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Abstract
We develop a primal-dual algorithm that allows for one-step inversion of 
spectral CT transmission photon counts data to a basis map decomposition. 
The algorithm allows for image constraints to be enforced on the basis 
maps during the inversion. The derivation of the algorithm makes use of a 
local upper bounding quadratic approximation to generate descent steps 
for non-convex spectral CT data discrepancy terms, combined with a new 
convex-concave optimization algorithm. Convergence of the algorithm is 
demonstrated on simulated spectral CT data. Simulations with noise and 
anthropomorphic phantoms show examples of how to employ the constrained 
one-step algorithm for spectral CT data.

Keywords: spectral computed tomography, iterative image reconstruction, 
non-convex optimization, total variation, photon counting detection
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1.  Introduction

The recent research activity in photon-counting detectors has motivated a resurgence in the 
investigation of spectral computed tomography (CT). Photon-counting detectors detect indi-
vidual x-ray quanta and the electronic pulse signal generated by these quanta has a peak 
amplitude proportional to the photon energy (Taguchi and Iwanczyk 2013). Thresholding 
these amplitudes allows for coarse energy resolution of the x-ray photons, and the trans-
mitted flux of x-ray photons can be measured simultaneously in a number of energy win-
dows. Theoretically, the energy-windowed transmission measurements can be exploited to 
reconstruct quantitatively the x-ray attenuation map of the subject being scanned (Alvarez 
and Macovski 1976). The potential benefits are reduction of beam-hardening artifacts, and 
improved contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and quantitative imag-
ing (Schmidt 2009, Shikhaliev 2008, Alessio and MacDonald 2013, Taguchi and Iwanczyk 
2013). For photon-counting detectors where the number of energy windows can be three or 
greater, the new advantage with respect to quantitative imaging is the ability to image contrast 
agents that possess a K-edge in the diagnostic x-ray energy range (Roessl and Proksa 2007, 
Schlomka et al 2008, Cormode et al 2010, Roessl et al 2011a, 2011b, Schirra et al 2013).

Use of energy information in x-ray CT has been proposed almost since the conception 
of CT itself (Hounsfield 1973). Dual-energy CT acquires transmission intensity at either 
two energy windows or for two different x-ray source spectra. Despite the extremely coarse 
energy-resolution, the technique is effective because for many materials only two physical 
processes, photo-electric effect and Compton scattering, dominate x-ray attenuation in the 
diagnostic energy range (Alvarez and Macovski 1976). Within the context of dual-energy, 
the processing methods of energy-windowed intensity data have been classified in two broad 
categories: pre-reconstruction and post-reconstruction (Maaß et  al 2009). The majority of 
processing methods for multi-window data also fall into these categories.

In pre-reconstruction processing of the multi-energy data, the x-ray attenuation map is 
expressed as a sum of terms based on physical processes or basis materials (Alvarez and 
Macovski 1976). The multi-energy data are converted to sinograms of the basis maps, then 
any image reconstruction technique can be employed to invert these sinograms. The basis 
maps can subsequently be combined to obtain images of other desired quantities: estimated 
x-ray attenuation maps at a single energy, material maps, atomic number, or electron den-
sity maps. The main advantage of pre-reconstruction processing is that beam-hardening arti-
facts can be avoided, because consistent sinograms of the basis maps are estimated prior to 
image reconstruction. Two major challenges for pre-reconstruction methods are the need 
to calibrate the spectral transmission model and to acquire registered projections. Photon-
counting detectors ease the implementation of projection registration, because multiple 
energy-thresholding circuits can operate on the same detection element signal. Accounting 
for detection physics and spectral calibration by data pre-processing or incorporation directly 
in the image reconstruction algorithm remains a challenge for photon-counting detectors 
(Taguchi and Iwanczyk 2013).

For post-reconstruction processing, the energy-windowed transmission data are processed 
by the standard negative logarithm to obtain approximate sinograms of a weighted energy-
averaged attenuation map followed by standard image reconstruction. The resulting images 
can be combined to obtain approximate estimates of images of the same physical quantities 
as mentioned for the pre-reconstruction processing (Brooks 1977). The advantage of post-
reconstruction processing is that it is relatively simple, because it is only a small modification 
on how standard CT data are processed and there is no requirement of projection registra-
tion. The downside, however, is that the images corresponding to each energy-window are 
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susceptible to beam-hardening artifacts because the negative logarithm processed data will, in 
general, not be consistent with the projection of any object.

A third option for the processing of spectral CT data, however, does exist, which due to dif-
ficulties arising from the nonlinearity of the attenuation of polychromatic x-rays when passing 
through an object, is much less common than either pre- or post-reconstruction methods: direct 
estimation of basis maps from energy-windowed transmission data, which we refer to as the 
‘one-step’ approach. This approach has the advantages that the spectral transmission model is 
treated exactly, there is no need for registered projections, and constraints on the basis maps 
can be incorporated together with the fitting of the spectral CT data. The main difficulty of 
the one-step approach is that it necessitates an iterative algorithm because the corresponding 
transmission data model is too complex for analytic solution, at present. Iterative image recon-
struction (IIR) has been applied to spectral CT in order to address the added complexity of the 
data model (Elbakri and Fessler 2002, Fessler et al 2002, Chung et al 2010, Cai et al 2013, 
Long and Fessler 2014, Ruoqiao et al 2014, Sawatsky et al 2014, Nakada et al 2015).

In this work, we develop a framework that addresses one-step image reconstruction in spec-
tral CT allowing for non-smooth convex constraints to be applied to the basis maps. We dem-
onstrate the algorithm with the use of total variation (TV) constraints, but the framework allows 
for other constraints such as non-negativity, upper bounds, and sum bounds applied to either 
the basis maps or to a composite image such as an estimated mono-chromatic attenuation map.

We draw upon recent developments in large-scale first-order algorithms and adapt them to 
incorporate the non-linear model for spectral CT to optimize the data-fidelity of the estimated 
image by minimizing the discrepancy between the observed and estimated data. We present 
an algorithm framework for constrained optimization, deriving algorithms for minimizing 
the data discrepancy based on least-squares fitting and on a transmission Poisson likelihood 
model. As previously mentioned, the framework admits many convex constraints that can 
be exploited to stabilize image reconstruction from spectral CT data. Section 2 presents the 
constrained optimization for one-step spectral CT image reconstruction; section 3 presents a 
convex-concave primal-dual algorithm that addresses the non-convex data discrepancy term 
arising from the non-linear spectral CT data model; and section 4 demonstrates the proposed 
algorithm with simulated spectral CT transmission data.

2.  One-step image reconstruction for spectral CT

2.1.  Spectral CT data model

For the present work, we employ a basic spectral model for the energy-windowed transmitted 
x-ray intensity along a ray ℓ, where the transmitted x-ray intensity in the energy window w 
for ray ℓ is given by

∫ ∫ µ= −
∈

⎡
⎣⎢

⎤
⎦⎥I S E E r t t Eexp , d d .w

E
w

t
( ) ( ( ))ℓ ℓ

ℓ

→

Here ∫∈t ℓ
 denotes that we are integrating along the ray ℓ while ∫E integrates over the range of energy; 

( )ℓS Ew  is the product of the x-ray beam spectrum intensity and detector sensitivity for the energy 
window w and transmission ray ℓ at energy E; and ( )µ →E r,  is the linear x-ray attenuation coefficient 
for energy E at the spatial location →r . Let Iw

0
ℓ

( ) be the transmitted intensity in the setting where no 
object is present between the x-ray beam and the detector (i.e. attenuation is set to zero), given by

( )ℓ
( )

ℓ∫=I S E Ed ;w
E

w
0
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Then we can write

( ) ( ( ))ℓ ℓ
( )

ℓ
ℓ

→∫ ∫ µ= −
∈

⎡
⎣⎢

⎤
⎦⎥I I s E E r t t Eexp , d d ,w w

E
w

t

0� (1)

where s Ew ( )ℓ  represents the normalized energy distribution of x-ray intensity and detector 
sensitivity,

=s E S E I/ .w w w
0( ) ( )ℓ ℓ ℓ

( )�

Image reconstruction for spectral CT aims to recover the complete energy-dependent linear 
attenuation map ( )µ →E r,  from intensity measurements ℓIw  in all windows w and rays ℓ com-
prising the x-ray projection data set.

Throughout the article we use the convention that Nx is the dimension of the discrete index x. 
For example, the spectral CT data set consists of Nw energy windows and ℓN  transmission rays.

This inverse problem is simplified by exploiting the fact that the energy-dependence of the 
x-ray attenuation coefficient can be represented efficiently by a low-dimensional expansion. 
For the present work, we employ the basis material expansion

( ) ( ) ( )
( )

( )→ → →∑ ∑µ µ
µ
ρ

ρ= =
⎛

⎝
⎜

⎞

⎠
⎟E r E f r

E
f r, ,

m
m m

m

m

m
m m� (2)

where ρm is the density of material m; the x-ray mass attenuation coefficients ( )/µ ρEm m are 
available from the national institute of standards and technology (NIST) report by Hubbell 
and Seltzer (1995); and ( )→f rm  is the fractional density map of material m at location →r . For the 
present spectral CT image reconstruction problem, we aim to recover f rm ( )→ , which we refer 
to as the material maps.

Proceeding with the spectral CT model, we discretize the material maps f rm ( )→  by use of 
an expansion set

∑ φ=f r f r ,m
k

N

km k
map

k

( ) ( )( )→ →

where ( )( )φ →rk
map  are the representation functions for the material maps, respectively. For the 

2D/3D image representation standard pixels/voxels are employed, that is, k indexes the pixels/
voxels. With the spatial expansion set, the line integration over the material maps is represented 
by a matrix X with entry X kℓ  measuring the length of the intersection between ray ℓ and pixel k:

∫ ∑µ µ=
∈

E r t t E X f, d ,
t mk

m k km( ( )) ( )
ℓ

ℓ
→

where formally we can calculate

( )ℓ
ℓ

( ) →∫ φ=
∈

X r td .k
t

k
map

This integration results in the standard line-intersection method for the pixel/voxel basis.
The discretization of the integration over energy E in equation (1) is perform by use of a 

Riemann sum approximation.

( ) ( )

( ) ( )

ℓ ℓ
( )

ℓ
ℓ

ℓ
( )

ℓ
ℓ

ℓ
( )

ℓ ℓ

→

→

∫ ∫

∫∑ ∑ ∑
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R F Barber et alPhys. Med. Biol. 61 (2016) 3784



3788

where i indexes the discretized energy E and

( ) ( )ℓ ℓ µ µ= ∆ =s E s E Eand .w i i w i mi m i

With the Riemann sum approximation we normalize the discrete window spectra,

∑ =s 1.
i

w iℓ

Modeling photon-counting detection, we express x-ray incident and transmitted spectral flu-
ence in terms of numbers of photons per ray ℓ (as before, the ray ℓ identifies the source 
detector-bin combinations) and energy window w:

∑ ∑µ= −
⎡

⎣
⎢

⎤

⎦
⎥c N s X fexp ,w w

i
w i

mk
mi k kmˆ ℓ ℓ ℓ ℓ� (3)

where Nwℓ is the incident spectral fluence and cwˆ ℓ is interpreted as a mean transmitted fluence.

2.2.  Constrained optimization for one-step basis decomposition

For the purpose of developing spectral CT image reconstruction of the basis material maps 
from transmission counts data, we formulate a constrained optimization involving minimiza-
tion of a non-convex data-discrepancy objective function subject to convex constraints. The 
optimization problem of interest takes the following form

∑ δ= +∗
⎧
⎨
⎩

⎫
⎬
⎭

f D c c f Parg min , ,
f i

i( ˆ( )) ( )� (4)

where the measured counts data c are composed of individual measurements ℓcw , i.e. the 
measured counts in energy window w and ray ℓ; ( )⋅ ⋅D ,  is a generic data discrepancy objective 
function; and the convex indicator functions ( )δ Pi  enforce the convex constraints ∈f Pi, the Pi 
are convex sets corresponding to the desired constraints (for instance, nonnegativity of the 
material maps). The convex indicator function is defined

( )δ =
∈

∞ ∉

⎧
⎨
⎩

P
f P

f P

0
.� (5)

Use of constrained optimization with TV constraints is demonstrated in section 4.

2.2.1.  Data discrepancy functions.  For the present work, we consider two data discrepancy 
functions: transmission Poisson likelihood (TPL) and least-squares (LSQ)

∑= − −D c c f c f c c c f c, log /
w

w w w w wTPL( ˆ( )) [ ˆ ( ) ( ˆ ( ) )]
ℓ

ℓ ℓ ℓ ℓ ℓ� (6)

( ˆ( )) [ ( ) ( ˆ ( ))]
ℓ

ℓ ℓ∑= −D c c f c c f,
1

2
log log .

w
w wLSQ

2
� (7)
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The TPL data discrepancy function is derived from the negative log likelihood of a stochastic 
model of the counts data

( ˆ ( ))ℓ ℓ∼c c fPoisson ,w w

that is, minimizing DTPL is equivalent to maximizing the likelihood. Note that in defining DTPL 
we have subtracted a term independent of f from the negative log likelihood so that DTPL is 
zero when =c c fˆ( ), and positive otherwise. From a physics perspective, the important dif-
ference between these two data discrepancy functions is how they each weight the individual 
measurements; the LSQ function treats all measurements equally while the TPL function 
gives greater weight to higher count measurements. We point out this property to emphasize 
that the TPL data discrepancy can be useful even when there are data inconsistencies due to 
other physical factors besides the stochastic nature of the counts measurement. This alternate 
weighting is also achieved without introducing additional parameters as would be the case for 
a weighted quadratic data discrepancy. From a mathematics perspective, both data functions 
are convex functions of c fwˆ ( )ℓ , but they are non-convex functions of f. It is the non-convexity 
with respect to f that drives the main theoretical and algorithmic development of this work. 
Although we consider only these two data fidelities, the same methods can be applied to other 
functions.

2.2.2.  Convex constraints.  The present algorithm framework allows for convex constraints 
that may improve reconstruction of the basis material maps. In equation (4) the constraints 
are coded with indicator functions, but here we express the constraints by the inequalities that 
define the convex set to which the material maps are restricted. When the basis materials are 
identical to the materials actually present in the subject, the basis maps can be highly con-
strained. Physically, the fractional densities represented by each material map must take on a 
value between zero and one, and the corresponding constraint is

f0 1.mk⩽ ⩽� (8)

Similarly, the sum of the fractional densities cannot be greater than one, leading to a constraint 
on the sum of material maps

∑ f 1.
m

mk ⩽� (9)

Care must be taken, however, in using these bound and sum constraints when the basis mat
erials used for computation are not the same as the materials actually present in the scanned 
object. The bounds on the material maps and their sum must likely be loosened, and therefore 
they may not be as effective.

In medical imaging, where multiple soft tissues comprise the subject, it is standard to 
employ a spectral CT materials basis which does not include many of the tissue/density com-
binations present. The reason for this is that soft tissues such as muscle, fat, brain, blood, etc, 
all have attenuation curves similar to water, and recovering each of these soft tissues individu-
ally becomes an extremely ill-posed inverse problem. For spectral CT, it is common to employ 
a two-material expansion set, such as bone and water, and possibly a third material for repre-
senting contrast agent that has a K-edge in the diagnostic x-ray energy range. The displayed 
image can then be the basis material maps or the estimated x-ray attenuation map for a single 
energy E, also known as a monochromatic image

( )
( )( ) ∑

µ
ρ

ρ=
⎛

⎝
⎜

⎞

⎠
⎟f E

E
f .k

m

m

m
m mk

mono� (10)
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A non-negativity constraint can be applied to the monochromatic image

( ) ⩾( )f E 0k
mono

at one or more energies. This constraint makes physical sense even when the basis materials 
are not the same as the materials in the subject.

Finally, we formulate ℓ1-norm constraints on the gradient magnitude images, also known 
as the total variation, in order to encourage gradient magnitude sparsity in either the basis 
material maps or the monochromatic image. In applying TV constraints to the basis material 
maps, we allow for different constraint values γm for each material

∥ ∥ ∥( )∥ ⩽ γ≡ |∇ |f f ,m m mTV 1

where ∇ represents the finite-differencing approximation to the gradient, and we use |⋅| to 
represent a spatial magnitude operator so that |∇ |fm  is the gradient magnitude image (GMI) of 
material map m. Similarly, a TV constraint can be formulated so that it applies to the mono-
chromatic image at energy E

γ≡ |∇ |f E f E E ,mono
TV

mono
1 mono∥ ( )∥ ∥( ( ) )∥ ⩽ ( )( ) ( )

where the constraint can be applied at one or more values of E.
The constraints involving TV of the material maps and the monochromatic image are 

specified in section 4. Many other convex constraints can be incorporated into the presented 
framework such as constraints on a generalized TV computed from multiple monochromatic 
images (Rigie and La Rivière 2015). The convex constraints not covered explicitly in this arti-
cle can be incorporated by the methods described in Sidky et al (2014) and Sidky et al (2012).

3.  A first-order algorithm for spectral CT constrained optimization

The proposed algorithm derives from the primal-dual algorithm of Chambolle and Pock (CP) 
(Chambolle and Pock 2011, Pock and Chambolle 2011, Sidky et al 2012). Considering the 
general constrained optimization form in equation  (4), the second term coding the convex 
constraints can be treated in the same way as shown in Jørgensen and Sidky (2015) and Sidky 
et  al (2014). The main algorithmic development, presented here, is the generalization and 
adaptation of CP’s primal-dual algorithm to the minimization of the data discrepancy term, 
the first term of equation (4). We derive the data fidelity steps specifically focusing on the 
deriving steps for DTPL and DLSQ.

3.1.  Optimizing the spectral CT data fidelity

We first sketch the main developments of the algorithm for minimizing the non-convex data 
discrepancy terms, and then explain each step in detail. The overall design of the algorithm 
is comprised of two nested iteration loops. The outer iteration loop involves derivation of 
a convex quadratic upper bound to the local quadratic Taylor expansion about the current 
estimate for the material maps. The inner iteration loop takes descent steps for the current 
quadratic upper bound. Although the algorithm construction formally involves two nested 
iteration loops, in practice the number of inner loop iterations is set to one. Thus, effectively 
the algorithm consists only of a single iteration loop where a re-expansion of the data discrep-
ancy term is performed at every iteration.

The local convex quadratic upper bound, used to generate descent steps for the non-convex 
data discrepancy terms, does not fit directly with the generic primal-dual optimization form used 
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by CP. A convex-concave generalization to the CP primal-dual algorithm is needed. The resulting 
algorithm called mirrored convex–concave (MOCCA) algorithm is presented in detail in Barber 
and Sidky (2015). For the spectral CT image reconstruction algorithm we present: the local convex 
quadratic upper bound, a short description of MOCCA and its application in the present context, 
preconditioning, and convergence checks for the spectral CT image reconstruction algorithm.

3.2.  A local convex quadratic upper bound to the spectral CT data discrepancy terms

3.2.1.  Quadratic expansion.  We carry out the deriviations on DLSQ and DTPL in parallel. The 
local quadratic expansion for each of these data discrepancy terms about the material maps 
f  =  f0 is

≈ + − ∇ + − ∇ −� �L f L f f f L f f f L f f f
1

2
,f f0 0 0 0

2
0 0( ) ( ) ( ) ( ) ( ) ( )( )� (11)

where

( ) ( ) ( ( )) ( ) ( ( ))= = = =� �L f L f D c c f L L f D c c f, or , ,LSQ LSQ TPL TPL

depending on which data discrepancy function is desired.
To obtain the desired expansions, we need expressions for the gradient and Hessian of each 

data discrepancy. The gradient of L fTPL( ) is derived explicitly in appendix A; we do not show 
the details for the other derivations. The data discrepancy gradients are:

∇ = � �L f Z A f r f ,f TPL( ) ( ) ( )� (12)

∇ = � �L f Z A f r f ,f LSQ
log( ) ( ) ( )( )� (13)

where r and ( )r log  denote the residuals in terms of counts or log counts:

( ) ˆ ( )ℓ ℓ ℓ= −r f c c f ,w w w� (14)

= −r f c c flog log ;w w w
log ( ) ( ) ( ˆ ( ))ℓ

( )
ℓ ℓ� (15)

Z represents the combined linear transform that accepts material maps, performs projection, 
and then combines the resulting sinograms to form monochromatic sinograms at energy Ei:

µ=Z X ;i mk mi k,ℓ ℓ� (16)

and A( f ) is a term that results from the gradient of the logarithm of the estimated counts 
ˆ( )c flog :

=
−

∑ −

= ≠
=
′
′

′
′ ′ ′

′

′

A f
s Zf

s Zf
I

I

exp

exp

0
1

.

w i
w i i

i w i i
,

{
( ) [ ( ) ]

[ ( ) ]
ℓ ℓ
ℓ ℓ

ℓ ℓ
ℓ ℓ

ℓ ℓ
ℓℓ

ℓℓ

�

(17)

Using the same variable and linear transform definitions, the expressions for the two  
Hessians are

( ) ( ( ) ( )) ( ) ( ˆ( ) ( )) ( )∇ = − + +� � � �L f Z A f r f Z Z A f c f r f A f Zdiag diag ,f
2

TPL

�
(18)
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∇ = − + +� � � �L f Z A f r f Z Z A f r f A f Zdiag diag 1 .f
2

LSQ
log log( ) ( ( ) ( )) ( ) ( ( )) ( )( ) ( )

�
(19)

Substituting either equation (18) or (19) for the Hessian and either equation (12) or (13) for 
the gradient into the Taylor expansion in equation (11), yields the quadratic approximation to 
the data discrepancy terms of interest. This quadratic is in general non-convex because both 
Hessian expressions can have negative eigenvalues.

3.2.2.  A local convex upper bound to L( f ).  The key to deriving a local convex upper bound 
to the quadratic expansion of L( f ) is to split the Hessian expressions into positive and nega-
tive components. Setting the negative components to zero and substituting this thresholded 
Hessian into the Taylor’s expansion, yields a quadratic term with non-negative curvature (As 
an aside, a tighter convex local quadratic upper bound would be attained by diagonalizing 
the Hessian and forming a positive semi-definite Hessian by keeping eigenvectors corresp
onding to only non-negative eigenvalues in the eigenvalue decomposition, but for realistic 
sized tomography configurations such an eigenvalue decomposition is impractical.). The  
Hessian can be split into the form

∇ = ∇ −∇+ −L f L f L f ,f
2 2 2( ) ( ) ( )

where ( )∇+L f2  and ∇−L f2 ( ) are both positive semidefinite (see appendix B for more details). 
The resulting split expressions are:

∇ = + −+ − −
� � � �L f Z A f r f Z Z A f c f r f A f Zdiag diag ,2

TPL( ) ( ( ) ( )) ( ) ( ˆ( ) ( )) ( )
�

(20)

∇ = −− + +
� � � �L f Z A f r f Z Z A f r f A f Zdiag diag ,2

TPL( ) ( ( ) ( )) ( ) ( ( )) ( )� (21)

and

( ) ( ( ) ( )) ( ) ( ( )) ( )( ) ( )∇ = + −+ − −
� � � �L f Z A f r f Z Z A f r f A f Zdiag diag 1 ,2

LSQ
log log

�
(22)

∇ = −− + +
� � � �L f Z A f r f Z Z A f r f A f Zdiag diag ,2

LSQ
log log( ) ( ( ) ( )) ( ) ( ( )) ( )( ) ( )� (23)

where

( ) ( ) ( ) ( ) [ ( ) ] ( ) { ( ) }= − = = −+ − + −r f r f r f r f r f r f r f, max , 0 and max , 0 ,

and similarly

= − = = −+ − + −r f r f r f r f r f r f r f, max , 0 and max , 0 .log log log log log log log( ) ( ) ( ) ( ) { ( ) } ( ) { ( ) }( ) ( ) ( ) ( ) ( ) ( ) ( )

To summarize, the expression for the convex local upper bound to the quadratic approx
imation in equation (11) is

( ) ( ) ( ) ( ) ( ) ( )( )= + − ∇ + − ∇ −+
� �Q f f L f f f L f f f L f f f;

1

2
,f0 0 0 0 0

2
0 0� (24)

where ∇+
2  is used instead of ∇ f

2 in the quadratic term. Here Q depends parametrically on the 
counts data c, through the function L (see equation (11)), and the expansion center f0. The 
gradients of L at f0 are obtained from equations (12) and (13), and the Hessian upper bounds 
are available from equations (20) and (22). Note that the quadratic expression in equation (24) 
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is not necessarily an upper bound of the data discrepancy functions, even locally, because we 
bound only the quadratic expansion. We employ the convex function Q c f f, ;0( ) combined with 
convex constraints to generate descent steps for the generic non-convex optimization problem 
specified in equation (4).

3.3. The motivation and application of MOCCA

3.3.1.  Summary of the Chambolle–Pock (CP) primal-dual framework.  The generic convex 
optimization addressed in Chambolle and Pock (2011) is

= +�x F Kx G xarg min ,
x

{ ( ) ( )}� (25)

where F and G are convex, possibly non-smooth, functions and K is a matrix multiplying the 
vector x. The ability to handle non-smooth convex functions is key for addressing the convex 
constraints of equation  (4). In the primal-dual picture this minimization is embedded in a 
larger saddle point problem

{ ( ) ( )}− +∗�y Kx F y G xmin max ,
x y� (26)

using the Legendre transform or convex conjugation

( ) { ( )}= −∗ �F y x y F xmax ,
x

� (27)

and the fact that

( ) ( ) { ( )}= = −∗∗ ∗�F x F x y x F ymax
y� (28)

if F is a convex function. The CP primal-dual algorithm of interest solves equation (26) by 
iterating on the following steps

{ }( ) ∥ ¯ ∥( ) ( ) ( )
σ

σ= + + −′ ′+ ∗

′
y F y y Kx yarg min

1

2
n

y

n n1
2
2

� (29)

τ
τ= + − −′ ′+ +

′

�x G x x K y xarg min
1

2
n

x

n n1 1
2
2{ }( ) ∥ ∥( ) ( ) ( )� (30)

¯( ) ( ) ( )= −+ +x x x2 ,n n n1 1� (31)

where n is the iteration index; σ> 0 and τ> 0 are the primal and dual step sizes, respectively, 
and these step sizes must satisfy the inequality

∥ ∥
στ<

K

1

2
2

where ∥ ∥K 2 is the largest singular value of K. Because this algorithm solves the saddle point 
problem, equation (26), one obtains the solution to the primal problem, equation (25), along 
with its Fenchel dual

{ ( ) ( )}= − − −∗ ∗� �y F y G K yarg max .
y

� (32)
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The fact that both equations (25) and (32) are solved simultaneously provides a convergence 
check: the primal-dual gap, the difference between the objective functions of equations (25) 
and (32), tends to zero as the iteration number increases.

In some settings, the requirement 
∥ ∥

στ<
K

1

2
2  may be impractical or too conservative, and 

the CP algorithm can instead be implemented with diagonal matrices Σ and T in place of σ 
and τ (Pock and Chambolle 2011), with the condition ∥ ∥/ /Σ <KT 11 2 1 2  and the revised steps

{ }( ) ∥ ¯ ∥( ) ( ) ( )= + +Σ −′ ′+ ∗
Σ′
−y F y y Kx yarg min

1

2
n

y

n n1 2
1� (33)

= + − −′ ′+ +

′
−

�x G x x TK y xarg min
1

2
n

x

n n
T

1 1 2
1{ }( ) ∥ ∥( ) ( ) ( )� (34)

¯( ) ( ) ( )= −+ +x x x2 ,n n n1 1� (35)

where for a positive semidefinite matrix A the norm ∥ ∥z A is defined as �z Az .

3.3.2. The need to generalize the CP primal-dual framework.  To apply the CP primal-dual 
algorithm to Q for fixed f0, we need to write equation (24) in the form of the objective function 
in equation (25). Manipulating the expression for Q and dropping all terms that are constant 
with respect to f, we obtain

( ) ( )

( )

[ ˆ( )]
 

[ ( ) ( )]  
[ ( ) ( )]  

[ ( )]  
[ ( )]  

( ) ( )  
( ) ( )  

( )

( )

( )

= − −

= =

= = =

=
=
=

=
=

=

=
=

=

=
− − =

− − =

=

−

−

−

−

⎜ ⎟

⎪

⎪

⎪

⎪

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
⎟

⎧
⎨
⎩
⎧
⎨
⎩
⎧
⎨
⎩
⎧
⎨
⎩

� � � �

�

�

Q c f f f K D E Kf f K b

K
K
K

A f Z

Z

D
D

D
E

E
b

b
b

D
c f L L

L L

D
A f r f L L

A f r f L L

E
r f L L

r f L L

b
D E K f r f L L

D E K f r f L L

b D K f

I

, ;
1

2
,

,

0
0

,
0

0 0
,

diag if

if
,

diag if

diag if
,

diag if

diag if
,

if

if
,

.

0

1

2

0

1

2

1 1

2

1
0 TPL

LSQ

2
0 0 TPL

0
log

0 LSQ

1
0 TPL

log
0 LSQ

1
1 1 1 0 0 TPL

1 1 1 0
log

0 LSQ

2 2 2 0

�

(36)

The matrices D and E are nonnegative and depend on c and f0; b is a vector which also depends 
on c and f0; and K is a matrix that depends only on f0. Both terms of Q are functions of K f 
and accordingly Q is identified with the function F in the objective function of equation (25)

=

= − −� �

Q f f F Kf

F z z D E z z b

; ,

1

2
.

Q

Q

0( ) ( )

( ) ( )�
(37)
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Because Q is a convex function of f, FQ is convex as a function of f. The function FQ, however, 
is not a convex function of z. Because D and E are non-negative matrices, FQ is a difference 
of convex functions of z,

( ) ( ) ( )

( )

( )

= −

= −

=

+ −

+

−

� �

�

F z F z F z

F z z Dz z b

F z z Ez

,

1

2
,

1

2
,

Q Q Q

Q

Q

where FQ+ (z) and FQ−(z) are convex functions of z. That FQ(z) is not convex implies that FQ 
cannot be written as the convex conjugate of ( )∗F yQ , and performing the maximization over y 
in equation (26) no longer yields equation (25).

3.3.3.  Heuristic derivation of MOCCA.  To generalize the CP algorithm to allow the case of 
interest, we consider the function F to be a convex-concave

( ) ( ) ( )= −+ −F z F z F z ,

where F+ and F− are both convex. The heuristic strategy for MOCCA is to employ a convex 
approximation to F(z) in the neighborhood of a point z  =  z0

( ) ( ) ( )= − ∇+ −
�F z z F z z F z; ;convex 0 0� (38)

(again we drop terms that are constant with respect to z). We then execute an iteration of 
the CP algorithm on the convex function ( )F z z;convex 0 ; and then modify the point of convex 
approximation z0 and repeat the iteration. The question then is how to choose z0, the center for 
the convex approximation, in light of the fact that the optimization of F in the CP algorithm 
happens in the dual space with F *, see equation (29).

A corresponding primal point to a point in the dual space can be determined by selecting 
the maximizer of the objective function in the definition of the Legendre transform. Taking the 
gradient of the objective function in equation (28) and setting it to zero, yields

( )= ∇ ∗x F y .y� (39)

We use this relation to find the expansion point for the primal objective function that mirrors 
the current value of the dual variables.

Incorporating the convex approximation ( )F z z;convex 0  about the mirrored expansion point z0 
into the CP algorithm, yields the iteration steps for MOCCA

( ) ( ¯ )( ) ( ) ( ) ( ) ( ) ( )= ∇ = Σ − +Σ+ ∗ − − −z F z y y y Kf;n
y

n n n n n
0

1
convex 0

1 1 1� (40)

= + +Σ −′ ′+ ∗ +
Σ′
−y F z y y Kf yarg min ;

1

2
n

y

n n n1
convex 0

1 2
1{ }( ) ∥ ¯ ∥( ) ( ) ( ) ( )

� (41)

{ }( ) ∥ ∥( ) ( ) ( )= + − −′ ′+ +

′
−

�f G f f TK y farg min
1

2
n

f

n n
T

1 1 2
1� (42)

= −+ +f f f2 ,n n n1 1¯( ) ( ) ( )� (43)

where ( )∗F z y;convex 0  is convex conjugate to ( )F z z;convex 0  with respect to the second argument; 
the first line obtains the mirror expansion point using equation (39) and the right hand side 
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expression is found by setting to zero the gradient of the objective function in equation (41); 
the second line makes use of convex approximation Fconvex in the form of its convex conjugate; 
and the remaining two lines are the same as the those of the CP algorithm. For the simulations 
in this article, all variables are initialized to zero. Convergence of MOCCA, the algorithm 
specified by equations (40)–(43), is investigated in an accompanying paper (Barber and Sidky 
2015), which also develops the algorithm for a more general setting.

3.3.4.  Application of MOCCA to optimization of the spectral CT data fidelity.  The MOCCA 
algorithm handles a fixed convex-concave function F, convex function G, and linear trans-
form K. In order to apply it to the spectral CT data fidelity, we propose: employing the local 
quadratic expansion in equation (36) to which we apply MOCCA, re-expanding the spectral 
CT data discrepancy at the current estimate of the material maps, and iterating this procedure 
until convergence. We refer to iterations of the core MOCCA algorithm as ‘inner’ iterations, 
and the process of iteratively re-expanding the data discrepancy and applying MOCCA are 
the ‘outer’ iterations. Because MOCCA allows for non-smooth terms, the convex constraints 
described in section 2.2 can be incorporated and the inner iterations aim at solving the inter-
mediate problem

( ) ( )∑ δ= +∗
⎧
⎨
⎩

⎫
⎬
⎭

f Q f f Parg min ; .
f i

i0� (44)

For the remainder of this section, for brevity, we drop the constraints and write the update steps 
taking only for the spectral CT data fidelity. The full algorithm with the convex constraints 
discussed in section 2.2 can be derived using the methods described in Sidky et al (2012) and 
an algorithm instance with TV constraints on the material maps is covered in appendix C.

In applying MOCCA to ( )Q f f;0 , we use the convex and concave components from FQ 
in equation  (37) to form the local convex quadratic expansion needed in MOCCA, see 
equation (38),

( ) ( ) ( )= − − +� �F z z Dz z z b Ez
1

2
.Q,convex 0 0� (45)

The corresponding dual function

= + + +∗ �F y
D

y b Ez z Ez
1

2
,Q,convex 0 2

2
0 0( ) ∥ ∥� (46)

is needed to derive the MOCCA dual update step at equation (41). We note that because the 
material maps f enter ( )Q f f;0  only after linear transformation, Kf, and comparing with the 
generic optimization problem in equation (25), we have G(  f )  =  0 for the present case where 
we only consider minimization of the data discrepancy.

In using an inner/outer iteration, a basic question is how accurately does the inner problem 
need to be solved. It turns out that it is sufficient to employ a single inner iteration, so that 
effectively the proposed algorithm no longer consists of nested iteration loops. Instead, the 
proposed algorithm performs re-expansion at every iteration:

=f f n
0

¯( )� (47)

[ ( ) ] [ ( ) ]( ) ( )λ λΣ = | | = | | ⋅− −�diag K f T diag K f1 1/ ,n n
1 0

1
1 0

1� (48)

= Σ − +Σ+ − − −z y y K f fn n n n n n
0

1 1 1
1 0

1( ) ( ( )¯ )( ) ( ) ( ) ( ) ( ) ( )� (49)
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[ ]( ( ) ) ( )( ( )¯ ) ( ( ) ( ) )( ) ( ) ( ) ( ) ( ) ( ) ( )= +Σ +Σ −Σ ++ − +y D f D f y K f f b f E f zn n n n n n n1
1 0

1
1 0 1 0 1 0 1 0 0

1

�
(50)

= −+ +�f f T K f yn n n n1
1 0

1¯ ( )( ) ( ) ( ) ( )� (51)

= −+ +f f f2 ,n n n1 1¯( ) ( ) ( )� (52)

where f (0), f (−1), f 0¯( ), y(0), and y(−1)are initialized to zero vectors.
Before explaining each line of the spectral CT algorithm specified by equations (47)–(52), 

we point out important features of the use of re-expansion at every iteration: (a) There are no 
nested loops. (b) The size of the system of equations is significantly reduced; note that only 
the first matrix block of K, D, E, and b (see equation (36) for their definition) appears in the 
steps of the algorithm. By re-expanding at every iteration the set of update steps for the second 
matrix block becomes trivial. (c) Re-expanding at every step is not guaranteed to converge, 
and an algorithm control parameter λ is introduced that balances algorithm convergence rate 
against possible unstable iteration, see section 4 for a demonstration on how λ impacts conv
ergence. A similar strategy was used together with the CP algorithm in the use of non-convex 
image regularity norms, see Sidky et al (2014).

The first line of the algorithm, equation (47), explicitly assigns the current material maps 
estimate to the new expansion point. In this way it is clear in the following steps whether ¯( )f n  
enters the equations  through the re-expansion center or through the steps of MOCCA. For 
the spectral CT algorithm it is convenient to use the vector step-sizes ( )Σ n  and T(n), defined 
in equation (48), from the pre-conditioned form of the CP algorithm (Pock and Chambolle 
2011), because the linear transform ( )K f1 0  is changing at each iteration as the expansion center 
changes. Computation of the vector step-sizes only involves single matrix-vector products 
of ( )| |K f1 0  and | |�K f1 0( )  with a vector of ones, 1, where the operator |⋅| applied to a matrix 
is element-wise absolute value. Computationally this is much cheaper than performing the 
power method on K f1 0( ) to find the scalar step-sizes σ and τ, which would render re-expansion 
at every iteration impractical. For the preconditioned CP algorithm, λ defined in this way 
will not violate the step-size condition. The dual and primal steps in equations (50) and (51), 
respectively, are obtained by analytic computation of the minimizations in equations (41) and 
(42) using equation (45) and G( f )  =  0, respectively. The primal step at equation (51) and the 
primal variable prediction step at equation (52) are identical to the corresponding CP algo-
rithm steps at equations (30) and (31), respectively. The presented algorithm accounts only for 
the spectral CT data fidelity optimization. For the full algorithm incorporating TV constraints 
used in the results section, see the pseudocode in appendix C.

3.4.  One-step algorithm μ-preconditioning

One of the main challenges of spectral CT image reconstruction is the similar dependence of 
the linear x-ray attenuation curves on energy for different tissues/materials. This causes rows 
of the attenuation matrix µmi to be nearly linearly dependent, or equivalently its condition 
number is large. There are two effects of the poor conditioning of µmi: (1) the ability to sepa-
rate the material maps is highly sensitive to inconsistency in the spectral CT transmission data, 
and (2) the poor conditioning of µmi contributes to the overall poor conditioning of spectral CT 
image reconstruction negatively impacting algorithm efficiency. To address the latter issue, 
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we introduce a simple preconditioning step that orthogonalizes the attenuation curves. We call 
this step ‘μ’-preconditioning to differentiate it from the preconditioning of the CP algorithm.

To perform μ-preconditioning, we form the matrix

∑µ µ=′ ′M ,mm
i

mi m i� (53)

and perform the eigenvalue decomposition

( )=M U s Udiag ,T

where the eigenvalues are ordered ⩾ ⩾ ⩾�s s sN1 2 m. The singular values of μ are given by the 

si’s and its condition number is /s sN1 m . The preconditioning matrix for μ is given by

( )

( )

=

=−

P s U

P U s

diag ,

diag 1/ .

T

1�
(54)

Implementation of μ-preconditioning consists of the following steps:

	 •	Transformation of material maps and attenuation matrix—the appropriate transfor-
mation is arrived at through inserting the identity matrix in the form of P−1 P into the 
exponent of the intensity counts data model in equation (3):

∑ ∑ ∑µ µ µ= = ′ ′
″

″ ″
−

′
′ ′X f X P P f X f ,

mk
k mi km

m m m k
k m i m m m m km

mk
k mi km

1( )ℓ ℓ ℓ� (55)

		 where

∑=′
′

′ ′f P f ,km
m

mm km� (56)

( )∑µ µ=′ −

′
′ ′P .mi

m
m i m m

1
� (57)

	 •	Substitution into the spectral CT algorithm—substitution of the transformed material 
maps and attenuation matrix into the spectral CT algorithm given by equations (47)–(52) 
is fairly straight-forward. All occurrences of f are replaced by ′f , and the linear transform 
K1 is replaced by

=′ ′ ′ ′K A f Z ,1 0( )

		 where, using equations (16) and (17),

=
−

∑ −
′ ′

′ ′
′ ′′

′ ′ ′
A f

s Z f

s Z f

exp

exp
,w i

w i i

i w i i
, ( ) [ ( ) ]

[ ( ) ]ℓ ℓ
ℓ ℓ

ℓ ℓ

		 and

µ=′ ′Z X.

		 Using μ-preconditioning, care must be taken in computing the vector stepsizes Σ′ and ′T  
in equation (48). Without μ-preconditioning, the absolute value symbols are superfluous, 
because K1 has non-negative matrix elements. With μ-preconditioning, the absolute value 
operation is necessary, because ′K1 may have negative entries through its dependence on 
′Z  and in turn µ′.
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	 •	Formulation of constraints—the previously discussed constraints are functions of the 
untransformed material maps. As a result, in using μ-preconditioning where we solve for 
the transformed material maps, the constraints should be formulated in terms of

= ′−f P f .1� (58)

		 The explicit pseudocode for constrained data-discrepancy minimization using  
μ-preconditioning is given in appendix C.

After applying the μ-preconditioned spectral CT algorithm the final material maps are arrived 
at through equation (58).

3.5.  Convergence checks

Within the present primal-dual framework we employ the primal-dual gap for checking conv
ergence. The primal-dual gap that we seek is the difference between the convex quadratic 
approximation using the first matrix block in equation (45), which is the objective function in 
the primal minimization

{ }( ) ( ) ( )= − − +� � �f K f D K f K f z b E zarg min
1

2
,

f
1 1 1 1 0 1 1 0� (59)

and the objective function in the Fenchel dual maximization problem

= − + + − =−� � �y D y b E z z E z K yarg max
1

2
such that 0.

y
1

1
1 1 0 2

2
0 1 0 1{ }∥ ∥      � (60)

These problems are derived from the general forms in equations (25) and (32), and the con-
straint in the dual maximization comes from the fact that G(  f  )  =  0 in the primal problem, see 
section 3.1 in Sidky et al (2012). For a convergence check we inspect the difference between 
these two objective functions. Note that the constant term �z E z0 1 0 cancels in this subtraction 
and plays no role in the optimization algorithm, and could thus be left out. If the material 
maps f  (n) attain a stable value, the constraint =�K y 01  is necessarily satisfied from inspec-
tion of equation (51). When other constraints are included the estimates of the material maps 
should be checked against these constraints and the primal-dual gap is modified. Because the 
minimization problems of interest are non-convex, convergence checks indicate convergence 
to a critical point (e.g. a local minimum).

4.  Results

We demonstrate use of the spectral CT algorithm on simulated transmission data modeling an 
ideal photon-counting detector. The x-ray spectrum, shown in figure 1, is assumed known. In 
modeling the ideal detector, the spectral response of an energy-windowed photon count mea-
surement is taken to be the same as that of figure 1 between the bounding threshold energies 
of the window and zero outside. We conduct two studies. The first is focused on demonstrating 
convergence and application of the spectral CT algorithm with recovery of material maps for 
a two-material head phantom using the following minimization problems

γ ∀D c c f f mTPL-TV : arg min , such that ,
f

m mTPL TV( ˆ( ))     ∥ ∥ ⩽�
(61)
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and

γ ∀D c c f f mLSQ-TV : arg min , such that .
f

m mLSQ TV( ˆ( ))     ∥ ∥ ⩽

The pseudo-code for TPL-TV and LSQ-TV is given explicitly in appendix C. The second 
study simulates a more realistic study demonstrating application on an anthropomorphic chest 
phantom simulating multiple tissues/materials at multiple densities. For this study we demon-
strate spectral CT image reconstruction of a mono-energetic image at energy E using

( ˆ( ))     ∥ ( )∥ ⩽( ) γD c c f f ETPL-monoTV : arg min , such that .
f

TPL
mono

TV mono

Note that for monoenergetic image reconstruction, the TV constraint is placed on the monoen-
ergetic image, but the optimization is performed over the individual material maps fm and the 
monoenergetic image is formed after the optimization using equation (10).

Aside from the system specification parameters, such as number of views, detector bins, 
and image dimensions, the algorithm parameters are the TV constraints γm for TPL-TV and 
LSQ-TV or γmono for TPL-monoTV and the primal-dual step size ratio λ. The TV constraints 
γm or γmono affect the image regularization, but λ is a tuning parameter which does not alter the 
solution of TPL-TV, LSQ-TV, or TPL-monoTV. It is used to optimize convergence speed of 
the spectral CT image reconstruction algorithm.

4.1.  Head phantom studies with material map TV-constraints

For the present studies, we employ a two-material phantom derived from the FORBILD head 
phantom shown in figure  2. The spectral CT transmission counts are computed by use of 
the discrete-to-discrete model in equation (3). The true material maps fk,bone and fk,brain are 
the ×256 256 pixel arrays shown in figure 2 and the corresponding linear x-ray coefficients 
µ ibone,  and µ ibrain,  are obtained from the NIST tables available in Hubbell and Seltzer (1995) 
for energies ranging from 20 to 120 KeV in increments of 1 KeV. By employing the same data 

Figure 1.  Normalized spectrum of a typical x-ray source for CT operating at a potential 
of 120 kV.
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model as that used in the image reconstruction algorithm, we can investigate the convergence 
properties of the spectral CT algorithm.

For the head phantom simulations, the scanning configuration is 2D fan-beam CT with a 
source to iso-center distance of 50 cm and source to detector distance of 100 cm. The physical 

Figure 2.  Bone and brain maps derived from the FORBILD head phantom. Both 
images are shown in the gray scale window [0.9, 1.1].

Figure 3.  Convergence metrics for TPL-TV and LSQ-TV and for different values of 
λ with ideal, noiseless data. First, second, third, and fourth rows show the conditional 
primal-dual (cPD) gap, data discrepancy objective function, difference between the TV 
of estimated bone map and that of the phantom bone map, and same for the brain map 
TV. Note that the expressions for the gap and data discrepancy are different for TPL and 
LSQ; thus those quantities are not directly comparable.
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size of the phantom pixel array is ×20 20 cm2. The number of projection views over a full 2π 
scan is 128 and the number of detector bins along a linear detector array is 512. This configu-
ration is undersampled by a factor of 4 (Jørgensen et al 2013). Two x-ray energy windows are 
simulated with a spectral response for each window given by the spectrum shown in figure 1 

Figure 4.  Convergence of the material map estimates to the phantom material maps for 
TPL-TV and LSQ-TV and for different values of λ with ideal, noiseless data.

Figure 5.  Difference between estimated brain and bone maps after 5000 iterations and 
the corresponding phantom map shown in a 1% gray scale window (−0.01, 0.01) for 
TPL-TV and a 0.1% window (−0.001, 0.001) for LSQ-TV and different values of λ 
with ideal, noiseless data. The difference images are displayed in a region of interest 
around the sinus bones.
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in the energy ranges (20 KeV, 70 KeV) and (70 KeV, 120 KeV) for the first and second energy 
windows, respectively.

4.1.1.  Ideal data study.  For ideal, noiseless data several image metrics are plotted in figure 3 
for different values of λ, and it is observed that the conditional primal-dual (cPD) gap and data 
discrepancy tend to zero while the material map TVs converge to the designed values. For this 
problem the convergence metrics are the cPD and material map TVs; the data discrepancy 
only tends to zero here due to the use of ideal data and in general when data inconsistency 
is present the minimum data discrepancy will be greater than zero. The convergence met-
rics demonstrate convergence of the spectral CT algorithm for the particular problem under 
study. It is important, however, to inspect these metrics for each application of the algorithm, 
because there is no theoretical guarantee of convergence due to the re-expansion step in equa-
tion (47). From the present results it is clear that progress towards convergence depends on λ; 
thus it is important to perform a search over λ.

To demonstrate convergence of the material map estimates to the corresponding phantom, 
we plot image root-mean-square-error (RMSE) in figure 4 as a function of iteration number 

Figure 6.  Reconstructed bone map by use of TPL-TV from simulated noisy projection 
spectral CT transmission data. The material map TV constraints are varied according to 
fractions of the corresponding phantom material map TV.
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and show the map differences at the last iteration performed in figure 5. The material map 
estimates are seen to converge to the corresponding phantom maps despite the projection 
view-angle under-sampling. Thus we note that the material map TV constraints are effective 
at combatting these under-sampling artifacts just as they are for standard CT (Sidky et  al 
2006, Sidky and Pan 2008). The image RMSE curves only give a summary metric for material 
map convergence, and it is clear from the difference images displayed in narrow gray scale 
window that convergence can be spatially non-uniform. For these idealized examples the pre-
conditioned spectral CT algorithm appears to be more effective for LSQ-TV than TPL-TV as 
the image RMSE attained for the former is significantly lower than that of the latter. In figure 4 
curves for LSQ-TV at λ = ×1 102, the image RMSE curves plateau at 10−5 due to the fact 
that the solution of LSQ-TV is achieved to the single precision accuracy of the computation.

4.1.2.  Noisy data study.  The noisy simulation parameters are identical to the previous noise-
less study except that the spectral CT data are generated from the transmission Poisson model. 
The mean of the transmission measurements is arrived at by assuming ×4 106 total photons 
are incident at each detector pixel over the complete x-ray spectrum. As the simulated scan 

Figure 7.  Reconstructed brain map by use of TPL-TV from simulated noisy projection 
spectral CT transmission data. The material map TV constraints are varied according to 
fractions of the corresponding phantom material map TV.
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acquires only 128 views, the total x-ray exposure is equivalent to acquiring 512 views at 
×1 106 photons per detector pixel.

We obtain multiple material map reconstructions varying the TV constraints among values 
greater than or equal to the actual values of the known bone and brain maps. The results for 
TV-TPL are shown in figures 6 and 7, and those for TV-LSQ are shown in figures 8 and 9. In 
all images the bone and brain maps recover the main features of the true phantom maps, and 
the main difference in the images is the structure of the noise. The noise texture of the recov-
ered brain maps appears to be patchy for lower TV and grainy for larger TV constraints. Also, 
in comparing the brain maps for TPL-TV in figure 7 and LSQ-TV in figure 9, streak artifacts 
are more apparent in the latter particularly for the larger TV constraint values.

It is instructive to examine the convergence metrics in figure 10 and image convergence in 
figure 11 for this noisy simulation. The presentation parallels the noiseless results in figures 3 
and 4, respectively. The differences are that results are shown for a single λ and the image 
RMSE is shown for two different TV-constraint settings in the present noisy simulations. The 
cPD and TV plots all indicate convergence to a solution for TPL-TV and LSQ-TV. We remind 
the reader, however, that for non-convex problems cPD can only indicate convergence to a 
local minimizer. It is possible to test the robustness of the obtained solution by performing 

Figure 8.  Reconstructed bone map by use of LSQ-TV from simulated noisy projection 
spectral CT transmission data. The material map TV constraints are varied according to 
fractions of the corresponding phantom material map TV.
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reconstruction with alternate initial material maps, but in general there is no guarantee that the 
obtained solution is a global minimizer.

We note that the value of the data discrepancy objective function settles on a positive value as 
expected for inconsistent data. The data discrepancy, however, does not provide a check on conv
ergence. It is true that if the data discrepancy changes with iteration we do not have convergence, 
but the inverse is not necessarily true. It is also reassuring to observe that the convergence rates for 
the set values of λ are similar between the noiseless and noisy results. This similarity is also not 
affected by the fact that the TV constraints are set to different values in each of these simulations.

The RMSE comparison of the recovered material maps with the true phantom maps shown in 
figure 11 indicate an average error less than 1% for the bone map and just under 2% for the brain 
map (100  ×  the RMSE values can be interpreted as a percent error because the material maps have 
a value of 0 or 1). The main purpose of showing these plots is to see quantitatively the difference 
between the TPL and LSQ data discrepancy terms. We would expect to see lower values of image 
RMSE for TPL-TV, because the simulated noise is generated by a transmission Poisson model. 
Indeed the image RMSE is lower for TPL-TV and the gap between TPL-TV and LSQ-TV is larger 
for looser TV constraints. We do point out that image RMSE may not necessarily translate into 
better image quality, because image quality depends on the imaging task for which the images are 

Figure 9.  Reconstructed brain map by use of LSQ-TV from simulated noisy projection 
spectral CT transmission data. The material map TV constraints are varied according to 
fractions of the corresponding phantom material map TV.
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used. Task-based assessment would take into account features of the observed signal, noise texture, 
and possibly background texture and observer perception (Barrett and Myers 2004).

One of the benefits of using the TV constraints instead of TV penalties is that the material 
maps reconstructed using the TPL and LSQ data discrepancy terms can be compared mean-
ingfully. The TV constraint parameters will result in material maps with exactly the chosen 

Figure 11.  Convergence of the material map estimates to the phantom material maps 
for LSQ-TV and TPL-TV and for noisy data with two different settings of the TV 
constraints. The TV factor applies to both the bone and brain maps, so that a TV factors 
of 1.1 and 1.2 correspond to the center and bottom, left images of figures 6–9.

Figure 10.  Same as figure 3 except that only one value of λ is shown and the results are 
for noisy data and the TV constraints for the bone and brain maps are set to ×1.1 TVbone 
and ×1.1 TVbrain, respectively. The TV constraint settings correspond to the center 
images in figures 6–9.
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TVs, while to achieve the same with the penalization approach the penalty parameters must 
be searched to achieve equivalent TVs. Also generating simulation results becomes more 
efficient, because we can directly make use of the known phantom TV values.

4.2.  Chest phantom studies with a mono-energetic image TV constraint

For the final set of results we employ an anthropomorphic chest phantom created from seg-
mentation of an actual CT chest image. Different tissue types and densities are labeled in 
the image totaling 24 material/density combinations, including various soft tissues, calcified/
bony regions, and Gadolinium contrast agent. To demonstrate the spectral CT algorithm on 
this more realistic phantom model, we select the TPL-monoTV optimization problem in equa-
tion (61) for the material map reconstruction. The material basis is selected to be water, bone, 
and Gadolinium contrast agent. Using TPL-monoTV is simpler than TPL-TV in that only the 
energy for the mono-energetic image and a single TV constraint parameter is needed instead 
of three parameters—the TV for each of the material maps. There are potential advantages to 
constraining the TV of the material maps individually, but the purpose here is to demonstrate 
use of the spectral CT algorithm and accordingly we select the simpler optimization problem.

For the chest phantom simulations, the scanning configuration is again 2D fan-beam CT with 
a source to iso-center distance of 80 cm and source to detector distance of 160 cm. The physical 
size of the phantom pixel array is ×29 29 cm2. The number of projection views is 128 over a 2π 
scan, and the number of detector pixels is 512. Five x-ray energy windows are simulated in the 
energy ranges (20 , 50), (50, 60), (60, 80), (80, 100), and (100, 120) keV. The lowest energy win-
dow is selected wider than the other four to avoid photon starvation. Noise is added in the same 
way as the previous simulation. The transmitted counts data follow a Poisson model with a total 
of ×4 106 photons per detector pixel. The monoenergetic image at 70 keV along with unregu-
larized image reconstruction by TPL are shown in figure 12. The TPL mono-energetic image 
reconstruction demonstrates the impact of the simulated noise on the reconstructed image.

Figure 12.  (Left) Chest phantom displayed at 70 KeV in a gray scale window of  
(0, 0.5) cm−1. (Right) Reconstruction by use of unregularized TPL. The estimated 
material maps are combined to form the shown monochromatic image estimate at  
70 KeV (gray scale is also (0, 1.0) cm−1). For reference the TV values of the phantom 
and unconstrained reconstructed image are 2587 and 7686, respectively.
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Figure 13.  Estimated monochromatic images by use of TPL-monoTV. The left column 
shows the complete image in a gray scale window of (0, 0.5) cm−1. The right column 
magnifies a region of interest (ROI) in the right lung, and the gray scale is narrowed to 
(0, 0.1) cm−1 in order to see the soft tissue detail. The top set of images correspond to 
the phantom. The location of the ROI is indicated in the left phantom image inset by use 
of the narrow (0, 0.1) cm−1 gray scale. The second, third, and fourth rows correspond 
to images obtained by different TV constraints of the monoenergetic image at 70 KeV.
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In figure 13 we show the resulting monoenergetic images from TPL-monoTV at three val-
ues of the TV constraint. The reconstructed images are shown globally in a wide gray scale 
and in an ROI focused on the right lung in a narrow gray scale window. The values of the TV 
constraint are selected based on visualization of the fine structures in the lung. For viewing 
these features, relatively low values of TV are selected. We note that in the global images the 
same TV values show the high-contrast structures with few artifacts. We point out that the 
spectral CT algorithm yields three basis material maps, shown in figure 14, and the mono-
energetic images are formed by use of equation (10).

The selected optimization problems and simulation parameters are chosen to demonstrate pos-
sible applications of the proposed image reconstruction algorithm for spectral CT. Comparison 
of the TPL and LSQ data discrepancy in figures 7 and 9 does show fewer artifacts for TPL-TV, 
where the simulated noise model matches the TPL likelihood. In practice, we may not see the 
same relative performance on real data—the simulations ignore some important physical factors 
of spectral CT, and image quality evaluation depends on the task for which the images are used.

5.  Conclusion

We have developed a constrained minimization algorithm for inverting spectral CT transmis-
sion data directly to basis material maps. The algorithm addresses the associated non-convex 
data discrepancy terms by employing a local convex quadratic upper bound to derive the 
descent step. While we have derived the algorithm for TPL and LSQ data discrepancy terms, 
the same strategy can be applied to derive an image reconstruction algorithm for other data 

Figure 14.  Basis material maps: water (left), bone (middle), and Gadolinium contrast 
agent solution (right), corresponding to the monoenergetic image with TV of 1000 shown 
in figure 13. The basis material maps are shown in a gray scale window of (−0.2, 1.2). 
The resulting reconstructed material maps agree well with the phantom maps in terms 
of structure, but interestingly the reconstructed maps show a larger noise level than the 
corresponding monochromatic image in figure 13, which is a linear combination of the 
shown material maps. (This is because, in this simulation, the TV constraint is applied 
only to the total monochromatic image, not to the individual material maps.)
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fidelities. The spectral CT algorithm derives from the convex-concave optimization algorithm, 
MOCCA, which we have developed for addressing an intermediate problem arising from use 
of the local convex quadratic approximation. The simulations demonstrate the spectral CT 
algorithm for TV-constrained data discrepancy minimization, where the TV constraints can be 
applied to the individual basis maps or to an estimated monochromatic x-ray attenuation map.

Future work will investigate robustness of the algorithm to data inconsistency due to spec-
tral miscalibration error, x-ray scatter, and various physical processes involved in photon-
counting detection. The spectral CT algorithm’s ability to incorporate basis map constraints in 
the inversion process should provide a means to control artifacts due to such inconsistencies. 
We are also pursuing a generalization to the present algorithm to allow for auto-calibration of 
the spectral response of the CT system.
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Appendix A.  Gradient of LTPL

We derive the gradient in equation (12), motivating the definition of the linear transform A. 
Recall equations (3) and (16):
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Continuing the algebraic manipulation we insert ℓℓ′I :
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The other necessary gradient and Hessian computations follow from similar manipulations.

Appendix B.  Positive semidefiniteness of ( )∇+L f2  and ∇−L f2 ( )

Recall equation (17),
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This inequality can be used to prove that the Hessians in equations  (20)–(23) are positive 
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and by the Cauchy–Schwartz inequality,
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This proves the inequality in equation (B.2).
Using equation (B.2), we prove the inequality in equation (B.1)
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where the inequality is shown by noting that ⩾b 0s , by assumption, and the sum is thus a linear 
combination of positive definite matrices with non-negative coefficients.

Appendix C.  Derivation of spectral CT algorithm for TPL-TV and LSQ-TV with 
μ-preconditioning

C.1. TV-constrained optimization

To derive the algorithm used in the results section, we write down the intermediate convex 
optimization problem that involves the first block of the local quadratic upper bound to DTPL 
or DLSQ

γ= − − + ∀� � �f K f D K f K f z b E z f marg min
1

2
such that .

f
m m1 1 1 1 0 1 1 0 TV{ }( ) ( ) ( )      ∥ ∥ ⩽

� (C.1)

The fact that we only use the first block of the full quadratic expression is explained in sec-
tion 3.3.4 and the form of D1, E1 and b1 given in section 3.3.2 determines whether we are 
addressing TPL-TV or LSQ-TV . The data discrepancy term of this optimization problem is 
the same as the objective function of equation (45), but it differs from equation (45) in that we 
have added the convex constraints on the material map TV values. We write equation (C.1) 
using indicator functions (see equation (5)) to code the TV constraints and we introduce the 
μ-preconditioning transformation described in section 3.4
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where =′f Pf  are the transformed (μ-preconditioned) material maps from section 3.4. Note 
that the TV constraints apply to the untransformed material maps = ′−f P f1 .
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C.2.  Writing constrained TV optimization in the general form F(Kx)  +  G(x)

To derive the CP primal-dual algorithm, we write equation (C.2) in the form of equation (25). 
We note that all the terms involve a linear transform of f, and accordingly we make the fol-
lowing assignments
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Note that we use the short-hand that the gradient operator, ∇, applies to each of the material 
maps in the composite material map vector, ′−P f1 . The Legendre transform in equation (27) 
provides the necessary dual functions ∗F1, 

∗F2, and G*. By direct computation

= + + +∗ −F y D y b E z z E z
1

2
.T

1 sino 1
1

sino 1 1 0 2
2

0 1 0( ) ∥ ∥� (C.3)

Figure C1.  Schematic illustrating the solution of δ γ−′ ′′
�g g gmaxg m m m m1m

{ (∥ ∥ ⩽ )}. 

The input vector gm and the maximizing vector ′gm are indicated on a 2D schematic, but 
the argument applies for the full Nk-D space of gm. Because ′gm is a vector of magnitudes, 
each component is non-negative ⩾′g 0m k, . The indicator function confines ′gm below 

the line (hyper-plane), γ∑ =′gk m k m, . The combination of these constraints confines 

′gm to the schematic, shaded triangle. The maximizer ′gm is the vector that maximizes 
the dot product, ′�g gm m (or equivalently the projection of ′gm onto gm as indicated by 
the dashed line from the head of ′gm to the arrow indicating gm). Maximization of this 
dot product is achieved by choosing ˆγ=′g em m kmax such that it is aligned along the unit 
vector corresponding to the largest component of gm. The largest component of gm is 
also known as the ‘infinity-norm’, ∥ ∥∞gm . Thus we have γ γ= ∞

�e g gm k m m mmax( ˆ ) ∥ ∥ .

gm

k = 2

gm

k g
m

,k =
γ
m

k = 1

R F Barber et alPhys. Med. Biol. 61 (2016) 3784



3815

From section 3.1 of Sidky et al (2012)

( ) ( )δ= =∗G f f 0 .� (C.4)

C.3.  Convex conjugate of F2

We sketch the derivation of ( )∗F y2 grad , and for this derivation we drop the ‘grad’ subscript.
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The Legendre transform maximization over the variable ′y , dual to the material map gradi-
ents, is reduced to a maximization over the spatial magnitude = | |′ ′g y  because the indicator 
function is independent of the spatial direction of ′y  and the term ′�y y  is maximized when 
the spatial direction of ′y  line up with y; hence the term ′�y y  is replaced by ′�g g , which 
we explicitly write as a sum over the material index m. The maximization and summation 
order can be switched, because each of the terms in the summation are independent of each 
other. Evaluation of the maximization over ′gm can be seen in the diagram shown in figure C1. 
Accordingly we find

( ) ∥( )∥∑ γ= | |∗
∞F y y .

m
m2 grad grad� (C.5)

C.4.  Dual maximization of equation (C.2)

Using equations (32), (C.3)–(C.5), we obtain the maximization dual to equation (C.1)

∥ ∥ ∥( )∥      ∑ γ= − + + − − | |
∇

=
′−

∞ −

⎧
⎨
⎩

⎫
⎬
⎭
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⎟⎟� �
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y D y b E z z E z y
K

P
yarg max

1

2
such that 0.

y m
m1

1
sino 1 1 0 2

2
0 1 0 grad

1
1

� (C.6)

The objective functions of the primal and dual problems, in equations (C.1) and (C.6) respec-
tively, are needed to generate the conditional primal-dual gap plots in figure 3.

C.5. The material map TV proximity step

In order to derive the TPL-TV and LSQ-TV algorithms, we need to derive the proximity mini-
mization in equation (41)

= + Σ + Σ +Σ ∇ −′ ′ ′+ ∗ + − −

′
y F z y y K P x yarg min ;

1

2
.n

y

n n n1
convex 0

1
grad

1/2
sino 1 grad

1
2

2{ }∥ ∥( ) ( ( ) ¯ )( ) ( ) ( ) ( )
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The proximity problem splits into ‘sino’ and ‘grad’ sub-problems and the ‘sino’ sub-problem 
results in equation (50). We solve here the ‘grad’ proximity optimization to obtain the pseudo-
code for TPL-TV and LSQ-TV

= + Σ − = +Σ ∇′ ′+ ∗ − + + −

′
y F y y y y y P xarg min

1

2
where .n

y

n n
grad

1
2 grad grad

1/2
grad grad 2

2

grad grad grad
1

grad

{ }∥ ∥( ) ( ) ¯( ) ( ) ( )

Dropping the ‘grad’ subscript on ′y , we employ the Moreau identity which relates the proxim-
ity optimizations between a function and its dual

+ Σ −

= −Σ Σ + Σ −
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∗ − +
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( ) ( )
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The dual ‘grad’ update separates into the individual material map m components
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To simplify the proximity minimization we set

δ γ

= Σ = Σ = | |
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The proximity minimization is a projection of +gm onto a weighted 1ℓ-ball.

γ= −
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grad,
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grad,

grad,
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(Note that multiplication or division of a vector by w is performed elementwise.)
If g is inside the weighted ℓ1-ball, i.e. ∥ / ∥ ⩽ γg w 1 , the function ( { ∥ / ∥ ⩽ })γg g g wProj ; ,  returns g.  

If g is outside the weighted ℓ1-ball, i.e. ∥ / ∥ γ>g w 1 , there exists an α0 such that

γ δ γ
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The parameter α0 is defined implicitly

∥ { }∥α γ− =g wmax , 0 ,0 1

and it can be determined by any standard root finding technique applied to

( )     ( ) ∥ { }∥α α α γ= = − −f f g w0 where max , 0 ,1

where the search interval is [ ∥ / ∥ ]α∈ ∞g w0, .

R F Barber et alPhys. Med. Biol. 61 (2016) 3784



3817

C.6. The pseudocode for TPL-TV and LSQ-TV

Having derived the TV constraint proximity step, we are in a position to write the complete 
pseudocode for the spectral CT algorithm including the TV constraints. We do employ the μ-
preconditioning that orthogonalizes the linear attenuation coefficients, but we drop the prime 
notation on f and K.

λ λ
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The final material maps after N iterations are obtained by applying the inverse preconditioner

−P freturn .N1  ( )

For all the results presented in the article, all variables are initialized to zero.
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