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ABSTRACT 

 

 

CHANGES IN CORTICAL ACTIVITY IN STROKE STURVIVORS UNDERGOING 

BOTULINUM TOXIN THERAPY FOR TREATMENT OF FOCAL SPASTICITY 

 

 

Kelsey Tynes, B.S. 

 

Marquette University, 2018 

 

 

Functional magnetic resonance imaging (fMRI) has provided evidence of 

neuroplastic changes following rehabilitation in stroke survivors. Botulinum toxin 

(BoNT) injection therapy has become a common approach to combating spasticity—a 

motor disorder characterized by a velocity dependent increase in muscle tone. The 

neurotoxin acts to inhibit muscle contraction, relieving spasticity symptoms with peak 

effects occurring between 4 and 6 weeks. With decreases in muscle tone, BoNT 

injections could free arm movement for rehabilitation, creating the opportunity for 

enhanced control of the upper limb, which would have underpinnings in altered brain 

activity. Given evidence of cortical activation changes following other stroke 

rehabilitative methods, it is expected that BoNT therapy would produce similar types of 

changes. The aim of this study was to quantify changes in task-related activity throughout 

the brain in stroke survivors undergoing BoNT therapy. Understanding the changes in 

cortical activity resulting from BoNT injections could help improve rehabilitation 

methods and predict functional outcome.  

 Changes in cortical activation in response to BoNT injections have only been 

documented in a handful of studies. Of these past studies, participant pools tended to 

include patients with moderate to high functional ability of the affected limb. Although 

patients receiving BoNT injections often fall within a wide range of severity, BoNT 

injections have been shown to provide the biggest impact on the highly impaired 

population. BoNT injections have also been shown to provide greatest effects during the 

initial injections, and the effects on long-term spasticity treatment are less prevalent in the 

literature.  

 In this study, we used a voxel-based approach to quantify neuroplastic effects and 

capture changes in activity throughout the brain, including regions outside the primary 

sensorimotor cortices. We recruited a majority of participants that presented with severe 

spasticity, who were scheduled to receive a round of BoNT injections as part of their 

standard of care. By assessing the brain activation associated with repeated injections, we 

obtained insight into BoNT on a long-term basis, as it is traditionally prescribed.  
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CHAPTER 1: INTRODUCTION AND BACKGROUND TO POSTSTROKE 

SPASTICITY MANAGEMENT AND MRI TECHNIQUES 

 

1.1 MOTOR RECOVERY FOLLOWING STROKE: EFFECTS AND SOLUTIONS TO 

POSTSTROKE SPASTICITY 

To most of the world’s population, tasks such as bathing, dressing, and exercise 

come as a standard to any daily routine. To an individual experiencing spasticity, 

however, each of these tasks could require some effort and at times assistance. 

Approximately 3 in 5 stroke survivors experience spasticity—of those, only half seek 

treatment to relieve symptoms (Urban et al., 2010).  

Treatments and rehabilitation measures are prescribed depending on severity and 

comfort level of the patient. A method of spasticity treatment implemented in medical 

clinics is Botulinum-toxin A (BoNT) injection therapy. These injections are applied to 

affected spastic limbs and are intended to aide in relaxing the hyperactive muscle. The 

injections can be used for reasons related to pain management, hygiene, ease of care, and 

activities of daily living.  

Botulinum-toxin A injection therapy has been a technique for managing spasticity 

symptoms for decades; however, the understanding behind its effects on neuronal activity 

in the brain is limited. Efforts to understand the underlying effects of BoNT therapy on 

functional motor recovery and its effects on associated neuronal activity are believed to 

have the potential to help further develop clinical therapies. A handful of studies have 

assessed cortical activation of stroke survivors’ naïve to BoNT injections, which have 

showed varying results (Bergfeldt, Jonsson, Bergfeldt, & Julin, 2015; Diserens et al., 
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2010; Manganotti et al., 2010; Senkárová, Hlustík, Otruba, Herzig, & Kanovský, 2010; 

Tomášová et al., 2013; Veverka et al., 2014, 2016, 2012).  This study aims to quantify 

changes in functional activity of stroke survivors undergoing BoNT injection therapy as a 

standard practice of care, adding to the limited knowledge on the topic. This chapter 

discusses the causes of spasticity and how BoNT therapy works to counter its disabling 

effects, and outlines the benefits of fMRI to quantify the effects of BoNT on a neuronal 

level. 

 

1.1.1 Stroke 

Stroke is the fifth leading cause of death in the United States, affecting 

approximately 795,000 people each year (Benjamin et al., 2018). A stroke can occur by 

two different means and is categorized by type (Gomes & Wachsman, 2013). An 

ischemic stroke occurs when a clot forms within the brain’s blood vessels or travels from 

elsewhere in the body to form a blockage within the brain’s blood supply. When blood 

supply is cut off, the region is deprived of oxygen and brain cells quickly die. A 

hemorrhagic stroke is the result of a ruptured vessel in the brain, most commonly caused 

by high blood pressure or an aneurysm (Donnan, Fisher, Macleod, & Davis, 2008). In 

both cases, the outcome following stroke often results in reduced physical condition and 

capability.  
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1.1.2 Spasticity 

OVERVIEW 

Spasticity is a chronic stretch reflex disorder characterized by increased muscle 

tone in upper and/or lower extremities, most commonly caused by damage to a portion of 

the brain or spinal cord. This is a velocity-dependent disorder, which causes increased 

resistance when a muscle group is passively stretched. It is emphasized that spasticity is 

merely one component of the upper motor neuron syndrome (UMNS) (Lance et al., 

1980). EMG recordings during passive stretch show increased activity with increased 

velocity, with a delayed effect where the muscle continues to contract even after 

movement has ended. This suggests the hypertonia occurs by two means: hypertonia 

elicited by the stretch reflex (spasticity), and hypertonia elicited by muscle contracture 

(intrinsic hypertonia) (Galiana, Fung, & Kearney, 2005; Dietz &Berger, 1983). 

Affecting over 12 million people worldwide, hypertonia can be seen by the 

physical manifestation of a tight fist, flexed elbow, and an arm pressed against the chest 

(Nair & Marsden, 2014). These permanent contractions can become painful and hinder 

overall muscle movement and coordination, causing difficulties with everyday activities 

(Benjamin et al., 2018).  

  

NEURAL MECHANISMS 

Neural Basis of Motor Impairment 

Lesions that occur in the gray matter of the primary motor cortex (M1) or damage 

the white matter fibers comprising the corticospinal tract (CST) are most likely to cause 

gross motor impairment (Maraka et al., 2014). Infarcts localized to the pons, cerebellum, 

thalamus, or association areas can often hinder fine motor movements (Darling et al., 
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2011). Voluntary motor actions are mediated both by direct and indirect anatomical 

pathways.  Simple motor tasks (single muscle or joint) are largely controlled by 

pyramidal cells in the M1, which elicit movement at low stimulation thresholds by 

projecting to motoneurons in the spinal cord. Planning of more intricate patterns is often 

produced by premotor areas, which project to both the M1 and spinal cord in order to 

produce the physical movement (Rizzolatti, Fadiga, Gallese, & Fogassi, 1996). 

Stimulation and damage to these areas have provided extensive evidence supporting their 

involvement in movement. 

 

Neural Basis of Spasticity 

In healthy subjects, the stretch reflex acts to resist the lengthening of a muscle. 

This process is mediated by excitatory connections between Ia afferent fibers stemming 

from muscle spindles and alpha-motoneurons innervating the same muscle (Trompetto et 

al., 2014). By passively stretching a muscle, the firing rate increases in the Ia spindle 

fiber, leading the Ia fibers to fire and send signals to the alpha motoneurons through 

monosynaptic pathways, resulting in contraction of the original muscle and relaxation of 

its antagonist (Figure 1.1) (Pearson & Gordon, 2000).  

The exact mechanism behind spasticity’s exaggeration of the stretch reflex is still 

unclear today. The disorder could theoretically be caused by two different factors: 

increased excitability of Ia afferents stemming from the muscle spindles, or abnormal 

processing of sensory inputs from muscle spindles creating excessive reflex activation of 

the alpha-motoneurons (Trompetto et al., 2014).  
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Figure 1.1: Stretch Reflex Pathway. This diagram illustrates the monosynaptic 

pathways that mediate the stretch reflex, indicating the primary neurons involved 

(Pearson & Gordon, 2000). 

 

 
LIMITATION OF FUNCTION AND IMPACT ON THERAPY 

Therapeutic interventions become necessary when spasticity symptoms begin to 

interfere with daily living (Levin & Hui-Chan, 1992). Upper-limb spasticity can often 

make tasks such as reaching, grasping, and releasing objects difficult (Francisco & 

McGuire, 2012). Early management of spasticity can often lead to improved motor 

recovery outcomes (Thompson, Jarrett, Lockley, Marsden, & Stevenson, 2005).  

Rehabilitation plans tend to break down to three main categories: improving 

movement, improving daily life activities, and improving quality of life. Improving 

movement focuses on unmasking voluntary movements and recovering damaged neural 
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circuits by practicing motor plans. Improving daily life tends towards getting around, 

dressing, and personal hygiene. Quality of life focuses on regaining an independent 

lifestyle and possible reintegration into the workplace (Gracies, Elovic, McGuire, & 

Simpson, 1997). 

 

1.1.3 Neural Plasticity Following Stroke 

While neural plasticity is most promising during developing stages of the brain, 

changes in structural and functional integrity have been seen in stroke survivors during 

the course of recovery. Alpha-motoneurons have been known to release growth factors 

locally following traumatic injury (Weidner, Ner, Salimi, & Tuszynski, 2001). As these 

neurons grow and spread, they form new synapses between interneurons and the severed 

motoneurons, creating new pathways to replace the nonfunctional ones (Raineteau & 

Schwab, 2001). Additionally, alternative descending pathways could be recruited to take 

over motor drive to compensate for loss of corticospinal pathways. The excitatory 

pathways descending from the brainstem tend to be less selective, resulting in over-active 

muscle contractions (Trompetto et al., 2014).  

Post-stroke studies have used structural (Schaechter, Perdue, & Wang, 2008; 

Stinear et al., 2007) and functional (Johansen-Berg et al., 2002; Ward, Brown, 

Thompson, & Frackowiak, 2003) imaging to document neuroplastic effects in both 

ipsilesional and contralesional areas of the primary motor cortices. Studies have been 

advancing into evaluation of the impact of therapeutic interventions on imaging data, 

which have also shown promising results. 
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Functional MRI (fMRI) has been used to show a correlation between favorable 

motor recovery following therapy and increased activity in the contralesional M1 during 

motor tasks in chronic stages of stroke (Jones et al., 2015). Additional changes in activity 

have been seen in motor areas of the brain following pedaling activity (Promjunyakul, 

Schmit, & Schindler-Ivens, 2015), constraint-induced movement therapy (Schaechter et 

al., 2002), and mirror therapy techniques (Michielsen et al., 2011). 

 

1.2 BOTULINUM TOXIN-A INJECTION THERAPY 

Several treatments are suggested for those affected by spasticity including 

physical therapy, oral medication, injectable neurolytic medications, and surgical 

procedures. Physical therapy often includes stretches and range of motion exercises, 

which may be paired with more invasive options such as peripheral nerve blocks or 

botulinum toxin injections. Botulinum toxin-A injections are a common treatment to 

relieve spasticity experienced by stroke survivors. The toxin is injected directly into the 

overactive muscle, and acts by preventing the release of neurotransmitters required to 

elicit muscle contraction. Patients typically receive injections every 3-4 months to 

manage symptoms. 

 

1.2.1 History 

Botulinum-toxin is produced by the motile bacterium Clostridium botulinum; the 

toxin was first discovered in 1897 after rancid ham caused symptoms of botulism in 

several guests attending a funeral. Emilie van Ermengem worked as a professor of 

bacteriology and the University of Ghent, and discovered the agent responsible for the 
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illnesses, initially naming it Bacillus botulinum (Devriese, 1999). In 1946, the toxin had 

been purified and produced in mass quantities by researcher Edward Schantz. Nearly 

twenty years later, botulinum toxin injections were found to induce paralysis and atrophy 

when administered to muscles in a chick embryos (Drachman, 1964).  

This finding fueled extensive research into many movement and autonomic 

disorders, leading to various animal models to assess pain and mobility. The involvement 

of BoNT in pain modulation was assessed using primarily mouse and rat models, 

evaluating peripheral inflammatory pain (Cui, Khanijou, Rubino, & Aoki, 2004), visceral 

pain (Chuang, Yoshimura, Huang, Chiang, & Chancellor, 2004), and neuropathic pain 

(Bach-Rojecky, Relja, & Lacković, 2005). All results supported the notion that BoNT 

could vastly reduce pain caused by several neurological conditions. Effects of BoNT on 

the gastrocnemius muscle of mice showed that significantly decreased gastrocnemius 

muscle stiffness during passive stretching (Haubruck et al., 2012). A study involving 

injections to the masseter muscle of rabbits found that EMG activity of the muscle was 

immediately reduced, demonstrating BoNT’s paralytic effects (Park et al., 2015). 

Though animal models are continuing to grow in complexity, their initial results 

motivated further research. Ophthalmologist Alan B. Scott theorized the toxin’s muscle-

relaxing effects might help treat crossed eyes. His group went on to treat monkeys with 

BoNT-A for strabismus in the 1960s, and successfully translated the study to humans in 

1981 (Scott, 1981). This pioneering study sparked research in therapeutic applications of 

BoNT, including, but not limited to, cervical dystonia, migraine, and spasticity. 

Human trials testing the safety and effectiveness of BoNT-A as a therapeutic 

agent for managing post-stroke spasticity symptoms began in 1996 when Simpson 
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demonstrated the effects of three different doses as compared to a placebo group. 

Evaluated at two, four, and six weeks post-injection, all BoNT groups showed better 

outcomes than placebo (Simpson et al., 1996). This protocol and those similar have been 

repeated by many, resulting in FDA approval for Botox® in 2010. The effects of this 

therapy have been extensively reviewed and the technique is continuously growing in 

practice. 

 

1.2.2 Cellular Mechanisms 

In preparation of muscle contraction, presynaptic neuromuscular nerve endings 

contain vesicles storing the neurotransmitter Acetylcholine (ACh). The nerve action 

potential initiates the fusion of the vesicle to the nerve membrane, leading to the release 

of ACh into the nerve synapse. Here ACh is able to bind to receptors on the muscle, and 

elicit muscle contraction (Kuo & Ehrlich, 2015). The fusion process between 

neurotransmitter-containing vesicles and presynaptic nerve membrane is facilitated by a 

group of proteins forming the SNARE complex (Rossetto, Pirazzini, & Montecucco, 

2014).  

The BoNT molecule is comprised of two parts: a heavy chain (H-chain) and a 

light chain (L-chain). The two chains are bound together by a disulfide bond and 

protected by a protein coating. After injection, the molecule dissociates from the protein 

and the H-chain binds to receptors on motor and sensory neuron nerve endings. The 

entire complex is then pulled into the cell by endocytosis (Pickett, 2009).  Here, the L-

chain is released into the presynaptic cell cytoplasm. In motor neurons, the L-chain acts 

by cleaving SNAP-25, an essential component of the SNARE complex (Söllner et al., 
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1993). Without a functional SNARE complex, the vesicles cannot release ACh, and 

muscle contraction cannot occur (Figure 1.2).  Similarly, in sensory neurons, the L-chain 

is believed to act on SNAP-25 in a similar fashion. This blocks the release of 

neuropeptides, inhibiting the sensitization of pain nerves (J. Park & Park, 2017). BoNT is 

not believed to affect nerve conduction nor the synthesis of ACh, but simply hinders the 

mechanisms essential for release.  

 

 
Figure 1.2: Molecular Action of BoNT. The diagram serves as a flowchart starting at 

the introduction of BoNT to the muscle tissue. Illustrated is the neurotoxin’s uptake from 

the synaptic cleft and release into the presynaptic motor neuron, cleavage of SNAP-25 

and inhibition of ACh release (Saravanan, Rajaseger, Eric, & Moochhala, 2015). 
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1.3 FUGL MEYER ASSESSMENT 

The Fugl-Meyer Assessment (FMA) is an index measured specifically in stroke 

populations to quantify motor impairment (Fugl-Meyer, Jääskö, Leyman, Olsson, & 

Steglind, 1975). The motor score portion of the test includes evaluations of movement, 

coordination, and reflexes in both upper and lower extremities. In clinical settings FMA 

is a common score used to determine impairment severity and predict motor recovery. 

Scoring is based on a scale of 0 to 2 for each motion, 0 equating to total hemiplegia and 2 

indicating normal motor performance.  

Motions of the upper extremity motor test include reflex activity, flexor synergy, 

extensor synergy, movements combining synergies, and movement out of synergy. The 

wrist is tested for stability, flexion, extension and circumduction in varying combinations 

of elbow and shoulder positions. The hand is assessed for mass finger flexion and 

extension, along with various grasping tasks. Coordination and speed of a finger-to-nose 

task compares affected and unaffected limbs to quantify impairment in dysmetria, tremor, 

and speed. The upper extremity FM motor test has a maximum score of 66. 

 The FMA has been shown to have excellent validity and shows concurrence with 

other accredited stroke motor scores, while providing a more detailed review of motor 

ability. The scoring system has appraised for its inter- and intra-tester reliability and 

construct validity (Gladstone, Danells, & Black, 2002). A clear correlate between 

spasticity severity and decreased FMA scores has been found and confirmed by several 

researchers (Katz, Rovai, Brait, & Rymer, 1992; Opheim, Danielsson, Alt Murphy, 

Persson, & Sunnerhagen, 2015).  
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1.4 MAGNETIC RESONANCE IMAGING (MRI) 

1.4.1 MRI Signal 

The MRI signal is derived from the precession and relaxation of hydrogen protons 

in the presence of a large magnetic field.  Each hydrogen atom consists of a single proton 

that, when exposed to a static magnetic field (B0), aligns with the field and precesses 

about its own axis at a frequency known as the Larmor frequency. With all protons 

aligned together, their angular momentums sum to form a net magnetization (M0) in the 

direction of B0. When an external radio-frequency (RF) pulse is administered at the 

Larmor frequency, these protons are tipped from their low-energy state, now uniform in 

both phase and direction (Haacke, Brown, Thompson, & Venkatesan, 1999).  

Two phenomena are observed as the protons relax back to their static field state. 

The longitudinal magnetization (Mz) is the portion of M0 seen parallel to the magnetic 

field. Following the RF pulse, protons realign with B0, and Mz approaches its initial value 

of M0. In addition, the phase-locked protons also disperse with respect to the x-y plane, 

contributing to a transverse magnetization (Mxy) or the portion of M0 seen perpendicular 

to the magnetic field. This is the signal measured by the MR receive coil (Haacke et al., 

1999). 

Mz regrowth and Mxy decay correspond to T1 and T2 relaxation times 

respectively. These variables are distinctive to each biological material, allowing for 

unique MRI pulse sequence designs tailored to any given application. T1 weighted 

images, characterized by the rate at which protons return to equilibrium along the B0 

field, are often used to obtain a high resolution anatomical image to be used in 

diagnostics.  T2 and T2* together describe the transverse relaxation.  The T2 signal 
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describes the decay observed in spin-echo measurements and is related to the spin-spin 

interactions as the protons dephase. Because the natural T2 relaxation cannot be 

measured directly, the T2* or effective T2 signal, is measured using gradient-echo 

sequences and is susceptible to changes in local magnetic fields (i.e. changes due to 

increased/decreased blood flow). The T2* signal gives rise to additional analyses of MRI 

results, such as the BOLD contrast method used with fMRI data (Huettel, Song, & 

McCarthy, 2009). 

 

1.4.2 BOLD Signal 

MRI technology is capable of providing much more than anatomical data. The 

T2* signal has been shown to be sensitive to oxygenation of the blood—the foundation of 

functional MRI (Ogawa, Lee, Kay, & Tank, 1990). In the presence of a gradient-spin-

echo sequence, the paramagnetic properties seen in deoxyhemoglobin provide a natural 

contrast in the MR image, and is said to be blood oxygen level dependent (BOLD).  

BOLD contrast is the most common way to study local changes in brain 

activation during a particular task. The paramagnetic properties of deoxygenated 

hemoglobin tend to suppress the MRI signal, while diamagnetic properties of oxygenated 

hemoglobin do not show this effect (Lindquist, Meng Loh, Atlas, & Wager, 2009).  

 During the initial moments of performing a mental task, deoxygenated 

hemoglobin is high in concentration as neuronal activity is consuming ATP. As 

metabolic demands increase, the vessels dilate to increase blood flow and oxygenated 

blood is delivered to the active areas in need. This continues for about 4-8 seconds to 

ensure the active area is supplied with enough oxygen. As demand decreases, blood flow 
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is reduced while the active area consumes the remaining oxygen, and deoxygenated 

hemoglobin again becomes high in concentration before returning to resting state 

conditions (Figure 1.3) (Kim & Ogawa, 2012).  

 

 

 

Figure 1.3: HDR Model. The standard model for the hemodynamic response function, 

illustrating the primary fluctuations over time (initial dip at stimulus onset, primary 

response window, negative overshoot following the end of mental task) (Kornak, Hall, & 

Haggard, 2011) 

 

 

The BOLD technique takes advantage of this varying MRI signal and allows 

researchers to assess brain activity by measuring areas that follow the pattern 

characterized by a modeled hemodynamic response function (HRF).  

 

1.5 SPECIFIC AIM 

 The aim of this study was to determine changes in cortical activation patterns of 

stroke survivors over the course of a single round of BoNT injections to the upper 

extremity. These results could produce helpful insight into the effects of BoNT on motor 

recovery and improve physical therapy interventions to best suit each patient. 
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CHAPTER 2: CHANGES IN CORTICAL ACTIVITY IN STROKE SURVIVORS 

UNDERGOING BOTULINUM TOXIN THERAPY FOR TREATMENT OF FOCAL 

SPASTICITY 

 

2.1 INTRODUCTION 

The purpose of this study was to identify changes in brain activation associated 

with hand movement following botulinum toxin-A (BoNT) injections to the upper 

extremity as treatment for focal spasticity.  Previous studies have documented varying 

results regarding changes in brain activation in response to finger tapping and 

flexion/extension of the hand in patients undergoing BoNT therapy.  Prior to injection, 

most studies have reported extensive bilateral activation of primary sensorimotor and 

supplementary motor areas during movement of the affected hand (Manganotti et al., 

2010; Senkárová et al., 2010; Tomášová et al., 2013; Veverka et al., 2012).  Activity 

patterns following BoNT intervention decrease in active volume in primary motor areas, 

demonstrating a localizing and lateralization effect (Bergfeldt et al., 2015; Manganotti et 

al., 2010; Tomášová et al., 2013; Veverka et al., 2014).  Other studies have shown 

increases in activity in similar motor areas, along with increased activity in higher-order 

motor areas such as the cerebellum, thalamus, anterior cingulate gyrus, among others 

(Diserens et al., 2010; Tomášová et al., 2013; Veverka et al., 2016).  These studies have 

mainly included participants with finger movement ability, even before botulinum 

injection.  In people experiencing more severe impairments, BoNT injections could free 

arm movement through the reduction of spastic restraint, creating the opportunity for 

enhanced control of the upper limb (Park et al., 2017).  In these cases, botulinum toxin 
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treatment could result in widespread activation of brain areas as patients access motor 

control networks for hand movement.  In this study, we hypothesized that when BoNT is 

used to free arm movements, higher-order areas of the brain such as motor planning and 

sensory association areas would increase in activity during movement of the hand.   

 Our approach in this study was to examine changes in brain activation using 

functional magnetic resonance imaging (fMRI) in participants with a wide range of upper 

extremity impairment.  Past studies have documented changes in cortical activity patterns 

following BoNT injections in post-stroke participants performing sequential finger 

patterns and flexion/extension of the hand—tasks that require substantial control of the 

finger muscles (Bergfeldt et al., 2015; Manganotti et al., 2010).  In order to determine 

whether releasing spasticity of the arm using BoNT enhances higher-order brain function, 

we targeted fMRI measurements in participants with limited hand function prior to 

injection.  An assistive device was created to aid in finger extension while in the scanner 

and ensure that the task comprised an actual movement.  This approach allowed 

observation of the neurotoxin effect in a severely impaired test group, who have 

traditionally benefitted most from the injections (Welmer, Holmqvist, & Sommerfeld, 

2010). 

 As BoNT works to relieve spasticity, the muscle relaxes to an extent that allows 

the patient to practice a wider range of motion.  Functional recovery of a spastic limb 

may be limited by the severity of the stroke, but BoNT injection therapy has proven to be 

a safe and effective method to manage spasticity symptoms and help patients regain 

functionality of the impaired limb (Hesse, Brandi-Hesse, Bardeleben, Werner, & Funk, 

2001; Lagalla, Danni, Reiter, Ceravolo, & Provinciali, 2000; Slawek, Bogucki, & 
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Reclawowicz, 2005).  The largest improvements are seen in patients experiencing 

extreme symptoms, characterized by Modified Ashworth Scale (MAS) scores of 3+ 

(Hurvitz, Conti, & Brown, 2003; Jahangir et al., 2007).  With this release of spastic 

restraint comes improvement in motor control and likely recruitment of high-order motor 

centers.  By resuming use of the otherwise neglected muscle groups,  sensorimotor and 

integration areas might increase activity.  Specifically, areas such as the premotor cortex, 

supplementary motor area, sensory integration regions, and other secondary motor areas 

are likely recruited following BoNT injection to compensate for losses in primary motor 

output (Maier, 2002).  Although it is unlikely higher order areas completely substitute for 

the damaged corticospinal tract, adoption of primary motor roles by secondary 

sensorimotor areas would suggest neuroplastic effects take place in response to 

improvements in focal spasticity. 

 In order to discern changes in cortical activity resulting from BoNT injection to 

the upper-extremity, we utilized a voxel-based analysis of fMRI data obtained from 

assisted flexion and extension of the fingers in participants with mild to severe 

impairments of the hand.  fMRI measurements were made before injection (W0) and at 6 

weeks after injection (W6) in participants with stroke and in age-matched controls at a 6-

week interval.  Our approach of correlating the HRF with each individual voxel 

separately was used to capture changes in activity throughout the brain, including regions 

outside the primary sensorimotor cortices.  We hypothesized that BoNT’s peripheral 

effects on the affected limb would allow for improved hand function, causing increases in 

brain activity in higher order motor control centers. 
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2.2 METHODS  

2.2.1 Participant Population 

 This study consisted of fMRI measurements of brain activation in participants 

with chronic stroke undergoing BoNT therapy.  All procedures were approved by the 

Institutional Review Board (IRB) of the Medical College of Wisconsin (MCW).  All 

participants in this study were contacted through an IRB-approved database of the Stroke 

Rehabilitation Center of Southeast Wisconsin, hosted by the MCW Department of 

Physical Medicine and Rehabilitation.  All participants gave written informed consent to 

take part in this study and all procedures were conducted in accordance with the Helsinki 

Declaration of 1975 (as revised in 2000).   

 Nine people with chronic stroke were enrolled in the study (5 female; aged 58.2 

+/- 3.8, range 42-77) with the following inclusion criteria: undergoing botulinum 

neurotoxin (BoNT) therapy as a part of clinical care; stroke onset more than 6 months 

prior to the study; wrist/finger impairment; no contraindication to MRI.  All participants 

suffered from distal hemiparesis and spasticity of the upper extremity following stroke 

and had previously undergone at least one session of BoNT injections.  Wrist and finger 

flexor spasticity was assessed per the Modified Ashworth Scale (MAS) prior to BoNT 

injection (Bohannon & Smith, 1987).  Characteristics of participants in the stroke group 

are described in Table 2.1, with further details regarding size and location of the lesions 

illustrated in Figure 2.1.  An age-matched control group (3 female; aged 56.4 +/-2.2, 

range 47-70) was enrolled after being screened for the following criteria: no known 

neurological or muscular disease and no MRI contraindications.   



 19 

Table 2.1: Participant Demographics and Clinical Characteristics.  MCA = middle cerebral artery; LD = Lower Division; UD = 

Upper Division; Le = Lenticulostriate; Ip = Intraparenchymal; BG = Basal Ganglia; R = Right; L = Left; Isch = Ischemic; Hem = 

Hemorragic; Note: information regarding the number of injections and details of physical therapy for participant number 5 was not 

available due to transfer between centers.   

 

Participant Sex 
Age 

(Years) 

Stroke 

Type 

Time Post 

Stroke (Years) 

MAS 

Finger/Wrist 

Lesion 

Side 
Lesion Location Nth Injection Physical Therapy 

BTX 1 F 48 Isch 4.6 3/3 R MCA-UD 6 Prescribed  

BTX 2 M 58 Hem 4.4 2/2 L Ip-BG 13 Prescribed  

BTX 3 F 42 Hem 3.9 3/4 L Ip-BG 12 Prescribed  

BTX 4 M 77 Isch 1.4 3/3 L MCA-LD,UD,Le 2 Prescribed  

BTX 5 F 67 Isch 1.8 3/2 R MCA-LD,UD N/A N/A 

BTX 6 F 60 Isch 11.9 1/1 R MCA-LD,UD,Le 40 Prescribed  

BTX 7 M 69 Isch 1.1 2/1 L Pons 2 Not Prescribed 

BTX 8 F 48 Isch 8.9 4/4 R MCA-LD,UD 27 Home Exercises 

BTX 9 M 55 Isch 5.1 4/2 R MCA-LD,UD,Le 17 Home Exercises 

 



 20 

 

 
Figure 2.1: Lesion Location Map.  This image illustrates lesioned areas of all 

participants where lesions common among all participants are shown in bright colors 

(yellow/white) and lesions specific to few participants are shown in dark red.  Lesion 

maps have been overlaid on the Montreal Neurological Institute (MNI) 1mm template 

and all right hemisphere lesions have been flipped to the left hemisphere for analysis. 
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2.2.2 Treatment 

 

 Using EMG guidance, participants were treated with intramuscular injections of 

BoNT administered to the affected arm as part of normal clinical treatment.  All 

participants received several injections at numerous locations of the upper extremity, 

ranging in both dosage and dilution (see Appendix C; injection locations, dilutions, and 

dosages reference only the treatment for this study; prior injections may have had 

different locations and/or doses).  The prescribed amount varied based on each patient’s 

functional abilities, comfort levels, and physical characteristics.  Effects of BoNT 

treatment were assessed using fMRI measures of brain activity and the upper extremity 

motor portion of the Fugl-Meyer Assessment (FMA).   

 

2.2.3 Data Collection 

 This study consisted of two test sessions scheduled six weeks apart.  For 

participants receiving BoNT therapy, each session included an MRI scan and a clinical 

assessment.  At least 3-4 months had passed since the patients’ most recent BoNT 

injections before being enrolled in this study.  The first session was conducted 1-4 days 

before participants received their BoNT injection (W0), and the protocol was repeated six 

weeks post-injection in the second session (W6).  The control group participated only in 

the imaging portion of the procedures, with the exception of participants C1 and C5, who 

did not attend the second session. 
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IMAGING DATA ACQUISITION  

 All images were collected using a 3.0T GE Discover MR750 scanner equipped 

with a 32-channel head receive coil (MR Instruments, Inc.; Distributed by GE 

Healthcare; frequency: 127.73 MHz; field: 3T).  Anatomical 3D images were collected 

using the following fast spoiled gradient echo planar imaging (FSPRG-EPI) protocol: TE 

= 3.2 ms, TR = 8.16 ms, FOV = 240 mm, and 156x1 mm slices.  Two 6-minute trials 

were conducted for the fMRI, using a GE’s gradient echo planar imaging (GRE-EPI) 

protocol following the listed parameters: TE = 25 ms, TR = 2000 ms, FOV = 224 mm, 

Matrix: 64x64 mm, and 41x3.5 mm sagittal slices. 

 

TASK 

Due to spasticity, some participants with stroke were unable to fully extend the 

fingers without assistance.  To counteract this issue, a device was created to aid in finger 

extension and was used by all participants during the task-based fMRI assessment.  The 

device is described and depicted in Figure 2.2.  All participants were able to actively flex 

against the resistive bands while the device acted to passively extend the fingers. 
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Figure 2.2: Sketch of Assistive Finger Extension Device. This device was created to 

assist finger extension of stroke participants experiencing severe spasticity.  Velcro straps 

attached to the patient’s first four digits and connected to an elastic band (Theraband: 

10.7 N resistance at 100% elongation, 15.1 N at 200%).  The bands facilitated extension, 

stretching the fingers up and away from the palm of the hand, and were supported by an 

outrigger that spans out over the top of the hand.  During the task performed in the 

scanner, the bands produced approximately 5.1 N to the fingers to aide in extension. A 

plastic brace served to stabilize a participant’s forearm and wrist as they are instructed to 

flex and extend the digits. 

 

 

Participants were scanned while prompted by a visual cue to perform full-hand 

flexion and extension using the affected (stroke group) or non-dominant (control group) 

hand.  A visual cue was presented in a block paradigm, which alternated rest and hand 

movement at 20-second intervals for a total of 6 minutes (Figure 2.3 & 2.4).  Each 

participant performed two experimental runs.  The two experimental runs underwent 

image preprocessing separately.  The data were then concatenated and trimmed for 

statistical analysis on a single data set representative of a single session.  A detailed 

description of data processing follows. 
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Figure 2.3: Visual Presentation Prompt.  The above diagram shows the visual prompt 

all participants saw within the scanner.  The cue was presented on a screen inside the 

bore and read “Relax” centered in a magenta circle (20 s) and “Open/Close” centered on 

a cyan circle (20s, 1 Hz); this rest-movement block pair persisted for 9 repetitions. 

 

 

 
Figure 2.4: Block Design of Task.  The above diagram visually represents one trial of 

the motor task, which consisted of 20 seconds of rest followed by 20 seconds of finger 

flexion/extension controlled at a rate of 1 Hz.  These intervals are denoted above where 

white blocks represent rest (R) and grey blocks signify flexion/extension (F/E).  A model 

of the canonical hemodynamic response function (Model Data, solid line) was fit to data 

recorded as a single voxel (Experimental Data, dashed line) over the timecourse of a 

single trial. 
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CLINICAL ASSESSMENT 

 

 Following the MRI portion of the session, all participants with stroke were 

assessed using the FMA to quantify impairment of the affected arm.  The upper extremity 

portion of the FMA was conducted before and six weeks after receiving BoNT injections 

(W0 and W6).  The FMA is designed to evaluate movement control, reflex activity, 

coordination, and muscle strength and was originally designed as a measure of motor 

impairment for stroke survivors.  The upper extremity FMA motor scale specifically 

assesses movements of the hand, wrist, and upper extremity and totals to 66 points, with 

each category ranging from 0 (totally impaired) to 2 (no impairment) (Fugl-Meyer et al., 

1975).   

  

2.2.4 Data Analysis 

Changes in the volumes of brain activation with BoNT treatment in participants 

with stroke were compared to changes in repeated measures of brain activation in age-

matched controls.  Activation maps were computed for each participant, along with group 

average activity maps, and between-session contrasts of each test group were compared.  

The pipeline for image processing is summarized in Figure 2.5 and a detailed description 

follows.   

 

DATA PREPROCESSING 

 Prior to image analysis for the quantification of brain activity, all data underwent 

several preprocessing steps.  After collecting data, DICOM files were converted to NIFTI 

format using Mricron’s dcm2nii software.  The 4D data sets from the two trials were 

concatenated and trimmed for final statistical analysis; the first 4 TRs were removed to 
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account for magnetic stabilization (Diedrichsen & Shadmehr, 2005).  Using the Oxford 

Center for Functional MRI of the Brain Software Library (FSL), participant data were 

first reoriented to a standard orientation (Jenkinson, Beckmann, Behrens, Woolrich, & 

Smith, 2012).  Correction for intensity differences on the outer edges of the brain was 

performed using the Advanced Normalization Tools (ANTs) software’s 

N4BiasFieldCorrection command (Avants et al., 2009).  Using FSL’s Brain Extraction 

Tool (bet), the skull and other non-brain matter was removed from both T1-weighted and 

fMRI images (Jenkinson et al., 2012).   

All stroke participants with left-arm hemiparesis (i.e. right hemisphere brain 

lesions) and control participants that self-identified as right-hand dominant were flipped 

in the right-left direction to allow for group analysis of movement using the non-

dominant hand.  The R-based Lesion Identification with Neighborhood Data Analysis 

(LINDA) program—which requires lesions to be located in the left hemisphere—was 

used to create lesion masks for all stroke participant T1-weighted images (Pustina et al.,  

2016).  These masks were manually edited as necessary depending on LINDA’s 

accuracy.  Masks were overlaid on each participant’s anatomical T1 image to assess the 

precision of the lesion detection.  Upon visual inspection, LINDA at times under- or 

overestimated the size of the lesion.  In these cases, the masks were manually expanded 

(or reduced) to better reflect the lesions’ actual pathology.  Using FSLView’s masking 

tool, voxels were manually added and removed from the mask to ensure all lesioned areas 

were included in the mask. 
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Figure 2.5: Processing Pipeline. The primary steps taken during image analysis in order 

to arrive at the final results are summarized.  The pipeline begins with participant-specific 

data and results in group average results that were used to visualize between-session and 

between-group differences.  
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REGISTRATION 

In general, fMRI data were registered to a Montreal Neurological Institute (MNI) 

standard brain and underwent statistical analysis to identify brain activity during 

movement of the impaired (non-dominant) hand.  For registration, each participant’s T1 

weighted anatomical image was aligned to a standard MNI 2mm-voxel brain for 

comparison of images in standard space.  Both linear and nonlinear registrations of the 

T1-weighted image were carried out using the ANTs software.  First, linear registration 

was performed using a rigid algorithm to perform necessary rotations and translations.  A 

second-level linear transformation was done using an affine algorithm to perform 

shearing and scaling of the image to match the MNI template.  Lastly, nonlinear 

registration was performed using a symmetric-normalization (SyN) algorithm (Avants et 

al., 2008).  This top-performing algorithm is a diffeomorphic registration, which allows 

for flexible local matching of tissues in the brain to the template (Klein et al., 2009).  It is 

considered symmetric because its outputs allow for transformation from subject-space to 

standard-space as well as the inverse transformation from standard-space back to subject-

space.  This process produced 3D warp (nonlinear) and an affine (linear) transformations 

that were then applied to the 4D functional data over all volumes, resulting in the 

normalized datasets that were subsequently used to determine neuronal activity in the 

brain. 

 

DETERMINING NEURONAL ACTIVITY 

Neuronal activity was assessed by utilizing statistical maps in which statistical 

parameters (z-score) were indicative of correlation with the hemodynamic response 

function on a voxel wise basis.  FMRI analyses were carried out using the fMRI Expert 
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Analysis Tool (FEAT) Version 5.0, a subsection of FSL.  First-level FEAT analysis was 

performed on individual data using a Fixed Effect (FE) analysis.  Data were corrected for 

motion using FMRIB’s Linear Image Registration Tool (MCFLIRT).  Spatial smoothing 

was performed on data using a full-width/half-maximum (FWHM) Gaussian kernel of 5 

mm.  The data were filtered temporally with a 0.01 Hz high pass filter to remove 

unwanted low-frequency signals (i.e.  breathing, heartbeat, drifts within the scanner).  

Data were also prewhitened using FMRIB’s Improved Linear Model (FILM), which uses 

nonparametric estimations of the time series autocorrelation to prewhiten each voxel’s 

time series to improve estimation efficiency.   

A model of the expected hemodynamic response (HDR) was created using 

FEAT’s General Linear Model setup to convolve the binary block design with a Gamma 

wave (phase = 0s, std.  dev.  = 3s, mean lag = 6s).  Statistical analysis of each voxel’s 

timeseries was performed using the FMRIB’s Improved Linear Modeling (FILM) to 

correlate the time series to the model.  The activation images (Z-value, Gaussianized T/F 

statistic (Jenkinson & Woolrich, 2000) went through a cluster-threshold using Z > 2.3, 

resulting in a corrected cluster significance of p < 0.05.  This first-level analysis created 

each participant’s activity map at each session, where higher z-scores indicated a greater 

probability of a given voxel being associated with the motor task.  These maps were later 

used to quantify volume of activation and areas that correlated highly with the task. 

 

GROUP MEAN ACTIVITY & CONTRASTS 

 Group analysis was performed using FMRIB’s Local Analysis of Mixed Effects, 

Stage 1 (FLAME1).  A general linear model (GLM) was used to categorize individual 

participants by participant type (Stroke/Control) and session (W0/W6).  The GLM is a 
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binary matrix meant to assign each data set to one of four groups, with participants as a 

random factor: control at W0, control at W6, stroke at W0, and stroke at W6.  Group 

mean activation maps were created using nonparametric permutation testing for each 

group at a threshold Z > 2.3 and cluster significance p < 0.05.  FSL’s False Discovery 

Rate (FDR) was used to correct for multiple comparisons.   

Contrasts between the two sessions were calculated for both control and stroke 

groups, using a two-sample paired t-test.  Control and stroke groups were analyzed 

separately to account for difference in population variance.  Significant differences (Z > 

2.3, p < 0.05) found between sessions in stroke participants can thus be attributed to 

effects resulting from the BoNT injection over time.  Contrasts between time points for 

controls were used as a method of verification and to test for the existence of an 

interaction effect from the BoNT therapy. 

 

ACTIVE VOLUME AND AVERAGE CORRELATIONS OF REGIONS OF INTEREST 

 

 Regions of interest (ROIs) assessed in this study were identified by contrast 

analysis between W0 and W6 sessions of the stroke group.  Clusters showing a 

significant difference in signal following BoNT injections were broken into individual 

ROIs based on anatomical structure and function using the Jülich Histological Atlas for 

regions in cortical and subcortical areas; because cerebellar areas are not included in the 

Jülich Atlas, the Taliarch Daemon Label Atlas was used to identify regions within the 

cerebellum.  Clusters containing more than one anatomical area were overlaid with the 

atlas’s predefined probability maps of the regions of interest, creating masks where the 

anatomical area and cluster overlapped.   
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Binary masks of each cluster-based ROI were created and used as an input to 

FSL’s featquery tool.  Featquery was used to count the number of active voxels within 

each ROI within that region for each participant-specific dataset.  In addition to active 

volume, the average z-score (correlation to the HRF) was calculated using all voxels 

contained within the ROI resulting in a representative z-score for the region.  These data 

were used as quantitative measures to assess the impact of BoNT on activation patterns 

related to movement. 

 

CORRECTION FOR LESIONED BRAIN MATTER 

 Due to the large number of cortical lesions in the  participant pool, group means 

and contrasts were recalculated while correcting for lesion location.  The goal of this 

approach was to determine if any changes in activation were seen in the common 

lesioned areas, primarily in the lesioned M1.  Participants that were identified as having a 

lesion in a specific location were excluded from statistical analysis.  Using this technique, 

statistical analyses were performed using information coming only from viable brain 

tissues that were capable of activation.  This also resulted in each voxel having different 

statistical power because of variations in the number of samples included in each 

calculation.   
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2.3 RESULTS  

Activity patterns were analyzed from all participants in this study both 

individually and in groups according to participant type (stroke/control) and session 

(W0/W6).  Main effects were seen comparing stroke and control groups, but no effect 

was seen comparing sessions alone.  No significant difference was observed comparing 

sessions in the control group.  The stroke group, however, showed significant increases in 

activity from W0 to W6, indicating an interaction effect had taken place in stroke 

survivors in response to the BoNT intervention. 

 

2.3.1 Imaging: Subject-Specific 

Individual participants’ activity maps for those in the control group showed 

consistent patterns of activation in bilateral primary motor (M1) and ipsilateral 

cerebellum areas at W0 and W6.  The activity map associated with non-dominant hand 

movement in a representative healthy control is shown at W0 and W6 in Figure 2.6.  

Though this pattern was common among all control participants, activity patterns for 

participants in the stroke group showed more variability in individual maps.  Unlike the 

control participants, which largely showed similar activity patterns at each session, stroke 

participants showed differences in activation between W0 and W6.  An example of the 

activity pattern of a representative participant with stroke is illustrated in Figure 2.7.  This 

participant showed widespread brain activation in several areas outside the primary motor 

cortex that increased from W0 (Figure 2.7a) to W6 (Figure 2.7b).  Most stroke 

participants showed an increase in whole brain active volume with several areas showing 

increased activity following BoNT injections.  This trend excludes participant BTX7, 
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who showed an overall decrease in whole-brain active volume; it is worthwhile to note 

this participant’s low spasticity rating and high functional ability, a distinctive trait as 

compared to the other stroke participants.   

 

 

Figure 2.6: Single Control Participant Activation Pattern. The mean BOLD activity 

associated with task performance is shown for participant C7 at W0 (a) and W6 (b). No 

apparent changes were seen in the control participant data over time. 
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Figure 2.7: Single Stroke Participant Activation Pattern. The mean BOLD activity 

associated with task performance is shown for participant BTX5 at W0 (a) and W6 (b). 

Signal increased in both volume and average z-score following the BoNT injection 

therapy.  

 

 

2.3.2 Imaging: Group Averages 

 

The average activation map for the control group was calculated using all 

participant data from both W0 and W6 after taking account for repeated measures.  This 

group average of BOLD activity during hand movement for all control participants is 

shown in Figure 2.8.  The contralateral primary motor cortex (M1) and ipsilateral 

cerebellum appear to be the areas exhibiting the highest volumes of activity.  In addition 

to these primary motor areas, the following areas also showed significant activity: 

ipsilateral premotor cortex, ipsilateral supplementary motor area, hand portion of the M1, 

and various areas of the basal ganglia. 
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Because the individual data maps showed clear differences between W0 and W6 

for stroke participants, group average maps were calculated separately for each time point 

(Figure 2.9).  At W0, group results showed minimal activation, including areas limited to 

the cerebellum, occipital cortex, and small portions of the hand region of M1 (Figure 

2.9a).  Conversely, at W6 group maps showed widespread activity throughout the whole 

brain.  Areas of activation included the cerebellum and occipital cortex (as seen at W0) as 

well as areas in the ipsilateral and contralateral primary motor cortex, hand area of M1, 

and the basal ganglia (Figure 2.9b).  Group activity maps for the stroke participants 

following the lesion-correction analysis showed similar patterns, and are documented in 

Appendix E.  While the W6 group average showed notable increases in primary and 

secondary motor regions, it is clear that areas outside of the primary motor cortex become 

engaged as well.   
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Figure 2.8: Group Activity Maps of Control Participants.  The above panel shows 

slices of the MNI template overlaid with z-statistic (Z > 2.3) maps of the averaged control 

group activity during non-dominant hand movement.  Activity maps indicate volumes in 

which there was significant (p < 0.05) levels of activity across the group.  The right 

hemisphere of the brain is displayed on the left. 
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Figure 2.9: Group Activity Maps of Stroke Participants. Each panel shows axial slices 

of the MNI template overlaid with z-statistic maps of the averaged stroke group (a) 

before BoNT injection and (b) six weeks after injection. Activity maps indicate volumes 

in which there was significant (p < 0.05) levels of activity across the group. The right side 

of the brain is displayed on the left. 

 

a. 

b. 
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2.3.3 Imaging: Contrasts 

Whole brain comparison of BOLD signal in the stroke group at W0 and W6 

revealed significant differences in cortical activation following BoNT intervention.  A 

significant increase in BOLD activity was seen in several regions including premotor, 

cerebellar, and sensory integration areas following BoNT injections (P < 0.05; paired t-

test) (Figure 2.10a).  These increases in activation appeared in clusters that spread across 

several anatomical and functional areas (Figure 2.10b).  The voxel-based approach 

revealed three significant, connected clusters of voxels, from which five anatomical and 

functional regions of interest were identified: 1) ipsilateral premotor cortex (PMC-R), 2) 

ipsilateral cingulate gyrus (CG-R), 3)  ipsilateral thalamus (Th-R), 4) superior cerebellum 

(S-CB), and 5) somatosensory and visual integration areas (Sens-IA).  These regions are 

further are described in Table 2.2 and illustrated in Figure 2.11.   

Following lesion correction, no significant difference was seen in the contralateral 

M1, which was originally hypothesized.  Small areas of increased activation were 

identified throughout the contralateral hemisphere that did not reach a significant value. 

These increases in activity following lesion correction are illustrated in Appendix E. 
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Figure 2.10: Contrast between Stroke Participants Before and After BoNT 

Intervention. Significantly activated voxels (Z > 2.3, p < 0.05) are overlaid on a standard 

MNI brain (a) illustrating areas that showed a significant increase in activity following 

the BoNT intervention. These active areas were observed in three clusters (b) indicated 

by red, blue, and green volumes.  
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Table 2.2: ROI Characteristics 
 

Main Region of Interest 

 

Abbreviation 

 

Size (Voxels) 

 

Region Description 

 

 

Premotor Cortex 

 

PMC-R 441 
64% GM Premotor Cortex BA6 R 

14% GM Primary Motor Cortex BA4a R 

 

Cingulate Gyrus 

 

CG 758 
40% WM Cingulum R 

18% WM Callosal Body 

 

Right Thalamus 

 

Th-R 855 
78% Right Thalamus 

19% Right Cerebral, WM 

 

Superior Cerebellum 

 

S-CB 298 

Right Cerebellum 

Anterior Lobe 

Cerebellar Lingual 

 

 

Sensory Integration Area 

 

 

Sens-IA 2680 

55% Inferior Temporal Gyrus, temporo-occipital part; 

14% Temporal Occipital Fusiform Cortex 

7% Lateral Occipital Cortex, inferior division 

3% Occipital Fusiform Gyrus 

Note: Probabilities describing each ROI’s anatomical makeup were determined using Jülich Histological Atlas 

for cortical ROIs and the Taliarch Daemon Label Atlas for at the voxel of greatest z-score overlaid onto a 2 mm-

MNI brain. 
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Figure 2.11: Defining Regions of Interest. Using the clusters identified in Figure 2.5, 

regions of interest were identified and further segmented into regions of interest utilizing 

the Jülich Histological Atlas for cortical regions and the Taliarch Daemon Label Atlas for 

cerebellar regions. (a) PMC-R (b) CG-R (c) Th-R (d) S-CB (e) Sens-IA. 
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2.3.4 Activation Volume and Correlation Analysis 

The five data-defined ROIs were used as masks to identify the number of active 

voxels and average z-score in the given volume for the stroke group at W0 and W6 

(Figure 2.12 & 2.13).  Participants with stroke showed increased activity in the PMC-R 

region by 40.5%, CG-R by 38.7%, Th-R by 37.3%, S-CB by 46.7%, and Sens-IA by 

39.2% of total ROI volume (p < 0.05).  The average z-score within each ROI also 

increased following BoNT injections; analysis showed significant increases in z-scores of 

0.87 to 3.43 in the PMC-R, 0.70 to 2.77 in the CG-R, 0.80 to 3.14 in the Th-R, 0.91 to 

3.28 in the S-CB, and 1.17 to 3.78 in the Sens-IA respectively (p < 0.05).     

The stroke group showed higher volume of activation in all mentioned ROIs at 

W6 than controls at either time point (p < 0.05).  Controls showed greater volume of 

activation in the contralateral M1compared to stroke participants at W0 (p < 0.05), but 

showed no significant difference at W6.  No significant difference was found between 

sessions for control participants.  There were no areas that showed significantly 

decreased activity following BoNT injections.   
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Figure 2.12: Changes in Activation Volume Following BoNT Injection Therapy. All 

areas of interest show a significant difference in active volume between sessions. Control 

group results showed no difference between sessions, and are not included in this figure.  
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Figure 2.13: Changes in Average Z-Score Following BoNT Injection Therapy. All 

areas of interest show a significant difference in average intensity between sessions. 

Control group results showed no difference between sessions.  

 

 

2.3.5 Clinical Assessment 

 Participants showed a significant increase in FM motor scores following 

injections of BoNT to the affected arm (p < 0.01; paired t-test).  Nearly all participants 

receiving BoNT showed an increase in FM-UE scores following injection therapy (Table 

2.3), showing a mean increase of 1.8 +/- 0.2 points increase.  Four of nine participants 

showed improvement of wrist function, and three showed improvements in finger 

extension.  Those that improved in finger extension had the highest MAS scores prior to 
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Correlations were performed between activation volume, activation intensity, and 

clinical measurements (MAS, FMA).  General trends between the initial MAS scores and 

activation volume at W6 were identified, although they did not reach a level of statistical 

significance.  These included minor correlations between initial MAS scores and the 

changes in Sens-IA ROI volume (r = 0.53, p < 0.142) and average z-score (r = 0.54, p < 

0.135).  Additionally, initial MAS scores were correlated with active volume in the 

ipsilateral hemisphere (r = 0.51, p < 0.166).  Patient BTX7 showed substantially higher 

functional ability in the affected limb as compared to other stroke participants, indicated 

by physical characteristics, initial MAS score, and FMA scores at both W0 and W6.  It is 

important to note that this participant alone showed decreases in cortical activity 

following BoNT intervention. 

 

Table 2.3: Fugl-Meyer Scores  

Patient No. FM (W0) FM (W6) 

BTX 1 23 26 

BTX 2 26 27 

BTX 3 19 22 

BTX 4 20 22 

BTX 5 9 9 

BTX 6 23 25 

BTX 7 63 63 

BTX 8 44 47 

BTX 9 35 40 
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2.4 DISCUSSION  

In this study, we found evidence of the effects of BoNT on higher-order brain 

activation using fMRI.  Following BoNT intervention, an interaction effect was seen in 

significant increases in the BOLD signal in the contralesional premotor cortex (PMC-R), 

cingulate gyrus (CG-R), and motor thalamus (Th-R), ipsilesional sensory integration 

regions (Sens-IA), and bilateral superior cerebellum (S-CB).  These regions of interest 

showed increased activity, characterized by both larger volume of activation and greater 

correlation to the HDR.  The results suggest that in people with severe spasticity, BoNT 

can enable activation of higher motor centers, possibly associated with renewed access to 

motor planning and control of movement. 

 

2.4.1 Activation Patterns in Control and Stroke Groups 

CONTROL 

Traditionally, cortical motor function is reliant on the supplementary motor area 

to plan movements and the primary motor cortex to execute said plan (Ghez, Hening, & 

Gordon, 1991).  Additionally, somatosensory areas interpret sensory information to 

assess the performance as compared to the plan, and adapt accordingly (Fetz, Finocchio, 

Baker, & Soso, 1980; Flament & Hore, 1988). These findings have been verified using 

fMRI, indicated by BOLD-induced signals produced during movement (Meier, Aflalo, 

Kastner, & Graziano, 2008; Olman, Pickett, Schallmo, & Kimberley, 2012).   

In the present study, analysis of control subjects showed significant activation of 

the contralateral primary motor (M1), supplementary motor (SMA), cingulate motor 

(CMA), premotor, and somatosensory areas (S1), as well as the ipsilateral cerebellum. 
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Ipsilateral premotor and primary S1 were also activated, though to a lesser degree than 

the equivalent contralateral regions.  

Our results of activation patterns for the control group were consistent with 

previous studies, which vary in task protocol (Meier et al., 2008; Olman et al., 2012). 

Reproducible activation patterns are observed in the contralateral primary, 

supplementary, and premotor areas as well as the ipsilateral cerebellum during repetitive 

hand movements (i.e. finger tapping, finger sequence patterns, whole-hand 

flexion/extension) (Yoo et al., 2005).  Additionally, EEG/fMRI shows higher order motor 

areas (SMA and CMA) are activated slightly before primary motor areas, and are 

believed to trigger actual motor movement by releasing inhibition of the primary motor 

cortex (Ball et al., 1999).  Engagement of the primary somatosensory cortex (along with 

previously established motor areas) has also been shown during executed movement, an 

area of activation not seen in imagined movement (Lotze et al., 1999). Similar activation 

patterns have been seen among passive and active movements of the hand, with passive 

movements engaging the same regions but less volume, which is thought to be due to the 

removal of motor drive (Boldyreva et al., 2014). 

The motion of making a fist combines the simple task of single finger flexion and 

has been shown to produce nearly identical activation patterns.  Comparing movements 

of the same joint which involve different muscles (i.e. flexion/extension v. 

abduction/adduction of a single finger) shows a large overlap of the hand/fingers sites on 

the primary motor and somatosensory cortices (Lotze et al., 2000).  Although voluntary 

movement of the hand is classically thought to be controlled by the contralateral cortex, 

ipsilateral motor areas might also be involved.  Engagement of the ipsilateral M1 during 
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unilateral hand tasks remains controversial, as bilateral activation is inconsistently 

observed in fMRI studies. Previous findings suggest a positive correlation between the 

volume of activation in ipsilateral motor areas and the precision required for the task, 

complexity of the task, and duration of the movement (Buetefisch et al., 2014; Verstynen, 

2004; Newton, Sunderland, & Gowland, 2005; Bernard et al., 2002).  

 

STROKE 

Severity of motor impairment has an impact on functional activity patterns related 

to hand movement in stroke survivors.  Stroke survivors with recovered motor function 

show activity patterns similar to those produced by healthy controls, often exhibiting less 

localization and more active volume (Cramer et al., 1997; Nair et al., 2007).  Movement 

of the unimpaired hand elicits nearly identical patterns to those seen in controls; however, 

in stroke survivors with motor impairments, movement of the affected hand  activates 

areas of the motor cortex that are spatially distinct from those produced during movement 

of the unaffected hand (Cramer et al., 1999). Study participants exhibiting severe deficits 

often recruit motor areas outside the primary motor cortices including supplementary 

motor areas, cingulate motor areas, premotor cortices, and cerebellar regions (Ward et al., 

2003).  Poor motor outcome in chronic stroke is associated with changes in 

interhemispheric balance, shifting cortical activation to the non-lesioned hemisphere to 

provide compensation for areas damaged by the infarct (Cramer & Crafton, 2006). These 

foundational findings have fueled fMRI research to determine neural correlates of motor 

recovery following stroke and to design therapies to facilitate these neuroplastic changes 

(Buetefisch, 2015; Johansen-Berg et al., 2002; Jones et al., 2015; Michielsen et al., 2011; 

Rehme, Fink, Von Cramon, & Grefkes, 2011; Schaechter et al., 2002). 
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COMPARISON BETWEEN CONTROL AND STROKE  

The tasks chosen for movement-based fMRI analysis in both control and stroke 

related studies show a wide variety of complexity and involvement, all of which produce 

near-identical activation patterns.  Comparing activation maps between the present and 

past studies, both control and stroke groups show more extensive contralateral 

somatosensory activation compared to prior studies (Schaechter et al., 2008; Cramer et 

al., 1997).  It is possible that this larger area of activation is due to the increased sensory 

stimulus elicited by the assistive device.  Congruency between current and previous 

findings in control participants regarding the involvement of all contralateral motor areas, 

as well as ipsilateral cerebellar areas provides further validation of our imaging methods.  

Activation in control participants’ ipsilateral motor areas could be explained by 

the long blocks of movement and the target of achieving a fully formed fist and extended 

hand (Newton et al., 2005).  Similar results are to be expected when comparing motor 

tasks ranging from single-joint finger tapping to mass flexion and extension of the hand 

due to the similarity of the movement tasks (Lotze et al., 2000); contrasts seen between 

control and stroke groups might be due to the difficulty of the present study’s task 

(Verstynen, 2004).  In controls, minor recruitment of ipsilateral secondary motor areas 

may be a result of the uniqueness of a task comprised of assisted extension and resisted 

flexion, even if the movement is not considered challenging.  Furthermore, higher order 

motor areas recruited by stroke subjects with large impairments may be due to the 

additional effort and planning required to perform a seemingly simple motor task 

(Bernard et al., 2002). 

Our findings in differences in control and stroke participant  activation patterns 

associated with hand movement are consistent with previous results.  Stroke participants 
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tend to have much more variety in cerebral activation patterns, particularly when 

compared to neurologically intact control subjects (Ward et al., 2003; Cramer et al., 1997, 

1999).  Comparing activation of the contralateral M1 between groups, controls showed 

significantly higher volume and magnitude of activation in the primary motor cortex (p < 

0.025) than BoNT participants, even following the therapy.  This is likely due to the 

control group’s ability to perform the task fully, as movement amplitude and M1 

activation in fMRI have been positively correlated (Waldvogel, van Gelderen, Ishii, & 

Hallett, 1999).  Although this increase was not significant following contrast analysis, it 

is possible that this trend might become more apparent with a larger sample size.  

 

2.4.2 Motor Areas of Activation Unique to Stroke 

Activation patterns related to hand motor tasks in stroke participants have been 

examined with regards to motor recovery and therapy outcomes.  Reports vary greatly in 

study design but show consistently more disperse activity patterns in stroke populations 

as compared to neurologically intact populations (Cramer et al., 1997, 1999; Schaechter 

et al., 2002; Ward et al., 2003;).  Studies on early post-stroke motor recovery have 

demonstrated correlations between the contralesional primary motor cortex (M1) and 

behavioral recovery, associating high levels of contralesional activation with poor 

recovery and inability to fully perform the task (Rehme et al., 2011; Calautti et al., 2007; 

Buetefisch et al., 2015; Marshall et al., 2009; Johansen-Berg et al., 2002).  Given the 

highly impaired participants in the current study, high levels of contralesional 

involvement—as seen in both pre- and post-BoNT fMRI data—would be expected.  The 

present study demonstrates a general trend indicating initial MAS scores may be 
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correlated with ipsilateral hemisphere activity; this implies that patients experiencing 

severe spasticity require more extensive engagement of ipsilateral structures for 

compensation.  The overall consensus on the effects of therapy as indicated by fMRI 

activity follows a trend of lateralization and localization to the contralateral hemisphere, 

generally indicating decreases in overall brain activity.  This finding has been reported in 

constraint-induced (Johansen-Berg et al., 2002), mirror (Michielsen et al., 2011), and 

physical rehabilitative therapies (Cauraugh & Summers, 2005; Schaechter et al., 2002).  

Reports on increased activity of higher-order motor areas following therapeutic 

interventions, however, remain minimal.  

The first group to assess BOLD signal neural correlates associated with the 

impact of BoNT injection therapy did not assign a rigorous physical therapy protocol 

along with the study (Manganotti et al., 2010).  Eight chronic stroke survivors performed 

sequential finger tapping during an fMRI; following BoNT injections, activation 

decreases in both ipsilateral and contralateral motor areas, showing a clear lateralization 

to the affected hemisphere.  As it is traditionally recommended, most studies assess the 

effects of BoNT in combination with physiotherapy.  Diserens et al. (2010) found 

increases in activity in contralesional secondary motor areas and the ipsilesional 

somatosensory cortex following repetitive arm cycling over a 3 month period.  Following 

this initial study, more fMRI findings have been discovered by combining BoNT 

injections with daily (~1 hr.) rehabilitation training tailored to each participant, with 

highly variable results (Senkárová et al., 2010; Veverka et al., 2012, 2014, 2016).  Their 

initial 4-subject study showed decreases in the posterior cingulate and precuneus regions 

(Senkárová et al., 2010). A subsequent study included 14 study participants and extensive 
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activity increases are seen within the contralesional thalamus and bilateral cerebellum 

while decreases are seen bilaterally in primary, supplementary, and premotor cortices 

following BoNT (Veverka et al., 2012, 2014, 2016).  Bergfeldt et al. (2015) also 

conducted a 6-person study, and documented bilateral decreases in M1, making note that 

ipsilateral M1 activity is more greatly reduced.  These studies all identify changes in 

activity of several primary motor areas following BoNT intervention; however, the 

inconsistency in findings surrounding involvement of areas outside the primary motor 

cortex suggests further investigation is needed. 

In the current study, group results showed increases in contralateral primary 

motor cortex and bilateral cerebellar activity following BoNT injections (Figure 2.9b), 

congruent with several findings from previous studies involving cerebral changes due to 

BoNT and combined therapies (Tomášová et al., 2013).  Stroke survivors tend to have 

greater variety in activation patterns, often including several areas outside the primary 

motor cortex in both the affected and unaffected hemisphere.  Cross-session analysis 

revealed three clusters in which BOLD activity significantly increased after BoNT 

treatment; these three clusters were broken into five main regions of interest: the 

contralesional premotor cortex (PMC-R), cingulate gyrus (CG-R), contralesional 

thalamus (Th-R), bilateral superior cerebellum (S-CB), and ipsilesional sensory-

integration areas (Sens-IA).  Each of these ROIs has been proven to play a supporting 

role in motor planning and execution. 

Increases in cortical activity after BoNT may be explained by a number of factors.  

First, due to the severity of contractures and muscle weakness in most participants, it is 

possible the task was unable to be performed even with the assistance of the finger-
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extension device.  The release of spasticity by BoNT injections may have allowed for 

greater magnitude of the hand movement within the scanner, which could translate to 

increases in activity in motor areas.  This increase in activity could also be a result of 

neuroplastic events occurring as individuals incorporate the affected arm into daily use, 

as BoNT works to gradually release spasticity over six weeks. Additionally, previous 

studies identified similar activation patterns among passive and active movements, where 

passive movement produced a weaker response due to the removal of motor control 

(Bernard et al., 2002); this finding is congruent with the hypothesis that BoNT injections 

allow for increased motor control and explains why these areas of activation would 

increase in volume. 

Increased activity in higher-level motor areas could also be a result of repeated 

injections.  Documentation of the cortical activation changes associated with BoNT have 

primarily focused on first-time injections; because long-term BoNT injection therapy 

itself tends to exhibit a plateau-effect, it is likely that activity patterns change 

accordingly.  The present study assesses these changes following repeat injections, 

wherein no present literature is available for comparison.  

Additionally, prior studies have included intense rehabilitative therapy regimens 

for all participants receiving BoNT injections (Diserens et al., 2010; Veverka et al., 2012, 

2014, 2016; Bergfeldt et al., 2015).  Similar activation patterns are shown in studies 

assessing cortical activation changes following motor recovery due to physical therapy 

methods regardless of the presence of BoNT injections; it is likely that these training and 

therapy methods are largely responsible for the general trend of localization and 

lateralization to the contralateral M1 seen in prior studies (Schaechter et al., 2002; 
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Johansen-Berg et al., 2002; Ward et al., 2003). Physical therapy regimens were not 

controlled in the present study, which may explain why this pattern was not seen in the 

fMRI results.  

Too often in fMRI studies, regions of interest are often predetermined based on 

predicted outcome, identifying premotor and primary motor cortices as major targets. 

This tendency can often cause less-obvious patterns to be overlooked when observing 

group-average activity maps; to address this issue, significance testing on the contrast 

between sessions can filter out areas of non-significant changes in activity.  The present 

study’s data analysis was performed using a voxel-based approach to identify 

involvement of higher order motor areas that might be engaged following BoNT 

intervention.  By analyzing each voxel independently, clusters directly associated with 

the task can be identified across the whole brain.  The use of a contrast approach allows 

for detection of significant differences in activity between sessions, presumably the 

broader motor areas involved in motor planning and execution that are thought to adapt to 

compensate for lost primary control.  

The individual data-defined regions of interest have all been related to roles 

involved in motor control by functional and structural connections shared between the 

ipsilateral premotor cortex (Calautti et al., 2007; Johansen-Berg et al., 2002), cingulate 

gyrus (Dum & Strick, 1991; MacDonald et al., 2000; Barbas, Henion, & Dermon, 1991; 

Montaron & Buser, 1988), motor thalamus (Bosch-Bouju et al., 2013; Vitek et al., 1994; 

Middleton & Strick, 2000; Mushiake & Strick, 1993), superior cerebellum (Mottolese, 

Szathmari, Beuriat, Sirigu, & Desmurget, 2015; Timmann et al., 2008), and sensory 

integration areas.  It is possible that the regions together act as a new internal model for 
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hand movement, developed post-stroke due to disuse of the affected arm.  Furthermore, 

higher order motor control structures are required to compensate for the loss of primary 

motor cortical drive. 

 

2.4.3 Effects of BoNT Therapy 

BoNT therapy is a safe and effective method for managing symptoms of spasticity 

and has become a frontline treatment for focal or multifocal spasticity (Elovic et al., 

2008; Hesse, Reiter, Konrad, & Jahnke, 1998; McCrory et al., 2009; Shaw et al., 2011; 

Sheean, 2006).  Best outcomes are seen in patients when action is taken during early 

stages of symptoms, preventing soft tissue shortening from limb immobility (Kaji et al., 

2010; Smith, Ellis, White, & Moore, 2000).  Injections of BoNT are effective in 

improving rehabilitation outcomes, resulting in better mobility as compared to groups 

receiving a placebo (Gracies et al., 1997; Marciniak et al., 2012; Rosales et al., 2012). 

 Use of BoNT injections to treat spasticity in participants of the current study 

helped reduce spasticity and slightly decrease motor impairment, as indicated by a 

significant increase in FM motor scores (p < 0.01).  The components in which scores 

improved were often related to improved wrist strength, as seen in 4 out of 9 patients.  

Other areas of improvement (mass finger extension, forearm pronation/supination, 

shoulder flexion and abduction) varied between participants, most likely impacted by 

injection location and dose. 

Prior BoNT injections in participants of the current study might have influenced 

the results.  Prior studies assessing the effects of BoNT injections use participants naïve 

to the therapy, documenting greater improvement following first-time injection (Hesse et 
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al., 1998, 2001; Hurvitz et al., 2003). It is possible that the small increase in FM score 

after the injections in the current study, though significant, could be limited by 

improvements that already occurred following prior injections.  Patients appear to 

experience a greater change in clinical scores following their first injection, while follow-

up injections serve primarily to maintain the spasticity reduction. This model would show 

a plateau effect in clinical scores when documenting long-term use.  

Some have concluded that BoNT injections provide best results when 

administered shortly after symptoms occur (Kaji et al., 2010; Smith et al., 2000). The 

minor improvements seen in this study’s FM scores could be a result of the timeframe in 

which patients received their first injection following the appearance of spastic 

symptoms.  If the study group dealt with symptoms for substantial time period before 

seeking treatment, it would follow that their improvements following BoNT would be 

less pronounced.  Because the onset of these symptoms is not specifically recorded, this 

hypothesis cannot be tested.  

The efficacy of BoNT to improve peripheral motor impairment was seen in 

changes in cortical activation following treatment.  It is possible that the increased 

activation seen in contralateral primary motor areas was elicited from greater magnitude 

of movement within the scanner; however, this increase in activity was not significant 

following the subject-paired contrast analysis across timepoints (W0 v. W6). While 

ability to perform the task may have improved slightly following BoNT injections, it does 

not compare to that of the controls, which showed significantly greater activation.  
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2.4.4 Study Limitations 

The study enrolled a small sample, and it is possible that including more 

participants would provide more areas of significant difference. Despite the low number 

of participants, results showed consistent patterns among each group.  One limitation to 

the present study is the lack of measurement of hand movement while in the scanner.  

Quantification of increased movement or lack thereof would have proven helpful in 

drawing final conclusions on the effects of BoNT injections.  A real-time measurement of 

hand movement would have the potential to control for mirror movements that are often 

seen in stroke survivors trying to perform tasks with a significantly impaired limb (Ejaz 

et al., 2018; Nelles, Cramer, Schaechter, Kaplan, & Finklestein, 1998; Ohtsuka, 

Matsuzawa, Ishii, & Shimizu, 2015).  It is possible that activity seen in ipsilateral motor 

areas may have resulted from mirror movements of the unaffected hand, though it is 

unlikely because mirror movements would have been present both before and after BoNT 

injection. 

Assessments of improvements in spasticity was limited by the documentation of 

the MAS only prior to the injection; a follow-up measure to quantify improvements in 

spasticity would add to the interpretation of the BoNT effects.  Likewise, the FMA is a 

measure of motor impairment rather than functional ability.  Additional tests such as the 

Wolf Motor Function Test (WMFT) and the Box and Blocks test would have added 

beneficial information regarding any changes in functional ability following BoNT 

injections (Mathiowetz, Volland, Kashman, & Weber, 1985; Wolf et al., 2001).  All 

participants performed physical therapy exercises tailored to their specific needs.  

Physical therapy treatment plans, duration, and frequency were not controlled, but 
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assumed to remain constant over the six-week period of involvement in the study.  

Neither injection site nor dose were controlled for, as each participant showed varying 

levels of spasticity. The total number of injections received ranged from 2 to 50+ 

injections over the participants’ lifetimes but did not show any correlation with effect of 

the injection.  

 

2.5 CONCLUSION 

 This study showed differences between control and stroke brain activation 

patterns in response to an assisted hand flexion/extension task that were generally 

consistent with previous reports.  The results also showed an interaction effect due to 

BoNT treatment, demonstrating increased cortical activation in higher-order motor areas 

following BoNT injection therapy in highly impaired stroke participants performing 

hand-motor tasks.  It is likely that these areas of increased activation play a compensatory 

role in highly impaired participants and allowed for the production of movements 

regained through the release of spasticity.   
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CHAPTER 3: CONCLUSIONS AND FUTURE DIRECTIONS 

 

3.1 LONGITUDINAL EFFECTS OF BOTULINUM TOXIN INJECTIONS: CLINICAL, 

FUNCTIONAL, AND FMRI OUTCOMES 

A current limitation to the present study was the inability to assess long-term 

longitudinal effects of BoNT injections on relieving spasticity.  Injections show the 

greatest improvements in patients who seek treatment shortly after the onset of symptoms 

(Burbaud et al., 1996; Mohammadi, Abdoulrahmani Balouch, Dengler, & Kollewe, 

2010).  Evidence has shown BoNT therapy to exhibit the greatest effects following first-

time injection, where repeated injections act to maintain the initial improvement (Gordon 

et al., 2004).  It would follow that these follow-up injections, which are intended to 

maintain symptoms, would elicit different activity patterns at different timepoints, as 

indicated by fMRI.  The present study observed these patterns, showing results that 

understandably varied from past studies that looked into first-time injections only. 

 

3.1.1 Long-term Effects of BoNT Injections on Functional Ability  

 While long-term use of BoNT injections as a method of treatment for post-stroke 

spasticity has been concluded to be safe and effective, the impact on functional outcome 

remains unclear.  Longitudinal studies have evaluated kinematic improvements in 

spasticity following treatment, quantified by changes in MAS scores (Bhakta, Cozens, 

Chamberlain, & Bamford, 2000; Hare et al., 2009; Richardson et al., 2000; Shaw et al., 

2011).  Likewise, studies have concluded BoNT injections are a contributing factor to 

improvements in patient’s self-assessed quality of life, pain, and hygiene (Caty, 
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Detrembleur, Bleyenheuft, Deltombe, & Lejeune, 2009; Elovic et al., 2008; Lim, Koh, & 

Paik, 2008).  Past findings of improved clinical scores and overall quality of life have 

been consistent; however, no general consensus has been agreed upon regarding 

functional outcomes due to BoNT injections.  

Often, studies associate improvements in clinical scores with improvements in 

everyday function; however, it is difficult to make direct translations between the two 

without a standard objective functional scale.  Some have reported improvements in 

functional outcomes, reporting patient ability to attain prespecified goals and improved 

gait patterns following BoNT injections (McCrory et al., 2009; Sheean, Lannin, Turner-

Stokes, Rawicki, & Snow, 2010). Conversely, several studies have reported 

improvements quantified by decreased muscle tone, while observing no apparent 

functional benefit from the injection therapy (Bensmail, Robertson, Fermanian, & Roby-

Brami, 2010; Fridman et al., 2010; Turner-Stokes et al., 2010).  It is possible that the 

improvements seen in function are responses to first-time injections, while long-term 

BoNT injections do not elicit additional improvements.  More likely, the improvements 

in function are due to therapy paired with the BoNT injections, using the neurotoxin as an 

aide to maximize the effects of the training.  These conflicting results suggest that there 

are several factors that affect how any given patient will improve due to BoNT injections 

(i.e. time since onset, number of injections, dose). 

The minimal evidence behind BoNT effects on function with regards to dexterity, 

active movement, and goal-driven movement has led some to suggest spasticity is not the 

direct cause of functional deficits seen post-stroke (Stinear et al., 2007).  The reason 

behind the loss in function may be due to muscle weakness rather than increased muscle 
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tone caused by spasticity.  With BoNT injections acting to minimize contraction of the 

targeted muscle, this should provide the patient opportunity to strengthen the antagonist 

muscle.  Perhaps weight training and other therapies in combination with BoNT 

injections would provide the best functional outcomes in stroke survivors experiencing 

motor deficits.  

Researchers have not yet determined the root cause of spasticity.  It may be a 

result of increased excitability of afferent neurons from muscle fibers themselves, an 

abnormal effect in processing this sensory information, or some other unknown 

mechanism.  As therapies to combat this excessive reflex action develop further, we 

gather more insight into the effects of this spastic restraint.  Brain imaging studies have 

the potential to provide understanding of where the signal pathway is failing.  If sufficient 

signal is generated from cortical levels, it’s possible that this signal could be harnessed to 

control an assistive device or exoskeleton to further support functionality.  

 

3.1.2 Changes in Activity Patterns Corresponding to Improved Spasticity  

 Though the impact of BoNT therapy on functional motor outcome remains 

unclear, improvements in clinical assessment following injections has been documented 

consistently.  An understanding of underlying neural reorganization has the potential to 

further improve therapies and subsequently motor outcome following stroke.  A handful 

of studies have been performed to assess the effects of BoNT and release of spastic 

restraint on activation patterns (Bhakta et al., 2000; Manganotti et al., 2010; Tomášová et 

al., 2013; Veverka et al., 2012, 2014, 2016).  Findings across these studies show 
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commonalities in the effects of primary motor areas, but show wide variation in broader 

motor and sensory areas impacted by the therapy.  

Of these studies on task-related brain activation, most have observed only highly 

functional patients that were naïve to BoNT injections prior to the beginning of the study 

(Bhakta et al., 2000; Manganotti et al., 2010; Tomášová et al., 2013; Veverka et al., 2012, 

2014, 2016).  The present study found evidence of changes in cortical activity associated 

with improved clinical assessments in patients receiving repeated injections.  These 

findings provide insight into how activity patterns change due to the long-term effects of 

BoNT as it is traditionally prescribed in 3-4 month blocks.  The primary purpose of these 

repeated injections is to maintain a reduced severity of initial spastic symptoms, where 

the greatest improvement is seen in earlier treatments.  Just as the muscle adjusts to these 

repeated injections, it would follow that cortical activity patterns would adapt 

accordingly.  It is possible that the plateau-trend seen in spasticity improvement could be 

paralleled in activation patterns.  Following a group of stroke patients undergoing BoNT 

therapy for a longitudinal study would allow us to test this hypothesis. 

 

3.1.3 Future Directions 

In future studies, it would be worthwhile to follow patients from first-time 

injections through several rounds of the injection therapy, ideally over a 1-year period, 

including patients’ first 5 BoNT treatments.  Assessments of spasticity severity (MAS), 

functional outcome (WMFT, Box and Blocks), and cortical activity would be reported 

directly before and 6 weeks after each injection.  In addition, subjects could be recruited 

into groups presenting mild, moderate, and severe symptoms of spasticity to allow for 
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additional analyses on the effects of impairment level on activity patterns.  The assistive 

device used in the present study would be adapted to include optical fiber sensors to 

measure movement throughout the task-related scans.  The proposed modifications would 

allow for a better understanding of the long-term longitudinal effects of BoNT on cortical 

activity and how they come about.  

 

3.2 CHANGES IN CONNECTIVITY FOLLOWING MOTOR RECOVERY 

3.2.1 Functional and Effective Connectivity using Resting State and Task-Based Analysis 

 Further analysis of the fMRI data collected in this study has the potential to reveal 

resting-state and task-related network connectivity changes associated with BoNT 

therapy.  Connectivity as a whole is categorized into two types—resting state and task-

based. (Friston & Büchel, 2003).  Task-based data can be analyzed to determine task-

based functional connectivity or the correlations between spatially remote 

neurophysiological events (Perkel, Gerstein, & Moore, 1967).  

Although an ongoing debate over the use of task-based versus resting state 

connectivity analyses persists, both are continually used to assess connectivity parameters 

neural networks.  The aim of task-related connectivity studies is to accentuate 

components associated with the task (Friston et al., 1994).  These tasks may include 

working memory, motor movements, feedback systems, among others.  Studies aimed to 

address the overlap of resting state and active networks have been growing in popularity, 

most of which observe high correspondence between the two (Fair et al., 2007; Fox et al., 

2005; Greicius, Krasnow, Reiss, & Menon, 2003).  Smith et al. (2009) concluded all 

networks utilized during a task are “continuously and dynamically active, even when at 
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rest”.  While the networks themselves may be active at rest and during task, it has been 

shown that the strength of these networks and the strength of the connections to these 

networks might be modulated with task (Cole et al., 2013).  Therefore, future directions 

might benefit from using both task-based and resting state analysis on these data. 

 Correlations identified by functional connectivity can arise from various factors, 

including common stimulus inputs and synaptic connections to areas of direct activation.  

Effective connectivity is another method of measuring connectivity within the brain,  

which quantifies the influence one neuronal system exerts over another, giving a 

direction to the connectivity measurement rather than connection strength alone (Perkel, 

Gerstein, & Moore, 1967).  Functional and effective connectivity are both dynamically 

dependent on activity patterns; however, effective connectivity aims to separate the 

shared activation response to a stimulus from those induced by synaptic connections 

between two areas (Aertsen, Gerstein, Habib, & Palm, 1989).  While the common inputs 

from other brain areas may manifest as functional connectivity, effective connectivity 

integrates a model to account for exertion over one neuronal system on another, which 

acts to discount additional influence (Friston et al., 2011).  Functional connectivity, in 

contrast, can be used to explore several functional systems; resting state analysis—

unbiased regarding task performance and the a priori assumptions made by effective 

connectivity approaches—can provide intrinsic brain connectivity (Rehme & Grefkes, 

2013). 
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3.2.2 Changes in Connectivity After Stroke 

Network connectivity changes following stroke have been studied extensively 

using both resting state and task-related approaches to compare effects of the trauma to 

neurologically intact participants, noting most importantly the connection between 

ipsilateral and contralateral M1 (Biswal, Zerrin Yetkin, Haughton, & Hyde, 1995). 

Grefkes et al. (2008) assessed resting state and task-related connectivity in subacute 

stroke survivors and compared findings to that of age-matched controls.  Resting state 

analysis showed decreased intrinsic coupling between ipsilesional M1 and SMA and 

interhemispheric connections between SMAs.  Additionally, effective connectivity 

related to movement of the impaired arm resulted in a decreased connection from 

ipsilateral to contralateral M1s, the strength of which correlated with deficit severity 

(Grefkes et al., 2008).  Another study by Carter et al. (2010) assessed behavioral changes 

in motor impairment and their correlation with resting state inter- and intra-hemispheric 

connections to primary motor areas.  Similar to the Grefkes’s group, results found the 

integrity of inter-hemispheric somatomotor network connections correlated with 

impairment, while their analysis focused on intra-network correlations yielded no effect 

(Carter et al., 2010).  

A subsequent resting-state study followed acute stroke patients, concluding on 

longitudinal effects in functional connectivity based on results at 0, 1, 3, and 6 months 

post-stroke (Park et al., 2011).  The group verified the reduced connection between 

ipsilesional and contralesional M1, showing the greatest deficit 1 month following the 

stroke. Additionally, increases in activity of the ipsilesional M1 with the cerebellum, 

thalamus, middle frontal gyrus, and posterior parietal cortex were documented.  Another 
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study assessing functional connectivity in acute recovery administered resting-state 

fMRIs at < 24 hours, 7 days, and 90 days after onset in participants with and without 

motor deficits (Golestani, Tymchuk, Demchuk, & Goodyear, 2013).  Significant 

decreases in connectivity inter-hemispheric M1s were seen within 24 hours in patients 

exhibiting motor impairments.  Unlike previous studies, these results demonstrated that 

inter-hemispheric deficits between motor areas are not affected by deficits outside of 

motor ability.  Following several other verifying studies, a general pattern of reduced 

connectivity between interhemispheric cortical motor areas has been accepted.  These 

results are promising in predicting motor recovery following stroke, with implications for 

improving rehabilitation methods to promote the strengthening of these network 

connections. 

 

3.2.3 Changes in Connectivity Following Therapeutic Intervention 

Using the foundational knowledge of functional network connectivity following 

stroke, steps were taken to assess the effects of rehabilitation.  James et al. (2009) 

presented results regarding acute stroke patients and the effects of a 3-week upper 

extremity rehabilitation program on connectivity.  All participants showed improvements 

following therapy along with increased effective connectivity of the affected premotor 

cortex on unaffected premotor areas (James et al., 2009).  A follow-up study assessed 

changes in the connectivity among primary, supplementary, and premotor areas during 

imagined and executed motor tasks following mental practice and 60 hours of physical 

therapy.  The intervention showed improvements in regional connectivity among motor 

areas during both tasks (Bajaj, Butler, Drake, & Dhamala, 2015).  
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An additional study looked into the patterns resting state functional connectivity 

of the primary motor cortex of the affected hemisphere after four weeks of robot-assisted 

bilateral arm therapy (Fan et al., 2015).  This study found increases in connections 

between ipsilateral and contralateral M1 following intervention, the magnitude of which 

correlated with motor and functional recovery.  Similarly, Li et al. (2017) recently 

assessed the effects of conventional antiplatelet aggregation drug treatments with and 

without additional acupuncture therapy (conventional group and acupuncture group) on 

resting state connectivity.  Compared to the conventional group, acupuncture patients 

showed increased functional connectivity between contralesional and ipsilesional motor 

regions.  In all patients, a correlation between improvements in neurological deficit and 

functional connectivity between bilateral M1s was found (Li et al., 2017).  These findings 

regarding rehabilitation techniques consistently find increases in the connection between 

interhemispheric motor areas, particularly in the primary motor cortex.  Results show a 

neuroplastic effect influenced by all different therapies, suggesting that functional and 

effective connectivity may serve as a biomarker for recovery following stroke.  

 Although connectivity analysis has not been documented regarding BoNT 

injections neither as a standalone therapy nor in combination with other physical therapy 

methods, it could produce the same effects on M1-to-M1 connectivity as seen in previous 

studies.  There is also reason to believe underlying connectivity differences exists based 

on the functional segregation in activity patterns seen in the present study.  We might 

expect that global networks related with the task would increase following BoNT 

intervention, provided the increase in activity of high-order motor areas and their link to 

M1 in motor planning pathways. 
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3.3 TEMPORARY NERVE BLOCKS 

 In addition to BoNT injections, phenol nerve blocks are a peripheral method for 

reducing spasticity.  The blocks have shown to be effective in improving range of motion 

in joints limited by muscle contracture, alleviating painful spasms, and allowing for 

strengthening in antagonists of blocked (Copp, Harris, & Keenan, 1970; Keenan, 1988; 

Khalili & Betts, 1967).  Phenol nerve blocks show immediate onset of action, which 

requires patients to adapt quickly; when administered to lower extremities, this may 

interfere with gait (Bakheit, 2012).  In addition, long-term use of phenol nerve blocks 

could lead to permanent sensory loss (Botte, Abrams, & Bodine-Fowler, 1995).  These 

indicate two primary reasons why BoNT injections have become the more prevalent 

peripheral intervention.  

 Though BoNT remains the primary protocol for focal spastic intervention, phenol 

nerve blocks could provide additional information to help understand how these local 

anesthetics impact cortical activity.  Due to the peripheral nerve block’s immediate effect, 

physicians may be able to determine how a patient may react to BoNT injections that 

utilize similar inhibition methods to prevent muscle contraction.  It would be beneficial to 

perform fMRI and clinical (MAS) as well as functional (FMA, Wolf Motor Function 

Test, Box and Blocks Test, etc.) assessments before injection of the peripheral nerve 

block and again shortly after administering the block.  This would allow a better 

understanding of how peripheral treatment methods work to alter brain activity.  

Hypothetically, if increases in range of movement elicited no change in activation 

patterns, differences seen over time due to BoNT injections are likely due to neuroplastic 

effects caused by gradually practicing movements with the newly improved limb.  
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Likewise, if significant changes are indeed elicited by the sudden improvement in motor 

ability following peripheral nerve blocks, it is likely the increased magnitude of motor 

movement that causes undamaged areas involved in motor movement to become more or 

less engaged.  

 

3.4 IMPLICATIONS OF FMRI IN CLINICAL APPLICATIONS 

 FMRI is but one of several functional imaging modalities.  The technique depends 

upon blood oxygenation levels (BOLD signal) related to metabolic action during 

cognitive exertion.  Other methods use electrical activity, magnetic fluctuations, or 

positron emitting isotopes to quantify functional activity.  Using fMRI in clinical 

applications provides several advantages over other approaches; high spatial resolution, 

ability to observe neuronal activity in deep brain structures, no radiation, and noninvasive 

administration are a few major benefits.  An understanding of the pathophysiology 

associated with any diseased population is essential to determine proper rehabilitation 

methods.  

 Several years of research utilizing fMRI has led to the identification of functional 

activity and connectivity patterns associated with different diseases of the brain.  The 

understanding of how neural activity is affected following traumatic brain injury is 

valuable in designing therapies to combat debilitating consequences.  Furthermore, fMRI 

technology has proven beneficial in assessing the effects of therapies, providing more 

information of underlying effects on the central nervous system; this knowledge is useful 

for improving therapies to achieve optimal results.  
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 Both activation and connectivity studies have produced informative correlations 

with motor ability.  In fMRI activity studies, impairment severity has been related to 

contralesional motor recruitment; following therapeutic interventions, those that show 

improvements in motor assessment have decreased contralesional activation and 

increased activity in ipsilesional primary motor areas.  This trend is translated to 

connectivity results, with patients demonstrating increased connectivity between 

interhemispheric motor areas.  Therapeutic interventions can be developed or revised to 

target this connection, focusing on neurorehabilitation tactics to exercise these regions 

and strengthen associated networks.  

 As studies investigating the effects of BoNT injection therapy progress, we will 

gain a better understanding of the causal relationship between improved motor 

movements and changes in neuronal activity.  Exploration of other peripheral therapies in 

focal spasticity management may determine the origin of the motor impairment so often 

experienced by stroke survivors.  Clarification will guide therapies to focus on either 

peripheral or central approaches to the problem.  A major question remains unanswered: 

Does focal spasticity stem from cortical signal suppression or the muscles inability to 

respond to the signal?  Further investigation using fMRI technology could hold the key to 

the answer, providing a doorway to new and improved rehabilitation methods.  
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APPENDICES 

 

APPENDIX A: Statistical Analysis of BOLD Signal 

 

Figure A1: Diagram of Statistical Analysis Pipeline. 
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APPENDIX B: Fugl-Meyer Scoring Breakdown 

Items are scored on a 3-point ordinal scale: 

0 = cannot perform 

1 = performs partially 

2 = performs fully 
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APPENDIX C: BoNT Doses and Locations 

Patient No. Muscle Dilution Dosage 

BTX 1 Pec Major (2 sites) 2:1 50 units 

 Pec Minor (1 site) 2:1 50 units 

 Latisimus Dorsi (3 sites) 2:1 50 units 

 Triceps (3 sites) 2:1 75 units 

 Brachialis (3 sites) 2:1 75 units 

 Brachioradialis (1 site) 2:1 25 units 

 ECR (1 site) 2:1 25 units 

 FCR (1 site) 2:1 20 units 

 FDP (1 site) 2:1 30 units 

 FDL (1 site) 2:1 50 units 

    
BTX2 R SC (1 site) 4:1 25 units 

 Pec Major (3 sites) 4:1 75 units 

 Brachialis (3 sites) 4:1 75 units 

 Brachioradialis (2 sites) 4:1 25 units 

 Pron Teres (2 sites) 4:1 25 units 

 FCR (1 site) 4:1 25 units 

 FCU (1 site) 4:1 25 units 

 FDS (1 site) 4:1 25 units 

 FDP (1 site) 4:1 25 units 

 FPL (1 site) 4:1 25 units 

    
BTX3 Biceps Brachii (2 sites) 4:1 50 units 

 Brachioradialis (1 site) 4:1 25 units 

 Pron Teres (1 site) 4:1 25 units 

 FCR (2 sites) 2:1 50 units 

 FCU (2 sites) 2:1 50 units 

 FDS (2 sites) 4:1 50 units 

 FDP (2 sites) 4:1 50 units 

    
BTX4 Pec Major (4 sites) 2cc:500u 200 units 

 Lat Dorsi (2 sites) 2cc:500u 100 units 

 Pron Teres (2 sites) 2cc:500u 100 units 

 FDS (1 site) 2cc:500u 75 units 

 FDP (1 site) 2cc:500u 75 units 
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BTX5 Pec Major ? 75 units 

 Biceps Brachii ? 25 units 

 FDS, Digit 2 ? 25 units 

 FDS, Digit 3 ? 25 units 

 FDS, Digit 4 ? 25 units 

 FDS, Digit 5 ? 25 units 

 Biceps Femoris ? 100 units 

 Semimem ? 50 units 

 Semitend ? 50 units 

    
BTX6 Lev Scap (1 site) 4:1 25 units 

 Lat Dorsi (8 sites) 8:1 75 units 

 Lateral Scap CT (10 sites) 8:1 25 units 

 Pec Minor (2 sites) 4:1 25 units 

 Pron Teres (1 site) 4:1 10 units 

 ECR (1 site) 4:1 15 units 

 FPB (1 site) 4:1 10 units 

    
BTX7 Vastus Lat (2 sites) 2:1 50 units 

 Lat Hamstring (2 sites) 2:1 50 units 

 Med Hamstring (3 sites) 2:1 75 units 

 Med Gastroc (2 sites) 2:1 50 units 

 Lat Gastroc (2 sites) 2:1 50 units 

 Lat Dorsi (2 sites) 2:1 50 units 

 Brachialis (2 sites) 2:1 50 units 

 Brachioradialis (1 site) 2:1 25 units 

    
BTX8 Lat Dorsi (2 sites) 4:1 50 units 

 Brachialis (2 sites) 4:1 30 units 

 Brachioradialis (1 site) 4:1 20 units 

 FCR (1 site) 4:1 25 units 

 FCU (1 site) 4:1 25 units 

 FDS (2 sites) 4:1 50 units 

 FDP (2 sites) 4:1 50 units 

 FPL (1 site) 4:1 25 units 

 FPB (1 site) 4:1 25 units 

 Lumbricals (3 sites) 4:1 25 units 

 Vastus Lat (4 sites) 4:1 100 units 
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BTX9 Pec Major (2 sites) 2:1 25 units 

 Brachialis (3 sites) 2:1 75 units 

 Brachioradialis (1 site) 2:1 25 units 

 Pron Teres (1 site) 2:1 25 units 

 ECR (1 site) 2:1 25 units 

 ECU (1 site) 2:1 25 units 

 FDS (1 site) 2:1 25 units 

 FDP (1 site) 2:1 25 units 

 FPB (1 site) 2:1 25 units 

 Lumbricals (4 sites) 2:1 50 units 
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APPENDIX D: Individual Participant Activity Maps 

 

 
Figure D1: Individual activity map for participant BTX 1 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D2: Individual activity map for participant BTX 1 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D3: Individual activity map for participant BTX 2 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D4: Individual activity map for participant BTX 2 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D5: Individual activity map for participant BTX 3 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D6: Individual activity map for participant BTX 3 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D7: Individual activity map for participant BTX 4 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D8: Individual activity map for participant BTX 4 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D9: Individual activity map for participant BTX 5 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D10: Individual activity map for participant BTX 5 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D11: Individual activity map for participant BTX 6 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D12: Individual activity map for participant BTX 6 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D13: Individual activity map for participant BTX 7 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D14: Individual activity map for participant BTX 7 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D15: Individual activity map for participant BTX 8 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D16: Individual activity map for participant BTX 8 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D17: Individual activity map for participant BTX 9 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D18: Individual activity map for participant BTX 9 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D19: Individual activity map for participant C1 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D20: Individual activity map for participant C2 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D21: Individual activity map for participant C2 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D22: Individual activity map for participant C3 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D23: Individual activity map for participant C3 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D24: Individual activity map for participant C4 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D25: Individual activity map for participant C4 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D26: Individual activity map for participant C5 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 



 104 

 
Figure D27: Individual activity map for participant C6 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D28: Individual activity map for participant C6 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D29: Individual activity map for participant C7 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D30: Individual activity map for participant C7 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D31: Individual activity map for participant C8 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D32: Individual activity map for participant C8 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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Figure D33: Individual activity map for participant C9 at W0. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 

 

 
Figure D34: Individual activity map for participant C9 at W6. The mean BOLD 

activity is shown in red and yellow areas to indicate activity corresponding with the task. 
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APPENDIX E: Lesion Correction Results 

Neuronal activity was assessed by utilizing statistical maps to indicate areas of 

correlation with the hemodynamic response. FMRI analyses were carried out using FSL’s 

fMRI Expert Analysis Tool (FEAT) as mentioned in the Methods section of Chapter 2, 

with additional steps taken to remove lesioned areas from the statistical analysis. To 

determine the group level activity maps, all lesioned voxels were identified for all 

individual participants. At each voxel, a list of all participants with non-lesioned brain 

matter is created and stored.  For all voxels, all unique combinations are counted and 

recorded. The FEAT analysis is performed for all combinations, to ensure no lesioned 

brain areas will impact the final group map results. At every voxel, the combination is 

read and the corresponding z-statistic is pulled from the same voxel in that combination’s 

FEAT run.  This method produced final z-statistic maps that include only participants 

with non-lesioned brain matter in any given voxel. 

 



 109 

 
Figure E1: Lesion-Corrected Group Activity Maps of Stroke Participants at W0. 

Each panel shows axial slices of the MNI template overlaid with z-statistic maps of the 

averaged stroke group before BoNT injection while accounting for lesion location. 

Activity maps indicate volumes in which there was significant (p < 0.05) levels of 

activity across the group. The right side of the brain is displayed on the left.  
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Figure E2: Lesion-Corrected Group Activity Maps of Stroke Participants at W6. 

Each panel shows axial slices of the MNI template overlaid with z-statistic maps of the 

averaged stroke group after BoNT injection while accounting for lesion location. Activity 

maps indicate volumes in which there was significant (p < 0.05) levels of activity across 

the group. The right side of the brain is displayed on the left.  
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Figure E3: Lesion Corrected Contrast between Stroke Participants Before and 

After BoNT Intervention. Significantly activated voxels (Z > 2.3, p < 0.05) are overlaid 

on a standard MNI brain (a), illustrating areas that showed a significant increase in 

activity following the BoNT intervention. These active areas were observed in three 

clusters (b) indicated by red, blue, and green volumes.  
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