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Abstract 
The antagonism of some effects of inhalation general anesthetic agents by naloxone suggests that there 
may be an opioid component to anesthetic action. There is evidence that this opioid action component 
is due to neuronal release of endogenous opioid peptides. The strongest evidence is provided by studies 
that monitor changes in the concentration of opioid peptides in the perfused brain following inhalation 
of the anesthetic. Indirect or circumstantial evidence also comes from studies of anesthetic effects on 
regional brain levels of opioid peptides, antagonism of selected anesthetic effects by antisera to opioid 
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peptides and anesthetic-induced changes radioligand binding to opioid receptors. It is likely that some 
inhalation general anesthetics (e.g., nitrous oxide) can induce neuronal release of opioid peptides and 
that this may contribute to certain components of general anesthesia (e.g., analgesia). More definitive 
studies utilizing in vivo microdialysis or autoradiography in selected areas of the brain during induction 
and successive states of general anesthesia have yet to be conducted. 

Introduction 
The concept of general anesthesia has been realized for some 150 years and, despite its monumental 
impact in medicine, exactly how general anesthesia is produced pharmacologically remains uncertain. 
Interest in the mechanism of anesthesia remains high, though, and there has been no shortage of 
hypothesized mechanisms. Foremost among these are the “lipid theory” and the “protein theory”. 

Earlier studies suggested that general anesthetics might produce their effects by acting on the neuronal 
membrane. Meyer and Overton independently described the correlation between lipid solubility of 
inhaled anesthetic agents and the amount of drug required for anesthesia (Miller et al., 1972). According 
to this so-called “lipid theory,” it was the number of anesthetic molecules, irrespective of which 
anesthetic agent, dissolved in the phospholipid bilayer of the neuronal membrane that was actually 
responsible for anesthetic state (Kaufman, 1977). It was postulated that dissolution of anesthetic 
molecules in the neuronal membrane expanded the volume of the hydrophobic region, producing a 
structural perturbation of ion channels and preventing the sodium influx necessary for synaptic release 
of neurotransmitter (Cantor, 1997). 

The newer opposing view, the purported “protein theory,” holds that anesthetics directly interact with 
hydrophobic pockets on specific membrane proteins to produce the anesthetic state. Franks and Lieb 
have amassed an impressive body of evidence that general anesthetics may act stereoselectively on 
ligand-gated ion channels that facilitate postsynaptic inhibitory channel fluxes (Franks and Lieb, 
1994, Franks and Lieb, 1998). Studies that correlated anesthetic potency with prolongation of GABA-
mediated inhibition of neuronal excitability implicate the GABAA receptor as a possible protein target of 
anesthetic drug action (Zimmerman et al., 1994). 

There are multiple components to the anesthetic state induced by general anesthetic drugs and these 
may vary from one anesthetic drug to another (Kissin, 1993). It is not unreasonable that different drug 
actions may underlie different components of general anesthesia. Since insensitivity to pain is one 
component of general anesthesia, it has been suggested that perhaps some general anesthetic drugs 
work through activation of endogenous opioid systems to evoke analgesia. The prima facia evidence 
implicating an opioid basis for any physiological or pharmacological event is blockade by an opioid 
receptor antagonist. 

An opioid component to general anesthesia? 
Continuous perfusion of dogs with 20 μg/ml naloxone through the fourth cerebral ventricle—but not the 
lateral or third cerebral ventricles—reversed the hypotension, bradycardia, depressed baroreceptor 
response, and EEG synchronization induced by inhalation of halothane (Arndt and Freye, 1979). The 
antagonism was competitive as it was overcome by doubling the concentration of inspired halothane 
and it was reversible as it dissipated with discontinuation of the naloxone perfusion. Intravenously 



 
  

   
     
  
   

  

 
     

   
   

      
 

 
      

   
   

   
  

  
   

      
      

 
   

   
    

    
 

     
  

 
   

 
 

    
   

      
  

 
 

    

administered naloxone also attenuated in a dose-related manner the hypotensive effect observed in 
halothane-anesthetized dogs (Artru et al., 1980). 

Intravenous (i.v.) treatment of rats with naloxone also reportedly antagonized the antinociceptive 
effects of cycloproprane, halothane and enflurane following 30 min exposure to the anesthetic (Finck et 
al., 1977). In additional experiments, electroencephalographic readings in cyclopropane- and halothane-
anesthesized rats showed conversion to patterns that were more characteristic of lighter planes of 
general anesthesia following naloxone administration (Finck et al., 1977). 

Other studies have reported equivocal results in the ability of narcotic antagonists to shorten the 
duration of anesthesia and restore the righting reflex. Naloxone failed to alter the duration of anesthesia 
induced by halothane, diethylether, ketamine pentobarbital, Althesin (a mixture of alphaxalone and 
alphadolone) or hyperbaric nitrous oxide as determined by recovery of righting reflex (Bennett, 
1978, Smith et al., 1978, Lawrence and Livingston, 1981). This was confirmed by another study in which 
naloxone failed to alter the MAC values for halothane, enflurane and isoflurane (Levine et al., 1986). 
However, comparable doses of naloxone markedly reduced the antinociceptive effect of ketamine and 
nitrous oxide but not halothane, diethylether or xylazine (Smith et al., 1978, Lawrence and Livingston, 
1981). In another study, naloxone and naltrexone asymmetrically shortened the sleeping times induced 
by ketamine, halothane, or pentobarbital; high-dose naltrexone was less effective than lower doses in 
producing this analeptic effect suggesting this action was unrelated to blockade of opioid receptors 
(Kraynack and Gintautas, 1982). 

It seems most likely that the naloxone antagonism of some inhalation anesthetics is due to stimulation 
by the anesthetic drug of a neuronal release of endogenous opioid peptides that then activate opioid 
receptors. In a series of intriguing experiments Berkowitz et al., 1976, Berkowitz et al., 1979 reported 
that the antinociceptive effect of nitrous oxide (N2O) was attenuated in rats and mice pretreated with 
naloxone. Morphine-tolerant animals were cross-tolerant to N2O, yet N2O-tolerant animals remained 
sensitive to morphine-induced antinociception (Berkowitz et al., 1977, Berkowitz et al., 1979). This 
unilateral cross-tolerance between N2O and morphine suggested that tolerance to N2O resulted from 
depletion of an opioid mediator rather than change in sensitivity of opioid receptors or signaling 
pathways (Berkowitz et al., 1979), hence the idea that general anesthetics might induce neuronal 
release of opioid peptides. 

Further evidence that N2O, in particular, might stimulate neuronal release of endogenous opioid peptide 
is indirectly shown by studies utilizing rabbit antisera against opioid peptides. The antinociceptive effect 
of N2O in the rat hot plate test was antagonized dose-dependently by an antiserum against β-endorphin 
but not another against ME (Hara et al., 1994). Similarly N2O-induced antinociception in the mouse 
acetic acid-induced abdominal constriction test was antagonized by intracerebroventricular (i.c.v.) or 
intrathecal (i.t.) pretreatment with antisera against various dynorphin fragments but not antisera 
against ME or β-endorphin (Branda et al., 2000, Cahill et al., 2000). The suggested neuronal release of 
dynorphin in the mouse was supported by the finding that N2O-induced antinociception was selectively 
and significantly enhanced by i.c.v. pretreatment with phosphoramidon, an inhibitor of endopeptidase 
24.11, which has been implicated in dynorphin degradation (Branda et al., 2000). 

More recently, it was found that the methylnaloxone-sensitive, early-phase hypotension produced in 
rats by isoflurane was attenuated by pretreatment with rabbit antisera against methionine–enkephalin 
but not β-endorphin (Ellenberger et al., 2003). Such reports of functional antagonism of anesthetic 



   
  

     
 

    
   

    
  

   
    

   

       
      

    
   

  
 

     
  

     
    

  
   

  
  

    
  

  
   

 

    
   

   
     

       
   

    
   

    
     

effects by antisera against endogenous opioid peptides is further evidence that at least some effects 
caused by anesthetic drugs involve a stimulated release of opioid peptides. 

Effects of general anesthetics on plasma levels of endogenous opioid 
peptides 
Exposure to halothane produced a 2–3-fold increase in plasma β-endorphin-like immunoreactivity that 
peaked at 10 min and subsided by 30 min following induction (Maiewski et al., 1984). Treatment with 
pentobarbital and urethane intravenously produced 2–3-fold and 10-fold increases in plasma β-
endorphin-like immunoreactivity, respectively. Halothane also increased plasma levels of β-endorphin 
but not met–enkephalin or dynorphin in ponies (Luna and Taylor, 1995). In a clinical study, isoflurane 
proved to be more effective than halothane in increasing plasma β-endorphin concentrations in children 
aged 1–6 years (Garcia-Sanchez et al., 1993). 

Thus, while there appears to be consistent evidence that inhalation and injectable anesthetics can 
increase plasma levels of β-endorphin, such studies fail to demonstrate whether the agents in question 
directly or indirectly cause such changes. The influence of anesthetics on circulatory levels of opioid 
peptides may reflect an effect far downstream from the site of action of the anesthetic drug. These 
studies also failed to correlate the change in plasma opioid peptide concentration to any specific 
physiological change. 

Effects of general anesthetics on concentrations of endogenous opioid 
peptides in the brain 
Another line of evidence supporting the hypothesis that general anesthetics can stimulate the neuronal 
release of endogenous opioid peptides is that many inhalation anesthetics are capable of altering brain 
tissue concentrations of opioid peptides. However, the findings of such studies are heavily influenced by 
the anesthetic concentration and the time of exposure leading to a variety of interpretations. The level 
of peptides is only a rough approximation of neuronal function. Increased tissue levels of peptides may 
represent an increase in the neuronal release of peptides; however, it is plausible that the stimulated 
release of peptides might occur in the absence of any change in the tissue concentration of the peptide. 
On the other hand, decreased tissue levels of peptides may indicate excessive neuronal release of the 
peptides without adequate replenishment of peptide concentrations. Despite these caveats, various 
investigations have reported both increases and decreases in whole brain or regional brain 
concentrations of multiple opioid peptides following anesthetic exposure. 

Compared to room air-exposed rats, animals exposed to 75% N2O in O2for 60 min had significant (12– 
18%) increases in the concentrations of ME-like immunoreactivity in the brainstem, spinal cord, 
hypothalamus and corpus striatum but not in the cerebral cortex or diencephalon (Quock et al., 1986), 
although a similar study showed no effect of N2O on ME levels (Morris and Livingston, 1984). In rats 
exposed to N2O in O2for 60 min, there was a concentration-related increase in levels of β-endorphin in 
the medial basal hypothalamus and the periaqueductal gray, which are sites along the neuroaxis 
functionally involved with analgesia (Zuniga et al., 1987a). Chronic exposure (8 h/day over one estrous 
cycle) of female rats to N2O resulted in increased levels of ME in the brainstem and increased levels of β-
EP in the pituitary (Kugel et al., 1991). Hypothalamic concentrations of both ME and preproenkephalin 
mRNA were elevated in rats exposed to 60% N2O, compared to rats exposed to room air (Agarwal et al., 



    
   

 

   
   

    
  

   
   

    
  

   
          

   
 

   
  

       
    

     
    

    
    

    
 

    

  
    

    
    

    
 

     
    

 
    

   
  
  

  

1996). Levels of preproenkephalin mRNA were progressively greater in proportion to the length of 
exposure. The increase might be considered compensatory replenishment of opioid peptide following 
neuronal release. 

Reported effects of fluorinated hydrocarbons on brain opioid peptides reinforced suspicions of a more 
global interaction between general anesthetics and endogenous opioid systems; however, effects 
appear to be site-specific and time-dependent. A 2-h exposure of rats to 1.5% halothane in 
O2 significantly reduced levels of ME in the pituitary gland and several brain regions but levels generally 
recover approximately 4 h later (Agarwal et al., 1994). Exposure to halothane also significantly 
decreased β-endorphin in the olfactory bulb, thalamus and midbrain but significantly increased β-
endorphin in the pituitary gland and spinal cord. In contrast, exposure to 0.5% methoxyflurane in 
O2 lowered ME content in the olfactory bulb, thalamus and hippocampus (Karuri et al., 1998). 
Methoxyflurane caused less drastic reductions in ME but markedly depleted ME levels in the rat 
olfactory bulb, thalamus and hippocampus. Methoxyflurane also decreased β-endorphin in the olfactory 
bulb, thalamus and brainstem and had a time-dependent biphasic effect on β-endorphin in the pituitary 
gland (Karuri et al., 1998). 

A 1-hr exposure of rabbits to halothane increased ME levels in the hypothalamus, hippocampus and 
mesencephalon, increased LE content in the hippocampus and reduced LE levels in the hypothalamus 
(Chmielnicki et al., 1995). Some of these changes persisted up to 60 min following the end of halothane 
exposure. Isoflurane increased levels of LE in the rabbit hypothalamus, hippocampus and 
mesencephalon (Chmielnicki et al., 1997). There were also decreases in ME and LE content in selected 
segments of the spinal cord. Short (5 min) exposure to enflurane increased levels of ME and LE in 
hippocampus and mesencephalon but depleted ME in the hypothalamus and striatum (Kmieciak-Kolada 
et al., 1998). Exposures of up to 1 h resulted in increased ME content in the hypothalamus and 
hippocampus and also LE levels in the hypothalamus and mesencephalon, but LE levels were decreased 
in the striatum and hippocampus. 

Such findings of altered regional brain levels of opioid peptides are indicative of some direct or indirect 
interaction. Changes are peptide-specific as ME and LE do not appear to change in parallel fashion nor 
does β-endorphin. Levels in different brain regions are differentially affected by general anesthetics 
indicating a site-specificity of anesthetic action in the brain. More importantly, the duration of exposure 
to an anesthetic has tremendous impact on the direction of the change. Short-term exposure is more 
likely to increase regional levels of an opioid peptide until the rate of depletion exceeds the rate of 
repletion when tissue levels of the peptide decline. Following termination of anesthesia, levels of the 
affected peptide may exceed resting levels depending on the rate of replenishment. 

Effects of general anesthetics on release of opioid peptides 
In the face of reports of anesthetic-induced changes in brain concentrations of opioid peptides—and the 
attendant differences in interpretation of such findings—other investigators have sought to detect 
changes in the levels of opioid peptides released either into the plasma or the cerebrospinal fluid (CSF). 

The most enlightening data comes from studies that directly monitored the release of endogenous 
opioid peptides in the brain. In ventricularly–cisternally-perfused rats under basal urethane anesthesia, 
a 60-min exposure to 75% N2O in oxygen (O2) increased methionine–enkephalin (ME)-like 
immunoreactivity in 8-min fractions of artificial cerebrospinal fluid (CSF) perfusate (Quock et al., 1985). 



    
    

   
      

       

     
   

    
    

   
 

   
   

   
  

       
     

  
      

   
  

  
   

     
   

      
   

  
 

    
   

    
   

    

 
   

   
    

    
  

    

In a similar study, samples of CSF were drawn from the third cerebral ventricle of dogs and fractionated 
to improve selectivity of the radioimmunoassay (RIA) procedure. Samples drawn during exposure to N2O 
showed that ME was dramatically increased by 28–400 times over control and ME–Arg6–Phe7increased 
1.5–8.3 times over control (Finck et al., 1985). On the other hand, N2O appeared not to alter levels of 
dynorphin A, dynorphin B or β-endorphin in the third ventricular CSF. 

In an elegantly designed in vitro experiment, rat basal hypothalamic cells were mechanically dissociated, 
affixed to cytodex beads and placed in a continuous flow superfusion column (Zuniga et al., 1987b). The 
effluents collected every 5 min during superfusion with 60% and 80% N2O had significantly higher levels 
of immunoreactive β-endorphin than did effluents collected during superfusion with saline or 30% N2O. 
These results suggest that N2O has a stimulatory effect on central pro-opiomelanocortin neurons and 
evokes the release of β-endorphin. In a clinical study, human subjects were administered thiopental (2– 
5 mg/kg) plus 70% N2O followed by halothane; this produced no change in levels of β-endorphin and 
leucine–enkephalin immunoreactivity in the cerebrospinal fluid (Way et al., 1984). 

Effects of general anesthetics on opioid radioligand binding 
There has been a single report of opioid receptor binding following in vivo exposure to an inhalation 
anesthetic. Ngai and Finck (1988) showed that 18 h of N2O produced a 20% reduction in Bmax which 
would be consistent with the release of endogenous opioid peptides by N2O and subsequent down 
regulation. In vitro binding experiments, both saturation binding experiments in the presence or 
absence of anesthetic (Tejwani et al., 1991, Inoki et al., 1983, Ori et al., 1989, Campbell et al., 1995) and 
inhibition experiments where anesthetics inhibit the binding of a single concentration of opioid 
radioligand (Ahmed and Byrne, 1980, Tejwani et al., 1991), provide evidence that inhalation anesthetics 
may directly affect radioligand binding of opioid receptors. Several reports demonstrate that anesthetics 
inhibit opioid radioligand binding by reducing the apparent affinity of the receptor (Campbell et al., 
1995, Inoki et al., 1983, Tejwani et al., 1991), although there has been one report where no effect was 
found (Lawrence and Livingston, 1981) and most studies report no effect under certain tissue regions, 
different conditions, or different radioligands (Ori et al., 1989, Campbell et al., 1995, Inoki et al., 1983). It 
is unclear whether the reported anesthetic-induced inhibition of radioligand binding is due to 
competitive inhibition at the opioid binding site, noncompetitive inhibition, or a direct alteration of 
either receptor protein or surrounding membrane by the anesthetic drug. 

Although affinity is most often affected, there have been two reports where receptor concentration 
(Bmax) has been altered in vitro by presence of anesthetic (Ori et al., 1989, Inoki et al., 1983). These 
changes in opioid binding in vitro suggest that although release of endogenous opioid peptides may be 
the prime mechanism by which volatile anesthetics interact with the opioid system, there may be a 
direct membrane effect or an effect on opioid receptors as well. 

Conclusion 
Do general anesthetics induce the neuronal release of endogenous opioid peptides? The answer 
appears to be yes but whether all general anesthetics do so is another question. Does the release of 
opioid peptides cause general anesthesia? There are undoubtedly multiple mechanisms through which 
anesthesia is produced and there are multiple components to the anesthetic state that may vary from 
one anesthetic drug to another. Some but not all of these effects appear to be mediated by endogenous 
opioid mechanisms. The analgesic effect of certain anesthetics like nitrous oxide is likely to be explained 



       
  

    
 

   
     

  

 
            

 
     

           
  

     
       

     
     

     
 

     
       

     
   

     
         

     
        

     
          

      
          

 
     

           

     
        

    
     

     
     

at least in part of release of opioid peptides. The most direct approach would appear to be in vivo 
microdialysis, in which a dialysis probe is inserted into the brain to collect dialysate in the conscious 
state, during induction of anesthesia and through several stages and planes of anesthesia. 
Quantification of the opioid peptide content of these samples will provide more definitive evidence of 
whether general anesthetic agents can release endogenous opioid peptides. Another interesting 
approach would be in vivo autoradiography to localize brain regions where the release of endogenous 
opioid peptides might competitively displace a radioligand. To date there have been no such studies. 
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