

the sampling of photons via random-number relations. Appropriate random-number

relations were developed to emphasize the importance of drawing statistically

significant emission locations, directions, and wavenumbers. After determining
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emission location, direction of propogation, and wavenumber of emission, the

photon is launched and traced throughout the computational domain. Ray tracing

is the most computationally expensive routine in the PMC method because of the

exhaustive ray intersection search that occurs at each computational cell. The

energy partitioning scheme helped in alleviating some computational cost, however

the main bottleneck is the number of photons needed to accurately represent

radiative heat transfer. In the next chapter, a quasi-Monte Carlo method is

developed as an extension to the PMC method. The methodology change only

considers the physical sampling of photons. Therefore, the random-number

relations, ray tracing schemes, and determination of spectral properties remain

unchanged. Quasi-Monte Carlo methods have been shown in literature to require

less computational effort to achieve similar levels of accuracy to traditional Monte

Carlo schemes in other fields. Achieving similar results with the PMC method will

significantly reduce the number of photons needed for an accurate solution thereby

considerably decreasing computational effort.
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CHAPTER 4

QUASI-MONTE CARLO METHOD

4.1 Introduction

Up to this point, it has been shown that uniformly distributing N random

points in n-space yields a probabilistic error bound of O
(
N−1/2

)
for traditional

Monte Carlo methods. This can be prohibitively slow for many applications.

Modest improvements to this could yield substantial impact due to the prevalence

of Monte Carlo methods and similarly, for applications that would benefit from

employing a Monte Carlo scheme.

One alternative to uniform random points is to sample specific, equidistant

points from 0 to 1 exactly one time, in any order, with arbitrary precision. This

yields a deterministic Monte Carlo method with error that decreases by N−1 [43].

This seems to be a fair way of constructing a sequence, and eliminates the need for

random sampling. The difficulty, then, is to determine a priori how precise the

sequence needs to be constructed. Moreover, the simulation must then sample every

point, and if more accuracy is needed, the simulation will have to restart and a finer

grid must be constructed.

Alternatively, a more robust sequence can be created that distributes points

in some fashion that is self-avoiding so as to minimize clustering and gaps within

n-space. These sequences are referred to as low-discrepancy sequences (LDS) and

are a common technique to fill a domain of interest more quickly and evenly than

random sampling. Typically, the quasi modifier is used to distinguish LDS-based

Monte Carlo methods from traditional Monte Carlo methods i.e., these are referred

to as quasi-Monte Carlo methods (QMC).



29

The QMC method yields a much better, deterministic error bound of

O
(
N−1 (logN)s−1

)
where s is the dimensionality of the sequence [44]. Therefore,

with the same computational effort, the QMC method can achieve much higher

accuracy than the Monte Carlo method.

4.2 Properties of Low-Discrepancy Sequences

4.2.1 Overview

Alas, we have arrived at the alternative to the pseudorandom number

generator (PRNG). Thankfully, there will be no need to debate the authenticity of

randomness within the framework of a deterministic machine; sorry, Philosophy!

Low-discrepancy sequences (LDS) are deterministic algorithms written with the

intent to be repeatable, predictable, and that favors a distribution of uniformity

over randomness. Figure 4.1 and 4.2 shows a comparison of a PRNG and a common

LDS (Sobol’s sequence). Notably, Fig. 4.1 shows that random samples tend to form

clusters or gaps within the sample space while Fig. 4.2 shows samples that look to

be equidistant throughout the sample space and generated in a correlated manner

i.e., these sequences will fill a n-space with n-tuples more evenly and quickly than a

PRNG [43]. The pattern that arises from an LDS is easily discernible

e.g., Fig. 4.2(b) and 4.2(c) show that the points lie on obvious diagonals, however

this feature is not expected to influence the results. Furthermore, at any point, or

for any subset of the sequence, the truncated sequence will tend to have the same

properties as the larger LDS. Intuitively, discrepancy refers to the spacing of the

points within the sequence. Therefore, the lower the discrepancy, the more equal

the spacing.
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Figure 4.1: Samples generated in two-dimensional space from a PRNG
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Figure 4.2: Samples generated in two-dimensional space from an LDS (Sobol)

4.2.2 Sobol’s Sequence

Sobol’s sequence is an s-dimensional low-discrepancy or (t, s) sequence in

base 2 which is designed to have uniform distribution behavior. In this exposition, a

more utilitarian illustration of Sobol’s sequence is provided. Specific details and

derivations of properties (such as discrepancy) for such sequences are left to the

interested, rather, daring reader (e.g., see Chapter 4 of [45]). Nevertheless, this

sequence has a central importance to the research in this project, therefore, it is

appropriate to show a brief development of the first few points for this LDS. A full

development of Sobol’s original sequence can be found in [46]. However, a faster

method was developed by [47] that will be the focus here and the derivation will

follow the example in [48]. To generate Sobol’s sequence, the first step is to create a

set of direction numbers ν1, ν2, ν3, ..., νi , each in binary form which are determined

from the coefficients of a primitive (irreducible) polynomial. For example Eqn. 4.1 is



31

Table 4.1: Calculating Sobol’s sequence

i mi Binary i Binary νi xi
1 1 (0001)2 (0.0100)2 1/2

2 3 (0010)2 (0.1100)2 1/4

3 7 (0011)2 (0.1110)2 3/4

4 5 (0100)2 (0.0101)2 1/8

5 7 (0101)2 (0.00111)2 5/8

6 43 (0110)2 (0.101011)2 3/8
... ...

100 99/128

101 19/128

102 83/128

a 3rd degree primitive polynomial.

x3 + x+ 1 (4.1)

Then, νi can be calculated by νi = mi/2i where m1,m2, and m3 are chosen such that

mi < 2i and the following mi are generated by a recurrence obtained from Eqn. 4.1.

mi = 4mi−2 ⊕ 8mi−3 ⊕mi−3 (4.2)

where the ⊕ is a bit-by-bit exclusive-or operator. Finally, the Sobol sequence is

generated by the simple equation

xi+1 = xi ⊕ νc (4.3)

where the subscript c refers to the position of the rightmost zero in the binary

representation of i and x0 is initialized to zero. Here only a few numbers of Sobol’s

sequence are shown for brevity. See Table 4.1 for results.

4.3 Quasi-Monte Carlo Method in Literature

Similar to the traditional Monte Carlo method, quasi-Monte Carlo methods

have been around for some time, with the first models being introduced in the
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1950s. Numerical integration dominates the vast majority of the development and

applications for quasi-Monte Carlo methods [44, 49]. For example, Babovsky et

al. [50] showed that Halton and Hammersley sequences show improvement for the

simulation of Boltzmann’s equation. Ohbuchi and Aono [51] showed that the QMC

method outperforms the Monte Carlo method in terms of speed and accuracy in

solving the global illumination problem. In finance, prediction of of both single stock

and multi-stock prices show faster convergence rates with the QMC method [52].

4.4 Quasi-Monte Carlo for Radiation in Participating Media

As discussed earlier, radiative heat transfer in the PMC method is accounted

for by emitting and tracing a statistically meaningful sample of representative

photons (rays) that carry a finite amount of energy. In this work a quasi-Monte

Carlo (QMC) method for thermal radiation in participating media is proposed to

improve upon the PMC method in terms of its accuracy and computational

efficiency. The QMC method replaces the random numbers in the PMC method

with a six-dimensional Sobol sequence. Therefore the six random numbers, emission

origin (Rx,Ry,Rz), propagation direction (Rθ,Rψ), and wavenumbers of emission

(Rη), are substituted with S1
j ,S2

j , . . . ,S6
j in QMC, where Snj indicates jth number in

nth dimension of the Sobol sequence. Where S1
j ,S2

j ,S3
j refer to the emission origin,

S4
j ,S5

j correspond to the propagation direction, and S6
j is for the wavenumbers.

4.5 Summary

In this chapter, a breviloquent interpretation of the quasi-Monte Carlo

(QMC) method for thermal radiation was developed. The QMC method is, in

essence, the Photon Monte Carlo (PMC) method modified with a well-proportioned,

aesthetically pleasing, surrogate sequence for the aforementioned psuedorandom
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number generator. Ultimately, this exposition is concerned with the validation of

the QMC method in radiative heat transfer problems while simultaneously

measuring its performance against the traditional PMC implementation. Thus, this

is the conclusion of the literature review for this work. Hereafter, a systematic study

of the QMC method is performed. Chapter 5 divulges results for the QMC method

with a six-dimensional Sobol sequence. Then, Chapter 6 analyzes special conditions

of radiation and compares different low-discrepancy sequences for use in QMC.
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CHAPTER 5

RESULTS AND DISCUSSION

In this section we present validation of the quasi-Monte Carlo (QMC)

method for thermal radiation followed by a systematic performance comparison of

the QMC and conventional Monte Carlo (MC) in multiple combustion-related

configurations. The QMC scheme is validated against exact analytical solutions

which are only available in simple configurations. We present results from a series of

one-dimensional plane-parallel media configurations with both gray and nongray

media. Then, we present three distinct, nongray combustion configurations. The

first case is a turbulent jet flame with only nongray gases without any walls. The

second case is a high-pressure gas turbine with nongray gases and hot walls. The

final case presents a scenario of a high-pressure combustion chamber with hot walls

where both gas and soot participate in radiation.

Both validation and performance evaluation are done based on either local

radiative heat source (i.e., divergence of local radiative heat flux, ∇·Q [W/m3]),

local radiative absorption (Qabs [W/m3]), or wall heat flux (Q′′wall [W/m2]) as

appropriate for each test configuration. Since this implementation is based on a

finite volume framework, the local root-mean-square (RMS) relative error is defined

at each computational finite volume cell (index i) as

εi =
 1
S

S∑
s=1

(
qsi
qoi
− 1

)2
1/2

, (5.1)

where q refers to the target variable (i.e., ∇·Q or Qabs or Q′′wall), S refers to the

number of statistical runs, qsi is from the Monte Carlo simulation, and qoi is from the

analytical or benchmark solution. All configurations with the MC method use

S = 10 statistical runs. On the other hand, QMC only requires one statistical run

because of its use of a deterministic sequence i.e., any two independent runs will
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generate the same sequence. Additionally, as done in [53], comparison of “efficiency”

of Monte Carlo schemes are done via a “figure of merit” (FoM) which also takes into

account computational time. In this work, FoM is calculated based on

spatially-averaged RMS relative error (ε̄)

FoM = 1
ε̄2t
, (5.2)

where t is the simulation time. A high FoM score is indicative of a good Monte

Carlo simulation i.e., low error at low computational cost.

5.1 Validation in One-Dimensional Plane-Parallel Media

The configuration used for validation is a one-dimensional gas slab bounded

by two parallel, black walls separated by 0.1 m. Several combinations of

temperature and absorption coefficient profiles were tested for validation and only

three representative cases are presented for brevity. These cases presented here are

two with gray medium and one nongray medium as listed in Table 5.1. The gray

participating media was defined by imposing a specific profile of Planck-mean

absorption coefficient (κP ). The nongray medium consisted of 20% (by mole)

CO2 and rest of the medium was radiatively non-participating. A line-by-line (LBL)

database obtained from HITEMP spectroscopic database [22] was used to evaluate

then nongray radiative properties of CO2.

Table 5.1: One-dimensional validation cases. In case (2) the x [m] is the distance
from one wall.

Case (1) (2) (3)
Abs. Coeff. gray, κP = 1 m−1 gray, κP (x) = 1 + 750x m−1 nongray LBL
Tmedium 1200 K T (x) = 1700− 5000x K 2000 K
Walls 800 K, black 800 K, black cold, black
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Figure 5.1: Accuracy and convergence of QMC and MC in one-dimensional cases
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The results for the three cases are shown in Fig. 5.1. Figures 5.1(a), 5.1(d),

and 5.1(g) shows the comparison of ∇·Q calculated from the MC, QMC, along with

the analytical solution. Both methods show good agreement with the analytical

solution in all cases. The variation in local RMS error (εi) can be seen in

Figs. 5.1(b), 5.1(e), and 5.1(h). In all three cases local error from QMC is generally

lower than that from MC. Finally, Figs. 5.1(c), 5.1(f), and 5.1(i) show the

“convergence rate” of QMC and MC. The convergence rate is defined as how fast

the average relative RMS error (ε̄) decrease with increase in the number of rays.

Both QMC and MC show a similar rate, but due to lower error (as seen in

Figs. 5.1(b), 5.1(e), and 5.1(h)) QMC converges quicker than MC.

5.2 Three-Dimensional Combustion Simulations

5.2.1 An Artificial Turbulent Jet Flame

The first case considered here is an artificial flame derived from Sandia

Flame D [54]. The original Sandia Flame D is an optically thin flame and may not

be well-suited for radiation studies. Therefore, we artificially increased the optical

thickness of the flame by quadrupling the jet diameter (increased from 7.2 mm to

28.8 mm) while decreasing the velocity (from 49.6 m/s to 12.4 m/s) to keep the

Reynolds number constant. This change increases the net radiative heat transfer

rate by approximately two orders of magnitude [6]. This artificial flame, here

referred as SandiaDx4, was used to study effect of turbulence-radiation interaction

(TRI) by several researchers [6, 55, 9]. An instaneous snapshot of this flame taken

from the work of [6] is used as the first three-dimensional configuration for this

study. The snapshot is an axisymmetric wedge that has 3,325 computational finite

volume cells. The configuration is shown in Fig. 5.2. The scalar fields of this

snapshot can be seen in Fig. 5.3. Three gas-phase species – CO2, CO, and H2O –
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are used as the participating media. The nongray line-by-line (LBL) radiative

properties of these species are obtained from the HITEMP2010 spectroscopic

database [22]. For error estimation, a benchmark solution is obtained using 50

statistical runs of an MC simulation using 5× 106 rays. In all of the

three-dimensional cases, the local radiative absorption (Qabs [W/m3]) is used to

measure accuracy of simulations. Because of the presence of strong optically thick

regions, the radiative source term may locally become near-zero, leading to

numerical issues in calculation of relative error. Additionally, local emission can be

determined completely based on the thermochemical state of a computational cell

and the uncertainty of the radiative transfer in MC/QMC comes from the

randomness in resolving the absorption term. Hence, unless otherwise mentioned,

we use the local radiative absorption as our performance metric in

three-dimensional cases.

Figure 5.2: SandiaDx4 configuration and geometry

The scalar field of radiative source term from the benchmark, MC, and QMC

shown in Fig. 5.4 show almost identical results from three simulations. Figure 5.5

shows two radial profiles of absorption at two different axial locations marked in

Fig. 5.3 at z = 1.0 m and 1.43 m. Both MC and QMC were run with 800,000 rays.

The MC simulation was run S = 10 times to obtain the statistical average and

standard deviation. Error bars on the MC result represent one standard deviation.
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(a) T (K)

(b) CO2 mass fraction

(c) H2O mass fraction

(d) CO mass fraction

Figure 5.3: Scalar field contours for SandiaDx4 configuration

The results of both methods show excellent agreement with the benchmark case.

Results from QMC is always within one standard deviation of MC result. The

standard deviation of MC and actual deviation of QMC from the benchmark

solution is higher near the centerline. It is because the volume of computational

cells near centerline is much smaller and radiation being a volumetric phenomena,

the number of rays passing through a cell is also proportional to its volume.

Small-volume cells near centerline, therefore, lead to slightly degraded statistics in

MC/QMC.
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(a) Qabs from benchmark

(b) Qabs from MC

(c) Qabs from QMC

Figure 5.4: Absorption field contours for SandiaDx4 configuration
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Figure 5.5: Absorption along a line in SandiaDx4 configuration with 800,000 rays
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5.2.2 A High-Pressure Gas Turbine

The second three-dimensional configuration is based on the SGT-100

industrial gas turbine combustor with an output of approximately 5 MW and

pressure ratio of approximately 15:1 [56]. Snapshots of the scalar fields are taken

from a numerical simulation done by Ren et al [8]. The simulations were performed

in a Reynolds averaged Navier Stokes (RANS) framework with standard k-ε

turbulent model and GRI-Mech 2.11 chemical mechanism [8]. The computational

domain is shown in Fig. 5.6, and the scalar fields of the snapshot used in this study

are shown in Fig. 5.7. The gas turbine, referred to as the GT configuration, has

15,718 finite volume cells for the axisymmetric domain. The walls are considered

black and emitting at a temperature 673 K. As before, CO2, CO, and H2O are

treated as participating media.

Figure 5.6: GT configuration

The benchmark solution for this case was calculated from 50 statistical MC

simulations with 107 rays. For performance comparison, both MC and QMC was

run with 1.6× 106 rays. We performed S = 10 statistical simulations of MC to

obtain statistical mean and standard deviation. The actual scalar field for radiative

source term and absorption are almost indistinguishable between benchmark, MC,

and QMC runs and hence are not shown here. Instead, we show one axial (at

r = 0.03 m) and one radial (at z = 0.1 m) profile of the absorption as marked in
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(a) T (K) (b) CO2 mass fraction

(c) H2O mass fraction (d) CO mass fraction

Figure 5.7: Scalar field contours for GT configuration
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Figure 5.8: Absorption along a line in GT configuration with 1,600,000 rays

Fig. 5.7. Figure 5.8 shows the local radiative absorption along these lines. Both the

MC and QMC methods are in very good agreement with the benchmark solution

and the results from QMC fall within one standard deviation of the MC method

throughout the lines. As seen before, the standard deviation and error margin

increases due to smaller cell volumes near the centerline.

The GT configuration has five walls around the combustion domain.

Radiative heat loss to walls is an important quantity. Figure 5.9 shows the wall heat

flux of the benchmark, MC, and QMC simulations along walls 4 and 5 shown in

Fig. 5.6. It is interesting to see that although the absorption in the media is
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Figure 5.9: Wall heat flux in GT configuration with 1,600,000 rays

predicted well by QMC, the wall heat flux results show larger error. In some

positions, the result from QMC are outside one standard deviation of the

corresponding MC result. However, Fig. 5.9(c) and 5.9(d), which present relative

errors for both MC and QMC, indicate that in most locations QMC has lower error

than MC. The average relative error in wall heat flux from QMC is less than MC,

albeit with a more scattered pattern (i.e., a larger range) in error distribution in

QMC. In fact, this trend is seen throughout this study. Figure 5.1(b) also show a

similar scatter with a few points in QMC having a slightly larger error than MC.

In this QMC implementation it is expected that including walls will show

minor effect on the outcome of the simulation. Because wall faces are planar faces

we need two, instead of three, parameters to characterize origin of wall rays (say,
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Rx
j ,R

y
j for MC and S1

j ,S2
j for QMC). Since only five numbers from a

six-dimensional sequence are utilized in some rays, there is an expected global loss

of “uniformity” within the sequence. However, the effect of this “loss of uniformity”

is likely negligible, for two reasons. First, in this GT simulation more than 1.5× 106

rays were emitted from the participating medium (i.e., internal cells) while

approximately 2.5× 104 rays were emitted from walls. Second, typically any subset

of an LDS will also tend to be an LDS. Therefore, overall loss of uniformity is

expected to be small because of this dimensional discrepancy between wall-emitted

and medium-emitted rays. The dimensionality of low-discrepancy sequences in

thermal radiation is discussed further in the next chapter.

5.2.3 ECN Spray-A

The last case considered is from the Engine Combustion Network’s (ECN)

Spray-A configuration [57]. This configuration, referred to as Spray-A, is a constant

volume combustion chamber where liquid n-dodecane is injected as high-pressure

spray. The snapshot is taken from the RANS simulations presented in [58, 59] at a

time when all spray has evaporated. The configuration is presented in Fig. 5.10.

This is also an axisymmetric mesh with 12,800 finite volume computational cells.

The walls are hot at 850 K and emits as black surfaces. The peak soot volume

fraction in the domain is 7.7 ppm. Along with the LBL data for the participating

gases (CO2, CO, and H2O) soot is also treated as participating media. Radiative

properties of soot are modeled based on the wavelength-dependent correlation [60].

Nature of radiative properties of soot is much closer to black body than the gases,

hence we chose a case where there is a significant amount soot. The scalar fields of

this case are shown in Fig. 5.11.
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Figure 5.10: Spray A configuration geometry

The benchmark solution for this case was based on the 50 statistical runs of

conventional MC with 107 rays. The MC and QMC runs for performance

comparison purpose was done using 1.6× 106 rays. As before, S = 10 statistical

runs were used for MC and only one deterministic run for QMC. As with other

cases, we do not show the contour plots of radiative absorption or radiative source

term of the benchmark, MC, and QMC simulations, but rather focus on radial and

axial profiles. Radiative absorption is compared in Fig. 5.12 along the axial

r = 0.004 m, and radial z = 0.105 m lines marked in Fig. 5.11. Both QMC and MC

show agreement with the benchmark solution and the QMC method is within one

standard deviation throughout the lines. As before, larger error can be observed

near the centerline.

Figure 5.13 shows the wall heat flux results from MC and QMC. While the

results at the Wall 1 matches well with the benchmark solution, the Wall 2 results

vary wildly. In fact, along Wall 2 not only the standard deviation from the MC is

quite large, but also at several locations the QMC results lie beyond one standard

deviation from the MC. A point of note here is that the actual value of wall heat

flux at Wall 2 is considerably smaller than Wall 1. This indicates the total amount

of emission and irradiation on the wall are close. In situations where local emission
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(a) T (K) (b) CO2 mass fraction

(c) H2O mass fraction (d) CO mass fraction

(e) Soot volume fraction

Figure 5.11: Scalar field contours for Spray-A configuration
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Figure 5.12: Absorption along a line in Spray-A configuration with 1,600,000 rays
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Figure 5.13: Wall heat flux in Spray-A configuration with 1,600,000 rays illustrated
in Fig. 5.10
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and irradiation is close to one another (similar to optically thick regions) Monte

Carlo methods tend to require more rays to resolve the net radiative transfer. The

comparison of relative error in Fig. 5.13(c) and 5.13(d) indicate that both QMC and

MC predict the solution well in regions of higher wall flux (Fig. 5.13(c)

r = 0 to 0.03 m). Another factor contributing to higher relative error in lower heat

flux regions is the fact that for computational efficiency, the number of rays

generated in a region of a computational domain in current Monte Carlo scheme is

proportional to the energy content of the region. Since the region near Wall 2 is

comparatively cooler than other regions (Fig. 5.7), the total number of rays in the

region near Wall 2 is less than other parts (e.g., near the flame). This leads to

higher statistical error near Wall 2.

5.2.4 Computational Efficiency and Figure of Merit

Typically in a Monte Carlo solvers for thermal radiation most of the

computational effort is spent in tracing the ray as it requires an exhaustive face-line

intersection search at every computational cell each ray goes through. Whereas

generation of random numbers and estimation of origin, direction, and wavenumber

of a ray is needed to be done only once in a ray’s lifetime in absence of any

scattering or reflection event. Regeneration of random numbers for a ray is required

only when a reflecting wall or a scattering event is encountered. The base Monte

Carlo code used in this study spends roughly 90% time in tracing the rays

compared to only 10% in generation of random numbers and calculation of origin,

direction, and wavenumber of the rays. The computational overhead of Sobol

sequence is very similar to that of PRNG algorithm used in the MC simulations in

this study. Therefore there were no significant difference in computational effort of

a single MC and QMC run with same number of rays.
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However, the advantage of QMC can be found when the computational cost

is considered along with the statistical accuracy of the simulation. The FoM metric

as shown in Eqn. 5.2 gives an idea of this cost-accuracy benefit of QMC. Figure 5.14

shows the FoM based on average RMS relative error along the two lines for each

combustion simulation (Sandia Dx4, GT, and Spray A). Since there were 10

statistical simulations of MC as opposed to one deterministic simulation of QMC,

the computational runtime is expected to be approximately 10 times more for the

MC. This would indicate a factor of S = 10 increase in FoM for QMC over MC.

Figure 5.14 shows that in all three cases the increase in FoM due to QMC is more

than a factor of S = 10 and somewhere closer to a factor of 30 to 50. This indicates

that QMC not only provides a way to eliminate several statistical runs required for

MC, but it can produce a lower statistical error than a single MC simulation.

Similar results can be seen in Fig. 5.15, where the FoM is calculated based on the

wall heat flux for both the GT and Spray-A configurations. As seen in the wall heat

flux comparisons (Figs. 5.9 and 5.13, the error margin for QMC is larger in terms of

wall heat flux. This is reflected in reduction of relative advantage in the FoM plots

in Fig. 5.15. Nevertheless, even with higher variation in error for the wall heat flux,

the FoM of QMC is at least an order of magnitude higher than that of MC.
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Figure 5.14: Figure of Merit (FoM) along two different lines of MC and QMC
simulations for SandiaDx4, GT and Spray-A configurations
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Figure 5.15: Figure of Merit (FoM) for both walls in the GT and Spray-A
configurations in MC and QMC simulations.

5.3 Summary

In this work a Monte Carlo-based radiation solver implemented with a low

discrepancy sequence was validated against a one-dimensional slab with a known

solution. Afterwards, it was extended into three-dimensional combustion

simulations and compared to a benchmark solution to provide a proof-of-concept. In

all cases QMC performed better in terms of average RMS relative error while only

using one statistical analyses. This coupled effect was shown in the Figure of Merit

scores assigned to MC and QMC. This study shows that a QMC method is well

suited for thermal radiation and can be considered over traditional MC schemes.
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CHAPTER 6

RECOMMENDATIONS FOR QMC

6.1 Choice of Low-Discrepancy Sequence

Selecting Sobol’s sequence was somewhat arbitrary as there are many viable

low-discrepancy sequences to choose from. Quasi-random sequences have also been

developed by Hammersley, Halton, Niedereitter, Faure, and others. In this section,

we will compare Halton, Niedereitter and Sobol sequences implemented in the QMC

method with the same configurations presented in Chapter 5. The sequences will be

validated in one-dimensional plane parallel media and, for brevity, extended to only

the gas turbine configuration. We hope to establish a clear-cut, best-fit sequence for

thermal radiation in participating media. Because each sequence is generated to

have low-discrepancy (i.e., fill n-space with n-tuples as fast as possible), similar

accuracy results are expected; however, it is possible that one sequence could have

an advantage in terms of computational speed.

A Halton quasi-random sequence is conceptually simple to understand. In

one dimension a number, j, is rewritten in base b and the digits are reversed and a

preceding decimal point is added. The result is a fraction in base b. Every time j

increases, then, the sequence becomes fills the interval from 0 to 1 in a spread out

way, because the most significant digit in the fraction, or the last digit in j, changes

most rapidly [43]. Halton’s sequence in one-dimension is the Van der Corput

sequence. Halton generalized this to s-dimensions by using a different prime base

for each s.

Niederreiter’s quasi-random sequence is a (t, s) sequence in base b. Sobol’s

sequence can be thought of as a generalized Niederreiter sequence in base 2.

Calculation of Niederreiter’s sequence occurs in the same manner as Sobol’s
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sequence with the exception of how direction numbers are generated. Niederreiter’s

sequence has the smallest discrepancy of all low-discrepancy sequences [61]. For an

implemntation comparison of these sequences please see [48, 62]. Figures 6.1, 6.2,

and 6.3 illustrate the difference of the three low-discrepancy sequences implemented

in this work.
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Figure 6.1: Two-dimensional Niederreiter Sequence
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Figure 6.3: Two-dimensional Sobol’s Sequence
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6.1.1 Validation in One-Dimensional Plane-Parallel Media

The configurations presented in this section are the same as presented in

Chapter 5. Sobol’s, Halton’s, Niedereitter’s and the standard PMC are all compared

simultaneously. Figure 6.4 shows the predicted value of ∇ ·Q, the RMS relative
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Figure 6.4: Accuracy and convergence of Sobol, Halton, Niedereitter and MC in
one-dimensional cases

error, and the convergence of error for each sequence of QMC and MC. Each LDS

accurately represents the divergence of heat flux. Furthermore, each LDS has lower
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local error and average error compared to the MC method. No distinct advantage

for a given LDS is seen in terms of accuracy. Note that computation time of

one-dimensional radiative heat transfer is not long enough to calculate a meaningful

FoM.

6.1.2 High-Pressure Gas Turbine

We can do a similar study with the gas turbine (GT) combustor as presented

in Chapter 5. As a reminder, the GT configuration has a 5 MW output and

pressure ratio of approximately 15:1. The snapshot of the scalar fields used in

Chapter 5 is used here as well. This configuration has 15,718 finite volume cells in

the axisymmetric domain. Walls are black and emit at a temperature of 673 K. The

same participating species (CO2, CO, and H2O) are used for spectral calculations.

Absorption along two lines within the medium, r = 0.03 m and z = 0.1 m, are

shown in Fig. 6.5(a) and 6.5(b), respectively. Similarly, wall heat fluxes for walls 4

and 5 of the GT (see Chapter 5) are shown in Fig. 6.6. These figures show that the

LDS are in agreement with the benchmark solutions. For any sample size,

Fig. 6.5(c) and 6.5(d) show that the averaged RMS relative error (ε̄) for LDS is

lower than MC; although, in comparison to each other, no LDS presents a distinct

advantage in terms of accuracy. The Figure of Merit (FoM) based on ε̄ is used again

to analyze the coupled nature of computational cost and accuracy for each

simulation. In Fig. 6.7 it is evident that no particular advantage can be given to

any of the LDS used in this study. Although unsurprising, it serves as confirmation

that there are many equivalent options to implement when considering an

LDS-based Monte Carlo method for thermal radiation.
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(b) Radial profile along z = 0.1 m
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(c) Convergence along r = 0.03 m
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(d) Convergence along z = 0.1 m

Figure 6.5: GT medium radiative absorption statistics with 1,600,000 rays
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Figure 6.6: Wall heat flux in GT configuration with 1,600,000 rays
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Figure 6.7: GT FoMs with 1,600,000 rays

6.2 Dimensionality of Low-Discrepancy Sequences

From here on, only Sobol’s sequence will be implemented in the quasi-Monte

Carlo method because, for one, no distinct advantage is noticeable for any

particular low-discrepancy sequence, and two, familiarity. So far it has been

implemented as a six-dimensional sequence i.e., S1,S2, . . . ,S6 are six, independent

sequences. In this section, the dimensionality of the sequence will be further probed.

Sobol’s sequence, in this implementation of QMC for thermal radiation, has

been inseparable. In one call to the sequence, say emitting a ray from a wall

surface, we need two points for emission location (S1
j ,S2

j ), two for propagation

direction (S4
j ,S5

j ) and one for wavenumber (S6
j ) i.e., in this example, S3

j is

generated, but not utilized as a wall face is planar. Consequently, there is an
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expected global loss of “uniformity” within the sequence. To resolve this, there are a

number of ways one could imagine decoupling this sequence e.g., make one call to

Sobol for each independent dimension, or couple the sequence in parts by location,

direction and wavenumber. The latter is chosen in the new scheme. Therefore, the

new scheme will make three calls to Sobol to emit a ray; one for emission location

(S1
j ,S2

j ,S3
j ) one for propagation direction (S4

j ,S5
j ) and one for wavenumbers (S6

j ).

Of course, emission location will still lose uniformity with wall emission, but now

the propagation direction and wavenumbers are independent of this event.

It is likely, however, that the noticeable effect will be marginal at best, for

two reasons. First, in the GT configuration, roughly 98% of the rays were emitted

from the participating medium. Second, low-discrepancy sequences are distributed

in some self-avoiding fashion, therefore, any subset within the sequence should also

tend to have low-discrepancy.

The new scheme is validated in one-dimensional plane-parallel media and

extended to the combustion simulations presented in Chapter 5. For brevity, only a

summary of results is provided. See Table 6.1 for results. It can be seen that no

Table 6.1: QMC scheme comparison

Case ε̄ (%)
New Scheme Old Scheme MC

(1) 0.29 0.31 0.64
(2) 2.59 2.00 15.40
(3) 0.76 0.76 2.51
SandiaDx4 1.05 1.31 2.31
GT 2.78 2.87 5.07
Spray-A 1.51 1.45 3.06

distinct advantage can be attributed to the old scheme and new scheme. The

differences in averaged RMS relative error are minute. This aligns with what was
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expected because wall emission only account for a tiny fraction of the amount of

rays sampled.

6.3 Effect of Reflective Walls

Diffuse reflection, on the other hand, requires the generation of two new

random numbers any time a reflection event occurs. This can be a significant

addition to the quantity of random numbers drawn in the simulation.

Correspondingly, a large number of reflections could considerably effect the

“uniformity” of a low-discrepancy sequence and degrade the statistics of the

simulation. We will observe the effect of this phenomena in the GT configuration

with the new and old scheme, and alternatively, a hybrid scheme that more robustly

represents reflection.

6.3.1 High-Pressure Gas Turbine

Each wall in the GT configuration has been modified to be reflective. This

was done by lowering the emissivity of each wall by 50%. Again, results from a

benchmark solution are used to compare the MC and QMC method. The MC and

QMC methods both emitted approximately 1,600,000 rays. This yielded

approximately 1,200,000 reflected rays, although this number varied slightly with

each method.

Comparison of Old and New Scheme

Figure 6.8 shows the radiaitvie absorption statistics along two lines for both

the new and old schemes. Qualitatively, it is observed that each QMC scheme has

its own shortcomings. The new scheme in Fig. 6.8(a) shows a good estimation until

the trailing edge where the statistics degrade. Figure 6.8(b), shows high scatter
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Figure 6.8: GT medium radiative absorption statistics with 1,600,000 rays

throughout the domain, and a similar effect at the trailing edge. The old scheme,

Fig. 6.8(c) and 6.8(d), show underestimation of the absorption profile and the same

effect at the trailing edge. The degraded performance with reflection can be seen

quantitatively in Fig. 6.9(a) and 6.9(b) for the new and old scheme, respectively.

While the new scheme shows slight overall improvement when reflection is

considered, the FoM is now less than a magnitude of order difference. This indicates

that the accuracy of the method is less than that of the MC method.

Hybrid Scheme

Alternatively, a hybrid scheme for QMC was developed to account for

reflection more robustly. The hybrid scheme uses the old scheme for QMC with an
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Figure 6.9: GT FoMs with 1,600,000 rays

additional two-dimensional sequence to account for diffuse reflection

i.e., S1
j ,S2

j , . . . ,S6
j plus an independent S7

j ,S8
j for reflection events. This ensures

that the rays will be reflected uniformly with low-discrepancy without a loss in

discrepancy. The benefit of the hybrid scheme is shown in Fig. 6.10. Qualitatively it

is shown that the absorption profile is more accurately predicted than the previous

methods. Furthermore, in Fig. 6.10(c), it is shown that the FoM is at least an order

of magnitude higher than MC, which indicates that the hybrid scheme has an

advantage in both accuracy and computational cost.

6.4 Summary

This chapter presented a discussion of how best to implement a QMC

method for thermal radiation which was facilitated through results from example

cases. First, the choice of low-discrepancy sequence for use in a QMC method was

shown to have negligible impact. Then, the effect of wall emission was addressed by

introducing a new scheme to eliminate loss of discreapncy, but it was shown that,

again, the effect was negligible because the large percentage of rays are emitted

from a participating medium. Finally, the effect of reflection was considered. Diffuse

reflection requires the generation of two new random numbers and this was shown
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Figure 6.10: GT FoMs with 1,600,000 rays

to have an adverse effect on the two QMC schemes. A hybrid method was

developed to address reflection events that considerably improved the results.
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CHAPTER 7

CONCLUSION

Radiative heat transfer in participating media is among the most challenging

computational engineering problems due to the complex nature of the radiation

transport. The relevance of thermal radiation in high temperature applications

(e.g., combustion) has prompted the development of many approximate models

(e.g., the discrete ordinate method, method of spherical harmonics, optically thin

approximation, etc.). Despite shortcomings of these approximations, many of them

are implemented in commercial computational fluid dynamics (CFD) solvers to

reduce computational complexity and costs. Monte Carlo ray tracing (MCRT)

schemes are the most accurate solvers for thermal radiation and can be easily

extended to any complex configuration while retaining accuracy. The main

bottleneck for Monte Carlo (MC) methods is the computational cost due to the

significant number of rays that must be sampled. This work addressed the

bottleneck by replacing the random number sampling mechanism in traditional MC

methods with a low-discrepancy sequence (LDS). A systematic performance analysis

was done on the accuracy and computational cost of the developed QMC method.

Additionally, recommendations were given for QMC implementation strategy in

terms of the different low discrepancy sequences – Sobol, Halton, and Niederreiter –

used, and the dimensionality of the sequence.

The QMC method was validated in several one-dimensional configurations.

It was shown that QMC has comparable accuracy to traditional Monte Carlo

methods in optically thin and optically thick gray media, while similar results were

obtained for nongray media. Then, QMC was extended to three-dimensional

snapshots of combustion simulations. It was shown that, in terms of local and

averaged RMS relative error, that QMC has comparable accuracy in these



63

simulations as well. It was advantageous to compare MC with QMC via a Figure of

Merit (FoM). This metric illustrated the coupled effect of computational expense

and accuracy where a higher FoM is indicative of a good MC scheme. For any given

simulation, the FoM was higher for QMC than MC. The main source of this was the

computational cost. Traditional MC methods are probabilistic and therefore require

repeated sampling. In this work, the performance comparisons were run with ten

statistical analyses (i.e., ten repeated, independent simulations). The QMC

method, on the other hand, is deterministic and required just one simulation. This

effectively reduced the computational cost by an order of magnitude. In principle,

then, the computational cost of QMC will scale at least by 1/S where S is the

number of simulations run. In practice the gain in FoM was found to be more than

S-fold. In conclusion, QMC is a viable alternative to traditional Monte Carlo

methods for radiative heat transfer calculations in high-fidelity simulations because

of the significant decrease in computational cost with comparable accuracy.
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CHAPTER 8

FUTURE WORK

Outlook on future research for the quasi-Monte Carlo (QMC) method can be

lumped into three broad categories. First, continue to explore the quasi-Monte

Carlo method in relevant combustion simulations. The current work studied

snapshot cases of combustion simulations. The QMC method should be extended to

full coupled simulations of combustion, and similarly, compared with a benchmark

Monte Carlo method. Second, although the computational cost of QMC scales

fractionally with 1/S to the MC method (where S is the number of simulations), it

would be worthwhile to perform a formal comparative analysis in terms of

computational cost and accuracy to other deterministic solvers (e.g., discrete

ordinate method, method of spherical harmonics, etc.). It would be useful in this

stage to also analyze how well the QMC scales in parallel computing runs.

Collectively, this would provide a clear answer to whether the QMC method should

be adopted or not for commercial solvers in practice. Third, the algorithm of the

QMC method should continue to be addressed. This study documented the choice

of different low-discrepancy sequences and the best way to implement a sequence in

terms of its dimensionality as it relates to thermal radiation. Since results varied for

three different implementations a more exhaustive study on the effect of

dimensionality should be done. Some guidelines were given, such as using an

independent sequence for reflection events, but an optimal structure has yet to be

determined. Moreover, there are additional phenomena that have yet to be

accounted for such as scattering due to particulate media. The algorithmic QMC

method can be fundamentally modified, as well, which is another area of potential

exploration. Randomized quasi-Monte Carlo (RQMC) methods are sometimes

implemented in order to run a simulation S times to get S independent results [63].
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These are also referred to as variance reduction techniques for Monte Carlo

methods, and have varying degrees of success. A full study on these three fronts will

provide a more robust and clear outlook on the future of QMC in practice.
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APPENDIX A

APPENDIX

Figure A.1: Flow Chart of photon Monte Carlo method
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