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Ultracoproduct Continua and Their 
Regular Subcontinua 
 

Paul Bankston 
Department of Mathematics, Statistics and Computer Science, Marquette University, 
Milwaukee, WI 

Abstract 
We continue our study of ultracoproduct continua, focusing on the role played by the regular 
subcontinua—those subcontinua which are themselves ultracoproducts. Regular subcontinua help 
us in the analysis of intervals, composants, and noncut points of ultracoproduct continua. Also, by 
identifying two points when they are contained in the same regular subcontinua, we naturally 
generalize the partition of a standard subcontinuum of ℍ� into its layers. 
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1. Introduction 
The theme of this article is an examination of ultracoproduct continua from the 

perspectives of intervals, composants and varieties of noncut point, and is a continuation of the 
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study of topological ultracoproducts begun in.5,6 (See7 for a survey up to 2003, as well as18 for a 
survey up to 1992 on the use of ultracoproducts of arcs.) A principal tool in our investigation is the 
employment of regular subcontinua, those subcontinua which are themselves ultracoproducts. We 
give a partial answer to when ultracoproducts of intervals are intervals; we also specify conditions 
under which the composant structure of an ultracopower of continuum 𝑋𝑋 is like—or very much 
unlike—that of 𝑋𝑋. We consider the existence of various kinds of noncut point in nonmetrizable 
continua, in the aim of generalizing existence results known for the metrizable case. While the 
existence of nonblock points is assured for separable—but not all—continua, it is still true that each 
continuum has ultracopowers which are irreducible about their sets of nonblock points. Finally we 
investigate what happens when we define two points of an ultracoproduct to be ℛ-equivalent if 
they both lie in the same regular subcontinua. ℛ-classes in ultracoproducts of arcs via nonprincipal 
ultrafilters on a countable set are also known as layers, and are instrumental in the study of the 
Stone–Čech remainder ℍ�: = 𝛽𝛽(ℍ) ∖ ℍ of the real half-line (see, e.g.,18). 

2. The ultracoproduct construction 
Here we use the term compactum to refer to a compact Hausdorff topological space; a 

continuum is a nonempty compactum that is also connected. A subcontinuum of a topological space 
𝑋𝑋 is a subset that is a continuum in its subspace topology. If 𝑥𝑥 ∈ 𝑋𝑋, then the component of 𝑋𝑋 at 𝑥𝑥 is 
the union 𝐶𝐶(𝑋𝑋, 𝑥𝑥) of all connected subsets of 𝑋𝑋 that contain 𝑥𝑥. The components of a space are well 
known to partition it into connected closed subsets. 

A point 𝑐𝑐 of a connected space 𝑋𝑋 is a cut point of 𝑋𝑋 if its complement 𝑋𝑋 ∖ {𝑐𝑐} is not 
connected; otherwise 𝑐𝑐 is a noncut point. 

A space is nondegenerate if it contains at least two points. If 𝑥𝑥 is a point of a nondegenerate 
continuum 𝑋𝑋, the composant of 𝑋𝑋 at 𝑥𝑥 is the union 𝜅𝜅(𝑋𝑋, 𝑥𝑥) of all proper subcontinua of 𝑋𝑋 that 
contain 𝑥𝑥. The composants of a nondegenerate continuum are well known to be connected dense 
subsets (see24). 

The topological ultracoproduct construction gives us an important source of nonmetrizable 
continua; it also furnishes an avenue for bringing model-theoretic methods to topology. 

Start with an infinite discrete set 𝐼𝐼 and let 𝑋𝑋
→

= 〈𝑋𝑋𝑖𝑖: 𝑖𝑖 ∈ 𝐼𝐼〉 be an 𝐼𝐼-sequence of compacta. 

Then each ultrafilter 𝒟𝒟 on 𝐼𝐼 gives rise to a new compactum 𝑋𝑋
→

𝒟𝒟 (also denoted ∑ 𝑋𝑋𝑖𝑖𝒟𝒟 ), the 𝒟𝒟-
ultracoproduct of the family, as follows: 

Step 1 Form the disjoint union 𝑌𝑌 = ⋃ (𝑋𝑋𝑖𝑖  × {𝑖𝑖})𝑖𝑖∈𝐼𝐼  , with 𝑞𝑞: 𝑌𝑌 → 𝐼𝐼 the map taking a pair in 𝑌𝑌 
to its second coordinate. 
Step 2 Let 𝑞𝑞𝐵𝐵 ∶  𝛽𝛽(𝑌𝑌) → 𝛽𝛽(𝐼𝐼) be the Stone–Čech lift of 𝑞𝑞. 
Step 3 Viewing the ultrafilter 𝒟𝒟 as a point in 𝛽𝛽(𝐼𝐼), define 𝑋𝑋

→
𝒟𝒟 to be the point pre-image 

(𝑞𝑞𝐵𝐵)−1[𝐷𝐷]. 
When each 𝑋𝑋𝑖𝑖  is the same compactum 𝑋𝑋, then 𝑋𝑋

→
𝒟𝒟 is denoted 𝑋𝑋𝐷𝐷 and is referred to as the 𝒟𝒟-

ultracopower of 𝑋𝑋. The space 𝑌𝑌 above is then 𝑋𝑋 × 𝐼𝐼, and the first-coordinate map 𝑝𝑝: 𝑌𝑌 → 𝑋𝑋 induces a 
continuous surjection 𝑝𝑝𝐷𝐷 ≔  𝑝𝑝𝐵𝐵| 𝑋𝑋𝐷𝐷 ∶ 𝑋𝑋𝐷𝐷 → 𝑋𝑋, known as the codiagonal map. 

We use both vector notation and index notation in the sequel for ultracoproducts and their 
near-relatives, the ultraproducts. While vector notation has the advantage of compactness, the 
index notation is obviously better for working with coordinatewise operations. 



As the terminology suggests, ultracoproducts and classical ultraproducts are dual notions 
from the view-point of category theory (see7), but the following is a more useful account of their 
connection. Given an 𝐼𝐼-sequence 𝐴𝐴 of nonempty sets and 𝒟𝒟 an ultrafilter on 𝐼𝐼, the 𝒟𝒟-ultraproduct 𝐴𝐴𝐷𝐷 
(also denoted ∏ 𝐴𝐴𝑖𝑖)𝐷𝐷  consists of all equivalence classes that arise as 𝑎𝑎,���⃗  𝑏𝑏 ���⃗  ∈ ∏ 𝐴𝐴𝑖𝑖𝑖𝑖∈𝐼𝐼  are identified 
whenever {𝑖𝑖 ∈ 𝐼𝐼: 𝑎𝑎𝑖𝑖 = 𝑏𝑏𝑖𝑖} ∈ 𝒟𝒟. Elements of 𝐴𝐴𝐷𝐷 are denoted �⃗�𝑎𝐷𝐷 . If 𝑅𝑅𝑖𝑖 is a finitary relation on 𝐴𝐴𝑖𝑖  of 
fixed arity 𝑛𝑛, 𝑖𝑖 ∈ 𝐼𝐼, then the 𝒟𝒟-ultraproduct 𝑅𝑅�⃗ 𝐷𝐷 may be naturally viewed as an 𝑛𝑛-ary relation on 𝐴𝐴𝐷𝐷 . 
In this way we extend ultraproducts of sets to ultraproducts of relational structures. (See, e.g.,16). 
 

When each 𝑋𝑋𝑖𝑖  is a compactum, the points of 𝑋𝑋
→

𝒟𝒟 are the maximal filters in the bounded lattice 
consisting of all ultraproducts �⃗�𝐹𝐷𝐷, where each 𝐹𝐹𝑖𝑖 is closed in 𝑋𝑋𝑖𝑖 . If 𝑆𝑆𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼, we denote by (𝑆𝑆

→
𝒟𝒟)♯ 

the set of points 𝜇𝜇 ∈ 𝑋𝑋
→

𝒟𝒟 such that some member of 𝜇𝜇 is contained in 𝑆𝑆𝐷𝐷 . Subsets of �⃗�𝑋𝐷𝐷 of the form 
(𝑆𝑆

→
𝒟𝒟)♯ are called regular. The closed (resp., open) sets in 𝑋𝑋

→
𝒟𝒟 are then basically generated by the 

closed (resp., open) regular subsets. 

Remark 2.1 
Indeed (see7), if 𝒜𝒜𝑖𝑖  is a lattice base for 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼; i.e., a closed-set base that is also a bounded 

lattice under finite unions and intersections, then the regular sets (𝐴𝐴
→

𝒟𝒟)♯, where each 𝐴𝐴𝑖𝑖  is in 𝒜𝒜𝑖𝑖 , 
constitute a lattice base for 𝑋𝑋

→
𝒟𝒟 The class of Wallman lattices, those bounded lattices isomorphic to a 

lattice base for some compactum, is axiomatized using simple first-order sentences. This fact 
provides an important gateway between the model-theoretic world and the topological one (see, 
e.g., Theorem 4.7 below). 

Each 𝑥𝑥
→𝒟𝒟 ∈ 𝑋𝑋

→
𝒟𝒟 may be canonically identified with the single point in (� {𝑥𝑥𝑖𝑖}𝒟𝒟 )♯, which we 

denote by 𝑥𝑥
→

𝒟𝒟. We refer to such points as the regular points of 𝑋𝑋
→

𝒟𝒟. The regular points show how each 
ultraproduct 𝑆𝑆

→
𝒟𝒟 may be viewed as a (clearly dense) subset of (𝑆𝑆

→
𝒟𝒟)♯. 

It is easy to show that when each closed 𝐹𝐹𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖 is regarded as a compactum, the set (𝐹𝐹
→

𝒟𝒟)♯, 
as a subspace, is naturally homeomorphic to the ultracoproduct 𝐹𝐹

→
𝒟𝒟. Because of its relative 

simplicity, we will use the latter notation when appropriate. 

One may generally start with an I-sequence 𝑋𝑋
→

 of topological spaces and an ultrafilter 𝒟𝒟 on I, 
and take ultraproducts 𝑈𝑈

→
𝒟𝒟, where 𝑈𝑈𝑖𝑖  is open in 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. These “open ultraboxes” provide an open-

set base for the topological ultraproduct 𝑋𝑋
→

𝒟𝒟 (see [7, Section 3]). Often the topologies on the 
constituent spaces 𝑋𝑋𝑖𝑖  are induced by other structures; e.g., by total orderings ≤𝑖𝑖. In this case the 
ultraproduct topology on 𝑋𝑋

→
𝒟𝒟 is induced by the ultraproduct total ordering ∏ ≤𝑖𝑖𝒟𝒟 . (See [7]. This also 

works when the other structures are uniformities, but not when they are metrics.) 

When the spaces under consideration are compacta, the topological ultracoproduct is a 
compactification of the corresponding topological ultraproduct. 

In model theory, when each 𝐴𝐴𝑖𝑖  is the same relational structure 𝐴𝐴, we write 𝐴𝐴𝒟𝒟 to denote 
the 𝒟𝒟-ultrapower ∏ 𝐴𝐴𝑖𝑖𝒟𝒟 . Here we have a canonical diagonal embedding 𝑑𝑑𝒟𝒟: 𝐴𝐴 → 𝐴𝐴𝒟𝒟, given by 𝑎𝑎 ↦
𝑎𝑎𝒟𝒟 As a direct consequence of the Łoś Ultraproduct Theorem [16, Theorem 4.1.9], diagonal 
embeddings are elementary, in the model-theoretic sense. However, they are almost never 
continuous as functions from a topological space into one of its topological ultrapowers. 

https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0070
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0070
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0160


Remark 2.2 
In the compact Hausdorff setting, the codiagonal map 𝑝𝑝𝒟𝒟 is specified by taking a given 𝜇𝜇 ∈

𝑋𝑋𝒟𝒟 to the unique 𝑥𝑥 ∈ 𝑋𝑋 such that 𝜇𝜇 ∈ (𝑈𝑈𝒟𝒟)♯ for every open neighborhood U of x. 𝑝𝑝𝒟𝒟 is thus seen to 
be a left-inverse for the diagonal 𝑑𝑑𝒟𝒟; moreover, when it is restricted to the ultrapower 𝑋𝑋𝒟𝒟 , we 
obtain what is known in nonstandard analysis as the standard part map (see [7, Theorem 3.8]). 

A basic fact (see [5, Lemma 4.6]) about ultracoproducts of compacta is that the Boolean 
lattice of clopen subsets of the ultracoproduct is isomorphic to the corresponding ultraproduct of 
the clopen-set lattices of the factor spaces. As an immediate consequence of this, we see that 𝑋𝑋

→
𝒟𝒟 is a 

continuum if and only if 

{𝑖𝑖 ∈ 𝐼𝐼: 𝑋𝑋𝑖𝑖  is a continuum} ∈ 𝒟𝒟. 

(What is more, when the factor spaces are continua, the family {𝑋𝑋
→

𝒟𝒟: 𝒟𝒟 ∈ 𝛽𝛽(𝐼𝐼)} of 
ultracoproducts comprises the components of 𝛽𝛽(� (𝑋𝑋𝑖𝑖 × {𝑖𝑖})𝑖𝑖∈𝐼𝐼 .) 

Remark 2.3 
Ultracoproducts of arcs, i.e., homeomorphs of the closed unit interval 𝕀𝕀: = [0,1] in the real 

half-line ℍ: = [0, ∞), were first investigated by J. Mioduszewski,22 who was motivated to study the 
Stone–Čech remainder ℍ�. With 𝜔𝜔: = {0,1,2, … }, 𝒟𝒟 a nonprincipal ultrafilter on ω, and 𝑋𝑋

→
 an ω-

sequence of arcs, the ultracoproduct 𝑋𝑋
→

𝒟𝒟 is what we refer to here as an ultra-arc. If each 𝑋𝑋𝑛𝑛 is of the 
form [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛], where 𝑎𝑎0 < 𝑏𝑏0 < 𝑎𝑎1 < 𝑏𝑏1 < ⋯ is an unbounded sequence in ℍ, then the ultra-arc 𝕀𝕀𝒟𝒟 is 
homeomorphic to � [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛],𝒟𝒟 which in turn is naturally homeomorphic to the set 

� cl𝛽𝛽(ℍ)
𝐽𝐽∈𝒟𝒟

��[𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛]
𝑛𝑛∈𝐽𝐽

� ⊆ ℍ∗. 

Such ultra-arcs are commonly referred to as the standard subcontinua of ℍ� (see18), and 
have proven to be key to understanding its fine structure. 

3. Intervals 
Road systems were introduced in10 in order to provide a uniform framework in which to 

describe various classical betweenness notions. If X is a continuum, then its family of subcontinua 
qualifies as a road system because: (i) each singleton set is a subcontinuum; and (ii) each doubleton 
set is contained in a subcontinuum. The point z is said to lie between points x and y if each 
subcontinuum containing {𝑥𝑥, 𝑦𝑦} contains z as well. The interval [𝑥𝑥, 𝑦𝑦] in this interpretation of 
betweenness consists of all points lying between x and y (so 𝑦𝑦 ∈ 𝜅𝜅(𝑋𝑋, 𝑥𝑥)) if and only if [𝑥𝑥, 𝑦𝑦] ≠ 𝑋𝑋. 

The following useful fact about components of ultracoproduct compacta was first proved by 
R. Gurevič.17 

Lemma 3.1 
[17, Lemma 10]  

Let 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 . Then 𝐶𝐶 �𝑋𝑋
→

𝒟𝒟, 𝑥𝑥
→

𝒟𝒟� = ∑ 𝐶𝐶(𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖).𝒟𝒟  Thus components of ultracoproducts at regular 
points are regular sets. 

https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0070
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0050
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0220
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0180
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0100
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0170
https://www.sciencedirect.com/science/article/pii/S0166864116301432?via%3Dihub#br0170


We will consider analogues of Lemma 3.1 for composants in the next section. 

A subset of the ultracoproduct 𝑋𝑋
→

𝒟𝒟 of compacta is semiregular if it contains at least one 
regular point, and is irregular otherwise. Because 𝑋𝑋

→
𝒟𝒟 is dense in 𝑋𝑋

→
𝒟𝒟, any subset with nonempty 

interior is semiregular. On the other hand, basic results in the study of topological ultraproducts 
(see, e.g.,7) imply that if 𝒟𝒟 is a countably incomplete ultrafilter (i.e., one not closed under countable 
intersections), then every infinite compact subset—as well as every nondegenerate connected 
subset—of 𝑋𝑋

→
𝒟𝒟 must contain irregular points. 

For any subset 𝑆𝑆 ⊆ 𝑋𝑋
→

𝒟𝒟, define ℛ(𝑆𝑆) to be the family of all regular subcontinua of 𝑋𝑋
→

𝒟𝒟 that 
contain S, and let 𝑅𝑅(𝑆𝑆) be the intersection ⋂ℛ(𝑆𝑆). 𝑅𝑅(𝑆𝑆) is the regular hull of S, evidently a 
subcompactum of the ultracoproduct. 𝑅𝑅(𝜇𝜇) is shorthand for 𝑅𝑅({𝜇𝜇}), as per convention, when 𝜇𝜇 ∈
𝑋𝑋
→

𝒟𝒟. We refer to regular hulls of singleton sets as point hulls. The following simple result is used 
frequently in the sequel. 

Theorem 3.2 
If K is a semiregular subcontinuum of 𝑋𝑋

→
𝒟𝒟, then 𝑅𝑅(𝐾𝐾) = 𝐾𝐾. In particular, point hulls of 

regular points are singletons. 

Proof 
Let 𝐾𝐾 ⊆ 𝑋𝑋

→
𝒟𝒟 be a subcontinuum that is semiregular; say K contains the regular point 𝑥𝑥

→
𝒟𝒟. 

Let 𝐹𝐹 be the collection of all closed regular sets containing K. Then 𝐾𝐾 = ⋂ℱ. If 𝐹𝐹
→

𝒟𝒟 ∈ ℱ and 𝐶𝐶𝑖𝑖 =
𝐶𝐶(𝐹𝐹𝑖𝑖, 𝑥𝑥𝑖𝑖), then 𝐶𝐶

→
𝒟𝒟 = 𝐶𝐶(𝐹𝐹

→
𝒟𝒟, 𝑥𝑥

→
𝒟𝒟), by Lemma 3.1. Hence 𝐾𝐾 ⊆ 𝐶𝐶

→
𝒟𝒟 ∈ ℛ(𝐾𝐾) ⊆ ℱ, and we infer that 𝐾𝐾 =

𝑅𝑅(𝐾𝐾).  □ 

We will see below (Remark 4.8 (ii, iii)) that the semiregularity assumption in Theorem 
3.2cannot be dropped. 

If X is a continuum and 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋, the interval [𝑥𝑥, 𝑦𝑦] is manifestly the intersection of all 
subcontinua of X that contain both x and y. The points x and y are bracket points for the interval 
(bearing in mind that an interval may have many sets of bracket points). In the case of an 
ultracoproduct continuum, an interval is bracket-regular if it has a set of regular bracket points. 

Theorem 3.3 
Let 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼. Then [𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟] ⊇ � [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖]𝒟𝒟 . Moreover, if there exists a natural number 

𝑛𝑛 ≥ 1 such that each interval [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖] is the intersection of at most n subcontinua of 𝑋𝑋𝑖𝑖 , then 
�𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟� = ∑ [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖].𝒟𝒟  In particular, bracket-regular intervals are regular sets, and [𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟] is 

connected if and only if 

{𝑖𝑖 ∈ 𝐼𝐼: [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖] is connected} ∈ 𝒟𝒟. 

Proof 
Let 𝐾𝐾 ⊆ 𝑋𝑋

→
𝒟𝒟 be any subcontinuum containing {𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟}. By Theorem 3.2, 𝐾𝐾 = ⋂ℛ(𝐾𝐾). If 𝐿𝐿

→
𝒟𝒟 ∈

ℛ(𝐾𝐾), then we have {𝑖𝑖 ∈ 𝐼𝐼: {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖} ⊆ 𝐿𝐿𝑖𝑖} ∈ 𝒟𝒟. Thus {𝑖𝑖 ∈ 𝐼𝐼: [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖] ⊆ 𝐿𝐿𝑖𝑖} ∈ 𝒟𝒟 too. Hence � [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖] ⊆
𝒟𝒟

𝐿𝐿
→

𝒟𝒟. This gives us � [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖] ⊆ 𝐾𝐾𝒟𝒟 , and we infer that � [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖] ⊆ [𝑥𝑥
→

𝒟𝒟, 𝑦𝑦
→

𝒟𝒟].
𝒟𝒟
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Suppose that each [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖] is the intersection of at most n subcontinua of 𝑋𝑋𝑖𝑖; without loss of 
generality we may assume 𝑛𝑛 = 2, and write [𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖] as the intersection 𝐾𝐾𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖 of subcontinua 
of 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. Then 𝐾𝐾

→
𝒟𝒟 and 𝑀𝑀

→
𝒟𝒟 are subcontinua of 𝑋𝑋

→
𝒟𝒟 containing {𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟}; so we have 

�[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖] ⊆ [𝑥𝑥
→

𝒟𝒟, 𝑦𝑦
→

𝒟𝒟] ⊆ 𝐾𝐾
→

𝒟𝒟 ∩ 𝑀𝑀
→

𝒟𝒟
𝒟𝒟

= �(𝐾𝐾𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖)
𝒟𝒟

= �[𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖]
𝒟𝒟

, 

and the desired equality holds. □ 

Question 3.4 
Are bracket-regular intervals always regular sets? 

The next result is an immediate corollary of Theorem 3.3. Recall that a continuum 
is unicoherent if it cannot be the union of two subcontinua whose intersection is disconnected; it 
is hereditarily unicoherent if each of its subcontinua is unicoherent. It is easily shown that a 
continuum is hereditarily unicoherent if and only if each of its intervals is connected. 

Corollary 3.5 
Let 𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼, where each 𝑋𝑋𝑖𝑖  is a hereditarily unicoherent continuum. Then [𝑥𝑥𝒟𝒟, 𝑦𝑦𝒟𝒟] =

� [𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖].𝒟𝒟 In particular, bracket-regular intervals are regular subcontinua. 

Remark 3.6 
In,22 the layer of a point 𝜇𝜇 ∈ 𝕀𝕀𝒟𝒟 is defined to be the intersection of all bracket-regular 

intervals containing µ. This is clearly the point hull 𝑅𝑅(𝜇𝜇), by Corollary 3.5. 

Ultracoproducts both preserve and reflect unicoherence of continua [8, Theorem 5.1]; also 
if {𝑖𝑖 ∈ 𝐼𝐼: 𝑋𝑋𝑖𝑖  is not hereditarily unicoherent} ∈ 𝒟𝒟, then it is easy to form two regular subcontinua 
of 𝑋𝑋

→
𝒟𝒟 with disconnected intersection. So hereditary unicoherence is reflected by the ultracoproduct 

construction, but we do not currently know whether it is also preserved. Corollary 3.5 provides 
only a weak affirmative answer; here is a second one. 

Theorem 3.7 
In an ultracoproduct of hereditarily unicoherent continua, the intersection of any two semiregular 
subcontinua is connected. Hence any semiregular interval is connected as well. 

Proof 
Assume each 𝑋𝑋𝑖𝑖  is hereditarily unicoherent, 𝑖𝑖 ∈ 𝐼𝐼, with 𝐾𝐾 and M two overlapping semiregular 
subcontinua of 𝑋𝑋

→
𝒟𝒟. By Theorem 3.2, we may write 𝐾𝐾 = ⋂ℛ(𝐾𝐾) and 𝑀𝑀 = ⋂ℛ(𝑀𝑀). If 𝐴𝐴

→
𝒟𝒟 and 𝐵𝐵

→
𝒟𝒟 are 

both in ℛ(𝐾𝐾) ∪ ℛ(𝑀𝑀), then—because each 𝑋𝑋𝑖𝑖  is hereditarily unicoherent—𝐴𝐴
→

𝒟𝒟 ∩ 𝐵𝐵
→

𝒟𝒟 =
� (𝐴𝐴𝑖𝑖 ∩ 𝐵𝐵𝑖𝑖) 𝒟𝒟 is a subcontinuum containing 𝐾𝐾 ∩ 𝑀𝑀 ≠ ∅. Let P be the family of pairwise intersections 

of sets from R(K)∪R(M). Then 𝒫𝒫 is a downwardly directed family of subcontinua of 𝑋𝑋
→

𝒟𝒟; 
hence ⋂𝒫𝒫 = 𝐾𝐾 ∩ 𝑀𝑀 is a subcontinuum of 𝑋𝑋

→
𝒟𝒟. 

Now suppose [𝜇𝜇, 𝜈𝜈] is a semiregular interval in 𝑋𝑋
→

𝒟𝒟, and let 𝒦𝒦 be the family of subcontinua 
of 𝑋𝑋

→
𝒟𝒟 that contain {𝜇𝜇, 𝜈𝜈}. Then each subcontinuum in 𝒦𝒦 is semiregular; hence, by the argument 

above, the family 𝒦𝒦 is downwardly directed. Thus [𝜇𝜇, 𝜈𝜈] = ⋂𝒦𝒦 is connected.  □ 
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Question 3.8 
Does the ultracoproduct construction preserve hereditary unicoherence? (In the very 

special situation with ultra-arcs, the answer is yes: ℍ� is well known to be hereditarily unicoherent, 
by an old result of L. Gillman and M. Henriksen [18, Theorem 5.6]. Ultra-arcs embed in ℍ�, and are 
therefore hereditarily unicoherent too.) 

The argument in the last proof gives us information about regular hulls. 

Corollary 3.9 
In an ultracoproduct of hereditarily unicoherent continua, all regular hulls of subsets are 

subcontinua. 

In the sequel we will be interested in whether regular hulls of subcontinua are connected; 
and for this, we do not need the full power of hereditary unicoherence. Given finite cardinal 𝑛𝑛 ≥ 1, 
define continuum 𝑋𝑋 to be hereditarily n-coherent if the intersection of any two subcontinua of 𝑋𝑋 has 
≤ n components. (So hereditary unicoherence is synonymous with hereditary 1-coherence; simple 
closed curves are hereditarily 2-coherent.) 

Theorem 3.10 
Let 𝑛𝑛 ≥ 1 be finite. In an ultracoproduct of hereditarily n-coherent continua, all regular 

hulls of subcontinua are subcontinua. 

Proof 
Let 𝐾𝐾 be a subcontinuum of 𝑋𝑋

→
𝒟𝒟, where each constituent continuum is hereditarily n-

coherent. It suffices to show that the collection ℛ(𝐾𝐾) of regular subcontinua containing 𝐾𝐾 is 
downwardly directed. But if 𝑀𝑀 = 𝑃𝑃

→
𝒟𝒟 and 𝑁𝑁 = 𝑄𝑄

→
𝒟𝒟 are in ℛ(𝐾𝐾), then 𝑀𝑀 ∩ 𝑁𝑁 = � (𝑃𝑃𝑖𝑖 ∩ 𝑄𝑄𝑖𝑖).𝒟𝒟 Because 

of hereditary n-coherence, we have some 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛 such that for 𝒟𝒟-almost every 𝑖𝑖 ∈ 𝐼𝐼, 𝑃𝑃𝑖𝑖 ∩ 𝑄𝑄𝑖𝑖 =
𝑃𝑃𝑖𝑖,1 ∪ ⋯ ∪ 𝑃𝑃𝑖𝑖,𝑚𝑚, a union of 𝑚𝑚 pairwise disjoint subcontinua of 𝑋𝑋𝑖𝑖 . Thus 𝑀𝑀 ∩ 𝑁𝑁 = 𝐿𝐿1 ∪ ⋯ ∪ 𝐿𝐿𝑚𝑚, 

where 𝐿𝐿𝑗𝑗 is the subcontinuum � 𝑃𝑃𝑖𝑖,𝑗𝑗
𝒟𝒟

. For some unique 𝑘𝑘 ∈ {1, … , 𝑚𝑚}, we have 𝐾𝐾 ⊆ 𝐿𝐿𝑘𝑘; hence 𝐿𝐿𝑘𝑘 ∈

ℛ(𝐾𝐾). Thus ℛ(𝐾𝐾) is downwardly directed, and 𝑅𝑅(𝐾𝐾) = ⋂ℛ(𝐾𝐾) is a subcontinuum of 𝑋𝑋
→

𝒟𝒟.  □ 

A continuum 𝑋𝑋 is irreducible about 𝑆𝑆 ⊆ 𝑋𝑋 if no proper subcontinuum of 𝑋𝑋 contains 𝑆𝑆. (So 𝑋𝑋 
is irreducible about {𝑎𝑎, 𝑏𝑏} just in case 𝑋𝑋 = [𝑎𝑎, 𝑏𝑏].) 𝑋𝑋 is irreducible if it is irreducible about some two-
point subset. The next result is another easy consequence of Theorem 3.2. 

Proposition 3.11 
If each continuum 𝑋𝑋𝑖𝑖  is irreducible about 𝑆𝑆𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖, 𝑖𝑖 ∈ 𝐼𝐼, then 𝑋𝑋

→
𝒟𝒟 is irreducible about 𝑆𝑆

→
𝒟𝒟. In 

particular, if 𝑋𝑋𝑖𝑖  is irreducible about {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}, then 𝑋𝑋
→

𝒟𝒟 is irreducible about {𝑥𝑥
→

𝒟𝒟, 𝑦𝑦
→

𝒟𝒟}; so ultracoproducts 
of irreducible continua are irreducible. 

Proof 
If 𝐾𝐾 is a proper subcontinuum of 𝑋𝑋

→
𝒟𝒟 containing 𝑆𝑆

→
𝒟𝒟, then 𝐾𝐾 is semiregular; hence Theorem 

3.2 affords us a proper regular subcontinuum 𝐾𝐾
→

𝒟𝒟 ⊇ 𝐾𝐾. But then 

{𝑖𝑖 ∈ 𝐼𝐼: 𝐾𝐾𝑖𝑖  is a proper subcontinuum of 𝑋𝑋𝑖𝑖  containing 𝑆𝑆𝑖𝑖} ∈ 𝒟𝒟, 
a contradiction.  □ 
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Question 3.12 
To what extent is it true that the ultracoproduct construction reflects irreducibility in 

continua? 

We will see in the next section (i.e., Remark 4.8 (i)) that 𝑋𝑋𝒟𝒟 can be irreducible, while 𝑋𝑋 is 
not. However, we can produce an interesting scenario in which there is an affirmative answer. 

Recall that a continuous surjection between topological spaces is monotone if pre-images of 
subcontinua of the range are subcontinua of the domain. A space is locally connected if each point 
has a neighborhood base consisting of connected open sets. 

Lemma 3.13 
[9, Propositions 2.2, 2.3] 

A compactum 𝑋𝑋 is locally connected if and only if every codiagonal map 𝑝𝑝𝒟𝒟: 𝑋𝑋𝒟𝒟 → 𝑋𝑋is 
monotone. 

Theorem 3.14 
Let 𝑋𝑋 be a locally connected continuum. Then 𝑋𝑋 is irreducible if and only if every (some) 

ultracopower of 𝑋𝑋 is irreducible. 

Proof 
First assume 𝑋𝑋 is an irreducible continuum. Then 𝑋𝑋𝒟𝒟 is irreducible, by Proposition 3.11, 

regardless of whether 𝑋𝑋 is locally connected. 

As for the converse, assume 𝑋𝑋 is a locally connected continuum and that 𝑋𝑋𝒟𝒟 is irreducible. 
By Lemma 3.13, 𝑝𝑝𝒟𝒟 is a monotone map. If 𝑋𝑋𝒟𝒟 is irreducible about {𝜇𝜇, 𝜈𝜈}, then 𝑋𝑋 is plainly irreducible 
about {𝑝𝑝𝒟𝒟(𝜇𝜇), 𝑝𝑝𝒟𝒟(𝜈𝜈)}.  □ 

4. Composants 
As promised after Lemma 3.1, we have the following. 

Proposition 4.1 
For each 𝑖𝑖 ∈ 𝐼𝐼, let 𝑥𝑥𝑖𝑖 be a point in continuum 𝑋𝑋𝑖𝑖 . Then � 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖)𝒟𝒟 ⊆ 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝑥𝑥

→
𝒟𝒟) ⊆

(� 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖)𝒟𝒟 )♯. (Hence (� 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝑥𝑥𝑖𝑖)𝒟𝒟 )♯ is a connected dense subset of 𝑋𝑋
→

𝒟𝒟.) 

Proof 
Set 𝐶𝐶𝑖𝑖 = 𝜅𝜅(𝑋𝑋𝑖𝑖, 𝑥𝑥𝑖𝑖), and let 𝑦𝑦

→
𝒟𝒟 ∈ 𝐶𝐶

→
𝒟𝒟. For 𝒟𝒟-almost each 𝑖𝑖 ∈ 𝐼𝐼, we have a proper 

subcontinuum 𝐾𝐾𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖  with 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 ∈ 𝐾𝐾𝑖𝑖. Then 𝐾𝐾
→

𝒟𝒟 is a proper subcontinuum of 𝑋𝑋
→

𝒟𝒟 containing 
both 𝑥𝑥

→
𝒟𝒟 and 𝑦𝑦

→
𝒟𝒟; hence 𝑦𝑦

→
𝒟𝒟 ∈ 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝑥𝑥

→
𝒟𝒟), establishing the first inclusion. 

Now suppose 𝜇𝜇 ∈ 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝑥𝑥
→

𝒟𝒟). Then there is a proper subcontinuum 𝐾𝐾 of 𝑋𝑋
→

𝒟𝒟 containing 
both 𝜇𝜇 and 𝑥𝑥

→
𝒟𝒟. 𝐾𝐾 is semiregular; hence there is a proper regular subcontinuum 𝑀𝑀

→
𝒟𝒟 ⊇ 𝐾𝐾, 

by Theorem 3.2. We then have 

{𝑖𝑖 ∈ 𝐼𝐼: 𝑀𝑀𝑖𝑖  is a proper subcontinuum of 𝑋𝑋𝑖𝑖  containing 𝑥𝑥𝑖𝑖} ∈ 𝒟𝒟, 

thus {𝑖𝑖 ∈ 𝐼𝐼: 𝑀𝑀𝑖𝑖 ⊆ 𝐶𝐶𝑖𝑖} ∈ 𝒟𝒟; and hence 𝜇𝜇 ∈ 𝐾𝐾 ⊆ 𝑀𝑀
→

𝒟𝒟 ⊆ (𝐶𝐶
→

𝒟𝒟)♯. This gives us the second inclusion. The 
parenthetical claim is immediate because composants are always connected dense subsets.  □ 
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The composant structure of a continuum is closely tied to whether the continuum 
is decomposable; i.e., expressible as the union of two of its proper subcontinua. A continuum that is 
not decomposable is deemed indecomposable. The following is an old result whose proof makes 
essential use of Lemma 3.1. 

Proposition 4.2 
[17, Proposition 11] 

The ultracoproduct 𝑋𝑋
→

𝒟𝒟 is a decomposable continuum if and only if {𝑖𝑖 ∈
𝐼𝐼: 𝑋𝑋𝑖𝑖  is a decomposable continuum} ∈ 𝒟𝒟. 

The basic facts about decomposability and composant structure are well known, and may 
be summarized as follows. 

Lemma 4.3 
Let 𝑋𝑋 be a nondegenerate continuum. 

(i) (See24) If 𝑋𝑋 is decomposable but not irreducible, then the only composant of 𝑋𝑋 is 𝑋𝑋 itself; i.e., 
𝜅𝜅(𝑋𝑋, 𝑥𝑥) = 𝑋𝑋 for al 𝑥𝑥 ∈ 𝑋𝑋. 

(ii) (See24) If 𝑋𝑋 is decomposable and irreducible about {𝑥𝑥, 𝑦𝑦}, then 𝑋𝑋 has exactly three 
composants: 𝜅𝜅(𝑋𝑋, 𝑥𝑥), 𝜅𝜅(𝑋𝑋, 𝑦𝑦), and 𝑋𝑋. 

(iii) (See21) If 𝑋𝑋 is indecomposable, then any two composants of 𝑋𝑋 are disjoint. If 𝑋𝑋 is 
also metrizable, then the number of its composants is 𝔠𝔠: = 2ℵ0 . 

Our case for the composants of ultracoproducts of decomposable continua is the following. 

Theorem 4.4 
Suppose 𝑋𝑋𝑖𝑖  is a nondegenerate decomposable continuum for 𝑖𝑖 ∈ 𝐼𝐼. Then 𝑋𝑋

→
𝒟𝒟 is a decomposable 

continuum and: 

(i) If each 𝑋𝑋𝑖𝑖  has three composants and 𝑋𝑋𝑖𝑖 = 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝑧𝑧𝑖𝑖), then 𝑋𝑋
→

𝒟𝒟 has three composants as well, 
and 𝑋𝑋

→
𝒟𝒟 = 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝑧𝑧

→
𝒟𝒟). 

(ii) If each 𝑋𝑋𝑖𝑖  equals the same locally connected continuum 𝑋𝑋 with just one composant, then 𝑋𝑋𝒟𝒟 
has just one composant also. 

Proof 
Ad (i): From Lemma 4.3 (i), each 𝑋𝑋𝑖𝑖  is irreducible. By Proposition 3.11 and Proposition 

4.2, 𝑋𝑋
→

𝒟𝒟 is a decomposable irreducible continuum. Now apply Lemma 4.3 (ii) to conclude that 𝑋𝑋
→

𝒟𝒟 has 
three composants. Suppose each 𝑋𝑋𝑖𝑖  is irreducible about {𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖}, and that 𝑧𝑧𝑖𝑖  is a point whose 
composant is 𝑋𝑋𝑖𝑖 . Then there are proper subcontinua 𝐾𝐾𝑖𝑖 and 𝑀𝑀𝑖𝑖 such that {𝑥𝑥𝑖𝑖, 𝑧𝑧𝑖𝑖} ⊆ 𝐾𝐾𝑖𝑖 and {𝑧𝑧𝑖𝑖, 𝑦𝑦𝑖𝑖} ⊆
𝑀𝑀𝑖𝑖. Then {𝐾𝐾𝑖𝑖, 𝑀𝑀𝑖𝑖} is a decomposition of 𝑋𝑋𝑖𝑖  with 𝑧𝑧𝑖𝑖 ∈ 𝐾𝐾𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖, and hence {𝐾𝐾

→
𝒟𝒟, 𝑀𝑀

→
𝒟𝒟} is a decomposition 

of 𝑋𝑋
→

𝒟𝒟 with 𝑧𝑧
→

𝒟𝒟 ∈ 𝐾𝐾
→

𝒟𝒟 ∩ 𝑀𝑀
→

𝒟𝒟. Thus 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝑧𝑧
→

𝒟𝒟) = 𝑋𝑋
→

𝒟𝒟. 

Ad (ii): Assuming 𝑋𝑋 to be locally connected, we still know that 𝑋𝑋𝒟𝒟 is decomposable. 
Apply Theorem 3.14 and Lemma 4.3 (i, ii).  □ 

Question 4.5 
If each 𝑋𝑋𝑖𝑖  is a nondegenerate continuum and 𝑧𝑧𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼, when can we be sure 

that (� 𝜅𝜅(𝑋𝑋𝑖𝑖, 𝑧𝑧𝑖𝑖)𝒟𝒟 )♯ = 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝑧𝑧
→

𝒟𝒟)? 
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Remark 4.6 
Let 𝒟𝒟 be a nonprincipal ultrafilter on 𝜔𝜔. As is proved in22 (see also [18, Corollary 2.10]), the 

layers of the ultra-arc 𝕀𝕀𝒟𝒟 form an upper semicontinuous partition into subcontinua, the quotient of 
which is a generalized arc (i.e., a totally ordered continuum). As a consequence of the study of 
layers, bracket-regular intervals define their sets of bracket points; i.e., if [𝜇𝜇, 𝜈𝜈] = [𝑥𝑥

→
𝒟𝒟, 𝑦𝑦

→
𝒟𝒟], 

then {𝜇𝜇, 𝜈𝜈} = {𝑥𝑥
→

𝒟𝒟, 𝑦𝑦
→

𝒟𝒟}. From this we may conclude that 𝜅𝜅(𝕀𝕀𝒟𝒟, 𝑡𝑡𝒟𝒟) = 𝕀𝕀𝒟𝒟 ∖ {(1 − 𝑡𝑡)𝒟𝒟} = (𝜅𝜅(𝕀𝕀, 𝑡𝑡)𝒟𝒟)♯, 
for 𝑡𝑡 ∈ {0,1}, and we have a partial answer to Question 4.5. 

We now turn our attention to the analysis of composants of ultracopower continua that are 
indecomposable. We first remark that the metrizability assumption in Lemma 4.3 (iii) is essential: 
D. Bellamy12 has produced indecomposable continua, of weight ℵ1, which have one and two 
composants. 

The following is a continuum-theoretic consequence of some deep results in model theory. 

Theorem 4.7 
Every nondegenerate indecomposable continuum has an ultracopower with at least 𝔠𝔠 

composants. 

Proof 
Let 𝑋𝑋 be a nondegenerate indecomposable continuum, with 𝒜𝒜 a lattice base for 𝑋𝑋. 𝒜𝒜 is an 

infinite Wallman lattice; hence, by the Löwenheim–Skolem Theorem (e.g., [16, Theorem 3.1.6]), 
there is a countably infinite Wallman lattice 𝐴𝐴0 elementarily equivalent to 𝒜𝒜. By the Shelah 
Ultrapower Theorem [16, Theorem 6.1.15], there is a countably incomplete ultrafilter D such that 
the ultrapower lattices 𝒜𝒜𝒟𝒟 and 𝐴𝐴0

𝒟𝒟 are isomorphic. If 𝐵𝐵 is any Wallman lattice, let 𝜎𝜎(𝐵𝐵) denote its 
“maximal spectrum space;” i.e., the compactum consisting of the maximal filters of 𝐵𝐵 (topologized 
by taking sets of the form {𝜇𝜇 ∈ 𝜎𝜎(𝐵𝐵): 𝑏𝑏 ∈ 𝜇𝜇}, 𝑏𝑏 ∈ 𝐵𝐵, as a closed-set base). Then—with “≃” denoting 
homeomorphism—𝑋𝑋 ≃ 𝜎𝜎(𝒜𝒜) and 𝑋𝑋𝒟𝒟 ≃ 𝜎𝜎(𝒜𝒜𝒟𝒟). Since 𝒜𝒜𝒟𝒟 and 𝐴𝐴0

𝒟𝒟 are isomorphic lattices, we 
have 𝑋𝑋𝒟𝒟 ≃ 𝜎𝜎(𝐴𝐴0

𝒟𝒟) ≃ 𝑌𝑌𝒟𝒟, where 𝑌𝑌 = 𝜎𝜎(𝐴𝐴0). 

The continuum 𝑌𝑌 is indecomposable, by Proposition 4.2. Also, since it has a countable base, 
it is metrizable. Using Lemma 4.3 (iii), let 𝑆𝑆 ⊆ 𝑌𝑌 be a subset of cardinality 𝔠𝔠, such that 𝑌𝑌 is 
irreducible about any two points of 𝑆𝑆. By Proposition 3.11, 𝑌𝑌𝒟𝒟 is irreducible about any two points 
of 𝑆𝑆𝒟𝒟. Since 𝒟𝒟 is countably incomplete, the cardinalities |𝑆𝑆𝒟𝒟| and |𝑆𝑆𝒟𝒟|ℵ0 are equal [16, Proposition 
4.3.9]. Since |𝑆𝑆| = 𝔠𝔠 (all we need is that 𝑆𝑆 is infinite), we have |𝑆𝑆𝒟𝒟| ≥ 𝔠𝔠. Thus 𝑌𝑌𝒟𝒟—and hence 𝑋𝑋𝒟𝒟—
has at least 𝔠𝔠 composants.  □ 

Remarks 4.8 
(i) Let us call a nondegenerate indecomposable continuum with just one composant a Bellamy 

continuum. (Bellamy continua are not all that rare; every continuum embeds as a retract of 
one of them.12,25) Regarding Question 4.5: the sets (∏ 𝜅𝜅𝒟𝒟 (𝑋𝑋𝑖𝑖 , 𝑧𝑧𝑖𝑖))♯ need not be composants 
at all, even if 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝑧𝑧𝑖𝑖) = 𝑋𝑋𝑖𝑖 for all 𝑖𝑖 ∈ 𝐼𝐼. Indeed, if 𝑋𝑋 is any Bellamy continuum, 𝑋𝑋 is a 
composant of itself. Theorem 4.7 gives us an ultracopower 𝑋𝑋𝒟𝒟 with many composants, all 
disjoint from one another. Hence 𝑋𝑋𝒟𝒟 is not a composant of itself. This example also shows 
that Question 3.12 has a negative answer in general, but we do not know whether the 
ultracoproduct construction reflects irreducibility for families of decomposable (or locally 
connected) continua. 

(ii) Continuing with our Bellamy continuum 𝑋𝑋, let 𝑋𝑋𝒟𝒟 be an ultracopower with many 
composants. Proposition 4.1 tells us that 𝑋𝑋𝒟𝒟 ⊆ 𝜅𝜅(𝑋𝑋𝒟𝒟, 𝑥𝑥

→
𝒟𝒟) for any regular point 𝑥𝑥𝒟𝒟. Since the 

composants of 𝑋𝑋𝒟𝒟 form a partition, this says that 𝜅𝜅(𝑋𝑋𝒟𝒟, 𝑥𝑥
→

𝒟𝒟) = 𝜅𝜅(𝑋𝑋𝒟𝒟 , 𝑦𝑦
→

𝒟𝒟) for any two regular 
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points 𝑥𝑥
→

𝒟𝒟, 𝑦𝑦
→

𝒟𝒟 ∈ 𝑋𝑋𝒟𝒟. Thus only one composant is semiregular. If 𝐶𝐶 is any of the irregular 
composants, with 𝐾𝐾 ⊆ 𝐶𝐶 a subcontinuum, then the regular hull 𝑅𝑅(𝐾𝐾) is all of 𝑋𝑋𝒟𝒟, and 
therefore a proper superset of 𝐾𝐾 (see Theorem 3.2 for contrast). 

(iii) While the semiregularity hypothesis in Theorem 3.2 cannot be discarded altogether, 
it is not strictly necessary: using a Martin's Axiom argument (see [18, Proposition 7.3 and 
Theorem 8.3]), one can show that a point hull (layer) 𝑅𝑅(𝜇𝜇) of 𝕀𝕀𝒟𝒟 can equal {𝜇𝜇} for an 
irregular point 𝜇𝜇. 

(iv) It is worthy of note that while ℍ� is well known to be indecomposable, the number of its 
composants is contingent upon the ambient set theory: if the CH holds this number is 2𝔠𝔠; if 
the (equally consistent with ZFC) Near Coherence of Filters axiom holds, this number is 
exactly one, and ℍ� is a Bellamy continuum (see, e.g.,14,18 for details). 

5. Relative composants 
The notion of relative composant is important for the discussion of noncut points in the next 

section. 

Let 𝑋𝑋 be a continuum, with 𝐾𝐾 a nonempty subcontinuum of 𝑋𝑋 and 𝐴𝐴 ⊆ 𝑋𝑋. Then 
the composant of 𝑋𝑋 at 𝐾𝐾 relative to 𝐴𝐴 is the union of all subcontinua of 𝑋𝑋 ∖ 𝐴𝐴 that contain 𝐾𝐾, and is 
denoted 𝜅𝜅(𝑋𝑋, 𝐾𝐾; 𝐴𝐴). In degenerate cases we simplify notation in the obvious way; so, 
e.g., 𝜅𝜅(𝑋𝑋, {𝑥𝑥}; ∅) = 𝜅𝜅(𝑋𝑋, 𝑥𝑥), consistent with the usual composant notation. 

If 𝐾𝐾 ≠ 𝑋𝑋, then “boundary bumping”24 tells us that 𝜅𝜅(𝑋𝑋, 𝐾𝐾) is dense in 𝑋𝑋. And while it is true 
that 𝜅𝜅(𝑋𝑋, 𝐾𝐾; 𝑦𝑦) always contains 𝑦𝑦 in its closure, it can easily fail to be dense in 𝑋𝑋. The question of 
when relative composants are dense was first addressed by R.H. Bing;13 the following is an 
immediate corollary of the proof of Theorem 5 in that paper. 

Theorem 5.1 
Let K be a proper subcontinuum of a metrizable continuum 𝑋𝑋. Then there exists a point 𝑦𝑦 ∈

𝑋𝑋 with 𝜅𝜅(𝑋𝑋, 𝐾𝐾; 𝑦𝑦) dense in 𝑋𝑋. 

D. Anderson1 defines a continuum 𝑋𝑋 to be coastal at 𝑥𝑥 ∈ 𝑋𝑋 if 𝜅𝜅(𝑋𝑋, 𝑥𝑥; 𝑦𝑦) is dense in 𝑋𝑋 for 
some 𝑦𝑦 ∈ 𝑋𝑋. Theorem 5.1 says that a metrizable continuum is not only coastal at each of its points, 
but coastal at each of its proper subcontinua (in the obvious broader sense). In the interests of 
extending this result to all continua, the following “reduction” theorem is an immediate 
consequence of the techniques developed in,1 and is a minor improvement on [1, Corollary 4.16]. 

Theorem 5.2 
If all indecomposable continua are coastal at their points, than all continua are coastal at 

their proper subcontinua. 

Remarks 5.3 
(i) Obviously an indecomposable continuum with more than one composant is coastal at all its 

proper subcontinua; so in order to apply Theorem 5.2, we need only concentrate on 
Bellamy continua. 

(ii) Continuing the discussion in Remark 4.8 (iv), ⁎H⁎ is a Bellamy continuum if and only if the 
Near Coherence of Filters (NCF) axiom holds; hence ℍ� is coastal at each of its proper 
subcontinua if NCF does not hold. On the other hand, Anderson has recently shown [2, 
Theorem 3.11] that ℍ� fails to be coastal at any of its proper subcontinua if NCF holds. So 
the question of whether Bing's Theorem 5.1 can be extended to all continua has a 
conditional negative answer. 
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We prove the following as we did Proposition 4.1. 

Proposition 5.4 
For each 𝑖𝑖 ∈ 𝐼𝐼, let 𝐾𝐾𝑖𝑖 be a subcontinuum of continuum 𝑋𝑋𝑖𝑖 , with 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 . Then 

� 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝐾𝐾𝑖𝑖; 𝑦𝑦𝑖𝑖)
𝒟𝒟

⊆ 𝜅𝜅 �𝑋𝑋
→

𝒟𝒟, 𝐾𝐾
→

𝒟𝒟; 𝑦𝑦
→

𝒟𝒟� ⊆ �� 𝜅𝜅(𝑋𝑋𝑖𝑖 , 𝐾𝐾𝑖𝑖; 𝑦𝑦𝑖𝑖)
𝒟𝒟

�
♯

. 

Theorem 5.5 
For each 𝑖𝑖 ∈ 𝐼𝐼 assume continuum 𝑋𝑋𝑖𝑖  is coastal at each of its proper subcontinua. Then 𝑋𝑋

→
𝒟𝒟 is 

coastal at each of its points and each of its proper semiregular subcontinua. 

Proof 
If 𝐾𝐾 is a proper semiregular subcontinuum of 𝑋𝑋

→
𝒟𝒟, then use Theorem 3.2 to obtain a proper 

regular subcontinuum 𝑀𝑀
→

𝒟𝒟 ⊇ 𝐾𝐾. For 𝒟𝒟-almost every 𝑖𝑖 ∈ 𝐼𝐼 we have 𝑦𝑦𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖  with 𝜅𝜅(𝑋𝑋𝑖𝑖, 𝑀𝑀𝑖𝑖; 𝑦𝑦𝑖𝑖) dense 
in 𝑋𝑋𝑖𝑖 . Then � 𝜅𝜅(𝑋𝑋𝑖𝑖, 𝑀𝑀𝑖𝑖; 𝑦𝑦𝑖𝑖) 𝒟𝒟 is dense in 𝑋𝑋

→
𝒟𝒟. By Proposition 5.4, we have the density of 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝑀𝑀

→
𝒟𝒟; 𝑦𝑦

→
𝒟𝒟), 

which is contained in 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝐾𝐾; 𝑦𝑦
→

𝒟𝒟). Thus 𝑋𝑋
→

𝒟𝒟 is coastal at 𝐾𝐾. 

Now suppose 𝜇𝜇 ∈ 𝑋𝑋
→

𝒟𝒟. If it happens that there is some 𝜈𝜈 ∈ 𝑋𝑋
→

𝒟𝒟 ∖ 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝜇𝜇), then 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝜇𝜇; 𝜈𝜈) =
𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝜇𝜇), which is dense in the ultracoproduct. Hence assume that 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝜇𝜇) = 𝑋𝑋

→
𝒟𝒟, and fix a regular 

point 𝑥𝑥
→

𝒟𝒟. Then there is a proper subcontinuum 𝐾𝐾 ⊆ 𝑋𝑋
→

𝒟𝒟 containing both 𝜇𝜇 and 𝑥𝑥
→

𝒟𝒟. 𝐾𝐾 is semiregular; 
so by the previous paragraph, we have 𝜅𝜅(𝑋𝑋

→
𝒟𝒟, 𝐾𝐾; 𝑦𝑦

→
𝒟𝒟) dense in 𝑋𝑋

→
𝒟𝒟, for some regular point 𝑦𝑦

→
𝒟𝒟 . 

Thus 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝜇𝜇; 𝑦𝑦
→

𝒟𝒟) ⊇ 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝐾𝐾; 𝑦𝑦
→

𝒟𝒟) is also dense therein.  □ 

When we add in Bing's Theorem 5.1, we obtain the following. 

Corollary 5.6 
An ultracoproduct of metrizable continua is coastal at each of its points and each of its 

proper semiregular subcontinua. 

Question 5.7 
Can we remove “semiregular” from the conclusions of Theorem 5.5 and Corollary 5.6? 

6. Varieties of noncut point 
A topological space is continuumwise connected if any two of its points are contained in a 

subcontinuum. Each space is partitioned into its maximal continuumwise connected subsets, called 
the continuum components of the space. A point 𝑐𝑐 in a connected space 𝑋𝑋 is a weak cut 
point of 𝑋𝑋 if 𝑋𝑋 ∖ {𝑐𝑐} is not a continuumwise connected set. (So 𝑐𝑐 is a weak cut point if and only if 𝑐𝑐 ∈
[𝑎𝑎, 𝑏𝑏] for some 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋 ∖ {𝑐𝑐}.) Clearly being a cut point implies being a weak cut point; so we say 
that a point is a strong noncut point if it is not a weak cut point. 

The existence of at least two noncut points in nondegenerate metrizable continua was first 
proved by R.L. Moore,23 and significantly improved by G.T. Whyburn.28 
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Theorem 6.1 
[24, Corollary 6.7] 

Every compact connected 𝖳𝖳1 space is irreducible about its set of noncut points. 

It is well known that continua need not contain strong noncut points; indeed, any 
indecomposable continuum with more than one composant serves as an example. However, if the 
continuum is aposyndetic; i.e., if for each pair of its points there is a subcontinuum containing one of 
them in its interior and excluding the other (clearly a condition weaker than local connectedness), 
then weak cut points and cut points are the same. This fact is expressed as the Cut Point 
Equivalence Theorem in F.B. Jones' survey,19 where it is stated for metrizable continua and 
attributed to Whyburn.27 The proof does not rely essentially on metric notions, however. 

Theorem 6.2 
Every noncut point of an aposyndetic continuum is a strong noncut point. 

As mentioned above, an indecomposable continuum with more than one composant is 
evidently devoid of strong noncut points. However, in the case of Bellamy continua, the situation is 
a bit less clear. It is known18 that ℍ� is an indecomposable continuum, but its number of 
composants can be one or many, depending on the set theory. Nevertheless, no strong noncut 
points exist in this continuum. 

Theorem 6.3 
[2, Theorem 3.1] 

Every point of ℍ� is a weak cut point. Indeed, if 𝑧𝑧 ∈ ℍ� is any given point, there are 𝑥𝑥, 𝑦𝑦 ∈
𝜅𝜅(ℍ�, 𝑧𝑧) ∖ {𝑧𝑧} with 𝑧𝑧 ∈ [𝑥𝑥, 𝑦𝑦]. 

Returning to the role of cut points and their kin to ultracoproducts, we first address the 
question of how the connectedness of a regular set (𝑆𝑆

→
𝒟𝒟)♯ relates to that of its factor sets. We know 

the answer if the sets 𝑆𝑆𝑖𝑖 are closed, and the following tells what we know then they are open. 

Lemma 6.4 
Suppose 𝑈𝑈𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖  is open for 𝑖𝑖 ∈ 𝐼𝐼. 

(i) If {𝑖𝑖 ∈ 𝐼𝐼: 𝑈𝑈𝑖𝑖  is disconnected} ∈ 𝒟𝒟, then (𝑈𝑈
→

𝒟𝒟)♯ is disconnected. 
(ii) If {𝑖𝑖 ∈ 𝐼𝐼: 𝑈𝑈𝑖𝑖  is continuumwise connected} ∈ 𝒟𝒟, then (𝑈𝑈

→
𝒟𝒟)♯ is connected. 

Proof 
Ad (i): If for 𝒟𝒟-almost every 𝑖𝑖 ∈ 𝐼𝐼 we have a disconnection 𝑈𝑈𝑖𝑖 = 𝑉𝑉𝑖𝑖 ∪ 𝑊𝑊𝑖𝑖 , then we have a 
disconnection (𝑈𝑈

→
𝒟𝒟)♯ = (𝑉𝑉

→
𝒟𝒟)♯ ∪ (𝑊𝑊

→
𝒟𝒟)♯ because the ultraproduct formation commutes with 

finite Boolean operations. 

Ad (ii): Suppose 𝑥𝑥
→

𝒟𝒟 and 𝑦𝑦
→

𝒟𝒟 are two regular points in (𝑈𝑈
→

𝒟𝒟)♯. Then for 𝒟𝒟-almost every 𝑖𝑖 ∈ 𝐼𝐼we 
have a subcontinuum 𝐾𝐾𝑖𝑖 ⊆ 𝑈𝑈𝑖𝑖  containing both 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 . But then (𝐾𝐾

→
𝒟𝒟)♯ = 𝐾𝐾

→
𝒟𝒟 is a 

subcontinuum of (𝑈𝑈
→

𝒟𝒟)♯ containing both 𝑥𝑥
→

𝒟𝒟 and 𝑦𝑦
→

𝒟𝒟 . If we now write (𝑈𝑈
→

𝒟𝒟)♯ as a union 𝑉𝑉 ∪
𝑊𝑊 of open subsets of 𝑋𝑋

→
𝒟𝒟, we use the density of 𝑈𝑈

→
𝒟𝒟 in (𝑈𝑈

→
𝒟𝒟)♯ to find regular points 𝑥𝑥

→
𝒟𝒟 ∈

𝑉𝑉 and 𝑦𝑦
→

𝒟𝒟 ∈ 𝑊𝑊. The existence of the subcontinuum 𝐾𝐾
→

𝒟𝒟 as argued above tells us 
that 𝑉𝑉 and 𝑊𝑊 cannot be disjoint. Hence (𝑈𝑈

→
𝒟𝒟)♯ is connected.  □ 
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Theorem 6.5 
Assume each 𝑋𝑋𝑖𝑖  is a continuum, with 𝑐𝑐𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. 

(i) If {𝑖𝑖 ∈ 𝐼𝐼: 𝑐𝑐𝑖𝑖  is a weak cut point of 𝑋𝑋𝑖𝑖} ∈ 𝒟𝒟, then 𝑐𝑐
→

𝒟𝒟 is a weak cut point of 𝑋𝑋
→

𝒟𝒟. 
(ii) If {𝑖𝑖 ∈ 𝐼𝐼: 𝑐𝑐𝑖𝑖  is a cut point of 𝑋𝑋𝑖𝑖} ∈ 𝒟𝒟, then 𝑐𝑐

→
𝒟𝒟 is a cut point of 𝑋𝑋

→
𝒟𝒟. 

(iii) If {𝑖𝑖 ∈ 𝐼𝐼: 𝑐𝑐𝑖𝑖  is a strong noncut point of 𝑋𝑋𝑖𝑖} ∈ 𝒟𝒟, then 𝑐𝑐
→

𝒟𝒟 is a noncut point of 𝑋𝑋
→

𝒟𝒟. 

Proof 
Ad (i): Assume that for 𝒟𝒟-almost each 𝑖𝑖 ∈ 𝐼𝐼 there are points 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 ∖ {𝑐𝑐𝑖𝑖} such that 𝑐𝑐𝑖𝑖 ∈
[𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖]. Since 𝑎𝑎

→
𝒟𝒟 and 𝑏𝑏

→
𝒟𝒟 are both in 𝑋𝑋

→
𝒟𝒟 ∖ {𝑐𝑐

→
𝒟𝒟}, it suffices to show 𝑐𝑐

→
𝒟𝒟 ∈ [𝑎𝑎

→
𝒟𝒟, 𝑏𝑏

→
𝒟𝒟]. But 𝑐𝑐

→
𝒟𝒟 ∈

� [𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖],𝒟𝒟 and this set is contained in [𝑎𝑎
→

𝒟𝒟, 𝑏𝑏
→

𝒟𝒟], by Theorem 3.3. 

Ad (ii): This follows immediately from Lemma 6.4 (i). 

Ad (iii): This follows immediately from Lemma 6.4 (ii).  □ 

Combining the above with Theorem 6.2 quickly affords the following. 

Corollary 6.6 
Assume each 𝑋𝑋𝑖𝑖  is an aposyndetic continuum, with 𝑐𝑐𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. Then 𝑐𝑐

→
𝒟𝒟 is a cut point of 

𝑋𝑋
→

𝒟𝒟 if and only if {𝑖𝑖 ∈ 𝐼𝐼: 𝑐𝑐𝑖𝑖 is a cut point of 𝑋𝑋𝑖𝑖} ∈ 𝒟𝒟. 

We round out this section with a push toward improvements of Theorem 6.5 (iii). The two 
obvious ones—when we replace “strong noncut” with “noncut,” and vice versa—are open 
questions, as far as we know. However there is an interesting condition on points that interpolates 
between the stated ones. 

If 𝑐𝑐 ∈ 𝑋𝑋, we say 𝑐𝑐 is a nonblock point of 𝑋𝑋 if some continuumwise connected subset of 𝑋𝑋 ∖
{𝑐𝑐} is dense in 𝑋𝑋. If 𝑋𝑋 is coastal at 𝑥𝑥, then any 𝑦𝑦 ∈ 𝑋𝑋 for which 𝜅𝜅(𝑋𝑋, 𝑥𝑥; 𝑦𝑦) is dense is a nonblock point; 
conversely, if 𝐴𝐴 ⊆ 𝑋𝑋 ∖ {𝑦𝑦} is continuumwise connected and dense in 𝑋𝑋, then 𝑋𝑋 is coastal at any 𝑥𝑥 ∈
𝐴𝐴. So a continuum is coastal at some point if and only if it has a nonblock point. Clearly every strong 
noncut point is nonblock, and every nonblock point is noncut. 

Remarks 6.7 
(i) Nonblock points are first identified in15 as a direct response to the paper20 of R. Leonel, in 

which Theorem 5.1 is used to show the existence of at least two shore points in every 
nondegenerate metrizable continuum. While the definition in20 is formulated in hyperspace 
metric terms, one may also use more topological language: 𝑐𝑐 ∈ 𝑋𝑋 is a shore point if 
whenever 𝒰𝒰 is a finite family of nonempty open subsets of 𝑋𝑋, there is a subcontinuum of 𝑋𝑋 ∖
{𝑐𝑐} that meets each member of 𝒰𝒰. (Intuitively, this says that “arbitrarily large” subcontinua 
of 𝑋𝑋 miss 𝑐𝑐.) The authors of15 show the notion of shore point to interpolate strictly between 
those of nonblock point and noncut point; they then use Bing's Theorem 5.1 to observe that 
any metrizable continuum is irreducible about its set of nonblock points. 

(ii) If 𝑋𝑋 is an indecomposable continuum with more than one composant, then each point is a 
nonblock point which is also weak cut. 

(iii) If 𝑋𝑋 results from the disjoint union of two sin (1
𝑥𝑥

) curves, with the vertical segments 
identified in the obvious way, and if 𝑐𝑐 is any point on that common segment, then 𝑐𝑐 is a 
noncut point which fails to be shore. Hence being nonblock interpolates strictly between 
being strongly noncut and being shore. 
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(iv) In addition to the reduction result Theorem 5.2, Anderson1 also extended Bing's Theorem 
5.1 to separable continua. Hence every separable continuum (e.g., 𝛽𝛽(ℍ)) is irreducible 
about its set of nonblock points. The existence of nonblock points in arbitrary continua, 
however, is not provable in ZFC (see Remark 5.3 (ii)). 

Our strengthening of Theorem 6.5 (iii) is now the following easy consequence of Proposition 
5.4. 

Corollary 6.8 
Assume each 𝑋𝑋𝑖𝑖  is a continuum, with 𝑐𝑐𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. If {𝑖𝑖 ∈ 𝐼𝐼: 𝑐𝑐𝑖𝑖 is a nonblock point of𝑋𝑋𝑖𝑖} ∈ 𝒟𝒟, 

then 𝑐𝑐
→

𝒟𝒟 is a nonblock point of 𝑋𝑋
→

𝒟𝒟. 

Proof 
For 𝒟𝒟 -almost every 𝑖𝑖 ∈ 𝐼𝐼, we have the existence of a point 𝑎𝑎𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖, with 𝜅𝜅(𝑋𝑋𝑖𝑖, 𝑎𝑎𝑖𝑖; 𝑐𝑐𝑖𝑖) dense 

in 𝑋𝑋𝑖𝑖 . By Proposition 5.4, 𝜅𝜅(𝑋𝑋
→

𝒟𝒟, 𝑎𝑎
→

𝒟𝒟; 𝑐𝑐
→

𝒟𝒟) is dense in 𝑋𝑋
→

𝒟𝒟, making 𝑐𝑐
→

𝒟𝒟 a nonblock point of the 
ultracoproduct.  □ 

Now we put Theorem 6.8 together with Proposition 3.11. 

Corollary 6.9 
Assume, for each 𝑖𝑖 ∈ 𝐼𝐼, that 𝑋𝑋𝑖𝑖  is a continuum that is irreducible about its set of nonblock 

points. Then so is 𝑋𝑋
→

𝒟𝒟. 

With another appeal to Theorem 5.1, we then have the following. 

Corollary 6.10 
An ultracoproduct of metrizable continua is irreducible about its set of nonblock points. 

When we add in the fact that each continuum has an ultracopower which is homeomorphic 
to an ultracopower of a metrizable continuum (see the proof of Theorem 4.7), we can state a weak 
version of the desired nonblock point existence theorem. 

Corollary 6.11 
Every continuum has an ultracopower which is irreducible about its set of nonblock points. 

Question 6.12 
Is there a ZFC example of a continuum with no coastal (or nonblock) points? What about the 

existence of shore points? (Anderson3 has recently shown that every point of ℍ� is a shore point.) 

7. Point hulls 
In this section we return to the topic of regular hulls of an ultracoproduct continuum, 

focusing our attention on point hulls. As mentioned in Remark 3.6, Remark 4.6, the point hulls and 
the layers of 𝕀𝕀𝒟𝒟 coincide, and partition the ultra-arc into subcontinua in such a way that the 
resulting quotient is a generalized arc. (As we saw earlier in Theorem 3.10, it is the hereditary n-
coherence (𝑛𝑛 = 1) on the part of 𝕀𝕀 that guarantees the connectedness of regular hulls in 𝕀𝕀𝒟𝒟, and 
hence the monotonicity of the associated quotient map.) 

At the opposite extreme—as mentioned in Remark 4.8 (ii)—if 𝑋𝑋 is a Bellamy continuum, 
then there is an ultracopower 𝑋𝑋𝒟𝒟 with many composants, and therefore many points 𝜇𝜇 with 𝑅𝑅(𝜇𝜇) =
𝑋𝑋𝒟𝒟. We would like to investigate just what it takes for continuum ultracoproducts to have point 
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hulls that behave in interesting ways. To do this we introduce an equivalence relation whose 
equivalence classes partition each point hull. 

In any ultracoproduct continuum, we define a subcontinuum ultraproduct to be an 
ultraproduct of the form 𝐾𝐾

→
𝒟𝒟, where 𝐾𝐾𝑖𝑖 is a subcontinuum of 𝑋𝑋𝑖𝑖 , 𝑖𝑖 ∈ 𝐼𝐼. (Note that an 𝐼𝐼-

sequence 𝐾𝐾
→

 gives rise to both the subcontinuum ultraproduct 𝐾𝐾
→

𝒟𝒟 and its compactification 𝐾𝐾
→

𝒟𝒟 =
(𝐾𝐾

→
𝒟𝒟)♯. As a topological space, a subcontinuum ultraproduct is hardly ever compact or connected.) 

We recall that members of 𝑋𝑋
→

𝒟𝒟 are maximal filters in the bounded lattice of all closed subset 
ultraproducts. However, no continuum ultraproduct other than 𝑋𝑋

→
𝒟𝒟 itself is guaranteed to be a 

member of any given 𝜇𝜇 ∈ 𝑋𝑋
→

𝒟𝒟. Define two points in 𝑋𝑋
→

𝒟𝒟 to be ℛ -equivalent if they contain the same 
continuum ultraproducts. Since 𝐹𝐹

→
𝒟𝒟 ∈ 𝜇𝜇 if and only if 𝜇𝜇 ∈ 𝐹𝐹

→
𝒟𝒟 , we see that 𝜇𝜇 and νare ℛ -equivalent 

𝜇𝜇 ∼ℛ 𝜈𝜈 if and only if ℛ(𝜇𝜇) = ℛ(𝜈𝜈). From this definition it is plain that each point hull is a union of ℛ 
-(equivalence) classes; in particular the ℛ -class of a regular point is degenerate. 
Hence ∼ℛ partitions a nondegenerate ultracoproduct into many equivalence classes, each of which 
having empty interior (because nonempty open sets contain many regular points). 

The regularization map is the quotient map 𝑟𝑟𝒟𝒟: = 𝑟𝑟
𝑋𝑋
→

,𝒟𝒟
: 𝑋𝑋

→
𝒟𝒟 → 𝑋𝑋

→
𝒟𝒟
ℛ from the ultracoproduct to 

its associated space of ℛ -classes. We refer to 𝑋𝑋
→

𝒟𝒟
ℛ as the regularized 𝒟𝒟 -ultracoproduct of 𝑋𝑋

→
. 

Proposition 7.1 
Every regularized ultracoproduct is a connected compact 𝖳𝖳0 space. 

Proof 
Connectedness and compactness are immediate because 𝑟𝑟𝒟𝒟 is a continuous surjection. 

Suppose 𝑥𝑥, 𝑦𝑦 ∈ 𝑋𝑋
→

𝒟𝒟
ℛ are distinct points, say 𝑥𝑥 = 𝑟𝑟𝒟𝒟(𝜇𝜇) and 𝑦𝑦 = 𝑟𝑟𝒟𝒟(𝜈𝜈). Then ℛ(𝜇𝜇) ≠ ℛ(𝜈𝜈). Suppose we 

have ℛ(𝜇𝜇) ⊈ ℛ(𝜈𝜈). Then there is a continuum ultraproduct 𝑀𝑀
→

𝒟𝒟 that is a member of any 𝜇𝜇′ ∼ℛ 𝜇𝜇 but 
not of any 𝜈𝜈′ ∼ℛ 𝜈𝜈. For each 𝑖𝑖 ∈ 𝐼𝐼, let 𝑈𝑈𝑖𝑖 = 𝑋𝑋𝑖𝑖 ∖ 𝑀𝑀𝑖𝑖. Then (𝑈𝑈

→
𝒟𝒟)♯ is an open neighborhood of 𝜈𝜈 which 

is ℛ -saturated—i.e., a union of ℛ -classes—and which misses 𝜇𝜇. Hence 𝑟𝑟𝒟𝒟[(𝑈𝑈
→

𝒟𝒟)♯] is an open 
neighborhood of 𝑦𝑦 = 𝑟𝑟𝒟𝒟(𝜈𝜈) that misses 𝑥𝑥 = 𝑟𝑟𝒟𝒟(𝜇𝜇). This shows the regularization to be a 𝖳𝖳0 space.  
□ 

Remark 7.2 
Referring to Remark 4.8 (ii), let 𝑋𝑋 be a Bellamy continuum, with 𝑋𝑋𝒟𝒟 an ultracopower having 

more than one composant. Let 𝐶𝐶𝑅𝑅 be the composant of 𝑋𝑋𝒟𝒟 containing 𝑋𝑋𝒟𝒟. If 𝜇𝜇 ∈ 𝑋𝑋𝒟𝒟 ∖ 𝐶𝐶𝑅𝑅, 
then ℛ(𝜇𝜇) = {𝑋𝑋𝒟𝒟}; hence the ℛ -class of 𝜇𝜇 contains 𝑋𝑋𝒟𝒟 ∖ 𝐶𝐶𝑅𝑅. On the other hand, if 𝜈𝜈 ∈ 𝐶𝐶𝑅𝑅, then—see 
the proof of Theorem 5.5—there is a proper regular subcontinuum containing 𝜈𝜈. Hence 𝑋𝑋𝒟𝒟 ∖ 𝐶𝐶𝑅𝑅 is a 
single ℛ -class, and 𝑋𝑋𝒟𝒟

ℛ is a fortiori not a 𝖳𝖳1 space. 

We next pursue conditions that ensure stronger separation properties for regularized 
ultracoproducts. 

Lemma 7.3 
Let 𝜇𝜇 and 𝜈𝜈 be points in the ultracoproduct continuum 𝑋𝑋

→
𝒟𝒟. Then the following two conditions are 

equivalent. 
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(i) 𝑅𝑅(𝜇𝜇) ∩ 𝑅𝑅(𝜈𝜈) ≠ ∅. 
(ii) If 𝑀𝑀

→
𝒟𝒟 and 𝑁𝑁

→
𝒟𝒟 are subcontinuum ultraproducts such that 𝑀𝑀

→
𝒟𝒟 ∈ 𝜇𝜇 and 𝑁𝑁

→
𝒟𝒟 ∈ 𝜈𝜈, then 𝑀𝑀

→
𝒟𝒟 ∩

𝑁𝑁
→

𝒟𝒟 ≠ ∅. 

Proof 
Suppose (i) holds, with 𝜋𝜋 ∈ 𝑅𝑅(𝜇𝜇) ∩ 𝑅𝑅(𝜈𝜈). If 𝑀𝑀

→
𝒟𝒟 ∈ ℛ(𝜇𝜇), and 𝑁𝑁

→
𝒟𝒟 ∈ ℛ(𝜈𝜈) are arbitrarily 

chosen, then 𝜋𝜋 ∈ 𝑀𝑀
→

𝒟𝒟 ∩ 𝑁𝑁
→

𝒟𝒟; and so the corresponding subcontinuum ultraproducts are in the same 
maximal filter 𝜋𝜋. Thus 𝑀𝑀

→
𝒟𝒟 ∩ 𝑁𝑁

→
𝒟𝒟 ≠ ∅. 

Conversely, if (ii) holds, let ℳ (resp., 𝒩𝒩) be the family of all subcontinuum ultraproducts 
in 𝜇𝜇 (resp., 𝜈𝜈). Then ℳ ∪ 𝒩𝒩, as a family of elements of the lattice of all closed-set ultraproducts 
from 𝑋𝑋

→
, has the finite meet property, and hence extends to a maximal filter 𝜋𝜋 on that lattice. 

Clearly 𝜋𝜋 ∈ 𝑅𝑅(𝜇𝜇) ∩ 𝑅𝑅(𝜈𝜈).  □ 

If 𝑋𝑋 is a continuum and 𝐾𝐾 ⊆ 𝑋𝑋 a subcontinuum, we say 𝑋𝑋 is n-semilocally connected at 𝐾𝐾 
(abbreviated n-SLC at 𝐾𝐾) if 𝐾𝐾 has arbitrarily small open neighborhoods whose complements have 
at most n components. (Being n-SLC at a point has its obvious meaning.) 𝑋𝑋 is n-SLC if it is n-SLC at 
each of its subcontinua. 

Remarks 7.4 
(i) Simple closed curves are 1-SLC; arcs are 2-SLC; simple triods are 3-SLC; any topological 

graph is n-SLC for some finite 𝑛𝑛 ≥ 1. 
(ii) For infinite cardinals 𝜅𝜅, it is more useful to define 𝜅𝜅-SLC by stipulating fewer than—instead 

of at most—κ components. For example, being ℵ0 -SLC at 𝑥𝑥 ∈ 𝑋𝑋 is Whyburn's notion 
of semilocal connectedness (SLC) at the point. In 1941, Jones proved that a continuum is 
SLC at each of its points if and only if it is aposyndetic(see [19, Equivalence Theorem]). 

(iii) The shrinking harmonic fan, a dendrite in the Euclidean plane, given as the union of 
segments {〈𝑡𝑡, 𝑡𝑡

𝑚𝑚
〉: 0 ≤ 𝑡𝑡 ≤ 1

𝑚𝑚
}, 𝑚𝑚 = 1,2, …, is locally connected and ℵ0 -SLC, but not n-SLC 

at its vertex 〈0,0〉for any finite n. 
(iv) The harmonic fan, a dendroid given as the closure in the Euclidean plane of the union of 

segments {〈𝑡𝑡, 𝑡𝑡
𝑚𝑚
〉: 0 ≤ 𝑡𝑡 ≤ 1}, 𝑚𝑚 = 1,2, …, is ℵ1 -SLC, but not ℵ0 -SLC at its vertex. If we 

add to this space the vertical line segment {1} × [0,1], we obtain a 1-SLC continuum which is 
not locally connected. 

(v) A nondegenerate indecomposable continuum fails to be ℵ1 -SLC at any of its proper 
subcontinua. 

Theorem 7.5 
Suppose 𝑛𝑛 ≥ 1 is finite and each continuum 𝑋𝑋𝑖𝑖  is n-SLC. If 𝜇𝜇, 𝜈𝜈 ∈ 𝑋𝑋

→
𝒟𝒟, then 𝜇𝜇 ∼ℛ 𝜈𝜈 if and only 

if 𝑅𝑅(𝜇𝜇) ∩ 𝑅𝑅(𝜈𝜈) ≠ ∅. Hence the point hulls of 𝑋𝑋
→

𝒟𝒟 coincide with the ℛ -classes, and form a partition 
into nowhere dense subcompacta. In particular, 𝑋𝑋

→
𝒟𝒟
ℛ is a compact connected 𝖳𝖳1 space, and 𝑅𝑅(𝜇𝜇) is a 

semiregular set if and only if 𝜇𝜇 is a regular point. 

Proof 
If 𝜇𝜇 ∼ℛ 𝜈𝜈, then 𝑅𝑅(𝜇𝜇) = 𝑅𝑅(𝜈𝜈); so one direction of the equivalence is trivial. Suppose now 

that 𝑅𝑅(𝜇𝜇) ∩ 𝑅𝑅(𝜈𝜈) ≠ ∅. If 𝑀𝑀
→

𝒟𝒟 ∈ ℛ(𝜇𝜇), then 𝑀𝑀
→

𝒟𝒟 is a subcontinuum ultraproduct that is contained in 𝜇𝜇. 
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We show it is also contained in 𝜈𝜈, by showing that it intersects every member of 𝜈𝜈, and then using 
the fact that 𝜈𝜈 is a maximal filter. So, for the sake of a contradiction, let 𝐹𝐹

→
𝒟𝒟 ∈ 𝜈𝜈 be disjoint from 𝑀𝑀

→
𝒟𝒟. 

Without loss of generality, we may assume 𝐹𝐹𝑖𝑖 ∩ 𝑀𝑀𝑖𝑖 = ∅ for all 𝑖𝑖 ∈ 𝐼𝐼. Using the fact that each 𝑋𝑋𝑖𝑖  is n-
SLC, there is some 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛 such that, for 𝒟𝒟 -almost each 𝑖𝑖, we have subcontinua 𝐾𝐾𝑖𝑖,1, … , 𝐾𝐾𝑖𝑖,𝑚𝑚 of 𝑋𝑋𝑖𝑖 , 
all disjoint from 𝑀𝑀𝑖𝑖, with 𝐹𝐹𝑖𝑖 ⊆ 𝐾𝐾𝑖𝑖,1 ∪ ⋯ ∪ 𝐾𝐾𝑖𝑖,𝑚𝑚. Then � 𝐾𝐾𝑖𝑖,1𝒟𝒟 ∪ ⋯ ∪ � 𝐾𝐾𝑖𝑖,𝑚𝑚𝒟𝒟 ∈ 𝜈𝜈; and—again 
because maximal filters are prime—therefore there is some 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚 with � 𝐾𝐾𝑖𝑖,𝑘𝑘𝒟𝒟 ∈ 𝜈𝜈. But 

by Lemma 7.3, we have 𝑀𝑀
→

𝒟𝒟 ∩ � 𝐾𝐾𝑖𝑖,𝑘𝑘𝒟𝒟 ≠ ∅, an impossibility. Hence 𝑀𝑀
→

𝒟𝒟 ∈ 𝜈𝜈, and we have 𝑀𝑀
→

𝒟𝒟 ∈
ℛ(𝜈𝜈). This gives us the inclusion ℛ(𝜇𝜇) ⊆ ℛ(𝜈𝜈); by symmetry, the reverse inclusion is also true, and 
we conclude that 𝜇𝜇 ∼ℛ 𝜈𝜈. 

That the point hulls of 𝑋𝑋
→

𝒟𝒟 form a partition into subcompacta and coincide with the ℛ -
classes is now immediate. The point hulls are nowhere dense because they are closed, and coincide 
with the ℛ -classes (which have empty interior). 𝑋𝑋

→
𝒟𝒟
ℛ is a 𝖳𝖳1 space because point pre-images under 

the regularization map are closed; and the last assertion follows from the fact that 𝑅𝑅(𝜇𝜇) =
{𝜇𝜇} whenever 𝜇𝜇 is a regular point.  □ 

Proposition 7.6 
Any semiregular subcontinuum of 𝑋𝑋

→
𝒟𝒟 is ℛ -saturated. 

Proof 
Suppose 𝐾𝐾 is a semiregular subcontinuum, with 𝜇𝜇 ∈ 𝐾𝐾. If 𝜈𝜈 ∈ 𝑋𝑋

→
𝒟𝒟 ∖ 𝐾𝐾, then Theorem 3.2gives us a 

regular subcontinuum containing 𝐾𝐾 and missing 𝜈𝜈. Thus 𝜈𝜈 ≁ℛ 𝜇𝜇.  □ 

Corollary 7.7 
Suppose 𝑛𝑛 ≥ 1 is finite and each continuum 𝑋𝑋𝑖𝑖  is n-SLC. Then every semiregular 

subcontinuum of 𝑋𝑋
→

𝒟𝒟 is a union of point hulls. 

Proof 
Add Theorem 7.5 to Proposition 7.6.  □ 

Corollary 7.8 
Let 𝑋𝑋 be locally connected. Then the point pre-images under the codiagonal map 𝑝𝑝𝒟𝒟: 𝑋𝑋𝒟𝒟 → 𝑋𝑋 

are ℛ -saturated, and there is a unique continuous surjection 𝑓𝑓: 𝑋𝑋𝒟𝒟
ℛ → 𝑋𝑋 such that 𝑓𝑓 ∘ 𝑟𝑟𝒟𝒟 = 𝑝𝑝𝒟𝒟 

(i.e., 𝑝𝑝𝒟𝒟 factors through 𝑟𝑟𝒟𝒟). If, in addition, 𝑋𝑋 is n-SLC for some finite 𝑛𝑛 ≥ 1, then the point pre-
images of 𝑝𝑝𝒟𝒟 are unions of point hulls. 

Proof 
By Lemma 3.13, 𝑝𝑝𝒟𝒟 is monotone; hence each point pre-image is a semiregular 

subcontinuum of 𝑋𝑋𝒟𝒟. Now apply Proposition 7.6. For the additional assertion, use Corollary 7.7.  □ 

Remark 7.9 
Still weaker than aposyndesis for a continuum (see [11, Theorem 3.2]) is 

being antisymmetric. This means that for any triple 〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉 of points with 𝑏𝑏 ≠ 𝑐𝑐, there is a 

subcontinuum containing a and exactly one of {𝑏𝑏, 𝑐𝑐}. If 𝑋𝑋
→

𝒟𝒟 contains a nondegenerate ℛ -class 𝑅𝑅, 
let 〈𝑎𝑎, 𝑏𝑏, 𝑐𝑐〉 be chosen so that 𝑎𝑎 is regular and 𝑏𝑏 ≠ 𝑐𝑐 are both in 𝑅𝑅. Then any subcontinuum 
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containing 𝑎𝑎 and intersecting {𝑏𝑏, 𝑐𝑐} must contain 𝑅𝑅, by Proposition 7.6. Thus an ultracoproduct 
continuum cannot be antisymmetric unless its ℛ -equivalence relation coincides with equality. 

We now specify conditions sufficient for regularized ultracoproducts to be Hausdorff 
spaces. 

Theorem 7.10 
Suppose 𝑛𝑛 ≥ 1 is finite and each continuum 𝑋𝑋𝑖𝑖  is n-SLC and locally connected. Then 𝑋𝑋

→
𝒟𝒟
ℛ is a 

continuum. 

Proof 
The Hausdorff condition for 𝑋𝑋

→
𝒟𝒟
ℛ is equivalent to the condition that the partition of 𝑋𝑋

→
𝒟𝒟 into ℛ 

-classes is upper semicontinuous. 

Fix point hull 𝑅𝑅 and open set 𝑈𝑈 ⊆ 𝑋𝑋
→

𝒟𝒟 such that 𝑅𝑅 ⊆ 𝑈𝑈. We need to find an open set 𝑉𝑉 ⊆ 𝑈𝑈 
such that 𝑅𝑅 ⊆ 𝑉𝑉, and 𝑆𝑆 ⊆ 𝑈𝑈 for any point hull 𝑆𝑆 that intersects 𝑉𝑉. Because of n-semilocal 
connectedness on the part of each constituent 𝑋𝑋𝑖𝑖 , the point hulls coincide with the ℛ -classes 
(Theorem 7.5), and hence constitute a partition of 𝑋𝑋

→
𝒟𝒟. 

By the definition of point hull, and the fact that point hulls are compact, there is a regular 
subcontinuum 𝐾𝐾

→
𝒟𝒟 with 𝑅𝑅 ⊆ 𝐾𝐾

→
𝒟𝒟 ⊆ 𝑈𝑈. And because 𝐾𝐾

→
𝒟𝒟 is compact, there is an I-sequence 𝑊𝑊

→
 of open 

subsets such that 𝐾𝐾
→

𝒟𝒟 ⊆ (𝑊𝑊
→

𝒟𝒟)♯ ⊆ 𝑈𝑈. Without loss of generality, we may assume 𝐾𝐾𝑖𝑖 ⊆ 𝑊𝑊𝑖𝑖  for each 𝑖𝑖 ∈
𝐼𝐼. Because every 𝑋𝑋𝑖𝑖  is locally connected, we may find a connected open set 𝑉𝑉𝑖𝑖 such that 𝐾𝐾𝑖𝑖 ⊆ 𝑉𝑉𝑖𝑖 ⊆
cl𝑋𝑋𝑖𝑖(𝑉𝑉𝑖𝑖) ⊆ 𝑊𝑊𝑖𝑖. Let 𝑉𝑉 = (𝑉𝑉

→
𝒟𝒟)♯. If 𝑆𝑆 is any point hull intersecting 𝑉𝑉, then it intersects the regular 

subcontinuum � cl𝑋𝑋𝑖𝑖(𝑉𝑉𝑖𝑖) 
𝒟𝒟

as well. By Corollary 7.7, 𝑆𝑆 is contained in � cl𝑋𝑋𝑖𝑖(𝑉𝑉𝑖𝑖),
𝒟𝒟

and hence in 𝑈𝑈.  

□ 

We end this article with a partial answer to the question of when 𝑋𝑋
→

𝒟𝒟 is guaranteed to have 
at least some nondegenerate ℛ -classes (and therefore nondegenerate point hulls). Toward that 
goal, we prove the following generalization of [18, Proposition 2.12] (attributed to 
Mioduszewski22). 

Proposition 7.11 
Let 𝒟𝒟 be a countably incomplete ultrafilter, with 𝑋𝑋

→
 an 𝐼𝐼-sequence of generalized arcs. Then 

not all ℛ -classes of 𝑋𝑋
→

𝒟𝒟 are degenerate. 

Proof 
By Theorem 7.5, the ℛ -classes and the point hulls of generalized arcs are one and the same. 

For each 𝑖𝑖 ∈ 𝐼𝐼, let 𝑋𝑋𝑖𝑖  be totally ordered by <𝑖𝑖, with < the ultraproduct order ∏𝒟𝒟 <𝑖𝑖 . As 
mentioned earlier, < gives rise to the ultraproduct topology on 𝑋𝑋

→
𝒟𝒟 . 

In 𝑋𝑋
→

𝒟𝒟 , let 𝐴𝐴 be a countably infinite discrete subset, ordered as a strictly <-increasing 𝜔𝜔-
sequence. It is known that an ultracoproduct of compacta via a countably incomplete ultrafilter is 
an F-space (see [4, Proposition 6.2]), and any countable subset of an 𝐹𝐹-space is 𝐶𝐶� -embedded 
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(see [26, Proposition 1.6.4]). Hence the closure 𝐴𝐴‾: = cl
𝑋𝑋
→

𝒟𝒟
(𝐴𝐴) contains a copy of 𝛽𝛽(𝜔𝜔); in 

particular 𝐴𝐴‾ ∖ 𝐴𝐴 is uncountable. 

Let 𝐵𝐵 consist of all <-upper bounds of 𝐴𝐴 in 𝑋𝑋
→

𝒟𝒟 . For each 𝑎𝑎
→

𝒟𝒟 ∈ 𝐴𝐴 and 𝑏𝑏
→

𝒟𝒟 ∈ 𝐵𝐵, it is clear 
that 𝐴𝐴‾ ⊆ 𝐴𝐴 ∪ [𝑎𝑎

→
𝒟𝒟, 𝑏𝑏

→
𝒟𝒟]; hence if 𝜇𝜇 ∈ 𝐴𝐴‾ ∖ 𝐴𝐴, then [𝑎𝑎

→
𝒟𝒟, 𝑏𝑏

→
𝒟𝒟] ∈ ℛ(𝜇𝜇) (see Corollary 3.5). Every member 

of ℛ(𝜇𝜇) is an interval of the form [𝑥𝑥
→

𝒟𝒟 , 𝑦𝑦
→

𝒟𝒟]; thus we have 𝑦𝑦
→

𝒟𝒟 ∈ 𝐵𝐵 and 𝑥𝑥
→

𝒟𝒟 < 𝑎𝑎
→

𝒟𝒟 for some 𝑎𝑎
→

𝒟𝒟 ∈ 𝐴𝐴; 
so 𝑅𝑅(𝜇𝜇) = ⋂{[𝑎𝑎

→
𝒟𝒟, 𝑏𝑏

→
𝒟𝒟]: 𝑎𝑎

→
𝒟𝒟 ∈ 𝐴𝐴, 𝑏𝑏

→
𝒟𝒟 ∈ 𝐵𝐵} and contains 𝐴𝐴‾ ∖ 𝐴𝐴.  □ 

Theorem 7.12 
Let 𝑛𝑛 ≥ 1 be finite, with 𝑋𝑋

→
 an 𝐼𝐼-sequence of hereditarily n-coherent continua, each of which 

contains a generalized arc. If 𝒟𝒟 is a countably incomplete ultrafilter on 𝐼𝐼, then not all ℛ -classes of 
𝑋𝑋
→

𝒟𝒟 are degenerate. 

Proof 
For each 𝑖𝑖 ∈ 𝐼𝐼, let 𝐴𝐴𝑖𝑖 ⊆ 𝑋𝑋𝑖𝑖 be a generalized arc, with 𝐴𝐴

→
𝒟𝒟 the associated “generalized ultra-

arc.” By Proposition 7.11 there are distinct points 𝜇𝜇, 𝜈𝜈 ∈ 𝐴𝐴
→

𝒟𝒟, where 𝜇𝜇 and 𝜈𝜈 are ℛ-equivalent, 
relative to 𝐴𝐴

→
𝒟𝒟. By symmetry, it suffices to show that ℛ(𝜇𝜇) ⊆ ℛ(𝜈𝜈). 

So let 𝑀𝑀
→

𝒟𝒟 ∈ 𝜇𝜇 be a subcontinuum ultraproduct. We are done once we show 𝑀𝑀
→

𝒟𝒟 ∈ 𝜈𝜈. By 
assumption, we also have 𝐴𝐴

→
𝒟𝒟 ∈ 𝜇𝜇; so using n-coherence in each coordinate 𝑋𝑋𝑖𝑖 , we argue as in the 

proof of Theorem 3.10 to obtain some 1 ≤ 𝑚𝑚 ≤ 𝑛𝑛 such that for 𝒟𝒟-almost every 𝑖𝑖 ∈ 𝐼𝐼, 𝑀𝑀𝑖𝑖 ∩ 𝐴𝐴𝑖𝑖 =
𝑃𝑃𝑖𝑖,1 ∪ ⋯ ∪ 𝑃𝑃𝑖𝑖,𝑚𝑚, where each 𝑃𝑃𝑖𝑖,𝑗𝑗 is a subcontinuum of 𝑋𝑋𝑖𝑖 . Thus 𝑀𝑀

→
𝒟𝒟 ∩ 𝐴𝐴

→
𝒟𝒟 = �1≤𝑗𝑗≤𝑚𝑚 � 𝑃𝑃𝑖𝑖,𝑗𝑗

𝒟𝒟
. And 

since 𝜇𝜇 is a prime filter, we have � 𝑃𝑃𝑖𝑖,𝑘𝑘 ∈ 𝜇𝜇 𝒟𝒟 for some 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚. But 𝜇𝜇 and 𝜈𝜈 are ℛ-equivalent 

relative to 𝐴𝐴; hence � 𝑃𝑃𝑖𝑖,𝑘𝑘 ∈ 𝜈𝜈𝒟𝒟 . Since 𝑃𝑃𝑖𝑖,𝑘𝑘 ⊆ 𝑀𝑀𝑖𝑖 for each 𝑖𝑖 ∈ 𝐼𝐼, we have 𝑀𝑀
→

𝒟𝒟 ∈ 𝜈𝜈, completing the 
proof.  □ 

As is well known [24, Theorem 8.23], any nondegenerate metrizable locally connected 
continuum contains plenty of arcs. 

Corollary 7.13 
Let 𝑛𝑛 ≥ 1 be finite. Using a countably incomplete ultrafilter, an ultracoproduct of 

nondegenerate hereditarily n-coherent locally connected metrizable continua has nondegenerate 
ℛ-classes, and hence fails to be antisymmetric. 

To summarize the results of Theorem 3.10, Theorem 7.5, Theorem 7.10, along 
with Corollary 7.13, we have the following. 

Corollary 7.14 
Let n≥1 be finite, with 𝑋𝑋

→
 an 𝐼𝐼-sequence of locally connected continua which are n-SLC and 

hereditarily n-coherent. If 𝒟𝒟 is an ultrafilter on 𝐼𝐼, then the point hulls (i.e., the ℛ-classes) form an 
upper semicontinuous partition of 𝑋𝑋

→
𝒟𝒟 into nowhere dense subcontinua. If each 𝑋𝑋𝑖𝑖  is also metrizable 

and 𝒟𝒟 is countably incomplete, then some ℛ-classes are nondegenerate, and the ultracoproduct is 
not antisymmetric. 
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Question 7.15 
What makes the partition of 𝑋𝑋

→
𝒟𝒟 into ℛ-classes more (or less) like that for an ultra-arc? (For 

example—see [18]—the layers of an ultra-arc are indecomposable subcontinua. They are 
also terminal, in the sense that any subcontinuum intersecting a layer either contains the layer or is 
contained within it.) 
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