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ABSTRACT 
IMPORTANCE OF S. CEREVISIAE RCF1 AND RCF2 PROTEINS FOR  

THE MITOCHONDRIAL PROTONMOTIVE FORCE GENERATION 
 
 
 

Vera Strogolova, B.S., M.S. 

Marquette University, 2018 

 
 

Mitochondria are the site of oxidative phosphorylation (OXPHOS) 
pathway, which can supply majority of energy in a eukaryotic cell. OXPHOS 
enzyme activities generate electrochemical gradient known as mitochondrial 
protonmotive force (PMF). PMF coordinates OXPHOS enzyme activities and 
supports essential cell survival functions such as transport of proteins and 
metabolites in and out of mitochondria. PMF is maintained despite variations in 
cellular energy demand and oxygen availability. 
 

Mitochondrial proteins belonging to the conserved hypoxia induced gene 
domain (HIGD) family improve cell survival during the hypoxic and hypoglycemic 
stress. Their molecular function is not fully understood but they seem to act 
through regulating OXPHOS enzyme cytochrome c oxidase (complex IV). 
Complex IV activity is important for PMF generation.  

 
Using yeast as a model organism, this study addresses function of HIGD 

proteins Rcf1 and Rcf2. The data presented here indicate that Rcf1 and Rcf2 
support complex IV PMF generation and/or prevent proton leak across the inner 
membrane of the mitochondria. Deletion of Rcf1 (Δrcf1) causes lower complex IV 
steady state levels and electron transfer activity. Deletion of Rcf2 in Δrcf1 strain 
(Δrcf1;Δrcf2) does not further decrease complex IV steady state levels and 
electron transfer activity, yet strongly impairs respiratory growth. Analyses of 
single mutant strains Δrcf1 and Δrcf2 indicated that deletion of Rcf1 or Rcf2 
lowers OXPHOS efficiency and decreases PMF. These defects become more 
severe when both Rcf1 and Rcf2 are deleted. The inability to maintain PMF and 
PMF-dependent functions is proposed to underlie the strong respiratory growth 
deficiency of Δrcf1;Δrcf2 mutant. In addition to this new role of Rcf1 and Rcf2 in 
PMF maintenance, several pleiotropic phenotypes of Δrcf1;Δrcf2 mutant – such 
as decreased ATP synthase levels, abnormal mitochondrial morphology – 
suggest that these proteins may have wider impact on OXPHOS function. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Overview  

 

Eukaryotic cells contain energy-generating organelles, mitochondria. 

Mitochondria perform many functions in the cell, one of which is to synthesize the 

energy molecule adenosine triphosphate (ATP). The extensive cable-like 

mitochondrial network maintains electrochemical potential, called protonmotive 

force (PMF), across an energy storing mitochondrial membrane. In a process 

called oxidative phosphorylation (OXPHOS) mitochondrial PMF transduces 

energy from (couples) the electron transport (oxidation) reactions to the synthesis 

of ATP. PMF is generated by membrane-embedded proton-transporting 

oxidoreductases. The terminal electron transport enzyme cytochrome c oxidase 

(CcO, also called complex IV) is central to regulation of electron and proton 

transport. Proton pumping function of complex IV provides the mechanism for its 

feedback regulation by PMF and maintaining optimal PMF (Hosler et al., 2006).   

Mitochondrial proteins belonging to a conserved hypoxia-induced gene 1 

domain (HIGD) protein family are proposed to regulate complex IV conformation, 

stability, and electron transport activity in response to environmental changes 

such as low oxygen. The mechanism of this regulation is currently unknown. This 

dissertation characterizes function of yeast HIGD proteins, Rcf1 and Rcf2, and 

their relationship to regulating the complex IV enzyme. Findings presented in this 

dissertation indicate that these proteins support not only the electron transport 
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function, but also proton transport function of complex IV. The absence of Rcf1 

and Rcf2 causes mitochondrial defects consistent with PMF maintenance defect. 

This defect is observed in the absence of only Rcf2, which does not decrease 

complex IV levels or electron transport. A model for Rcf1 and Rcf2 supporting 

PMF generation by complex IV is proposed. Additionally, Rcf1 and Rcf2 may 

support stability and activity of other OXPHOS enzymes.  

 

 1.2. Mitochondrial structure  

  

The double membrane structure of mitochondria is vestige of their 

bacterial origin, as the endosymbiosis theory states that mitochondria originated 

from proteobacterial symbionts of a eukaryotic progenitor (Martin et al., 2015). An 

extensive mitochondrial inner membrane (IM) and a less extensive mitochondrial 

outer membrane (OM) surround the inner compartment, mitochondrial matrix. 

The portion of the IM that is directly adjacent / parallel to the OM is called inner 

boundary membrane (IBM). Pocket-like IM folds, called cristae, extend from the 

IBM into the matrix (a diagram of typical mitochondrial cross-section in Figure 1 

illustrates these key features). Specialized ring-like structures - cristae junctions - 

separate the area of the IM that form cristae from the IBM (van der Laan et al., 

2016; Harner et al., 2016; Hessenberger et al., 2017). The cristae IM contains 

OXPHOS enzymes, which catalyze electron transport, proton transport, and ATP 

synthesis reactions. The cristae structure is proposed to promote 

compartmentalization of protons and increase PMF (Song et al., 2013). 
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Figure 1. Schematic representation of mitochondria. A typical mitochondrion contains 
compartments with net positive and negative charges, represented by red and white color, 
respectively, in the diagram. The shape of cristae is highly variable and the communication 
between cristae and intermembrane space is sometimes restricted. Proton gradient in the cristae 
is higher than in the intermembrane space. Many transmembrane and membrane-associated 
protein complexes densely populating the inner and outer membrane are not shown, but their 
distribution is represented by the distribution of ATP synthase (circles). Diagram adapted from 
Nicholls and Ferguson, Bioenergetics, Academic Press, 4th Edition, 2013. 
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The shapes of the cristae are dynamic and rearrange in response to different 

respiration levels and PMF levels (Hackenbrock,1966; Cogliati  et al., 2016).  

Mitochondria are not synthesized de novo; their content in the cell, 

maintained by balanced growth, fission and fusion, scales with the size of the cell 

(Rafelski et al., 2012). Mitochondria form a reticular network in the cell which is 

highly dynamic, continuously undergoing fusion and fission. Fission allows 

separation and clearance of defective, depolarized mitochondria via process of 

mitophagy, as well as division of the mitochondrial network during mitosis. The 

PMF is an indicator of mitochondrial function and represents a regulating factor 

of mitochondrial fusion, fission, and degradation. PMF positively regulates cristae 

length (Khalifat et al., 2008), providing positive feedback for mitochondrial 

biogenesis, morphology, and function. 

  

1.3. Yeast as a model system  

 

Eukaryotic cells can derive energy (ATP) from glycolysis and aerobic 

respiration, which occur in cytosol and mitochondria, respectively. The balance of 

glycolysis and respiration is determined by the supply of substrates and the need 

of the cell. Yeast Saccharomyces cerevisiae are well suited to the study of 

mitochondrial function, as its ability to respire is dispensable for survival. 

Mitochondrial respiration gives yeast the ability to grow aerobically on non-

fermentable carbon sources (e.g. glycerol, ethanol). Defects in respiration are 

easily detected by slower or absent growth on non-fermentable substrates. Yeast 
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growth on fermentable (e.g., glucose) carbon sources does not require 

mitochondrial ATP production, allowing to propagate and study OXPHOS 

mutations, such as petite mutants caused by loss of mitochondrial DNA. When 

glucose is present, yeast rely only on glycolysis (fermentation) due to repression 

of respiration by glucose (Carlson, 1999). However, yeast growing on other 

fermentable sugars (e.g., galactose) utilize both glycolysis and respiration 

pathways of energy production.  

Importantly, mitochondrial genome, proteome, and function, especially 

OXPHOS components, are remarkably conserved in yeast and mammalian 

mitochondria. This, combined with simple genetic manipulation system in yeast, 

resulted in the great utility of yeast as a model organism to understand assembly 

and regulation of OXPHOS complexes, and study human mitochondrial 

diseases. Since this dissertation is focused on mitochondrial function and 

structure in yeast, primarily yeast enzymes will be described, and yeast gene 

names and nomenclature will be used unless otherwise noted. 

  

1.4. Mitochondrial function  

 

Mitochondria contain hundreds of proteins and are a site of diverse 

metabolic reactions within the cell. Mitochondria participate in initiating whole-

body responses to hypoxia and other stresses (Nunnari and Suomalainen, 2012).  

In addition to OXPHOS, mitochondria perform many functions critical to the 

eukaryotic cell: biosynthesis of heme groups, iron sulfur clusters, amino acids, 
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fatty acids, generating and metabolizing signaling molecules such as acetyl-CoA 

and reactive oxygen species (ROS), replenishing NAD+ for glycolysis; 

furthermore, mitochondria participate in programmed cell death (apoptosis) 

(Nunnari and Suomalainen, 2012; Baile and Claypool, 2013).  

Mitochondria retain their own mitochondrial genome, and consequently 

their own mechanisms of transcription, and their own translation machinery. The 

mitochondrial genome is highly reduced from their bacterial ancestor by genetic 

transfer to the eukaryotic host nuclear DNA. The mitochondrial genome encodes 

only a handful of hydrophobic proteins (13 in human, 8 in yeast mitochondrial 

genome) (Bernardi et al., 1972, Anderson et al.,1981). Since so few 

mitochondrial proteins are encoded by mitochondrial DNA, nuclear genes encode 

the vast majority of mitochondrial proteins (Nicholls and Ferguson, 2013). Protein 

import into mitochondria is a process that is essential for life (Baker and Schatz, 

1991). Assembly and function of protein translocases, and IMM insertion of 

positively charged polypeptide sequences, requires PMF (Martin et al., 1991). 

The mitochondrially encoded proteins are essential for assembly and 

function of critical OXPHOS enzymes (including complex III, complex IV, and 

complex V). These complex OXPHOS enzymes each contain more than ten 

protein subunits and are mosaic in origin, meaning that the rest of their subunits 

are encoded by nuclear genome, and the assembly of nuclear and mitochondrial 

subunits is intricately coordinated.  

 

1.4.a. Mitochondrial electron transport chain (ETC) 
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Mitochondrial OXPHOS is the best-known function of the organelle and 

provides eukaryotic cells the most productive way to regenerate ATP. The 

OXPHOS enzymes of the IM are multi-subunit molecular machines commonly 

referred to as OXPHOS complexes I-V, diagrammed in Figure 2A. The citric acid 

cycle in mitochondrial matrix completes metabolism of glycolysis and 

fermentation products, such as pyruvate, ethanol, acetate, lactate. Breakdown of 

these non-fermentable compounds is coupled to reduction of NAD+ and FAD2+. 

NADH and FADH2 are oxidized with reduction of oxygen by the enzymes of 

electron transport chain (ETC). The ETC is the chain of OXPHOS complexes I-

IV. NADH dehydrogenase and succinate dehydrogenase are the alternative 

beginnings of the ETC. NADH:ubiquinone oxidoreductase (NADH 

dehydrogenase) reduces lipid-soluble electron carrier ubiquinone to form 

ubiquinol (reduced form). NADH dehydrogenase in plant and mammalian 

mitochondria is the largest OXPHOS enzyme complex (complex I). In 

yeast, complex I is replaced by one-subunit NADH dehydrogenase enzyme. 

Yeast NADH dehydrogenase isoforms have active sites on the matrix side of the 

IM (Ndi1) and on the IMS side of the IM (Nde1 and Nde2); in contrast to complex 

I, Ndi1, Nde1, Nde2 do not contribute to the PMF (do not pump protons) 

(Rigoulet et al., 2004). Despite their relative simplicity, yeast NADH 

dehydrogenases are functionally similar to mammalian mitochondrial complex I 

with respect to oxidation of NADH and reduction of ubiquinone; expression of  
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Figure 2. OXPHOS enzymes and the proton circuit. (A) OXPHOS enzymes NADH 
dehydrogenases (Nde and Ndi), complex II, III, IV are represented by red rectangles; complex V 
is in green; electron carriers ubiquinone (Q) and cytochrome c, as well as oxygen are represented 
by black circles; gray stripes represent phospholipid bilayers; electron flow is depicted with black 
arrows, and the flow of protons with blue arrows. (B) The flow of protons in a proton circuit formed 
by OXPHOS complex IV and ATP synthase (V) is diagrammed by black arrows. Diagram adapted 
from Nicholls and Ferguson, Bioenergetics, Academic Press, 4th Edition, 2013. 

  

A

B
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yeast Ndi1 in mammalian cells remedies respiratory deficiency caused by 

complex I defects (Yagi et al., 2006). Succinate dehydrogenase (complex II) is 

IM-associated enzyme of the citric acid cycle that is conserved on gene and 

protein level, in yeast and mammalian mitochondria. Complex II transfers 

electrons from its cofactor FADH2 to ubiquinone on the matrix side of the 

membrane (Rigoulet et al., 2004).   

Electrons from ubiquinol are transferred to cytochrome c reductase, 

complex III (ubiquinol-cytochrome bc1 oxidoreductase). Complex III transfers 

the electrons to a soluble IMS carrier cytochrome c, simultaneously releasing 

ubiquinone and protons at the IMS side of the membrane. By cycling the electron 

carrier ubiquinone across the IM, Complex III translocates protons by “loop” 

mechanism (Saraste, 1999). The final reaction of ETC is oxidation of 

cytochrome c by cytochrome c oxidase, complex IV (CcO). Transport of electrons 

by complex IV results in the reduction of molecular oxygen (O2) to form water.  In 

addition, complex IV translocates protons across the IM by active pumping 

mechanism (described in detail in section 1.4.c.).   

In yeast mitochondria, complexes III and IV form supercomplexes of 

III2IV1-2 stoichiometric composition (Schӓgger and Pfeiffer 2000). A subpopulation 

of the III-IV supercomplexes contains also ADP/ATP carrier (AAC) (Dienhart and 

Stuart, 2008). AAC is thought to directly assist the assembly and activity of the 

III-IV supercomplexes. Supercomplexes containing III and IV are found across 

taxa and reflect coordinated assembly of protein and lipid subunits of complex 

III and complex IV (Lenaz and Genova, 2009). In mammalian mitochondria, III-IV 
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supercomplexes can also contain complex I; the resulting supercomplexes are 

referred to as “respirasomes”. Functionally, respirasomes are proposed to 

facilitate electron transport to optimize the use of ETC substrates and prevent 

formation of reactive intermediates (Cruciat et al., 2000; Lapuente-Brun et al., 

2013; Barrientos and Ugalde, 2013).  

 

1.4.b. PMF powers ATP synthesis 

 

Catalytic activity of electron transporting enzymes enables transport of 

protons against concentration gradient from the matrix to the IMS by OXPHOS 

complexes III and IV. The IM is relatively impermeable to protons, insulating the 

flow of a proton current through the chemiosmotic circuit in a manner analogous 

to an electrical circuit (Figure 2B). The proton current powers the synthesis of 

ATP by the F1FO ATP synthase (OXPHOS complex V). The protons from the IMS 

are transported back into the matrix though the FO portion; the energy of proton 

translocation rotates the F1FO ATP synthase, inducing conformational changes 

necessary for catalytic phosphorylation of ADP in the F1 sector. Under ideal 

conditions, the insulated proton circuit conserves energy cycling between the 

OXPHOS enzymes in the form of the PMF; this energy conservation is referred 

to as coupling of oxidation and phosphorylation.   

The coupling can be empirically evaluated as the number of ATP 

molecules formed per atom of oxygen (O), called P/O (phosphorylation/oxidation) 

ratio. Each oxygen atom is reduced by two electrons. A transfer of two electrons 
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by complex III moves four protons from the matrix to the IMS (4H+/2e-); complex 

IV pumps two protons, and removes two more protons from the matrix, which are 

combined with the oxygen atom to form water (4H+/2e-). Complex V 

stoichiometry is determined by the number of subunits that make up the rotating 

FO portion of the enzyme (subunit c, encoded by yeast gene ATP9). Binding of 

one proton to every Atp9 subunit results in rotation of the FO portion of the 

enzyme, catalyzing three ADP phosphorylation reactions in the F1 portion of the 

enzyme. Yeast complex V has ten Atp9 subunits (Devenish et al., 2000), yielding 

the 10 H+/3 ATP =3.33 H+/ATP stoichiometry. Finally, the AAC exchange of ATP 

for ADP and inorganic phosphate causes the influx of one additional H+/ATP in 

addition to those required for ATP synthase rotation (Nicholls and 

Ferguson, 2013). Yeast mitochondria can generate up to 1.8 ATP molecules for 

every atom of oxygen (O) reduced by transfer of two electrons (Hinkle, 

2005); the calculated P/O ratio:  

4 H+
III + 4 H+

IV) / ( 3.33 H+
V + 1 H+

ADP/ATP exchange) = 1.84 

Experimentally determined stoichiometries of the proton translocation by 

isolated complexes III, IV and V agree with thermodynamic predictions; however, 

considerable and variable proton leak both in vivo and in isolated mitochondria 

lowers the OXPHOS coupling.   

Transport of protons against the concentration gradient generates 

proton (ΔpH) and charge (Δψ) gradients. The contribution of the Δψ and ΔpH 

gradients to the PMF which is measured as electrical charge expressed in 

millivolts (mV) can be calculated as follows:   
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PMF = Δψ - 61 ΔpH  

Due to low capacitance of biological membranes, transfer of only a few protons 

across a spherical membrane is sufficient to generate considerable Δψ (Bashford 

and Thayer, 1977; Nicholls and Ferguson, 2013; Björck and Brzezinski, 2018). 

Therefore, charge component to the voltage expression of PMF is greater 

than that of the ΔpH component (Perry et al., 2011). Typical PMF values 

range from 180 to 220 mV, with Δψ contributing 150-180 mV, and ΔpH of 0.5-1.0 

units contributing the remaining 30-60 mV (Nicholls and Ferguson, 2013). 

The relative contribution of Δψ and ΔpH to the PMF is variable and depends on 

the activity of the ETC, concentration of other cations (Ca2+, K+, Na+, etc.), and 

buffering capacity of the mitochondrial matrix.   

In addition to ATP synthesis, PMF supports redox homeostasis, import of 

proteins across mitochondrial membranes, and activity of mitochondrial solute 

carriers. PMF is an indicator of healthy mitochondria and regulates mitochondrial 

fission, fusion, and degradation (Nunnari and Suomalainen, 2012).  

 

1.4.c. Proton pumping by complex IV (CcO)  

  

The terminal electron transporting enzyme, complex IV (CcO), confirmed 

as a true proton pump in 1970s, performs two coupled reactions: transfer of 

electrons from cytochrome c to oxygen and active transport of protons from the 

matrix to the IMS (Wikström 1977, Nicholls and Ferguson, 2013). Complex IV 

contains two heme groups and two copper atoms and belongs to A-type heme-
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copper oxidase (HCO) family (Sharma and Wikström, 2014; Rauhamaki and 

Wikström, 2014). A-type HCOs are the only HCOs containing third subunit Cox3, 

the presence of which corelates with proton pumping D channel (Wikström et al., 

2015). Bacterial A-type HCOs are composed of 3 subunits, while mitochondrial 

complex IV have more (10-12) subunits (Soto et al., 2012). The three core 

subunits of mitochondrial complex IV - Cox1, Cox2, and Cox3 are encoded in the 

mitochondrial genome and are remarkably conserved with the bacterial A-type 

HCOs. Cox1 and Cox2 are directly involved in the catalysis. Cox3 is not directly 

involved in catalysis and it is thought to play a regulatory role (Hosler et al., 

2006). The nuclear genome encodes complex IV subunits Cox4, Cox5a/b, Cox6, 

Cox7, Cox8, Cox9, Cox12, Cox13, and Cox26. These subunits are less 

conserved and serve structural or regulatory roles (Fontanesi et al., 2006).  

Subunits Cox1 and Cox2 are directly involved in transport of electrons 

from cytochrome c to oxygen. Cox1 coordinates hemes a and a3 and copper CuB 

and Cox2 coordinates copper CuA. Heme a3  and CuB form a binuclear reactive 

center (BNC). BNC catalyzes electron transport to oxygen to form water. Cox2, 

aided by subunit Cox12, a peripheral subunit in the IMS which makes a “soft and 

specific” contact with reduced cytochrome c. The cytochrome c contact site 

allows cytochrome c to undergo structural changes without losing the contact 

with the enzyme (Shimada et al., 2017). Time-resolved studies demonstrate that 

the transfer of electrons proceeds from cytochrome c to CuA to cytochrome aa3 

and CuB and finally to oxygen (Nicholls and Ferguson, 2013). 
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In every catalytic cycle, complex IV uptakes eight protons, four of which 

combine with oxygen to form water, and four more are pumped from the matrix 

into the IMS. The current understanding of the mechanism of proton pumping by 

complex IV is incomplete. Proton pumping is powered by the electron transfer: 

approximately 545 mV is produced per electron spanning the redox potential 

difference, ΔEh, between heme a and the BNC: ΔEh = Eh(heme a) – Eh(BNC). This 

energy is sufficient for the pumping of one proton per electron transferred 

(Blomberg and Siegbahn, 2014; Wikström et al., 2015). Heme redox potentials 

are strongly influenced by the PMF (Kim et al., 2012). High PMF lowers redox 

differential of the enzyme, making proton pumping less thermodynamically 

favorable. 

Uptake of protons occurs at proton loading sites (PLS) on the matrix side 

of the enzyme. PLS are proton wells, where the local microenvironment (e.g., 

matrix pH and electrostatic interactions) influences the pKa of key amino acid 

residues to promote their protonation (Wikström et al., 2015). The two entry 

points for the protons involve amino acids Asp(D)92 and Lys(K)315 of the Cox1 

subunit. The protons travel via transmembrane ion channels formed by the 

transmembrane domains of Cox1 and Cox2; protonation of key residues of these 

two subunits creates a proton “wire” across the membrane. Two universally 

acknowledged proton pathways are named D and K channels after the 

conserved Asp(D)92 and Lys(K)315 residues (Blomberg and Siegbahn, 2014). 

Pumping protons across the membrane occurs exclusively by the D channel 

(Wikström et al., 2015). The K channel is used for uptake of substrate protons. 
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Mutation of conserved K-channel lysine demonstrated K-channel importance for 

proton pumping ability of bacterial cytochrome c oxidases. Protonation of K 

channel Lys(K)315 decreases the redox potential of the BNC by approximately 

30 mV, increasing the redox differential of the enzyme, which is necessary for 

pumping protons at high PMF (Sharma and Wikström 2016).   

The levels of complex IV enzyme limit the maximal ETC activity. In intact 

mitochondria, ETC is operating below its maximal capacity due to negative 

regulation of complex IV activity by the PMF. The excess complex IV capacity is 

reserved to respond to rapid changes in PMF. The complex IV activity remains 

limited by the PMF because of the coupling of electron and proton transport 

activities by the enzyme (complex IV coupling). Numerous gating mechanisms 

preventing the backflow of the protons through the complex IV proton channels 

are proposed (Blomberg and Siegbahn, 2012; Wikström et al., 2015). Multiple 

lines of evidence indicate that proton-pumping efficiency of mitochondrial 

complex IV can be altered or a subpopulation of the enzyme can develop 

elevated proton leak (Kadenbach 2003; Bloch et al., 2004; Bloch et al.; 2009, 

Blomberg and Siegbahn, 2012; Siegbahn and Blomberg, 2014). The existence of 

proton leak was also reported in enzyme homologous to mitochondrial complex 

IV, E.coli cytochrome bo3 (Li et al., 2015). Proton leak in small subpopulations of 

HCOs was postulated to alleviate respiratory pressure and ROS production (Li et 

al., 2015).  The role of the many complex IV subunits and associated proteins, in 

regulating redox potential of the hemes, dielectric channels and wells, proton 

leak, and proton pumping rates, remains to be discovered. 
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1.4.d. Function of the Cox3 subunit 

 

The Cox3 subunit does not directly channel protons or electrons and is 

thought to play a regulatory or supporting role in complex IV catalysis (Hosler et 

al., 2006).  Cox3 importance for proton pumping and mediating the PMF 

regulation of complex IV activity was recently revealed, providing an example 

of cooperative action of complex IV protein and lipid constituents during catalysis. 

Evolutionary comparisons indicate that Cox3 is found only in A-type HCOs 

(Wikström et al., 2015) and Cox3 presence correlates with improved proton 

pumping ability of HCOs. This suggests that Cox3 supports proton pumping. 

Bacterial cytochrome c oxidase enzyme depleted of Cox3 displays diminished 

proton pumping, thus confirming the role of Cox3, and specifically the Cox3 

amino terminal region, in  proton pumping (Varanasi et al., 2012; Alnajjar et al., 

2014). The presence of Cox3 is thought to stabilize the D-channel by increasing 

pKa of protonated PLS residues. Cox3 also plays a specific role supporting 

proton pumping at high PMF, which requires the K channel. Thus, Cox3 has the 

potential to influence both proton uptake pathways. Proton uptake and pumping 

are critical for the stability of the BNC and of the enzyme.   

Cox3 subunit dissociates when purified bovine complex IV is subjected to 

alkaline conditions (pH 9.5), or detergent (1 mM DDM), or elevated temperature 

(Kadenbach and Hüttemann, 2015). Removal of Cox3 accelerates destabilization 

of BNC, loss of enzyme activity and degradation of the enzyme. This indicates 

that Cox3 interactions with the other subunits are critical for enzyme activity and 
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stability. Key interface of Cox3 with complex IV is alongside Cox1 subunit. The 

Cox1-Cox3 interface is lined with phospholipid molecules that form an oxygen 

delivery pathway to the active site of the enzyme (Shinzawa-Itoh et al., 2007). 

Dynamics of Cox3 conformations within the enzyme during catalytic activity or 

inactivity, are unknown. While the biogenesis and assembly of complex IV 

protein subunits have been extensively studied, it is unknown how and whether 

subunit switching occurs (e.g. when condition specific isoforms are synthesized 

or when peripheral subunits dissociate). Similarly, no mechanisms are known for 

assembly of repair of the enzyme’s lipids, even as lipids in the vicinity of the 

oxygen delivery pathway are at risk of oxidative damage.  

 

1.4.e. OXPHOS coupling and efficiency 

  

OXPHOS coupling is the relationship between ATP synthesis and oxygen 

consumption by the ETC system (P/O ratio). OXPHOS coupling depends on the 

degree of insulation of the proton current, or PMF. Non-productive proton leaks 

occur across the energized phospholipid bilayer and through transmembrane 

protein and protein complexes. The phospholipid bilayer is a source of constant 

proton leak and becomes more permeable to protons at higher PMF in a non-

linear manner (Jastroch et al., 2010). Transport-independent proton leak through 

the ADP/ATP carrier (AAC) is another source of proton leak (Nicholls and 

Ferguson, 2013). It is estimated that such proton leaks dissipate 20-30% PMF in 

vivo (Jastroch et al., 2010).   
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OXPHOS coupling and the “reserve” capacity of the ETC enzymes both 

contribute to respiration efficiency, or the ability of the mitochondria to maintain 

optimal P/O ratio in response to varying ATP demand (Gnaiger et al., 1998). The 

amount and activity of the ETC enzymes relative to ATP synthase influences the 

degree by which the ETC activity is limited by the PMF and the “reserve” capacity 

needed to rapidly ramp up the ATP synthesis in response to ATP demand 

(Quarato et al., 2011). Proton pumping by complex IV is a regulatory point for the 

regulation of the ETC activity by the PMF.  

Empirical measurements of ATP production and oxygen consumption in 

whole cells and in isolated mitochondria showed that the P/O ratio is optimized to 

different ATP synthesis rates in different tissues (i.e., different cell types have 

different respiration efficiency). For example, mitochondria in skeletal muscle are 

better prepared to support rapid ATP production, while mitochondria liver have 

lower P/O ratio and lower apparent affinity for ADP phosphorylation (Gouspillou 

et al., 2011). P/O ratio and respiration efficiency are influenced by stress, aging, 

diet (Ocampo et al., 2012, Gouspillou et al., 2011, Salin et al., 2018). Differences 

in respiration efficiency are a determining factor in survival and fitness of cells, 

tissues, and organisms (Stefano and Kream, 2016).   

 

1.4.f. Hypoxia survival adaptation depends on better respiration efficiency 

 

Selective expression of alternative OXPHOS protein subunit isoforms 

leads to tissue and condition specific differences in respiration efficiency; the 
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mechanism(s) of this phenomenon are currently debated. One such mechanism, 

where two different isoforms of Cox5 are expressed (Cox5a, which is expressed 

constitutively, and Cox5b, which is induced by low oxygen concentration 

(hypoxia)) is proposed to be acting through regulation of complex IV activity 

(Kadenbach and Hüttemann; 2015, Sinkler et al., 2017). Hypoxia limits complex 

IV activity and leads to oxidative stress and energy depletion. Adaptation to 

hypoxia depends on oxygen sensing pathways in mammalian and yeast cells, 

that induce expression of hypoxic isoforms of cytochrome c (Cyc7), complex IV 

(Cox5b, and equivalent Cox4-2 in mammals) and AAC (Aac3) (Ziello et al., 2007; 

Liu and Barrientos 2013; Hon et al., 2003). Adaptation to hypoxia in human 

divers was found to be primarily mediated by lowering ETC capacity and 

increasing OXPHOS efficiency (Kjeld et al., 2018). The expression of hypoxic 

isoforms is thought to promote OXPHOS efficiency (Fukuda et al., 2007; Hwang 

et al., 2015) by increasing complex IV affinity for oxygen, thus lowering 

incomplete electron transfer events that lead to oxidative stress (Liu and 

Barrientos 2013; Waterland et al., 1991). A non-conservative substitution of 

Cox3 Trp(W)116 to Arg(R) in the bar-headed geese, is postulated to alter Cox1-

Cox3 interaction  and complex IV activity and endow the geese with a unique 

ability to fly at high-altitude, hypoxic conditions, for long periods (Scott et al., 

2011). Overall, complex IV is central to adaptation to hypoxia. 

Mitochondrial dysfunctions present in many pathological conditions 

(cancer, neuropathies, myopathies, and ischemia/reperfusion injury) can lower 

respiration efficiency by altering OXPHOS enzyme levels, activity and kinetics 
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(Rak et al., 2016). The changes in the mitochondrial proteome that take place 

during short hypoxic preconditioning are protective and can prevent damage from 

subsequent hypoxia/ ischemia (Russel et al., 2014; Dumke et al., 2009; Villani et 

al., 1998). Recently, it was demonstrated that a mitochondrial disease (Leigh 

syndrome) mouse model benefited from hypoxia induced adaptive response 

(Jain et al., 2016). Therefore, understanding hypoxia-induced adaptive response 

has clinical significance since this response can counteract pathological changes 

associated with mitochondrial disease.  

 

1.4.g. OXPHOS associated lipids 

   

Mitochondrial structure and function are influenced by its membrane lipids, 

especially non-bilayer phospholipids phosphatidylethanolamine (PE) and 

cardiolipin (CL), which support membrane curvature and surround large dynamic 

transmembrane enzyme complexes (Ball et al., 2018). CL is a highly charged 

lipid only found in mitochondrial IM (Hoch, 1992). CL in artificial lipid bilayer 

membranes promotes tubulation and self-maintaining cristae-like shape in 

response to local pH gradient in vitro (Khalifat et al., 2008). Thus, CL participates 

in feedback regulation of IM morphology by the PMF.  

The proximity of the OXPHOS enzymes and lipid environment in the 

cristae is proposed to support the lateral proton diffusion from the enzymes of 

electron transport chain (ETC) such as complex IV to the ATP-generating 

enzyme, F1FO ATP synthase (Sjöholm et al., 2017); CL patches are proposed to 
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be especially important for this process (Haines and Dencher, 2002). Membrane 

proteins can play a role in modulating organization of lipids in the mitochondrial 

membranes, for example by sequestering lipid molecules from circulation 

(Chen et al., 2018). Crystallized OXPHOS enzymes have demonstrated that 

lipids are integral conserved components of all OXPHOS enzymes. Three CL 

molecules bind strongly to the periphery of each AAC molecule, stabilizing it 

(Klingenberg, 2009).  CL is important for the formation and/or stability of the III-IV 

supercomplexes. Structural CL molecules of the complex III support enzyme 

structural integrity and proton translocation (Pöyry et al., 2013; Arnarez et al., 

2013; Xia et al., 2013). Complex IV contains 13 lipid molecules, of which three 

are associated with Cox3 and two are CL molecules (Shinzawa-Itoh et al., 2007). 

Phospholipid molecules at the interface of Cox3 and Cox1 play a crucial role in 

oxygen delivery pathway to the core of the complex IV enzyme and prevent loss 

of Cox3 (Shinzawa-Itoh et al., 2007). Finally, CL promotes assembly, stability, 

and smooth rotation of the F1FO ATP synthase (complex V) required for its 

catalytic function. CL binding involves a conserved lysine of the Atp9 subunit 

(Duncan et al., 2016). Specific yet transient (on-and-off) interactions with CL 

prevent proton leaks through the FO (Duncan et al., 2016; Mehdipour and 

Hummer, 2016).    

CL is postulated to regulate many aspects of OXPHOS, but many reports 

contradict the benefit of CL for OXPHOS efficiency. In liver mitochondria, 

increased CL content increases non-productive oxygen consumption, but does 

not increase ATP synthesis, therefore lowering OXPHOS efficiency (Bobyleva et 
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al., 1997; Julienne et al., 2014; Peyta et al., 2016). Therefore, it appears that CL 

levels need to be coordinated with the OXPHOS protein levels for optimal 

OXPHOS efficiency.   

The pool of mitochondrial phospholipids is regulated by lipid degrading 

and remodeling enzymes. CL is synthesized in mitochondria and undergoes acyl 

chain remodeling after synthesis. CL remodeling is thought to be a repair 

mechanism of CL molecules sustaining oxidative damage of component acyl 

chains (Baile et al., 2013; Schlame and Greenberg, 2017). Without remodeling, 

CL degradation is increased but how turnover and degradation is regulated is not 

known (Xu et al., 2016). CL is essential for viability of the mammalian cells. 

Deficient CL remodeling causes human mitochondrial disease (Barth syndrome). 

Importantly, loss of CL decreases mitochondrial DNA stability, viability, and 

respiration efficiency, but has a mild effect on respiration-based growth in yeast 

(Zhong et al., 2004).   

 

1.5. Rcf1 and Rcf2 

 

This dissertation focuses on the yeast respiratory supercomplex 

associated factors Rcf1 and Rcf2. These proteins are thought to support 

respiration by regulating complex IV (cytochrome c oxidase), yet a possibility that 

these proteins influence activity of other OXPHOS enzymes has not been ruled 

out. Whether Rcf1 and Rcf2 regulate complex IV proton transport or coupling is 

not known.  
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Many genes in S. cerevisiae have paralogs arising from an ancient 

genome duplication event (Kellis et al., 2004; Dujon et al., 2004). RCF1 

(YML030W) and RCF2 (YNR018C) are paralogs; both genes are constitutively 

expressed, and encode transmembrane proteins located in the IM. Rcf1 and 

Rcf2 were identified as novel proteins interacting with the III-IV supercomplex in 

a proteomic screen (Helbig et al., 2009; Hess et al., 2009). These interactions 

were confirmed by co-purification of His-tagged Rcf1 and Rcf2 proteins with 

almost all subunits of complex III and complex IV (Chen et al., 2012; Strogolova 

et al., 2012; Vukotic et al., 2012), with the exception of peripheral subunits Cox12 

and Cox13, which were absent in Rcf1HIS-associated complex IV (Strogolova et 

al., 2012; Vukotic et al., 2012). Rcf1 and Rcf2 interact with the III-IV 

supercomplex independently (Strogolova et al., 2012).   

Deletion of RCF1 (Δrcf1) is associated with impaired respiratory growth in 

the BY4741 yeast genetic background (Chen et al., 2012) but near-normal 

respiratory growth is observed in the W303 genetic background (the genetic 

background used in this study) (Strogolova et al., 2012). The S. cerevisiae 

BY4741 genetic background exhibits an elevated rate mtDNA loss, due to 

several genetic polymorphisms, including one that occurs within the gene 

encoding transcription factor HAP1 and negatively affects the expression of 

complex IV subunits (Dimitrov et al., 2009; Bruder et al., 2016).  Compared to 

BY4741, W303 genetic background has more robust complex IV levels and more 

stable mitochondrial genome and thus is preferred for mitochondrial studies. The 

deletion of the RCF2 gene (Δrcf2) does not appear to negatively impact 
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respiratory growth in BY4741 and W303 genetic backgrounds (Strogolova et al., 

2012; Vukotic et al., 2012; Römpler et al., 2016). The double mutant (Δrcf1;Δrcf2) 

yeast strain was studied only in W303 genetic background (Strogolova et al., 

2012) and never reported in BY4741 genetic background. The double mutant 

(Δrcf1;Δrcf2) in W303 genetic background is characterized by decreased 

complex IV activity and a strong respiratory growth defect, which can be 

complemented by either RCF1 or RCF2 expression (Strogolova et al., 2012). The 

cross-complementation was suggested at the time to indicate that Rcf1 and Rcf2 

have a shared function supporting respiration, most likely involving the III-IV 

supercomplex.  

 

1.5.a. Rcf1 and Rcf2 are members of a conserved HIGD family of proteins  

  

Immunodetection and quantification of epitope and GFP tagged proteome 

estimated Rcf1 protein abundance to be > 1000 molecules per cell 

(Ghaemmaghami et al. 2003) while Rcf2 protein was estimated to be twice as 

abundant as Rcf1 (Chong et al., 2015); both proteins are constitutively expressed 

and abundant. Yeast does not have a hypoxic-regulated HIGD protein isoform. 

Rcf1 and Rcf2 sequences are divergent from each other and share strongest 

homology near one of their transmembrane domains, where a conserved 

(Q/I)X3(R/H)XRX3Q motif is found. The (Q/I)X3(R/H)XRX3Q motif is found in the 

hypoxia-induced gene 1 domain (HIG1D or HIGD), found in a conserved HIGD 

protein family. HIGD containing proteins are found in yeast, plant, animal  
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mitochondria, as well as many α-proteobacteria. Based on the sequence of the 

(Q/I)X3(R/H)XRX3Q motif, HIGD protein isoforms are subdivided into type 

1 (V/IHLIHMRX3Q) and type 2 (QX3RXRX3Q) (Figure 3A). Type 1 HIGD 

proteins are regulated by transcription factor HIF1 and are upregulated during 

hypoxia and hypoglycemia (Wang et al., 2006; An et al., 2011). Type 2 HIGD 

proteins are constitutively expressed; Rcf1 and Rcf2 are both type 2 HIGD 

proteins (Strogolova et al., 2012; Garlich et al., 2017).  

Expression of mammalian type 1 HIGD proteins is associated with better 

adaptation to hypoxia and hypoglycemia resulting in lower cell death (apoptosis) 

(Wang et al., 2006; Zhang et al., 2012; Ameri et al., 2015; Ameri and Maltepe 

2015) as well as improved mitochondrial morphology (An et al., 2013). These 

characteristics attracted interest to the mechanism of action of HIGD proteins, yet 

the mechanism of action remains unknown. Mammalian type 1 HIGD protein 

Higd1a has been shown to interact with complex IV and proposed to promote 

conformational change and increase the turnover number (electron transport 

rate) in vitro (Hayashi et al., 2015). The function of HIGD type 2 proteins had not 

been studied. 

   

1.5.b. Rcf1 and Rcf2 function  

  

Rcf1 and Rcf2 interacts transiently with a small sub-population of the 

supercomplex III-IV and Rcf1 was reported to minimize reactive oxygen species 

(ROS) levels (Chen et al., 2012; Vukotic et al., 2012; Fischer et al., 2015). In the  
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Figure 3. Conservation and position of the Rcf1 and Rcf2 (Q/I)X3(R/H)XRX3Q (QRRQ) 
motifs. Sequence alignments and proposed topology of Rcf1 and Rcf2 proteins. (A) Sequence 
alignment of the QRRQ motifs from S. cerevisiae Rcf1 (ScRcf1), S. cerevisiae Rcf2 (ScRcf2), 
bacterial homologs Rhizobium etli WP_011426989.1 (Re), Bradyrhizobium japonicum 
WP_014491643 (Bj), Nitrobacter winogradskii WP_041344966.1 (Nw), Rhodobacter sphaeroides 
WP_107672675 (Rs), and animal homologs C. elegans NP_001254152 (CeM05), Seriola 
quinqueradiata BAC67703.1 (SqYGHL1), Homo sapiens NP_001093138.1 (HsHIG1-1A) 
and NP_620175 (HsHIG1-2A), Heterocephalus glaber XP_021113455.1 (HgHIG1-1A) 
and XP_004836396.1 (HgHIG1-2A), Bos taurus NP_001071329 (BtHIG1-2A). (B) Sequence 
alignment of S. cerevisiae Rcf1 (ScRcf1) R67 and W68 residues within the QRRQ motif and 
Mic60 lipid binding R433 and W434 residues. Sequence alignment includes Rcf1 bacterial 
homologs Bradyrhizobium japonicum WP_014491643 (Bj), Rhodobacter sphaeroides 
WP_107672675 (Rs), S. cerevisiae KZV09957.1 (ScMic60), H. sapiens NP_006830.2 (HsMic60).  
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absence of Rcf1, complex IV abundance is decreased, and consequently fewer 

III-IV supercomplexes can be formed. Based on the observed decrease in 

supercomplex III-IV levels in absence of Rcf1, Rcf1 and Rcf2 were initially 

proposed to be promoting and required for respiratory III-IV supercomplex 

formation (Vukotic et al., 2012; Cui et al., 2014). Despite lower complex IV levels, 

all of complex IV assembles into the supercomplex in the mitochondria lacking 

both Rcf1 and Rcf2 (Strogolova et al., 2012). Furthermore, our lab and others 

have demonstrated that Rcf1 is not a stoichiometric component of the III-IV 

supercomplexes, as would be expected if it was provided a bridge connecting or 

stabilizing the supercomplex structurally (Garlich et al., 2017). 

Rcf1 interacts with subunit 3 of complex IV immediately following Cox3 

synthesis and prior to its assembly into the enzyme. This observation led to the 

suggestion that Rcf1 may be a Cox3 chaperone mediating its folding and 

maturation, and possibly lipid modification. Rcf1 can also be found in association 

with Cyt1, Qcr6, and AAC, all lipid (CL) binding OXPHOS proteins, which led to 

the proposal that Rcf1 may be a lipid (CL) chaperone (Strogolova et al., 2012, 

Garlich et al., 2017).  

Current structural studies of complex IV and supercomplex III-IV did not 

detect Rcf1, Rcf2 or HIGD protein. Rcf1 is in proximity to complex III subunit 

cytochrome c1 and AAC; mutation of the QX3RXRX3Q motif influences these 

interactions (J.Garlich, PhD disseration, Garlich et al., 2017). The QX3RXRX3Q 

motif may be involved in lipid-binding. In addition to the OXPHOS proteins, 

Mic10, a component of MICOS complex, which forms cristae junctions, was 
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found to co-purify with both Rcf1 and Rcf2 (Alkhaja et al., 2012). Cristae junction 

formation is thought to be coordinated with the position of OXPHOS 

supercomplexes (Alkhaja et al., 2012, Friedman et al., 2015). Cristae junction 

formation is initiated by the lipid remodeling protein Mic60; Mic60 conserved 

Arg(R)433 and Trp(W)434 amino acid residues are directly involved in binding 

phospholipid membranes (Hessenberger et al., 2017). Arg65 and Trp66 residues 

within the Rcf1 QX3RXRX3Q motif are homologous to Mic60 lipid-binding site 1 

(LBS1) (Figure 3B), suggesting that Rcf1 may have a lipid binding site. 

  

1.6. Objectives of the research  

   

Despite considerable interest in HIGD proteins, their role in respiration is 

not clearly understood. HIGD proteins interact with a subpopulation of III-IV 

supercomplex. HIGD proteins, including yeast Rcf1, regulate abundance and 

electron transport activity of complex IV, but the mode(s) of regulation are not 

determined. Whether proton pumping activity of complex IV or OXPHOS 

efficiency are affected by HIGD proteins has never been addressed.   

Rcf1 specifically interacts with respiratory complex IV subunit 3 (Cox3) 

during its assembly (Strogolova et al., 2012; Su et al., 2014B; Garlich et al., 

2017). In the Δrcf1 mitochondria, steady state levels of  Cox3 and of complex IV 

are decreased. Despite the decreased OXPHOS complex IV levels, the Δrcf1 

strain does not display a strong respiratory growth deficiency, and neither does 

Δrcf2 strain. The Δrcf1;Δrcf2 double mutant however has a strong respiratory 
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growth deficiency thought to be due to loss of complex IV levels from the loss of 

function of Rcf1 and Rcf2. However, previous studies have not indicated a role of 

Rcf2 in complex IV assembly or stability. Deletion of RCF2 does not diminish 

complex IV or III-IV supercomplex steady-state levels. The molecular function of 

the Rcf2 protein is unclear and respiratory growth deficiency when both Rcf1 and 

Rcf2 are deleted is not sufficiently explained. As paralogs, Rcf1 and Rcf2 are 

thought to function similarly, but this is not confirmed. This dissertation explores 

the molecular function of Rcf1 and Rcf2 in yeast mitochondria and seeks a more 

complete explanation for the respiratory growth deficiency of the Δrcf1;Δrcf2 

strain.  

My first aim was bioenergetic characterization of the Δrcf1;Δrcf2 

mitochondria with a specific focus on complex IV, PMF maintenance and 

OXPHOS efficiency. I determined how the deletion of Rcf1 or Rcf2 affected 

mitochondrial respiratory complex levels, activity, oxygen consumption rate, and 

mitochondrial PMF.  

Rcf1 and Rcf2 may play a wider role and influence non-COX proteins and 

functions such as proteolipid interactions or cristae architecture. My second aim 

was to characterize the consequences of Rcf1 and Rcf2 deletion on the content 

and activity of critical OXPHOS enzymes AAC and ATP synthase, as well as 

mitochondrial morphology. 

Results presented in this dissertation indicate that both Rcf1 and Rcf2 are 

necessary for optimal PMF generation. However, Rcf2 contribution to complex IV 

assembly or stability is minor. Overall, Rcf1 and Rcf2 are proposed to regulate 
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proton transfer activity of complex IV. This important molecular function of Rcf1 

and Rcf2 supports OXPHOS response to ADP, ATP synthesis, mitochondrial 

morphology, and respiratory growth. Future studies will focus on proton pumping 

activity of the isolated complex IV and identifying proton translocation defects or 

proton leaks develop in the absence of Rcf1 and Rcf2.  

Additionally, Rcf1 and Rcf2 influence ATP synthase levels and activity, 

AAC stability, and proteolytic processing of several mitochondrial proteins. These 

non-COX defects can be a consequence of a lower PMF or may reflect additional 

functions of Rcf1/2; these explanations are not mutually exclusive and will require 

future studies of HIGD proteins in yeast and mammalian mitochondria.  
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CHAPTER 2. MATERIALS AND METHODS 

 

This chapter describes the chemicals and biological reagents as well as 

molecular biology, cell biology and biochemical methods. 

 

2.1. Materials 

 

2.1.a. Chemical reagents 

 

 Chemical reagents used in this study are listed in Table 1. 

 

Table 1. Reagents used in this study. 

 

Source Name 

Alfa Aesar 
(Haverhill, MA) 

Methanol 
Ethanol 

Becton Dickinson 
(Sparks, MD) 

Bacto™ Agar 

Calbiochem ethylenediaminetetraacetic acid (EDTA), sodium salt 

ICN biomedicals 
(Aurora, Ohio) 

Geneticin disulfide salt (G418) 

Life Technologies 
(Carlsbad, CA) 

4-acetamido-4’maleimidylstilbene-2,2’-disulfonic acid 
(AMS) 

Acrylamide 

Agarose 

Bisacrylamide 

Digitonin 

n-dodecyl-β-D-maltoside (DDM) 

Mallinckrodt Baker 
(Phillipsburg, KY) 

Sodium dodecyl sulfate (SDS) 

Roche Hexokinase / glucose-6-phosphate dehydrogenase  

Proteinase K 
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Serva (Heidelberg, 
Germany) 

Ponceau S 

Sigma (St. Louis, 
MO) 

P1,P5-di(adenosine-5')pentaphosphate (Ap5A) 

Adenine diphosphate (ADP) 

Adenine triphosphate (ATP) 

Ammonium molybdate 

Ascorbic acid 

β-mercaptoethanol 

Bisacrylamide 

Bromophenol blue 

Bovine Serum Albumin (BSA) 

carbonyl cyanide m-chlorophenylhydrazone (CCCP) 

DL-lactic acid 

Dithiothreitol (DTT) 

ferrous sulfate  

Galactose 

Glycerol 

Glycine 

Hydrogen peroxide (H2O2) 

KCN 

Lithium dodecyl sulfate (LDS) 

Luminol 

Magnesium Chloride (MgCl2) 

Mannitol 

N-(2-hydroxyethyl)-piperazine-N’-2-ethanesulfonic acid 
(HEPES) 

nicotinamide adenine dinucleotide, reduced form (NADH) 

NADP, oxidized form 

Nigericin 

N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD) 

Oligomycin 

p-coumaric acid 

P1,P5-di(adenosine-5')pentaphosphate (Ap5A) 

phenylmethylsulphonyl fluoride (PMSF) 

Potassium chloride 

Potassium hexacyanoferrate (ferrocyanide) 

Potassium hydroxide 

Potassium phosphate (dibasic) 

Potassium phosphate (monobasic) 

Rhodamine 123 

Sodium dithionite (dithionite) 

Sodium hydroxide (NaOH) 

Sodium taurodeoxycholate (deoxycholate) 

Sorbitol 

Sulfuric acid 
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Trichloroacetic acid (TCA) 

Tricine 

Triton X-100 

Trizma Base (Tris) 

Valinomycin 

Sunrise Biologicals Zymolyase 

US Biologicals Dropout mix, synthetic 

 Peptone 

 Yeast Extract 

VWR Glucose  

 

 

2.1.b. Oligonucleotides 

 

Oligonucleotides used in this study in polymerase chain reactions (PCR) 

for generation and verification of yeast strains are listed in Table 2. 

 

Table 2. Oligonucleotides used in this study. 

 

Name Sequence 

ST591 RCF1-FOR 5’-GGTAGCGAATCAAGGAGGGC-3' 

ST592 RCF1-REV 5'-GTTTTAAGTGATAGTTATACAAG-3' 

ST727 RCF2-FOR 5’- CTTTCTTATTTCCCTTTTAACC-3’ 

ST728 RCF2-REV 5'-CGAATGAATAGTTTTAGTTG-3' 

 

 

2.1.c. Plasmids 

 

Plasmid pRS416-mtGFP was a gift of R. Jensen (John Hopkins Medical 

School, Baltimore, MD). The mtGFP plasmid encodes a fusion of a yeast COX4 

mitochondrially targeted presequence (first 21 amino acids) fused to jellyfish 
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green fluorescent protein (GFP) and under the control of ADH1 promoter. 

Plasmid Yip351-His-Aac2 encodes a His-tagged Aac2p, HISAac2, under the 

control of GAL10 promoter (Dienhart and Stuart, 2008). 

 

2.1.d. Yeast strains 

 

Saccharomyces cerevisiae (S. cerevisiae) strains used in this study are 

wild-type (WT; W303–1A, Mat a, leu2, trp1, ura3, his3, ade2), Δrcf1 (W303–1A, 

Mat a, leu2, trp1, ura3, ade2, RCF1::HIS3), Δrcf2 (W303–1B, Mat alpha, leu2, 

trp1, ura3, his3, ade2, RCF2::KAN), Δrcf1;Δrcf2 (W303–1A, Mat a, leu2, trp1, 

ura3, ade2, RCF1::HIS3, RCF2::KAN) (Strogolova et al., 2012). 

 

2.1.e. Antibodies 

 

Antibodies used in this study are listed in Table 3. 

 

Table 3. Antibodies used in this study. 

 

Primary antibodies 

Targeted epitope Source Origin 

AAC Rabbit Dr. Rosemary A. Stuart 

Atp4 Rabbit Dr. Jasvinder Kaur 

Atp9 Rabbit Dr. Jean Velours (France) 
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Ccp1 Rabbit Dr. Rosemary A. Stuart 

Cpr3 Rabbit Dr. Rosemary A. Stuart 

Cox1 Mouse Invitrogen (Carlsbad, CA) # 11D8-
B7 

Cox2 Rabbit Dr. Rosemary A. Stuart 

Cox3 Mouse Invitrogen (Carlsbad, CA) # 
459300 

Cox12 Rabbit Dr. Klaus Pfanner (Freiburg, 
Germany) 

Cox13 Rabbit Dr. Klaus Pfanner (Freiburg, 
Germany) 

Cyt b Rabbit Dr. Rosemary A. Stuart 

Cyt b2 Rabbit Dr. Rosemary A. Stuart 

Cyt c Rabbit Dr. Carla Koehler (Los Angeles, 
CA) 

Cyt c1 Rabbit Dr. Rosemary A. Stuart 

F1 sector of ATP synthase Chicken Dr. David Mueller (Chicago, IL) 

His tag Rabbit Bethyl (Montgomery, TX) 

Mgm1 Rabbit Dr. Rosemary A. Stuart 

Mcr1 Rabbit Dr. Carla Koehler (UCLA, CA) 

MrpL32 Rabbit Dr. Thomas Langer (Cologne, 
Germany) 

Pgk1 Mouse Dr. Anita Manogaran (Milwaukee, 
WI) 

PIC Rabbit Dr. Klaus Pfanner (Freiburg, 
Germany) 

Por1 Rabbit Dr. Rosemary A. Stuart 

Qcr7 Rabbit Dr. Klaus Pfanner (Freiburg, 
Germany) 

Rcf1 Rabbit Dr. Rosemary A. Stuart 

Rcf2 Rabbit This study 
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Su e of ATP synthase Rabbit Dr. Rosemary A. Stuart 

Tim17 Rabbit Dr. Rosemary A. Stuart 

Tim44 Rabbit Dr. Carla Koehler (UCLA, CA) 

Secondary antibodies 

Anti-rabbit IgG, horseradish 
peroxidase linked whole antibody 

Sheep Amersham Bioscience (England, 
UK) 

Anti-mouse IgG, horseradish 
peroxidase linked whole antibody 

Goat Sigma (St. Louis, MO) 

Anti-chicken IgG, horseradish 
peroxidase linked whole antibody 

Goat Sigma (St. Louis, MO) 

 
 

2.2. Molecular biology methods 

 

The basic molecular biology techniques such as polymerase chain 

reactions (PCR), restriction enzyme digestion of DNA, DNA precipitation, gel 

electrophoresis and gel purification of DNA, DNA ligation, preparation of E.coli 

competent cells, transformation of E.coli, colony PCR of E.coli cells, plasmid 

DNA extraction, DNA concentration determination, preparation of S. cerevisiae 

competent cells, transformation of the yeast S. cerevisiae and genomic DNA 

isolation were done according to Stuart lab protocols adapted from the book, 

Molecular Cloning: A Laboratory Manual by Sambrook, Fritsch and Maniatis. 

 

2.2.a. Creating the RCF1/2 deletion strains 

 

Null Δrcf1 and Δrcf2 mutants were generated by a homologous 

recombination technique in the yeast strains W303-1A and W303-1B, 
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respectively. Briefly, a selective marker was PCR-amplified adding on either side 

of the marker 50-100 nucleotides shoulders, complementary to the DNA 

upstream and downstream of the region of interest (ROI). Transformation and 

recombination of the PCR product into competent yeast cells resulted in 

recombination and replacement of the ROI. The open reading frame YML030W 

(RCF1) on chromosome XIII was replaced with the HIS3 gene. The open reading 

frame YNR018W (RCF2) on chromosome XIV was replaced with the KANMX , 

geneticin resistance cassette. Chromosomal deletions were confirmed by PCR.  

The Δrcf1;Δrcf2 double mutant was created by mating the two single 

mutant haploid strains, and tetrad dissection of the resulting diploid strain. 

Haploid segregants were selected based on complementation of histidine 

auxotrophy and geneticin-resistant growth. The genotype was confirmed by PCR 

of the chromosomal DNA. 

 

2.3. Cell biology methods 

 

2.3.a. Growth of yeast cultures 

Yeast strains were maintained and cultured using standard protocols at 

30°C on YP media supplemented with 2% glucose and 20 mg/L adenine 

hemisulfate (YPAD), Strains were stored in 15% glycerol at -80˚C. YP-0.5% 

lactate media supplemented with 2% galactose (YPGal), or YP media 

supplemented with 3% glycerol (YPG), as indicated. Where indicated the YPAD, 
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YPGal, and YPG agar was supplemented with 1.0 µM nigericin, oligomycin, 

antimycin A, or cycloheximide, at indicated concentrations. 

 

2.3.b. Growth assays 

 

Yeast strains were streaked fresh from freezer stocks and passaged on 

YPAD agar no more than 4 times prior to the assay. Yeast cells growing on 

YPAD agar 24 hours were re-suspended in sterile water to OD600nm =0.1, and 10-

fold serial dilutions in sterile water were made. The cell suspensions (3 µl) were 

spotted on nutrient agar. When the spots dried, the petri dishes were incubated 

at indicated temperatures. 

 

2.3.c. Petite (rho0/-) occurrence assay 

 

The proportion of petite cells in cultures was measured on YPG plates 

supplemented with 0.1% glucose. Petite colonies appear small and stop growing 

on this media once the glucose is consumed, and they are unable to use glycerol 

(Soubannier et al, 2002). Even though Δrcf1;Δrcf2 cells grow slowly on this 

media, they do not stop growing, so that after 6 days the Δrcf1;Δrcf2 colonies 

reach the size that the wild-type colonies reach after 3 days. Cultures were 

grown overnight in YP-Gal, diluted in sterile water, and plated to yield 25-250 

colonies per plate. The number of colonies that appear small (petite) after 5-7 

days was counted and expressed as a percent of the total colonies (% rho0/-).  
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2.3.d. Microscopy. 

 

Yeast WT and Δrcf1 / Δrcf2 / Δrcf1;Δrcf2 cells were transformed with 

pRS416-mtGFP plasmid. The transformants were streaked on a selective 

glucose media lacking uracil (SD-URA), grown for 24-48 hours and inoculated 

into liquid media containing galactose (SGal-URA). Aliquots of overnight culture 

(3 µl) on glass slides were imaged at 100X magnification. Three-dimensional 

(3D) images of mitochondria were taken using Leica DMI6000 B microscope (Dr. 

Anita Manogaran, Marquette University, Milwaukee, WI) using Z-stack feature. 

Nomarski differential interference contrast (DIC) channel and green fluorescent 

protein (GFP) channel were used. The excitation wavelength for GFP was 488 

nm, and 470-510 nm emission was detected. Initial analysis and scoring of the 

images was performed manually using 2D maximal projection setting in the Leica 

LASX software. 3D images were subsequently analyzed in ImageJ software 

using the software plugin Yeast_MitoMap (Vowinckel et al., 2015). 

Yeast_MitoMap automatically identified, traced and counted mitochondrial 

networks in each individual cell. Number of individual mitochondrial networks in 

each cell was recorded. Mitochondrial network fragmentation index f was 

calculated for each cell. The fragmentation index f is defined as a sum of relative 

fragment volumes that individually constitute less than 20% of mitochondrial 

volume of the network. Main mitochondrial network in each cell was selected by 

excluding fragments with volumes less than 20% of the total. Main mitochondrial 
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network volume, surface area, and other shape descriptive parameters were 

automatically calculated using Yeast MitoMap. 

 

2.3.e. Whole cell protein extracts 

 

Cultures were grown in YPGal at 30˚C and OD600nm =0.6 was collected 

and washed with 0.5 ml of 40 mM potassium phosphate buffer pH 6.0. The cell 

pellet was resuspended in 75 µl Rodel mix (2.78 M NaOH, 11% β-

mercaptoethanol, 15 mM PMSF), immediately 500 µl water was added followed 

by 575 µl 50% tricarboxylic acid (TCA). The TCA precipitated proteins were 

pelleted at 15000 g for 10 minutes and washed once with 0.5 ml of 0.5 M Tris 

(pH not adjusted) and once with water. The protein pellet was resuspended in 

1.5X Laemmli buffer (3% SDS, 15% glycerol, 0.015% bromophenol blue, 3.25% 

β-mercaptoethanol, 90mM Tris, pH 6.8) and loaded on an SDS-PAGE gel. 

 

2.3.f. Whole cell respiration 

 

Whole cell respiration was measured as described previously (Barrientos 

2002). Cultures were grown in YPGal at 30˚C to OD600nm =0.6 (1 ml of culture at 

OD600nm =0.6 corresponds to 1 x 107 cells). 2 x 107 cells were collected by 

centrifugation at 2500 rpm, washed with and resuspended in 1 ml buffer (0.3M 

mannitol, 10 mM KCl, 5 mM MgCl2, 10 mM potassium phosphate, pH 7.4) and 

placed in an oxygen electrode chamber at 30˚C to measure endogenous 



41 

 

respiration. KCN (0.7 mM) was added to inhibit respiration. KCN-sensitive 

oxygen consumption is expressed as % of the wild-type. 

 

2.3.g. Isolation of mitochondria 

 

Yeast strains were streaked fresh from freezer stocks and grown to 

OD600nm 1.5-2 on YPGal at 30˚C. Mitochondria were isolated according to the 

previously described method (Herrmann et al.,1994). Following isolation, 

mitochondria were resuspended in SEM buffer (250 mM sucrose, 2 mM EDTA, 

10 mM MOPS-KOH pH 7.2) at a protein concentration of 10 mg/ml, flash-frozen 

in liquid nitrogen in 27 µl aliquots and stored at -80˚C. Aliquots were 

subsequently thawed on ice and used only once. 

 

2.3.h. Protein concentration 

 

Mitochondrial protein concentration was determined using the Bradford 

dye binding assay (Bradford, 1976). Bovine gamma globulin IgG (Bio-Rad) was 

used to generate standard curve. 

 

2.4. Biochemical methods 

 

2.4.a. Spectral analysis of mitochondrial cytochromes 
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Complex III or complex IV levels in the wild-type or mutant mitochondria were 

quantified based on dithionite reduced – ferrocyanide oxidized absorption 

spectra. The absorption spectra depend on the redox state of cytochromes: 

reduced c, b, and a type cytochromes absorb light at 552, 560, and 603 nm, 

respectively (absorption maxima). Cytochromes c1 and b are part of complex III, 

while cytochromes a and a3 are part of complex IV. Mitochondria (1 mg) were 

resuspended in 50 mM Tris-KCl, pH 7.4 buffer, containing 2% DDM (500 µl), 

incubated at room temperature with occasional mixing by inversion, and 

centrifuged 10000 rpm 5 minutes. 450 µl of the clarified supernatant was 

transferred to a 1 ml, 1 cm path cuvette. A crystal of potassium ferrocyanide was 

added and dissolved completely to oxidize the cytochromes, and absorbance in 

the 500 – 700 nm region was read five times. A few grains of sodium dithionite 

was added to the same sample to reduce mitochondrial cytochromes, and 

dissolved completely by stirring to reduce the cytochromes. Absorbance of the 

reduced spectra in the 500 – 700 nm region was recorded five times and the 

difference between reduced and oxidized spectra was calculated. A hand-drawn 

baseline from 700 nm to 630 nm was used to measure the height of the peak at 

603 nm (Tzagoloff et al., 1975). 

 

2.4.b. NADH-cytochrome c reductase activity assay 

 

The NADH-cytochrome c reductase activity was measured by following 

the reduction of exogenously added ferro-cytochrome c at 550 nm. Mitochondria 
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were solubilized in 0.4% sodium deoxycholate and kept on ice. Mitochondria (20 

µg protein) were added to 10 mM potassium phosphate buffer, pH 7.5, containing 

0.1 mM KCN, 66 µM horse heart cytochrome c. The reaction was started by the 

addition of 0.1 mM NADH. Absorbance increase at 550 nm was recorded for 45-

60 seconds, the rate cytochrome c reduction rate. (Tzagoloff et al., 1975). 

Relative specific activities of the enzyme were calculated. 

 

2.4.c. Cytochrome c oxidase activity assay 

 

Cytochrome c oxidase enzyme activity was measured by following the 

oxidation of exogenously added ferro-cytochrome c at 550 nm. Mitochondria 

were solubilized with 1 mM n-dodecyl-β-D-maltoside (DDM) and kept on ice. 

Horse heart cytochrome c (Sigma) was reduced with 0.5 mM dithiothreitol (DTT) 

solution 15 minutes prior to the start of the experiment. Mitochondria (4 µg 

protein) were added to 10 mM Tris-HCl buffer, pH 7.0, containing 120 mM KCl, 

and 11 µM reduced horse heart cytochrome c. The concentration of KCl in the 

buffer was changed where indicated. 

 

2.4.d. Oxygen consumption measurement in isolated mitochondria 

 

Oxygen consumption rates (OCR) were calculated as the rate of decrease 

in oxygen concentration measured with a Clark-type oxygen electrode (Rank 

Brothers Digital Model 10) at 30˚C. Mitochondria (40 µg protein) resuspended in 
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0.5 ml respiration buffer (0.6 M mannitol, 2 mM MgCl2, 1 mg/ml BSA, 20 mM 

HEPES-KOH, 1 mM EDTA, 10 mM K2PO4 pH 7.2) were added to the oxygen 

electrode chamber and the suspensions were continuously stirred. Oxygen 

consumption was recorded for 1 minute after the mitochondria were added to 

establish baseline. For state 2 measurements, NADH (1 mM) was added. State 2 

OCR was recorded for 8-10 minutes. For state 3 measurements, NADH (1 mM) 

was followed by ADP (50-200 µM, as indicated). For state 2oligo measurements, 

addition of the mitochondria was immediately followed by oligomycin (20 µM). To 

measure maximal OCR, NADH (1 mM) was followed by membrane uncoupler 

carbonyl cyanide m-chlorophenylhydrazone (CCCP) (10 µM in DMSO).  

For measurement of oxygen consumption by bioenergetically isolated 

complex IV, mitochondria (20 µg protein) resuspended in 0.5 ml respiration buffer 

(0.6 M mannitol, 2 mM MgCl2, 1 mg/ml BSA, 20 mM HEPES-KOH, 1 mM EDTA, 

10 mM K2PO4 pH 7.2) were added to the oxygen electrode chamber and the 

suspensions were continuously stirred. Oxygen consumption was recorded for 1 

minute after the mitochondria were added to establish baseline. At one minute, 

TMPD/ascorbate (1.4 mM N,N,N’,N’-tetramethyl-p-phenylenediamine (TMPD)  

and 12.5 mM potassium ascorbate pH 7) were added. OCR was recorded for 1-6 

minutes, and initial OCR (1 minute) was calculated. To measure maximal OCR, 

TMPD/ascorbate was followed by membrane uncoupler carbonyl cyanide m-

chlorophenylhydrazone (CCCP) (10 µM in DMSO). A baseline of oxygen 

consumption in the absence of mitochondria with TMPD/ascorbate was recorded 
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and subtracted. KCN (0.2 mM) was added to inhibit respiration and confirm the 

absence of extramitochondrial respiration. 

 

2.4.e. Membrane potential measurements 

 

Rhodamine 123 (R-123) fluorescence at 488/525 nm was recorded using 

a fluorimeter (Dr. David Mueller, Chicago, Il). Mitochondria (150 µg protein) were 

resuspended in 2 ml of buffer (0.65M mannitol, 0.3 mM EGTA, 3mM Tris 

phosphate, 10 mM Tris maleate, pH 6.8) containing 0.5 µM Rhodamine 123 (in 

methanol). For State 2 measurements, NADH (2 mM) was added. For State 3 

measurements, NADH was immediately followed by ADP (45 µM). At the end of 

each trace, the membrane potential was dissipated by CCCP (10 µM). 

Fluorescent signal in the presence of NADH+CCCP was set to 100% and 

changes in the fluorescence were expressed as % quenching relative to that 

signal. Mitochondrial membrane potential generated by ATP hydrolysis was 

measured as follows. Mitochondria (150 µg) were resuspended in 2 ml buffer 

containing 0.5 µM R-123 (in methanol); following the addition of ethanol (68 mM), 

KCN (0.2 mM), 2 mM ATP, 1 mM MgCl2. R-123 fluorescence was recorded for 

~1 minute followed by addition of oligomycin (20 µM), and CCCP (10 µM).  

 

2.4.f. ATP synthesis and ATP export  
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ATP synthesis and ATP export rate were measured at 30˚C according to 

published methods (Hamazaki et al., 2011; De Marcos Lousa et al., 2002) with 

modifications described here. Mitochondria (40 µg of protein) were resuspended 

in 0.7 ml of ATP detection buffer (0.6 M mannitol, 0.1 mM EGTA, 2 mM MgCl2, 

10 mM potassium phosphate, 5 mM alpha-ketoglutarate, 0.01 mM Ap5A, 2.5 mM 

glucose, 0.2 mM NADP, 10 mM Tris-HCl, pH 7.4) containing the ATP detection 

enzymes (hexokinase (1.7 E.U.) / glucose-6-phosphate dehydrogenase (0.85 

E.U.). The exchange reaction was initiated by adding oligomycin (20 µM) and 

ADP (20 µM). The rate of ATP release was monitored as the rate of NADPH 

formation (increase in NAD(P)H absorbance at 339 nm). The reactions were 

carried out in quartz cuvettes (Hellma). Absorbance was measured with 

Beckman Coulter DU800 spectrophotometer.  

Endpoint ATP synthesis assays were carried out as follows. ADP was 

added to the mitochondria (40 µg of protein) resuspended in ATP detection buffer 

(0.6 M mannitol, 0.1 mM EGTA, 2 mM MgCl2, 10 mM potassium phosphate, 5 

mM alpha-ketoglutarate, 0.01 mM Ap5A, 2.5 mM glucose, 0.2 mM NADP, 10 mM 

Tris-HCl, pH 7.4) without the ATP detection enzymes containing ethanol or 

succinate in presence of oligomycin (1 µM or lower concentration as indicated in 

the experiment) or DMSO. After the indicated times, synthesis was stopped and 

mitochondria removed by 10 minute centrifugation at 10000 rpm, and the 

supernatant was transferred to a fresh tube. ATP in supernatant was converted 

to NADPH by adding the ATP detection enzymes and incubating for 5 minutes at 
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30˚C. Alternatively, mitochondrial membranes were solubilized with deoxycholate 

(0.2%) and the ATP detection enzymes added to assay total ATP.  

 

2.4.g. ATP hydrolysis  

 

Oligomycin-sensitive F1FO ATPase activity was assayed at 30˚C at pH 8.4 

according to Velours et al, 2001 with following modifications. Mitochondria were 

diluted to protein concentration 5 mg/ml either with SEM buffer (250 mM sucrose, 

2 mM EDTA, 10 mM MOPS-KOH pH 7.2) or with 0.375% Triton X-100, as 

indicated. Aliquots containing 50 µg mitochondrial protein were incubated for 2 

minutes in reaction buffer (0.9 ml, 0.2 M KCl, 3 mM MgCl2, 10 mM Tris-HCl, pH 

8.4) in the presence or absence of oligomycin (20 µM, in ethanol). The reaction 

was started with the addition of 5 mM ATP and stopped after 2 minutes by the 

addition of tricarboxylic acid (TCA) (0.3 M, final concentration). Following a 10-

minute, 10000 rpm, 4˚C centrifugation step, inorganic phosphate in the 

supernatant was measured using ferrous sulfate / ammonium molybdate method 

(Sumner 1944). Mitochondrial extract supernatant or known phosphate 

concentration (0.5 ml) was added to measurement solution (2.5 ml) (0.67% 

ferrous sulfate, 0.55% ammonium molybdate, 0.75 N sulfuric acid), incubated for 

15 minutes at room temperature, and Abs610nm was measured. A standard curve 

with 0, 50, 100, 150, 200, 300, 400 500 mmol potassium phosphate was used for 

calibration.  
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2.4.h. TCA precipitation of proteins 

 

Mitochondria (20 µg of protein) were resuspended in 200 µl of water, and 

85 µl of 50% TCA was added. Precipitated proteins were pelleted at 15000 g 10 

minutes, washed with 0.5 ml of 0.5 M Tris (pH not adjusted) and with water. 

Protein pellet was resuspended in 1.5X Laemmli buffer (3% SDS, 15% glycerol, 

0.015% bromophenol blue, 3.25 % β-mercaptoethanol, 90mM Tris, pH 6.8) and 

loaded on an SDS-PAGE gel. 

 

2.4.i. SDS-PAGE 

 

17.5% acrylamide, 0.2% bis-acrylamide sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) gels were prepared according 

to Laemmli, 1970. Molecular weight markers (14-116 kDa, ThermoFisher) was 

used to estimate position and size of the proteins.10-15 µl of sample in 1X 

Laemmli buffer (2% SDS, 10% glycerol, 0.01% bromophenol blue, 2.5 % β-

mercaptoethanol, 60mM Tris, pH 6.8) was loaded on each lane of the gel. SDS-

PAGE was performed at 25 mA in 1X electrophoresis buffer (2M glycine, 0.1% 

SDS, 50 mM Tris) for 2 hours.  

 

2.4.j. BN-PAGE 
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Mitochondria (30 µg) were solubilized in 10 µl Invitrogen pink buffer (50 

mM Bis-Tris, 6N HCl, 50 mM NaCl, 10% w/v glycerol, 0.001% Ponceau S, pH 

7.2) with the addition of either 1% digitonin or 0.6% DDM. Samples were 

incubated 20 minutes on ice and centrifuged for 10 minutes at 15000 rpm, 4˚C. 

The clarified supernatant was transferred to a new tube and G250 Coomassie 

added to final concentration of 1.75%. Following sample preparation, 

mitochondrial respiratory complexes and other proteins were separated on a 3-

12% Blue Native PAGE (BN-PAGE). NativeMark™ protein standards were used 

to estimate the molecular weights of the complexes. Pre-cast 3-12% Bis-Tris 

mini-gels (8cm x 8cm, 1.0 mM thickness) were ran for 5 hours at 4˚C using 

Novex® NativePAGE™ Bis-Tris gel system (Invitrogen/ThermoFisher Scientific). 

The gels were transferred to nitrocellulose membrane (Whatman) using semi-dry 

blotting system and Western blotting buffer (20% Methanol, 150 mM glycine, 

0.02% SDS, 20 mM Tris, pH not adjusted), with the modification of 1 hour 

transfer time. Blots were prepared for detection by incubating in Western strip 

buffer (25 mM glycine, 100 mM NaCl, 0.05% Tween-20, pH 2.0) and blocked with 

5% milk in TBS solution for 30 minutes.  

 

2.4.k. Two-dimensional electrophoresis 

 

Second-dimension-PAGE separation was performed after the BN-PAGE 

step. Mitochondria (200 µg protein) were solubilized in lysis buffer (34 mM 

potassium acetate, 34 mM HEPES-KOH, pH 7.4, 11.4% glycerol, and 1 mM 
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PMSF) containing 1% digitonin. Samples were incubated on ice 30 minutes and 

subjected to a clarifying spin for 30 min at 30,000 g, 4°C. The supernatant from 

each sample was analyzed on a BN-PAGE as described (Cruciat et al., 2000; 

Saddar et al., 2008). Individual lanes of the BN-PAGE were excised with a razor 

blade gel. Each gel strip was incubated in lithium dodecyl sulfate (LDS) (4X LDS 

(106 mM Tris-HCl, 14 mM Tris Base, 2% LDS, 10% glycerol, 0.51 mM EDTA, 

0.22 mM G250 Coomassie, 0.175 phenol red, pH 8.5). Strips were incubated for 

30 minutes in each, LDS-DTT (50 mM dithiothreitol (DTT), 1 X LDS), LDS-DMA 

(N,N-dimethylacrylamide) (50 mM DMA, 1X LDS), and LDS-Ethanol-DTT (5 mM 

DTT, 20% ethanol, 1X LDS). Each strip was inserted on top of a denaturing 

NuPAGE™ Bis-Tris gel, and electrophoresis was performed at 100 V for 1.5-2 

hours. NativeMark™ and protein standards were used in the first dimension to 

estimate the molecular weights of the complexes. 14-166 kDa molecular weight 

markers (ThermoFisher) were used in the second dimension to determine the 

sizes of protein subunits. 

 

2.4.l. Western blot analysis 

 

Proteins were transferred from polyacrylamide gels to nitrocellulose 

membrane (Whatman) using semi-dry blotting method for 1.5 hours (unless 

otherwise specified) at 250 mA in transfer buffer (20% Methanol, 150 mM 

glycine, 0.02% SDS, 20 mM Tris) (Kyhse-Andersen, 1984). Membranes were 

stained with Ponceau S solution to visualize molecular weight markers, then 
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rinsed completely with water. Membrane was then used for autoradiography, or 

blocked in 5% milk in 1X TBS (150 mM NaCl, 10 mM Tris-HCl pH 7.5) for 1 hour 

before immunodetection. Membranes were incubated in primary antibody 

solution. Signal generation was then achieved using secondary antibodies 

conjugated with horseradish peroxidase (HRP) via chemiluminescence in a buffer 

containing 100 mM Tris pH 8.5, 0.23 mM p-coumaric acid, 1.25 mM luminol, 

0.00015% [v/v] H2O2 as previously described (Roswell and White, 1978). Films 

were developed using an automated developing machine (AGFA CP1000).  

 

2.4.m. Ni NTA affinity purification  

 

Mitochondria from the wild-type and Δrcf1;Δrcf2 cells expressing HISAac2 

were subjected to Ni-nitrilotriacetic acid (Ni-NTA) affinity purification. His-tagged 

protein and their interacting partners were purified from isolated mitochondria 

(200 μg total protein) solubilized in 300 μl of lysis buffer (31 mM HEPES, 80 mM 

potassium acetate, 10% glycerol, 1mM PMSF and 0.6% Digitonin) for 30 min on 

ice. After a clarifying spin (10000 rpm, 10 min at 4˚C), the supernatant was 

collected, supplemented with imidazole (30 mM final concentration) and 

incubated with Ni-NTA beads (pre-equilibrated in lysis buffer) for 1 hour at 4˚C. 

The beads were then washed three times with lysis buffer containing imidazole 

and the bound proteins were eluted with SDS-sample buffer containing 5% β-

mercaptoethanol and 450mM Imidazole. Samples were analyzed by SDS-PAGE 

and Western blotting.  
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2.4.n. Mitochondrial translation 

 

Translation in organello with [35S] methionine labeling was performed for 

as described in Hell et al., 2001. Briefly, translation was carried out for 20 

mintues at 30˚C in presence of [35S] methionine. Translation was stopped by 

addition of puromycin and excess unlabeled methionine, followed by 5-minute 

incubation. The mitochondria were collected by centrifugation and subjected to 

SDS-PAGE.  

 

2.4.o. Quantitation of Western blot band intensities.  

 

Exposed films were scanned in 600 dpi transmission mode on Epson 

V750 PRO scanner and band density was quantified using ImageJ Gel Analysis 

method (Gassmann et al, 2009). Relative density was adjusted to loading control. 

 

2.4.p. Statistical analysis. 

 

 Data were collected and analyzed using GraphPad Prism software version 

7 (La Jolla, CA). Mean and standard error of mean (SEM) values (McDonald, 

2014) are derived from at least 3 experiments unless otherwise noted. Where 

applicable, statistical significance between two experimental variables was 

evaluated using Student’s t-test (p<0.05 was considered significant).  

http://www.nature.com/emboj/journal/v22/n24/full/7595534a.html
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CHAPTER 3. Deletion of Rcf1 and Rcf2 cumulatively impairs OXPHOS coupling, 

evidenced by elevated oxygen consumption and lowered membrane potential 

 
 
 
Introduction 
 
 
 

The RCF1 and RCF2 genes are needed for optimal yeast growth on non-

fermentable carbon sources. Utilization of non-fermentable carbon sources 

(glycerol, ethanol, lactate) for energy requires activity of the electron transport 

chain (ETC) of the yeast mitochondria, including the activities of the cytochrome 

bc1 reductase (complex III) and the cytochrome c oxidase (CcO, complex IV) 

enzymes.  

In yeast mitochondria, all complex IV molecules are assembled into 

supercomplexes of III2IV2 or III2IV1 composition. Prior studies identified Rcf1 

involvement in chaperoning Cox3 prior to its assembly into the supercomplex III-

IV and supporting assembly and enzyme activity of complex IV (Strogolova et al., 

2012; Garlich et al., 2017). The role of Rcf2 in complex IV assembly or enzyme 

activity, or III-IV supercomplex content is not apparent (Strogolova et al., 2012; 

Römpler et al., 2016; Fischer et al., 2015). Deletion of Rcf1 or Rcf2 (Δrcf1 and 

Δrcf2 strains) does not strongly influence respiratory growth, but the combined 

deletion of Rcf1 and Rcf2 together leads to a respiratory growth defect.  

In this chapter, the consequences of Rcf1 and Rcf2 deletion on 

mitochondrial respiration was evaluated by growth and respiration assays and 

measuring the steady-state levels and catalytic activities of complex III and 

complex IV. Previous studies focused only on electron transfer (oxygen 
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consumption) capacity of complex IV enzyme. In particular, this study 

investigated whether Rcf1 or Rcf2 regulate proton transport function of complex 

IV. Direct measurement of proton transport by complex IV is not trivial since it 

requires purified enzyme inserted in phospholipid vesicles. Detergent purified 

enzyme tends to lose stability, activity, and proteolipid context. Alternatively, 

complex IV proton transport activity can be accurately inferred from ETC 

response to ADP or CCCP, obtained from the oxygen consumption rates (OCR) 

measurements in isolated mitochondria (Barrientos 2002; Brand and Nicholls, 

2011; Gouspillou et al., 2011). Protonmotive force (PMF) also can be measured 

in respiring mitochondria using membrane-potential dye Rhodamine 123 (R123). 

In order to dissect the bioenergetic consequences of Rcf1 and/or Rcf2 removal, 

measurements of OCR and PMF in intact mitochondria in response to controlled 

substrates are presented in this chapter. 

 

Results 

 

3.1. RCF1 or RCF2 can independently support respiratory growth. 

 

In order to understand the bioenergetic consequences of Rcf1 and/or Rcf2 

removal, respiratory growth phenotypes of Δrcf1 and Δrcf2 mutants (Δrcf1::HIS3 

and Δrcf2::KANMX) in the yeast strain W303-1A were studied. Deletion of RCF1 

slightly hindered respiration-based growth (Figure 4A, second column in each 

panel). We conclude therefore that deletion of RCF1 does not severely 
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compromise the ability of the cell to grow by aerobic respiration in the genetic 

background (W303) used in this study. 

The deletion of the RCF2 gene by homologous recombination (Materials 

and Methods) did not impair growth on non-fermentable carbon sources such as 

glycerol (YPG) or lactate (YPL) (Figure 4A, third column in each panel). This is 

consistent with the Δrcf2 phenotypes reported in the BY4741 genetic background 

(Vukotic et al., 2012, Römpler et al., 2016). In contrast to growth on solid agar, 

respiration-based growth of Δrcf2 mutant in liquid media was slower than the wild 

type and Δrcf1 strains (Figure 4B). The slower respiration-based growth in liquid 

media was not linked to slower glucose de-repression, since this phenotype was 

the same whether cultures were pre-grown in YPD or YPG or YPL. Stress, such 

as growth in liquid culture or elevated temperature conditions, can enhance 

subtle respiratory deficiencies, such as that of the Δcoa6 mutant (Ghosh et al., 

2014). This indicates that the Δrcf2 strain, which otherwise has been described 

as showing normal respiration-based growth, has a modest but measurable 

respiratory deficiency.  

It is possible that slower Δrcf2 respiration-based growth in liquid media is 

resulting from the lower concentration of dissolved oxygen compared to that 

available on the surface of agar (Somerville and Proctor, 2013). If this was the 

case, limiting oxygen levels would decrease Δrcf2 growth solid agar media. To 

test this, respiratory growth on solid media was assayed in a hypoxic chamber 

(2% oxygen). In contrast to normoxia (21% oxygen), Δrcf2 grew slower than wild 

type in a hypoxic chamber (Figure 4C, right panel). This result confirms the sub- 
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Figure 4. Respiratory growth of single mutants. (A) Serial dilutions of wild type, Δrcf1, Δrcf2 
yeast cells were spotted on YP media containing 2% glucose, 3% glycerol, or 2% lactate and 
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incubated at 30˚C for 3 days. In these and subsequent growth assays, the relative cell 
concentration is indicated by the black wedges. (B) Overnight wild type (green), Δrcf1 (blue) and 
Δrcf2 (orange) liquid cultures were inoculated in fresh liquid YP media containing 2% glucose, 3% 
glycerol, or 2% lactate at 30˚C with a starting OD600 of 0.1. OD600 was measured at indicated 
times. (C) Serial dilutions of wild type (WT), Δrcf1 (Δ1), Δrcf2 (Δ2) were spotted on YP media 
containing 2% glucose or 3% glycerol and incubated at 21˚C for 5 days under normoxia (21% 
oxygen) or hypoxia (2.5% oxygen). (D) Serial dilutions done as in (A) and incubated at elevated 
temperature (37˚C) for 5 days. In this and subsequent figures, the wild type, Δrcf1, and Δrcf2 
mutants are denoted as WT, Δ1, Δ2, respectively. 

 

 

 

threshold respiration defect in Δrcf2 strain that was enhanced by limiting oxygen.  

Respiration-based growth of Δrcf1 on glycerol was slowed down by 

decreased (21˚C) (Figure 4C, second panel) or increased temperature (37˚C) 

(Figure 4D, second panel), compared with optimal temperature (Figure 4A, 

second panel). This is consistent with the presence of respiratory growth defect 

in Δrcf1 strain that can be exacerbated by suboptimal temperature conditions. 

In summary, Rcf1 or Rcf2 alone (as in the Δrcf2 and Δrcf1 strains, 

respectively) are sufficient for S. cerevisiae respiratory growth under optimal 

conditions. Stress conditions such as hypoxia or suboptimal temperature reveal 

that the removal of Rcf1 or Rcf2 caused a subthreshold respiratory growth 

inefficiency. 

 
 
3.2. Deletion of RCF1 and RCF2 together impairs respiratory growth. 
 

 

 

The Δrcf1;Δrcf2 double mutant was created by mating the single mutant 

haploid strains (Δrcf1::HIS3; MAT A and Δrcf2::KANMX; MAT α) to generate a 

diploid (RCF1/Δrcf1::HIS3; RCF2/Δrcf2::KANMX). The diploid was subjected to 



58 

 

sporulation (meiosis) and tetrad dissection to generate double mutant haploid 

strains (Δrcf1::HIS3; Δrcf2::KANMX). Respiratory growth of four independently 

isolated Δrcf1;Δrcf2 double mutant haploids was analyzed, and all showed 

identical growth defect on non-fermentable carbon sources. The Δrcf1;Δrcf2 

respiratory growth was slow on glycerol, lactate (Figure 5), methanol, acetate, 

succinate, ethanol, as carbon sources (not shown); thus, the respiratory defect 

was not linked to inability to utilize a specific carbon source. Some OXPHOS 

mutants display increased loss of mitochondrial DNA (rho), resulting in formation 

of spontaneous rho0/rho- petite colonies. RCF1 and RCF2 genes were identified 

in a genomic screen for alleles associated with abnormal inheritance of 

mitochondrial DNA (AIM) (Hess et al., 2009); deletion of these genes individually 

decreased the rate of spontaneous rho0/rho- petite colonies. To test whether 

accumulating rho0/rho- petite cells was responsible for respiratory deficiency of 

the Δrcf1;Δrcf2 strain, the rate of spontaneous rho0/rho- petite colonies was 

assessed by colony count on YPG plates supplemented with 0.1% glucose (see 

Materials and Methods). The rate of rho0/rho- petite formation was not increased 

in Δrcf1;Δrcf2 (0.6 ± 0.8%) compared to wild type (3.3 ± 1.6%).   

In summary, the Δrcf1; Δrcf2 mutant strain (but not the Δrcf1 or Δrcf2 

single mutants) displays a robust, reproducible growth defect on non-fermentable 

carbon sources. No increase in rho0/rho- petite formation was detected in the 

mutant. Our lab previously showed that the Δrcf1;Δrcf2 respiratory growth could 

be restored by ectopic expression of Rcf1 or Rcf2 protein with C-terminal His12 

tag (Strogolova et al., 2012). This is consistent with the RCF1 and RCF2 gene 
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products having partially redundant or overlapping function(s) that support 

respiration-based growth.  

 
 
 

 
 
 
 
Figure 5. Respiratory growth of Δrcf1;Δrcf2 mutant. Serial dilutions wild type , Δrcf1, Δrcf2, 

and the Δrcf1;Δrcf2 (Δ1;Δ2) cultures were spotted on rich (YP) agar containing glucose (2%), 

galactose (3%), or non-fermentable substrates glycerol (3%), lactate (2%), and incubated for 3 

days at 30˚C. A wild type petite control strain (ρ0) is shown for comparison.   

 
 
 

3.3. Deletion of RCF2 increased endogenous cell respiration. 
 
 
 

To further explore whether the observed growth defect of the Δrcf1;Δrcf2 

cells was due to decreased mitochondrial content of these cells and/or 

decreased mitochondrial oxygen consumption, levels of mitochondrial proteins in 
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whole cell extracts and respiration in whole cells were measured. Whole cell 

oxygen consumption was measured in cultures in liquid galactose containing 

media. Galactose can be used as a fermentable or non-fermentable carbon and 

energy source (Lagunas 1986; Herrero et al., 1985; Fendt and Sauer, 2010). 

Mitochondrial dysfunction leads to enhanced galactose fermentation (Jelicić et 

al., 2005), and the Δrcf1;Δrcf2 grew slower than wild type on galactose, but not 

as slow as on glycerol (Figure 5). Despite their respiration-based growth defect, 

oxygen consumption in the Δrcf1;Δrcf2 cells was ~90% of the wild type cells 

(Figure 6A, Table 4). A similar oxygen consumption rate was measured for the 

Δrcf1 cells. Surprisingly, the oxygen consumption rate in Δrcf2 cells was even 

increased and was ~140% of that in wild type control. This result is in agreement 

with previously reported increased oxygen consumption by Rcf2-deficient 

mitochondria with various respiration substrates (pyruvate/malate, succinate, 

TMPD/ascorbate, and ADP) (Römpler et al., 2016). The nearly normal or 

enhanced oxygen consumption rates indicate that the respiration-based growth 

defect observed in the absence of Rcf1 and Rcf2 is not merely due to the inability 

of the cells to consume oxygen. 

To determine whether cell mitochondrial content was altered (or even 

increased) in the absence of Rcf1 and/or Rcf2, levels of mitochondrial proteins in 

the cell were analyzed. Whole cell protein extracts were prepared from cultures 

grown in galactose and were analyzed by SDS-PAGE and Western blotting 

(Figure 6B). Mitochondrial content was determined by measuring the levels of the 

mitochondrial outer membrane protein (Por1) and was found to be similar  
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Figure 6. Whole cell respiration and mitochondrial content from the Δrcf1, Δrcf2, and 
Δrcf1;Δrcf2 mutants. Indicated strains were grown on YPGal to exponential phase and 
harvested at an OD600nm=0.6. (A) Endogenous respiration was measured in YPGal grown cells. 
KCN-sensitive oxygen consumption rate (OCR) was expressed as % of the wild type. Average ± 
SEM is shown and statistical significance (Student’s t-test) p<0.05 denoted by asterisk. (B) Whole 
cell protein extracts were analyzed by SDS-PAGE and Western blotting using antibodies to 3-
phosphoglycerokinase (Pgk1), mitochondrial outer membrane porin (Por1), mitochondrial inner 
membrane Tim17, and complex IV subunit 3 (Cox3). Relative band intensity adjusted to Pgk1 is 
indicated below each band. The positions of the molecular mass standards are indicated on the 
right (in kilodaltons).  

 
 
Table 4. Whole cell respiration of the Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mutants. 

Summary of oxygen consumption data represented in Figure 6A. 
 

Strain Cell endogenous respiration 
% of WT 

WT   100 

Δ1   92 ± 3 

Δ2 141 ± 7 

Δ1;Δ2    89 ± 13 
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between all cell types. The ratio of Por1 to the cytoplasmic protein 3-

phosphoglycerate kinase (Pgk1) was not affected by the absence of Rcf1 or Rcf2 

(Por1/Pgk1 signal in wild type= 1.0, Δrcf1 = 0.8, Δrcf2 =1.2, Δrcf1;Δrcf2 = 1.1) 

(Figure 6B). Similar result was obtained for the levels of the inner membrane 

translocase subunit protein Tim17. Tim17 and Por1 are proteins that are 

constutively expressed and frequently used to evaluate mitochondrial levels. We 

conclude therefore that the absence of Rcf1 and Rcf2 did not alter the cell’s 

mitochondrial levels. In contrast, the levels of complex IV marker, subunit 3 

(Cox3) were decreased in Δrcf1, Δrcf2 and Δrcf1;Δrcf2 cells compared to the wild 

type cells, indicating a decrease in complex IV (Figure 6B). This indicates 

decrease in complex IV steady state levels relative to other mitochondrial 

membrane proteins (see section 3.4.).  

In summary, the analysis of whole cell respiration and mitochondrial 

content established that the observed impaired growth of the Δrcf1;Δrcf2 strain 

on non-fermentable carbon sources is not due to limiting mitochondrial levels or 

the ability of these mitochondria to consume O2. Moreover, the enhanced O2 

consumption rate of the Δrcf2 strain may suggest an inefficiency of the ETC 

system to generate and/or maintain a PMF, and thus require an elevated O2 

consumption rate to maintain the PMF at levels required to sustain OXPHOS-

based ATP synthesis.  

 

 

 

3.4. Deletion of Rcf1 and Rcf2 lower complex IV steady-state levels, but 

deletion of Rcf1 is epistatic to deletion of Rcf2. 
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Both complexes III and IV contribute to the establishment of the PMF. To 

gain more insight into the possible problem with establishing or maintaining the 

PMF in the absence of Rcf2 (and possibly Rcf1), the content and activities of 

these enzymes in isolated mitochondria were initially analyzed.  

The cytochromes of the OXPHOS complexes within the mitochondria are 

heme-containing proteins, whose spectral properties can be used to quantify 

their content. The complex III (cytochrome bc1) and complex IV (cytochrome aa3) 

levels were initially quantified in the wild type or mutant mitochondria by 

recordings of the dithionite reduced – ferrocyanide oxidized spectra (Figure 7A, 

Table 5). In Δrcf2, complex IV cytochrome aa3 levels were moderately decreased 

to 69% of the wild type levels. In Δrcf1, the cytochrome aa3 levels were 

decreased more substantially (52% of wild type). The cytochrome aa3 levels in 

the Δrcf1;Δrcf2 mitochondria (49% of wild type) were similar to those measured 

in the Δrcf1 mitochondria (Table 5). 

 
 
 
Table 5. Quantification of mitochondrial cytochromes 
 
The absorption bands corresponding to cytochromes (aa3, b, and cc1) were quantified using A603 
nm (to account for sloping baseline, a baseline was hand-drawn through A700 and A630 and 
extended to 603 nm), A560 nm (baseline at A575 was subtracted) and A550 nm (baseline at 
A575 was subtracted). Average and S.E.M. values are reported, expressed as % of wild type 
control. 

 

Strain aa3 b cc1 

WT 100 ± 4 100 ± 6 100 ± 5 

Δ1 52 ± 15 116 ± 4 92 ± 7 

Δ2 69 ± 10 122 ± 2 92 ± 6 

Δ1;Δ2 49 ± 7 155 ± 12 129 ± 11 
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Figure 7. Levels of mitochondrial cytochromes and OXPHOS complexes III and IV. (A) 
Dithionite reduced – ferrocyanide oxidized spectra of mitochondrial cytochromes. 1 mg of 
mitochondria was solubilized in 50 mM Tris-KCl, 2% DDM, pH 7.4 for the analysis. Spectra of 
complex IV core cytochromes a, a3 (603 nm peak) in wild type (green), Δrcf1 (blue), Δrcf2 
(orange), and the Δrcf1;Δrcf2  (red) mitochondria are enlarged in the inset to show detail. (B) 
Steady-state levels of supercomplexes components from wild type, Δrcf1, Δrcf2, and the 
Δrcf1;Δrcf2 mitochondria (25 μg protein) analyzed by SDS-PAGE, Western blotting and 
immunodecoration with the antibodies to: α-Cob/Cytc1 for cytochromes b (upper band) and c1 
(lower band), α-Cyc1 for cytochrome c, α-Cox1, and α-Tim44 as indicated). Tim44 was used as a 
loading control. (C) Mitochondria (30 µg protein) isolated from wild type, Δrcf1, Δrcf2, and the 
Δrcf1;Δrcf2 strains were solubilized in 1% digitonin and subjected to BN-PAGE analysis, Western 
blotting, and immunodecoration with antibodies α-Cytc1 for complex III component cytochrome c1. 
(D) BN-PAGE analysis performed as in (C) except 0.6% DDM was used instead of digitonin, and 
antibodies α-Qcr7 for complex III component Qcr7 c, α-Cox3 for complex IV component Cox3, 
were used as indicated. 
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The levels of complex III cytochromes b and c1, and soluble electron 

carrier cytochrome c were not negatively affected in the absence of Rcf1 or Rcf2. 

An increase in spectral signal corresponding to reduced b type cytochromes 

without a corresponding increase in the signal corresponding to the c type 

cytochromes, was observed in Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mitochondria without 

a corresponding increase in the signal corresponding to the c type cytochromes, 

thus resulting in an increase in the apparent ratio of b:cc1 (Table 5).  

Immunodetection of complex III components cytochrome b and 

cytochrome c1 with Cob (cytochrome b) and Cyc1 (cytochrome c1) specific 

antibodies indicated that complex III components were not affected by the 

RCF1/2 deletion (Fig 7B). Cytochrome c levels were also found not to be 

compromised. Increased levels of other cytochrome b-containing proteins, such 

as cytochrome c peroxidase, cytochrome b2, catalase, or yeast flavohemoglobin 

(Yhb1) may be contributing to the increased cytochrome b signal. Reduced levels 

of the Cox1 protein (containing cytochromes a,a3) were observed in the Δrcf1 

and Δrcf1;Δrcf2 mitochondria, a result which is consistent with the measured 

cytochrome aa3 spectral content (Figure 7B).  

Spectral quantification of complex III and complex IV cytochromes 

operates under an assumption that extinction coefficient properties of the 

cytochromes are not altered by the deletion of Rcf1 or Rcf2. While the spectral 

absorption maxima of the cytochromes was not altered, not sufficient evidence is 

available to validate this assumption. Therefore, steady state levels of the III and 

IV complexes were assayed using an independent method, BN-PAGE followed 
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by Western blotting. BN-PAGE can be used to detect the level and assembly 

state of the III-IV supercomplex populations (when mitochondria are solubilized 

with the mild detergent, digitonin), or for the individual complexes III and IV 

(when mitochondria are solubilized with a stronger detergent, dodecylmaltoside 

(DDM)). Using an antibody against cytochrome c1 (of complex III), in wild type 

mitochondria majority of the supercomplex III-IV was observed to be present in 

the III2-IV2 form, whereas in the absence of Rcf1, an increase in the levels of III2-

IV2 and III2 forms relative to III2-IV2 supercomplex form was observed. A similar 

result was obtained with the Δrcf1;Δrcf2 mitochondria, whereas the absence of 

Rcf2 had not great effect on the III2-IV2 supercomplex organization, which largely 

mirrored that of the wild type control. Thus, it appears that slightly lower 

cytochrome aa3 content in the Δrcf2 mutant does not noticeably alter the level of 

the III2-IV(1-2) supercomplex assembly.  

Analysis of the levels of the individual III and IV complexes following DDM 

solubilization confirmed the levels of complex III in the Δrcf1, Δrcf2, and 

Δrcf1;Δrcf2 mitochondria levels were similar to those of the wild type control, a 

result which is consistent with the spectral analysis (Figure 7B). Antibody to 

complex IV Cox3 subunit detected the previously described two forms of complex 

IV in DDM solubilized mitochondria (Figure 7B). The two forms, designated IV 

and IV*, differ in the association of subunit Cox13 and Cox12 (Vukotic et al., 

2012, Garlich et al., 2017). As reported previously, when RCF1 is deleted, there 

was a decrease in both the IV and IV* populations (Figure 7B). A similar 

decrease in IV and IV* was observed in Δrcf1;Δrcf2 mitochondria, indicating that 
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the levels of the IV and IV* were not further adversely impacted when Rcf2 in 

addition to Rcf1 was absent. The qualitative nature of BN-PAGE analysis 

precludes complete certainty, yet the levels of IV and IV* in the Δrcf2 

mitochondria appeared similar to wild type levels.  

To summarize, complex IV (cytochrome aa3) is decreased to a similar 

extent in the Δrcf1 and Δrcf1;Δrcf2 mitochondria, indicating that the deletion of 

RCF2 in the Δrcf1 background does not further decrease complex IV steady 

state levels. Thus, despite having similar reduced levels of complex IV the 

Δrcf1;Δrcf2 mutant displays a strong respiratory growth defect, whereas the 

single Δrcf1 mutant does not. As the growth defect of the Δrcf1;Δrcf2 mutant 

cannot be solely attributed to a reduced content of complex IV, this result 

prompted us to investigate complex III and IV enzymatic activities to explain the 

respiratory growth deficiency of the Δrcf1;Δrcf2 mutant. 

 
 

3.5. Rcf1 and Rcf2 support complex IV electron transport activity, but 
deletion of Rcf1 is epistatic to deletion of Rcf2.  
 
 
 

Complex III and IV relative specific enzyme activities in the absence of 

Rcf1 and/or Rcf2 were determined by spectrally monitoring the rate of exogenous 

cytochrome c reduction or oxidation, respectively. The cytochrome c reduction 

assay indicated that the activity of detergent solubilized complex III in wild type, 

Δrcf1, and Δrcf2 was similar, while in Δrcf1;Δrcf2 mitochondria it was even 

increased (Figure 8A, Table 6 first column). The cytochrome c oxidation assay 

indicated that the activity of detergent-solubilized complex IV was substantially   
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Table 6. Complex III and complex IV activity in mitochondria from the Δrcf1, Δrcf2, and 
Δrcf1;Δrcf2 mutants.  

Reduction (complex III activity, WT (n=9), Δ1 (n=9), Δ2 (n=9), Δ1;Δ2 (n=9)) or oxidation (complex 
IV activity, WT (n=23), Δ1 (n=9), Δ2 (n=4), Δ1;Δ2 (n=21)) of exogenous cytochrome c was 
measured spectrophotometrically (Materials and Methods), and expressed as % of the wild type. 
Complex IV activity was also measured as oxygen consumption rate (OCR, nmol O2 / minute / 
mg protein). OCR was recorded at 30˚C upon the addition of complex IV specific substrate TMPD 
with ascorbate (Asc/TMPD, 12.5 mM ascorbate/1.4 mM TMPD) to mitochondria (20 µg) in 
presence (WT (n=11), Δ1 (n=3), Δ2 (n=6), Δ1;Δ2 (n=5)) and absence (WT (n=11), Δ1 (n=6), Δ2 
(n=6), Δ1;Δ2 (n=5))  of uncoupler CCCP (10µM). Auto-oxidation of Asc/TMPD substrate 
measured without mitochondria was subtracted from the OCR. Average and S.E.M. values are 
reported; **, p value < 0.01; *, p value < 0.05. 

 

 

NADH - cytochrome c reductase            

(complex III)                              

% of WT 

Cytochrome c oxidase              

(complex IV)                                       

% of WT 

WT 100 ± 14 100 ± 6 

Δrcf1 83 ± 6 ** 31 ± 3 

Δrcf2 105 ± 12 ** 62 ± 2 

Δrcf1;Δrcf2 **126 ± 14 ** 28 ± 2 

 

 

Asc/TMPD OCR 

(complex IV)              

nmol O2/min/mg 

Asc/TMPD                    

+ CCCP OCR      

(complex IV)            

nmol O2/min/mg 

+/- CCCP ratio 

(effect of PMF) 

WT 620 ± 30 1419 ± 62 2.3 

Δrcf1 **338 ± 30 ** 527 ± 12 1.6 

Δrcf2 *486 ± 28 ** 999 ± 26 2.1 

Δrcf1;Δrcf2 ** 278 ± 12 ** 404 ± 19 1.5 
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Figure 8. Activity of complex III and complex IV in Δrcf1, Δrcf2, and Δrcf1;Δrcf2 
mitochondria. (A) Complex III activity. Mitochondria (20 µg protein) were solubilized as 
described in Materials and Methods.  Reduction of cytochrome c (initial rate) was measured 
spectrally. (B) Complex IV activity. Mitochondria (4 µg protein) were solubilized as described in 
Materials and Methods. Oxidation cytochrome c (initial rate) was measured spectrally. (C) Effect 
of buffer salt concentration on complex IV activity, measured as in (B) except the KCl 
concentration was changed to 50 mM or 0 mM. The % inhibition is the rate of cytochrome c 
oxidation relative to the control (wild type or Δrcf1;Δrcf2 sample measured with 120 mM KCl). (D) 
Complex IV oxygen consumption rate (OCR) in intact mitochondria. Mitochondria (40 µg protein) 
were resuspended in 0.5 ml respiration buffer (Materials and Methods). OCR was measured upon 
addition of TMPD/ascorbate. KCN (0.2 mM) was added to inhibit respiration and confirm the 
absence of extramitochondrial respiration. (E) Complex IV maximal OCR in intact mitochondria 
was measured as in (D) except TMPD/ascorbate was followed by CCCP (10 µM in DMSO).  In all 
panels, average ± SEM is shown, and values that are statistically different (p<0.05) from each 
other are denoted by different subscripts. 
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decreased in Δrcf1 mitochondria (31% of the wild type levels) while it was 

decreased to a lesser extent in Δrcf2 mitochondria (62% of the wild type) (Figure 

8B, Table 6 second column). The cytochrome c oxidation rate in Δrcf1;Δrcf2 

mitochondria (27% of the wild type) was not significantly different from that of the 

Δrcf1 mitochondria, allowing us to conclude that removal of Rcf2 does not further 

impair electron transport activity of complex IV in the Δrcf1 background. 

The cytochrome c reduction and oxidation assays are normally performed 

at the physiological conditions of high ionic strength (I=120 mM) (Cortese et al., 

1995), which support the electrostatic interaction of cytochrome c with the IM. 

Electrostatic interactions support cytochrome c binding to complex IV distant low-

affinity binding site (Moreno-Beltrán et al., 2015) from which site it is channeled 

to the site of its oxidation formed by complex IV subunits Cox2, Cox12, and 

Cox13 (Shimada et al., 2017). A previous study (Rydström Lundin et al., 2016) 

found that Δrcf1 mitochondria display different oxidation kinetics with 

exogenously added horse heart cytochrome c than with the yeast cytochrome c, 

and proposed a role for Rcf1 in recruiting or coordinating cytochrome c to the 

supercomplex. Additionally, affinity between mammalian HIGD1A protein and 

cytochrome c was reported (Guerra-Castellano et al., 2018). If Rcf1 and Rcf2 are 

necessary for recruiting cytochrome c, the complex IV activity in Δrcf1;Δrcf2 and 

mitochondria may be sensitive to disruption of the electrostatic interactions. To 

test this possibility, sensitivity of cytochrome c oxidation to lower buffer ionic 

strength was assayed. Lowering buffer ionic strength decreases electrostatic 

interactions that support cytochrome c availability and oxidation by complex IV. 
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The cytochrome c oxidation activities in wild type and Δrcf1;Δrcf2 mitochondria 

were equally sensitive to inhibition by lower salt concentration (Figure 8C). This 

result indicates that the absence of Rcf1 and Rcf2 did not negatively affect 

cytochrome c binding or recruitment to complex IV. 

The cytochrome c reduction and oxidation assays are performed with 

detergent-solubilized mitochondria in the presence of excess cytochrome c. This 

is necessary to quantify changes in cytochrome c redox spectra. A second 

independent approach was used to compare the rate of complex IV specific 

oxygen consumption in intact mitochondria, and compare complex IV electron 

transport activity in Δrcf1 and Δrcf1;Δrcf2 mutants. Oxygen consumption rate 

(OCR) was calculated as the change in oxygen concentration over time, 

measured using an oxygen electrode. TMPD/ascorbate, complex IV specific 

substrate was used to supply electrons to endogenous cytochrome c. The use of 

TMPD bypasses the upstream ETC complexes, bioenergetically isolating 

complex IV activity. This allows us to measure the oxygen consumption capacity 

of the complex IV enzyme.  

Complex IV specific OCR’s were decreased in Δrcf1, Δrcf2, and in Δrcf1; 

Δrcf2 mitochondria (Δrcf1 = 55%, Δrcf2 = 78%, Δrcf1;Δrcf2 = 45% of the wild 

type control) (Figure 8D and Table 6 third column). The decrease in the complex 

IV activity was less in intact mitochondria than the aforementioned cytochrome 

aa3 levels and in the cytochrome c oxidation assays. This could be due to 

complex IV activity being less constrained by the PMF. 
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PMF was completely dissipated by the addition of an uncoupling 

ionophore CCCP, stimulating maximal oxygen consumption since complex IV 

was no longer controlled by the PMF. Maximal complex IV OCR in the presence 

of CCCP was determined to be strongly decreased in Δrcf1 (37% of the wild 

type) while it was reduced to a lesser extent in Δrcf2 mitochondria (70% of the 

wild type); and was not significantly less in Δrcf1;Δrcf2 mitochondria (28% of the 

wild type) than in Δrcf1 (Figure 8D, Table 6 fourth column). This maximal 

complex IV OCR was consistent with complex IV activity levels determined by 

other assays, and indicated that Rcf1 and Rcf2 functionally overlap with respect 

to complex IV electron transport activity. 

Complex IV oxygen consumption was stimulated by the addition of CCCP 

in all mitochondrial samples (Table 6). This indicates the extent of the constraint 

imposed by the PMF. CCCP stimulation was smaller in the absence of Rcf1 or 

Rcf2 compared to wild type control (Table 6 last column). This indicates that PMF 

maintenance requires greater utilization of complex IV oxygen consumption 

capacity in mitochondria lacking Rcf1 and/or Rcf2. These results are consistent 

with uncoupling, or partial loss of PMF in the mutant mitochondria and are 

consistent with elevated whole cell respiration in the absence of Rcf2. 

To summarize, the absence of Rcf2 in the Δrcf1 background does not 

further decrease complex IV content or electron transport from cytochrome c to 

oxygen. The cytochrome c reduction and oxidation rates were not significantly 

different in Δrcf1;Δrcf2 mitochondria from those of the Δrcf1 mitochondria. 

Therefore, decreased electron transport activity due to decreased complex IV 



73 

 

levels cannot explain respiratory growth defect of the Δrcf1;Δrcf2 strain which is 

not as pronounced as in the Δrcf1 strain. Decreased CCCP-dependent 

stimulation of oxygen consumption by the mutant mitochondria suggests that the 

Δrcf1;Δrcf2 uses more of its complex IV capacity to maintain PMF. Similar to 

elevated cellular oxygen consumption in the absence of Rcf2 (Figure 6), these 

results are consistent with the uncoupling, or loss of PMF in the Δrcf2 strain. If 

the capacity to maintain the PMF is worse in the Δrcf1;Δrcf2 than in the single 

mutants, it would likely result in respiratory growth defect, because the PMF 

supports the F1FO ATP synthase-driven ATP synthesis and other mitochondrial 

functions. 

 
 

3.6. Elevated state 2 and lowered state 3 respiration indicated that deletion 
of Rcf1 and Rcf2 impairs OXPHOS coupling. 
 
 
 

To further investigate the nature of OXPHOS uncoupling in Δrcf1;Δrcf2 

mitochondria, we performed oxygen consumption and membrane potential 

measurements. Respiration measurements in intact mitochondria with controlled 

substrates are a powerful bioenergetic tool that reveal many aspects of 

mitochondrial function: oxygen consumption is proportional to the total proton 

current flowing in mitochondria. The activity of the individual ETC complexes, 

ATP synthase activity, and the magnitude of proton leak, could be inferred from 

the OCR’s because of a tight coupling between electron and proton transfer and 

the requirement of the PMF established by the ETC to support the ATP synthesis 

activity of the F1FO ATP synthase enzyme.  
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Isolated mitochondria from the wild type, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

strains were subjected to bioenergetic profiling. In the presence of a respiratory 

substrate, such as NADH, mitochondria respire at a steady low rate (state 2). 

State 2 oxygen consumption counteracts intrinsic proton leak across 

phospholipid membranes in the absence of ongoing ATP synthesis. Elevated 

state 2 oxygen consumption was observed in Δrcf2 and in Δrcf1;Δrcf2 

mitochondria (Figure 9A, Table 7 first column), despite the reduced levels of 

cytochrome aa3 and complex IV. This result suggests the Δrcf2 mitochondria 

exhibit difficulty in maintaining an optimal PMF. Elevated state 2 oxygen 

consumption in Δrcf2 mitochondria from BY4741 strain was previously reported 

but not further investigated (Römpler et al., 2016). Interestingly, state 2 OCR was 

not just elevated in Δrcf1;Δrcf2 mitochondria, but it increased during the time of 

the assay, in contrast to the state 2 OCR of the wild type control (Figure 9B). This 

increase in OCR was observed in Δrcf1;Δrcf2 mitochondria did not appear to be 

linked to PMF consumption by the F1FO ATP synthase since it was still observed 

in the presence of the F1FO ATP synthase inhibitor oligomycin (Figure 9C).  

When ADP is added to mitochondria (condition known as state 3), oxygen 

consumption accelerates since ATP synthesis consumes PMF. Following ADP 

addition, OCR peaks and then returns to pre-ADP level. State 3 OCR peak in the 

Δrcf1 and Δrcf1;Δrcf2 mitochondria was lower than wild type; state 3 OCR peak 

in the Δrcf2 mitochondria was similar to wild type (Figure 10A, Table 7 second 

column). The OCR peak associated with ATP synthesis was not observed in 

Δrcf1;Δrcf2 mitochondria; the increase in OCR was stunted and only slightly 
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Figure 9. Deletion of Rcf1 and Rcf2 results in increased state 2 respiration. (A) State 2 
respiration (oxygen consumption rate,  nmol O2 / minute / mg protein) was measured for 6-8 
minutes after the addition of with NADH. Averages and SEM of at least 4 experiments are shown. 
(B) Changes in OCR with NADH (state 2 respiration) over 10 minute time period. (C) Effect of 
oligomycin on state 2 respiration in Δrcf1;Δrcf2 mitochondria and wild type control. Mitochondria 
(40 µg) were added 0 minutes, immediately followed by oligomycin (state 2oligo) or vehicle 
(DMSO, state 2) as indicated. NADH was added at 1 minute in all traces. One representative 
experiment is shown. 
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Table 7. Oxygen consumption by mitochondria from the Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mutants.  

Mitochondria (40 µg) were isolated from indicated strains grown in YPGal at 30˚C and 

resuspended in buffer. OCR was recorded at 30˚C upon the addition to mitochondria of NADH 

(1mM) (state 2, WT (n=6), Δ1 (n=5), Δ2 (n=9), Δ1;Δ2 (n=4)), or NADH (1mM) + ADP (200 µM) 

(state 3, WT (n=5), Δ1 (n=4), Δ2 (n=4), Δ1;Δ2 (n=7)), or NADH (1mM) + CCCP (10µM) (maximal, 

WT (n=6), Δ1 (n=3), Δ2 (n=4), Δ1;Δ2 (n=3)). No substrates auto-oxidation was detected without 

mitochondria. Average and S.E.M. values are reported, **, p value < 0.01; *, p value < 0.05.  

 

 

 

  OCR     (nmol O2/min/mg) +/-          

ADP       

ratio 

+/-      

CCCP    

ratio NADH NADH + ADP NADH + CCCP 

WT      184 ± 10      423 ± 18      874 ± 63 2.19 4.53 

Δrcf1      207 ± 13 ** 344 ± 22 ** 398 ± 56 1.66 2.03 

Δrcf2 ** 258 ± 17      452 ± 72 ** 530 ± 40 1.75 2.05 

Δrcf1;Δrcf2 ** 269 ± 13 ** 358 ± 16 ** 362 ± 6 1.33 1.35 

 

 

exceeded the observed increasing state 2 OCR (Figure 10B, Figure 9B). 

Following state 3, ADP/ATP equilibrium is restored, and PMF is reestablished, 

the OCR will decrease to a steady low rate again (state 4). The Δrcf1;Δrcf2 

mitochondria were unable to return to the pre-ADP OCR; Δrcf1;Δrcf2 state 4 

OCR remained higher than state 2 OCR, in contrast to wild type control. The 

increased state 2 OCR in the Δrcf1;Δrcf2 mitochondria is utilizing almost all ETC 

capacity and leaves very little reserve (Figure 10A). To account for the state 2 

differences between different mitochondrial types and illustrate the OXPHOS 

capacity in both the Δrcf1 and Δrcf1;Δrcf2 mitochondria, the level of ADP-

stimulated O2 consumption was calculated (i.e. state 3 minus state 2 OCRs at the 

peak time) at 50, 100, and 200 µM ADP. The ADP-stimulated O2 consumption 
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was less in Δrcf1;Δrcf2 mitochondria than in the Δrcf1 at all ADP concentrations 

tested (Figure 10C). This was also reflected by the respiratory control ratio 

(RCR), the ratio of state 3 / state 2 oxygen consumption rate. RCR decreased in 

the absence of Rcf1 and further decreased in the absence of both Rcf1 and Rcf2 

(+/- ADP, wild type = 2.19, Δrcf1 = 1.66, Δrcf2 = 1.75, Δrcf1;Δrcf2 = 1.33, Table 

7, fourth column). As a result, the bioenergetic capacity to support ATP synthesis 

is most compromised in the Δrcf1;Δrcf2.  

The addition of an uncoupling ionophore such as CCCP stimulates the OCR 

because the ETC enzymes are no longer constrained by the PMF (maximal 

OCR. Maximal OCR measured in the Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mitochondria 

with NADH as a substrate was decreased (Table 7). The absolute OCR in 

presence of CCCP obtained with different ETC substrates is not the same. This 

is illustrated by the smaller maximal OCR with NADH as a substrate (Figure 10A, 

Table 7) than with the TMPD/Ascorbate (Figure 8E, Table 6). TMPD supports a 

higher maximal OCR because the electrons directly reduce complex IV via 

endogenous cytochrome c and bypass the upstream ETC enzymes, NADH 

dehydrogenase and complex III. With NADH as the substrate, the CCCP 

stimulation was smaller in the absence of Rcf1 or Rcf2 compared to wild type 

control (Table 7). Smaller CCCP-dependent stimulation of oxygen consumption 

by the mutant mitochondria supports the conclusion that PMF maintenance is 

impaired in mitochondria lacking Rcf1 and/or Rcf2. 
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Figure 10. Lower ATP synthesis associated respiration indicates that Rcf1 and Rcf2 
deletion decreased OXPHOS coupling. (A) Comparison of the OCR with NADH (state 2), 
NADH + 0.2 mM ADP (state 3), and NADH + CCCP (Maximal). Averages of at least 4 
experiments are shown. (B) Changes in OCR with NADH (state 3 respiration). Arrows indicate 
NADH (1 mM) and ADP (50 µM) additions. (C) State 3 - state 2 respiration indicates the OCR 
stimulation associated with ATP synthesis. Arrows indicate NADH (1 mM) and ADP (50-200 µM) 
additions. Averages of at least 4 experiments is shown. 
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Previous experiments already established decreased complex IV levels 

and the electron transport capacity of complex IV and the electron transport 

chain in the absence of Rcf1 and to a lesser extent in the absence of Rcf2. The 

deletion of both Rcf1 and Rcf2 did not lead to greater decrease in the complex IV 

levels and electron transport activity than the deletion of Rcf1 alone. However, 

the respiration profiling indicates that deletion of both Rcf1 and Rcf2 was additive 

with the respect to the OXPHOS coupling, and resulted in a more severe 

impairment than the deletion of Rcf1 alone.  

 

 

3.7. Rcf1 and Rcf2 promote optimal mitochondrial PMF. 

 

 

The mitochondrial PMF driving the protons from the IMS into the matrix is 

a combination of both the mitochondrial membrane potential (Δψ, a charge or 

electrical gradient) and the mitochondrial pH gradient (ΔpH). Typical PMF values 

range from 180 to 220 mV, with Δψ contributing 150-180 mV, and ΔpH of 0.5-1.0 

units contributing the remaining 30-60 mV (Nicholls and Ferguson, 2013).  

To directly investigate the ability of the Δrcf1;Δrcf2 mitochondria to 

establish and maintain PMF during state 2, state 3 depolarization, and state 4 

repolarization, Δψ measurements in isolated mitochondria were performed using 

the lipophilic, cationic dye Rhodamine-123 (R123). R123 dye accumulates within 

mitochondria forming aggregates, which quenches some of its fluorescent 

emission. Under these conditions, once the dye is loaded into the mitochondria, a 

subsequent depolarization releases some of the dye, unquenching the loaded 
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dye, and transiently increasing the fluorescent signal. On the other hand, a 

repolarization will cause more dye to enter the mitochondria and cause a relative 

decrease in a fluorescent signal. R123 is sensitive to mitochondrial charge (Δψ) 

and does not measure pH specifically (Perry et al., 2011). However, respiring 

mitochondria maintain constant PMF, thus the changes in Δψ parallel the 

changes in ΔpH, while different in magnitude.  

Isolated mitochondria were resuspended in a buffer containing R123 and placed 

in a fluorimeter (S. Saddar, PhD dissertation). In wild type mitochondria, stable 

quenching of R123 fluorescence signal was achieved during state 2 respiration 

when NADH was used as a substrate. Upon the addition of ADP to drive state 3 

respiration, a peak in R123 fluorescence signal was observed, corresponding to 

a transient loss of mitochondrial quenching of the dye fluorescence due to 

transient state 3 depolarization (Figure 11A). The depolarization indicates the 

entry of protons through the ATP synthase, which lowers both pH and charge 

components of the PMF. This fast depolarization was followed by somewhat 

slower repolarization due to ETC-dependent proton translocation. At the end of 

repolarization, mitochondria re-establish state 4 membrane potential comparable 

to state 2 prior to ADP addition, and R123 fluorescence quenching. Complex III 

and IV regenerate ΔpH to maintain state 4 PMF. At the end of each experiment, 

the PMF was dissipated by addition of an uncoupler, CCCP. CCCP addition 

completely depolarizes mitochondria, results in some dye molecules exiting the 

mitochondria, and the fluorescence signal of the loaded dye increases, observed 

as unquenching. The magnitude of R123 fluorescence after CCCP addition was  
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Figure 11. Changes in state 2 and state 3 membrane potential in mitochondria from the 
Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mutants. (A) Representative R-123 fluorescence traces. 
Mitochondria (150 µg) were resuspended in 2 ml buffer containing 0.5 µM R-123 (in methanol); 
additions were NADH (2 mM), ADP (45 µM), CCCP (10 µM). (B) Membrane potential (% R123 
fluorescence quenching) was calculated as a % difference in signal in the presence between 
NADH and NADH+CCCP (state 2, black bars) or NADH+ADP and NADH+CCCP (state 3, gray 
bars). The average and SEM are shown (WT (n=3), Δ1 (n=2), Δ2 (n=3), Δ1;Δ2 (n=3)). (C) 
Average time after the addition of ADP to achieve state 4 membrane potential. The average and 
SEM are shown (WT (n=3), Δ1 (n=2), Δ2 (n=3), Δ1;Δ2 (n=3)). 
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set to 100% and R123 fluorescence levels during state 2 and state 3 quenching 

were expressed as % change from that value. The time required to repolarize 

after the addition of ADP was monitored and interpreted to be an indication of the 

capacity of proton pumping by complex IV (as well as proton translocation by 

complex III) to offset dissipation of membrane potential required for ATP 

synthesis. 

All mutants established lesser state 2 membrane potential with NADH 

than the wild type. When energized with NADH substrate (state 2), wild type 

mitochondria quenched ~45% of R123 fluorescence, while Δrcf2 mitochondria 

had ~35% quenching, indicating that these mitochondria have reduced capacity 

to generate PMF. Quenching was similar (~25%) in Δrcf1 and Δrcf1;Δrcf2 (Figure 

11B). State 3 respiration was induced by the addition of 45 µM ADP. Wild type 

mitochondria R123 signal changed from ~45% quenched to ~30% quenched 

during peak depolarization. Lesser depolarization (smaller state 3 peak) was 

observed in Δrcf1 (from ~25% to ~17%) and Δrcf1;Δrcf2 mitochondria (from 

~26% to 16%) showed than the wild type (Figures 11A and 11B). State 3 

depolarization was minimal in Δrcf2 (from ~35% to ~30%). This indicates 

decreased rate of ATP synthesis / entry of protons through the F1FO ATP 

synthase in the absence of Rcf1 and/or Rcf2, possibly because the capacity to 

regenerate ΔpH needed for ATP synthesis is inadequate. 

Repolarization time was increased in Δrcf2 (168 seconds) and Δrcf1;Δrcf2 

mitochondria (295 seconds); Δrcf1;Δrcf2 mitochondria took twice the time to re-

establish state 4 PMF compared to wild type mitochondria (119 seconds) (Figure 
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11C). More severe repolarization delay was associated with the absence of Rcf2 

(Δrcf2 repolarization times were significantly longer than wild type, and 

Δrcf1;Δrcf2 were significantly longer than Δrcf1). These findings suggest that in 

the absence of Rcf2 the ΔpH component of the PMF is limiting, indicating an 

impaired proton translocation during state 3, despite elevated OCR. Further 

lengthening of repolarization time in Δrcf1;Δrcf2 mitochondria indicate that their 

capacity to generate and maintain ΔpH is more severely compromised compared 

to the Δrcf1 and Δrcf2 single mutants.  

 
 
3.8. Deletion of RCF2 sensitized respiratory growth to nigericin. 
 
 
 

Evidence presented so far indicates that the mitochondria become 

uncoupled, i.e. unable to generate and/or maintain an optimal PMF, in the 

absence of Rcf1 and Rcf2. To test whether uncoupling through dissipation of 

ΔpH affects respiration-based growth in the absence of Rcf1 or Rcf2, growth 

assays were done in the presence of low concentration of PMF uncoupler 

nigericin. Nigericin is an electroneutral K+/H+ antiporter which dissipates ΔpH, the 

mitochondrial proton gradient, and diverts the ETC from supporting ATP 

synthesis. Nigericin does not dissipate membrane potential Δψ dependent on the 

exchange of other charged ions, including potassium, across the mitochondrial 

inner membrane. Nigericin action in the cell is specific to mitochondrial 

membrane, and therefore it is suitable for whole cell growth assays (Kovac et al.; 

1982, Kucejova et al., 2005). When the wild type control cells were grown on 
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1µM nigericin, their respiration-based ability to grow on galactose and glycerol 

was compromised but not completely inhibited, indicating that this level of 

nigericin was subtoxic for OXPHOS-based growth. The growth of Δrcf2 on 

galactose displayed a heightened sensitivity to nigericin (Figure 12). Thus, 

despite its normal growth on glycerol media (compared to wild type control) the 

increased nigericin sensitivity of the Δrcf2 mutant indicates its reduced capacity 

to establish/maintain a sufficient PMF, an observation consistent with the 

elevated O2 consumption rate of this mutant. Sensitivity to nigericin in galactose 

media was observed in the Δrcf1;Δrcf2 mutant, but not in the Δrcf1 (Figure 12).  

 
 
 

 

 

Figure 12. Sensitivity of Δrcf1, Δrcf2, and the Δrcf1;Δrcf2 respiratory growth to an 
uncoupler nigericin. Serial dilutions of wild type (WT), Δrcf1 (Δ1), Δrcf2 (Δ2), and the 
Δrcf1;Δrcf2 (Δ1;Δ2) cultures were spotted on YP agar containing 2% glucose, 2% galactose, or 
3% glycerol, with or without 1 µM nigericin, as indicated. The relative cell concentration is 
indicated by the black wedges. 
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Nigericin inhibited the growth of Δrcf2, Δrcf1, and Δrcf1;Δrcf2 on glycerol media  

(Figure 12). 

 

 

Summary 

 

 

This study of the consequences of Rcf1 and Rcf2 deletion for the 

mitochondrial bioenergetic energy conversion demonstrated the importance of 

coupling proton pumping to oxygen consumption, and preventing proton leak 

during the electron transport, known as OXPHOS coupling . ETC complex III and 

complex IV enzymes both generate PMF, which is necessary for the ATP 

synthesis by the F1FO ATP synthase and other essential processes driven by the 

ΔpH-dependent proton current. Decreased OXPHOS coupling and PMF may 

indicate altered complex IV proton pumping stoichiometry or proton back-leak 

through the enzyme, resulting in chronic sustained decreased PMF generation. 

Additinally, the phenomenon of acute instability of PMF or proton leak indicates 

proton leak that may be mediated by complex IV or other sources of proton leak. 

The objective of this research was to better understand the common and 

distinct functions of Rcf1 and Rcf2 and explain the impaired respiration-based 

growth of the Δrcf1;Δrcf2 mutant, as deletion of RCF1 and RCF2 individually 

does not strongly impair respiratory growth. Deletion of RCF1, more so than 

deletion of RCF2, lead to decreased complex IV steady state levels and electron 

transport activity (Figure 7, Figure 8), consistent with cytochrome oxidation 
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activity reported by others (Rydström Lundin et al., 2016). In Δrcf2 mitochondria, 

complex IV content and electron transport from cytochrome c to oxygen were 

somewhat decreased, to 70% of the wild type control. Thus, Rcf2 plays a minor 

role, if at all, in complex IV assembly or stability. With respect to complex IV 

levels and electron transport activity, deletion of RCF1 was epistatic to deletion of 

RCF2 as these were not statistically different between Δrcf1 and Δrcf1;Δrcf2 

mutants.  

Of note, cytochrome c oxidation assay in this study utilized titrated 

cytochrome c reductant (dithiothreitol) to avoid extra reductant remaining in the 

assay, and a detergent (dodecylmaltoside instead of deoxycholate) considered to 

be optimal for complex IV activity assays (Thompson and Ferguson-Miller 1983, 

Rosevear et al., 1980). As a result, cytochrome c oxidase activity reported here 

differs quantitatively from our previously published results obtained using a 

different cytochrome c reduction method (with sodium dithionite) prone to 

artifacts due to excess of the reductant (our previous values were 70% of the wild 

type activity in Δrcf1, 95% of the wild type activity in in Δrcf2, and 20% of the wild 

type activity in in Δrcf1;Δrcf2) (Strogolova et al., 2012). Importantly, cytochrome c 

oxidase activities obtained in all subsequent experiments were not statistically 

different between Δrcf1 and Δrcf1;Δrcf2 mutants. 

Deletion of RCF2 led to reduced respiration-based growth in spite of 

elevated oxygen consumption rate. This is consistent with decreased respiratory 

coupling in the absence of Rcf2. Corroborating these phenotypes, increased 

sensitivity of Δrcf2 respiration-based growth to uncoupler nigericin and lower 
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PMF was observed in Δrcf2 mitochondria despite the elevated oxygen 

consumption. Therefore, respiratory coupling during PMF generation appears to 

be a function distinctly supported by Rcf2, likely by regulation of complex IV 

proton pumping activity.  

The effect of Rcf1 and Rcf2 deletion on the OXPHOS coupling was 

cumulative. Increasing state 2 OCR (NADH) indicated an enhanced and 

progressive proton leak in the Δrcf1;Δrcf2 mitochondria. Interestingly, Δrcf1 and 

Δrcf1;Δrcf2 mitochondria achieved similar state 2 membrane potential, indicating 

that the progressive increase in ETC activity was temporarily able to counteract 

proton leak in Δrcf1;Δrcf2 in the absence of ATP synthesis. Yet monitoring PMF 

return to state 4 after ADP addition revealed that re-polarization is also affected 

by the deletion of Rcf2: Δrcf1 mitochondria repolarized with kinetics similar to 

wild type, whereas Δrcf1;Δrcf2 and Δrcf2 mitochondria repolarized more slowly. 

These membrane potential measurements were consistent with state 3 OCR 

measurements and demonstrated greater OXPHOS coupling defect in 

Δrcf1;Δrcf2 mitochondria than in the Δrcf1 mitochondria. Decreased ETC activity 

in response to ADP is predicted to limit the ATP synthesis rate. ATP synthesis, 

as well as additional PMF-dependent mitochondrial functions: ADP/ATP 

exchange, mitochondrial translation and morphology, are adressed in Chapter 4. 

The results presented in this chapter suggest that Rcf1 and Rcf2 operate 

through complex IV yet exhibit functional differentiation: Rcf1 plays a more 

prominent role than Rcf2 in assembly or stability of complex IV and electron 

transport capacity from cytochrome c to oxygen. However, Rcf2 alone can 
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maintain PMF and ATP synthesis at this level of ETC activity as demonstrated by 

Δrcf1 respiratory growth capacity. Membrane potential measurements indicate 

that Δrcf1 mitochondria maintained somewhat low state 2 PMF, yet retained 

capacity to stimulate proton-pumping activity under state 3 conditions and re-

establish state 4 membrane potential with kinetics similar to the wild type control. 

Deletion of Rcf2 appears to increase oxygen consumption without corresponding 

increase in membrane potential, or PMF. Results presented here suggest that 

Δrcf1;Δrcf2 suffers from combined lower complex IV levels and lower proton 

pumping of the remaining complex IV. This complex IV pumping defect resulting 

in OXPHOS uncoupling is consistent with the previously proposed role fore HIGD 

proteins in modulating complex IV proton pathways (Hayashi et al., 2015) and 

redox potential (Schäfer et al., 2018) and will be discussed more in chapter 5.  

.    
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CHAPTER 4. Rcf1 and Rcf2 deletion affects PMF-dependent mitochondrial 
pathways and several lipid-binding OXPHOS proteins 

 
 
 

Introduction 
 
 
 

As shown in Chapter 3, Rcf1 and Rcf2 support complex IV ability to 

establish protonmotive force (PMF). The PMF is necessary for many functions 

including mitochondrial protein import and translocation across the inner 

membrane (IM) and outer membrane (OM) of mitochondria. A loss of PMF can 

impair maturation and proteolytic degradation of newly synthesized and 

misfolded proteins by a variety of mitochondrial proteases and peptidases 

(Schleyer et al., 1982, Clarkson and Poyton, 1989, Baker and Schatz, 1991, 

Martin et al., 1991, Herrmann et al., 1995, Geissler et al., 2000, Fox 2012). In this 

chapter, mitochondrial protein synthesis and processing of mitochondrial and 

nuclear encoded proteins in the absence of Rcf1 and Rcf2 were examined and 

some changes consistent with lower PMF (ΔpH) are reported. 

PMF is also essential for ATP synthesis by the F1FO ATP synthase 

(complex V) and the activity of metabolite carriers which provide the substrates 

for ATP synthesis, most notably ADP/ATP carrier (AAC) and phosphate carrier 

(PIC). In this chapter, the steady-state levels of F1FO ATP synthase, PIC and 

AAC were evaluated. Activity of AAC (mitochondrial ADP/ATP exchange) and 

F1FO ATP synthase (ATP synthesis and hydrolysis rates) were assayed in the 

absence of Rcf1 and/or Rcf2. Evidence is presented in this chapter that AAC 

molecular environment is altered in the absence of Rcf1. However, AAC-
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mediated adenine nucleotide exchange function appears to remain normal in the 

absence of Rcf1 and Rcf2. PMF-dependent ATP synthesis rate by F1FO ATP 

synthase is decreased in the absence of Rcf1 and Rcf2. Additionally, steady-

state levels of some of the F1FO ATP synthase protein subunits, and PMF-

independent ATP hydrolysis and oligomycin sensitivity of this enzyme were also 

decreased. Rcf1 is proposed to be a lipid chaperone of Cox3 (Strogolova et al., 

2012, Garlich et al., 2017), and may influence lipid composition of a wider range 

of OXPHOS proteins. Lipids are essential for stability and function of F1FO ATP 

synthase, AAC, and PIC. It is possible that Rcf1 and Rcf2 as lipid chaperones 

support stability and function of these enzymes in a PMF-independent manner.  

In addition to OXPHOS enzyme activity, PMF regulates mitochondrial 

network morphology. Loss of membrane potential in individual organelles triggers 

mitochondrial network fragmentation. Mitochondrial network in YPGal growing 

WT, Δrcf1, Δrcf2, Δrcf1;Δrcf2 cells was examined. The Δrcf1;Δrcf2 mitochondrial 

networks are not more fragmented than the wild type mitochondrial networks. 

Yet, Δrcf1;Δrcf2 mitochondrial networks have a unique appearance, 

characterized by decreased surface area and uneven fluorescent signal 

distribution of a mitochondrially-targeted GFP molecule. 

 
 
Results 

 
 
4.1. Mitochondrial translation and protein processing in the absence of 
Rcf1 and Rcf2. 
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Mitochondrial membrane potential is not required for synthesis of proteins 

encoded in the mitochondrial genome (Fox 2012), but it supports the maturation 

of mitochondrially synthesized protein Cox2 after translation (Clarkson and 

Poyton, 1989, Herrmann et al., 1995). Mitochondrial membrane potential also 

controls import and maturation of many nuclear-encoded mitochondrial 

preproteins into the mitochondria (Schleyer et al., 1982, Baker and Schatz, 1991, 

Martin et al., 1991, Geissler et al., 2000). 

Mitochondrial translation is a key part of mitochondrial protein synthesis 

essential for the assembly of OXPHOS enzymes. Mitochondrial translation 

supplies subunits of respiratory supercomplexes III (cytochrome b), IV (Cox1, 

Cox2, and Cox3), and V (Atp6, Atp8 and Atp9) as well as Var1, a component of 

small subunit of the mitochondrial ribosome. 

To test whether altered PMF in the absence of Rcf1 and/or Rcf2 

influenced the synthesis of mitochondrially encoded subunits, mitochondrial 

translation in energized mitochondria was assessed in the presence of [35S]-

methionine. [35S]-labeled translation products were analyzed using SDS-PAGE, 

Western blotting, and autoradiography. The Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mitochondria were capable of translation, although the amount of translated 

products was lowered in Δrcf2 (Figure 13). However, the mitochondrial 

translation pattern was altered compared to that of the wild-type control. 

Specifically, the translation of Var1, Cox2, and Cox3 increased in Δrcf1 

mitochondria; translation of  Cox1, Cox3, Cytb and Atp8 was decreased in the  
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Figure 13. Deletion of Rcf1 and Rcf2 alters mitochondrial translation profile and leads to 

accumulation of Cox2 precursor. In organello translation was performed as described in 

Materials and Methods and products assessed by SDS-PAGE and autoradiography. The 

positions of the molecular mass standards and mitochondria-encoded proteins, Var1, Cox1, 

Cox2, cytochrome b (Cytb), Cox3, Atp6, Atp8, and Atp9, are indicated. Asterisk (*) indicates Cox2 

precursor.  

 

 

 

Δrcf2 mitochondria; and the presence of some Cox2 precursor (Cox2p) was 

observed in Δrcf1 and Δrcf1;Δrcf2 mitochondria (Figure 13, marked with an 

asterisk).  

The Cox2 N-terminal signal sequence is translocated from the matrix 

where Cox2p translation takes place into the IMS, where the signal sequence is 

proteolytically removed by the Imp1 protease on the IMS side of the IM (Clarkson 
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and Poyton, 1989, Herrmann et al., 1995). The translocation is supported by both 

the Δψ and ΔpH (Herrmann et al., 1995). Membrane potential is also required for 

translocation of C-terminus of Cox2 to the IMS and proper insertion of mature 

Cox2 into the IM in Nout-Cout orientation (Herrmann et al., 1995).  

Accumulation of Cox2p is indicative of lower Δψ and/or ΔpH or impaired Imp1 

function in Δrcf1 and Δrcf1;Δrcf2 mitochondria. To test Imp1 function, processing 

of other substrates cytochrome b2 (Cyb2) and NADH-cytochrome b5 reductase 

(Mcr1) were analyzed (Figure 14). Both Cyb2 and Mcr1 are nuclear-encoded 

proteins that are imported into the mitochondria in a Δψ-dependent manner 

(Geissler et al., 2000, Schneider et al., 1991). Mcr1 is a 34-kDa protein that can 

be delivered to two locations: OM (where full-length Mcr1 is present, Mcr134) and 

IM (where Mcr1 is processed to a smaller, soluble form (Mcr132) by Imp1 

protease). Mcr1 import into the IM is Δψ-dependent (Hahne et al., 1994, Haucke 

et al., 1997). Similarly, Cyb2 precursor is imported into the IM in Δψ-dependent 

manner and Imp1 processing of IM-inserted Cyb2 releases mature Cyb2 as 

soluble IMS protein. The steady-state levels of processed Mcr1 (Mcr132) were not 

decreased and even slightly elevated in Δrcf1 and Δrcf1;Δrcf2 mitochondria, 

resulting in increased ratio of Mcr132:Mcr134 This ratio difference may indicate 

increased  Δψ. No inhibition of Imp1 processing of Cyb2 was observed, which 

indicates that Imp1 proteolytic activity is not impaired in the absence of Rcf1 and 

Rcf2 (Figure 14B).   Therefore, we conclude that Cox2p maturation protease 

Imp1 activity is not impaired in the absence of Rcf1 and Rcf2, and the Cox2p 

maturation was impaired due to decreased ΔpH component of the PMF.  
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Figure 14. Changes in protein processing observed in the absence of Rcf1 and Rcf2. 

Steady state levels of non-OXPHOS proteins in wild type (WT) and Δrcf1;Δrcf2 (Δ1;Δ2) evaluated 

using SDS-PAGE and Western blotting. (A) Steady-state levels of IMS protein Erv1, IMS protein 

cytochrome b2 (Cyb2) and Mcr1, which is distributed from the IM to the IMS by proteolytic 

processing. Tim44 was used as a loading control. (B) Proteolytic processing of Pcp1 substrate 

Mgm1 and Pcp1/i-AAA substrate Ccp1. (C) Processing of i-AAA substrate MrpL32 and Pcp1/i-

AAA substrate Ccp1. Mitochondria from Δyta10 strain (lacking i-AAA protease) were used as a 

reference. (p, precursor protein; m, mature protein). 

 

 

 

Import of another nuclear encoded protein into the IMS, Erv1, is not PMF-

dependent; rather, its import into the IMS is mediated by mediated by chaperone 

Mia40. Erv1 levels were increased in in Δrcf2 and in Δrcf1;Δrcf2 mitochondria, 

indicating that PMF-independent protein import is not decreased, and is even 

increased (Figure 14B).  

In the course of another experiment, we observed accumulation of some 

precursor form of cytochrome c peroxidase (Ccp1) in the absence of Rcf1 and 
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Rcf2, suggesting a protein control defect. Ccp1p processing requires m-AAA 

protease (Yta10/Yta12), which pulls Ccp1 precursor, Ccp1p, out of the IM into 

the IMS. The pulling by m-AAA protease requires ATP hydrolysis and is impaired  

in mutants deficient in Yta10 (Δyta10) (Tatsuta et al., 2007, Michaelis et al., 

2005). The m-AAA protease also processes another substrate, MrpL32, which 

does not depend on ATP hydrolysis (Nolden et al., 2005, Schmidt et al., 2011). 

Processing of MrpL32 precursor was normal in the absence of Rcf1 and Rcf2 

(Figure 14C). This indicates that pulling activity of the m-AAA protease, but not 

its proteolytic activity, is affected in the Δrcf1;Δrcf2 mitochondria, likely related to 

lower ATP synthesis or an altered membrane environment in this mutant. ATP-

dependent surveillance proteases - i-AAA and m-AAA proteases - are involved in 

the protein control of the IMS and matrix, where they monitor and remove non-

assembled and misfolded membrane proteins such as Ccp1p, Cox2p and Erv1 

(Schreiner et al., 2012). However, pCox2 was not detectable in mitochondria 

isolated from Δrcf1;Δrcf2 cells, indicating that in vivo it is turned over and does 

not accumulate.  

In summary, the protein processing defects observed in Δrcf1, and to a 

greater extent in Δrcf1;Δrcf2 mitochondria indicate that Rcf1 and Rcf2 indirectly 

support ΔpH-dependent and ATP-dependent protein translocation.  

 
 
4.2. F1FO ATP synthase. 
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The PMF is the driving force for the ATP synthesis by mitochondrial F1FO 

ATP synthase. This enzyme is composed of F1, FO, and stator sectors which are 

assembled separately and join to form F1FO ATP synthase (complex V). 

Transmembrane FO sector of the F1FO ATP synthase is a proton channel largely 

composed of an oligomeric ring of Atp9 subunits. The FO sector interacts with 

Atp6 and Atp8 subunits and a number of other nuclear encoded transmembrane 

proteins; a linker (stator) joins FO and F1 sector coupling their rotation. Proton 

translocation from the IMS to the matrix through Atp6-Atp9 oligomer of the FO 

sector rotates the enzyme, driving ATP synthesis from ADP and phosphate in the 

catalytic sites of the matrix F1 sector. If PMF is dissipated, F1FO ATP synthase 

can reverse its direction, operating as a secondary proton pump. In this case, 

protons are translocated from the matrix to the IMS powered by ATP hydrolysis 

catalyzed by F1 producing ADP and phosphate. Both ATP synthesis and ATP 

hydrolysis can be inhibited by oligomycin, which binds to a conserved Glu59 of 

Atp9 subunit and blocks the FO proton channel (Symersky et al., 2012). 

Similar to other membrane proteins, the position of F1FO ATP synthase 

(complex V) in the IM is sealed by interactions with membrane lipids (Mehdipour 

and Hummer, 2016).  Complex V is found at cristae rims, where it normally forms 

dimeric supercomplexes, V2, which are compatible with highly curved 

phospholipid environment. Specific, yet intermittent (on and off), interactions of 

cardiolipin (CL) with a conserved Lys43 of the Atp9 subunit promote assembly, 

stability, and smooth rotation of the ATP synthase required for its catalytic 

function (Duncan et al., 2016). 
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4.2.a. F1FO ATP synthase levels in the absence of Rcf1/2. 
 
 
 
The levels of the F1Fo ATP synthase complex were initially examined using BN-

PAGE, SDS-PAGE, and Western blotting. BN-PAGE / Western blotting indicated 

that the levels of the roughly 700-kDa F1FO ATP synthase complex were similar 

in wild-type, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mitochondria (Figure 15A). Similarly, 

SDS-PAGE and Western blotting indicated that the levels of the Atp4 (stator 

subunit) were nor changed. However, steady-state levels of Atp9 were 

decreased in the absence of Rcf1 and Rcf2 (Figure 15B). Atp9 protein self-

oligomerizes even in presence of SDS, so it was detected following TCA 

precipitation. Possibly, Atp9 self-oligomers are structurally different and more 

difficult to break in Δrcf1;Δrcf2 mitochondria. Additionally, the levels of F1 subunit 

Atp1 and peripheral subunit e (Sue) essential for complex V stability and 

dimerization, were decreased in Δrcf1;Δrcf2 mitochondria (Figure 15B). The 

decreased detection of F1Fo ATP synthase subunits may indicate moderate 

decrease in stability of the enzyme or assembly defects (e.g., decreased 

stoichiometry of Atp9 oligomers) in the absence of Rcf1 and Rcf2 which was not 

detected on a BN-PAGE.  
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Figure 15. F1FO ATP synthase subunit Atp9 levels are altered in absence of Rcf1 and Rcf2, 

while the levels of the assembled F1FO ATP synthase are unchanged. (A) Mitochondria (30 

µg protein) isolated from wild-type (WT), Δrcf1, Δrcf2, and the Δrcf1;Δrcf2 strains were solubilized 

in 0.6% DDM and subjected to BN-PAGE analysis, Western blotting, and immunodecoration with 

antibodies to F1 sector of ATP synthase (F1 α/β). (B) Steady-state levels of F1FO ATP synthase 

subunits. Mitochondria (25 μg protein) from wild-type (WT), Δrcf1, Δrcf2, and the Δrcf1;Δrcf2 

strains were subjected to SDS-PAGE, Western blotting and immunodecoration with the 

antibodies to Atp1 (F1 sector subunit), Atp4 (stator subunit), subunit e (Sue) (peripheral 

transmembrane subunit), Atp9 (Fo sector subunit). To detect Atp9, mitochondrial proteins were 

TCA-precipitated before SDS-PAGE, because Atp9 oligomer can be SDS-resistant. Tim44 was 

used as a loading control. (C) A diagram indicates relative position of the subunits analyzed.  
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4.2.b. F1FO ATP synthase activity in the absence of Rcf1/2. 
 
 
 

Oligomycin-sensitive ATP synthesis by the F1FO ATP synthase was 

measured using hexokinase/glucose-6-phosphatase coupled end point assay 

(Materials and Methods). ATP synthesized and exported (by ADP/ATP exchange 

via AAC) by wild type, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mitochondria when fueled 

with ADP and ethanol as a ETC substrate, was measured. Oligomycin-sensitive 

ATP synthesis was found to be decreased in mitochondria lacking Rcf1 and Rcf2 

(Δrcf1=69%, Δrcf2=84%, and Δrcf1;Δrcf2=45% of wild-type) (Table 8 third 

column). The decrease was greatest in Δrcf1;Δrcf2 mitochondria. To confirm that 

the ATP export from the mitochondria reflected total ATP synthesis, a similar 

experiment was conducted, except that the mitochondria were solubilized with  

detergent to quantify total ATP before and after ATP synthesis. In this 

experiment, oligomycin-sensitive ATP synthesis by Δrcf1;Δrcf2 mitochondria was 

measured to be 46% of the wild-type (Table 9 third column), providing support for 

the extent of the ATP synthesis impairment detected by the oligomycin-sensitive 

ATP export assay. Such decrease in ATP synthesis in Δrcf1;Δrcf2 mitochondria 

is consistent with the inability to maintain optimal PMF during state 3 respiration 

in the absence of Rcf1 and Rcf2.   
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Table 8. ATP synthesis and export decreased in the absence of Rcf1 and/or Rcf2.  

Mitochondria (40 µg) were resuspended in ATP detection buffer containing ethanol (ETC 

substrate) with oligomycin (1 µM) (+ Oligo) or DMSO ( - Oligo). Reaction was started by addition 

of ADP (100 nmol), incubated for 5 minutes at 30˚C. Mitochondria were pelleted through 

centrifugation, and supernatant collected. ATP in supernatant was measured with ATP detection 

enzymes, as described in Materials and Methods. The amount of ATP synthesized was 

calculated by subtracting the amount of ATP in a control reaction (no ethanol, 1.0 µM oligomycin, 

100 nmol ADP; i.e., pre-existing mitochondrial ATP). Wild type, Δrcf1, Δrcf2  and Δrcf1;Δrcf2 

oligomycin-sensitive ATP synthesis (calculated by subtracting second column from first column, 

and expressed as % of wild-type (WT)) is reported in third column; statistically significant values 

(p<0.05) are indicated by an asterisk. ATP synthase sensitivity to oligomycin, calculated by 

comparing ATP synthesis in presence and absence of oligomycin, is reported in last column. 

Average and S.E.M. values (WT (n=6), Δ1 (n=4), Δ2 (n=4), Δ1;Δ2 (n=6)); **, p value < 0.01. 

 

 

 ATP synthesis 

Sensitivity to 

oligomycin              

% inhibition  

 

 - oligomycin                                                  

nmol ATP 

 

 + oligomycin             

nmol ATP 

 oligomycin 

sensitive               

% of WT 

WT 46.9 ± 0.5 1.9 ± 1.3    100% 96% 

Δrcf1 34.2 ± 2.2 3.3 ± 0.4 **69% 90% 

Δrcf2 42.6 ± 1.5 4.8 ± 2.2 **84% 89% 

Δrcf1;Δrcf2 24.8 ± 1.2 4.7 ± 0.8 **45% 81% 

 

 

 
Table 9. Total ATP synthesis is decreased in absence of Rcf1 and Rcf2. 

Mitochondria (40 µg) were resuspended in ATP detection buffer containing succinate (ETC 

substrate) and oligomycin (20 µM) or DMSO. Reaction was started by addition of ADP (200 nmol) 

and incubated for 3 minutes at 30˚C. Mitochondrial membranes were solubilized with 

deoxycholate (0.2%) for 5 minutes, and the total ATP in the sample was measured with ATP 

detection enzymes. 

 

 Total ATP  

 

 - oligomycin                                                  

nmol ATP 

 + oligomycin                      

nmol ATP 

oligomycin-sensitive               

% of WT 

WT 49.07 24.7 100% 

Δrcf1;Δrcf2 31.07 19.79 46% 
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4.2.c. Sensitivity of F1FO ATP synthase to oligomycin. 
 
 
 

ATP synthesis in oligomycin-treated Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mitochondria was observed to be greater than in wild type mitochondria (Table 8, 

second column). Oligomycin sensitivity is calculated as ATP synthesis in 

oligomycin-treated sample relative to ATP synthesis in absence of oligomycin. In 

addition to the decreased ATP synthesis rate, sensitivity of ATP synthesis to 

oligomycin was somewhat decreased in Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mitochondria (Table 8, last column). Sensitivity of ATP synthesis to oligomycin 

was not measured when mitochondria were solubilized with detergent since the 

ATP present in oligomycin treated mitochondria likely reflected total 

mitochondrial ATP, and not ATP synthesis (Table 9, second column).  

To further explore oligomycin sensitive ATP synthesis, the concentration of 

oligomycin in the assay was titrated (0.5 µM and 0.1 µM). Wild type mitochondria 

were equally sensitive to 1.0 µM and 0.5 µM oligomycin concentration, which 

inhibited 89% and 88% of ATP synthesis, respectively. In contrast, Δrcf1 and 

Δrcf1;Δrcf2 mitochondria were less sensitive to 0.5 µM oligomycin concentration, 

which inhibited 78% and 68% of ATP synthesis, respectively (Table 10). 

Oligomycin sensitivity was not decreased in Δrcf2 mitochondria. The 0.1 µM 

oligomycin concentration inhibited 50% or less ATP synthesis in wild type, Δrcf1 

and Δrcf1;Δrcf2 mitochondria. 
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Table 10. Oligomycin sensitivity of ATP synthase in the absence of Rcf1/Rcf2.  

Mitochondria (40 µg) were resuspended in ATP detection buffer (0.5 ml) containing ethanol and 

oligomycin (1.0 µM, 0.5 µM, 0.1 µM) or DMSO (no oligomycin) (-). Reaction was started by 

addition of ADP (100 nmol), incubated for 5 minutes at 30˚C, mitochondria were pelleted, and 

supernatant collected. ATP in supernatant was measured. The amount of ATP synthesized was 

calculated by subtracting ATP in a control reaction (no ethanol, 1.0 µM oligomycin, 100 nmol 

ADP, i.e. pre-existing mitochondrial ATP). ATP synthesis is reported in the upper table (n=2 for 

every condition). ATP synthesis inhibition (% sensitivity) relative to ATP synthesis in absence of 

oligomycin, is reported in the lower table. 

 

 

 ATP synthesis [nmol] 

[oligomycin], µM 0 0.1 0.5 1.0 

WT 47.8 ± 0.2 27.1 ± 1.2 6.0 ± 0.0 5.2 ± 0.4 

Δrcf1 31.9 ± 4.1 19.1 ± 0.5 7.1 ± 0.4 2.8 ± 0.5 

Δrcf2 44.7 ± 2.2 18.2 ± 1.8 2.2 ± 0.2 3.3 ± 1.0 

Δrcf1;Δrcf2 23.1 ± 2.7 12.8 ± 0.1 7.3 ± 1.0 2.4 ± 0.5 

 

 % inhibition by oligomycin 

[oligomycin], µM 0.1 0.5 1.0 

WT 43% 88% 89% 

Δrcf1 40% 78% 91% 

Δrcf2 59% 95% 93% 

Δrcf1;Δrcf2 45% 68% 90% 
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To determine whether lower sensitivity of OXPHOS ATP synthesis to 

oligomycin was observed not only in isolated mitochondria, but also in cells 

lacking Rcf1 and Rcf2, the effect of oligomycin on respiratory growth was 

evaluated. When oligomycin concentration in the growth media was titrated to the 

threshold of inhibiting respiratory growth of wild-type cells (0.1-0.3 mg/L), the 

respiratory growth of the Δrcf1 and Δrcf1;Δrcf2 mutant was not inihibted by this 

concentration of oligomycin (Figure 16A, third panel). Greater concentration of 

oligomycin (1.0 mg/L) was needed to inhibit respiratory growth of these mutants 

(Figure 16A, last panel). We conclude that these experiments show a decreased 

sensitivity to oligomycin in the absence of Rcf1. 

Some mutations trigger mitochondrial signaling pathway (called retrograde 

response) resulting in expression of multidrug resistance transporter genes such 

as PDR5, which confer resistance to oligomycin and other drugs, e.g. 

cycloheximide (Katzmann et al., 1995). To test whether Δrcf1;Δrcf2 cells were 

multidrug resistant, growth on cycloheximide containing media was evaluated 

(Figure 16B). The Δrcf1;Δrcf2 cells did not display decreased sensitivity to 

cycloheximide on glucose or glycerol media. These results lead us to conclude 

that changes in oligomycin binding to F1FO ATP synthase, not the expression of 

multidrug resistance pumps, confers the oligomycin resistant growth to the Δrcf1 

and Δrcf1;Δrcf2 strains. Alternatively, an increased level of mitochondrial 

substrate level phosphorylation may explain increased ATP synthesis in 

presence of oligomycin. 
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A 

      

 

B 

     

 

 

Figure 16. Decreased inhibition of respiratory growth by oligomycin in the absence of 

Rcf1. (A) Serial dilutions wild type, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 cultures were spotted on rich 

(YP) agar containing glucose (2%) or glycerol 3% containing low (0.3 mg/L) or high concentration 

(1.0 ml/L) of oligomycin and incubated for 3 days (Glucose) or 6 days (glycerol) at 30˚C. (B) 

Serial dilutions were performed as in (A) on agar containing  no or 100 ng/ml cycloheximide and 

incubated for 5 days at 30˚C. 

 

 

Oligomycin partitions to lipid-water interface and binds Atp9; rotation of the 

F1FO-ATP synthase FO sector brings oligomycin deeper into the transmembrane 

region where it stalls the rotation at the site of Atp9 interaction with subunit a, and 

therefore blocks the passage of protons (Zhou and Faraldo-Gómez, 2018). 

Decreased inhibition of ATP synthase by oligomycin is consistent with altered 

conformation of Atp9 or its affinity for oligomycin in the absence of Rcf1. 
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4.2.d. F1FO ATPase activity in the absence of Rcf1/2. 
 
 
 
When PMF is dissipated, the rotation of F1FO ATP synthase can be reversed, 

resulting in ATP hydrolysis (ATPase) activity (Bustos et al., 2005). ATPase 

activity was initially measured in mitochondria solubilized with Triton X-100 

(0.0375%). The reaction was carried out for 2 minutes and stopped by the 

addition of trichloroacetic acid (TCA) to denature proteins; phosphate in the 

supernatant was measured. Oligomycin-sensitive ATP hydrolysis by detergent-

solubilized Δrcf2 mitochondria was similar to the wild-type; and in Δrcf1 and 

Δrcf1;Δrcf2 mitochondria ATP hydrolysis was decreased, to 73% and 77% of the 

wild-type ATP hydrolysis rate, respectively (Table 11). Decreased ATP hydrolysis 

was consistent with decreased Atp9 content in the Δrcf1;Δrcf2 mitochondria, but 

contrasts with elevated Atp9 levels detected in Δrcf1 mitochondria (Figure 15B), 

indicating altered assembly or stability of F1Fo ATP synthase. 

Detergent solubilization of mitochondria can sometimes disturb the 

interaction of membrane-embedded Fo sector of ATP synthase with the F1 sector.  

Free F1 sector can still hydrolyze ATP but is not sensitive to oligomycin because 

is no longer associated with Fo sector. Therefore, sensitivity of ATP hydrolysis to 

oligomycin in this assay does not accurately reflect oligomycin sensitivity of intact 

enzyme, and it was low in wild type mitochondria (66%, Table 11 last column).  

ATP hydrolysis in presence of oligomycin in Δrcf1 and Δrcf2 mitochondria was 

greater than in wild-type mitochondria (Table 11 second column); this was 

consistent with the increased Atp9 levels detected (Figure 15B) and indicates   
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Table 11. ATP hydrolysis in mitochondrial lysate. Mitochondria (50 µg) was solubilized in 

buffer (0.9 ml, 0.2 M KCl, 3 mM MgCl2, 0.0375% TritonX-100, 10 mM Tris-HCl, pH 8.4) at 30˚C in 

presence or absence of oligomycin (20 μM). Reaction was started by addition of 5 mM ATP and 

stopped with TCA after 2 minutes, followed by centrifugation for 10 minutes at 10000 rpm. 

Phosphate concentration in supernatant was measured using ammonium molybdate-ferrous 

sulfate colorimetric assay. Average and S.E.M. values are reported (WT (n=27), Δ1 (n=7), Δ2 

(n=9), Δ1;Δ2 (n=19)). 

 

 

 

 

 

Table 12. ATP hydrolysis in intact mitochondria. Mitochondria (50 µg) was resuspended in 

buffer (0.9 ml, 0.2 M KCl, 3 mM MgCl2, 10 mM Tris-HCl, pH 8.4) at 30˚C in presence or absence 

of oligomycin (20 μM). Reaction was started by addition of 5 mM ATP and stopped with TCA after 

2 minutes, followed by centrifugation for 10 minutes at 10000 rpm. Phosphate concentration in 

supernatant was measured using ammonium molybdate-ferrous sulfate colorimetric assay. 

Average and S.E.M. values are reported (WT (n=7), Δ1 (n=5), Δ2 (n=5), Δ1;Δ2 (n=7)).  
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decreased stability of F1FO ATP synthase in these mitochondria. 

ATP hydrolysis was next measured in intact mitochondria (without 

detergent) (Dienhart et al., 2002). ATP hydrolysis in intact mitochondria was 

slower than in detergent solubilized mitochondria (similarly for wild type and 

mutant samples), reflecting the limitation posed by the rate of ATP import into the 

mitochondrial matrix, which is catalyzed by the ADP/ATP carrier (AAC). Also, 

ATP hydrolysis was more sensitive to oligomycin in intact mitochondria than in 

detergent mitochondria, reflecting that the association of F1 and FO sectors of 

ATP synthase was not disturbed. ATP hydrolysis activity in intact Δrcf1 and was 

similar to that of the wild type mitochondria. This contrasted with the ATP 

hydrolysis in detergent solubilized Δrcf1 mitochondria. We were unable to 

determine why ATP hydrolysis in detergent solubilized, but not in intact Δrcf1 

mitochondria, was impaired. ATP hydrolysis activity in Δrcf2 and Δrcf1;Δrcf2 

mitochondria was decreased. Oligomycin-sensitive ATP hydrolysis in Δrcf2 and 

Δrcf1;Δrcf2 was measured to be 64% and 52% of the wild-type ATP hydrolysis 

rate, respectively (Table 12). Sensitivity of ATP hydrolysis to olifomycin was not 

significantly different in the absence of Rcf1 or Rcf2 (Table 12, last column). 

ATP hydrolysis activity in intact mitochondria normally pumps the protons 

out of the matrix and can sustain membrane potential, although at a lower level 

than the PMF generated by the electron transport chain (ETC) (Wang et al., 

2007). The capacity of the ATP synthase to reverse its direction and establish the 

PMF upon inhibition of ETC was measured in intact mitochondria using 

membrane potential indicator, Rhodamine-123 (R-123) and in collaboration with 
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Dr. David Mueller (Rosalind Franklin University, Chicago, IL), using previously 

established methods (S. Saddar, PhD dissertation). The ATPase (F1FO ATP 

synthase reversal) activity generated the membrane potential (Table 13) in Δrcf1, 

Δrcf2, and Δrcf1;Δrcf2 mitochondria and similar to the wild type mitochondria, 

indicating that F1FO ATP synthase retained proton pumping capacity through the 

Fo sector. However, the membrane potential was only monitored for 1 minute and 

it is possible that membrane potential was not maintained for a long period of 

time. 

 

 

Table 13. Capacity of ATPase to establish mitochondrial membrane potential upon 

inhibition of ETC. Mitochondrial membrane potential generated by ATP hydrolysis was 

measured using Rhodamine-123 (R-123) as described in Materials and Methods. Membrane 

potential established by ATPase (% fluorescence quenching) was calculated as a % difference in 

signal with 2 mM ATP, 1 mM MgCl2 and signal following depolarization (oligomycin and CCCP 

addition).The average and SEM are shown (WT (n=4), Δ1 (n=4), Δ2 (n=2), Δ1;Δ2 (n=4)). 

 

 

 

  ATP hydrolysis associated fluorescence quenching,  

WT 19 ± 1% 

Δrcf1 26 ± 1% 

Δrcf2 17 ± 6% 

Δrcf1;Δrcf2 20 ± 1% 

 

 

 

The inconsistencies observed between the normal levels of F1Fo ATP 

synthase complex on a BN-PAGE, increased Atp9 subunit levels on an SDS-



109 

 

PAGE, and different ATP synthesis and ATP hydrolysis rates in the in Δrcf1 and 

Δrcf2 mitochondria, are without a comprehensive explanation. 

The ATP hydrolysis in the Δrcf1;Δrcf2 mitochondria was consistently 

decreased. We conclude that not only decreased PMF generation by the ETC, 

but also decreased ATP synthase levels and/or stability contributed to the 

decreased ATP synthesis in the absence of Rcf1 and Rcf2.  

 
 

4.3. ADP/ATP carrier (AAC) 
 
 
 

4.3.a. Stability and environment of AAC in the absence of Rcf1/2. 
 
 
 

Exchange of metabolites across the IM is mediated by metabolite carrier 

proteins of the mitochondrial carrier family (MCF). Critical MCF proteins AAC and 

PIC preferentially import ADP and phosphate, respectively, into the mitochondrial 

matrix. AAC catalyzes exchange of ADP3- for ATP4- (Nicholls and Ferguson, 

2013). The directionality of the AAC transport that is driven by the Δψ maintains 

the ATP/ADP ratio in the mitochondrial matrix hundreds of times lower than the 

ATP/ADP ratio in the cytoplasm (Gout et al., 2014). PIC catalyzes H2PO4
-/H+ 

symport that is driven by ΔpH (Nicholls and Ferguson, 2013). Due to the action of 

PIC, the phosphate concentration in mitochondrial matrix is 3 times greater than 

in the cytoplasm. The decrease in PMF in the Δrcf1;Δrcf2 mitochondria may 

therefore be limiting for ADP/ATP exchange or phosphate import. 
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To test whether deletion of Rcf1 and Rcf2 influenced AAC and PIC, 

steady-state levels of these proteins were assessed by Western blotting. The 

AAC and PIC levels were not adversely affected in the absence of Rcf2 

compared to the wild-type control, while PIC levels were even higher in the 

absence of Rcf1 (Figure 17A).  

AAC is found in association with the III-IV and TIM23 supercomplexes, yet 

AAC interaction with Rcf1 is independent of complex III and IV (Strogolova et al., 

2012). Factors that influence AAC interaction with the supercomplexes are 

largely unexplored. To test whether removal of Rcf1 and/or Rcf2 would alter AAC 

association with the III-IV and TIM23 supercomplexes, His‐tagged Aac2p was 

expressed in wild-type and Δrcf1;Δrcf2 cells and mitochondria were isolated and 

solubilized in 0.6% digitonin, which preserves AAC association with the 

supercomplexes (Dienhart and Stuart, 2008). HISAac2 was subjected to affinity 

purification (Ni-NTA pull-down) assay. Affinity co-purification of complex IV 

component Cox3 and TIM23 complex component Tim17 with a HISAac2 isoform 

was detected in wild-type mitochondria. HISAac2  co-purified Tim17 and Cox3 in 

Δrcf1;Δrcf2 mitochondria; less Cox3 was affinity purified with Aac2, reflecting 

decreased levels of complex IV in Δrcf1;Δrcf2 mitochondria (Figure 17B). We 

conclude that AAC association with the supercomplexes does not require Rcf1 

and Rcf2. 
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Figure 17. AAC steady state levels and environment in the absence of Rcf1 and Rcf2. (A) 

Steady-state levels of MFC carriers AAC and PIC. Mitochondria (25 μg protein) from wild-type, 

Δrcf1, Δrcf2, and the Δrcf1;Δrcf2 strains were subjected to SDS-PAGE, Western blotting and 

immunodecoration with antibodies to AAC, PIC, Por1. Outer mitochondrial membrane porin Por1 

was used as a loading control. (B) AAC association with III-IV and TIM23 supercomplexes. 

Mitochondria (30 µg) from WT or Δrcf1;Δrcf2 strains expressing HISAac2 were solubilized in 

digitonin (0.6%) and subjected to Ni-NTA affinity purification. Mitochondrial sample (5% 

supernatant) and NiNTA bound material were subjected to SDS-PAGE, Western blotting and 

immunodecoration with antibodies to AAC, Cox3, or Tim17. 

 

 

 

AAC is a source of considerable proton leak and its misfolding can lower 

membrane potential (Brand et al., 2005, Liu et al., 2015).  While the AAC proteins 

are thought to operate as monomers, they are present as dimers in the 

membrane, which are partially stable following detergent extraction. In order to 

evaluate AAC dimerization and possible misfolding/aggregation in the absence of 

Rcf1 and Rcf2, AAC monomers and oligomers were resolved in a non-denaturing 

native gel (BN-PAGE). Previously our lab observed that immunodetection of AAC 

monomers and oligomers in their native form on non-denaturing gel was impaired 
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in Δrcf1;Δrcf2 mitochondria in spite of close to wild type AAC levels on an SDS-

PAGE (J. Garlich, PhD dissertation and Figure 18A, compare with Figure 17A). 

Decreased immunodetection of non-denatured AAC molecules may be attributed 

to differential accessibility of the antigenic epitopes in AAC native form, and 

suggests that either AAC conformation or associated lipids are altered in the 

absence of Rcf1 and Rcf2. AAC detection was restored when first dimension 

non-denaturing gel electrophoresis was followed by second dimension 

denaturing SDS-PAGE. In addition, a shift in mobility was observed, the AAC 

dimer and monomer had faster mobility in the absence of Rcf1 and Rcf2, and the 

AAC dimer was decreased in proportion to AAC monomer (Figure 17B). Faster 

migration of AAC on a native gel may indicate decreased association or absence 

of one or more CL molecules from the carrier protein (Jiang et al., 2000). 

Overall, these results indicate that AAC association with the supercomplex 

III2IV1-2 was retained in the absence of Rcf1 and Rcf2. However, AAC 

dimerization was reduced and gel mobility of AAC monomer was faster, possibly 

indicating a loss of one or more CL molecules. We conclude that the absence 

Rcf1 and Rcf2 impairs AAC association with lipid molecules.  
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Figure 18. AAC molecular environment in the absence of Rcf1 and Rcf2. (A) Altered 

detection of AAC on a BN-PAGE in Δrcf1;Δrcf2 mutant. Mitochondria (30 μg protein) from wild-

type, Δrcf1;Δrcf2 and Δaac2 strains were solubilized in 0.2% digitonin (Jiang et al., 2000) and 

subjected to BN-PAGE and Western blotting with α-AAC antibody. The positions of molecular 

mass markers and the dimeric and monomeric ATP synthase (V2, approximately 1000 kDa, V, 

approximately 500 kDa) are indicated. (B) Two-dimension analysis of the AAC monomer and 

dimer mobility. Mitochondria (30 µg) from WT or Δrcf1;Δrcf2 (Δ1;Δ2) strains were solubilized in 

digitonin (1%) and subjected to BN-PAGE (1st  dimension), then the two gel lanes were excised 

and subjected to SDS-PAGE (2nd dimension), followed by Western blotting, and decoration with 

antibodies to AAC or to Atp4 subunit of ATP synthase, as indicated. 
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4.3.b. Deletion of RCF1/2 did not impair AAC-mediated adenine nucleotide 
exchange. 
 

 

Changes in AAC-associated lipids or its surrounding proteins observed in 

the absence of Rcf1 and Rcf2 may impact adenine nucleotide exchange or alter 

this protein’s inherent propensity for proton leak. To test whether Rcf1 or Rcf2 

alter the adenine nucleotide exchange activity of the AAC, ATP export rate 

concomitant with ADP import was measured in WT, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mitochondria. To this end, the rate of preexisting ATP release stimulated by the 

addition of ADP in the absence of ATP synthesis (in presence of 20 µM 

oligomycin) in isolated mitochondria was measured. The rate of ATP release was 

determined using a coupled hexokinase/glucose-6-phosphatase assay 

converting ATP to NADPH and measuring the increase in NADPH fluorescence 

in the supernatant over time. This assay is sensitive and suitable to measure the 

ATP export rate by AAC isoforms in organello (Hamazaki et al., 2011, De Marcos 

Lousa et al., 2002). In absence of ADP, ATP release was minimal (Table 14, first 

and second column). When ADP and succinate were added, the ATP release 

rate was greater, reflecting release of pre-existing and newly synthesized 

mitochondrial ATP. In presence of oligomycin, the rate of ATP release was 

decreased, consistent with the inhibition of the ATP synthesis. The rate of ATP 

release in presence of oligomycin, ADP, and substrate, was used to estimate the 

AAC-dependent ATP export. The AAC-dependent ATP export in Δrcf1 and 

Δrcf1;Δrcf2 mitochondria was similar to the wild-type, while Δrcf2 was a little 
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decreased (Table 14, last column). We conclude that AAC adenine nucleotide 

exchange activity is not impaired in Δrcf1;Δrcf2 mitochondria.  

 

 

Table 14. AAC-dependent ATP export activity.  

Mitochondria (40 µg) were resuspended in ATP detection buffer (Materials and Methods) 

containing ETC substrate succinate (10 mM, where indicated), oligomycin (20 µM, where 

indicated), and ATP detection enzymes. Reaction was started by addition of 14 nmol ADP (where 

indicated) and monitored for 3 minutes at room temperature. AAC activity (ATP export rate in 

presence of ADP, succinate, and oligomycin) is reported in lower table. Average and S.E.M. 

values are reported (WT (n=15), Δ1 (n=9), Δ2 (n=6), Δ1;Δ2 (n=15)). 

 

 

 

 

In summary, while AAC exhibited altered mobility due to decrease 

association of lipid molecules in the absence of Rcf1 and Rcf2, the ADP/ATP 

exchange function of the carrier was not impaired. It remains possible that these 

changes increased AAC non-specific proton leak. 
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4.4. Mitochondrial network morphology in the absence of Rcf1/2. 
 

 

The number of individual mitochondria in the cell is variable, because 

mitochondria frequently undergo fission(division) and fusion. Mitochondrial fusion 

connects individual mitochondrial inner and outer membranes and leads to a 

mixing of their contents. Multiple fused mitochondria contain multiple 

mitochondrial DNA molecules extend into moving and dynamic mitochondrial 

network. Morphology of mitochondrial network within the cell is incredibly 

dynamic and changes in response to the changes in respiratory activity and PMF 

(Egner et al., 2002, Lackner, 2014, Rafelski et al., 2012, Rafelski, 2013). 

Specifically, depletion of mitochondrial membrane potential( e.g. by the addition 

of an uncoupler CCCP) causes fragmentation in the mitochondrial network 

(Legros et al., 2002, Vowinckel et al., 2015, Jones et al., 2017). However, the 

relevance of mitochondrial morphology for organelle function is not completely 

understood; although some proteins are known to modulate both respiratory 

function and mitochondrial architecture (Harner et al., 2014). Many respiratory 

deficient mutants have apparently normal mitochondrial network morphology 

(Rafelski et al., 2012). Emerging evidence indicates that respiration and, 

specifically, PMF controls mitochondrial volume. Mitochondrial swelling is 

observed in vivo after mitochondrial depolarization (Safiulina et al., 2006, Kaasik 

et al., 2007, Miyazono et al., 2018). 

We hypothesized that the mitochondrial network may be altered in the 

absence of Rcf1 and Rcf2, reflecting decreased PMF and possibly contributing to 
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the respiratory growth defect. In order to visualize the mitochondrial network, 3D 

images were collected of YPGal grown WT, Δrcf1, Δrcf2, and Δrcf1;Δrcf2 cells 

expressing mitochondrially targeted GFP (mtGFP) protein (n=86 WT cells, n=132 

Δrcf1 cells, n=121 Δrcf2 cells, n=94 Δrcf1;Δrcf2 cells). The mitochondrial 

networks were evaluated by manual observation and manual scoring and the 

Δrcf1;Δrcf2 mitochondrial networks appeared fragmented compared to wild-type 

control (Figure 19A). 3D images were analyzed in ImageJ software using the 

software plugin Yeast_MitoMap (Vowinckel et al., 2015), which automatically 

processes 3D images, and identifies the individual mitochondrial networks in 

each cell and calculates volume, surface area, and other shape descriptive 

parameters. The fragmentation index f, defined as a sum of relative fragment 

volumes that individually constitute less than 20% of the mitochondrial network 

volume, was then calculated for each cell (Table 15 second column). 

Mitochondrial fragmentation index f tended to be higher in cells lacking Rcf1 but 

the increase was not statistically significant (p=0.141), and in Δrcf2 and 

Δrcf1;Δrcf2 cells, f was not higher than the wild-type. The uneven mtGFP signal 

in the Δrcf1;Δrcf2 mitochondrial network appears to have caused the discrepancy 

between manual and automatic scoring results. The automatic processing of 

mitochondria had utilized a lower threshold than that of a human eye when 

distinguishing mtGFP signal from the background. On the other hand, the 

interspersed regions with weaker mtGFP signal within a continuous network 

visually (to a human eye) appeared as distinct mitochondria. The distinct, ragged 

morphology of Δrcf1;Δrcf2 appeared fragmented (Figure 19A, last panel).  
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Other parameters were used to characterize the shape of the main 

mitochondrial network (main network comprising 20% or more of the total 

mitochondrial volume of each cell) – volume (V), surface area (SA), SA:V ratio 

(Vowinckel et al., 2015) (Table 15). Deleting Rcf1, but not Rcf2, decreased  

mitochondrial network volume. This was likely because smaller mitochondrial 

fragments were more numerous in Δrcf1 cells, decreasing the main network 

volume. Deleting Rcf2 increased mitochondrial network volume and increased 

surface area. Deleting both Rcf1 and Rcf2 increased mitochondrial network 

volume and decreased surface area. Although the changes in SA and V were not 

statistically significant due to large variation in mitochondrial size corresponding 

to variations in the cell size, SA:V ratio was calculated for each cell individually 

and provided normalization for the variation caused by the cell size; the SA:V 

ratio of mitochondrial networks in Δrcf1;Δrcf2 cells was significantly decreased 

(Figure 19B). SA:V ratio is a simple shape descriptor. An inflated balloon is 

characterized by lower SA:V ratio than the same balloon, deflated. A decreased 

SA:V ratio indicates that Δrcf1;Δrcf2 mitochondria appear thicker, more inflated 

than wild-type mitochondria. Such changes may reflect increased swelling of the 

Δrcf1;Δrcf2 mitochondria. 

A decreased SA:V ratio can be the result of changes in the mitochondrial 

architecture, which was addressed using electron microscopy approach. 

Preliminary electron microscopy (EM) imaging of wild-type and mutant cells was 

performed in collaboration with Dr. Benedikt Westermann and Dr. Till Klecker 

(Universitaet Bayreuth, Germany) according to standard protocols (Unger et al.,  
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Figure 19. Mitochondrial network morphology in the mutants. (A) Representative images of 

the YP-Gal grown yeast cells (brightfield images, top panel) mitochondrial network visualized with 

mtGFP (GFP, bottom panel). (B) Wild type, Δrcf1, Δrcf2, and the Δrcf1;Δrcf2 mtGFP images were 

analyzed using Yeast_MitoMap plugin. Surface area (SA), volume (V), and SA:V ratio calculated 

for every cellular mitochondrial network. Average +/- SEM is shown; ** indicate statistically 

significant difference (Student’s t-test p<0.01). (C) Wild type (WT), Δrcf1 (Δ1), Δrcf2 (Δ2), and the 

Δrcf1;Δrcf2 (Δ1;Δ2) mitochondrial morphology was visualized using electron microscopy (EM) in 

collaboration with Dr. Benedikt Westermann and Dr. Till Klecker (Universitaet Bayreuth, 

Germany). Two representative mitochondrial cross-sections from each strain are shown.  
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Table 15. Mitochondrial shape parameters.  

Wild type (WT), Δrcf1 (Δ1), Δrcf2 (Δ2), and the Δrcf1;Δrcf2 (Δ1;Δ2) mtGFP images were analyzed 

using Yeast_MitoMap plugin. Fragmentation index, f, mitochondrial shape parameters (volume, 

surface area, SA:V ratio, compactness, distribution isotropy, sphericity, radius variance) 

calculated for every cellular mitochondrial network. Average +/- SEM are shown; statistically 

significant values are denotes by * (p<0.05) and ** (p<0.01). 

 

 

 

 

 

 
Table 16.  EM analysis of mitochondrial cristae. Wild type (WT), Δrcf1 (Δ1), Δrcf2 (Δ2), and 

the Δrcf1;Δrcf2 (Δ1;Δ2) cells grown to exponential phase in YPGal, chemically fixed, embedded 

and cryo-sectioned for electron microscopy (EM) in collaboration with Dr. Benedikt Westermann 

and Dr. Till Klecker (Universitaet Bayreuth, Germany) to analyze mitochondrial architecture. 

Mitochondrial cross-sections were manually analyzed to identify cristae morphology (Harner et 

al., 2016). Normal cristae shapes (lamellae and tubules) were recorded and counted. Abnormal 

cristae shapes (septa, which completely cross the matrix space, onion-like morphology, or 

stacked sheets of cristae membrane) were recorded and counted. Mitochondrial cross-section 

diameter was measured for all mitochondria observed on the EM images. 

 

  

number of 

cells, n

fragmentation 

index,  f            
Volume [µm

3
] Surface area [um

2
] SA:V

WT 86 3.7 ± 0.9 8.96 ± 0.42 73.4 ± 3.4 8.27 ± 0.14   

Δ1 132 5.8 ± 1.0 8.14 ± 0.29 62.9 ± 2.3 7.79 ± 0.08 * 

Δ2 121 2.2 ± 0.4 9.70 ± 0.30 77.1 ± 2.6 7.94 ± 0.08 * 

Δ1;Δ2 94 3.1 ± 0.7 9.7 0 ± 0.30 66.4 ± 2.9 6.86 ± 0.08 **

Compactness
Distribution 

isotropy

Isoperimetric 

quotient
Sphericity Radius Variance

WT 0.108 0.62 0.31 0.44 0.16

Δ1 0.100 0.60 0.36 0.49 0.12

Δ2 0.129 0.63 0.30 0.43 0.18

Δ1;Δ2 0.089 0.61 0.33 0.47 0.19



121 

 

2017). Yeast cells were grown to exponential phase in YPGal, chemically fixed, 

embedded and cryo-sectioned (Griffith et al., 2008). Mitochondrial cross-sections 

were manually scored. In the absence of Rcf1 and Rcf2 a weak cristae 

phenotype was observed (Table 16) characterized by abnormal cristae in some 

Δrcf1;Δrcf2 mitochondria (representative images in Figure 19C demonstrates one 

mitochondrion exhibiting abnormal stacked or onion-shaped cristae), while the 

majority of organelles look similar to the wild type mitochondria. The diameter of 

the mitochondrial cross-sections was measured and average diameter of 

Δrcf1;Δrcf2 mitochondria found to be modestly but significantly increased 

compared to wild-type (Table 16), supporting the observation that the branches 

of mitochondrial network in Δrcf1;Δrcf2 cells are wider than the WT mitochondria. 

Increased diameter of mitochondrial cross-sections may be due to mitochondrial 

swelling due to ion homeostasis defect. Increased swelling and widening of the 

mitochondrial compartment may result in more diffuse mtGFP signal.  

To summarize, neither increased mitochondrial fragmentation nor severe 

mitochondrial cristae defects was observed in the absence of Rcf1 and/or Rcf2. 

However, modest changes in mitochondrial size (branch diameter and SA:V 

ratio) were detected, resembling the swelling of depolarized mitochondria. There 

are few detailed characterizations of mitochondrial morphology of respiratory 

deficient mutants. Further study is needed to characterize mitochondrial 

morphology and dynamics in the absence of Rcf1 and Rcf2 and to determine 

whether the morphology is the consequence of the respiratory chain / PMF 

defects and/or contributes to them.  
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Summary 
 
 
 

The mitochondrial PMF drives ATP synthesis by F1FO ATP synthase. As 

expected from the decreased PMF observed in mitochondria lacking Rcf1 and 

Rcf2, the level of ATP synthesis in these mitochondria is decreased as well. 

Consistent with a more severe defect in PMF maintenance, the impairment of 

ATP synthesis is more severe in the double Δrcf1;Δrcf2 mutant compared to the 

single mutants.  

F1FO ATP synthase complex levels appeared similar, but levels of certain 

subunits were altered in the absence of Rcf1 and Rcf2. The level of cardiolipin-

binding, FO ring forming Atp9 subunit was increased in Δrcf1 and Δrcf2, yet 

decreased in Δrcf1;Δrcf2 mitochondria relative to Tim44 protein in comparison to 

the wild type control. Additionally, decreased F1FO ATP synthase reverse activity 

(ATP hydrolysis) and sensitivity of ATP synthase to oligomycin, the inhibitor 

which binds to Atp9 at the membrane interface, were observed in the absence of 

Rcf1 and Rcf2. This is consistent with altered stoichiometry or conformation of 

the Atp9 subunit in the absence of Rcf1 and Rcf2. Altered oligomycin sensitivity 

of ATP synthase was confirmed by respiratory growth of the Δrcf1 and 

Δrcf1;Δrcf2 cells which was resistant to sub-inhibitory doses of oligomycin, 

compared to the wild-type control.  

PMF also supports the activity of AAC and PIC. Deletion of Rcf1 and Rcf2 

did not impair AAC-mediated ATP export. PIC mediated import, while not 

measured, could have contributed to ATP synthesis impairment.  
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Additionally, changes in AAC BN-PAGE mobility consistent with impaired 

lipid binding to AAC were observed in Δrcf1;Δrcf2 mitochondria. Specific, CL 

dependent interaction of Rcf1 with AAC was detected by Rcf1-AAC crosslinking 

(J. Garlich, PhD dissertation). AAC mobility in Δrcf1;Δrcf2 mitochondria is 

consistent with Rcf1 and Rcf2 role supporting AAC-associated CL molecules. 

Decreased PMF generation by the ETC does not provide explanation for all of 

these pleiotropic phenotypes, some of which may be related to altered 

mitochondrial lipid distribution among OXPHOS proteins. 

Consistent with the decreased PMF in the absence of Rcf1 and Rcf2, 

processing of newly translated Cox2 precursor (pCox2) was defective in 

Δrcf1;Δrcf2 mitochondria. Membrane translocation of pCox2 is PMF-dependent, 

as is translocation of many nuclear encoded proteins; an altered processing of 

Mcr1 was also observed in the absence of Rcf1 and Rcf2. Unexpectedly, Mcr1 

processing was increased, indicating increased Δψ. The explanation for this 

observation is unclear. The absence of Rcf1 and Rcf2 was not associated with 

defects in activity of any specific protease.  

Analysis of morphology of mitochondrial network and mitochondrial 

ultrastructure (i.e. cristae) of Δrcf1;Δrcf2 mitochondria does not indicate network 

fragmentation or strong cristae abnormalities. However, measurement of 

mitochondrial surface area and volume indicates that the mitochondrial networks 

are more swollen, results which are consistent with impaired mitochondrial PMF 

maintenance and lower ATP synthesis in the absence of Rcf1 and Rcf2. 
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CHAPTER 5. DISCUSSION 

 
 
Introduction.  
 
 
 

Mitochondrial electron transport chain (ETC) enzymes establish and 

maintain proton-motive force (PMF) by transporting protons against the 

concentration gradient. The efficient conversion of oxidation energy into the PMF 

depends on ETC complex IV, cytochrome c oxidase, harnessing the energy of 

electron transport to pump protons (complex IV coupling). The PMF powers the 

synthesis of ATP by the F1FO ATP synthase. PMF also supports protein 

translocases and metabolite carriers, and is dissipated by proton leaks. The yield 

of ATP synthesis relative to oxygen consumption reflects the coupling of 

oxidation and phosphorylation (OXPHOS coupling). Mitochondrial ATP synthesis 

relative to oxygen consumption in respiring cells and tissues is also referred to as 

respiration efficiency. OXPHOS coupling is variable; it is influenced by many 

factors including ETC activity, proton leak, ATP demand, and expression of 

tissue-specific and condition-specific OXPHOS enzyme isoforms (Kadenbach 

and Merle, 1989, Gouspillou et al., 2011, Liu and Barrientos, 2013, Sinkler et al., 

2017, Salin et al., 2018). Improved respiration efficiency can promote hypoxic 

survival of cells and tissues and provide a competitive advantage to organisms. 

Thus, the OXPHOS coupling in isolated mitochondria and on a cellular level is 

relevant and contributes to the fitness of multicellular organisms.  
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5.1. The role of Rcf1 and Rcf2 in respiratory efficiency. 
 
 
 
5.1.a. The role of Rcf1 and Rcf2 in respiratory growth.  
 
 
 

Respiration inefficiency in the yeast Saccharomyces cerevisiae is detected 

by slower or absent growth on non-fermentable carbon sources (e.g. glycerol, 

ethanol). Yeast mutants with defective OXPHOS capacities can be analyzed 

without losing viability on fermentable non-repressing carbon sources, such as 

galactose. 

Yeast Rcf1 and Rcf2 are both needed to support optimal respiratory 

growth, which has previously been interpreted as evidence of the overlapping 

function(s) of these proteins (Strogolova et al., 2012). A more complete 

characterization of the functions of these proteins represents the goal of this 

study. Respiration-based growth of single Δrcf1, Δrcf2, and double Δrcf1;Δrcf2 

mutants was compared, with the goal of characterizing which aspects of 

OXPHOS function, if any, were affected in the absence of Rcf1 and/or Rcf2.   

Genetic deletion of Rcf1 in the W303 background strongly decreased 

complex IV protein levels, yet Δrcf1 strain displayed almost normal growth on 

non-fermentable carbon sources under optimal aerobic growth conditions (30˚C, 

21% O2) on agar and in liquid media. Despite having less complex IV, the rate of 

cellular oxygen consumption was not strongly decreased in the Δrcf1 mutant, and 

the Δrcf1 mitochondria exhibited basal (state 2) oxygen consumption rates 

(OCR) similar to those of the wild-type mitochondria.  Kinetic analysis of state 2 
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respiration however indicated that the OCR slightly increased over time, 

suggesting that the IM may have a proton leak when ETC function was induced 

in the absence of Rcf1. The respiration-based growth of the Δrcf1 strain was not 

more sensitive than wild type strain to nigericin, a H+ ionophore that dissipates 

PMF ΔpH component and uncouples OXPHOS. The growth of Δrcf1 strain was 

sensitive to suboptimal oxygen and temperature conditions (21˚C, 21% O2; 37˚C, 

21% O2; and 21˚C, 2% O2). This observation is consistent with previous reports 

(Vukotic et al., 2012, Strogolova et al., 2012) and indicates an OXPHOS defect 

that does not strongly limit respiration-based growth. 

We report here that genetic deletion of Rcf2 moderately decreased 

complex IV protein levels and had no noticeable impact on respiratory growth 

under optimal conditions. Respiration-based growth of Δrcf2 mutant was, 

however, slowed down when performed in liquid media or under limiting oxygen 

concentration, or in presence of low concentration of nigericin. To compensate 

for partial dissipation of ΔpH component of PMF by nigericin, the ETC has to 

pump more protons, so that ΔpH is quickly converted to Δψ by activity of 

electroneutral H+/ion transporters, and PMF increases (Lambert and Brand, 

2004). Defective proton pumping is expected to cause nigericin sensitivity. 

Furthermore, despite having almost normal levels of complex IV, Δrcf2 cells 

exhibited significantly elevated rate of cellular oxygen consumption which, in 

contrast to the Δrcf1 mitochondria, was stable over time. A similar increase in 

basal respiration was also observed in isolated Δrcf2 mitochondria. These results 
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reveal that deletion of Rcf2, similar to Rcf1, causes sub-threshold OXPHOS 

defect, apparently resulting in respiratory uncoupling in vivo. 

The Δrcf1;Δrcf2 mutant displays a stronger respiratory growth defect than 

either of the single mutants. Our lab was the first to characterize the Δrcf1;Δrcf2 

mutant and to demonstrate the adverse effect of deleting both Rcf1 and Rcf2 

(Strogolova et al., 2012). The work presented in this dissertation continues the 

characterization of this yeast mutant lacking both Rcf1 and Rcf2. Deletion of Rcf2 

in Δrcf1 background severely impaired the respiration-based growth. However, it 

did not further decrease complex IV levels and the electron transport; they were 

found to be decreased to a similar extent in the isolated Δrcf1 and Δrcf1;Δrcf2 

mitochondria. As shown here, Δrcf1;Δrcf2 cellular oxygen consumption was 

similar to that of the Δrcf1, however, an enhanced instability of state 2 OCR was 

observed relative to that described earlier for the Δrcf1 mitochondria. The results 

presented in this dissertation indicate that the growth defect of the Δrcf1;Δrcf2 

mutant cannot be solely attributed to a decreased content of complex IV or 

decreased electron transport activity.  

 
 
5.1.b. Rcf1 and Rcf2 promote efficient OXPHOS coupling  
 
 
 

Mitochondrial ETC and ATP synthesis activities are interdependent and 

coupled by the PMF. OXPHOS coupling is defined as optimal stoichiometry of 

the oxidation and phosphorylation activities. 
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As reported here, Δrcf1 and Δrcf1;Δrcf2 mitochondria were similar in the 

levels of ETC enzymes complex III and complex IV. Electron transport activity of 

complex III in the Δrcf1;Δrcf2 mitochondria was not adversely affected; complex 

III activity was even increased in the absence of Rcf1 and Rcf2 proteins. How is 

the observed respiratory growth defect observed in the Δrcf1;Δrcf2 strain, but not 

in the Δrcf1 strain explained? Multiple lines of evidence indicate that the 

OXPHOS coupling and PMF generation were decreased in Δrcf1, Δrcf2, and 

Δrcf1;Δrcf2 mitochondria. First, complex IV activity, which is constrained by the 

PMF, appeared less constrained in Δrcf1, Δrcf2, and Δrcf1;Δrcf2 mitochondria. 

This was evidenced by decreased stimulation of OCR by the PMF-dissipating 

uncoupler, CCCP. Indeed, direct measurements of membrane potential 

component of the PMF indicate it was reduced in Δrcf1, Δrcf2, and Δrcf1;Δrcf2 

mitochondria compared to wild-type control. Reduced PMF is less able to 

constrain complex IV oxygen consumption and explains elevated basal oxygen 

consumption in the absence of Rcf1 and Rcf2, relative to their complex IV aa3 

content.  

Furthermore, uncoupling was progressive as electron transfer was 

occurring in Δrcf1;Δrcf2 mitochondria, as demonstrated by the continuous 

increase in state 2 OCR over time when NADH was used as a substrate (as 

mentioned earlier, a similar but less prominent trend was observed in Δrcf1 state 

2 OCR). Increasing state 2 OCR over incubation time indicates either increasing 

proton leak and/or an inability of proton pumping to counteract it, indicating that 

the absence of Rcf1 may be correlated with a proton leak of the IM. The OCR 
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remained elevated and PMF remained low in Δrcf1;Δrcf2 mitochondria for a 

significantly extended time after the ADP addition (delayed state 4), relative to 

the wild type control. The finding that the instability of state 2 OCR was more 

pronounced when Rcf2 deletion was combined with Rcf1 deletion, suggests that 

the effect of Rcf1 and Rcf2 deletion is cumulative, consistent with a proton leak 

observed in the absence of Rcf1 combined with reduced proton-pumping ability 

of complex IV in the absence of Rcf2 is absent. 

This study is the first time that a role of Rcf1 and Rcf2 in mitochondrial 

PMF homeostasis has been described. Consistent with the decreased PMF, ATP 

synthesis was impaired in Δrcf1, Δrcf2 and Δrcf1;Δrcf2 mitochondria. The 

addition of increasing concentrations of ADP to the Δrcf1;Δrcf2 mitochondria 

minimally stimulated the OCR (ETC) activity. Compared to Δrcf1 or Δrcf2 

mitochondria, the Δrcf1;Δrcf2 mitochondria had the largest ATP synthesis defect 

(45% of WT). This defect was apparent when 100 µM ADP was added, below 

physiological levels of ADP in the mitochondria, estimated to be >200 µM (Gout 

et al., 2014). The cumulative effect of Rcf1 and Rcf2 deletion on the PMF and 

ATP synthesis may explain why Δrcf1;Δrcf2 strain unlike the Δrcf1 strain, exhibits 

a respiration-based growth defect. 

The pH component of the PMF is influenced by cytoplasmic pH and ATP. 

ATP generated by glycolysis and fermentation can support mitochondrial 

membrane potential in OXPHOS deficient cells (reference). The interplay of 

cytosolic and mitochondrial pH is important for cellular pH homeostasis; this is 

evidenced by the connection between vacuolar pH and mitochondrial function 
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(Hughes and Gottschling, 2012). Future work is needed to evaluate the effect of 

Rcf1 and Rcf2 deletion on mitochondrial PMF in vivo and address the 

consequences of respiration-based deficiency caused by Rcf1 and Rcf2 

deficiency on cellular pH homeostasis, for example during growth in basic or 

acidic media.  

 
 
5.1.c. Rcf1 and Rcf2 support CL binding proteins AAC and Atp9  
 
 

In addition to PMF-dependent phenotypes, some of the differences 

observed in Δrcf1;Δrcf2 mitochondria (altered native AAC gel mobility, decreased 

F1Fo ATP hydrolysis levels, lower sensitivity of respiratory growth to oligomycin) 

do not appear to be directly related to lower PMF. All of OXPHOS enzymes have 

lipids as integral components, including F1Fo ATP synthase and AAC, which bind 

cardiolipin (CL) and other lipids. These differences may be due to a more general 

role of Rcf1 and Rcf2 in the delivery of phospholipids to OXPHOS proteins. 

Although total mitochondrial lipid composition is not altered by the absence of 

Rcf1 and Rcf2 (Garlich et al., 2017), these proteins may play a role in lipid 

association with transmembrane proteins, such as Cox3 or AAC, or lipid 

distribution between protein complexes of the IM. The Arg67 and Trp68 residues 

within the QRRQ motif resemble the Arg433 and Trp434 residues of the 

mitochondrial IM protein Mic60, which have been shown to be critical for Mic60’s 

lipid binding properties (Hessenberger et al., 2017). Rcf1 and Rcf2 propensity for 

lipid binding has not been examined to date; however, their interactome (Cox3, 
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Cytc1, Qcr6, AAC) contains almost exclusively lipid binding (specifically 

cardiolipin (CL) binding) proteins (Strogolova et al., 2012, Garlich et al., 2017, J. 

Garlich, PhD dissertation). A number of phenotypes have been observed in RCF-

deficient yeast mitochondria: lower detection of ATP synthase Atp9 subunit, 

decreased rate of F1Fo-ATP hydrolysis, decreased sensitivity of ATP synthase to 

oligomycin, altered AAC mobility on BN-PAGE consistent with loss of CL 

molecules. These varied phenotypes in absence of RCF proteins could possibly 

be related to altered lipid composition of the F1FO ATP synthase and AAC 

complexes. 

Like Cox3, Atp9 subunit of the Fo sector of the F1Fo-ATP synthase is a 

mitochondrially encoded lipid-binding OXPHOS subunit that binds CL. Although 

we did not detect Atp9-Rcf1/2 interaction, we report here that Atp9 steady state 

levels were decreased in Δrcf1;Δrcf2 mitochondria. However, a corresponding 

decrease in the assembled F1Fo-ATP synthase (on a BN-PAGE) was not 

detected. This may be due to altered solubilization or oligomerization 

stoichiometry of Atp9 preventing its detection by SDS-PAGE (Atp9 forms a 

homooligomeric ring of the Fo sector and thus an altered stoichiometry of Atp9 

within the Fo sector in principle is possible). Atp9 is the site of F1Fo-ATP synthase 

oligomycin binding and inhibition (Symersky et al., 2012). As reported here, Δrcf1 

and Δrcf1;Δrcf2 mutants exhibited decreased senstivity to oligomycin, which may 

be attributable to altered Atp9 conformation or CL binding, or to an increase in 

F1FO ATP synthase independent ATP synthesis. Interestingly, interaction of Atp9 

with complex IV assembly intermediates containing also Rcf1 (McStay et al., 
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2012, Su et al., 2014) was reported recently, and proposed to accelerate Atp9 

ring formation. These observations raise the possibility that Rcf1 may interact 

with Atp9 and possibly influence Atp9 CL binding. 

CL molecules are critical to mitochondrial function. Lipid-protein 

interactions “seal” the transmembrane OXPHOS enzymes and mediate lateral 

proton currents between supercomplex III-IV and ATP synthase (Haines and 

Dencher, 2002, Mehdipour and Hummer, 2016, Sjöholm et al., 2017), supporting 

ΔpH homeostasis. CL is important for complex IV stability and proton pumping 

(discussed in more detail in the section 5.1.e); and association of CL with ATP 

synthase is important to support its rotation in the IM and prevent proton leak 

(Duncan et al., 2016). Therefore, altering CL distribution and/or tight association 

with protein complexes interferes with OXPHOS and with PMF generation. 

Notably, screening of yeast deletion library for nigericin hypersensitive mutants 

indicated that deletion of CRD1 (CL synthase) confers hypersensitivity to 

nigericin (Jakubkova et al., 2016), a phenotype which we also observed in the 

Δrcf2 strain. Genetic deletion of CL synthase decreases OXPHOS coupling, 

characterized by increased state 2 OCR and lower Δψ (Baile et al., 2013); 

removal of cardiolipin (CL) also destabilizes complex IV (Sedlák and Robinson, 

2015). OXPHOS de-coupling and specifically sensitivity of Δrcf2 to nigericin 

reported in this dissertation study may be related to an altered CL distribution 

between OXPHOS complexes. 

Interestingly, recent therapeutic use of cell-penetrating aromatic-cationic 

peptides containing just a few amino acids, that selectively target cardiolipin and 
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increase coupling efficiency, and reportedly promote tissue regeneration (Szeto 

and Schiller, 2011, Szeto and Liu, 2018). These short peptides (Szeto-Schiller 

peptides) are proposed to bind CL and prevent its peroxidation, which plays a 

role in CL loss with age and ensuing mitochondrial dysfunctions. Intriguing 

possibility that Rcf1 and Rcf2 may bind CL raise a possibility for a similar role for 

Rcf1 and Rcf2 in yeast mitochondria. Future experiments are needed to explore 

possible Rcf1 and Rcf2 lipid-binding properties, and may utilize Rcf1 or Rcf2 

truncations, including perhaps an extreme truncation, QRRQ motif alone. 

 
 
5.1.d. Rcf1 and Rcf2 influence PMF dependent protein translocation 
 
 
 

In addition to decreased ATP synthesis, PMF is essential for the import of 

nuclear-encoded and insertion of mitochondrially-encoded OXPHOS proteins into 

the inner membrane (IM). Results presented here indicate that reduced PMF in 

the absence of Rcf1 and Rcf2 interferes with these processes. 

We looked at the proteolytic processing state of a number of mitochondrial 

proteins, because for many proteins, these maturation events are supported 

through the mitochondrial PMF. We first detected two forms of Mcr1, which is 

sorted into an outer membrane (OM) anchored larger form (Mcr34) or an IMS 

localized smaller form (Mcr32) which is proteolytically matured by Imp1 peptidase 

at the IM surface (Schneider et al., 1991). Formation of Mcr32 requires import of 

the N-terminal region of the protein across the IM in a Δψ dependent manner 

(Hahne et al., 1994, Haucke et al., 1997). In the absence of Rcf1 and Rcf2, 
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formation of Mcr32 was not impaired, rather, it was even increased in Δrcf1;Δrcf2 

mitochondria relative to the wild type control. 

Another protein, Ccp1, also displayed altered proteolytic maturation when 

Rcf1 was missing. Ccp1 is matured by Pcp1 peptidase in a manner which 

involves the activities of the Yta10/12 proteins, which are thought to dislocate 

cleavage site of the Ccp1 from the lipid environment of the IM to a soluble 

environment of the peptidase (Tatsuta et al., 2007). This process was adversely 

affected in the absence of Rcf1. 

Finally, the maturation of the mitochondrially encoded Cox2 precursor 

(pCox2) was also partially impaired in the absence of Rcf1/Rcf2. Cleavage of the 

N-terminal presequence of pCox2 by Imp1 requires export of N-terminus to the 

IMS, a process supported by both Δψ and ΔpH (Herrmann et al., 1995).  

Collectively, whether these various processing defects are indications of a 

lowered PMF or an imbalance of Δψ and ΔpH, is unknown. Yet, these observed 

defects serve to further illustrate the pleiotropic nature of the defects caused by 

the absence of Rcf1 and Rcf2. 

 

5.1.e. Possible complex IV proton pumping defect. 
 
 
 

How could Rcf1 and Rcf2 support PMF maintenance? The results 

presented in this dissertation study indicate that, in the absence of Rcf1 and 

Rcf2, not only complex IV protein content but also its ability to transfer protons 

was impaired. Complex IV is the primary proton pump (there is no complex I in 
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yeast mitochondria; complex III is not a proton pump and contributes to PMF 

generation via a redox loop mechanism with constant stoichiometry). The data 

presented here indicate that Δrcf1 mitochondria had lower PMF; the decrease 

could be attributed to the decreased complex IV levels. However, the Δrcf2 

mitochondria had complex IV levels similar to wild type mitochondria and 

elevated oxygen consumption; yet Δrcf2 mitochondria exhibited lower PMF than 

wild type mitochondria. The comparison of Δrcf1 and Δrcf1;Δrcf2 mitochondria 

show that the removal of Rcf2 resulted in progressive OXPHOS uncoupling and 

inability to repolarize after ADP addition,  without  noticeable changes in complex 

IV levels and electron transport activity. Thus, Rcf2 plays an important role in 

PMF maintenance and repolarization, possibly regulating complex IV proton 

pumping. This hypothesis is corroborated by the findings of our collaborators 

(Ngoc Hoang and Jonathan Hosler at the University of Mississippi Medical 

Center). Using TMPD/ascorbate to simultaneously measure OCR and membrane 

potential generated by bioenergetically isolated complex IV, they confirmed a 

complex IV proton translocation defect in intact Δrcf2 and Δrcf1;Δrcf2 

mitochondria, indicating that the proton pumping capacity of complex IV is 

impaired when Rcf2 is absent (Strogolova et al., manuscript in preparation). 

Complex IV proton pumping  can  be de-coupled from electron transport 

and oxygen consumption. Proton pumping is driven by the redox energy released 

during the transport of electrons and is constrained by the PMF (Nicholls and 

Ferguson, 2013). However, at least under some conditions, complex IV can 

consume oxygen without pumping protons. Such de-coupling was reported in 
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purified bacterial cytochrome c oxidase and in mammalian tissues (Brzezinski 

and Johansson, 2010; Kadenbach, 2003). One mechanism for de-coupling could 

be a proton back-leak pathway identified in the bovine complex IV enzyme 

(Muramoto et al., 2010). This pathway is postulated to be conformationally gated, 

and similar slipping of protons was reported in the homologous E.coli enzyme 

cytochrome bo3 (Li et al 2015).  

Loss of proton pumping in a catalytically active cytochrome c oxidase is a 

hallmark of the suicide inactivation phenomenon (Bratton et al., 1999, Gilderson 

et al., 2003, Hosler, 2004). This phenomenon was first characterized in the 

purified bacterial enzyme and was attributed to a loss of subunit 3 (Cox3) 

(Bratton et al., 1999). Suicide inactivation is a sequence of events initiated by 

structural changes in the binuclear center (BNC) formed by heme a3 and copper 

CuB physically associated with the Cox1 subunit. These changes lower the redox 

potential of the BNC, resulting in a loss of proton pumping, followed by the loss of 

copper CuB and inactivation of electron transport. Although Cox3 does not 

directly participate in electron transport, it is intimately associated with and 

influences the activity of Cox1. Cox3 displays sequence conservation as high as 

that of the catalytic subunit Cox1, indicating that it is likely to be highly important 

for facilitating proton uptake and pumping (Penttilä 1983, Varanasi and Hosler 

2012). Cox3’s interaction with Cox1 is supported by phospholipid molecules (CL 

and phosphatidylglycerol) (Bratton et al., 1999). These lipids are essential for 

complex IV structural stability (Musatov and Robinson, 2012, Musatov and 

Robinson, 2014) and are suggested to play a role in channeling oxygen to the 
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catalytic center of the enzyme (Penttilä 1983, Mills and Hosler 2005, Varanasi 

and Hosler 2012). Suicide inactivation of cytochrome c oxidase may thus involve 

changes in Cox3’s position relative to Cox1 and associated lipids.  

Rcf1 and Rcf2 associate with a subpopulation of complex IV in the 

mitochondria and likely are regulating its conformational dynamics. Evidence for 

heterogeneity of complex IV, i.e. that two or more distinct subpopulations of 

complex IV exist in mitochondria, has been published (Moody et al., 1991, 

Rydström Lundin et al., 2016). These complex IV subpopulations display 

differences in EPR spectra, cyanide binding, CO binding, and dithionite reduction 

kinetics. In the absence of Rcf1 or Rcf2, the heterogeneity of complex IV is 

reported to increase, shifting the balance to a greater proportion of a minor 

subpopulation with a lower redox potential of the BNC (Rydström Lundin et al., 

2016, Rydström Lundin and Brzezinski 2017, Schäfer et al., 2018), and redox 

potential of the BNC determines proton pumping capacity of the enzyme 

(Sharma and Wikström, 2014). Therefore, it is likely that a subpopulation of 

complex IV that does not pump protons becomes more abundant in the absence 

of Rcf1 or Rcf2. Rcf1 and Rcf2 proteins may serve to influence complex IV 

enzyme proton pumping function and/or acting to counteract complex IV 

instability, which may lead to the suicide inactivation of the enzyme. 

 
 
5.2. Model: Rcf1 and Rcf2 repair or remodel complex IV to increase 
complex IV proton-pumping efficiency. 
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We propose that Rcf1 and Rcf2 regulate complex IV proton pumping 

ability by ensuring the correct conformation of Cox3 subunit and/or associated 

lipid (CL) molecules and this may play an active role in repairing the complex IV 

enzyme to prevent it’s premature and irreversible suicide inactivation. While 

many assembly chaperones of Cox1 and Cox2 are known, Rcf1 was the first 

protein to act as an assembly partner of Cox3 (Strogolova et al., 2012). 

Additionally, we propose that Rcf1 through its Arg65 and Trp66 residues located 

within its conserved QRRQ motif at the turn between the two transmembrane 

helices may bind lipid head groups near the membrane interface. Rcf1 

transmembrane helices flanking the QRRQ motif structurally resemble the lipid 

binding cleft of Cox3 (Zhou et al., 2018, J. Hosler, personal communication). 

Rcf1 is proposed to mediate Cox3 lipidation and correct assembly into the 

complex IV enzyme (Figure 20). Consistent with its participation in the complex 

IV assembly and/or restructuring, Rcf1-associated complex IV is missing late 

assembling subunits Cox12 and Cox13 (Garlich et al., 2017).  

We further propose that Rcf1 and Rcf2 play a role in repair of partially 

inactivated complex IV subpopulation (i.e. possibly undergoing suicide 

inactivation) as a consequence of normal catalytic activity (Figure 20). As 

discussed earlier, data to indicate the existence of a partially inactive complex IV 

subpopulation (i.e. that does not pump protons) that is naturally present in 

mitochondria and is increased in the absence of Rcf1 or Rcf2, has been 

published (Rydström Lundin et al., 2016, Rydström Lundin and Brzezinski 2017, 

Schäfer et al., 2018). Partial inactivation of complex IV may result in its  



139 

 

 

 

 

 

 
 
 
 
Figure 20. Proposed function of Rcf1 and Rcf2 in complex IV (cytochrome c oxidase) 
repair/remodeling. Assembly of complex III and IV subunits (red) together to form a 
supercomplex III2IV1-2 is completed by joining of peripheral subunits (e.g. Cox12). For 
simplicity,only complex III and complex IV is depicted. Rcf1 (blue) assists complex IV subunit 3 
(Cox3) assembly into the supercomplex. Catalytic activity or oxidative stress changes complex IV 
conformation (or result in damage, e.g. lipid peroxidation) which bring about changes in Cox1-
Cox3 interface (black line) and loss of proton pumping activity. The loss of proton pumping 
activity leads to complex IV degradation. Rcf1 recognizes and interacts with the subpopulation of 
supercomplex with impaired proton pumping. Association of Rcf1 stabilizes complex IV, 
preventing its degradation. Rcf2 initiates repair/remodeling of Rcf1-associated enzymes. Rcf1 
and Rcf2 repair the supercomplex, replacing lipids and/or changing conformation of Cox3. 
Complete repair restores proton pumping activity to complex IV and supports its steady state 
levels. 
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proteolytic turnover, unless it is repaired. Suicide inactivation of cytochrome c 

oxidase due to changes in Cox3 relationship with Cox1 may involve the 

associated lipids. Oxidative stress damage to CL (e.g. peroxidation) inactivates 

complex IV (Paradies et al., 1998). It is unknown whether the lipids associated 

with Cox3 are displaced or damaged and thus need to be repositioned and/or 

exchanged during the natural lifespan of the complex IV enzyme. Overall, little is 

known about complex IV repair or remodeling (Sinkler et al., 2017). A previously 

hypothesized Rcf1 modification of complex IV lipid composition (Garlich et al., 

2017) is proposed to support complex IV proton pumping and prevent complex IV 

degradation considering the aforementioned role of lipids at the Cox1-Cox3 

interface, in complex IV proton pumping and stability. 

A repair role for Rcf1 and Rcf2 is consistent with the dynamic nature of 

their interaction with complex IV and supercomplex III-IV and explains the partial 

inactivation of complex IV from Δrcf1 mitochondria previously reported (Rydström 

Lundin and Brzezinski, 2017). As reported here, proton-pumping activity of 

complex IV but not its stability in Δrcf2 mitochondria appears to be negatively 

affected. Rcf2 interaction with complex IV is less well characterized. Our lab 

previously reported (i) that Rcf1 and Rcf2 associate with complex IV 

independently; (ii) the association of Rcf1 with complex IV is stronger than Rcf2 

(as indicated by its retention with complex IV when solubilized with a more 

stringent detergent); however, lower level of complex IV are recovered with Rcf1 

than with Rcf2, and (iii) Rcf2 successfully competes with Rcf1, as the absence of 

Rcf2 promoted more Rcf1-complex IV interaction (Strogolova et al 2012). Based 
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on this information, we propose that Rcf2 association may complete the repair 

and stimulate the dissociation of Rcf1 from the enzyme (Figure 20). 

Consequently, when Rcf2 is absent we propose that complex IV enzyme that has 

defective proton pumping capacity accumulates in the mitochondria. 

We speculate that both Rcf1 and Rcf2 play a role in repairing complex IV 

proton pumping. Rcf1 or Rcf2 alone may complete the repair process but less 

effectively. Rcf1 is speculated to play a role in stabilization of partially inactive 

complex IV (e.g. containing damaged/oxidized CL molecules). In the absence of 

Rcf1, the partially inactive complex IV would be proteolytically degraded, 

contributing to the reduced levels of complex IV in the absence of Rcf1. In the 

absence of Rcf2, partially inactive complex IV is stabilized and can contribute to 

oxygen consumption activity, albeit with reduced proton pumping capacity. The 

action of Rcf2 in the repair beyond promoting Rcf1 dissociation, deserves further 

future investigation. According to the model shown in Figure 20, when both Rcf1 

and Rcf2 are removed, complex IV is not repaired, the result is lower levels of 

complex IV combined with a gradual loss of its proton pumping capacity. 

The hypothesis that Rcf1 and Rcf2 restore the proton-pumping activity of 

complex IV can be tested by stimulating complex IV and CL damage with 

conditions known to stimulate oxidative stress or hypoxic conditions, which in 

mammalian mitochondria are also linked to reactive oxygen species generation 

and elevated oxidative damage.  

Future studies by our collaborators will be focused on characterizing 

proton pumping of complex IV purified from Δrcf1;Δrcf2 mitochondria. Moreover, 
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further studies should be done to characterize its lipid composition. Functional 

consequences of Rcf1 and Rcf2 deletion on other OXPHOS and non-OXPHOS 

processes should be explored in future experiments. For this purpose, a 

Δrcf1;Δrcf2 strain lacking complex IV will be generated by deleting complex IV 

assembly factors (Cox10 or Cox11). Similarly, the effects of Rcf1 and Rcf2 

deletion on complex IV function in absence of complex III could be studied in a 

similarly constructed strain lacking complex III (Δrcf1;Δrcf2;Δcor1).  

 
 
5.3. The overall importance of HIGD proteins 
 
 
 

We propose that yeast HIGD proteins Rcf1 and Rcf2 regulate the coupling 

of electron and proton transfer activity of complex IV, possibly by interaction with 

negatively charged CL molecules integral to complex IV enzyme. We anticipate 

that this function be evolutionarily conserved in homologous HIGD proteins in 

mammalian mitochondria and in bacteria.  

Cytochrome c oxidase (complex IV) is an A-type enzyme of the bacterial 

heme copper oxidase family, postulated to have evolved later than the closely 

related B and C type enzymes. The evolution of heme copper oxidases 

corresponds to the time when oxygen concentration increased in the 

atmosphere, when heme copper oxidase enzyme family evolved from nitric oxide 

reductase family, and likely performed an oxygen scavenging function (Sharma 

and Wikström, 2014). Proton pumping is not central to cytochrome oxidase 

family; enzymes of B and C type are inefficient in proton pumping and are leaky 
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to protons even at a low PMF (Rauhamäki and Wikström, 2014). Evolution of 

proton pumping D-channel in A-type enzymes supported more efficient proton 

pumping and aerobic energy generation. A-type enzymes are widely 

phylogenetically distributed and are present in all α-proteobacteria lineages 

(Sousa et al., 2012). Proteins with homology to the HIGD are also found in 

bacteria and appear to be limited to α-proteobacteria. It is possible that the α-

proteobacteria HIGD protein homologs function similarly to yeast Rcf1 and Rcf2 

and support more efficient proton pumping of A-type cytochrome c oxidases and 

aerobic energy generation. 

HIGD protein homologs in mammalian mitochondria are subdivided into 

constitutively expressed type 2 isoforms and stress-inducible type 1 isoforms, 

and classification is largely based on differences in the HIGD QRRQ motif 

(Figure 3A). Verification of the importance of conserved cationic amino acids of 

the QRRQ motif for PMF generation is beyond the scope of the current study, but 

should be addressed in the future, because mutations in HIGD motif sequence 

can strengthen or weaken association of Rcf1 with complex IV (Garlich et al., 

2017). Therefore, HIGD QRRQ motif sequence may be a conserved feature 

providing the means to influence association of HIGD proteins with complex IV 

and thus have an impact on coupling of electron and proton transfer activity of 

complex IV.  

The type 2 HIGD proteins contain a canonical QRRQ motif sequence, 

QX3RXRX3Q, i.e. similar to the QRRQ motif of yeast Rcf1 and Rcf2. Highest 

level of expression of these isoforms are in heart, kidney and leukocytes tissues 
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(An et al., 2011). The functional relevance of the mammalian mitochondria type 2 

HIGD proteins have not yet been studied. The QRRQ motif of the type 1 HIGD 

proteins displays sequence variation, this class of HIGD protein isoforms contain 

a V/IHLIHMRX3Q sequence. Highest level of expression of these isoforms are in 

brain and heart tissues (Wang et al., 2006, An et al., 2011) The mammalian type 

1 HIGD proteins have been shown to associate with isolated mammalian 

complex IV and can accelerate electron transfer (Hayashi et al., 2015). The effect 

of these type 1 proteins on proton pumping capacity of the complex IV is, 

however, unknown. Yeast do not have type 1 HIGD proteins and when 

expressed in yeast, type 1 proteins did not associate with complex IV or support 

respiratory growth of the Δrcf1;Δrcf2 mutant, suggestive of a divergent function of 

type 1 and type 2 proteins (Strogolova et al., 2012, Garlich et al., 2017, J. Garlich 

PhD dissertation).  

We envision that the HIGD proteins in mammalian mitochondria may 

associate with complex IV and increase or decrease the of proton-pumping 

capacity. Mammalian mitochondria exhibit great physiological plasticity.This 

plasticity requires uncoupling, for example when stress or Ca2+ concentration 

cause PMF fluctuations, ΔpHm increase, and associated ROS production by 

mammalian mitochondrial complex I enzyme (Lambert and Brand, 2004). 

Phenotypes observed in mammalian cells in the absence of specific HIGD 

isoforms – changes in mitochondrial morphology, increased cell death, sensitivity 

to hypoxia and oxidative stress – are all phenotypes adversely affected by 

alterations in PMF. Increased complex IV proton pumping counteracts proton 
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leak and supports OXPHOS ATP synthesis on which differentiated, respiring 

mammalian cells depend for survival, especially under conditions of 

hypoxia/ischemia. On the other hand, de-coupling of complex IV electron 

transport from proton pumping may also be physiologically relevant under certain 

metabolic and/or growth conditions, i.e. in tissues are dependent on glycolytic 

rather than OXPHOS metabolism. This includes undifferentiated stem cells, 

which depend on uncoupling of OXPHOS to preserve pluripotency (Zhang et al., 

2012). Thus under these conditions it may be advantageous for the cell to have a 

mitochondrial complex IV enzyme with a disengaged proton pumping capacity. 

The mechanisms of uncoupling of OXPHOS in undifferentiated stem cells are 

unexplored and the expression and function of HIGD isoforms in stem cells have 

not yet been addressed. 

Uncoupling of complex IV may serve to accommodate activity of non-

OXPHOS intermembrane space (IMS) cytochrome c reducing enzymes, such as 

Erv1/Mia40 protein translocation disulfide relay system, cytochrome c 

peroxidase, or cytochrome b2. The activity of these cytochrome c reducing 

enzymes is supported by the re-oxidation of their substrate cytochrome c by 

complex IV. A high PMF that inhibits complex IV and thus cytochrome c re-

oxidation would inhibit these enzymes’ activity. Decreasing the stringency of 

complex IV proton pumping may allow it to re-oxidize cytochrome c under 

conditions of high PMF. The Erv1/Mia40 import pathway is essential for cell 

viability and must occur even during OXPHOS suppression.  
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The work presented here indicates that the Rcf1 and Rcf2 proteins, 

members of the HIGD type 2 protein family, support mitochondrial PMF 

generation, possibly through repairing of a partially inactive complex IV. 

Additional evidence presented here add support to the suggestion that the 

function of Rcf1 and Rcf2 may be related to incorporation and/or restructuring of 

lipid molecules which are physically and functionally associated with components 

of the mitochondrial OXPHOS system. It is important to continue deciphering the 

function of HIGD protein family and the mechanisms underlying the protective 

effect of the HIGD type 1 proteins in vulnerable populations such as neurons and 

pancreatic cells. Recent successful use of hypoxia as a therapy for mitochondrial 

disease raises the possibility that the expression of HIGD proteins may be a 

promising therapeutic strategy as well.  
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