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A New Look at Azimuthal Wave 
Propagation Constants of an n-Layered 
Dielectric Coated PEC Cylinder 
 

Jason V. Paul 
Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-
Patterson AFB 
Peter J. Collins 
Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-
Patterson AFB 
Ronald A. Coutu 
Department of Electrical and Computer Engineering, Air Force Institute of Technology, Wright-
Patterson AFB 

Abstract: 
A method for determining the azimuthal wave propagation constants supported by an n-layered 
dielectric coated PEC cylinder is presented. The method, based on a Green's function described in , is 
designed to optimally handle layered cylinders where the number of layers is extremely large as might 
be encountered in structures designed using transformational optics. The method is also tractable for 
any stratification profile without the need for individual layer analysis. We implement a recently 
developed numerical method to calculate Bessel functions of complex order and argument. Our method 
is verified by comparison with previously published results. We also present new results for a 5-layer 
case demonstrating self consistency and improved accuracy over published methods. Finally, to 
illustrate the method's benefits, we present a brief analysis of two multilayer structures; a multilayer 
variation of the coated cylinder presented in and an example of a 7-layer case that approximates a 
material parameter gradient. 

SECTION I. Introduction 
Waves traveling along a curved surface have been a topic of interest for the past 50+ years.3,4 The study 
of this topic has many applications including the design of conformal antennas and scattering of 
cylinders. Specifically, the research has addressed the case of uncoated cylinders,4,5 single layer coated 
cylinders,6–7,8,9,10,11 double layer coated cylinders2,12 and a multilayered coated cylinder.13 The 
propagation constants of these azimuthal waves can be solved in several ways including the 
determination of the poles of an associated Green's function. 

With the recent research into transformational optics14 and metamaterials, new structures are being 
designed in which the study of azimuthal waves is directly applicable. In 2006, Schurig et al. showed that 
a cloaked cylinder was theoretically possible.15 The literature contains many numerical studies of this 



structure but relatively few analytic studies of the field propagation within the cylindrical layers. Since 
the cloaked cylinder is a dielectric coated cylinder with a material parameter gradient which guide the 
fields around the cylinder ideally without reflection, we can leverage past azimuthal wave research to 
describe the field behavior in this structure. However, to solve for the propagation constants, a method 
is needed for the case of a n-layered cylinder to approximate the cloak coating material parameter 
gradient. 

In,13 a ray-optic based approach implementing asymptotically evaluated Bessel functions was presented 
including the results from a 2-layered geometry. This method is not suitable because it is a technique 
applied to a specific stratification profile and not generalizable. This method also becomes intractable as 
the number of layers gets larger since the analysis quickly becomes unwieldy. This, combined with the 
asymptotic limitations of the ray-optic approach, drive the requirements for a new method that can be 
used to analyze the fields within a cloaked cylinder structure where the material parameter gradient is 
approximated by a large number of layers. 

In this article, we present a Green's function approach to solving for the azimuthal propagation 
constants of an n-layered cylinder which addresses the limitations in current literature. This method 
takes advantage of the recursive boundary conditions much like the method presented in,16 but further 
refines the expressions into compact, tractable forms where the denominator and numerator can be 
solved individually for any of the given coefficients. It should be emphasized we are not developing a 
new Green's function per se. Rather our contribution is the development of new computationally 
efficient forms for systematically analyzing arbitrary layered structures. The method is designed for 
coding in that the expressions are generated by the number of layers and not unique to the layer profile. 
That is, unlike the ray-optic approach of,13 we do not have to perform new analysis for every 
stratification profile. To calculate the possibly complex argument and complex order Bessel functions, 
we use a recently developed low error numerical method.17 Our results are then compared with the 
previously published results of.2,6,12,18 

SECTION II. Preliminaries 
In this section we first present the Green's function and the relevant boundary conditions. Then we 
cover the method of evaluating complex order and complex argument Bessel functions. A time 
dependence of 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 is assumed and suppressed. 

A. n-Layer Coated Cylinder Green's Function 
The Green's function we use is presented in1 and the full derivation can be seen in.19 The relevant 
geometry is shown in Fig. 1 and it is important to note that this Green's function assumes that the 
source and observer will always be outside the stratified media. 

 
Fig. 1. n-layered Dielectric Coated PEC Cylinder Geometry.1 



 

The Green's function is given as (1) 

𝐺𝐺 = − 𝑗𝑗
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where 𝜖𝜖𝜈𝜈   is the Neumann number, 𝐾𝐾𝜈𝜈 = (𝐽𝐽𝜈𝜈′ (𝑘𝑘1𝑎𝑎)/𝐻𝐻𝜈𝜈
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(2)(𝑘𝑘1𝑎𝑎)) for TM incidence. There are n layers in this geometry and the superscript of the 

𝐴𝐴𝑣𝑣1 , 𝐵𝐵𝑣𝑣1  variables denotes the associated ith layer. The 𝐴𝐴𝑣𝑣𝑛𝑛+1,𝐵𝐵𝑣𝑣𝑛𝑛+1 variables correspond with the free 
space region outside of the layered cylinder and  𝐵𝐵𝑣𝑣𝑛𝑛+1 is solved through the coefficients 𝐴𝐴𝑣𝑣1  , 𝐵𝐵𝑣𝑣1  by 
enforcing continuity boundary conditions of the tangential fields at the layer interfaces 

These boundary conditions are 
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for the TE case and 
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for the TM case.20 

In order to solve for 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝐵𝐵𝑣𝑣𝑖𝑖  coefficients, we need to set up the boundary conditions at each interface as 
seen in (6), where ′ denotes the derivative with respect to the argument. This results in a system of 
equations which can be represented as a matrix equation.19 Simply solving for the 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝐵𝐵𝑣𝑣 

𝑖𝑖 coefficients 
through the matrix is not helpful in this effort since we are interested in the behavior of these constants 
as a function of the layer constitutive parameters and thicknesses. Specifically, the poles of these 
coefficient equations contains information on the supported fields. We must algebraically solve the 
matrix for the denominators of 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝐵𝐵𝑣𝑣𝑖𝑖  in a general form so the n-layered case can be solved. This will be 
discussed in Section III  
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B. Calculating Bessel Functions 
In order to investigate the functional dependence of the 𝐴𝐴𝑣𝑣𝑖𝑖 , 𝐵𝐵𝑣𝑣𝑖𝑖  coefficients, we need an efficient 
method to numerically calculate Bessel functions of complex order and argument. Most efforts in the 
literature have relied on asymptotic forms, namely the Debye/Watson2,12 or Olver2,8,18,21 approximations. 
Accurately calculating the Bessel functions is critical when dealing with a stratified media since any error 
will be compounded and become greater as the number of layers increases. We chose to use the 
numerical approach from17 since it is valid everywhere and claims an error of less than 6.24 × 10−14 in 
Wronskian tests. In addition, the algorithm is relatively efficient which is critical to our root finding 
algorithm. 

SECTION III. Solving for Azimuthal Wave Propagation Constants 
Surface waves are created along the coated cylinder when the scattered portion of the Green's function 
encounters a pole and subsequently goes to ∞.22 The order at which this pole occurs is the azimuthal 
propagation constant. The Green's function presented in (1) is made up of two portions, the response 
due to the incident field and the response due to the scattered field (7)  

𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 . (7) 
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The scattered contribution of the Green's function can be written as  
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From (8), it is apparent the poles of the scattered portion of the Green's function are contained in 𝐵𝐵𝑣𝑣𝑛𝑛+1. 
Since 𝐵𝐵𝑣𝑣𝑛𝑛+1can be written in terms of 𝐴𝐴𝑣𝑣1 , we need to find an expression for 𝐴𝐴𝑣𝑣1 . Due to the repetitive 
nature of the boundary conditions in (6), we can get a general expression for 𝐴𝐴𝑣𝑣1  that can be used to 
solve for the propagation constants of any stratification profile. 

To solve for 𝐴𝐴𝑣𝑣1  in (6), we must work from the boundary conditions of the inner layer to those of the 
outer layer until we have a system of 2 equations were 𝐴𝐴𝑣𝑣1  is a function of 𝐵𝐵𝑣𝑣𝑛𝑛+1. This system of 
equations can then be used to solve for an expression for 𝐴𝐴𝑣𝑣1  and therefore an expression to solve for 
the poles. 

To simplify this process, we introduce the following variables which are derived from the boundary 
conditions at the nth layer and free space junction  
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 which allows us to express the boundary conditions of the last layer from (6) in the compact form of 
(10)  
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Next, in (11), we define variables which are derived from boundary conditions for the intermediate 
layers 1 < 𝑖𝑖 < 𝑛𝑛 where 𝑖𝑖 is the index that refers to the intermediate layer under examination  
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𝑋𝑋𝜈𝜈𝑖𝑖 = 𝜋𝜋𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖
𝑗𝑗2𝜅𝜅𝑖𝑖+1

� 𝜅𝜅𝑖𝑖
𝑘𝑘𝑖𝑖+1

𝐻𝐻𝜈𝜈
′(2)(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐻𝐻𝜈𝜈

(2)(𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)

−𝜅𝜅𝑖𝑖+1
𝑘𝑘𝑖𝑖
𝐻𝐻𝜈𝜈

(2)(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐻𝐻𝜈𝜈
′(2)(𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)�

𝑌𝑌𝜈𝜈𝑖𝑖 = 𝜋𝜋𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖
𝑗𝑗2𝜅𝜅𝑖𝑖+1

� 𝜅𝜅𝑖𝑖
𝑘𝑘𝑖𝑖+1

𝐻𝐻𝜈𝜈
(2)(𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)𝐽𝐽𝜈𝜈′ (𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)

−𝜅𝜅𝑖𝑖+1
𝑘𝑘𝑖𝑖
𝐽𝐽𝜈𝜈(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐻𝐻𝜈𝜈

′(2)(𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)�

𝑅𝑅𝜈𝜈𝑖𝑖 = 𝜋𝜋𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖
𝑗𝑗2𝜅𝜅𝑖𝑖+1

�𝜅𝜅𝑖𝑖+1
𝑘𝑘𝑖𝑖
𝐽𝐽𝜈𝜈(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐽𝐽𝜈𝜈′ (𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)

− 𝜅𝜅𝑖𝑖
𝑘𝑘𝑖𝑖+1

𝐽𝐽𝜈𝜈′ (𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐽𝐽𝜈𝜈(𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)�

𝑆𝑆𝜈𝜈𝑖𝑖 = 𝜋𝜋𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖
𝑗𝑗2𝜅𝜅𝑖𝑖+1

�𝜅𝜅𝑖𝑖+1
𝑘𝑘𝑖𝑖
𝐻𝐻𝜈𝜈

(2)(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐽𝐽𝜈𝜈′ (𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖)

− 𝜅𝜅𝑖𝑖
𝑘𝑘𝑖𝑖+1

𝐽𝐽𝜈𝜈(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)𝐻𝐻𝜈𝜈
′(2)(𝑘𝑘𝑖𝑖+1𝜌𝜌𝑖𝑖)� .

 (11) 

This allows us to write the general form of the ith intermediate boundary conditions as (12)  

𝐴𝐴𝜈𝜈𝑖𝑖 = 𝐴𝐴𝜈𝜈𝑖𝑖+1𝑌𝑌𝜈𝜈𝑖𝑖 + 𝐵𝐵𝜈𝜈𝑖𝑖+1𝑋𝑋𝜈𝜈𝑖𝑖

𝐵𝐵𝜈𝜈𝑖𝑖 = 𝐴𝐴𝜈𝜈𝑖𝑖+1𝑅𝑅𝜈𝜈𝑖𝑖 + 𝐵𝐵𝜈𝜈𝑖𝑖+1𝑆𝑆𝜈𝜈𝑖𝑖 .
 (12) 

Finally, we repeat the process to get A1ν from the boundary conditions at the junction between the first 
and second layers and present the variables in (13)–(15)  

𝑧𝑧𝑛𝑛 = 𝑗𝑗2𝜅𝜅1
𝑧𝑧𝑑𝑑 = 𝜋𝜋𝑘𝑘2𝜌𝜌1 �𝜅𝜅2𝐻𝐻𝜈𝜈

(2)(𝑘𝑘2𝜌𝜌1)𝑄𝑄𝜈𝜈

− 𝜅𝜅1
𝑘𝑘2
𝐻𝐻𝜈𝜈
′(2)(𝑘𝑘2𝜌𝜌1)𝑃𝑃𝜈𝜈�

𝑤𝑤𝑛𝑛 = 𝑗𝑗2𝜅𝜅1
𝑤𝑤𝑑𝑑 = 𝜋𝜋𝑘𝑘2𝜌𝜌1 �

𝜅𝜅1
𝑘𝑘2
𝐽𝐽𝜈𝜈′ (𝑘𝑘2𝜌𝜌1)𝑃𝑃𝜈𝜈 − 𝜅𝜅2𝐽𝐽𝜈𝜈(𝑘𝑘2𝜌𝜌1)𝑄𝑄𝜈𝜈�

𝑃𝑃𝜈𝜈 = 𝐽𝐽𝜈𝜈(𝑘𝑘1𝜌𝜌1) − 𝐾𝐾𝜈𝜈𝐻𝐻𝜈𝜈
(2)(𝑘𝑘1𝜌𝜌1)

𝑄𝑄𝜈𝜈 = 1
𝑘𝑘1
�𝐽𝐽𝜈𝜈′ (𝑘𝑘1𝜌𝜌1) − 𝐾𝐾𝜈𝜈𝐻𝐻𝜈𝜈

′(2)(𝑘𝑘1𝜌𝜌1)�

𝑍𝑍 = 𝑧𝑧𝑛𝑛
𝑧𝑧𝑑𝑑

𝑊𝑊 = 𝑤𝑤𝑛𝑛
𝑤𝑤𝑑𝑑

.

 (13),(14),(15) 

 

We can then express a system of equations for A1ν as (16) and (17)  
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𝐴𝐴𝜈𝜈1 = 𝐴𝐴𝜈𝜈2𝑍𝑍
𝐴𝐴𝜈𝜈1 = 𝐵𝐵𝜈𝜈2𝑊𝑊.

 (16),(17) 

It is apparent that while the inner and outer boundary conditions (16) and (17), (10) will not change for a 
given stratification profile of 2 or more layers, the intermediate boundary conditions are dependent 
upon the number of layers. 

In an effort to generate expressions for 𝐴𝐴𝑣𝑣2, 𝐵𝐵𝑣𝑣2 of (16) and (17) for any given stratification profile, we 
leverage the predictability of the cascading intermediate boundary conditions. This can best be seen in 
the tree diagram shown in Fig. 2 which is generated from the intermediate boundary condition 𝐴𝐴𝑣𝑣2 =
 𝐴𝐴𝑣𝑣3𝑌𝑌𝑣𝑣2 +  𝐵𝐵𝑣𝑣3𝑋𝑋𝑣𝑣2 and substituting every subsequent intermediate boundary condition of a 5 layer 
dielectric coated cylinder.  

 

Fig. 2. Substitution tree of a 5 layer dielectric coated cylinder created by solving for 𝐴𝐴𝜈𝜈2 with the intermediate 
boundary conditions. 
 

The variables 𝑇𝑇 and 𝑀𝑀 account for the intermediate boundary conditions and are made of the product 
of the variables along the path from the bottom to the top of the tree. Likewise, a tree generated from 
the boundary condition 𝐵𝐵𝑣𝑣2 =  𝐴𝐴𝑣𝑣3𝑅𝑅𝑣𝑣2 +  𝐵𝐵𝑣𝑣3𝑆𝑆𝑣𝑣2  will generate the variables 𝐿𝐿 and 𝑀𝑀. 

We specify variables, 𝑇𝑇𝑣𝑣𝑛𝑛, 𝑀𝑀𝑣𝑣
𝑛𝑛, 𝐿𝐿𝑣𝑣𝑛𝑛, 𝑁𝑁𝑣𝑣𝑛𝑛, as being made of a summation of 2𝑛𝑛−2 products of 𝑛𝑛 − 2 

variables. For instance, the expressions for the 5-layered cylinder can be generated from Fig. 2 and can 
be seen in (18)  

𝑇𝑇𝜈𝜈5 = 𝑌𝑌𝜈𝜈2𝑌𝑌𝜈𝜈3𝑌𝑌𝜈𝜈4 + 𝑌𝑌𝜈𝜈2𝑋𝑋𝜈𝜈3𝑅𝑅𝜈𝜈4 + 𝑋𝑋𝜈𝜈2𝑅𝑅𝜈𝜈3𝑌𝑌𝜈𝜈4 + 𝑋𝑋𝜈𝜈2𝑆𝑆𝜈𝜈3𝑅𝑅𝜈𝜈4

𝑀𝑀𝜈𝜈
5 = 𝑌𝑌𝜈𝜈2𝑌𝑌𝜈𝜈3𝑋𝑋𝜈𝜈4 + 𝑌𝑌𝜈𝜈2𝑋𝑋𝜈𝜈3𝑆𝑆𝜈𝜈4 + 𝑋𝑋𝜈𝜈2𝑅𝑅𝜈𝜈3𝑋𝑋𝜈𝜈4 + 𝑋𝑋𝜈𝜈2𝑆𝑆𝜈𝜈3𝑆𝑆𝜈𝜈4

𝐿𝐿𝜈𝜈5 = 𝑅𝑅𝜈𝜈2𝑌𝑌𝜈𝜈3𝑌𝑌𝜈𝜈4 + 𝑅𝑅𝜈𝜈2𝑋𝑋𝜈𝜈3𝑅𝑅𝜈𝜈4 + 𝑆𝑆𝜈𝜈2𝑅𝑅𝜈𝜈3𝑌𝑌𝜈𝜈4 + 𝑆𝑆𝜈𝜈2𝑆𝑆𝜈𝜈3𝑅𝑅𝜈𝜈4

𝑁𝑁𝜈𝜈5 = 𝑅𝑅𝜈𝜈2𝑌𝑌𝜈𝜈3𝑋𝑋𝜈𝜈4 + 𝑅𝑅𝜈𝜈2𝑋𝑋𝜈𝜈3𝑆𝑆𝜈𝜈4 + 𝑆𝑆𝜈𝜈2𝑅𝑅𝜈𝜈3𝑋𝑋𝜈𝜈4 + 𝑆𝑆𝜈𝜈2𝑆𝑆𝜈𝜈3𝑆𝑆𝜈𝜈4.

 (18) 

We use the superscript and subscript to denote the dependence on the number of layers and order of 
the Bessel functions respectively. With (18), we can solve the system of boundary condition equations in 
(10) and (12) to get general expressions of 𝐴𝐴𝜈𝜈2 and 𝐵𝐵𝜈𝜈2 in terms of 𝐵𝐵𝜈𝜈𝑛𝑛+1 as seen in (19)  

𝐴𝐴𝜈𝜈2 = (𝐵𝐵𝜈𝜈𝑛𝑛+1𝐷𝐷𝜈𝜈 + 𝐸𝐸𝜈𝜈)𝑇𝑇𝜈𝜈𝑛𝑛 + (𝐵𝐵𝜈𝜈𝑛𝑛+1𝐹𝐹𝜈𝜈 + 𝐺𝐺𝜈𝜈)𝑀𝑀𝜈𝜈
𝑛𝑛

𝐵𝐵𝜈𝜈2 = (𝐵𝐵𝜈𝜈𝑛𝑛+1𝐷𝐷𝜈𝜈 + 𝐸𝐸𝜈𝜈)𝐿𝐿𝜈𝜈𝑛𝑛 + (𝐵𝐵𝜈𝜈𝑛𝑛+1𝐹𝐹𝜈𝜈 + 𝐺𝐺𝜈𝜈)𝑁𝑁𝜈𝜈𝑛𝑛.
 (19) 

https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8/6511996/6419775/6419775-fig-2-source-large.gif
https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8/6511996/6419775/6419775-fig-2-source-large.gif
https://ieeexplore.ieee.org/document/#deqn18
https://ieeexplore.ieee.org/document/#deqn18
https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn12
https://ieeexplore.ieee.org/document/#deqn19


Then, substituting the general form of (19) into (16) and (17), we get the system of 2 equations where 
𝐴𝐴𝑣𝑣1  is in terms of 𝐵𝐵𝑣𝑣𝑛𝑛+1. By solving this system of equations, we can get general expressions which can 
identify the poles of the scattering portion of the Green's function. 

Due to the form of the boundary conditions, we must split the solution into 3 cases: 𝑛𝑛 = 1, 𝑛𝑛 = 2, 𝑛𝑛 >
2. The equation to solve for the poles of the single layer case can be seen in (20),  

𝑄𝑄𝜈𝜈𝐻𝐻𝜈𝜈
(2)(𝑘𝑘0𝜌𝜌1) − 𝜅𝜅1

𝑘𝑘0
𝑃𝑃𝜈𝜈𝐻𝐻𝜈𝜈

′(2)(𝑘𝑘0𝜌𝜌1) = 0. (20) 

Next, the double layer case can be seen in (21)  

𝑤𝑤𝑑𝑑𝐷𝐷𝑣𝑣 − 𝑧𝑧𝑑𝑑𝐹𝐹𝑣𝑣 = 0 (21) 

Lastly, the case of 𝑛𝑛 > 2 is  

𝑤𝑤𝑑𝑑(𝐷𝐷𝑣𝑣𝑇𝑇𝑣𝑣𝑛𝑛 + 𝐹𝐹𝑣𝑣𝑀𝑀𝑣𝑣
𝑛𝑛) − 𝑧𝑧𝑑𝑑(𝐷𝐷𝑣𝑣𝐿𝐿𝑣𝑣𝑛𝑛 + 𝐹𝐹𝑣𝑣𝑁𝑁𝑣𝑣𝑛𝑛) = 0. (22) 

We use the secant method to solve (20), (21) and (22), first starting with the poles of the uncoated 
cylinder then refining the initial guesses to ensure we track along the same mode as the thickness of the 
coating is increased. In this development we begin from the inner layer boundary conditions and work 
to the outer, but identical results can be obtained by starting at the outer boundary conditions and 
working towards the inner. It is also important to note that (20) is identical to (3) in.6 

SECTION IV. Results and Discussion 
In this section we present results of a single layer, double layer and 5-layer case to validate (20), (21) and 
(22) respectively. The results from6,18 are duplicated for the single layer case and the results from2,12 are 
duplicated for the double layer case. To the authors' knowledge, there are no directly comparable 
published results of the azimuthal propagation constants of a coated cylinder with more than two 
layers. So to validate a multilayer case we implement a 5-layer structure with the same material 
parameters and outside diameter of the single layer case. 

After validating our method, we conclude with two examples intended to illustrate our method's 
usefulness. These are both based on multilayer variations of published 2-layer, substrate-superstrate 
coated cylinders where we use our method to explore the impact of introducing structure variations. In 
the first example, we provide an example 7-layer structure that implements a lossless material gradient 
approximation to the 2-layer structure of.12 Our second example explores the impact of subdividing the 
substrate layer of the structure explored in Sun's paper2 into high-low dielectric constant layers, along 
with introducing loss into various layers. 

A. Single Layer Case 
In,6 Paknys and Wang use a Green's function to determine the azimuthal propagation constants of a 
single layer coated cylinder for TE and TM incidence. Our results for the TE case can be seen in Fig. 3 and 
the TM case in Fig. 4 accompanied by the results from.6 These graphs show the azimuthal propagation 
constants for different coating thicknesses.  

https://ieeexplore.ieee.org/document/#deqn19
https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/document/#deqn16-17
https://ieeexplore.ieee.org/document/#deqn20
https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn20
https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn22
https://ieeexplore.ieee.org/document/#deqn20
https://ieeexplore.ieee.org/document/#deqn2-3
https://ieeexplore.ieee.org/document/#deqn20
https://ieeexplore.ieee.org/document/#deqn21
https://ieeexplore.ieee.org/document/#deqn22


 

Fig. 3. TE incidence of 1-layer dielectric coated cylinder with 𝑘𝑘0𝑏𝑏 = 20 and 𝜖𝜖𝑟𝑟 = 4, where 𝑏𝑏 is the outer radius of 
the structure. Our results (circles) are shown with varying thicknesses of the dielectric coating. The results from6 
are shown as X's. 

 

Fig. 4. TM incidence of 1-layer dielectric coated cylinder with 𝑘𝑘0𝑏𝑏 = 20 and 𝜖𝜖𝑟𝑟 = 4, where 𝑏𝑏 is the outer radius of 
the structure. Our results (circles) shown with varying thicknesses of the dielectric coating. The results from6 are 
shown X's. 
 
Later, Sun et al. expanded previous works by implementing a lossy magnetic coating impinged by TE 
incidence.18 We duplicate the data presented in Fig. 9 of18 as seen in Fig. 5. We note the 
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 convention was used in.6,18 We've changed sign convention to 𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 in our comparisons. In all cases 
we see excellent agreement with our formulation, validating (20).  

 

Fig. 5. TE incidence of 1-layer coated cylinder with 𝑘𝑘0𝑏𝑏 = 40 and 𝜖𝜖𝑟𝑟 = 4 − 𝑗𝑗1, 𝜇𝜇𝑟𝑟 = 1 − 𝑗𝑗0.25. These results show the 
azimuthal propagation constants with varying thickness of the coating. The solid line with dots is our data while the x's is the 
data extrapolated from.18 
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B. Double Layer Case 
Next we duplicate the results from12 which used a double layer geometry. Our results duplicate those 
published for the single layer as seen in Fig. 6. However, there is some discrepancy when the second 
layer is added which is due to the Debye/Watson asymptotic approximations used in.12  

 

Fig. 6. TM incidence of 2 layer coated cylinder. Round dots track the single layer case of varying coating thicknesses 
with 𝜌𝜌1 = 3.1831𝜆𝜆 and 𝜖𝜖𝑟𝑟 = 2.1. The square dots track the change poles associated with the change in the second 
layer while the first layer is fixed at a thickness of . 1𝜆𝜆. The associated values of the 2-layer case are 𝑎𝑎 = 3.0831𝜆𝜆, 
𝜌𝜌1 = 3.831𝜆𝜆, 𝜖𝜖𝑟𝑟1 = 2.1, 𝜖𝜖𝑟𝑟2 = 10. Our results are shown as solid dots and the results from12 are shown as empty 
dots. 
 
The Debye and Watson approximations are not valid everywhere and the relationship between the 
order and the argument dictates which expression can be used. Specifically, when |𝜈𝜈 − 𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖| ≥ |𝜈𝜈|1/3 
(where the product 𝑘𝑘𝑖𝑖𝜌𝜌𝑖𝑖  makes up the Bessel function argument) the Debye approximations are used 
and otherwise the Watson approximations are used.23 It has been shown that this delimiter is not 
optimal and can introduce error into the calculation.21 

Consider the case when the second layer thickness is . 04𝜆𝜆. At this thickness, the differences in our 
results and those in12 are graphically noticeable. It can also be shown that at this thickness, the 
argument of the Bessel functions in 𝑃𝑃, 𝑄𝑄 is close to the delimiter between using the Debye and Watson 
approximations. The Bessel function argument in 𝑃𝑃, 𝑄𝑄 is made of 𝑘𝑘1 = 9.105 and 𝜌𝜌1 = 3.183𝜆𝜆 and the 
associated order is 𝜈𝜈 = 25.91− 𝑗𝑗. 04. Therefore, the delimiter expressions, |𝜈𝜈 − 𝑘𝑘1𝜌𝜌1| = 3.07 and 
|𝜈𝜈|1/3 = 2.96 are close and the accuracy of the asymptotic evaluation of the Bessel functions is 
questionable. 

Also, it is important to note that the discrepancy is more apparent in the double layer equation (21) than 
in the single layer equation (20) because the double layer equation contains more instances of the 𝑃𝑃, 𝑄𝑄 
expressions than does the single layer equation. This illustrates the effect of compounded error in 
stratified media. 

Later in 2007, Sun et al. retrieved the azimuthal propagation constants of a 2-layered PEC cylinder with 
lossy material.2 In contrast to,12 the work in2 used the more accurate Olver asymptotic expressions for 
the Bessel functions. In Fig. 7 we duplicate Fig. 5 from.2 Our data tracks much better with these 
published results due to the use of the Olver asymptotic expressions used in.2  

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8/6511996/6419775/6419775-fig-6-source-large.gif
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Fig. 7.  TM incidence of 2-layer coated cylinder where 𝑎𝑎 = 3.1331𝜆𝜆, 𝑑𝑑1 = .05𝜆𝜆 and 𝑑𝑑2 is varied from 0 to . 17𝜆𝜆. 
The solid lines with dots is our data while the x's signify the data extrapolated from.2 
 

C. Multilayer Case 
In our final validation case, we duplicate Paknys and Wang's single layer case6 but divide the single layer 
into five equally spaced layers, all with the same material parameters as the single layer case. This 
allows us to validate the multilayer case and determine what type of error we can expect from the 
cascaded boundary conditions. Again, this approach is motivated by a lack of comparable multilayer 
cases in the published literature. The results are identical within graphical accuracy so we will not 
duplicate Figs. 3 or 4. An error analysis comparing the results of the multilayer case and the single layer 
case showed the largest error to be 8 × 10−6 for both real and imaginary parts of either TM or TE 
incidence. 

D. A Graded Index Multilayer Example 
We now turn to the first of two examples where our methodology allows a systematic variation of a 
multilayer structure. In each case, we provide a brief analysis demonstrating the physics of a multilayer 
structure. The focus is always on the analysis benefit of our method rather than on the particular physics 
involved. That being said, the observed phonomena are of interest in their own right. 

In12 it was shown that by adding a second layer with a larger material parameter than the first layer, the 
attenuation constant of the azimuthal wave could be significantly reduced. We take this concept one 
step further to demonstrate the capabilities of our approach. We implement a material parameter 
gradient to reduce the attenuation constant further. We replace the first layer of the double layer 
example in Section IV-B with six equally spaced layers so that the cumulative thickness of the six layers is 
the same as the first layer of the double layer case. This replaces the single valued layer with a layer of 
graded material parameters that is approximated by six layers. This new first layer has a thickness of 
. 1𝜆𝜆 and the material parameters of the six layers within are 𝜇𝜇𝑟𝑟 = 1 and 𝜖𝜖𝑟𝑟 = 2.1, 5, 6, 7, 8, 9 in order 
of innermost to outer. Then we vary the thickness of the last layer from 0 to . 03𝜆𝜆 which has material 
parameters of 𝜇𝜇𝑟𝑟 = 1 and 𝜖𝜖𝑟𝑟 = 10. The results can be seen in Fig. 8.  

 

Fig. 8. Azimuthal propagation constants for a 7-layer dielectric coated cylinder. The thicknesses of the first 6 layers 
are constant at . 0167𝜆𝜆 and last layer thickness is varied from 0 to . 03𝜆𝜆. The cylinder radius is 𝑎𝑎 = 3.0831𝜆𝜆. 
 
The first data point in Fig. 8 corresponds with the one layer of graded material that is approximated by 
six layers without the additional last layer. This graded material with a total thickness of 0.1𝜆𝜆 has a 
smaller attenuation coefficient than the double layer example in Section IV-B with a total of thickness 
0.22𝜆𝜆. These results show that a material parameter gradient can decrease the attenuation of the 
azimuthal wave more than with the addition of the second layer alone. More importantly, this example 
shows how this method can provide additional insight into the fields within a multilayered structure. 



E. A Lossy Multilayer Example 
As a final example of the use of our methodology, we turn to Sun's paper2 investigating the effect of loss 
in the 2-layer dielectric coated cylinder. Our baseline geometry defines the PEC radius to be (𝑎𝑎1/𝜆𝜆) =
3.0831 as in Sun's paper. The substrate layer is divided into four layers of 0.025𝜆𝜆 each summing up to 
the 0.1𝜆𝜆 thickness used by Sun. Finally, the outer superstrate layer thickness is varied from 0 to 0.04𝜆𝜆 to 
generate the root locus curves in the following figures. 

Our lossless baseline geometry consists of a substrate formed from thin alternating low-high dielectric 
constant layers capped by a high dielectric constant superstrate layer. The specific dielectric profile from 
the inner to the outer layer is 𝜖𝜖𝑟𝑟 = [2.1,6.0,2.1,6.0,10.0]. This baseline structure is included in each of 
the following figures for reference and can be compared with Fig. 2 of.2 The dielectric stack of 
alternating substrate layers has an effective dielectric constant higher than 𝜖𝜖𝑟𝑟1 = 2.1 found in Sun's 
paper. The effect is to allow low attenuation trapped mode propagation to occur for slightly thinner 
superstrate layer thicknesses compared to Sun's baseline structure. 

In Fig. 9, we examine the impact of introducing loss into one of the substrate layers. The inclusion of loss 
in any of the substrate layers has the general effect of creating a minimum attenuation value that can 
not be reduced by increasing the superstrate layer thickness. This is similar to the effect observed by 
Sun. In addition, we observe that as the loss is introduced into the layers progressively closer to the 
superstrate layer, the saturate attenuation level monotonically increases. This occurs despite the 
alternating nature of the dielectric constant stack. Finally, we note from Fig. 9 that the introduction of 
loss in the superstrate layer eliminates the saturate attenuation level, causing both the wave 
attenuation and phase constant to increase as function of layer thickness characteristic of a leaky wave 
mode.  

 

Fig. 9. Dominate mode propagation constant as a function of the superstrate thickness with the substrate 
multilayer structure consisting of 0.025𝜆𝜆 thick layers with the dielectric profiles given in the figure legend. The 
lossy layer creates an increasing saturation attenuation as a function of the proximity to the superstrate layer. 
 
Fig. 10 illustrates the effect of introducing loss into both a substrate layer and the superstrate layer. As 
Sun observed, the dielectric loss of the superstrate will lead to a high attenuation mode as the thickness 
of the superstrate increases; with increased loss as the dielectric loss is increased. However we also 
observe another interesting effect as a result of introducing loss into the substrate layers progressively 
closer to the superstrate layer. Unlike the monotonic behavior seen in Fig. 9, here we see the value of 
the dielectric constant having an influence on magnitude of the attenuation. Specifically, the 
attenuation seen in the 𝜖𝜖𝑟𝑟 = [2.1,6.0 − 𝑖𝑖, 2.1,6.0,10.0 − 𝑖𝑖] structure is much greater than that 
observed in the 𝜖𝜖𝑟𝑟 = [2.1,6.0,2.1 − 𝑖𝑖, 6.0,10.0 − 𝑖𝑖] structure despite the fact the lossy layer is 0.025𝜆𝜆 
closer to the superstrate.  

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/8/6511996/6419775/6419775-fig-9-source-large.gif
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Fig. 10.  Dominate mode propagation constant as a function of the superstrate thickness with the substrate 
multilayer structure consisting of 0.025𝜆𝜆 thick layers with the dielectric profiles given in the figure legend. The 
lossy superstrate layer doesn't allow trapped mode propagation. 
 
Finally, in Fig. 11, we increase the loss in the superstrate layer beyond the threshold value where the 
root locus curls back on itself as the superstrate thickness is increased. This phenomena was also 
observed by Sun. Comparing Figs. 10 with 11, we see the larger superstrate loss dominates the more 
subtle effect of the dielectric constant returning to a monotonic relationship between the lossy 
substrate layer proximity to the superstrate layer.  

 

Fig. 11. Dominate mode propagation constant as a function of the superstrate thickness with the substrate 
multilayer structure consisting of 0.025𝜆𝜆 thick layers with the dielectric profiles given in the figure legend. As Sun 
observed in,2 when the superstrate loss exceeds a threshold value the root locus curls back on itself. 

SECTION V. Conclusion 
In this article we presented a Green's function approach to finding the azimuthal wave propagation 
constants for an n-layered dielectric coated PEC cylinder. Instead of the traditional asymptotic 
expressions for Bessel functions, we implemented a new numerical method from17 with better accuracy. 
The results were then validated with previously published results. This method is a general approach 
and can be applied to any stratification profile without additional analysis. We provided two brief 
examples to illustrate the benefits of this method when examining variations in a stratification profile. 
This approach lends itself to approximating the graded material parameters that are encountered in 
structures designed using transformational optics and metamaterials. 
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