
Marquette University
e-Publications@Marquette
Mechanical Engineering Faculty Research and
Publications Mechanical Engineering, Department of

1-24-2005

A Mass-Spring-Damper Model of a Bouncing Ball
(Conference proceeding)
Mark L. Nagurka
Marquette University, mark.nagurka@marquette.edu

Shuguang Huang
Marquette University, shuguang.huang@marquette.edu

Accepted version. Proceedings of the 2004 American Control Conference, (2004): 499-504. DOI. ©
2018 IEEE. Used with permission.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by epublications@Marquette

https://core.ac.uk/display/213088061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.marquette.edu
https://epublications.marquette.edu/mechengin_fac
https://epublications.marquette.edu/mechengin_fac
https://epublications.marquette.edu/mechengin
https://doi.org/10.23919/ACC.2004.1383652


 

Marquette University 

e-Publications@Marquette 
 

Faculty Research and Publications/Department 
 

This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The 
published version may be accessed by following the link in the citation below. 

 

Proceedings of the 2004 American Control Conference, (2004): 499-504. DOI. This article is © Institute 
of Electrical and Electrical Engineers (IEEE) and permission has been granted for this version to appear 
in e-Publications@Marquette. Institute of Electrical and Electrical Engineers (IEEE) does not grant 
permission for this article to be further copied/distributed or hosted elsewhere without the express 
permission from Institute of Electrical and Electrical Engineers (IEEE).  

A mass-spring-damper model of a bouncing 
ball 
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Shuguang Huang  
Department of Mechanical & Industrial Engineering, Marquette Univ., Milwaukee, WI 

Abstract:  
The mechanical properties of a vertically dropped ball, represented by an equivalent mass-spring-
damper model, are related to the coefficient of restitution and the time of contact of the ball during 
one bounce with the impacting surface. In addition, it is shown that the coefficient of restitution and 
contact time of a single bounce are related to the total number of bounces and the total time elapsing 
between dropping the ball and the ball coming to rest. For a ball with significant bounce, approximate 
expressions for model parameters, i.e., stiffness and damping or equivalently natural frequency and 
damping ratio, are developed. Experimentally based results for a bouncing pingpong ball are 
presented.  
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SECTION 1. Introduction 

The bouncing behavior of a dropped ball is a classic problem studied in depth.1–2,3,4,5 The topic is treated in 
virtually all textbooks of physics and dynamics that address the subject of impact. These books also present, 
but in a separate section, the concept of mass, stiffness, and damping as the three elemental properties of 
a mechanical system. To the authors' knowledge, the textbooks and references do not make a connection 
between the mechanical “primitives” of mass, stiffness and damping and the coefficient of restitution, a 
measure of rebound behavior in a collision. This paper develops this connection for a particular system, 
namely, a bouncing ball represented by a linear mass-spring-damper model. It is shown that the properties 
of the ball model can be related to the coefficient of restitution and bounce contact time. Furthermore, for 
the dropped ball problem it is shown that the total number of bounces and the total bounce time, two 
parameters that are readily available experimentally, can be related to the stiffness and damping. The 
analytical findings are tested to predict model properties of a ping-pong ball. 

SECTION II. Mass-Spring-Damper Model 

To study the behavior of a vertically dropped ball, consider the model illustrated in Figure 1, where the ball 
is represented by its mass 𝑚𝑚, viscous damping 𝑐𝑐, and linear stiffness 𝑘𝑘. When the ball is not in contact with 
the ground, the equation of motion, assuming no aerodynamic drag, can be written simply as  

𝑚𝑚�̈�𝑥 = −𝑚𝑚𝑚𝑚, (1)  

where 𝑥𝑥 is measured vertically up to the ball's center of mass with 𝑥𝑥 = 0 corresponding to initial contact, 
i.e., when the ball just contacts the ground with no deformation. The initial conditions are 𝑥𝑥(0) = ℎ0 and 
�̇�𝑥(0) = 0 for a ball released from rest from height ℎ0. The solution of this simple problem appears in 
physics and mechanics textbooks, leading to the classical results of vertical projectile motion.  

 

Fig. 1. A mass-spring-damper model of a ball showing phases in impact at first bounce. 

When the ball is in contact with the ground, deformation and restitution occur. The equation of motion is 
then, 

𝑚𝑚�̈�𝑥 + 𝑐𝑐�̇�𝑥 + 𝑘𝑘𝑥𝑥 = −𝑚𝑚𝑚𝑚 (2)  

with the initial conditions of 𝑥𝑥(0) = 0 and �̇�𝑥(0) = −𝑣𝑣0 where 𝑣𝑣0 is the velocity of the ball just prior to 
contact with the ground. Integrating eq. (2) gives  

𝑥𝑥 = �𝑐𝑐𝑐𝑐−2𝑘𝑘𝑣𝑣0
2𝑘𝑘𝜔𝜔𝑑𝑑

sin 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝑚𝑚𝑐𝑐
𝑘𝑘

cos 𝜔𝜔𝑑𝑑𝑡𝑡� ×

exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� − 𝑚𝑚𝑐𝑐
𝑘𝑘

  (3) 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9503/30142/1383652/1383652-fig-1-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9503/30142/1383652/1383652-fig-1-source-large.gif
https://ieeexplore.ieee.org/document/1383652/authors#deqn2


where the damped natural frequency, 𝜔𝜔𝑑𝑑, is  

𝜔𝜔𝑑𝑑 = 1
2𝑚𝑚

√4𝑘𝑘𝑚𝑚 − 𝑐𝑐2.  (4) 

Equation (3) gives the motion of the ball during contact with the ground and applies only when 𝑥𝑥 ≤ 0.  
Bounce behavior, involving deformation, restitution, and then rebound, requires an underdamped solution 
for which 𝜔𝜔𝑑𝑑 > 0 or (4𝑘𝑘𝑚𝑚 − 𝑐𝑐2) > 0. 

The “steady” or rest solution, applying after the bounces have died out, can be obtained by setting 𝑡𝑡 →
∞ in eq. (3). The equilibrium position is  

𝑥𝑥∗ = −𝑚𝑚𝑐𝑐
𝑘𝑘

,   (5) 

and when |𝑥𝑥| ≤ |𝑥𝑥∗| there will be no further bounces. It follows that the number of bounces is finite. 

A. Time of Contact 

The time of contact, ∆𝑇𝑇, for the first bounce, shown in exaggerated view in Figure 2, is the time from when 
the ball reaches 𝑥𝑥 = 0 after being dropped to the time it first comes back to 𝑥𝑥 = 0. Mathematically, the 
contact time is the first finite solution of the equation 𝑥𝑥(∆𝑇𝑇) = 0, i.e., it is the minimum non-zero solution 
of 

�𝑐𝑐𝑐𝑐−2𝑘𝑘𝑣𝑣0
2𝑘𝑘𝜔𝜔𝑑𝑑

sin (𝜔𝜔𝑑𝑑∆𝑇𝑇) + 𝑚𝑚𝑐𝑐
𝑘𝑘

cos (𝜔𝜔𝑑𝑑∆𝑇𝑇)� ×

exp �− 𝑐𝑐∆𝑇𝑇
2𝑚𝑚
� − 𝑚𝑚𝑐𝑐

𝑘𝑘
= 0,

 (6) 

which in general has multiple solutions.  

 

Fig. 2. Height versus time and exaggerated view at first bounce. 

Although eq. (6) is difficult to solve analytically, it can be solved numerically. Alternatively, an approximate 
solution can be obtained. Start by writing eq. (3) in the rearranged form, 

𝑥𝑥 = − 𝑣𝑣0
𝜔𝜔𝑑𝑑

exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� sin 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝑚𝑚𝑐𝑐
𝑘𝑘

×

�exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� �cos 𝜔𝜔𝑑𝑑𝑡𝑡 + 𝑐𝑐
2𝑚𝑚𝜔𝜔

sin 𝜔𝜔𝑑𝑑𝑡𝑡� − 1� .
  (7) 

Assuming 𝑚𝑚𝑐𝑐
𝑘𝑘
≪ 1, which is reasonable for a bouncing ball such as a ping-pong ball, the second term on the 

righthand side in (7) can be neglected and 𝑥𝑥  can be approximated as  

https://ieeexplore.ieee.org/document/1383652/authors#deqn3
https://ieeexplore.ieee.org/document/1383652/authors#deqn3
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9503/30142/1383652/1383652-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9503/30142/1383652/1383652-fig-2-source-large.gif
https://ieeexplore.ieee.org/document/1383652/authors#deqn6
https://ieeexplore.ieee.org/document/1383652/authors#deqn3
https://ieeexplore.ieee.org/document/1383652/authors#deqn7


𝑥𝑥 = − 𝑣𝑣0
𝜔𝜔𝑑𝑑

exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� sin 𝜔𝜔𝑑𝑑𝑡𝑡. (8)  

The contact time, ∆𝑇𝑇, can be found as the minimum nonzero solution of eq. (8) set equal to zero giving  

∆𝑇𝑇 = 𝜋𝜋
𝜔𝜔𝑑𝑑

, (9)  

where 𝜔𝜔𝑑𝑑 is specified by eq. (4). Equation (9) represents an approximate solution for the contact time at 
the first bounce. 

B. Stiffness and Damping 

The ball properties, 𝑘𝑘 and 𝑐𝑐, can be determined from the contact time, ∆𝑇𝑇, and the coefficient of 
restitution, 𝑒𝑒, where  

𝑒𝑒 = ��̇�𝑥(∆𝑇𝑇)
�̇�𝑥(0)

� . (10) 

The denominator of eq. (10) is simply the velocity of the ball prior to contact, 𝑣𝑣0, and the numerator is the 
rebound or post-impact velocity of the ball, 𝑣𝑣1. The latter can be found by differentiating eq. (7) and 
imposing the assumption 𝑚𝑚𝑐𝑐

𝑘𝑘
≪ 1 or alternatively differentiating eq. (8) directly to give an expression for the 

velocity, 

�̇�𝑥 = 𝑐𝑐𝑣𝑣0
2𝑚𝑚𝜔𝜔𝑑𝑑

exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� sin 𝜔𝜔𝑑𝑑𝑡𝑡

−𝑣𝑣0exp �− 𝑐𝑐
2𝑚𝑚

𝑡𝑡� cos 𝜔𝜔𝑑𝑑𝑡𝑡,
(11)  

and then substituting 𝑡𝑡 = ∆𝑇𝑇 with eq. (9) to give the rebound velocity, 

𝑣𝑣1 = �̇�𝑥(∆𝑇𝑇) = 𝑣𝑣0exp �− 𝑐𝑐𝜋𝜋
2𝑚𝑚𝜔𝜔𝑑𝑑

� . (12) 

Thus, from eq. (10), the coefficient of restitution can be written simply as  

𝑒𝑒 = exp �− 𝑐𝑐𝜋𝜋
2𝑚𝑚𝜔𝜔𝑑𝑑

� . (13) 

By manipulating eqs. (4), (9), and (13), the stiffness and viscous damping can be written, respectively, as, 

𝑘𝑘 = 𝑚𝑚
(∆𝑇𝑇)2

[𝜋𝜋2 + (ln 𝑒𝑒)2] (14) 

𝑐𝑐 = −2𝑚𝑚
∆𝑇𝑇

ln 𝑒𝑒. (15)  

Assuming 𝑘𝑘, 𝑐𝑐 and 𝑒𝑒 are constant (independent of the velocity 𝑣𝑣0 ), ∆𝑇𝑇 will be constant for each contact 
since 𝜔𝜔𝑑𝑑 depends only on the system parameters 𝑘𝑘, 𝑐𝑐 and 𝑚𝑚. 

https://ieeexplore.ieee.org/document/1383652/authors#deqn8
https://ieeexplore.ieee.org/document/1383652/authors#deqn4
https://ieeexplore.ieee.org/document/1383652/authors#deqn9
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https://ieeexplore.ieee.org/document/1383652/authors#deqn10
https://ieeexplore.ieee.org/document/1383652/authors#deqn4
https://ieeexplore.ieee.org/document/1383652/authors#deqn9
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C. Natural Frequency and Damping Ratio 

The undamped natural frequency, 𝜔𝜔𝑛𝑛 = �𝑘𝑘/𝑚𝑚, can be expressed from eq. (14) as  

𝜔𝜔𝑛𝑛 = 1
∆𝑇𝑇
�[𝜋𝜋2 + (ln 𝑒𝑒)2]   (16)  

The damping ratio, 𝜁𝜁,  

𝜁𝜁 = �1 −
𝜔𝜔𝑑𝑑
2

𝜔𝜔𝑛𝑛2
=

𝑐𝑐
2√𝑘𝑘𝑚𝑚

 

can be found by substituting eqs. (14) and (15) giving  

𝜁𝜁 = − ln𝑒𝑒
�𝜋𝜋2+(ln 𝑒𝑒)2  (17) 

Eq. (17) indicates that the damping ratio depends solely on the coefficient of restitution. 

D. Coefficient of Restitution and Time of Contact 

For a given ball, the mass 𝑚𝑚 is readily available whereas the parameters 𝑘𝑘 and 𝑐𝑐 or, alternatively, 𝜔𝜔𝑛𝑛 and 
𝜁𝜁 are generally unknown. From ∆𝑇𝑇  and 𝑒𝑒, which are also unknown (but can be found experimentally), 𝑘𝑘 
and 𝑐𝑐 can be determined from eqs. (14) and (15), or 𝜔𝜔𝑛𝑛 and 𝜁𝜁 can be determined from eqs. (16) and (17). 

The total number of bounces of the ball, 𝑛𝑛, and the total time, 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , that elapses from when the ball is 
dropped until it comes to rest are two parameters that can be determined readily in an experiment. They 
are indicated in the bounce history diagram of Figure 3. In the following, it is shown that with 𝑛𝑛 and 
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  assumed known, ∆𝑇𝑇 and 𝑒𝑒, and thus 𝑘𝑘 and 𝑐𝑐, can be determined under the assumption of constant 
∆𝑇𝑇 and 𝑒𝑒 for all bounces and neglecting aerodynamic drag.  

 

Fig. 3. Bounce history showing height versus time. 

For the 𝑖𝑖-th bounce, the height the ball can reach is  

ℎ𝑖𝑖 = 𝑒𝑒2𝑖𝑖ℎ0 (18) 

where ℎ0 is the height when the ball is dropped since 𝑣𝑣𝑖𝑖 = 𝑒𝑒𝑣𝑣𝑖𝑖−1 = 𝑒𝑒𝑖𝑖𝑣𝑣0 and 𝑣𝑣𝑖𝑖 = �2𝑚𝑚ℎ𝑖𝑖. For the ball 
to come to rest, 

https://ieeexplore.ieee.org/document/1383652/authors#deqn14-15
https://ieeexplore.ieee.org/document/1383652/authors#deqn14-15
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ℎ𝑛𝑛 = 𝑒𝑒2𝑛𝑛ℎ0 ≤
𝑚𝑚𝑐𝑐
𝑘𝑘    (19) 

where the upper limit is given by the equilibrium position of (5). Substituting eq. (14) into the equality of 
(19) and rearranging gives an expression for the contact time, ∆𝑇𝑇, in terms of unknown 𝑒𝑒: 

∆𝑇𝑇 = 𝑒𝑒𝑛𝑛�ℎ0
𝑐𝑐

[𝜋𝜋2 + (ln 𝑒𝑒)2]  (20)  

The total time is the sum of the total flight time, 𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐ℎ𝑡𝑡, and the total contact time, 𝑇𝑇𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡,  

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐ℎ𝑡𝑡 + 𝑇𝑇𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡   (21) 

where  

𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐ℎ𝑡𝑡 = 1
2
𝑇𝑇0 + ∑ 𝑇𝑇𝑖𝑖𝑛𝑛

𝑖𝑖=1  (22)  

and  

𝑇𝑇𝑐𝑐𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑐𝑐𝑡𝑡 = 𝑛𝑛∆𝑇𝑇 (23)  

assuming the contact times at the bounces are identical. Noting that the flight time for the 𝑖𝑖th bounce can 
be written as 𝑇𝑇𝑖𝑖 = 𝑒𝑒𝑇𝑇𝑖𝑖−1 for 𝑖𝑖 ≥ 2 and 𝑇𝑇1 = 𝑒𝑒𝑇𝑇0, the total flight time for the number of bounces 𝑛𝑛 can 
be calculated using eq. (22): 

𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐ℎ𝑡𝑡 =
1
2
𝑇𝑇0 + 𝑇𝑇1 + ⋯+ 𝑇𝑇𝑛𝑛

=
1
2
𝑇𝑇0 + 𝑇𝑇1(1 + 𝑒𝑒 + ⋯+ 𝑒𝑒𝑛𝑛−1)

=
1
2
𝑇𝑇0 + 𝑇𝑇0𝑒𝑒 �

1 − 𝑒𝑒𝑛𝑛−1

1 − 𝑒𝑒
�

=
1
2
𝑇𝑇0 �

1 + 𝑒𝑒 − 2𝑒𝑒𝑛𝑛

1 − 𝑒𝑒
� .

 

 

Since 𝑇𝑇0 = 2�2ℎ0
𝑐𝑐

, the total flight time for the number of bounces 𝑛𝑛 can be expressed as, 

𝑇𝑇𝑓𝑓𝑡𝑡𝑖𝑖𝑐𝑐ℎ𝑡𝑡 = �2ℎ0
𝑐𝑐
�1+𝑒𝑒−2𝑒𝑒

𝑛𝑛

1−𝑒𝑒
� . (24)  

Substituting eqs. (20), (23), and (24) into (21) gives  

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �ℎ0
𝑐𝑐

×

�√2 �1+𝑒𝑒−2𝑒𝑒
𝑛𝑛

1−𝑒𝑒
� + 𝑛𝑛𝑒𝑒𝑛𝑛�𝜋𝜋2 + (ln 𝑒𝑒)2� .

 (25)  
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Eq.(25) can be viewed as a single equation for unknown 𝑒𝑒 in terms of 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑛𝑛, and ℎ0 . The latter three 
quantities can readily be determined experimentally. 

E. Approximations 

It is possible to develop simplified approximate relationships for the case of |(ln 𝑒𝑒)/𝜋𝜋| ≪ 1, which for a 
ratio of 0.1 or smaller corresponds to 0.73 < 𝑒𝑒 < 1. This case would be representative of a ball with 
significant bounce, such as a ping-pong ball. 

For this case, eq. (14) can be approximated as  

𝑘𝑘 ≅ 𝑚𝑚� 𝜋𝜋
∆𝑇𝑇
�
2

, (26)  

which itself is an approximation of eq. (9),  

∆𝑇𝑇 ≅ 𝜋𝜋
𝜔𝜔𝑛𝑛

,  (27)  

i.e., the contact time at a single bounce is simply 𝜋𝜋 times the inverse of the undamped natural frequency. 
The contact time can also be approximated, from eq. (20), as  

∆𝑇𝑇 ≅ 𝑒𝑒𝑛𝑛𝜋𝜋�ℎ0
𝑐𝑐

.  (28) 

From eq. (17), it is also possible to write the damping ratio for the case of higher values of e as  

𝜁𝜁 ≅ − ln𝑒𝑒
𝜋𝜋

 (29)  

providing a simple direct connection between the damping ratio and the coefficient of restitution. 

Simplification of eq. (25) gives  

𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≅ �2ℎ0
𝑐𝑐
�1+𝑒𝑒
1−𝑒𝑒

�  (30) 

for larger 𝑛𝑛 and 𝑒𝑒. Eq. (30) does not depend on 𝑛𝑛, and can be rearranged to find a simple equation for 𝑒𝑒  in 
terms of 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . 

SECTION III. Numerical and Experimental Studies 

A ping-pong ball (Harvard, one-star) was dropped from rest from a measured initial height of 30.5 cm onto 
a (butcher-block top) laboratory bench. The acoustic signals accompanying the ball-table impacts were 
recorded using a microphone attached to the sound card of a PC. The method follows the procedure 
described in. 6 

From the temporal history of the bounce sounds of successive impacts, the total number of bounces was 
determined to be 𝑛𝑛 = 70 and the total bounce time was determined to be 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 7.5 s . 
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The mass of the ball used in the experiment was measured to be 𝑚𝑚 = 2.50g. (The ball used was an older 
official ball. The rules of the International Table Tennis Federation were changed in September 2000 and 
now mandate a 2.7 g ball.) 

In addition to the acoustic measurement, a high-speed digital video (using a Redlake Imaging MotionScope) 
was taken. 

A. Predicted Coefficient of Restitution 

The coefficient of restitution can be found from eq. (25) given known initial height ℎ0, total time 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 
and number of bounces, 𝑛𝑛. The relationship is shown in Figure 4 for the case of ℎ0 = 30.5 cm and 
indicates that the total time is not significantly dependent on the number of bounces, especially for a large 
number of bounces.  

 

Fig. 4. Total time as a function of number of bounces and coefficient of restitution from eq. (25) for a drop height of 30.5 
cm. 

Figure 4 provides a means to identify by inspection the coefficient of restitution. In particular, for 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
7.5 𝑠𝑠 and 𝑛𝑛 = 70, the coefficient of restitution is 𝑒𝑒 = 0.93. This value is slightly higher than that 
determined for 𝑒𝑒 at the first bounce based on pre- and post-impact velocities from the high-speed digital 
video images (i.e., by applying eq. (10)). 

It is also possible to determine the coefficient of restitution from the approximate equation (30). From this 
equation, for 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 7.5s, the coefficient of restitution is e=0.94. 

B. Predicted Contact Time 

The contact time at a single bounce can be found from eq. (20) or the approximation of eq. (28). These 
relations are shown graphically in Figure 5, from which the contact can be determined by inspection given 
the total number of bounces, 𝑛𝑛, and the coefficient of restitution, 𝑒𝑒. For 𝑛𝑛 = 70 and 𝑒𝑒 = 0.93, the 
predicted contact time ∆𝑇𝑇 = 3.4 ms. This value exceeds the contact time of ∆𝑇𝑇 = 1.0 ms for the first 
bounce measured by the high-speed digital video system.  

https://ieeexplore.ieee.org/document/1383652/authors#deqn25
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/9503/30142/1383652/1383652-fig-4-source-large.gif
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Fig. 5. Contact time at a single bounce as a function of number of bounces and coefficient of restitution from eq. (20) and 
from approximation of eq. (28) for a drop height of 30.5 cm. 
 

C. Predicted Stiffness and Damping 

Values of the linear stiffness and the viscous damping coefficient of an equivalent mass-spring-damper 
model of a ball can be determined, 

An expression for the stiffness is given in eq. (14) and in simplified approximate form in eq. (26). Figure 6 
graphically depicts these relationships in terms of 𝑘𝑘/𝑚𝑚 for the range of coefficient of restitution 0.40 ≤
𝑒𝑒 ≤ 0.95 for several values of contact time. The approximate equation (26) provides a highly accurate 
prediction of the result from eq. (14), showing only slight deviation at smaller values of 𝑒𝑒. 

For the case of the ping-pong ball dropped from an initial height of 30.5 cm and with ∆𝑇𝑇 determined to be 
3.4 ms, 𝑘𝑘/𝑚𝑚 = 8.5 × 105s2 and is not a function of 𝑒𝑒. For 𝑚𝑚 = 2.5g. then the stiffness 𝑘𝑘 = 2.1 N/mm 
(or kPa). As indicated above, ∆𝑇𝑇 was measured to be 1.0 ms from the high-speed digital video. With this 
value, 𝑘𝑘/𝑚𝑚 = 1.0 × 107s2 and the stiffness 𝑘𝑘 = 25 N/mm (or kPa).  

 

Fig. 6. Stiffness divided by mass as a function of coefficient of restitution and contact time from eq. (14) and for 
approximation from eq. (26). 

An equation for the damping coefficient 𝑐𝑐 was developed in eq. (15), and is plotted in Figure 7 as 𝑐𝑐/𝑚𝑚 as a 
function of both 𝑒𝑒 and ∆𝑇𝑇, showing clear dependence on both. 

For 𝑒𝑒 = 0.93 and ∆𝑇𝑇 = 3.4 ms, 𝑐𝑐/𝑚𝑚 = 43s−1 and for 𝑚𝑚 = 2.5g then the damping coefficient 𝑐𝑐 =
0.11N ⋅ s/m. For the case of 𝑒𝑒 = 0.93 and ∆𝑇𝑇 = 1.0 ms, 𝑐𝑐/𝑚𝑚 = 145s−1 and 𝑐𝑐 = 0.36N ⋅ s/m. It is 
noted that the equivalent damping is predicated on knowledge of 𝑒𝑒 and the value of the contact time ∆𝑇𝑇.  
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Fig. 7. Damping coefficient divided by mass as a function of coefficient of restitution and contact time from eq. (15). 
 

D. Predicted Natural Frequency and Damping Ratio 

From eq. (16) or the approximation from a rearrangement of eq. (27) it is possible to find the natural 
frequency. For ∆𝑇𝑇 = 3.4 ms and 𝑒𝑒 = 0.93,𝜔𝜔𝑛𝑛 = 920 rad/s or 150 Hz. For the case of ∆𝑇𝑇 = 1.0 ms and 
𝑒𝑒 = 0.93,𝜔𝜔𝑛𝑛 = 3100 rad/s or 500 Hz. 

From eq. (17) or the approximation of eq. (29) it is possible to predict the damping ratio. For 𝑒𝑒 = 0.93, the 
damping ratio 𝜁𝜁 = 0.023. The small value of damping ratio indicates a very lightly underdamped system. 

SECTION IV. Discussion 

The total time from the when the ball is dropped until when it comes to rest is comprised of two phases: 
flight times and contact times. Although the total contact time summed for all bounces is a small fraction of 
the total flight time (3.5 percent for 𝑛𝑛 = 70 and 𝑒𝑒 = 0.93), it is included in the model. 

The analytical development assumes constant mass-spring-damper model parameters, 𝑚𝑚,𝑘𝑘, and 𝑐𝑐, and 
constant coefficient of restitution, 𝑒𝑒. A consequence of assuming that these parameters are constant is that 
the contact time, ∆𝑇𝑇, at each bounce is constant. 

The analysis neglects aerodynamic effects, which occur in reality. By not accounting for aerodynamic drag 
of the ball during flight, the approach gives a higher coefficient of restitution than otherwise would be 
predicted. 

The approach predicts a contact time three times greater than that found by an independent method (3.4 
ms vs 1.0 ms using high-speed digital video). Reconciling this large difference requires further study into the 
errors resulting from the underlying assumptions, namely, neglecting aerodynamic drag and adopting a 
linear, fixed mass-spring-damper model. 

Several observations can be made: (i) the larger the contact time ∆𝑇𝑇, the smaller the stiffness 𝑘𝑘 and the 
larger the damping 𝑐𝑐, (ii) the larger the coefficient of restitution 𝑒𝑒, the smaller the damping 𝑐𝑐, (iii) the 
coefficient of restitution 𝑒𝑒 does not strongly influence the stiffness 𝑘𝑘, (iv) the larger the coefficient of 
restitution 𝑒𝑒, the larger the total time, and (v) the number of bounces 𝑛𝑛 (assuming 𝑛𝑛 > 20) does not 
strongly influence the total time. 
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SECTION V. Closing 

This paper examines relationships bridging linear equivalent model parameters, namely the mass, stiffness, 
and damping of a bouncing ball, with the classical concept of coefficient of restitution and time of contact 
between a ball and a surface. Under the assumption of no aerodynamic drag and constant coefficient of 
restitution for all bounces, the derivation shows that the stiffness and damping, or alternatively the natural 
frequency and damping ratio, can be expressed explicitly in terms of the coefficient of restitution and time 
of contact. The formulation also considers the special case for bouncing balls involving higher values of the 
coefficient of restitution for which simple approximate expressions can be derived for parameters of the 
ball model. The results of an experimental test are used to provide predictions of the equivalent stiffness 
and damping, as well as natural frequency and damping ratio, and coefficient of restitution for a bouncing 
ping-pong ball. 
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