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Abstract 
A ternary relational structure 〈𝑋𝑋, [⋅,⋅,⋅]〉, interpreting a notion of betweenness, gives rise to the family 
of intervals, with interval [𝑎𝑎, 𝑏𝑏] being defined as the set of elements of X between a and b. Under very 
reasonable circumstances, X is also equipped with some topological structure, in such a way that each 
interval is a closed nonempty subset of X. The question then arises as to the continuity behavior—within 
the hyperspace context—of the betweenness function {𝑥𝑥, 𝑦𝑦} ↦ [𝑥𝑥,𝑦𝑦]. We investigate two broad 
scenarios: the first involves metric spaces and Menger's betweenness interpretation; the second deals 
with continua and the subcontinuum interpretation. 

Keywords 
Betweenness; Basic ternary relations; Intervals; Betweenness functions; Hyperspaces; Upper (lower) 
semicontinuity; Metric spaces; Menger betweenness; Intrinsic metrics; Geodesic spaces; Normed vector 
spaces; Continua; Subcontinuum betweenness 

1. Introduction and preliminaries 
Let 〈𝑋𝑋, [⋅,⋅,⋅]〉 be a ternary structure; i.e., X is a set and [⋅,⋅,⋅] ⊆ 𝑋𝑋3 is a ternary relation on X. The 
relation is intended to convey a notion of inclusive betweenness, so we assume it to be basic; i.e., it 
satisfies the conditions that [𝑎𝑎,𝑎𝑎, 𝑏𝑏] and [𝑎𝑎, 𝑏𝑏, 𝑏𝑏] always hold (inclusivity), that [𝑎𝑎, 𝑐𝑐, 𝑏𝑏] implies [𝑏𝑏, 𝑐𝑐,𝑎𝑎] 
(symmetry), and that [𝑎𝑎, 𝑐𝑐, 𝑎𝑎] implies 𝑎𝑎 = 𝑐𝑐 (uniqueness). 

For each 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, we define the interval[𝑎𝑎, 𝑏𝑏] to be the set {𝑥𝑥 ∈ 𝑋𝑋: [𝑎𝑎, 𝑥𝑥, 𝑏𝑏]}. Then, in interval terms, 
the three basic criteria above become [𝑎𝑎, 𝑏𝑏] ⊇ {𝑎𝑎, 𝑏𝑏}, [𝑎𝑎, 𝑏𝑏] = [𝑏𝑏,𝑎𝑎], and [𝑎𝑎,𝑎𝑎] = {𝑎𝑎}, respectively. 
There is a unique smallest basic relation, namely the one where [𝑎𝑎, 𝑏𝑏] = {𝑎𝑎, 𝑏𝑏} identically. This we refer 
to here as the minimal ternary relation on X. 

The points a and b are bracket points (and {𝑎𝑎, 𝑏𝑏} a bracket pair) for the interval [𝑎𝑎, 𝑏𝑏]. If I is an interval, 
its bracket set is defined to be �{𝑎𝑎, 𝑏𝑏}: [𝑎𝑎, 𝑏𝑏] = 𝐼𝐼�. 

The assignment {𝑥𝑥,𝑦𝑦} ↦ [𝑥𝑥,𝑦𝑦] is the betweenness function associated with [⋅,⋅,⋅], and is denoted 
throughout the text by [⋅,⋅]. Hence the bracket set for interval I is just the fiber over I with respect to this 
function. 

The present paper is a continuation of the project initiated in2 (see also3,4); here we are interested in the 
issue of when nearby bracket pairs give rise to nearby intervals. The best way to make sense of this is to 
give X some topological structure, and inquire into whether the betweenness function is continuous in 
the context of hyperspaces.15 

We consider two broad case studies: the first is where X is a metric space, and [𝑎𝑎, 𝑐𝑐, 𝑏𝑏] means that c lies 
between a and b in the sense of Menger;14 the second is where X is a continuum, and [𝑎𝑎, 𝑐𝑐, 𝑏𝑏] means 
that c lies in every subcontinuum of X that contains {𝑎𝑎, 𝑏𝑏}. In the first study it is both the topology and 

https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#br0020
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the geometry of metric spaces that dictate the continuity of the betweenness function; in the second it 
is the topology alone of (not necessarily metrizable) continua. 

For a topological space X, we denote by 2𝑋𝑋 (resp., 𝒦𝒦(𝑋𝑋)) its hyperspace of all nonempty closed (resp., 
nonempty closed connected) subsets. If U is an open set in X, 𝑈𝑈+ (resp., 𝑈𝑈−) denotes the set 
{𝐶𝐶 ∈ 2𝑋𝑋:𝐶𝐶 ⊆ 𝑈𝑈} (resp., {{𝐶𝐶 ∈ 2𝑋𝑋:𝐶𝐶 ∩ 𝑈𝑈 ≠ ∅}). The upper (resp., lower) Vietoris topology on 2𝑋𝑋 is 
subbasically generated by sets of the form U^+ (resp., 𝑈𝑈−), as U ranges over the open subsets of X. The 
join of these two topologies is the Vietoris topology on 2𝑋𝑋, and we view 𝒦𝒦(𝑋𝑋) as inheriting this 
topology. 

We let 𝜔𝜔: = {0,1,2, … } denote the set of finite ordinals. It will be convenient to eliminate zero at times, 
so we use the symbol N to denote 𝜔𝜔 ∖ {0}. 

For each 𝑛𝑛 ∈ ℕ, let ℱ𝑛𝑛(𝑋𝑋) denote the n-fold symmetric power of X, the hyperspace consisting of those 
𝐶𝐶 ∈ 2𝑋𝑋 with at most n elements (also equipped with the inherited Vietoris topology). When X is a 𝖳𝖳1 
space, the function 𝑥𝑥 ↦ {𝑥𝑥} defines a homeomorphism from X onto ℱ1(𝑋𝑋) (where the inherited upper 
and lower Vietoris topologies coincide); when X is Hausdorff, each ℱ𝑛𝑛(𝑋𝑋) is a closed subspace of 2𝑋𝑋. If X 
is also normal, then 𝒦𝒦(𝑋𝑋) is closed in 2𝑋𝑋 as well. Of the hyperspaces ℱ𝑛𝑛(𝑋𝑋), we will be interested only 
in the case 𝑛𝑛 = 2 from here on. 

The following is a simple, but useful, result (see, e.g.,15). 

Lemma 1.1 
The Vietoris topology on 2𝑋𝑋 is basically generated by sets of the form〚𝑈𝑈1, … ,𝑈𝑈n〛: =

{𝐶𝐶 ∈ 2𝑋𝑋:𝐶𝐶 ⊆ U1 ∪ …∪ 𝑈𝑈𝑛𝑛 and 𝐶𝐶 ∩ 𝑈𝑈i ≠ ∅ for 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} where 𝑛𝑛 ∈ ℕ and 〈𝑈𝑈1, … ,𝑈𝑈𝑛𝑛〉 ranges over 
all n-tuples of open subsets of X. 

Proof 
This is a direct consequence of the following identities: 

𝑈𝑈+ ∩ 𝑉𝑉+ = 〚𝑈𝑈 ∩ 𝑉𝑉〛, 𝑈𝑈− ∩ 𝑉𝑉− = 〚𝑋𝑋,𝑈𝑈,𝑉𝑉〛, 𝑈𝑈+ ∩ 𝑉𝑉− = 〚𝑈𝑈,𝑈𝑈 ∩ 𝑉𝑉〛, and 〚𝑈𝑈1, … ,𝑈𝑈𝑛𝑛〛 =

�� 𝑈𝑈𝑖𝑖
𝑛𝑛
𝑖𝑖=1 �

+
∩ �� 𝑈𝑈𝑖𝑖−

𝑛𝑛
𝑖𝑖=1 � 

Unless specified otherwise, the default topology on the hyperspaces defined above is the Vietoris 
topology. It is a basic fact about this topology (see [15, §4]) that X is compact Hausdorff (resp., compact 
metrizable) if and only if the same is true for any of these hyperspaces. 

If X and Y are two topological spaces, a function 𝜑𝜑:𝑌𝑌 → 2𝑋𝑋 is upper (resp., lower) semicontinuous (usc 
and lsc, respectively) at 𝑎𝑎 ∈ 𝑌𝑌 if it is continuous at a in the usual sense for the upper (resp., lower) 
Vietoris topology on 2𝑋𝑋. So φ is continuous at a if and only if it is both usc and lsc at a. And when we 
unpack the definitions, we see that φ is usc (resp., lsc) at a just in case for any open 𝑈𝑈 ⊆ 𝑋𝑋 such that 
𝜑𝜑(𝑥𝑥) ⊆ 𝑈𝑈 (resp., φ(a)∩U≠∅), there is an open neighborhood V of a in Y such that φ(x)⊆U (resp., 
𝜑𝜑(𝑥𝑥) ∩ 𝑈𝑈 ≠ ∅) for all 𝑥𝑥 ∈ 𝑉𝑉. 

Recall that a subset of a topological space is residual if it contains the intersection of countably many 
dense open sets, and a Baire space is a topological space in which all residual sets are dense. So while 

https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#br0160
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residual sets can even be empty in general, they form a countably complete filter of subsets in a Baire 
space. 

By the Baire Category Theorem, all topologically complete metric spaces, as well as all locally compact 
Hausdorff spaces, are Baire spaces. 

Let us say that a certain localized property holds at almost every point of a space Y if the set of points at 
which the property holds is a dense residual subset of Y. 

The following result of M. K. Fort11 (strengthening earlier work of K. Kuratowski [13, §43, VII, Corollary 
1]) gives an important link between the two kinds of semicontinuity under consideration here. 

Lemma 1.2 
Let X and Y be topological spaces, with X metrizable and Y a Baire space, and suppose 𝜑𝜑:𝑌𝑌 → 2𝑋𝑋 is such 
that 𝜑𝜑(𝑦𝑦) is compact for each 𝑦𝑦 ∈ 𝑌𝑌. If 𝜑𝜑 is usc (resp., lsc) at every point of Y, then 𝜑𝜑 is also lsc (resp., 
usc) at almost every point of Y. 

In the sequel, all of our basic ternary structures 〈𝑋𝑋, [⋅,⋅,⋅]〉 will be closed; i.e., X is equipped with a 
Hausdorff topology for which all intervals are closed subsets. In this way the betweenness function will 
have domain ℱ2(𝑋𝑋) and codomain 2𝑋𝑋. 

Remark 1.3 
In applications of Lemma 1.2, the space Y will be ℱ2(𝑋𝑋), where X is a topologically complete metric 

space. In that case 𝑋𝑋2 is topologically complete as well, and hence Baire. The function 〈𝑥𝑥,𝑦𝑦〉 → {𝑥𝑥,𝑦𝑦} 
defines a continuous open map from 𝑋𝑋2 onto ℱ2(𝑋𝑋), and it is an easy exercise to show that the Baire 
property is thus preserved. 

In a slight abuse of language below, we refer to the members of ℱ2(𝑋𝑋) generically as pairs, using the 
terms singleton (resp., doubleton) to specify that the pair has cardinality one (resp., two). Typical basic 
Vietoris-open sets for ℱ2(𝑋𝑋) may be written as 〚𝑈𝑈,𝑉𝑉〛2: = 〚𝑈𝑈,𝑉𝑉〛 ∩ ℱ2(𝑋𝑋), where 𝑈𝑈,𝑉𝑉 are open in 
X. 

The following result concerning semicontinuity is trivial, but worth recording for later reference. 

Proposition 1.4 
Let ⟨𝑋𝑋, [⋅,⋅,⋅]⟩ be a closed basic ternary structure, with 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋. Then [⋅,⋅] is usc at {a,b} if [𝑎𝑎, 𝑏𝑏] = 𝑋𝑋, and 
is lsc at {𝑎𝑎, 𝑏𝑏} if 𝑎𝑎 = 𝑏𝑏. 

2. Menger betweenness in metric spaces 
Given a metric space 𝑋𝑋 = ⟨𝑋𝑋, 𝜚𝜚⟩ and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  𝑋𝑋, we say c lies between a and b in the Menger sense (in 
symbols, [𝑎𝑎, 𝑐𝑐, 𝑏𝑏]𝖬𝖬 or 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]𝖬𝖬) if 𝜚𝜚(𝑎𝑎, 𝑏𝑏) = 𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏) (see14). We call this relation M-
betweenness, and the associated intervals M-intervals. When there is no confusion over betweenness 
interpretation, we drop subscripts—i.e., [𝑎𝑎, 𝑏𝑏]: = [𝑎𝑎, 𝑏𝑏]𝖬𝖬, etc. 

Proposition 2.1 
M-betweenness is a closed basic ternary relation. Indeed, each M-interval is bounded, as well as closed. 

https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#br0120
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Proof 
M-betweenness is clearly a basic ternary relation, so fix 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋 and define 𝑓𝑓:𝑋𝑋 → ℝ by 𝑓𝑓(𝑥𝑥) =
𝜚𝜚(𝑎𝑎, 𝑥𝑥) + 𝜚𝜚(𝑥𝑥, 𝑏𝑏) − 𝜚𝜚(𝑎𝑎, 𝑏𝑏). Then f is continuous and [𝑎𝑎, 𝑏𝑏] = 𝑓𝑓←[{0}], which is closed in X. 

To show boundedness, we prove that the diameter of [𝑎𝑎, 𝑏𝑏] is 𝜚𝜚(𝑎𝑎, 𝑏𝑏). For if 𝑐𝑐,𝑑𝑑 ∈  [𝑎𝑎, 𝑏𝑏], then 
𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏) = 𝜚𝜚(𝑎𝑎, 𝑏𝑏) = 𝜚𝜚(𝑎𝑎,𝑑𝑑) + 𝜚𝜚(𝑑𝑑, 𝑏𝑏). From the triangle inequality, we have 𝜚𝜚(𝑐𝑐,𝑑𝑑) ≤
𝜚𝜚(𝑐𝑐,𝑎𝑎) + 𝜚𝜚(𝑎𝑎,𝑑𝑑)𝑎𝑎𝑛𝑛𝑑𝑑 𝜚𝜚(𝑐𝑐,𝑑𝑑) ≤ 𝜚𝜚(𝑐𝑐, 𝑏𝑏) + 𝜚𝜚(𝑏𝑏,𝑑𝑑) both holding. Hence  
 
2𝜚𝜚(𝑐𝑐,𝑑𝑑) ≤ �𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏)� + �𝜚𝜚(𝑎𝑎,𝑑𝑑) + 𝜚𝜚(𝑑𝑑, 𝑏𝑏)� = 2𝜚𝜚(𝑎𝑎, 𝑏𝑏),, 
 

and therefore 𝜚𝜚(𝑐𝑐,𝑑𝑑) ≤ 𝜚𝜚(𝑎𝑎, 𝑏𝑏). 

A metric space (or metric) is proper (resp., M-proper) if each of its closed bounded subsets (resp., M-
intervals) is compact. The metric space is M-minimal if its M-betweenness relation is minimal. M-
minimal metrics are obviously M-proper. We define a metric space ⟨𝑋𝑋, 𝜚𝜚⟩ to be topologically proper 
(resp., topologically M-proper, topologically M-minimal) in exact analogy with how one defines 
topological completeness; i.e., there is a proper (resp., M-proper, M-minimal) metric on X that is 
equivalent to ϱ. Every proper metric is M-proper, by Proposition 2.1; proper metrics are easily seen to 
be complete. 

While being topologically proper is an interesting metric space property, the topological modifications of 
M-proper and M-minimal are not. 

Proposition 2.2 
Every metric space is topologically M-minimal. 

Proof 
Let 𝑓𝑓: [0,∞) → [0,∞) be the square root function 𝑥𝑥 ↦ √𝑥𝑥. Then f is a strictly increasing 
homeomorphism, satisfying the condition that 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏) > 𝑓𝑓(𝑎𝑎 + 𝑏𝑏), for 𝑎𝑎, 𝑏𝑏 > 0. Thus composing 
any metric with f results in an equivalent metric that is M-minimal. 

Remark 2.3 
Our original proof of Proposition 2.2 involved the needlessly sophisticated process of embedding a given 
metric space into the unit sphere of a Hilbert space. We are grateful to D. Anderson [1] for suggesting 
the simple argument above. 

Any two-valued metric on an infinite set is complete and M-minimal, without being proper. The 
following shows that an M-minimal metric space with no isolated points can also fail to be topologically 
proper. 

Example 2.4 
Let X be the set of rational points on the unit circle (i.e., 𝑋𝑋 = �〈𝑥𝑥,𝑦𝑦〉 ∈ ℝ2: 𝑥𝑥2 + 𝑦𝑦2 = 1� ∩ (ℚ × ℚ)), 
with ϱ the inherited euclidean metric. Then ⟨𝑋𝑋, 𝜚𝜚⟩ is easily seen to be M-minimal. However, this space is 
countable with no isolated points, so it is not a Baire space and thus not topologically complete. 
Consequently, it is not topologically proper. 
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Theorem 2.5 
For a metric space that is either proper or M-minimal, [⋅,⋅] is usc at all pairs. 

If the metric space is M-minimal, then [⋅,⋅] is the inclusion map, and is hence continuous. Suppose we 
have a proper metric space ⟨𝑋𝑋, 𝜚𝜚⟩ such that usc fails for some {𝑎𝑎, 𝑏𝑏} ∈ ℱ2(𝑋𝑋). Then there is an open 
subset U of X such that: (1) [𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈; and (2) for each 𝑛𝑛 ∈ ℕ, there are 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛, 𝑐𝑐𝑛𝑛, where 
𝜚𝜚(𝑎𝑎, 𝑎𝑎𝑛𝑛),𝜚𝜚(𝑏𝑏, 𝑏𝑏𝑛𝑛) ≤ 1

𝑛𝑛
 and 𝑐𝑐𝑛𝑛 ∈ [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛] ∖ 𝑈𝑈. Then 𝜚𝜚(𝑐𝑐𝑛𝑛,𝑎𝑎) ≤ 𝜚𝜚(𝑐𝑐𝑛𝑛,𝑎𝑎𝑛𝑛) + 𝜚𝜚(𝑎𝑎𝑛𝑛,𝑎𝑎) ≤ 𝜚𝜚(𝑏𝑏𝑛𝑛,𝑎𝑎𝑛𝑛) + 1

𝑛𝑛
≤

�2
𝑛𝑛

+ 𝜚𝜚(𝑏𝑏,𝑎𝑎)� + 1
𝑛𝑛

= 3
𝑛𝑛

+ 𝜚𝜚(𝑏𝑏,𝑎𝑎),  

implying that the sequence 〈𝑐𝑐𝑛𝑛〉 is bounded. A metric's being proper is clearly equivalent to bounded 

sequences having convergent subsequences, so we know there is a subsequence of 〈𝑐𝑐𝑛𝑛〉 that 
converges. We lose no generality in assuming that 𝑐𝑐𝑛𝑛 → 𝑐𝑐 for some 𝑐𝑐 ∈ 𝑋𝑋. 

Note that 𝜚𝜚(𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛) = 𝜚𝜚(𝑎𝑎𝑛𝑛, 𝑐𝑐𝑛𝑛) + 𝜚𝜚(𝑐𝑐𝑛𝑛,𝑏𝑏𝑛𝑛) for 𝑛𝑛 ∈ ℕ, and that 𝑎𝑎𝑛𝑛 → 𝑎𝑎, 𝑏𝑏𝑛𝑛 → 𝑏𝑏, 𝑐𝑐𝑛𝑛 → 𝑐𝑐. We may thus 
use continuity of the metric function to infer that 𝜚𝜚(𝑎𝑎, 𝑏𝑏) = 𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏). Hence 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈. This 
implies that some 𝑐𝑐𝑛𝑛 is contained in U, a contradiction. 

Remark 2.6 
Theorem 2.5 no longer holds for metric spaces that are merely complete. (See Proposition 4.15 and 
Example 4.19 below.) 

Question 2.7 
Does Theorem 2.5 still hold if the metric is complete and M-proper? 

The following example shows that Theorem 2.5 need not hold, even for metric spaces that are both 
topologically proper and M-proper. 

Example 2.8 
Let X be the “deleted” harmonic fan in the euclidean plane, namely the union �〈1,0〉� ∪� 𝑆𝑆𝑛𝑛

∞
𝑛𝑛=1 , 

where 𝑆𝑆𝑛𝑛 = �〈𝑡𝑡, 𝑡𝑡
𝑛𝑛
〉: 0 ≤ 𝑡𝑡 ≤ 1�. Let ϱ be the euclidean metric on ℝ2, restricted to X. This metric is 

not complete, hence not proper either. However, X is both locally compact and separable, and is hence 
topologically proper [12, Theorem 5.3]. 

Let 𝑎𝑎 = ⟨0,0⟩, 𝑏𝑏 = ⟨1,0⟩, with 𝑏𝑏𝑛𝑛 = 〈1, 1
𝑛𝑛
〉, 𝑛𝑛 ∈ ℕ. Given 𝑥𝑥 ∈  𝑋𝑋 ∖ {𝑏𝑏}, we see that [𝑥𝑥, 𝑏𝑏] is a simple 

sequence (i.e., homeomorphic to the ordinal space 𝜔𝜔 + 1) if 𝑥𝑥 ≠ 𝑎𝑎 and is {𝑎𝑎, 𝑏𝑏} if 𝑥𝑥 = 𝑎𝑎. If 𝑥𝑥,𝑦𝑦 ∈  𝑋𝑋 ∖
{𝑏𝑏}, then [𝑥𝑥,𝑦𝑦] is either finite or a closed line segment. In any case, M-intervals in X are compact. 

Now each [𝑎𝑎, 𝑏𝑏𝑛𝑛] is the closed line segment 𝑆𝑆𝑛𝑛, and hence connected, while [𝑎𝑎, 𝑏𝑏] is the disconnected 
set {𝑎𝑎, 𝑏𝑏}. Let U and V be disjoint open sets, where 𝑎𝑎 ∈ 𝑈𝑈 and 𝑏𝑏 ∈ 𝑉𝑉. Then [𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈 ∪ 𝑉𝑉. However, the 
sequence ⟨{𝑎𝑎, 𝑏𝑏𝑛𝑛}⟩ converges to {𝑎𝑎, 𝑏𝑏} in ℱ2(𝑋𝑋) and [𝑎𝑎, 𝑏𝑏𝑛𝑛] ⊈ 𝑈𝑈 ∪ 𝑉𝑉 for 𝑛𝑛 ∈ ℕ. This shows [⋅,⋅] not to 
be usc at {𝑎𝑎, 𝑏𝑏}. 

If X is a complete metric space, then ℱ2(𝑋𝑋) is a Baire space (see Remark 1.3). Since proper metrics are 
complete, we may combine Theorem 2.5 and Lemma 1.2 to obtain the following. 
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Corollary 2.9 
For any metric space,[⋅,⋅] is continuous at each singleton. 

Proof 
By Proposition 1.4, we need only prove upper semicontinuity. Let 𝑎𝑎 ∈ 𝑋𝑋 and let 𝑈𝑈 ⊆ 𝑋𝑋 be open, such 
that [𝑎𝑎,𝑎𝑎] = {𝑎𝑎} ⊆ 𝑈𝑈. Fix 𝑟𝑟 > 0 such that the open 3r-ball 𝐵𝐵(𝑎𝑎; 3𝑟𝑟), centered at a, is contained in U. If 
{𝑎𝑎′,𝑏𝑏′} ∈〚𝐵𝐵(𝑎𝑎, 𝑟𝑟),𝐵𝐵(𝑎𝑎, 𝑟𝑟)〛2 and 𝑐𝑐 ∈ [𝑎𝑎′, 𝑏𝑏′], then 𝜚𝜚(𝑎𝑎, 𝑐𝑐) ≤ 𝜚𝜚(𝑎𝑎,𝑎𝑎′) + 𝜚𝜚(𝑎𝑎′, 𝑐𝑐) ≤ 𝜚𝜚(𝑎𝑎,𝑎𝑎′) +
𝜚𝜚(𝑎𝑎′, 𝑏𝑏′) ≤ 2𝜚𝜚(𝑎𝑎,𝑎𝑎′) + 𝜚𝜚(𝑎𝑎, 𝑏𝑏′) < 3𝑟𝑟; hence [𝑎𝑎′, 𝑏𝑏′] ⊆ 𝑈𝑈.  

The question arises whether Corollary 2.9 may be extended to lsc at all pairs, and hence to continuity 
itself, but that is not possible, even for compact metric spaces. 

Example 2.11 
Let X be the unit circle with ϱ the intrinsic (i.e., “shortest arc”) metric on X. Then [⋅,⋅] fails to be lsc 
precisely at the antipodal pairs: Without loss of generality, let 𝑎𝑎 = ⟨0,−1⟩ and 𝑏𝑏 = ⟨0,1⟩, with U equal 
to X intersected with the open right half-plane. If 𝑏𝑏′ ∈ 𝑋𝑋 is any point with negative first coordinate, then 
[𝑎𝑎, 𝑏𝑏′] ∩ 𝑈𝑈 = ∅, while [𝑎𝑎, 𝑏𝑏] = 𝑋𝑋, and hence intersects U. It is easy to show that [⋅,⋅] is lsc at any 
nonantipodal pair, and that the set of such pairs is a dense open subset of ℱ2(𝑋𝑋) (more than just a 
dense residual set, as guaranteed by Corollary 2.9). 

The following four betweenness notions will prove useful in subsequent discussions. The first two are 
“transitivities” (in the sense of18,19). 

A basic ternary structure is τ-basic (resp., κ-basic) if it satisfies the transitivity (resp., convexity) axiom, 
namely that [𝑎𝑎, 𝑐𝑐] ⊆ [𝑎𝑎, 𝑏𝑏] (resp., [𝑐𝑐,𝑑𝑑] ⊆ [𝑎𝑎, 𝑏𝑏]) for all 𝑐𝑐,𝑑𝑑 ∈ [𝑎𝑎, 𝑏𝑏]. Clearly every κ-basic structure is τ-
basic. Menger proves in [14, Erste Untersuchungen, §2] that (the M-betweenness structures of) metric 
spaces are always τ-basic; he also provides an ad hoc example of a finite metric space that is not κ-basic. 
Here is one that is a bit more geometric. 

Example 2.12 
Let X be the unit circle from Example 2.11, and let 𝑌𝑌 =  𝑋𝑋 ∪  𝐻𝐻, where 𝐻𝐻 = [−1,1] × {0} and the 
“shortest arc” metric is extended in the obvious way. To show X is not κ-basic, we choose the points a 
and b as before, and we set 𝑐𝑐 = ⟨−1,0⟩, 𝑑𝑑 = ⟨1,0⟩, and 𝑒𝑒 = ⟨0,0⟩. Then {𝑐𝑐,𝑑𝑑} ⊆  [𝑎𝑎, 𝑏𝑏] =  𝑋𝑋 and 𝑒𝑒 ∈
 [𝑐𝑐,𝑑𝑑] = 𝐻𝐻, but 𝑒𝑒 ∉  [𝑎𝑎, 𝑏𝑏]. 

The second two notions are as follows: a basic ternary structure is weakly disjunctive if [𝑎𝑎, 𝑏𝑏] = [𝑎𝑎, 𝑐𝑐] ∪
[𝑐𝑐, 𝑏𝑏] whenever 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]; it is antisymmetric if intervals [𝑎𝑎, 𝑏𝑏] and [𝑎𝑎, 𝑐𝑐] are unequal whenever 𝑏𝑏 ≠ 𝑐𝑐. 

Proposition 2.13 
Every weakly disjunctive τ-basic structure is κ-basic. 

Proof 
Given 𝑐𝑐,𝑑𝑑 ∈  [𝑎𝑎, 𝑏𝑏], let 𝑥𝑥 ∈  [𝑐𝑐,𝑑𝑑] be arbitrary. By weak disjunctivity, we have either 𝑑𝑑 ∈  [𝑎𝑎, 𝑐𝑐] or 𝑑𝑑 ∈
 [𝑐𝑐, 𝑏𝑏]. In each instance, two applications of transitivity give us 𝑥𝑥 ∈  [𝑎𝑎, 𝑏𝑏]. 

In a basic ternary structure ⟨𝑋𝑋, [⋅,⋅,⋅]⟩, fix 𝑎𝑎 ∈  𝑋𝑋 and define the binary relation ≤𝑎𝑎 by setting 𝑥𝑥 ≤𝑎𝑎 𝑦𝑦 to 
mean 𝑥𝑥 ∈  [𝑎𝑎,𝑦𝑦]. Then transitivity in the betweenness sense is equivalent to saying each ≤𝑎𝑎 is transitive 
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in the order sense, and hence a pre-order. And for τ-basic structures, antisymmetry in the betweenness 
sense is equivalent to antisymmetry in the order sense, so that each ≤𝑎𝑎 becomes a partial order. For 
any 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋, define ≤𝑎𝑎,𝑏𝑏to be the restriction of ≤𝑎𝑎 to [𝑎𝑎, 𝑏𝑏]. The following is an amalgamation of 
Propositions 5.0.4 and 5.0.5 of,2 and will be of use later on. 

Lemma 2.14 
For any τ-basic structure that is both antisymmetric and weakly disjunctive, each ≤a is a tree order with 
least element (root) a, and each ≤𝑎𝑎,𝑏𝑏 is a total order with least element a and greatest element b. 

It is easy to see that metric spaces are always antisymmetric; the space X in Example 2.11 is κ-basic 
without being weakly disjunctive. 

The following result, also of use in the sequel, is about betweenness functions, and is an immediate 
consequence of [2, Theorem 5.0.6]. 

Lemma 2.15 
For a τ-basic weakly disjunctive ternary structure, antisymmetry is equivalent to injectivity of the 
betweenness function. 

3. Menger betweenness in geodesic spaces 
Our main aim in this section is to remove the word almost from the conclusion of Corollary 2.9. We 
show that this can be done if we add to the hypothesis the condition that the metric space is unique-
geodesic, meaning (roughly) that between any two points, there is—up to reparameterization—a unique 
path whose length is the distance between those points. 

In light of the fact that there is considerable terminological variation in the metric geometry literature 
(7,8,16 are good modern sources), we beg the reader's indulgence and carefully lay out the elementary 
notions we use. 

A connected compact Hausdorff topological space is called a continuum; a subcontinuum of a space is a 
subset that is a continuum in its subspace topology. A continuum—or any topological space—is 
nondegenerate if it has at least two points. A Peano continuum is a metrizable continuum that is also 
locally connected. 

Let ⟨𝑋𝑋, 𝜚𝜚⟩ be a metric space, with 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋. A path from a to b is a continuous map 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋, where 
[𝛼𝛼,𝛽𝛽] ⊆ ℝ is a closed bounded interval, 𝑝𝑝(𝛼𝛼) = 𝑎𝑎, and 𝑝𝑝(𝛽𝛽) = 𝑏𝑏. The interval [𝛼𝛼,𝛽𝛽] is the 
parameterization interval, a is the initial point, and b is the terminal point of the path. The image of p, 
a Peano subcontinuum of X, is called the support of p, and is denoted ⌊𝑝𝑝⌋. 

If p is a path from a to b, any path q from b to a is said to be oppositely oriented to p. As a prime 

example of this, we have the reverse path 𝑝𝑝
←

: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋, defined by 𝑝𝑝
←

(𝑠𝑠): = 𝑝𝑝(𝛼𝛼 + 𝛽𝛽 − 𝑠𝑠). Clearly �𝑝𝑝
←
� =

⌊𝑝𝑝⌋. 

We define the length 𝛬𝛬(𝑝𝑝) of a path 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 in the classical way. First define a subdivision of 

[𝛼𝛼,𝛽𝛽] to be a finite sequence 〈𝑠𝑠0, … , 𝑠𝑠𝑛𝑛〉, where 𝛼𝛼 = 𝑠𝑠0 ≤ 𝑠𝑠1 ≤ ⋯ ≤ 𝑠𝑠𝑛𝑛 = 𝛽𝛽. Given subdivision Σ =

〈𝑠𝑠0, … , 𝑠𝑠𝑛𝑛〉, we denote by 𝛬𝛬(𝑝𝑝,𝛴𝛴) the sum ∑ 𝜚𝜚(𝑝𝑝(𝑠𝑠𝑖𝑖),𝑝𝑝(𝑠𝑠𝑖𝑖 + 1)𝑛𝑛−1
𝑖𝑖=0 ). Then the length 𝛬𝛬(𝑝𝑝) of p is the 
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(possibly infinite) supremum of the set of real numbers 𝛬𝛬(𝑝𝑝,𝛴𝛴), as 𝛴𝛴 ranges over all subdivisions of 
[𝛼𝛼,𝛽𝛽]. 

The length of a path is largely—but not entirely—independent of its parameterization or orientation, as 
we delineate next. 

Given paths 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 and 𝑞𝑞: [𝛾𝛾, 𝛿𝛿] → 𝑋𝑋 from a to b, write 𝑝𝑝 ⪯ 𝑞𝑞 to mean that there is a weakly 
increasing surjection 𝜇𝜇: [𝛼𝛼,𝛽𝛽] → [𝛾𝛾, 𝛿𝛿] such that 𝑝𝑝 = 𝑞𝑞 ∘ 𝜇𝜇. This relation between paths from a to b is 
clearly reflexive and transitive, and we define ≃ to be the smallest equivalence relation containing ⪯. 

The following is well known and an easy exercise. 

Lemma 3.1 
If 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 is any path from a to b, then 𝛬𝛬 �𝑝𝑝

←
� = 𝛬𝛬(𝑝𝑝). Also if 𝑞𝑞: [𝛾𝛾, 𝛿𝛿] → 𝑋𝑋 is any path from a to b 

such that 𝑞𝑞 ≃ 𝑝𝑝, then 𝛬𝛬(𝑞𝑞) = 𝛬𝛬(𝑝𝑝). 

We next come to the important notion of path concatenation. Suppose 𝑝𝑝: [𝛼𝛼, 𝛾𝛾] → 𝑋𝑋 and 𝑞𝑞: [𝛾𝛾,𝛽𝛽] → 𝑋𝑋 

are paths, where 𝛼𝛼 ≤ 𝛾𝛾 ≤ 𝛽𝛽 and 𝑝𝑝(𝛾𝛾) = 𝑞𝑞(𝛾𝛾). Then the concatenation 𝛬𝛬 �𝑝𝑝
←
� = 𝛬𝛬(𝑝𝑝) is given by the 

rule: 

(𝑝𝑝𝑞𝑞)(𝑡𝑡) ≔ �
𝑝𝑝(𝑡𝑡) 𝑖𝑖𝑓𝑓 ∝≤ 𝑡𝑡 ≤ 𝛾𝛾
𝑞𝑞(𝑡𝑡) 𝑖𝑖𝑓𝑓 𝛾𝛾 ≤ 𝑡𝑡 ≤ 𝛽𝛽  

We leave the straightforward proof of the following to the reader. 

Lemma 3.2 
Under the assumptions above, 𝛬𝛬(𝑝𝑝𝑞𝑞) = 𝛬𝛬(𝑝𝑝) + 𝛬𝛬(𝑞𝑞). 

The metric space X is intrinsic if for each 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋, 𝜚𝜚(𝑎𝑎, 𝑏𝑏) equals the infimum of the lengths 𝛬𝛬(𝑝𝑝) as p 
ranges over all paths from a to b. If p is a path whose length is 𝜚𝜚(𝑎𝑎, 𝑏𝑏), then we call p a geodesic from a 

to b. From Lemma 3.1, 𝑝𝑝
←

 is a geodesic from b to a if and only if p is a geodesic from a to b. Also, if p and 
q are paths from a to b and 𝑝𝑝 ≃ 𝑞𝑞, then p is a geodesic if and only if q is one too. 

If each pair of points of X can be joined by a geodesic, we call X a geodesic space. Clearly every geodesic 
space is intrinsic, but the converse is not true: equipped with the euclidean metric, the punctured plane 

ℝ2 ∖ �〈0,0〉� is a (locally compact) intrinsic metric space, but no two points ⟨𝑎𝑎, 𝑏𝑏⟩ and ⟨−𝑎𝑎,−𝑏𝑏⟩ can 

be joined by a geodesic. It is well known16 that a locally compact intrinsic metric space is a geodesic 
space if its metric is complete. 

Lemma 3.3 
Let X be an intrinsic metric space, with 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 a geodesic from a to b and 𝛼𝛼 ≤ 𝛾𝛾 ≤ 𝛿𝛿 ≤ 𝛽𝛽. If 𝑐𝑐 =
𝑝𝑝(𝛾𝛾) and 𝑑𝑑 = 𝑝𝑝(𝛿𝛿), then 𝑝𝑝|[𝛾𝛾,𝛿𝛿], the restriction of p to [𝛾𝛾, 𝛿𝛿], is a geodesic from c to d. 

Proof 
Assume the contrary. Then there is a path 𝑞𝑞: [𝛾𝛾, 𝛿𝛿] → 𝑋𝑋 from c to d such that Λ(𝑞𝑞) < Λ�𝑝𝑝|[𝛾𝛾,𝛿𝛿]�. But 
then we have the concatenation 𝑟𝑟 = �𝑝𝑝|[𝛼𝛼,𝛾𝛾]�𝑞𝑞�𝑝𝑝|[𝛿𝛿,𝛽𝛽]�, a path from a to b; and, by Lemma 3.2, Λ(𝑟𝑟) =
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Λ�𝑝𝑝[𝛼𝛼,𝛾𝛾]�+ Λ(𝑞𝑞) + Λ�𝑝𝑝[𝛿𝛿,𝛽𝛽]� < Λ�𝑝𝑝[𝛼𝛼,𝛾𝛾]� + Λ�𝑝𝑝|[𝛾𝛾,𝛿𝛿]� + Λ�𝑝𝑝[𝛿𝛿,𝛽𝛽]� = Λ(𝑝𝑝). This contradicts the 
assumption that p is a geodesic. 

We now bring Menger betweenness into the discussion. 

Proposition 3.4 
If X is an intrinsic metric space and p is a geodesic from a to b, then ⌊p⌋⊆[a,b]. 

Proof 
Suppose 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 is a geodesic from a to b, and pick 𝛾𝛾 ∈  [𝛼𝛼,𝛽𝛽], with 𝑐𝑐 = 𝑝𝑝(𝛾𝛾). Then, by Lemma 
3.2, Lemma 3.3, 𝜚𝜚(𝑎𝑎, 𝑏𝑏) = Λ(𝑝𝑝) = Λ�𝑝𝑝|[𝛼𝛼,𝛾𝛾]� + Λ�𝑝𝑝|[𝛾𝛾,𝛽𝛽]� = 𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏). Hence  𝑐𝑐 ∈  [𝑎𝑎, 𝑏𝑏].  

Proposition 3.5 
Let X be an intrinsic metric space, with 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  𝑋𝑋 such that 𝑐𝑐 ∈  [𝑎𝑎, 𝑏𝑏]. If 𝑝𝑝: [𝛼𝛼, 𝛾𝛾] → 𝑋𝑋 is a geodesic 
from a to c and 𝑞𝑞: [𝛾𝛾,𝛽𝛽] → 𝑋𝑋 is a geodesic from c to b, then pq is a geodesic from a to b. 

Proof 
By Lemma 3.2, 𝛬𝛬(𝑝𝑝𝑞𝑞) = 𝛬𝛬(𝑝𝑝) + 𝛬𝛬(𝑞𝑞) = 𝜚𝜚(𝑎𝑎, 𝑐𝑐) + 𝜚𝜚(𝑐𝑐, 𝑏𝑏) since p and q are geodesics. The right-hand 
side is 𝜚𝜚(𝑎𝑎, 𝑏𝑏) since 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]; thus pq is a geodesic from a to b. 

Proposition 3.6 
Let X be a geodesic space. Then for any 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, [𝑎𝑎, 𝑏𝑏] = ⋃{⌊𝑝𝑝⌋:𝑝𝑝 is a geodesic from a to b}. In 
particular, M-intervals are connected closed bounded sets, and [⋅,⋅] maps ℱ2(𝑋𝑋) to 𝒦𝒦(𝑋𝑋). 

Proof 
By Proposition 3.4, the left-hand side contains the right. Now suppose 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]. Then there are 
geodesics 𝑞𝑞: [𝛼𝛼, 𝛾𝛾] → 𝑋𝑋, from a to c, and 𝑟𝑟: [𝛾𝛾,𝛽𝛽] → 𝑋𝑋, from c to b. By Lemma 3.5, 𝑝𝑝 = 𝑞𝑞𝑟𝑟 is a geodesic 
from a to b. Thus 𝑐𝑐 ∈ ⌊𝑝𝑝⌋ and we infer that the right-hand side contains the left. 

Each support is a Peano continuum in X. Since [𝑎𝑎, 𝑏𝑏] is a union of a family of connected sets containing 
the point a, it too must be connected. It is closed and bounded, by Proposition 2.1.  

We next set about showing that the supports of geodesics are arcs. Recall that a point a of a connected 
topological space X is a cut point if 𝑋𝑋 ∖ {𝑎𝑎} is disconnected; a noncut point otherwise. It is well known17 
that every nondegenerate continuum has at least two noncut points; arcs are homeomorphic copies of 
[0,1] ⊆ ℝ, and are characterized as being those metrizable continua possessing precisely two. If X is a 
continuum and 𝐴𝐴 ⊆ 𝑋𝑋, we say X is irreducible about A if no proper subcontinuum of X contains A. Every 
continuum is irreducible about its set of noncut points. The following will prove useful in achieving the 
main aim of this section. 

Proposition 3.7 
Let X be an intrinsic metric space. If 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 is a geodesic from a to b, then p is a monotone map; 
hence ⌊𝑝𝑝⌋ is either degenerate or an arc with noncut points a and b. 
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Proof 
If p is nonmonotone, then there are 𝛾𝛾, 𝛿𝛿, with 𝛼𝛼 ≤ 𝛾𝛾 < 𝛿𝛿 ≤ 𝛽𝛽, such that 𝑝𝑝(𝛾𝛾) = 𝑝𝑝(𝛿𝛿), but 𝑝𝑝|[𝛾𝛾,𝛿𝛿] is 
nonconstant. By Lemma 3.3, we know 𝑝𝑝|[𝛾𝛾,𝛿𝛿] is a geodesic from a point to itself. It is immediate from the 
definition that this cannot happen, that any geodesic from a point to itself must be constant. 

Thus p must be a monotone map. Assuming 𝑎𝑎 ≠ 𝑏𝑏 in ⌊𝑝𝑝⌋ and 𝑐𝑐 ∈ ⌊𝑝𝑝⌋ ∖ {𝑎𝑎, 𝑏𝑏}, it is easy to show that the 
monotonicity of p implies that c is a cut point of ⌊𝑝𝑝⌋. Since every nondegenerate continuum possesses at 
least two noncut points, we know that ⌊𝑝𝑝⌋ is an arc with noncut points a and b. 

The intrinsic metric space X is unique-geodesic at the pair {𝑎𝑎, 𝑏𝑏} if: (1) there is a geodesic p from a to b; 
and (2) for any geodesic q from a to b (or vice versa), we have ⌊𝑞𝑞⌋ = ⌊𝑝𝑝⌋. The space is unique-geodesic if 
it is unique-geodesic at each pair. 

Theorem 3.8 
(i) Every unique-geodesic space is weakly disjunctive. 
(ii) Every M-proper weakly disjunctive geodesic space is unique-geodesic. 

 
Proof 
Let X be any geodesic space, with 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ 𝑋𝑋 such that 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏]. Proposition 3.6 provides us with a 
geodesic 𝑝𝑝: [𝛼𝛼,𝛽𝛽] → 𝑋𝑋 from a to b, where 𝑐𝑐 ∈ ⌊𝑝𝑝⌋. Suppose 𝛼𝛼 ≤ 𝛾𝛾 ≤ 𝛽𝛽 is such that 𝑐𝑐 = 𝑝𝑝(𝛾𝛾). By Lemma 
3.3, 𝑞𝑞 = 𝑝𝑝|[𝛼𝛼,𝛾𝛾] (resp., 𝑟𝑟 = 𝑝𝑝|[𝛾𝛾,𝛽𝛽]) is a geodesic from a to c (resp., from c to b), and by Proposition 3.4, 
we have ⌊𝑞𝑞⌋ ⊆ [𝑎𝑎, 𝑐𝑐] (resp., ⌊𝑟𝑟⌋ ⊆ [𝑐𝑐, 𝑏𝑏]). 

Given any 𝑑𝑑 ∈ [𝑎𝑎, 𝑏𝑏], uniqueness of geodesic provides us with some 𝛼𝛼 ≤ 𝛿𝛿 ≤ 𝛽𝛽 such that 𝑑𝑑 = 𝑝𝑝(𝛿𝛿). If 
𝛿𝛿 ≤ 𝛾𝛾, we have 𝑑𝑑 ∈ [𝑎𝑎, 𝑐𝑐], by the argument in the last paragraph; if 𝛾𝛾 ≤ 𝛿𝛿, we have 𝑑𝑑 ∈ [𝑐𝑐, 𝑏𝑏]. Hence X 
is weakly disjunctive. 

Now suppose X is an M-proper weakly disjunctive geodesic space. Then by Lemma 2.14, each binary 
relation ≤𝑎𝑎,𝑏𝑏 is a total order on [𝑎𝑎, 𝑏𝑏], with least element a and greatest element b. 

Thus [𝑎𝑎, 𝑏𝑏] has both an order topology induced by ≤𝑎𝑎,𝑏𝑏 and a subspace topology induced by ϱ. We first 
claim that every order-closed subset of [𝑎𝑎, 𝑏𝑏] is subspace-closed: given 𝑥𝑥,𝑦𝑦 ∈ [𝑎𝑎, 𝑏𝑏] with 𝑥𝑥 ≤𝑎𝑎,𝑏𝑏 𝑦𝑦, let 
[𝑥𝑥,𝑦𝑦]𝑎𝑎,𝑏𝑏: = �𝑧𝑧 ∈ [𝑎𝑎, 𝑏𝑏]: 𝑥𝑥 ≤𝑎𝑎,𝑏𝑏 𝑧𝑧 ≤𝑎𝑎,𝑏𝑏 𝑦𝑦�. Then a closed-set subbase for the order-closed sets consists of 
order-intervals of the form [𝑎𝑎,𝑦𝑦]𝑎𝑎,𝑏𝑏 and [𝑥𝑥, 𝑏𝑏]𝑎𝑎,𝑏𝑏, 𝑥𝑥,𝑦𝑦 ∈ [𝑎𝑎, 𝑏𝑏]. Then it is straightforward from the 
definition of ≤𝑎𝑎,𝑏𝑏 that [𝑎𝑎,𝑦𝑦]𝑎𝑎,𝑏𝑏 = [𝑎𝑎,𝑦𝑦] and [𝑥𝑥, 𝑏𝑏]𝑎𝑎,𝑏𝑏 = [𝑥𝑥, 𝑏𝑏] always, so by Proposition 2.1 each of these 
order-intervals is subspace-closed. This proves our claim. 

Because the metric is M-proper, we know that the subspace topology on [a,b] is compact. Hence, so is 
the order topology. Since the smaller topology is also Hausdorff, the two topologies must coincide. Since 
M-intervals are also connected, by Proposition 3.6, this makes [𝑎𝑎, 𝑏𝑏] a totally ordered continuum with 
end points a and b. Therefore [𝑎𝑎, 𝑏𝑏] is an arc with noncut points a and b, showing that X is unique-
geodesic. 

Question 3.9 
Can the hypothesis of being M-proper be removed from Theorem 3.8 (ii)? 
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The space in Example 2.11 is a proper (indeed compact) geodesic space that fails to be unique-geodesic 
at some (i.e., the antipodal) pairs. We next show that this condition is necessary to have failure of lsc at 
a pair. 

Theorem 3.10 
For a proper geodesic space, being unique-geodesic at a pair of points implies that [⋅,⋅] is lsc (and hence 
continuous) at that pair. 

Proof 
By Theorem 2.5, all we need to concentrate on is lower semicontinuity. 

Let X be a proper geodesic space. Then, by Proposition 3.6, every M-interval in X is a subcontinuum. 

Fix {𝑎𝑎, 𝑏𝑏} ∈ ℱ2(𝑋𝑋) so that there is just one geodesic from a to b. Assuming failure of lsc at {𝑎𝑎, 𝑏𝑏}, we 
have an open 𝑈𝑈 ⊆ 𝑋𝑋 such that: (1) [𝑎𝑎, 𝑏𝑏] ∩  𝑈𝑈 ≠ ∅; and (2) for each 𝑛𝑛 ∈ ℕ, there are 𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛, where 
𝜚𝜚(𝑎𝑎, 𝑎𝑎𝑛𝑛),𝜚𝜚(𝑏𝑏, 𝑏𝑏𝑛𝑛) ≤ 1

𝑛𝑛
 and [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛] ∩ 𝑈𝑈 = ∅. 

Suppose 𝑐𝑐 ∈ � [𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛]∞
𝑛𝑛=1 . Then, arguing as in the proof of Theorem 2.5, we infer that 𝜚𝜚(𝑐𝑐,𝑎𝑎) ≤ 3 +

𝜚𝜚(𝑏𝑏,𝑎𝑎); hence that � [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛]∞
𝑛𝑛=1 is bounded in X. Let 𝑌𝑌 = � [𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛]∞

𝑛𝑛=1
�����������������‾

. Then Y, being both closed and 
bounded in X, is compact. Consequently 2𝑌𝑌 is a compact metrizable subspace of 2𝑋𝑋, and the sequence 
⟨[𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛]⟩ has a subsequence that converges to something in 2𝑌𝑌. Without loss of generality, we may 
assume the sequence itself converges, say, to 𝐴𝐴 ∈ 2𝑌𝑌. 

To show 𝑎𝑎 ∈ 𝐴𝐴, suppose otherwise. Invoking regularity, we have open 𝑉𝑉 ⊆ 𝑋𝑋 with 𝑎𝑎 ∈ 𝑉𝑉 ⊆ 𝑉𝑉‾ ⊆ 𝑋𝑋 ∖ 𝐴𝐴. 
But then 𝐴𝐴 ∈〚𝑋𝑋 ∖ 𝑉𝑉‾〛, and hence for all but finitely many 𝑛𝑛 ∈ ℕ, we have [𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛] ∈〚𝑋𝑋 ∖ 𝑉𝑉‾〛. This 
says that [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛] ∩ 𝑉𝑉 = ∅ for all but finitely many n, and hence that 𝑎𝑎𝑛𝑛 ↛ 𝑎𝑎. Similarly we show 𝑏𝑏 ∈ 𝐴𝐴. 

If A were not connected, we could invoke normality to find disjoint open sets V,W such that 𝐴𝐴 ∈
〚𝑉𝑉,𝑊𝑊〛. But then [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛] ∈〚𝑉𝑉,𝑊𝑊〛for some 𝑛𝑛 ∈ ℕ, contradicting connectedness in M-intervals. 
Now we know A is a subcontinuum of X containing {𝑎𝑎, 𝑏𝑏}. 

Next we show 𝐴𝐴 ⊆ [𝑎𝑎, 𝑏𝑏]. Indeed, fix 𝑐𝑐 ∈ 𝐴𝐴; and for 𝑛𝑛 ∈ ℕ, let 𝑈𝑈𝑛𝑛 = 𝐵𝐵 �𝑐𝑐; 1
𝑛𝑛
�. Using the facts that 

[𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛] → 𝐴𝐴 and that 〚𝑈𝑈1,𝑋𝑋〛 is a Vietoris-open neighborhood of A, let 𝑛𝑛1 ∈ ℕ be least such that 
[𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛] ∩ 𝑈𝑈1 ≠ ∅ for all 𝑛𝑛 ≥ 𝑛𝑛1. Pick 𝑐𝑐𝑛𝑛1 ∈ �𝑎𝑎𝑛𝑛1 ,𝑏𝑏𝑛𝑛1� ∩ 𝑈𝑈1. For our inductive hypothesis, assume we 
have 𝑛𝑛1 < ⋯ < 𝑛𝑛𝑘𝑘, points 𝑐𝑐𝑛𝑛𝑖𝑖 ∈ �𝑎𝑎𝑛𝑛𝑖𝑖 ,𝑏𝑏𝑛𝑛𝑖𝑖� ∩ 𝑈𝑈𝑛𝑛𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, and that [𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛]∩ 𝑈𝑈𝑛𝑛𝑘𝑘 ≠ ∅ for all 𝑛𝑛 ≥ 𝑛𝑛𝑘𝑘. 
Then pick 𝑛𝑛𝑘𝑘+1 > 𝑛𝑛𝑘𝑘 to be least such that [𝑎𝑎𝑛𝑛, 𝑏𝑏𝑛𝑛]∩ 𝑈𝑈𝑛𝑛𝑘𝑘+1 ≠ ∅ for all 𝑛𝑛 ≥ 𝑛𝑛𝑘𝑘+1. Fix 𝑐𝑐𝑛𝑛𝑘𝑘+1 ∈
�𝑎𝑎𝑛𝑛𝑘𝑘+1 ,𝑏𝑏𝑛𝑛𝑘𝑘+1� ∩ 𝑈𝑈𝑛𝑛𝑘𝑘+1. This gives us a sequence ⟨cni⟩ converging to c. Since 𝜚𝜚�𝑎𝑎𝑛𝑛𝑘𝑘 , 𝑐𝑐𝑛𝑛𝑘𝑘� + 𝜚𝜚�𝑐𝑐𝑛𝑛𝑘𝑘 ,𝑏𝑏𝑛𝑛𝑘𝑘� =
𝜚𝜚�𝑎𝑎𝑛𝑛𝑘𝑘 ,𝑏𝑏𝑛𝑛𝑘𝑘�, and bnk→b, we know ϱ(a,c)+ϱ(c,b)=ϱ(a,b). Hence 𝑐𝑐 ∈ [𝑎𝑎, 𝑏𝑏], and we infer 𝐴𝐴 ⊆ [𝑎𝑎, 𝑏𝑏]. 

Finally, by Proposition 3.7, and since there is just one geodesic from a to b, we know that [𝑎𝑎, 𝑏𝑏] is an arc 
with noncut points a,b. A is a subcontinuum of [𝑎𝑎, 𝑏𝑏] containing the noncut points of [𝑎𝑎, 𝑏𝑏]; hence 𝐴𝐴 =
[𝑎𝑎, 𝑏𝑏], thanks to irreducibility. Thus 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅, and we may conclude—as above—that [𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛] ∩ 𝑈𝑈 ≠ ∅ 
for some n, which is a contradiction. 
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We can now put Theorem 2.5, Theorem 3.10 together to fulfill the stated aim of this section, to remove 
the word almost from Corollary 2.9. 

Corollary 3.11 
For a proper unique-geodesic space, [⋅,⋅] is continuous at every pair. 
 
Because M-betweenness is always antisymmetric, we may combine Lemma 2.15, Proposition 
3.6, Theorem 3.8, and Corollary 3.11 to obtain the following. 
 
Corollary 3.12 
For a proper unique-geodesic space X,[⋅,⋅] is a continuous injection from ℱ2(𝑋𝑋) to 𝒦𝒦(𝑋𝑋). It is a 
topological embedding if X is compact. 

 4. Menger betweenness in normed vector spaces 
In this section we consider Menger betweenness in geodesic spaces arising from linear algebra. Here we 
take a normed (vector) space to be a pair ⟨𝑋𝑋, ∥⋅∥⟩, where X is a vector space over the field ℝ of real 
numbers and ∥⋅∥ is a norm. (As usual, we abuse notation slightly, writing X for ⟨𝑋𝑋, ∥⋅∥⟩ when there is no 
possible ambiguity.) We define the (closed) unit ball and unit sphere of X by 𝐵𝐵𝑋𝑋: = {𝑥𝑥 ∈ 𝑋𝑋: ‖𝑥𝑥‖ ≤ 1} 
and 𝑆𝑆𝑋𝑋: = {𝑥𝑥 ∈ 𝑋𝑋: ‖𝑥𝑥‖ = 1}, respectively. A norm on a vector space naturally gives rise to a metric ϱ, 
defined by 𝜚𝜚(𝑥𝑥,𝑦𝑦): =∥ 𝑥𝑥 − 𝑦𝑦 ∥, which we refer to as the norm metric. We obtain geodesics in normed 
spaces in the simplest possible way: for any 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, define the standard straight path 𝐿𝐿𝑎𝑎,𝑏𝑏: [0,1] → 𝑋𝑋 
by 𝐿𝐿𝑎𝑎,𝑏𝑏(𝑠𝑠): = (1 − 𝑠𝑠)𝑎𝑎 + 𝑠𝑠𝑏𝑏. The support [𝑎𝑎, 𝑏𝑏]𝖫𝖫: = �𝐿𝐿𝑎𝑎,𝑏𝑏� is, of course, the closed line segment with end 
points a,b. 

A normed space X is called strictly convex if for any 𝑎𝑎, 𝑏𝑏 ∈ 𝑆𝑆𝑋𝑋   distinct, [𝑎𝑎, 𝑏𝑏]𝖫𝖫 ∩ 𝑆𝑆𝑋𝑋 = {𝑎𝑎, 𝑏𝑏}. Among the 
strictly convex normed spaces are those whose norms arise from an inner product (e.g., Hilbert spaces, 
those inner product spaces whose norm metrics are complete). There are many characterizations of 
strict convexity; the one of most relevance here is the following. 

Proposition 4.1 
[7, Proposition I.1.6] 
In any normed space, 𝐿𝐿𝑎𝑎,𝑏𝑏   is a geodesic from a to b. Moreover, a normed space is strictly convex if and 
only if it is unique-geodesic. 

Consequently, by Proposition 3.6, [𝑎𝑎, 𝑏𝑏] ⊇ [𝑎𝑎, 𝑏𝑏]𝖫𝖫 whenever a and b are in a normed space X, and 
equality always holds if and only if X is strictly convex. Thus, in this context, we may use the terms 
strictly convex and unique-geodesic interchangeably. Below, in Theorem 4.10, we provide a complete 
geometric description of the intervals [𝑎𝑎, 𝑏𝑏], in all cases. 

The following result provides analogues—but not consequences—of Theorem 3.10 and Corollary 3.11. 
As is well known, norm metrics are proper exactly when the vector space dimension is finite, and that is 
not assumed here. Note that the usc component of the result below easily follows from later results 
(i.e., Theorem 4.10, Theorem 4.21)—the additional proof given below is included as it is simple and 
direct. 
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Theorem 4.2 
Let X be a normed space and let 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋. If [𝑎𝑎, 𝑏𝑏] = [𝑎𝑎, 𝑏𝑏]𝖫𝖫, then [⋅,⋅] is lsc at {𝑎𝑎, 𝑏𝑏}. Moreover, if X is 
unique-geodesic, then [⋅,⋅] is usc (and consequently continuous) at every pair. 

Proof 
Let 𝑎𝑎, 𝑏𝑏 ∈  𝑋𝑋 and 𝑟𝑟 > 0. Note that if ∥ 𝑎𝑎′ − 𝑎𝑎 ∥, ∥ 𝑏𝑏′ − 𝑏𝑏 ∥≤ 𝑟𝑟, then 
 
∥ �(1 − 𝑠𝑠)𝑎𝑎′ + 𝑠𝑠𝑏𝑏′� − �(1 − 𝑠𝑠)𝑎𝑎 + 𝑠𝑠𝑏𝑏� ∥=∥ (1 − 𝑠𝑠)(𝑎𝑎′ − 𝑎𝑎) + 𝑠𝑠(𝑏𝑏′ − 𝑏𝑏) ∥≤ 𝑟𝑟, 
 

whenever 0 ≤  𝑠𝑠 ≤ 1. Thus each point in [𝑎𝑎′, 𝑏𝑏′]𝖫𝖫 is r-close to some point in [𝑎𝑎, 𝑏𝑏]𝖫𝖫. 

It follows that if [𝑎𝑎, 𝑏𝑏] = [𝑎𝑎, 𝑏𝑏]𝖫𝖫, then [⋅,⋅] is lsc at {𝑎𝑎, 𝑏𝑏}. Indeed, if U is open and [𝑎𝑎, 𝑏𝑏] ∩ 𝑈𝑈 = [𝑎𝑎, 𝑏𝑏]𝖫𝖫 ∩
𝑈𝑈 ≠ ∅, then using the observation above, [𝑎𝑎′, 𝑏𝑏′] ∩ 𝑈𝑈 ⊇ [𝑎𝑎′, 𝑏𝑏′]𝖫𝖫 ∩ 𝑈𝑈 ≠ ∅ for a sufficiently small 𝑟𝑟 > 0. 

Now assume that X is unique-geodesic. For upper semicontinuity, we simply remark that, given an open 
set U such that [𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈, the compactness of [𝑎𝑎, 𝑏𝑏] = [𝑎𝑎, 𝑏𝑏]𝖫𝖫 ensures that, for a sufficiently small 𝑟𝑟 >
0, we know that 𝑦𝑦 ∈ 𝑈𝑈 whenever y is r-close to a point in [𝑎𝑎, 𝑏𝑏]. Hence [𝑎𝑎′, 𝑏𝑏′] = [𝑎𝑎′, 𝑏𝑏′]𝖫𝖫 ⊆ 𝑈𝑈 for such 
an r. 

We next consider how being unique-geodesic can be cast in terms of convexity. A subset K of a normed 
space X is M-convex (resp., linearly convex) if whenever 𝑎𝑎, 𝑏𝑏 ∈ 𝐾𝐾, we also have [𝑎𝑎, 𝑏𝑏] ⊆ 𝐾𝐾 (resp., 
[𝑎𝑎, 𝑏𝑏]𝖫𝖫 ⊆ 𝐾𝐾. Linear convexity is the usual notion of convexity from linear algebra, and relies solely on the 
vector space structure of X. On the other hand, the clearly stronger notion of M-convexity is a special 
case of something that makes sense for any basic ternary structure. (Indeed, the ternary structure 
associated with a metric space is κ-basic precisely when its M-intervals are M-convex.) 

The following is to be expected of M-betweenness in normed spaces. 

Proposition 4.3 
The M-intervals of a normed space are linearly convex. 

Proof 
Given points 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 ∈  𝑋𝑋, with 𝑐𝑐,𝑑𝑑 ∈  [𝑎𝑎, 𝑏𝑏], and 𝑒𝑒 = (1 − 𝑠𝑠)𝑐𝑐 + 𝑠𝑠𝑑𝑑 ∈ [𝑐𝑐,𝑑𝑑]𝖫𝖫, it suffices to show that 
∥ 𝑒𝑒 − 𝑎𝑎 ∥ +∥ 𝑏𝑏 − 𝑒𝑒 ∥≤∥ 𝑏𝑏 − 𝑎𝑎 ∥. 

We are already given that ∥ 𝑐𝑐 − 𝑎𝑎 ∥ +∥ 𝑏𝑏 − 𝑐𝑐 ∥=∥ 𝑏𝑏 − 𝑎𝑎 ∥=∥ 𝑑𝑑 − 𝑎𝑎 ∥ +∥ 𝑏𝑏 − 𝑑𝑑 ∥. Hence 
 
‖𝑒𝑒 − 𝑎𝑎‖ + ‖𝑏𝑏 − 𝑒𝑒‖ = ��(1 − 𝑠𝑠)𝑐𝑐 + 𝑠𝑠𝑑𝑑� − 𝑎𝑎� + �𝑏𝑏 − �(1 − 𝑠𝑠)𝑐𝑐 + 𝑠𝑠𝑑𝑑��

= ‖(1 − 𝑠𝑠)(𝑐𝑐 − 𝑎𝑎) + 𝑠𝑠(𝑑𝑑 − 𝑎𝑎)‖ + ‖(1 − 𝑠𝑠)(𝑏𝑏 − 𝑐𝑐) + 𝑠𝑠(𝑏𝑏 − 𝑑𝑑)‖
≤ (1 − 𝑠𝑠)(‖𝑐𝑐 − 𝑎𝑎‖ + ‖𝑏𝑏 − 𝑐𝑐‖) + 𝑠𝑠(‖𝑑𝑑 − 𝑎𝑎‖ + ‖𝑏𝑏 − 𝑑𝑑‖) = ‖𝑏𝑏 − 𝑎𝑎‖,

 

as desired. 

Remark 4.4 
As Example 2.12 shows, one cannot immediately generalize Proposition 4.3 to geodesic spaces, with 
[𝑐𝑐,𝑑𝑑]𝖫𝖫 being replaced with even a unique-geodesic from c to d. 
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In the sequel we will refer to linearly convex sets simply as convex. While the unit ball (or any open or 
closed ball) in a normed space is convex, it is not necessarily M-convex, as Example 4.5 below shows. 

Example 4.5 
Let 𝑋𝑋 = ℝ𝑝𝑝

𝑛𝑛: = 〈ℝ𝑛𝑛,‖⋅‖𝑝𝑝〉, where the p-norm (𝑝𝑝 > 1) of 𝑥𝑥
→

= 〈𝑥𝑥
→

(1), … , 𝑥𝑥
→

(𝑛𝑛)〉is given by �𝑥𝑥
→
�
𝑝𝑝

: =

(� �𝑥𝑥
→

(𝑖𝑖)|𝑝𝑝�
𝑛𝑛

𝑖𝑖=1

1
𝑝𝑝
. (So the usual euclidean norm is just ‖⋅‖2.) The ∞-norm is given by �𝑥𝑥

→
�
∞

: =

max ��𝑥𝑥
→

(1)� , … , �𝑥𝑥
→

(𝑛𝑛)��, which in turn equals lim𝑝𝑝→∞ �𝑥𝑥
→
�
𝑝𝑝

. (See, e.g., [7, I.1], [9, III.1].) 

For 𝑋𝑋 = ℝ1
2, the unit ball 𝐵𝐵𝑋𝑋  is the square with corners ⟨±1,0⟩ and ⟨0, ±1⟩, and the M-intervals are 

rectangles with sides parallel to the coordinate axes. In particular, when 𝑎𝑎
→
∈ 𝐵𝐵𝑋𝑋 is in the first quadrant, 

�0
→

,𝑎𝑎
→
� is the rectangle with lower-left corner 0

→
  and upper-right corner 𝑎𝑎

→
 . All M-intervals of the form 

�0
→

,𝑎𝑎
→
�, where 𝑎𝑎

→
∈ 𝐵𝐵𝑋𝑋, lie in 𝐵𝐵𝑋𝑋; however if 𝑎𝑎

→
= 〈0,1〉 and 𝑏𝑏

→
= 〈1,0〉, then �𝑎𝑎

→
, 𝑏𝑏
→
� = [0,1] × [0,1] ⊈

𝐵𝐵𝑋𝑋. Hence 𝐵𝐵𝑋𝑋 is not M-convex. The case with 𝑝𝑝 = ∞ is similar because the normed spaces ℝ1
2 and ℝ∞

2  
are isometrically isomorphic, via the linear transformation ⟨𝑥𝑥,𝑦𝑦⟩ ↦ ⟨𝑥𝑥 − 𝑦𝑦, 𝑥𝑥 + 𝑦𝑦⟩. 

Finally, when 1 < 𝑝𝑝 < ∞, the unit sphere contains no nondegenerate closed line segments; 
consequently ℝ𝑝𝑝

2  is strictly convex; and, by Proposition 4.1, unique-geodesic. 

The following simple example shows that normed vector spaces need not be κ-basic, and complements 
Example 2.12. 

Example 4.6 
ℝ∞
3  s not κ-basic. To see this, let 𝑎𝑎

→
= 〈0,0,0〉, 𝑏𝑏

→
= 〈1,0,0〉, 𝑐𝑐

→
= 〈 1

2
, 1
2

, 0〉, 𝑑𝑑
→

= 〈 1
2

,−1
2

, 0〉, 

and 𝑒𝑒
→

= 〈0,0, 1
2
〉. Then: (1) �𝑎𝑎

→
− 𝑏𝑏

→
� = 1, 

�𝑎𝑎
→
− 𝑐𝑐

→
� + �𝑐𝑐

→
− 𝑏𝑏

→
� = �𝑎𝑎

→
− 𝑑𝑑

→
� + �𝑑𝑑

→
− 𝑏𝑏

→
� = 1

2
+ 1

2
= 1, so  

�𝑐𝑐
→

,𝑑𝑑
→
� ⊆ �𝑎𝑎

→
, 𝑏𝑏
→
�; (2) �𝑐𝑐

→
− 𝑑𝑑

→
� = 1, �𝑐𝑐

→
− 𝑒𝑒

→
� + �𝑒𝑒

→
− 𝑑𝑑

→
� = 1

2
+ 1

2
= 1, so 𝑒𝑒 ∈ [𝑐𝑐,𝑑𝑑]; but (3)  

�𝑎𝑎
→
− 𝑒𝑒

→
� + �𝑒𝑒

→
− 𝑏𝑏

→
� = 1

2
+ 1 = 3

2
> �𝑎𝑎

→
− 𝑏𝑏

→
�, so 𝑒𝑒 ∉ �𝑎𝑎

→
, 𝑏𝑏
→
�. 

Question 4.7 
Is every two-dimensional normed vector space κ-basic? 

The rest of this section is devoted to a further exploration of conditions that allow (or disallow) 
semicontinuity of the M-betweenness function at a given pair, offering a complete characterization in 
the usc case. In order to do this—as well as to address the problem of upper semicontinuity—we will 
need some vocabulary from convexity theory. 

Let X be a vector space, let 𝐾𝐾 ⊆ 𝑋𝑋 be convex, and let 𝑎𝑎 ∈ 𝐾𝐾. We define the facet of a in K to be the set 
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𝐹𝐹(𝑎𝑎) = {𝑏𝑏 ∈ 𝐾𝐾: 𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐾𝐾 for some 𝑠𝑠 ∈ (0,1)}. 

Remark 4.8 
This definition is equivalent to the one given in Bourbaki [6, TVS II.87]. The set 𝐹𝐹(𝑎𝑎) is always convex, 
however, as is noted in Bourbaki, if X is in addition a topological vector space (for example, a normed 
vector space), then 𝐹𝐹(𝑎𝑎) 

is not always closed. While Example 4.18 below is provided principally for another purpose, it happens 
to be another example of this phenomenon. 

It is clear that 𝑎𝑎 ∈ 𝐹𝐹(𝑎𝑎), and if 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 

𝑐𝑐 ≔ 𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐾𝐾,, 

where 𝑠𝑠 ∈ (0,1), then 𝑎𝑎 = (1 − 𝑠𝑠)𝑏𝑏 + 𝑠𝑠𝑐𝑐 and, by considering 1−s, we have 𝑐𝑐 ∈ 𝐹𝐹(𝑎𝑎) as well. Recall that 
𝑎𝑎 ∈ 𝐾𝐾 is an extreme point of K if no closed line segment containing a in its interior lies entirely in K. Let 
𝑒𝑒𝑥𝑥𝑡𝑡(𝐾𝐾) denote the (possibly empty) set of extreme points of K. Evidently, 𝑎𝑎 ∈ 𝑒𝑒𝑥𝑥𝑡𝑡(𝐾𝐾) if and only if 
𝐹𝐹(𝑎𝑎) = {𝑎𝑎}. 

Suppose that X is a normed vector space, 𝐾𝐾 ⊆ 𝑋𝑋 is closed, bounded and convex, 𝑎𝑎 ∈ 𝐾𝐾 and 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎). 
We define 

𝜎𝜎𝑎𝑎(𝑏𝑏) = inf{𝑠𝑠 > 0: 𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐾𝐾}.. 

Clearly 𝜎𝜎𝑎𝑎(𝑎𝑎) = 0 and 𝜎𝜎𝑎𝑎(𝑏𝑏) < 1 in general. The boundedness of K and the inequality 

‖𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏‖ ≥ 𝑠𝑠−1‖𝑎𝑎 − 𝑏𝑏‖ − ‖𝑏𝑏‖,, 

demonstrates that if 𝑏𝑏 ≠ 𝑎𝑎, then 𝜎𝜎𝑎𝑎(𝑏𝑏) > 0. Moreover, as K is closed, the infimum in the definition of 
𝜎𝜎𝑎𝑎(𝑏𝑏) is attained whenever 𝑏𝑏 ≠ 𝑎𝑎. Furthermore, regardless of the value of 𝜎𝜎𝑎𝑎(𝑏𝑏), by the convexity of K, 
we see that 𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐾𝐾 whenever 𝑠𝑠 ∈ [𝜎𝜎𝑎𝑎(𝑏𝑏), 1] ∩ (0,1]. If a and K are clear from the 
context, we will write 𝜎𝜎(𝑏𝑏) instead of 𝜎𝜎𝑎𝑎(𝑏𝑏). 

The following lemma gives a useful criterion for when a convergent sequence of points in 𝐹𝐹(𝑎𝑎) 
converges in 𝐹𝐹(𝑎𝑎). 

Lemma 4.9 
Fix a bounded, closed convex set K and 𝑎𝑎 ∈ 𝐾𝐾. Let ⟨𝑏𝑏𝑛𝑛⟩ be a sequence from 𝐹𝐹(𝑎𝑎) converging to 𝑏𝑏 ∈ 𝑋𝑋, 
and assume that 𝜎𝜎(𝑏𝑏𝑛𝑛) → 𝑠𝑠 ∈ [0,1). Then 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 𝜎𝜎(𝑏𝑏) ≤ 𝑠𝑠. 

Proof 
Suppose that 𝑏𝑏𝑛𝑛 ≠ 𝑎𝑎. Then 𝜎𝜎(𝑏𝑏𝑛𝑛) > 0 and by the infimum attainment discussed above, we have 

𝜎𝜎(𝑏𝑏𝑛𝑛)−1𝑎𝑎 + (1 − 𝜎𝜎(𝑏𝑏𝑛𝑛)−1)𝑏𝑏𝑛𝑛 ∈ 𝐾𝐾, 

and thus 

(1)  

𝑎𝑎 + (𝜎𝜎(𝑏𝑏𝑛𝑛) − 1)𝑏𝑏𝑛𝑛 ∈ 𝜎𝜎(𝑏𝑏𝑛𝑛)𝐾𝐾.  
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Observe that (1) also holds whenever 𝑏𝑏𝑛𝑛 = 𝑎𝑎: if 𝑏𝑏𝑛𝑛 = 𝑎𝑎 then 𝜎𝜎(𝑏𝑏𝑛𝑛) = 0 and 𝜎𝜎(𝑏𝑏𝑛𝑛)𝐾𝐾 = {0}. By taking 
limits in (1), and using the fact that K is closed, 𝑏𝑏 ∈ 𝐾𝐾 and 

(2) 

𝑎𝑎 + (𝑠𝑠 − 1)𝑏𝑏 ∈ 𝑠𝑠𝐾𝐾. 
If 𝑠𝑠 = 0 then we glean from this that 𝑎𝑎 − 𝑏𝑏 ∈  0𝐾𝐾 = {0}, and so 𝑏𝑏 = 𝑎𝑎 ∈ 𝐹𝐹(𝑎𝑎), and 𝜎𝜎(𝑏𝑏) = 0 ≤ 𝑠𝑠. If 
𝑠𝑠 > 0 then 𝑠𝑠 ∈ (0,1), and it follows from (2) that 

𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐾𝐾,  

which implies that 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and, by definition, 𝜎𝜎(𝑏𝑏) ≤ 𝑠𝑠. 

Now assume X has a norm. In the sequel, we will be most concerned with the case 𝐾𝐾 = 𝐵𝐵𝑋𝑋, the (closed) 
unit ball of X. In this scenario, X is strictly convex if and only if 𝐹𝐹(𝑎𝑎) = {𝑎𝑎} for all 𝑎𝑎 ∈ 𝑆𝑆𝑋𝑋, or equivalently, 
ext(𝐵𝐵𝑋𝑋) = 𝑆𝑆𝑋𝑋. (In Example 4.5, with 1 <  𝑝𝑝 < ∞, we have ext(𝐵𝐵𝑋𝑋) = 𝑆𝑆𝑋𝑋. When 𝑝𝑝 = 1 (resp., 𝑝𝑝 = ∞), 

ext(𝐵𝐵𝑋𝑋) = �〈± 1,0〉,〈0, ±1〉� (resp., �〈± √2, ±√2〉�).) If a and b are distinct points of X, the 

mapping 𝑥𝑥 ↦ 𝑥𝑥−𝑎𝑎
‖𝑏𝑏−𝑎𝑎‖

 is an affine transformation on X that takes the M-interval [𝑎𝑎, 𝑏𝑏] to the M-interval 

�0, 𝑏𝑏−𝑎𝑎
‖𝑏𝑏−𝑎𝑎‖

�, whose nonzero bracket point lies on 𝑆𝑆𝑋𝑋. These two intervals are topologically and (with the 

obvious exception of the scaling factor) geometrically identical. Moreover, [𝑐𝑐𝑐𝑐𝑡𝑡,⋅] usc or lsc at {𝑎𝑎, 𝑏𝑏} if 

and only if the same is true at �0, 𝑏𝑏−𝑎𝑎
‖𝑏𝑏−𝑎𝑎‖

�; hence we may confine our attention to the geometric analysis 

of M-intervals of the form [0,𝑎𝑎], where ∥ 𝑎𝑎 ∥= 1. 

We wish to relate the geometry of the M-betweenness interval [0,𝑎𝑎] to that of the facet 𝐹𝐹(𝑎𝑎) of 𝑎𝑎 ∈
𝑆𝑆𝑋𝑋. Observe that 𝐹𝐹(𝑎𝑎) ⊆ 𝑆𝑆𝑋𝑋: if 𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 ∈ 𝐵𝐵𝑋𝑋, then 

𝑠𝑠 ≥ ‖𝑎𝑎 + (𝑠𝑠 − 1)𝑏𝑏‖ ≥ ‖𝑎𝑎‖ − (1 − 𝑠𝑠)‖𝑏𝑏‖ = 1 − (1 − 𝑠𝑠)‖𝑏𝑏‖,  

which implies ∥ 𝑏𝑏 ∥≥ 1. 

From Proposition 3.6, we know that an M-interval is the union of (the supports of) all geodesics joining 
the points of a bracket pair for the interval. In the next result we show that an M-interval is also a union 
of closed line segments, all fanning out from one bracket point. In order to determine the other end 
point of such a line segment, we use the s-functions introduced above. 

In the following, 𝐾𝐾 = 𝐵𝐵𝑋𝑋. The following is a strengthening of Proposition 4.1. 

Theorem 4.10 
Let X be a normed vector space, with a 𝑎𝑎 ∈ 𝑆𝑆𝑋𝑋. Then 

[0,𝑎𝑎] = {𝜆𝜆𝑏𝑏: 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎)𝑎𝑎𝑛𝑛𝑑𝑑𝜆𝜆 ∈ [0,1 − 𝜎𝜎(𝑏𝑏)]}.  

In particular, [0,𝑎𝑎] = [0,𝑎𝑎]𝖫𝖫 if and only if 𝑎𝑎 ∈ ext(𝐵𝐵𝑋𝑋) 

Proof 
Let 𝑥𝑥 ∈ [0,𝑎𝑎], so that ∥ 𝑥𝑥 ∥ +∥ 𝑎𝑎 − 𝑥𝑥 ∥=∥ 𝑎𝑎 ∥= 1. If 𝑥𝑥 = 0 then set 𝑏𝑏 = 𝑎𝑎 and 𝜆𝜆 = 0. Otherwise, let 𝑏𝑏 =
𝑥𝑥
∥𝑥𝑥
∥ and 𝜆𝜆 =∥ 𝑥𝑥 ∥∈ (0,1]. In either case, 𝑥𝑥 = 𝜆𝜆𝑏𝑏. If 𝑏𝑏 = 𝑎𝑎 then 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 𝜆𝜆 ≤ 1 = 1 − 𝜎𝜎(𝑏𝑏). 
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Suppose that 𝑏𝑏 ≠ 𝑎𝑎. In this case, set 𝑠𝑠 = 1 − 𝜆𝜆 = 1−∥ 𝑥𝑥 ∥. Since 𝑏𝑏 ≠ 𝑎𝑎, we have 𝑥𝑥 ≠ 0 and 𝑥𝑥 ≠ 𝑎𝑎, 
which implies 𝑠𝑠 ∈ (0,1). Then observe that 

𝑠𝑠−1𝑎𝑎 + (1 − 𝑠𝑠−1)𝑏𝑏 =
1

1 − ‖𝑥𝑥‖
(𝑎𝑎 − ‖𝑥𝑥‖𝑏𝑏) =

𝑎𝑎 − 𝑥𝑥
1 − ‖𝑥𝑥‖

=
𝑎𝑎 − 𝑥𝑥
‖𝑎𝑎 − 𝑥𝑥‖

∈ 𝑆𝑆𝑋𝑋, 

given that ∥ 𝑥𝑥 ∥ +∥ 𝑎𝑎 − 𝑥𝑥 ∥= 1. Consequently, 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and, moreover, 𝜎𝜎(𝑏𝑏) ≤ 𝑠𝑠 = 1 − 𝜆𝜆, giving 𝜆𝜆 ≤
1 − 𝜎𝜎(𝑏𝑏). 

Conversely, let 𝑥𝑥 = 𝜆𝜆𝑏𝑏, where 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 𝜆𝜆 ∈ [0,1 − 𝜎𝜎(𝑏𝑏)]. If 𝑏𝑏 = 𝑎𝑎 then 𝜎𝜎(𝑏𝑏) = 0 and ∥ 𝑥𝑥 ∥ +∥ 𝑎𝑎 −
𝑥𝑥 ∥= 𝜆𝜆 + (1 − 𝜆𝜆) = 1 =∥ 𝑎𝑎 ∥. If 𝑏𝑏 ≠ 𝑎𝑎 then 𝜎𝜎(𝑏𝑏) > 0 and, from the discussion about 𝜎𝜎(𝑏𝑏) above, as 
1 − 𝜆𝜆 ∈ [𝜎𝜎(𝑏𝑏), 1], we have (1 − 𝜆𝜆)−1𝑎𝑎 + (1 − (1 − 𝜆𝜆)−1)𝑏𝑏 ∈ 𝐵𝐵𝑋𝑋, which implies 

1−∥ 𝑥𝑥 ∥= 1 − 𝜆𝜆 ≥∥ 𝑎𝑎 − 𝜆𝜆𝑏𝑏 ∥=∥ 𝑎𝑎 − 𝑥𝑥 ∥, 

and thus ∥ 𝑎𝑎 − 𝑥𝑥 ∥ +∥ 𝑥𝑥 ∥≤ 1 =∥ 𝑎𝑎 ∥. It follows that 𝑥𝑥 ∈ [0,𝑎𝑎] by the triangle inequality. 

Note that Proposition 4.1 is an immediate consequence of Theorem 4.10, which, when combined with 
Theorem 4.2, gives us the following. 

Corollary 4.11 
Let X be a normed vector space, with 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋. If either 𝑎𝑎 = 𝑏𝑏 or 𝑏𝑏−𝑎𝑎‖𝑏𝑏−𝑎𝑎‖

∈ ext(𝐵𝐵𝑋𝑋), then [⋅,⋅] is lsc at 

{𝑎𝑎, 𝑏𝑏}. 

We are now in a position to show that the unique-geodesic assumption implicit in Corollary 4.11 cannot 
be eliminated. Given a normed space X and a closed, symmetric, convex, bounded subset 𝐾𝐾 ⊆ 𝑋𝑋 that 
contains 0 as an interior point, the Minkowski functional defined by 

‖𝑥𝑥‖ = inf{𝑡𝑡 > 0: 𝑡𝑡−1𝑥𝑥 ∈ 𝐾𝐾},  

is a norm on X equivalent to the original norm and having closed unit ball K [10, Definition 2.9, Lemma 
2.11]. 

Example 4.12 
We construct a norm ∥⋅∥ on R3, with respect to which [⋅,⋅] is not lsc at all pairs. 

First define the function 𝑓𝑓: [−1,1]2 → [0,1] by the assignment 〈𝑥𝑥,𝑦𝑦〉 ↦ �(1 − 𝑥𝑥2)(1 − 𝑦𝑦2). Then f 
satisfies the following conditions: 

(1) 𝑓𝑓(0,0) = 1; 

(2) 𝑓𝑓(𝑥𝑥, 𝑦𝑦) = 0 whenever |𝑥𝑥| = 1 or |𝑦𝑦| = 1; 

(3) f is strictly concave on (−1,1)2 (i.e., 𝑓𝑓𝑥𝑥,𝑥𝑥 < 0, 𝑓𝑓𝑦𝑦,𝑦𝑦 < 0, and 𝑓𝑓𝑥𝑥,𝑥𝑥𝑓𝑓𝑦𝑦,𝑦𝑦 − 𝑓𝑓𝑥𝑥,𝑦𝑦
2 > 0; and 

 
(4) f is symmetric (i.e., 𝑓𝑓(−𝑥𝑥,−𝑦𝑦) = 𝑓𝑓(𝑥𝑥,𝑦𝑦) on [−1,1]2). 

Let 

𝐵𝐵 ≔ {⟨𝑥𝑥,𝑦𝑦, 𝑧𝑧⟩ ∈  [−1,1]3: |𝑧𝑧| ≤  𝑓𝑓(𝑥𝑥,𝑦𝑦)}. 
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The set B is symmetric, compact and convex, and the origin is an interior point; so let ∥⋅∥ be its 

Minkowski functional. Then 〈ℝ3,‖ ⋅ ‖〉is a normed space, with 𝐵𝐵〈ℝ3,‖⋅‖〉 = 𝐵𝐵. Since 𝐵𝐵 ⊆ [−1,1]3, 

we have ‖ ⋅ ‖ ≥ ‖⋅‖∞. More to the point: since the intersection of B with the plane ℝ2 × {0} is 

[−1,1]2 × {0}, it follows that ∥⋅∥ agrees with ‖⋅‖∞ on that plane (i.e., �〈𝑥𝑥,𝑦𝑦, 0〉� = max{|𝑥𝑥|, |𝑦𝑦|}). 

Let 𝑆𝑆 be the unit sphere 𝑆𝑆〈ℝ3,‖⋅‖〉. By the strict concavity of f, we have that 

ext(𝐵𝐵) = 𝑆𝑆 ∖ �〈𝑥𝑥,𝑦𝑦, 𝑧𝑧〉: (|𝑥𝑥| = 1 and |𝑦𝑦| < 1) or (|𝑥𝑥| < 1 and |𝑦𝑦| = 1)�.. 

We claim that for 𝑎𝑎
→
∈ 𝑆𝑆, [⋅,⋅] is lsc at �0

→
,𝑎𝑎
→
� if and only if 𝑎𝑎

→
∈ ext(𝐵𝐵). Indeed, one direction is immediate 

from Corollary 4.11; as for the other direction, we lose no generality in taking a simplifying case, namely 

𝑎𝑎
→

= 〈1,0,0〉. Here it is easy to check that 𝐹𝐹 �𝑎𝑎
→
� = {1} × [−1,1] × {0} and �0

→
,𝑎𝑎
→
� is the square with 

corners ⟨0,0,0⟩, ⟨1,0,0⟩, and 〈 1
2

, ± 1
2

, 0〉. Let U be the open set �〈𝑥𝑥,𝑦𝑦, 𝑧𝑧〉:𝑦𝑦 > 1
4
�. Then �0

→
,𝑎𝑎
→
� ∩ 𝑈𝑈 ≠

∅. However, given 𝑟𝑟 ∈ �0, 1
4
�, there exists 𝑎𝑎

→′ ∈ ext(𝐵𝐵) such that �𝑎𝑎
→′ − 𝑎𝑎

→
� ≤ 𝑟𝑟. Thus, by Corollary 4.11, 

�0
→

,𝑎𝑎
→′� is a closed line segment that clearly misses U, and we conclude that [⋅,⋅] is not lsc at �0

→
,𝑎𝑎
→
�. 

We now show that dimension three is lowest possible for Example 4.12. 

Proposition 4.13 
The M-betweenness function on any two-dimensional normed space is continuous at all pairs. 

Proof 
Because finite-dimensional normed spaces have proper norm metrics, Theorem 2.5 allows us to focus 
on lower semicontinuity. 

Let X be a two-dimensional normed space, with 𝑎𝑎 ∈ 𝑆𝑆𝑋𝑋. Having in mind the argument in the proof of 
Theorem 4.2, it is sufficient to demonstrate that, given 𝑟𝑟 > 0, there exists 𝛿𝛿 > 0 such that every point of 
[𝑢𝑢, 𝑣𝑣] is r-close to some point of [0,𝑎𝑎], whenever ∥ 𝑢𝑢 ∥, ∥ 𝑣𝑣 − 𝑎𝑎 ∥≤ 𝛿𝛿. The case 𝑎𝑎 ∈ ext(𝐵𝐵𝑋𝑋) has been 
covered by Corollary 4.11 and Theorem 4.2, so hereafter we assume that 𝑎𝑎 ∉ ext(𝑆𝑆𝑋𝑋). 

Let 𝑟𝑟 > 0. We will find δ in two steps. First, we show that, given 𝑟𝑟 > 0, there exists 𝛿𝛿′ > 0 such that 
every point of [0, 𝑥𝑥] is 1

2
𝑟𝑟-close to some point of [0,𝑎𝑎] whenever 𝑥𝑥 ∈ 𝑆𝑆𝑋𝑋 and ‖𝑥𝑥 − 𝑎𝑎‖ ≤ 𝛿𝛿′. Since X is 

two-dimensional, it follows that the facet 𝐹𝐹(𝑎𝑎) in 𝐵𝐵𝑋𝑋 is a non-degenerate straight line segment [𝑝𝑝, 𝑞𝑞]𝖫𝖫, 
and 𝑎𝑎 = 𝑢𝑢 + 𝛼𝛼(𝑞𝑞 − 𝑝𝑝), for some 𝛼𝛼 ∈ (0,1). Using this, given 𝑏𝑏 = 𝑝𝑝 + 𝛽𝛽(𝑞𝑞 − 𝑝𝑝) ∈ 𝐹𝐹(𝑎𝑎)(𝛽𝛽 ∈ [0,1]), it is 
easy to compute that 

𝜎𝜎𝑎𝑎(𝑏𝑏) = max �𝛽𝛽−𝛼𝛼
𝛽𝛽

, 𝛼𝛼−𝛽𝛽
1−𝛽𝛽

�.  

In particular, for 𝑥𝑥 ∈ 𝑆𝑆𝑋𝑋  

sup
𝑏𝑏∈𝐹𝐹(𝑎𝑎)

|𝜎𝜎𝑥𝑥(𝑏𝑏)− 𝜎𝜎𝑎𝑎(𝑏𝑏)| → 0, 
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as ∥ 𝑥𝑥 − 𝑎𝑎 ∥→ 0 (note that 𝐹𝐹(𝑥𝑥) = 𝐹𝐹(𝑎𝑎) for all x sufficiently close to a). Thus there exists 𝛿𝛿′ ∈
�0, min �1, 1

2
𝑟𝑟�� such that 𝐹𝐹(𝑥𝑥) = 𝐹𝐹(𝑎𝑎) and 𝜎𝜎𝑥𝑥(𝑏𝑏) ≤ 𝜎𝜎𝑎𝑎(𝑏𝑏) + 1

2
𝑟𝑟 whenever 𝑥𝑥 ∈ 𝑆𝑆𝑋𝑋 and ∥ 𝑥𝑥 − 𝑎𝑎 ∥≤ 𝛿𝛿′. 

Take such an x, and let 𝑤𝑤 ∈ [0, 𝑥𝑥]. By Theorem 4.10, we know that 𝑤𝑤 = 𝜆𝜆𝑏𝑏 for some 𝑏𝑏 ∈ 𝐹𝐹(𝑥𝑥) = 𝐹𝐹(𝑎𝑎) 
and 𝜆𝜆 ∈ [0,1 − 𝜎𝜎𝑥𝑥(𝑏𝑏)]. If 𝜆𝜆 ≤ 𝜎𝜎𝑎𝑎(𝑏𝑏), then 𝑤𝑤 ∈ [0,𝑎𝑎], and if not, then |𝜆𝜆 − 𝜎𝜎𝑎𝑎(𝑏𝑏)| ≤ 1

2
𝑟𝑟, giving 

‖𝑤𝑤 − 𝜎𝜎𝑎𝑎(𝑏𝑏)𝑏𝑏‖ ≤ 1
2
𝑟𝑟. Whatever the case, w is 1

2
𝑟𝑟-close to a point in [0,𝑎𝑎]. This completes the first step. 

In the second step, we show that there exists 𝛿𝛿 > 0 such that if ∥ 𝑢𝑢 ∥, ∥ 𝑣𝑣 − 𝑎𝑎 ∥≤ 𝛿𝛿 and 𝑥𝑥: = 𝑣𝑣−𝑢𝑢
‖𝑣𝑣−𝑢𝑢‖

∈

𝑆𝑆𝑋𝑋, then ∥ 𝑥𝑥 − 𝑎𝑎 ∥≤ 𝛿𝛿′ and every point of [𝑢𝑢, 𝑣𝑣] is 1
2
𝑟𝑟-close to a point of [0, 𝑥𝑥]. We complete the proof 

by stitching the two steps together. Set 𝛿𝛿 = 1
6
𝛿𝛿′ ≤ 1

6
. Let ∥ 𝑢𝑢 ∥, ∥ 𝑣𝑣 − 𝑎𝑎 ∥≤ 𝛿𝛿 and set 𝑥𝑥 = 𝑣𝑣−𝑢𝑢

‖𝑣𝑣−𝑢𝑢‖
∈ 𝑆𝑆𝑋𝑋. 

Given 𝑤𝑤 ∈ [𝑢𝑢, 𝑣𝑣], it is easy to check that 𝑧𝑧: = 𝑤𝑤−𝑢𝑢
∥𝑣𝑣

− 𝑢𝑢 ∥∈ [0, 𝑥𝑥]. By elementary considerations we have 

| ∥ 𝑣𝑣 − 𝑢𝑢 ∥ −1| = | ∥ 𝑣𝑣 − 𝑢𝑢 ∥ −∥ 𝑎𝑎 ∥ | ≤∥ (𝑣𝑣 − 𝑎𝑎) − 𝑢𝑢 ∥≤ 2𝛿𝛿, 

and as 𝑤𝑤 ∈ [𝑢𝑢, 𝑣𝑣], 

‖𝑤𝑤‖ ≤ ‖𝑤𝑤 − 𝑢𝑢‖ + ‖𝑢𝑢‖ ≤ ‖𝑣𝑣 − 𝑢𝑢‖ + ‖𝑢𝑢‖ ≤ 1 + 3𝛿𝛿 ≤ 3
2
.  

Therefore, 

‖𝑤𝑤 − 𝑧𝑧‖ =
1

‖𝑣𝑣 − 𝑢𝑢‖
‖(‖𝑣𝑣 − 𝑢𝑢‖ − 1)𝑤𝑤 − 𝑢𝑢‖ ≤

4𝛿𝛿
1 − 2𝛿𝛿

≤ 6𝛿𝛿 = 𝛿𝛿′ ≤
1
2
𝑟𝑟, 

and 

‖𝑥𝑥 − 𝑎𝑎‖ = 1
‖𝑣𝑣−𝑢𝑢‖

‖(𝑣𝑣 − 𝑎𝑎) + (‖𝑣𝑣 − 𝑢𝑢‖ − 1)𝑎𝑎 − 𝑢𝑢‖ ≤ 4𝛿𝛿
1−2𝛿𝛿

≤ 𝛿𝛿′.  

The final series of results of this section deals with the question of when the M-betweenness function is 
(or is not) upper semicontinuous. We first consider pairs whose M-intervals are not compact. We will 
need the following elementary result. 

Lemma 4.14 
Let X be a normed space, with 𝐾𝐾 ⊆ 𝑋𝑋 a closed bounded subset that is not compact. Then there exists an 
open set U containing K, such that 

inf{‖𝑤𝑤 − 𝑣𝑣‖:𝑤𝑤 ∈ 𝐾𝐾𝑎𝑎𝑛𝑛𝑑𝑑𝑣𝑣 ∈ 𝑋𝑋 ∖ 𝑈𝑈} = 0.  

Proof 

Since K is not compact, there is a sequence 〈𝑎𝑎1,𝑎𝑎2, …〉of points of K, with no convergent 
subsequence. Fix 𝑎𝑎 ∈ 𝑆𝑆𝑋𝑋 arbitrary, and for 𝑛𝑛 ∈ ℕ, let 

𝜇𝜇𝑛𝑛 = sup{𝜇𝜇 ≥ 0:𝑎𝑎𝑛𝑛 + 𝜇𝜇𝑎𝑎 ∈ 𝐾𝐾}.  

Since K is bounded, the sequence 〈𝜇𝜇𝑛𝑛〉 is bounded in ℝ, and hence has a convergent subsequence. 

Without loss of generality, we may assume 〈𝜇𝜇𝑛𝑛〉 itself is convergent. 
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Now, for 𝑛𝑛 ∈ ℕ, set 𝑏𝑏𝑛𝑛 = 𝑎𝑎𝑛𝑛 + �𝜇𝜇𝑛𝑛 + 1
𝑛𝑛
�𝑎𝑎, by definition a point of 𝑋𝑋 ∖ 𝐾𝐾. The sequence 〈𝜇𝜇𝑛𝑛〉 

converges, while 𝑎𝑎𝑛𝑛 has no convergent subsequence; hence 𝑏𝑏𝑛𝑛 has no convergent subsequence either. 
Consequently the set 𝑈𝑈 = 𝑋𝑋 ∖ {𝑏𝑏1, 𝑏𝑏2, … } is open and contains K. 

Finally, since K is closed, we have 𝑎𝑎𝑛𝑛 + 𝜇𝜇𝑛𝑛𝑎𝑎 ∈ 𝐾𝐾, 𝑛𝑛 ∈ ℕ, and thus 

inf{‖𝑤𝑤 − 𝑣𝑣‖:𝑤𝑤 ∈ 𝐾𝐾 and 𝑣𝑣 ∈ 𝑋𝑋 ∖ 𝑈𝑈} ≤ ‖(𝑎𝑎𝑛𝑛 + 𝜇𝜇𝑛𝑛𝑎𝑎) − 𝑏𝑏𝑛𝑛‖ = 1
𝑛𝑛
→ 0.. 

An almost immediate consequence of Lemma 4.14 is the following. 

Proposition 4.15 
Let X be a normed space, with 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋. If [𝑎𝑎, 𝑏𝑏] is not compact, then [⋅,⋅] is not usc at {𝑎𝑎, 𝑏𝑏}. 

Proof 
Since [𝑎𝑎, 𝑏𝑏] is closed and bounded, but not compact, we use Lemma 4.14 to produce an open set U, with 
[𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈, so that 

inf{‖𝑤𝑤 − 𝑣𝑣‖:𝑤𝑤 ∈ [𝑎𝑎, 𝑏𝑏] and 𝑣𝑣 ∈ 𝑋𝑋 ∖ 𝑈𝑈} = 0. 

Given any 𝛿𝛿 > 0, find 𝑤𝑤 ∈ [𝑎𝑎, 𝑏𝑏] and 𝑣𝑣 ∈ 𝑋𝑋 ∖ 𝑈𝑈 so that ∥ 𝑤𝑤 − 𝑣𝑣 ∥< 𝛿𝛿. Then 

𝑣𝑣 = 𝑤𝑤 + (𝑣𝑣 − 𝑤𝑤) ∈ (𝑣𝑣 − 𝑤𝑤) + [𝑎𝑎, 𝑏𝑏] = [𝑎𝑎 + (𝑣𝑣 − 𝑤𝑤), 𝑏𝑏 + (𝑣𝑣 − 𝑤𝑤)], 

thus [𝑎𝑎 + (𝑣𝑣 − 𝑤𝑤), 𝑏𝑏 + (𝑣𝑣 − 𝑤𝑤)] ⊈ 𝑈𝑈. 

Remark 4.16 
The statements of Lemma 4.14 and Proposition 4.15 make sense in the general metric context, but are 
generally false. An easy counterexample comes from taking X to be the irrational line ℝ ∖ ℚ, with the 
usual metric (topologically complete). The M-intervals coincide with the closed bounded intervals 
inherited from ℝ, and so it is easy to check that [⋅,⋅] is continuous at every pair. However, no 
nondegenerate M-interval is compact. (See Remark 4.20 below for a geodesic space example.) 

We will see in Example 4.22 below that the compactness of [𝑎𝑎, 𝑏𝑏] is not sufficient for the upper 
semicontinuity of [⋅,⋅] at {𝑎𝑎, 𝑏𝑏}. In order to fully characterize upper semicontinuity of [⋅,⋅], it will be 
helpful to present the following simple test for compactness of M-intervals. Recall Lemma 4.9 and the 
discussion before Theorem 4.10. 

Proposition 4.17 
The following statements are equivalent. 

(1) The M-interval [0,𝑎𝑎] is compact. 

(2) Given a sequence 〈𝑏𝑏𝑛𝑛〉 from 𝐹𝐹(𝑎𝑎), either 𝜎𝜎(𝑏𝑏𝑛𝑛) → 1, or 〈𝑏𝑏𝑛𝑛〉admits a subsequence that 
converges in 𝐹𝐹(𝑎𝑎). 

(3) Given a sequence 〈𝑏𝑏𝑛𝑛〉 from 𝐹𝐹(𝑎𝑎), either 𝜎𝜎(𝑏𝑏𝑛𝑛) → 1, or 〈𝑏𝑏𝑛𝑛〉admits a subsequence that 
converges in X. 
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Proof 

First, we show that (1) ⇒ (2). Let [0,𝑎𝑎] be compact. Let 〈𝑏𝑏𝑛𝑛〉be a sequence from 𝐹𝐹(𝑎𝑎) such that 
𝜎𝜎(𝑏𝑏𝑛𝑛) ↛ 1. According to Theorem 4.10, 𝜆𝜆𝑛𝑛𝑏𝑏𝑛𝑛 ∈ [0,𝑎𝑎], where 𝜆𝜆𝑛𝑛: = 1 − 𝜎𝜎(𝑏𝑏𝑛𝑛). Using the compactness 
of [0,𝑎𝑎] and the fact that 𝜎𝜎(𝑏𝑏𝑛𝑛) ↛ 1, we can assume, by taking a subsequence if necessary, that there 
exist 𝑠𝑠 < 1, 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 𝜆𝜆 ∈ [0,1 − 𝜎𝜎(𝑏𝑏)], such that 𝜎𝜎(𝑏𝑏𝑛𝑛) ≤ 𝑠𝑠for all n and 𝜆𝜆𝑛𝑛𝑏𝑏𝑛𝑛 → 𝜆𝜆𝑏𝑏. By continuity 
of the norm, we have 𝜆𝜆𝑛𝑛 → 𝜆𝜆 ≥ 1 − 𝑠𝑠 > 0. Hence 𝑏𝑏𝑛𝑛 → 𝑏𝑏. 

The implication (2) ⇒ (3) is trivial. We finish with (3) ⇒ (1). Assume the conditions of (3), and let 〈𝑥𝑥𝑛𝑛〉 
be a sequence from [0,𝑎𝑎]. By Theorem 4.10, 𝑥𝑥𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑏𝑏𝑛𝑛 for some 𝑏𝑏𝑛𝑛 ∈ 𝐹𝐹(𝑎𝑎) and 𝜆𝜆𝑛𝑛 ∈ [0,1 − 𝜎𝜎(𝑏𝑏𝑛𝑛)]. By 
taking a subsequence if necessary, we can assume that 𝜎𝜎(𝑏𝑏𝑛𝑛) → 𝑠𝑠 ∈ [0,1] and 𝜆𝜆𝑛𝑛 → 𝜆𝜆 ≤ 1 − 𝑠𝑠. If 𝜆𝜆 = 0 
then 𝑥𝑥𝑛𝑛 → 0 ∈ [0,𝑎𝑎]. If 𝜆𝜆 > 0 then 𝑠𝑠 < 1. By (3), and by taking another subsequence if necessary, there 
exists 𝑏𝑏 ∈ 𝑋𝑋 such that 𝑏𝑏𝑛𝑛 → 𝑏𝑏. According to Lemma 4.9, 𝑏𝑏 ∈ 𝐹𝐹(𝑎𝑎) and 𝜎𝜎(𝑏𝑏) ≤ 𝑠𝑠. Thus 𝑥𝑥𝑛𝑛 → 𝜆𝜆𝑏𝑏and 𝜆𝜆 ∈
[0,1 − 𝜎𝜎(𝑏𝑏)], giving 𝜆𝜆𝑏𝑏 ∈ [0,𝑎𝑎]. 

It is clear from Proposition 4.17 that if 𝐹𝐹(𝑎𝑎)������ is compact, then so is [0,𝑎𝑎]. However, as the example below 
demonstrates, the converse of this statement is false. In other words, it is not possible to drop the 
condition 𝜎𝜎(𝑏𝑏𝑛𝑛) → 1 in Proposition 4.17. Recall that c0 is the vector space of all real sequences 

converging to zero. Unless otherwise specified, c0 is equipped with the usual sup norm; i.e., given 𝑥𝑥
→

=

〈𝑥𝑥
→

(1), 𝑥𝑥
→

(2), …〉, �𝑥𝑥
→
�
∞

: = sup ��𝑥𝑥
→

(𝑛𝑛)� :𝑛𝑛 ∈ ℕ�. Let 𝑒𝑒
→
𝑛𝑛 denote the nth standard unit vector of 𝑐𝑐0, 

that is, 𝑒𝑒
→
𝑛𝑛(𝑘𝑘) = 𝛿𝛿𝑛𝑛,𝑘𝑘, and let 𝑒𝑒𝑛𝑛� denote the corresponding nth evaluation functional, i.e., 𝑒𝑒𝑛𝑛� �𝑥𝑥

→
� =

𝑥𝑥
→

(𝑛𝑛) whenever 𝑥𝑥
→
∈ 𝑐𝑐0. 

Example 4.18 
Let 𝐵𝐵𝑐𝑐0  denote the closed unit ball of 𝑐𝑐0 (with respect to ‖⋅‖∞). Define the closed convex set 

𝑀𝑀 = �𝑥𝑥
→
∈ 𝑐𝑐0: 𝑥𝑥

→
(1) = 1 and − 2−𝑛𝑛 ≤ 𝑥𝑥

→
(𝑛𝑛) ≤ 1 for all 𝑛𝑛 ≥ 2�, 

let K be the closed convex hull of 1
2
𝐵𝐵𝑐𝑐0 ∪ 𝑀𝑀 ∪ (−𝑀𝑀), and let ∥⋅∥ be the Minkowski functional of K. Then 

∥⋅∥ is a norm on 𝑐𝑐0, equivalent to ∥⋅∥, having closed unit ball K, such that �𝑒𝑒
→
1� = 1, 𝐹𝐹(𝑒𝑒1)������� = M is not 

compact, and �0
→

, 𝑒𝑒
→
1� is compact. 

Proof 
As 1

2
𝐵𝐵𝑐𝑐0 ⊆ 𝐾𝐾 ⊆ 𝐵𝐵𝑐𝑐0, ∥⋅∥ is indeed an equivalent norm on 𝑐𝑐0with closed ball K. Observe that 𝑒𝑒1� �𝑥𝑥

→
� =

1whenever 𝑥𝑥
→
∈ 𝑀𝑀 and 𝑒𝑒1� �𝑥𝑥

→
� ≤ 1

2
 whenever 𝑥𝑥

→
∈ 1
2
𝐵𝐵𝑐𝑐0 ∪ (−𝑀𝑀), so 𝑒𝑒1� �𝑥𝑥

→
� ≤ 1 whenever 𝑥𝑥

→
∈ 𝐾𝐾. It 

follows that if 𝑥𝑥
→
∈ 𝐾𝐾and 𝑒𝑒1� �𝑥𝑥

→
� = 1, then �𝑥𝑥

→
� = 1, because 𝑡𝑡−1𝑥𝑥

→
∉ 𝐾𝐾 whenever 𝑡𝑡 ∈ (0,1). In 

particular, �𝑒𝑒
→
1� = 1. 

Next, we show that 𝐹𝐹(𝑒𝑒1)������� =M. Notice that 𝐹𝐹 �𝑒𝑒
→
1� ⊆ 𝐻𝐻, where 

 
𝐻𝐻 ≔ �𝑥𝑥

→
∈ 𝑐𝑐0: 𝑒𝑒1� �𝑥𝑥

→
� = 1�. 
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Indeed, given 𝑏𝑏
→
∈ 𝐹𝐹 �𝑒𝑒

→
1�, we have, for some 𝑠𝑠 ∈ (0,1), 

1 = 𝑠𝑠−1 + (1 − 𝑠𝑠−1) ≤ 𝑠𝑠−1 + (1 − 𝑠𝑠−1)𝑒𝑒1� �𝑏𝑏
→
� = 𝑠𝑠−1𝑒𝑒1�(𝑒𝑒1) + (1 − 𝑠𝑠−1)𝑒𝑒1� �𝑏𝑏

→
� ≤ 1,, 

because 1 − 𝑠𝑠−1 < 0 and 𝑏𝑏
→

, 𝑠𝑠−1𝑒𝑒
→
1 + (1 − 𝑠𝑠−1)𝑏𝑏

→
∈ 𝐾𝐾. The only way that the line above can hold is if 

𝑒𝑒1� �𝑏𝑏
→
� = 1, hence the result. 

Therefore 𝐹𝐹 �𝑒𝑒
→
1� ⊆ 𝐾𝐾 ∩ 𝐻𝐻. The next thing we notice is that 𝐾𝐾 ∩  𝐻𝐻 ⊆  𝑀𝑀. Indeed, let 𝑥𝑥

→
∈ 𝐾𝐾 ∩ 𝐻𝐻. As 

𝑥𝑥
→
∈ 𝐾𝐾, there exist 𝑥𝑥

→
𝑖𝑖 ∈ 𝑀𝑀, 𝑦𝑦

→
𝑖𝑖 ∈

1
2
𝐵𝐵𝑐𝑐0 i 𝑧𝑧

→
𝑖𝑖 ∈ −𝑀𝑀, and 𝜆𝜆𝑖𝑖,𝑗𝑗 ≥ 0, 1 ≤  𝑗𝑗 ≤ 3, such that 

� 𝜆𝜆𝑖𝑖,𝑗𝑗 = 1
3

𝑗𝑗=1
 for all 𝑖𝑖, and 𝜆𝜆𝑖𝑖,1𝑥𝑥

→
𝑖𝑖 + 𝜆𝜆𝑖𝑖,2𝑦𝑦

→
𝑖𝑖 + 𝜆𝜆𝑖𝑖,3𝑧𝑧

→
𝑖𝑖 → 𝑥𝑥

→
 as 𝑖𝑖 → ∞.. 

Applying 𝑒𝑒1� to the sequence and limit above yields 𝜆𝜆𝑖𝑖,1 + 𝜆𝜆𝑖𝑖,2𝑦𝑦
→
𝑖𝑖(1) + 𝜆𝜆𝑖𝑖,3𝑧𝑧

→
𝑖𝑖(1) → 1. On the other hand, 

𝜆𝜆𝑖𝑖,1 + 𝜆𝜆𝑖𝑖,2𝑦𝑦
→
𝑖𝑖(1) + 𝜆𝜆𝑖𝑖,3𝑧𝑧

→
𝑖𝑖(1) ≤ 𝜆𝜆𝑖𝑖,1 + 1

2
�𝜆𝜆𝑖𝑖,2 + 𝜆𝜆𝑖𝑖,3�

= 𝜆𝜆𝑖𝑖,1 + 1
2
�1 − 𝜆𝜆𝑖𝑖,1� = 1

2
�1 + 𝜆𝜆𝑖𝑖,1� ≤ 1,

, 

which implies that 𝜆𝜆𝑖𝑖,1 → 1 and, consequently, 𝜆𝜆𝑖𝑖,2,𝜆𝜆𝑖𝑖,3 → 0 and 𝑥𝑥
→
𝑖𝑖 → 𝑥𝑥

→
. Since M is closed, we conclude 

that 𝑥𝑥
→
∈ 𝑀𝑀. Finally, again as M is closed, we have 𝐹𝐹(𝑒𝑒1)������� ⊆  𝑀𝑀. 

To see the reverse inclusion, we observe that if 𝑦𝑦
→
∈ 𝑀𝑀 has finite support, that is, there exists 𝑁𝑁 ∈ ℕ such 

that 𝑦𝑦
→

(𝑛𝑛) = 0 whenever 𝑛𝑛 > 𝑁𝑁, then 𝑦𝑦
→
∈ 𝐹𝐹 �𝑒𝑒

→
1�. Indeed, given such 𝑦𝑦

→
 and N, set 𝑠𝑠 = (1 + 2−𝑁𝑁)−1 ∈

(0,1). The reader can verify that 

−2−𝑛𝑛 ≤ (1 − 𝑠𝑠−1)𝑦𝑦
→

(𝑛𝑛) = −2−𝑁𝑁𝑦𝑦
→

(𝑛𝑛) ≤ 1,, 

whenever 2 ≤ 𝑛𝑛 ≤ 𝑁𝑁. Given the finite support of 𝑦𝑦
→

, it follows easily that s−1e⃗1+(1−s−1)y⃗ ∈ M ⊆ K, 

giving 𝑦𝑦
→
∈ 𝐹𝐹 �𝑒𝑒

→
1�. Since the set of finitely supported elements of M is dense in M, we obtain 𝐹𝐹(𝑒𝑒1)������� = M. 

By considering the vectors 𝑒𝑒
→
1 + 𝑒𝑒

→
𝑛𝑛 ∈ 𝑀𝑀, 𝑛𝑛 ≥ 2, it is easy to see that M is not compact. However, �0

→
, 𝑒𝑒
→
1� 

is compact. This will follow from Proposition 4.17, once we show that if 〈𝑏𝑏
→
𝑖𝑖〉 is a sequence in 

𝐹𝐹 �𝑒𝑒
→
1� ⊆ 𝑀𝑀 and 𝜎𝜎 �𝑏𝑏

→
𝑖𝑖� ↛ 1, then 〈𝑏𝑏

→
𝑖𝑖〉 admits a convergent subsequence. Given such a sequence, by 

taking a subsequence if necessary, we can assume that there exists 𝑠𝑠 ∈ �1
2

, 1� such that 𝜎𝜎 �𝑏𝑏
→
𝑖𝑖� ≤ 𝑠𝑠 for 

all i. We claim that �𝑏𝑏
→
𝑖𝑖(𝑛𝑛)� ≤ 2−𝑛𝑛𝑠𝑠

1−𝑠𝑠
 for all i and all 𝑛𝑛 ≥ 2. Given 𝑛𝑛 ≥ 2, since 𝑏𝑏

→
𝑖𝑖 ∈ 𝑀𝑀, we have −2−𝑛𝑛 ≤

𝑏𝑏
→
𝑖𝑖(𝑛𝑛) ≤ 1. If −2−𝑛𝑛 ≤ 𝑏𝑏

→
𝑖𝑖(𝑛𝑛) ≤ 0 then there is nothing to check, as 𝑠𝑠 ≥ 1

2
. Instead, assume that 0 ≤
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𝑏𝑏
→
𝑖𝑖(𝑛𝑛) ≤ 1. From Remark 4.8, we know that 𝜎𝜎 �𝑏𝑏

→
𝑖𝑖�
−1
𝑒𝑒
→
1 + �1 − 𝜎𝜎 �𝑏𝑏

→
𝑖𝑖�
−1
� 𝑏𝑏
→
𝑖𝑖 ∈ 𝐾𝐾, which implies that in 

fact 

𝜎𝜎 �𝑏𝑏
→
𝑖𝑖�
−1
𝑒𝑒
→
1 + �1 − 𝜎𝜎 �𝑏𝑏

→
𝑖𝑖�
−1
� 𝑏𝑏
→
𝑖𝑖 ∈ 𝐹𝐹 �𝑒𝑒

→
1� ⊆ 𝑀𝑀. 

According to the definition of M, it follows that 

−2−𝑛𝑛 ≤ �1− 𝜎𝜎 �𝑏𝑏
→
𝑖𝑖�
−1
� 𝑏𝑏
→
𝑖𝑖(𝑛𝑛) ≤ (1 − 𝑠𝑠−1)𝑏𝑏

→
𝑖𝑖(𝑛𝑛), 

and since 𝑏𝑏
→
𝑖𝑖(𝑛𝑛) ≥ 0 and 1 − 𝑠𝑠−1 < 0, we deduce that 

𝑏𝑏
→
𝑖𝑖(𝑛𝑛) ≤

2−𝑛𝑛𝑠𝑠
1 − 𝑠𝑠

. 

This completes the proof of the claim. 
 

By taking a diagonal subsequence, we can find 𝑏𝑏
→
∈ 𝑐𝑐0 such that, for all n, 𝑏𝑏

→
𝑖𝑖(𝑛𝑛) → 𝑏𝑏

→
(𝑛𝑛)as 𝑖𝑖 → ∞. This, 

coupled with the condition �𝑏𝑏
→
𝑖𝑖(𝑛𝑛)� ≤ 2−𝑛𝑛𝑠𝑠

1−𝑠𝑠
, ensures that 𝑏𝑏

→
𝑖𝑖 → 𝑏𝑏

→
  in norm also. 

 

We also remark that 𝐹𝐹 �𝑒𝑒
→
1� above is not closed. Define 𝑏𝑏

→
∈ 𝑀𝑀 = 𝐹𝐹(𝑒𝑒1)������� by 𝑏𝑏

→
(1) = 1 and 𝑏𝑏

→
(𝑛𝑛) =

2−
𝑛𝑛
2  for 𝑛𝑛 ≥ 2. If there exists 𝑠𝑠 ∈ (0,1) such that 𝑐𝑐

→
: = 𝑠𝑠−1𝑒𝑒

→
1 + (1 − 𝑠𝑠−1)𝑏𝑏

→
∈ 𝐾𝐾, then according to 

Remark 4.8, 𝑐𝑐
→
∈ 𝐹𝐹 �𝑒𝑒

→
1� ⊆ 𝑀𝑀. Hence for all 𝑛𝑛 ≥ 2 we have 

−2−𝑛𝑛 ≤ (1 − 𝑠𝑠−1)2−
𝑛𝑛
2 , 

meaning that 𝑠𝑠 ≥ �1 + 2−
𝑛𝑛
2�

−1
, which is impossible. Thus 𝑏𝑏

→
∈ 𝐹𝐹 �𝑒𝑒

→
1�

���������‾
∖ 𝐹𝐹 �𝑒𝑒

→
1�. 

We can put together Proposition 2.10 and Proposition 4.15, Proposition 4.17 to obtain an example 
where upper semicontinuity holds only at singletons. 

Example 4.19 
Consider c0 with the usual supremum norm. Then no nondegenerate M-interval is compact. 
Consequently, [⋅,⋅] is usc precisely at the singletons. 

Proof 
To see this, first note that, by Proposition 2.10, [⋅,⋅] is usc at each singleton. Hence it suffices to assume 

𝑎𝑎
→
∈ 𝑆𝑆𝑐𝑐0 and show �0

→
,𝑎𝑎
→
� is not compact. 

Given that 𝑎𝑎
→
∈ 𝑐𝑐0, there exists 𝑘𝑘 ∈ ℕ such that �𝑎𝑎

→
(𝑛𝑛)� < 1

2
 whenever 𝑛𝑛 ≥ 𝑘𝑘. Given 𝑛𝑛 ≥ 𝑘𝑘, define 

𝑏𝑏
→
𝑛𝑛, 𝑐𝑐
→
𝑛𝑛 ∈ 𝑆𝑆𝑐𝑐0  by 
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𝑏𝑏
→
𝑛𝑛(𝑖𝑖) = �𝑎𝑎

→
(𝑖𝑖) if 𝑖𝑖 ≠ 𝑛𝑛
1 if 𝑖𝑖 = 𝑛𝑛,

 and 𝑐𝑐
→
𝑛𝑛(𝑖𝑖) = �𝑎𝑎

→
(𝑖𝑖) if 𝑖𝑖 ≠ 𝑛𝑛
−1 if 𝑖𝑖 = 𝑛𝑛.

 

It is easy to check that 𝑠𝑠𝑛𝑛−1𝑎𝑎
→

+ (1 − 𝑠𝑠𝑛𝑛−1)𝑏𝑏
→
𝑛𝑛 = 𝑐𝑐

→
𝑛𝑛 ∈ 𝑆𝑆𝑐𝑐0, where 𝑠𝑠𝑛𝑛: = 1

2
�1 − 𝑎𝑎

→
(𝑛𝑛)� ∈ (0,1). Thus 𝑏𝑏

→
𝑛𝑛 ∈

𝐹𝐹 �𝑎𝑎
→
�. Evidently, �𝑏𝑏

→
𝑚𝑚 − 𝑏𝑏

→
𝑛𝑛�

∞
≥ ��𝑏𝑏

→
𝑚𝑚� (𝑚𝑚) − �𝑏𝑏

→
𝑛𝑛� (𝑚𝑚)� > 1

2
 whenever 𝑚𝑚,𝑛𝑛 ≥ 𝑘𝑘 are distinct. 

Moreover, 𝜎𝜎 �𝑏𝑏
→
𝑛𝑛� ≤ 𝑠𝑠𝑛𝑛 →

1
2
. That �0

→
,𝑎𝑎
→
� is not compact follows from Proposition 4.17. Consequently, by 

Proposition 4.15, [⋅,⋅] is not usc at �0
→

,𝑎𝑎
→
�. 

Remark 4.20 
Example 4.19 can be used to obtain an even more convincing example of how much the truth of Lemma 

4.14 and Proposition 4.15 depends on the normed metric context. Given 𝑐𝑐0, let 𝑋𝑋 = �𝑎𝑎
→

, 𝑏𝑏
→
� be any 

nondegenerate M-interval. Then X is not compact. On the other hand, relative to the inherited 

supremum norm, X is still the M-interval bracketed by �𝑎𝑎
→

, 𝑏𝑏
→
�. Thus [⋅,⋅] is trivially usc at �𝑎𝑎

→
, 𝑏𝑏
→
� (see 

Proposition 1.4). Note that X is a convex subset of 𝑐𝑐0, by Proposition 4.3, and is hence a geodesic space, 
by Proposition 4.1. 

Next we fine tune Proposition 4.15 to obtain a characterization of upper semicontinuity of [⋅,⋅] 
at a pair. 
 

Theorem 4.21 
Let X be a normed space and let 𝑎𝑎 ∈ 𝑆𝑆𝑋𝑋. The M-betweenness function is usc at {0,𝑎𝑎} if and only if, given 
𝑎𝑎𝑛𝑛 ∈ 𝑆𝑆𝑋𝑋 converging in norm to a, and points 𝑏𝑏𝑛𝑛 ∈ 𝐹𝐹(𝑎𝑎𝑛𝑛), either 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛) → 1 or a subsequence of 

〈𝑏𝑏𝑛𝑛〉converges in X. 

Proof 
We proceed by proof by contraposition. Suppose that [⋅,⋅] is not usc at {0,𝑎𝑎}. If [0,𝑎𝑎] is not compact, 
then the conclusion follows immediately from Proposition 4.17, by setting 𝑎𝑎𝑛𝑛 = 𝑎𝑎 for all 𝑛𝑛 ∈ ℕ. 
Hereafter, we assume that [0,𝑎𝑎] is compact. By the failure of upper semicontinuity, there exists an open 
set U such that [0,𝑎𝑎] ⊆ 𝑈𝑈, and points 𝑢𝑢𝑛𝑛 → 0, 𝑣𝑣𝑛𝑛 → 𝑎𝑎 and 𝑤𝑤𝑛𝑛 ∈ [𝑢𝑢𝑛𝑛,𝑣𝑣𝑛𝑛], 𝑛𝑛 ∈ ℕ, such that 𝑤𝑤𝑛𝑛 ∈
[𝑢𝑢𝑛𝑛,𝑣𝑣𝑛𝑛] ∖ 𝑈𝑈. By the compactness of [0,𝑎𝑎], there exists 𝑟𝑟 > 0 such that 𝜚𝜚(𝑤𝑤𝑛𝑛, [0,𝑎𝑎]): =
inf{‖𝑤𝑤𝑛𝑛 − 𝑥𝑥‖:𝑥𝑥 ∈ [0,𝑎𝑎]} > 𝑟𝑟 for all 𝑛𝑛 ∈ ℕ. Define 

𝑎𝑎𝑛𝑛 =
𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖

and𝑥𝑥𝑛𝑛 =
𝑤𝑤𝑛𝑛 − 𝑢𝑢𝑛𝑛
‖𝑣𝑣𝑛𝑛 − 𝑢𝑢𝑛𝑛‖

∈ [0,𝑎𝑎𝑛𝑛]. 

As ‖𝑥𝑥𝑛𝑛 − 𝑤𝑤𝑛𝑛‖ → 0, it follows that 𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) > 1
2
𝑟𝑟 for large enough n. By Theorem 4.10, 𝑥𝑥𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑏𝑏𝑛𝑛 

for some 𝑏𝑏𝑛𝑛 ∈ 𝐹𝐹(𝑎𝑎𝑛𝑛) and 𝜆𝜆𝑛𝑛 ∈ �0,1− 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛)�. 

Without loss of generality, assume that 𝜆𝜆𝑛𝑛 → 𝜆𝜆 for some 𝜆𝜆. We claim that 〈𝑏𝑏𝑛𝑛〉 has no convergent 
subsequence. For a contradiction, suppose that it does: let 𝑏𝑏𝑛𝑛𝑘𝑘 → 𝑏𝑏 for some 𝑏𝑏 ∈ 𝑋𝑋. Then 𝑥𝑥𝑛𝑛𝑘𝑘 → 𝜆𝜆𝑏𝑏, and 
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‖𝜆𝜆𝑏𝑏‖+ ‖𝑎𝑎 − 𝜆𝜆𝑏𝑏‖ = lim
𝑘𝑘→∞

�𝑥𝑥𝑛𝑛𝑘𝑘�+ �𝑎𝑎𝑛𝑛𝑘𝑘 − 𝑥𝑥𝑛𝑛𝑘𝑘� = 1,, 

whence 𝜆𝜆𝑏𝑏 ∈ [0,𝑎𝑎]. However, this contradicts the fact that 

�𝑥𝑥𝑛𝑛𝑘𝑘 − 𝜆𝜆𝑏𝑏� ≥ 𝜚𝜚�𝑥𝑥𝑛𝑛𝑘𝑘 , [0,𝑎𝑎]� > 1
2
𝑟𝑟,, 

for large enough k. It follows that 〈𝑏𝑏𝑛𝑛〉 has no convergent subsequence, as required. Finally, 

1
2
𝑟𝑟 < 𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) ≤ ‖𝑥𝑥𝑛𝑛‖ = 𝜆𝜆𝑛𝑛 ≤ 1 − 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛), 

for large enough n implies that 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛) ↛ 1. 

Conversely, assume the existence of 𝑎𝑎𝑛𝑛  converging to a and 𝑏𝑏𝑛𝑛 ∈ 𝐹𝐹(𝑎𝑎𝑛𝑛), 𝑛𝑛 ∈ ℕ, such that 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛) ↛ 1 

and no subsequence of 〈𝑏𝑏𝑛𝑛〉 converges. By taking a subsequence if necessary, we can assume that 
there exists 𝑠𝑠 < 1 such that 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛) → 𝑠𝑠. Now set 𝑥𝑥𝑛𝑛 = 𝜆𝜆𝑛𝑛𝑏𝑏𝑛𝑛, where 𝜆𝜆𝑛𝑛: = 1 − 𝜎𝜎𝑎𝑎𝑛𝑛(𝑏𝑏𝑛𝑛). We have 𝜆𝜆𝑛𝑛 →
𝜆𝜆: = 1 − 𝑠𝑠 > 0. 

According to Theorem 4.10, 𝑥𝑥𝑛𝑛 ∈ [0, 𝑏𝑏𝑛𝑛] for all 𝑛𝑛 ∈ ℕ. As 𝜆𝜆 > 0 and 〈𝑏𝑏𝑛𝑛〉 has no convergent 

subsequence, it follows that the sequence 〈𝑥𝑥𝑛𝑛〉 has no convergent subsequence either. There are 
now two possibilities: either 𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) → 0 or not. If 𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) → 0, then there exist points 𝑦𝑦𝑛𝑛 ∈
[0,𝑎𝑎] such that ‖𝑦𝑦𝑛𝑛 − 𝑥𝑥𝑛𝑛‖ → 0. It follows that 〈𝑦𝑦𝑛𝑛〉 has no convergent subsequence, and thus [0,𝑎𝑎] 
is not compact. We conclude from Proposition 4.15 that [⋅,⋅] is not usc at {0,𝑎𝑎}. Instead, if 
𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) ↛ 0 then, by taking yet another subsequence if necessary, there exists 𝛿𝛿 > 0 such that 
𝜚𝜚(𝑥𝑥𝑛𝑛, [0,𝑎𝑎]) ≥ 𝛿𝛿 for all 𝑛𝑛 ∈ ℕ. If we set 

𝑈𝑈 ≔ {𝑣𝑣 ∈ 𝑋𝑋:𝜚𝜚(𝑣𝑣, [0,𝑎𝑎]) < 𝛿𝛿}, 

then U is open and [0,𝑎𝑎] ⊆  𝑈𝑈, but 𝑎𝑎𝑛𝑛 → 𝑎𝑎 and 𝑥𝑥𝑛𝑛 ∈ [0,𝑎𝑎𝑛𝑛] ∖ 𝑈𝑈 for all n, so [⋅,⋅] is not usc at {0,𝑎𝑎}. 

As mentioned above, the usc part of Theorem 4.2 follows easily from Theorem 4.10, Theorem 4.21. 

We end this section with an example illustrating the difference between Proposition 4.15 and Theorem 
4.21. The reader is referred to Example 4.18 and the preceding remarks for notation and terminology. 

Example 4.22 
There exists a norm ∥⋅∥ on 𝑐𝑐0, equivalent to ‖⋅‖∞, having unit ball K and 𝑎𝑎 ∈ ext(𝐾𝐾), such that [⋅,⋅] is not 
upper semicontinuous at {0,𝑎𝑎}. 

Proof 
Let 𝐵𝐵𝑐𝑐0  denote the unit ball of ‖⋅‖∞, and let K be the closed convex hull of the symmetric set 

𝑆𝑆 ≔ 1
3
𝐵𝐵𝑐𝑐0 ∪ �𝑠𝑠 �𝑒𝑒

→
1 + 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛� + 𝑡𝑡𝑒𝑒

→
2𝑛𝑛+1:𝑛𝑛 ∈ ℕ and 𝑠𝑠, 𝑡𝑡 ∈ {−1,1}�. 

Then1
3
𝐵𝐵𝑐𝑐0 ⊆ 𝐾𝐾 ⊆ 𝐵𝐵𝑐𝑐0, and the Minkowski functional of K defines an equivalent norm ∥⋅∥ on 𝑐𝑐0, having 

closed unit ball K (again see [10, Definition 2.9, Lemma 2.11]). Given n ∈ N, set 

https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0570
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0650
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0460
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0570
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0750
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0650
https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#en0750
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𝑎𝑎
→
𝑛𝑛 = 𝑒𝑒

→
1 + 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛 = 1

2
��𝑒𝑒

→
1 + 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛 + 𝑒𝑒

→
2𝑛𝑛+1� + �𝑒𝑒

→
1 + 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛 − 𝑒𝑒

→
2𝑛𝑛+1�� ∈ 𝐾𝐾. 

Observe that 𝑒𝑒1� �𝑥𝑥
→
� ≤ 1 for all 𝑥𝑥

→
∈ 𝑆𝑆, thus 𝑒𝑒1� �𝑥𝑥

→
� ≤ 1 for all 𝑥𝑥 ∈  𝐾𝐾. It follows that if 𝑥𝑥

→
∈ 𝐾𝐾 and 

𝑒𝑒1� �𝑥𝑥
→
� = 1, then �𝑥𝑥

→
� = 1, because 𝑟𝑟−1𝑥𝑥

→
∉ 𝐵𝐵𝑐𝑐0 whenever 𝑟𝑟 ∈  (0,1). In particular, �𝑎𝑎

→
𝑛𝑛� = 1 for all n. 

Since �𝑎𝑎
→
𝑛𝑛 − 𝑒𝑒

→
1� → 0, we have �𝑒𝑒

→
1� = 1 as well. Evidently, 

𝑎𝑎
→
𝑛𝑛 ± 𝑒𝑒

→
2𝑛𝑛+1 ∈ 𝑆𝑆 ⊆ 𝐾𝐾.. 

Set 𝑏𝑏
→
𝑛𝑛 = 𝑎𝑎

→
𝑛𝑛 + 𝑒𝑒

→
2𝑛𝑛+1. Since 

2𝑎𝑎
→
𝑛𝑛 − 𝑏𝑏

→
𝑛𝑛 = 𝑎𝑎

→
𝑛𝑛 − 𝑒𝑒

→
2𝑛𝑛+1 ∈ 𝐾𝐾,, 

it follows that 𝑏𝑏
→
𝑛𝑛 ∈ 𝐹𝐹 �𝑎𝑎

→
𝑛𝑛� and 𝜎𝜎𝑎𝑎→𝑛𝑛 �𝑏𝑏

→
𝑛𝑛� ≤

1
2
  for all n. Moreover, given distinct m,n ∈ N, we have 

�𝑏𝑏
→
𝑚𝑚 − 𝑏𝑏

→
𝑛𝑛� = �𝑚𝑚−1𝑒𝑒

→
2𝑚𝑚 − 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛 + 𝑒𝑒

→
2𝑚𝑚+1 − 𝑒𝑒

→
2𝑛𝑛+1�

≥ �𝑚𝑚−1𝑒𝑒
→
2𝑚𝑚 − 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛 + 𝑒𝑒

→
2𝑚𝑚+1 − 𝑒𝑒

→
2𝑛𝑛+1�

∞
= 1,

 

meaning that 〈𝑏𝑏
→
𝑛𝑛〉 has no convergent subsequence. Therefore, [⋅,⋅] is not upper semicontinuous at 

�0, 𝑒𝑒
→
1� with respect to ∥⋅∥, by Theorem 4.21. 

On the other hand, we claim that 𝑒𝑒
→
1 ∈ ext(𝐾𝐾), meaning that �0

→
, 𝑒𝑒
→
1� is the compact straight line 

segment �0
→

, 𝑒𝑒
→
1�
𝖫𝖫
. To prove the claim, we show that there exists 𝑓𝑓 ∈ 𝑐𝑐0� such that 𝑓𝑓 �𝑒𝑒

→
1� = ‖𝑓𝑓‖ = 1, yet 

𝑓𝑓 �𝑦𝑦
→
� < 1 whenever 𝑦𝑦

→
∈ 𝐾𝐾 ∖ �𝑒𝑒

→
1�. In other words, we will show that 𝑒𝑒

→
1 is an exposed point of K[10, 

Definition 7.10]. This certainly implies that 𝑒𝑒
→
1 is an extreme point: if 𝑒𝑒

→
1 is the midpoint of a non-trivial 

straight line segment in K, then 𝑓𝑓 �𝑦𝑦
→
� = 1 for all points 𝑦𝑦

→
 on said line segment [10, Exercise 7.72]. 

Define 𝑓𝑓 = 𝑒𝑒1� −� 2−𝑖𝑖𝑒𝑒2𝑖𝑖�
∞
𝑖𝑖=1 . It is clear that 𝑓𝑓 �𝑒𝑒

→
1� = 1, 𝑓𝑓 �𝑥𝑥

→
� ≤ 2

3
  whenever 𝑥𝑥

→
∈ 1
3
𝐵𝐵𝑐𝑐0, and 

𝑓𝑓 �𝑠𝑠 �𝑒𝑒
→
1 + 𝑛𝑛−1𝑒𝑒

→
2𝑛𝑛� + 𝑡𝑡𝑒𝑒

→
2𝑛𝑛+1� = 𝑠𝑠 − 𝑛𝑛−12−𝑛𝑛 < 1, 

whenever n ∈ N and 𝑠𝑠, 𝑡𝑡 ∈ {−1,1}. Hence, 𝑓𝑓 �𝑥𝑥
→
� ≤ 1 for all 𝑥𝑥

→
∈ 𝑆𝑆, and thus the same holds for all 𝑥𝑥

→
∈

𝐾𝐾. We conclude that ‖𝑓𝑓‖ = 1. 

It remains to show that 𝑓𝑓 �𝑦𝑦
→
� < 1 whenever 𝑦𝑦

→
∈ 𝐾𝐾 ∖ �𝑒𝑒

→
1�. Let 𝑦𝑦

→
∈ 𝐾𝐾 and assume that 𝑓𝑓 �𝑦𝑦

→
� = 1. Since 

K is the closure of the convex hull of S, for each 𝑘𝑘 ∈ ℕ, we are able to find vectors 𝑢𝑢
→
𝑘𝑘 ∈

1
3
𝐵𝐵𝑐𝑐0, strictly 

increasing integers 𝑛𝑛𝑘𝑘, numbers 𝜆𝜆𝑘𝑘,0, … , 𝜆𝜆𝑘𝑘,𝑛𝑛𝑘𝑘 ≥ 0 and signs 𝑠𝑠𝑘𝑘,1, 𝑡𝑡𝑘𝑘,1, … , 𝑠𝑠𝑘𝑘,𝑛𝑛𝑘𝑘 , 𝑡𝑡𝑘𝑘,𝑛𝑛𝑘𝑘 ∈ {−1,1}, such that 

�𝜆𝜆𝑘𝑘,𝑗𝑗 = 1
𝑛𝑛𝑘𝑘

𝑗𝑗=0

and the vectors 𝑦𝑦
→
𝑘𝑘 ≔ 𝜆𝜆𝑘𝑘,0𝑢𝑢

→
𝑘𝑘 + �𝜆𝜆𝑘𝑘,𝑗𝑗 �𝑠𝑠𝑘𝑘,𝑗𝑗 �𝑒𝑒

→
1 + 𝑗𝑗−1𝑒𝑒

→
2𝑗𝑗� + 𝑡𝑡𝑘𝑘,𝑗𝑗𝑒𝑒

→
2𝑗𝑗+1�

𝑛𝑛𝑘𝑘

𝑗𝑗=1
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, 

converge in norm to 𝑦𝑦
→

. We will show that 𝑦𝑦
→
𝑘𝑘 → 𝑒𝑒

→
1 in the weak topology of 𝑐𝑐0. By uniqueness of limits, it 

will follow that 𝑦𝑦
→

= 𝑒𝑒
→
1. Since the sequence 〈𝑦𝑦

→
𝑘𝑘〉 is norm-bounded, it is sufficient to show that, given 

𝑖𝑖 ∈ ℕ, we have 𝑒𝑒𝑖𝑖�(𝑦𝑦
→
𝑘𝑘 − 𝑒𝑒

→
1) → 0 as 𝑘𝑘 → ∞[10, Exercise 3.33]. 

Since 𝑓𝑓(𝑦𝑦
→

) = 1, we have 𝑓𝑓(𝑦𝑦
→
𝑘𝑘) → 1 as 𝑘𝑘 → ∞. We estimate 

𝑓𝑓(𝑦𝑦
→
𝑘𝑘) = 𝜆𝜆𝑘𝑘,0𝑓𝑓(𝑢𝑢

→
𝑘𝑘) + �𝜆𝜆𝑘𝑘,𝑗𝑗(𝑠𝑠𝑘𝑘,𝑗𝑗 − 𝑗𝑗−12−𝑗𝑗)

𝑛𝑛𝑘𝑘

𝑗𝑗=1

≤
2
3
𝜆𝜆𝑘𝑘,0 +�𝜆𝜆𝑘𝑘,𝑗𝑗(1 − 𝑗𝑗−12−𝑗𝑗) = 1 −

1
3
𝜆𝜆𝑘𝑘,0

𝑛𝑛𝑘𝑘

𝑗𝑗=1

−�𝑗𝑗−12−𝑗𝑗𝜆𝜆𝑘𝑘,𝑗𝑗 ≤ 1
𝑛𝑛𝑘𝑘

𝑗𝑗=1

.

 

As 𝑓𝑓(𝑦𝑦
→
𝑘𝑘) → 1, and the summands under consideration are all non-negative, we conclude that 

(4) 

𝜆𝜆𝑘𝑘,0 → 0and� 𝑗𝑗−12−𝑗𝑗𝜆𝜆𝑘𝑘,𝑗𝑗 → 0
𝑛𝑛𝑘𝑘

𝑗𝑗=1
, 

as 𝑘𝑘 → ∞. If we combine (4) and (3), we obtain 

(5) 

𝑒𝑒1� �𝑦𝑦
→
𝑘𝑘� = 𝜆𝜆𝑘𝑘,0𝑒𝑒1� �𝑢𝑢

→
𝑘𝑘�+ �𝜆𝜆𝑘𝑘,𝑗𝑗𝑠𝑠𝑘𝑘,𝑗𝑗

𝑛𝑛𝑘𝑘

𝑗𝑗=1

= 𝜆𝜆𝑘𝑘,0𝑒𝑒1� �𝑢𝑢
→
𝑘𝑘�+ 𝑓𝑓 �𝑦𝑦

→
𝑘𝑘� − 𝜆𝜆𝑘𝑘,0𝑓𝑓 �𝑢𝑢

→
𝑘𝑘� −�𝑗𝑗−12−𝑗𝑗𝜆𝜆𝑘𝑘,𝑗𝑗 → 1

𝑛𝑛𝑘𝑘

𝑗𝑗=1

,

 

as 𝑘𝑘 → ∞. 

Moreover, given 𝑖𝑖 ∈ ℕ, if we choose k large enough to ensure that 𝑖𝑖 ≤ 𝑛𝑛𝑘𝑘 (which we can do as the 𝑛𝑛𝑘𝑘 
are strictly increasing), then (4) also yields 

0 ≤ 𝜆𝜆𝑘𝑘,𝑖𝑖 ≤ 𝑖𝑖2𝑖𝑖�𝑗𝑗−12−𝑗𝑗𝜆𝜆𝑘𝑘,𝑗𝑗 → 0
𝑛𝑛𝑘𝑘

𝑗𝑗=1

, 

as 𝑘𝑘 → ∞. Therefore, for large enough k, we have 

(6) 

𝑒𝑒2𝑖𝑖+1∙  (y⃗k)=λk,0𝑒𝑒2𝑖𝑖∙  (u⃗k)+i−1λk,isk,i→0, 

And 
(7) 
 

https://www.sciencedirect.com/science/article/pii/S0166864118301482?via%3Dihub#br0110
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𝑒𝑒2𝑖𝑖� �𝑦𝑦
→
𝑘𝑘� = 𝜆𝜆𝑘𝑘,0𝑒𝑒2𝑖𝑖� �𝑢𝑢

→
𝑘𝑘�+ 𝑖𝑖−1𝜆𝜆𝑘𝑘,𝑖𝑖𝑠𝑠𝑘𝑘,𝑖𝑖 → 0, 

as 𝑘𝑘 → ∞. Combining (5), (6) and (7) yields the desired weak convergence. 

5. Subcontinuum betweenness 
For our second case study, we shift attention to the subcontinuum interpretation of betweenness in a 
(not necessarily metrizable) continuum X (see2,3,4). We refer to this interpretation as K-betweenness; 
the K-interval [𝑎𝑎, 𝑏𝑏]𝖪𝖪 is the intersection ⋂𝒦𝒦𝑎𝑎,𝑏𝑏, where 𝒦𝒦𝑎𝑎,𝑏𝑏 = 𝒦𝒦𝑎𝑎,𝑏𝑏(𝑋𝑋) is the collection of all 
subcontinua of X that contain {𝑎𝑎, 𝑏𝑏}. Clearly the resulting ternary relation is both closed and basic; 
indeed it is κ-basic and disjunctive (i.e., [𝑎𝑎, 𝑏𝑏] ⊆ [𝑎𝑎, 𝑐𝑐] ∪ [𝑐𝑐, 𝑏𝑏] for any third point c, not just one K-
between a and b). 

Recalling that M-betweenness is automatically antisymmetric but not necessarily weakly disjunctive, we 
see that quite the opposite is true for K-betweenness, as the antisymmetry axiom can easily fail (see4). 
We will be mainly interested in two extremes: one where certain connectedness conditions hold at the 
local level; the other where no such conditions occur anywhere. 

A topological space X is connected im kleinen (abbr. cik) at point 𝑎𝑎 ∈ 𝑋𝑋 if for each open neighborhood U 
of a, there exists an open neighborhood V of a such that each two points of V are contained in a 
connected subset of U. For continua, this condition is well known to be equivalent to saying that for 
each open neighborhood U of a, there is an open set V and a subcontinuum K such that 𝑎𝑎 ∈ 𝑉𝑉 ⊆ 𝐾𝐾 ⊆ 𝑈𝑈. 
Being locally connected for a continuum is equivalent to being cik at each of its points (see, e.g.,20). 

A continuum is unicoherent if it is not the union of two subcontinua with disconnected intersection. In 
this paper, the addition of the modifier hereditarily to a property of continua confers the property to all 
nondegenerate subcontinua. So, for example, a continuum is hereditarily unicoherent if and only if the 
intersection of any two of its subcontinua is connected (possibly empty). This property is equivalent [3, 
Proposition 2.1] to the condition that each K-interval is connected. 

Remarks 5.1 
Suppose our continuum X is a geodesic space. 

(i) Then usual open balls are (path) connected; hence X is a Peano continuum. 

(ii) By Proposition 3.6, we have [𝑎𝑎, 𝑏𝑏]𝖪𝖪 ⊆ ⌊𝑝𝑝⌋ ⊆ [𝑎𝑎, 𝑏𝑏]𝖬𝖬 always holding, where p is any geodesic from a 
to b. 

(iii) If p and q are geodesics from a to b with distinct supports, then, by Proposition 3.7, plus the fact that 
an arc is irreducible about its pair of noncut points, we know that ⌊𝑝𝑝⌋ ∩ ⌊𝑞𝑞⌋ is disconnected. This makes 
[𝑎𝑎, 𝑏𝑏]𝖪𝖪 disconnected too; hence we may conclude that in a hereditarily unicoherent geodesic 
continuum, [𝑎𝑎, 𝑏𝑏]𝖪𝖪 = [𝑎𝑎, 𝑏𝑏]𝖬𝖬 always holds, and the continuum is unique-geodesic. 

(iv) Since M-intervals in geodesic spaces are connected (Proposition 3.6), the identity between 
corresponding K- and M-intervals implies hereditary unicoherence. 

(v) The closed unit square [0,1]2 in the euclidean plane is unique-geodesic without being hereditarily 
unicoherent: all M-intervals are line segments, while the K -betweenness relation is minimal. In the 
remainder of this section K-betweenness is the default interpretation of our interval notation. 
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Theorem 5.2 
If X is a continuum that is cik at each of the two points 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋, and if [𝑎𝑎, 𝑏𝑏] is connected, then [⋅,⋅] is usc 
at {𝑎𝑎, 𝑏𝑏}. So if X is locally connected then [⋅,⋅] is usc at each singleton; and if X is also hereditarily 
unicoherent, then[⋅,⋅]is usc at all pairs. 

Proof 
Let 𝑎𝑎, 𝑏𝑏 ∈ 𝑋𝑋 be points at which X is cik, and such that [𝑎𝑎, 𝑏𝑏] is connected. Let U be open in X such that 
[𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈. Since {𝑎𝑎, 𝑏𝑏} ⊆ 𝑈𝑈 and X is cik at each point, we have open sets V,W and subcontinua K,M, 
with 𝑎𝑎 ∈ 𝑉𝑉 ⊆ 𝐾𝐾 ⊆ 𝑈𝑈 and 𝑏𝑏 ∈ 𝑊𝑊 ⊆ 𝑀𝑀 ⊆ 𝑈𝑈. Now, {𝑎𝑎, 𝑏𝑏} ∈〚𝑉𝑉,𝑊𝑊〛2; and if {𝑎𝑎′, 𝑏𝑏′} ∈〚𝑉𝑉,𝑊𝑊〛2 then 
𝐾𝐾 ∪ [𝑎𝑎, 𝑏𝑏] ∪𝑀𝑀 ∈ 𝒦𝒦𝑎𝑎′,𝑏𝑏′ and is contained in U. Hence [𝑎𝑎′, 𝑏𝑏′] ⊆ 𝑈𝑈. 

The second assertion follows easily since local connectedness is equivalent to being cik at each point, 
and hereditary unicoherence is equivalent to the condition that each K-interval is a subcontinuum. 

Theorem 5.3 
Let X be a continuum that is cik at 𝑎𝑎 ∈ 𝑋𝑋. Then [⋅,⋅] is usc at{a}. If X is hereditarily unicoherent and [⋅,⋅] is 
usc at {𝑎𝑎}, then X is cik at a. 

Proof 
The first assertion follows immediately from Theorem 5.2. Now assume X is hereditarily unicoherent and 
that [⋅,⋅] is usc at {𝑎𝑎}. Pick open 𝑈𝑈 ⊆ 𝑋𝑋 such that 𝑎𝑎 ∈ 𝑈𝑈. Then [𝑎𝑎,𝑎𝑎] = {𝑎𝑎} ⊆ 𝑈𝑈, so there exists an open 
neighborhood V of a (i.e., {𝑎𝑎} ∈ 〚𝑉𝑉,𝑉𝑉〛2) such that for any {𝑎𝑎′,𝑏𝑏′} ∈〚𝑉𝑉,𝑉𝑉〛2, [𝑎𝑎′,𝑏𝑏′] ⊆ 𝑈𝑈. So for 
any two points of V, their K-interval is a connected set contained in U, showing cik at a. 

Corollary 5.4 
For hereditarily unicoherent continua, being locally connected is equivalent to having [⋅,⋅] be usc at 
singletons. 

Example 5.5 
The hereditary unicoherence hypothesis in Corollary 5.4 cannot be eliminated: Let 𝑋𝑋 ⊆ ℝ2 be the planar 
continuum 𝐻𝐻0 ∪ 𝐻𝐻1 ∪ 𝑉𝑉0 ∪� 𝑉𝑉𝑛𝑛

∞
𝑛𝑛=1 , where 𝐻𝐻𝑚𝑚 = [0,1] × {𝑚𝑚}, 𝑚𝑚 = 0,1, 𝑉𝑉0 = {0} × [0,1], and, for 𝑛𝑛 ∈

ℕ, 𝑉𝑉𝑛𝑛 = {1
𝑛𝑛

} × [0,1]. Then X is K-minimal; hence [⋅,⋅] is trivially continuous. On the other hand, X is not 
locally connected. 

The connectedness im kleinen assumption in Theorem 5.2 is not necessary; as, by Proposition 1.4, [⋅,⋅]is 
usc at any pair about which the continuum is irreducible. 

A continuum is decomposable if it is the union of two proper subcontinua, indecomposable otherwise. 
The composant of a point a in continuum X is the union 𝜅𝜅(𝑎𝑎) of all proper subcontinua of X that contain 
a. Composants are always dense and connected; the composants of an indecomposable continuum are 
pairwise disjoint. Nondegenerate metrizable indecomposable continua have uncountably many 
composants,17 but it is possible for a nonmetrizable indecomposable continuum to have exactly one 
composant.5 
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Theorem 5.6 
Let X be an indecomposable continuum that has at least two composants. Then [⋅,⋅] is usc at {𝑎𝑎, 𝑏𝑏} if and 
only if 𝜅𝜅(𝑎𝑎) ≠ 𝜅𝜅(𝑏𝑏). In particular, [⋅,⋅] is never usc at a singleton. 

Proof 
Suppose 𝜅𝜅(𝑎𝑎) ≠ 𝜅𝜅(𝑏𝑏). Then X is irreducible about {𝑎𝑎, 𝑏𝑏}, and we may use Proposition 1.4 to conclude 
that [⋅,⋅] is usc at {𝑎𝑎, 𝑏𝑏}. 

If 𝜅𝜅(𝑎𝑎) = 𝜅𝜅(𝑏𝑏) = 𝜅𝜅, then [𝑎𝑎, 𝑏𝑏] is a proper closed subset of X. Hence there is a proper open set U with 
[𝑎𝑎, 𝑏𝑏] ⊆ 𝑈𝑈. Suppose we are given a neighborhood 〚𝑉𝑉,𝑊𝑊〛2 of {𝑎𝑎, 𝑏𝑏}, say 𝑎𝑎 ∈ 𝑉𝑉. Then, because there 
are composants disjoint from κ and each composant is dense in X, there is some 𝑎𝑎′ ∈ 𝑉𝑉 that lies in a 
composant disjoint from κ. Thus [𝑎𝑎′,𝑏𝑏] = 𝑋𝑋 ⊈ 𝑈𝑈, showing [⋅,⋅] not to be usc at {𝑎𝑎, 𝑏𝑏}. 

Examples 5.7 

(i)  Let X be the sin 1
2
-continuum, namely the union in ℝ2 of 𝐴𝐴 = {0} × [−1,1] and 𝑆𝑆 = {〈𝑡𝑡, sin 1

𝑡𝑡
〉: 0 <

𝑡𝑡 ≤ 1}. For each 0 < 𝑡𝑡 ≤ 1, let 𝑆𝑆𝑡𝑡 = 𝑆𝑆 ∩ ((−∞, 𝑡𝑡] × ℝ). If 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 = 〈𝑡𝑡, sin 1
𝑡𝑡
〉, then the K-

interval [𝑎𝑎, 𝑏𝑏] is 𝐴𝐴 ∪ 𝑆𝑆𝑡𝑡; all other intervals are arcs. This continuum is hereditarily unicoherent, as well as 
hereditarily decomposable, but is not cik at any point of A. It is an easy exercise to show that [⋅,⋅] is usc 
at {𝑎𝑎, 𝑏𝑏} if and only if either: (1) a and b are the end points of A; (2) 𝑎𝑎 ∈ 𝐴𝐴 and 𝑏𝑏 ∈ 𝑆𝑆; or (3) a and b are 
both in S. In particular, [⋅,⋅] is usc at {a} if and only if 𝑎𝑎 ∈ 𝑆𝑆. 

(ii) By Theorem 5.3, hereditarily unicoherent continuum X is cik at no point of X if and only if [⋅,⋅] is usc at 
no singleton. It is easy for [⋅,⋅] to fail at singletons without the (hereditarily unicoherent) continuum 
being indecomposable: Let 𝑋𝑋 = 𝑌𝑌 ∪ 𝑍𝑍, where Y and Z are (hereditarily unicoherent) indecomposable 
continua—e.g., pseudo-arcs, bucket handles—and 𝑌𝑌 ∩ 𝑍𝑍 is a singleton. Then X is decomposable (and 
hereditarily unicoherent), and an argument similar to the proof of Theorem 5.6 shows [⋅,⋅] to be usc at 
no singleton. 

From Theorem 5.2 and Proposition 1.4, we obtain the following. 

Corollary 5.8 
For any locally connected continuum, [⋅,⋅] is continuous at each singleton. 

The following shows that lower semicontinuity is not affected by any of the issues that confound usc in 
hereditarily unicoherent continua. 

Theorem 5.9 
For any hereditarily unicoherent continuum, [⋅,⋅] is lsc at all pairs. 

Proof 
Suppose X is a hereditarily unicoherent continuum. Then each K-interval is a subcontinuum. 

If [⋅,⋅] fails to be lsc at {𝑎𝑎, 𝑏𝑏}, let 𝑈𝑈 ⊆ 𝑋𝑋 be an open set such that [𝑎𝑎, 𝑏𝑏] ∩ 𝑈𝑈 ≠ ∅, but [𝑎𝑎′, 𝑏𝑏′] ∩ 𝑈𝑈 = ∅ for 
{𝑎𝑎′,𝑏𝑏′} “arbitrarily near” {𝑎𝑎, 𝑏𝑏}. To make this more precise, let 𝛥𝛥 = ⟨𝛥𝛥,≤⟩ be a directed set, with {〚
𝑉𝑉𝛿𝛿 ,𝑊𝑊𝛿𝛿〛2:𝛿𝛿 ∈ ∆} an open neighborhood base at {𝑎𝑎, 𝑏𝑏}, indexed so that 〚〚𝑉𝑉𝛿𝛿 ,𝑊𝑊𝛿𝛿〛2 ⊇〚𝑉𝑉𝜖𝜖 ,𝑊𝑊𝜖𝜖〛2 

whenever 𝛿𝛿 ≤ 𝜖𝜖 in Δ. 
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Because U witnesses the failure of lsc at {𝑎𝑎, 𝑏𝑏}, we have a net 〈{𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿}〉
𝛿𝛿∈∆

, where {𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿} ∈〚

𝑉𝑉𝛿𝛿 ,𝑊𝑊𝛿𝛿〛2, 𝛿𝛿 ∈ 𝛥𝛥, and [𝑎𝑎𝛿𝛿 , 𝑏𝑏𝛿𝛿] ∩ 𝑈𝑈 = ∅ for all δ. Clearly we have the net convergence {𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿} → {𝑎𝑎, 𝑏𝑏}. 

The hyperspace 2𝑋𝑋 is compact, and hence the net 〈[𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿]〉 has a subnet that converges to some 𝐴𝐴 ∈
2𝑋𝑋. Since subnets of convergent nets converge to the same point, we lose no generality in assuming that 
[𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿] → 𝐴𝐴. 

Arguing as in the proof of Theorem 3.10, and noting that each [𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿] is connected, we infer that 𝐴𝐴 ∈
𝒦𝒦𝑎𝑎,𝑏𝑏; hence that [𝑎𝑎, 𝑏𝑏] ⊆ 𝐴𝐴. But now we have 𝐴𝐴 ∩ 𝑈𝑈 ≠ ∅, implying—by the definition of net 
convergence—that [𝑎𝑎𝛿𝛿 ,𝑏𝑏𝛿𝛿]∩ 𝑈𝑈 ≠ ∅ for some 𝛿𝛿 ∈ 𝛥𝛥, a contradiction. 

Remark 5.10 
The argument for the proof of Theorem 5.9 does not allow us to conclude lsc at a pair {𝑎𝑎, 𝑏𝑏} where only 
[𝑎𝑎, 𝑏𝑏] is assumed to be connected; we need the intervals in the net to be connected too. Contrast this 
situation with the one in Theorem 3.10. 

Putting Theorem 5.9, Theorem 5.2 together, we have: 

Corollary 5.11 
For any locally connected hereditarily unicoherent continuum, [⋅,⋅] is continuous at all pairs. 

To obtain a companion to Corollary 3.12 for K-betweenness, we cite an immediate corollary of [4, 
Theorem 3.2]. 

Lemma 5.12 
For a locally connected continuum,K-betweenness is antisymmetric. 

Now we combine Lemma 2.15, Lemma 5.12, along with Corollary 5.11. 

Corollary 5.13 
For a locally connected hereditarily unicoherent continuum X, [⋅,⋅]is a topological embedding of ℱ2(𝑋𝑋) 
into 𝒦𝒦(𝑋𝑋). 

And combining Theorem 5.9, Theorem 5.6 gives us: 

Corollary 5.14 
Let X be an indecomposable continuum that is hereditarily unicoherent and has at least two composants. 
Then [⋅,⋅] is continuous at {𝑎𝑎, 𝑏𝑏} if and only if a and b lie in different composants of X. 

When we add the Fort–Kuratowski Lemma 1.2 to Theorem 5.9, we obtain the following. 

Corollary 5.15 
For a hereditarily unicoherent metrizable continuum, [⋅,⋅] is usc—and hence continuous—at almost every 
pair. 

Remark 5.16 
Note that Lemma 1.2 comes in two versions. One is used to prove Corollary 2.9, the other proves 
Corollary 5.15. 
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Finally, adding Lemma 1.2 to Theorem 5.6, Theorem 5.9 gives the following result, which makes no 
mention of betweenness functions. 

Corollary 5.17 
For any nondegenerate hereditarily unicoherent indecomposable metrizable continuum X, the set 
{{𝑎𝑎, 𝑏𝑏}:𝜅𝜅(𝑎𝑎) ≠ 𝜅𝜅(𝑏𝑏)} is dense residual in ℱ2(𝑋𝑋). 

Remark 5.18 
Under the hypotheses of Corollary 5.17, [𝑎𝑎, 𝑏𝑏] = 𝑋𝑋 precisely when 𝜅𝜅(𝑎𝑎) ≠ 𝜅𝜅(𝑏𝑏). Thus the bracket set of 
the interval X is dense residual in ℱ2(𝑋𝑋). Contrast this with the locally connected case in which—by 
Lemma 2.15, Lemma 5.12—all bracket sets are singletons. 

Question 5.19 
Can hereditary unicoherence be removed from the hypothesis of Corollary 5.17? 
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	Abstract
	A ternary relational structure 〈𝑋,⋅,⋅,⋅〉, interpreting a notion of betweenness, gives rise to the family of intervals, with interval 𝑎,𝑏 being defined as the set of elements of X between a and b. Under very reasonable circumstances, X is also equipped with some topological structure, in such a way that each interval is a closed nonempty subset of X. The question then arises as to the continuity behavior—within the hyperspace context—of the betweenness function 𝑥,𝑦↦𝑥,𝑦. We investigate two broad scenarios: the first involves metric spaces and Menger's betweenness interpretation; the second deals with continua and the subcontinuum interpretation.
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	Betweenness; Basic ternary relations; Intervals; Betweenness functions; Hyperspaces; Upper (lower) semicontinuity; Metric spaces; Menger betweenness; Intrinsic metrics; Geodesic spaces; Normed vector spaces; Continua; Subcontinuum betweenness
	1. Introduction and preliminaries
	Lemma 1.1
	Proof

	Lemma 1.2
	Remark 1.3
	Proposition 1.4

	Let 〈𝑋,⋅,⋅,⋅〉 be a ternary structure; i.e., X is a set and ⋅,⋅,⋅⊆𝑋3 is a ternary relation on X. The relation is intended to convey a notion of inclusive betweenness, so we assume it to be basic; i.e., it satisfies the conditions that 𝑎,𝑎,𝑏 and 𝑎,𝑏,𝑏 always hold (inclusivity), that 𝑎,𝑐,𝑏 implies 𝑏,𝑐,𝑎 (symmetry), and that 𝑎,𝑐,𝑎 implies 𝑎=𝑐 (uniqueness).
	For each 𝑎,𝑏∈𝑋, we define the interval𝑎,𝑏 to be the set 𝑥∈𝑋:𝑎,𝑥,𝑏. Then, in interval terms, the three basic criteria above become 𝑎,𝑏⊇𝑎,𝑏, 𝑎,𝑏=𝑏,𝑎, and 𝑎,𝑎=𝑎, respectively. There is a unique smallest basic relation, namely the one where 𝑎,𝑏=𝑎,𝑏 identically. This we refer to here as the minimal ternary relation on X.
	The points a and b are bracket points (and 𝑎,𝑏 a bracket pair) for the interval 𝑎,𝑏. If I is an interval, its bracket set is defined to be 𝑎,𝑏:𝑎,𝑏=𝐼.
	The assignment 𝑥,𝑦↦𝑥,𝑦 is the betweenness function associated with ⋅,⋅,⋅, and is denoted throughout the text by ⋅,⋅. Hence the bracket set for interval I is just the fiber over I with respect to this function.
	The present paper is a continuation of the project initiated in2 (see also3,4); here we are interested in the issue of when nearby bracket pairs give rise to nearby intervals. The best way to make sense of this is to give X some topological structure, and inquire into whether the betweenness function is continuous in the context of hyperspaces.15
	We consider two broad case studies: the first is where X is a metric space, and 𝑎,𝑐,𝑏 means that c lies between a and b in the sense of Menger;14 the second is where X is a continuum, and 𝑎,𝑐,𝑏 means that c lies in every subcontinuum of X that contains 𝑎,𝑏. In the first study it is both the topology and the geometry of metric spaces that dictate the continuity of the betweenness function; in the second it is the topology alone of (not necessarily metrizable) continua.
	For a topological space X, we denote by 2𝑋 (resp., 𝒦𝑋) its hyperspace of all nonempty closed (resp., nonempty closed connected) subsets. If U is an open set in X, 𝑈+ (resp., 𝑈−) denotes the set 𝐶∈2𝑋:𝐶⊆𝑈 (resp., {𝐶∈2𝑋:𝐶∩𝑈≠∅). The upper (resp., lower) Vietoris topology on 2𝑋 is subbasically generated by sets of the form U^+ (resp., 𝑈−), as U ranges over the open subsets of X. The join of these two topologies is the Vietoris topology on 2𝑋, and we view 𝒦𝑋 as inheriting this topology.
	We let 𝜔:=0,1,2,… denote the set of finite ordinals. It will be convenient to eliminate zero at times, so we use the symbol N to denote 𝜔∖0.
	For each 𝑛∈ℕ, let ℱ𝑛𝑋 denote the n-fold symmetric power of X, the hyperspace consisting of those 𝐶∈2𝑋 with at most n elements (also equipped with the inherited Vietoris topology). When X is a 𝖳1 space, the function 𝑥↦𝑥 defines a homeomorphism from X onto ℱ1𝑋 (where the inherited upper and lower Vietoris topologies coincide); when X is Hausdorff, each ℱ𝑛𝑋 is a closed subspace of 2𝑋. If X is also normal, then 𝒦𝑋 is closed in 2𝑋 as well. Of the hyperspaces ℱ𝑛𝑋, we will be interested only in the case 𝑛=2 from here on.
	The following is a simple, but useful, result (see, e.g.,15).
	The Vietoris topology on 2𝑋 is basically generated by sets of the form〚𝑈1,…,𝑈n〛:=𝐶∈2𝑋:𝐶⊆U1∪…∪𝑈𝑛 and 𝐶∩𝑈i≠∅ for 1≤𝑖≤𝑛 where 𝑛∈ℕ and 〈𝑈1,…,𝑈𝑛〉 ranges over all n-tuples of open subsets of X.
	This is a direct consequence of the following identities:
	𝑈+∩𝑉+=〚𝑈∩𝑉〛, 𝑈−∩𝑉−=〚𝑋,𝑈,𝑉〛, 𝑈+∩𝑉−=〚𝑈,𝑈∩𝑉〛, and 〚𝑈1,…,𝑈𝑛〛=𝑖=1𝑛𝑈𝑖+∩𝑖=1𝑛𝑈𝑖−
	Unless specified otherwise, the default topology on the hyperspaces defined above is the Vietoris topology. It is a basic fact about this topology (see [15, §4]) that X is compact Hausdorff (resp., compact metrizable) if and only if the same is true for any of these hyperspaces.
	If X and Y are two topological spaces, a function 𝜑:𝑌→2𝑋 is upper (resp., lower) semicontinuous (usc and lsc, respectively) at 𝑎∈𝑌 if it is continuous at a in the usual sense for the upper (resp., lower) Vietoris topology on 2𝑋. So φ is continuous at a if and only if it is both usc and lsc at a. And when we unpack the definitions, we see that φ is usc (resp., lsc) at a just in case for any open 𝑈⊆𝑋 such that 𝜑𝑥⊆𝑈 (resp., φ(a)∩U≠∅), there is an open neighborhood V of a in Y such that φ(x)⊆U (resp., 𝜑𝑥∩𝑈≠∅) for all 𝑥∈𝑉.
	Recall that a subset of a topological space is residual if it contains the intersection of countably many dense open sets, and a Baire space is a topological space in which all residual sets are dense. So while residual sets can even be empty in general, they form a countably complete filter of subsets in a Baire space.
	By the Baire Category Theorem, all topologically complete metric spaces, as well as all locally compact Hausdorff spaces, are Baire spaces.
	Let us say that a certain localized property holds at almost every point of a space Y if the set of points at which the property holds is a dense residual subset of Y.
	The following result of M. K. Fort11 (strengthening earlier work of K. Kuratowski [13, §43, VII, Corollary 1]) gives an important link between the two kinds of semicontinuity under consideration here.
	Let X and Y be topological spaces, with X metrizable and Y a Baire space, and suppose 𝜑:𝑌→2𝑋 is such that 𝜑𝑦 is compact for each 𝑦∈𝑌. If 𝜑 is usc (resp., lsc) at every point of Y, then 𝜑 is also lsc (resp., usc) at almost every point of Y.
	In the sequel, all of our basic ternary structures 〈𝑋,⋅,⋅,⋅〉 will be closed; i.e., X is equipped with a Hausdorff topology for which all intervals are closed subsets. In this way the betweenness function will have domain ℱ2𝑋 and codomain 2𝑋.
	In applications of Lemma 1.2, the space Y will be ℱ2𝑋, where X is a topologically complete metric space. In that case 𝑋2 is topologically complete as well, and hence Baire. The function 〈𝑥,𝑦〉→𝑥,𝑦 defines a continuous open map from 𝑋2 onto ℱ2𝑋, and it is an easy exercise to show that the Baire property is thus preserved.
	In a slight abuse of language below, we refer to the members of ℱ2𝑋 generically as pairs, using the terms singleton (resp., doubleton) to specify that the pair has cardinality one (resp., two). Typical basic Vietoris-open sets for ℱ2𝑋 may be written as 〚𝑈,𝑉〛2:=〚𝑈,𝑉〛∩ℱ2𝑋, where 𝑈,𝑉 are open in X.
	The following result concerning semicontinuity is trivial, but worth recording for later reference.
	Let 𝑋,⋅,⋅,⋅ be a closed basic ternary structure, with 𝑎,𝑏 ∈ 𝑋. Then ⋅,⋅ is usc at {a,b} if 𝑎,𝑏=𝑋, and is lsc at 𝑎,𝑏 if 𝑎=𝑏.
	2. Menger betweenness in metric spaces
	Proposition 2.1
	Proof

	Proposition 2.2
	Proof

	Remark 2.3
	Example 2.4
	Theorem 2.5
	Remark 2.6
	Question 2.7
	Example 2.8
	Corollary 2.9
	Proof
	Example 2.11
	Example 2.12
	Proposition 2.13
	Proof
	Lemma 2.14
	Lemma 2.15

	Given a metric space 𝑋=𝑋,𝜚 and 𝑎,𝑏,𝑐 ∈ 𝑋, we say c lies between a and b in the Menger sense (in symbols, 𝑎,𝑐,𝑏𝖬 or 𝑐∈𝑎,𝑏𝖬) if 𝜚𝑎,𝑏=𝜚𝑎,𝑐+𝜚𝑐,𝑏 (see14). We call this relation M-betweenness, and the associated intervals M-intervals. When there is no confusion over betweenness interpretation, we drop subscripts—i.e., 𝑎,𝑏:=𝑎,𝑏𝖬, etc.
	M-betweenness is a closed basic ternary relation. Indeed, each M-interval is bounded, as well as closed.
	M-betweenness is clearly a basic ternary relation, so fix 𝑎,𝑏 ∈ 𝑋 and define 𝑓:𝑋→ℝ by 𝑓𝑥=𝜚𝑎,𝑥+𝜚𝑥,𝑏−𝜚𝑎,𝑏. Then f is continuous and 𝑎,𝑏=𝑓←0, which is closed in X.
	To show boundedness, we prove that the diameter of 𝑎,𝑏 is 𝜚𝑎,𝑏. For if 𝑐,𝑑 ∈ 𝑎,𝑏, then 𝜚𝑎,𝑐+𝜚𝑐,𝑏=𝜚𝑎,𝑏=𝜚𝑎,𝑑+𝜚𝑑,𝑏. From the triangle inequality, we have 𝜚𝑐,𝑑≤𝜚𝑐,𝑎+𝜚𝑎,𝑑𝑎𝑛𝑑 𝜚𝑐,𝑑≤𝜚𝑐,𝑏+𝜚𝑏,𝑑 both holding. Hence 
	2𝜚𝑐,𝑑≤𝜚𝑎,𝑐+𝜚𝑐,𝑏+𝜚𝑎,𝑑+𝜚𝑑,𝑏=2𝜚𝑎,𝑏,,
	and therefore 𝜚𝑐,𝑑≤𝜚𝑎,𝑏.
	A metric space (or metric) is proper (resp., M-proper) if each of its closed bounded subsets (resp., M-intervals) is compact. The metric space is M-minimal if its M-betweenness relation is minimal. M-minimal metrics are obviously M-proper. We define a metric space 𝑋,𝜚 to be topologically proper (resp., topologically M-proper, topologically M-minimal) in exact analogy with how one defines topological completeness; i.e., there is a proper (resp., M-proper, M-minimal) metric on X that is equivalent to ϱ. Every proper metric is M-proper, by Proposition 2.1; proper metrics are easily seen to be complete.
	While being topologically proper is an interesting metric space property, the topological modifications of M-proper and M-minimal are not.
	Every metric space is topologically M-minimal.
	Let 𝑓:0,∞→0,∞ be the square root function 𝑥↦𝑥. Then f is a strictly increasing homeomorphism, satisfying the condition that 𝑓𝑎+𝑓𝑏>𝑓𝑎+𝑏, for 𝑎,𝑏>0. Thus composing any metric with f results in an equivalent metric that is M-minimal.
	Our original proof of Proposition 2.2 involved the needlessly sophisticated process of embedding a given metric space into the unit sphere of a Hilbert space. We are grateful to D. Anderson [1] for suggesting the simple argument above.
	Any two-valued metric on an infinite set is complete and M-minimal, without being proper. The following shows that an M-minimal metric space with no isolated points can also fail to be topologically proper.
	Let X be the set of rational points on the unit circle (i.e., 𝑋=〈𝑥,𝑦〉∈ℝ2:𝑥2+𝑦2=1∩ℚ×ℚ), with ϱ the inherited euclidean metric. Then 𝑋,𝜚 is easily seen to be M-minimal. However, this space is countable with no isolated points, so it is not a Baire space and thus not topologically complete. Consequently, it is not topologically proper.
	For a metric space that is either proper or M-minimal, ⋅,⋅ is usc at all pairs.
	If the metric space is M-minimal, then ⋅,⋅ is the inclusion map, and is hence continuous. Suppose we have a proper metric space 𝑋,𝜚 such that usc fails for some 𝑎,𝑏∈ℱ2𝑋. Then there is an open subset U of X such that: (1) 𝑎,𝑏⊆𝑈; and (2) for each 𝑛∈ℕ, there are 𝑎𝑛,𝑏𝑛,𝑐𝑛, where 𝜚𝑎,𝑎𝑛,𝜚𝑏,𝑏𝑛≤1𝑛 and 𝑐𝑛∈𝑎𝑛,𝑏𝑛∖𝑈. Then 𝜚𝑐𝑛,𝑎≤𝜚𝑐𝑛,𝑎𝑛+𝜚𝑎𝑛,𝑎≤𝜚𝑏𝑛,𝑎𝑛+1𝑛≤2𝑛+𝜚𝑏,𝑎+1𝑛=3𝑛+𝜚𝑏,𝑎, 
	implying that the sequence 〈𝑐𝑛〉 is bounded. A metric's being proper is clearly equivalent to bounded sequences having convergent subsequences, so we know there is a subsequence of 〈𝑐𝑛〉 that converges. We lose no generality in assuming that 𝑐𝑛→𝑐 for some 𝑐∈𝑋.
	Note that 𝜚𝑎𝑛,𝑏𝑛=𝜚𝑎𝑛,𝑐𝑛+𝜚𝑐𝑛,𝑏𝑛 for 𝑛∈ℕ, and that 𝑎𝑛→𝑎, 𝑏𝑛→𝑏, 𝑐𝑛→𝑐. We may thus use continuity of the metric function to infer that 𝜚𝑎,𝑏=𝜚𝑎,𝑐+𝜚𝑐,𝑏. Hence 𝑐∈𝑎,𝑏⊆𝑈. This implies that some 𝑐𝑛 is contained in U, a contradiction.
	Theorem 2.5 no longer holds for metric spaces that are merely complete. (See Proposition 4.15 and Example 4.19 below.)
	Does Theorem 2.5 still hold if the metric is complete and M-proper?
	The following example shows that Theorem 2.5 need not hold, even for metric spaces that are both topologically proper and M-proper.
	Let X be the “deleted” harmonic fan in the euclidean plane, namely the union 〈1,0〉∪𝑛=1∞𝑆𝑛, where 𝑆𝑛=〈𝑡,𝑡𝑛〉:0≤𝑡≤1. Let ϱ be the euclidean metric on ℝ2, restricted to X. This metric is not complete, hence not proper either. However, X is both locally compact and separable, and is hence topologically proper [12, Theorem 5.3].
	Let 𝑎=0,0, 𝑏=1,0, with 𝑏𝑛=〈1,1𝑛〉, 𝑛∈ℕ. Given 𝑥 ∈ 𝑋∖𝑏, we see that 𝑥,𝑏 is a simple sequence (i.e., homeomorphic to the ordinal space 𝜔+1) if 𝑥≠𝑎 and is 𝑎,𝑏 if 𝑥=𝑎. If 𝑥, 𝑦 ∈ 𝑋 ∖𝑏, then 𝑥,𝑦 is either finite or a closed line segment. In any case, M-intervals in X are compact.
	Now each 𝑎,𝑏𝑛 is the closed line segment 𝑆𝑛, and hence connected, while 𝑎,𝑏 is the disconnected set 𝑎,𝑏. Let U and V be disjoint open sets, where 𝑎∈𝑈 and 𝑏∈𝑉. Then 𝑎,𝑏⊆𝑈∪𝑉. However, the sequence 𝑎,𝑏𝑛 converges to 𝑎,𝑏 in ℱ2𝑋 and 𝑎,𝑏𝑛⊈𝑈∪𝑉 for 𝑛∈ℕ. This shows ⋅,⋅ not to be usc at 𝑎,𝑏.
	If X is a complete metric space, then ℱ2𝑋 is a Baire space (see Remark 1.3). Since proper metrics are complete, we may combine Theorem 2.5 and Lemma 1.2 to obtain the following.
	For any metric space,⋅,⋅ is continuous at each singleton.
	By Proposition 1.4, we need only prove upper semicontinuity. Let 𝑎∈𝑋 and let 𝑈⊆𝑋 be open, such that 𝑎,𝑎=𝑎⊆𝑈. Fix 𝑟>0 such that the open 3r-ball 𝐵𝑎;3𝑟, centered at a, is contained in U. If 𝑎′,𝑏′∈〚𝐵𝑎,𝑟,𝐵𝑎,𝑟〛2 and 𝑐∈𝑎′,𝑏′, then 𝜚𝑎,𝑐≤𝜚𝑎,𝑎′+𝜚𝑎′,𝑐≤𝜚𝑎,𝑎′+𝜚𝑎′,𝑏′≤2𝜚𝑎,𝑎′+𝜚𝑎,𝑏′<3𝑟; hence 𝑎′,𝑏′⊆𝑈. 
	The question arises whether Corollary 2.9 may be extended to lsc at all pairs, and hence to continuity itself, but that is not possible, even for compact metric spaces.
	Let X be the unit circle with ϱ the intrinsic (i.e., “shortest arc”) metric on X. Then ⋅,⋅ fails to be lsc precisely at the antipodal pairs: Without loss of generality, let 𝑎=0,−1 and 𝑏=0,1, with U equal to X intersected with the open right half-plane. If 𝑏′∈𝑋 is any point with negative first coordinate, then 𝑎,𝑏′∩𝑈=∅, while 𝑎,𝑏=𝑋, and hence intersects U. It is easy to show that ⋅,⋅ is lsc at any nonantipodal pair, and that the set of such pairs is a dense open subset of ℱ2𝑋 (more than just a dense residual set, as guaranteed by Corollary 2.9).
	The following four betweenness notions will prove useful in subsequent discussions. The first two are “transitivities” (in the sense of18,19).
	A basic ternary structure is τ-basic (resp., κ-basic) if it satisfies the transitivity (resp., convexity) axiom, namely that 𝑎,𝑐⊆𝑎,𝑏 (resp., 𝑐,𝑑⊆𝑎,𝑏) for all 𝑐,𝑑∈𝑎,𝑏. Clearly every κ-basic structure is τ-basic. Menger proves in [14, Erste Untersuchungen, §2] that (the M-betweenness structures of) metric spaces are always τ-basic; he also provides an ad hoc example of a finite metric space that is not κ-basic. Here is one that is a bit more geometric.
	Let X be the unit circle from Example 2.11, and let 𝑌 = 𝑋 ∪ 𝐻, where 𝐻=−1,1×0 and the “shortest arc” metric is extended in the obvious way. To show X is not κ-basic, we choose the points a and b as before, and we set 𝑐=−1,0, 𝑑=1,0, and 𝑒=0,0. Then 𝑐,𝑑⊆ 𝑎,𝑏= 𝑋 and 𝑒 ∈ 𝑐,𝑑=𝐻, but 𝑒 ∉ 𝑎,𝑏.
	The second two notions are as follows: a basic ternary structure is weakly disjunctive if 𝑎,𝑏=𝑎,𝑐∪𝑐,𝑏 whenever 𝑐∈𝑎,𝑏; it is antisymmetric if intervals 𝑎,𝑏 and 𝑎,𝑐 are unequal whenever 𝑏≠𝑐.
	Every weakly disjunctive τ-basic structure is κ-basic.
	Given 𝑐,𝑑 ∈ 𝑎,𝑏, let 𝑥 ∈ 𝑐,𝑑 be arbitrary. By weak disjunctivity, we have either 𝑑 ∈ 𝑎,𝑐 or 𝑑 ∈ 𝑐,𝑏. In each instance, two applications of transitivity give us 𝑥 ∈ 𝑎,𝑏.
	In a basic ternary structure 𝑋,⋅,⋅,⋅, fix 𝑎 ∈ 𝑋 and define the binary relation ≤𝑎 by setting 𝑥≤𝑎𝑦 to mean 𝑥 ∈ 𝑎,𝑦. Then transitivity in the betweenness sense is equivalent to saying each ≤𝑎 is transitive in the order sense, and hence a pre-order. And for τ-basic structures, antisymmetry in the betweenness sense is equivalent to antisymmetry in the order sense, so that each ≤𝑎 becomes a partial order. For any 𝑎,𝑏 ∈ 𝑋, define ≤𝑎,𝑏to be the restriction of ≤𝑎 to 𝑎,𝑏. The following is an amalgamation of Propositions 5.0.4 and 5.0.5 of,2 and will be of use later on.
	For any τ-basic structure that is both antisymmetric and weakly disjunctive, each ≤a is a tree order with least element (root) a, and each ≤𝑎,𝑏 is a total order with least element a and greatest element b.
	It is easy to see that metric spaces are always antisymmetric; the space X in Example 2.11 is κ-basic without being weakly disjunctive.
	The following result, also of use in the sequel, is about betweenness functions, and is an immediate consequence of [2, Theorem 5.0.6].
	For a τ-basic weakly disjunctive ternary structure, antisymmetry is equivalent to injectivity of the betweenness function.
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	Our main aim in this section is to remove the word almost from the conclusion of Corollary 2.9. We show that this can be done if we add to the hypothesis the condition that the metric space is unique-geodesic, meaning (roughly) that between any two points, there is—up to reparameterization—a unique path whose length is the distance between those points.
	In light of the fact that there is considerable terminological variation in the metric geometry literature (7,8,16 are good modern sources), we beg the reader's indulgence and carefully lay out the elementary notions we use.
	A connected compact Hausdorff topological space is called a continuum; a subcontinuum of a space is a subset that is a continuum in its subspace topology. A continuum—or any topological space—is nondegenerate if it has at least two points. A Peano continuum is a metrizable continuum that is also locally connected.
	Let 𝑋,𝜚 be a metric space, with 𝑎,𝑏 ∈ 𝑋. A path from a to b is a continuous map 𝑝:𝛼,𝛽→𝑋, where 𝛼,𝛽⊆ℝ is a closed bounded interval, 𝑝𝛼=𝑎, and 𝑝𝛽=𝑏. The interval 𝛼,𝛽 is the parameterization interval, a is the initial point, and b is the terminal point of the path. The image of p, a Peano subcontinuum of X, is called the support of p, and is denoted 𝑝.
	If p is a path from a to b, any path q from b to a is said to be oppositely oriented to p. As a prime example of this, we have the reverse path 𝑝←:𝛼,𝛽→𝑋, defined by 𝑝←𝑠:=𝑝𝛼+𝛽−𝑠. Clearly 𝑝←=𝑝.
	We define the length 𝛬𝑝 of a path 𝑝:𝛼,𝛽→𝑋 in the classical way. First define a subdivision of 𝛼,𝛽 to be a finite sequence 〈𝑠0,…,𝑠𝑛〉, where 𝛼=𝑠0≤𝑠1≤…≤𝑠𝑛=𝛽. Given subdivision Σ=〈𝑠0,…,𝑠𝑛〉, we denote by 𝛬𝑝,𝛴 the sum 𝑖=0𝑛−1𝜚(𝑝(𝑠𝑖),𝑝(𝑠𝑖+1)). Then the length 𝛬𝑝 of p is the (possibly infinite) supremum of the set of real numbers 𝛬𝑝,𝛴, as 𝛴 ranges over all subdivisions of 𝛼,𝛽.
	The length of a path is largely—but not entirely—independent of its parameterization or orientation, as we delineate next.
	Given paths 𝑝:𝛼,𝛽→𝑋 and 𝑞:𝛾,𝛿→𝑋 from a to b, write 𝑝⪯𝑞 to mean that there is a weakly increasing surjection 𝜇:𝛼,𝛽→𝛾,𝛿 such that 𝑝=𝑞∘𝜇. This relation between paths from a to b is clearly reflexive and transitive, and we define ≃ to be the smallest equivalence relation containing ⪯.
	The following is well known and an easy exercise.
	If 𝑝:𝛼,𝛽→𝑋 is any path from a to b, then 𝛬𝑝←=𝛬𝑝. Also if 𝑞:𝛾,𝛿→𝑋 is any path from a to b such that 𝑞≃𝑝, then 𝛬𝑞=𝛬𝑝.
	We next come to the important notion of path concatenation. Suppose 𝑝:𝛼,𝛾→𝑋 and 𝑞:𝛾,𝛽→𝑋 are paths, where 𝛼≤𝛾≤𝛽 and 𝑝𝛾=𝑞𝛾. Then the concatenation 𝛬𝑝←=𝛬𝑝 is given by the rule:
	𝑝𝑞𝑡≔𝑝𝑡 𝑖𝑓 ∝≤𝑡≤𝛾𝑞𝑡 𝑖𝑓 𝛾≤𝑡≤𝛽
	We leave the straightforward proof of the following to the reader.
	Under the assumptions above, 𝛬𝑝𝑞=𝛬𝑝+𝛬𝑞.
	The metric space X is intrinsic if for each 𝑎,𝑏 ∈ 𝑋, 𝜚𝑎,𝑏 equals the infimum of the lengths 𝛬𝑝 as p ranges over all paths from a to b. If p is a path whose length is 𝜚𝑎,𝑏, then we call p a geodesic from a to b. From Lemma 3.1, 𝑝← is a geodesic from b to a if and only if p is a geodesic from a to b. Also, if p and q are paths from a to b and 𝑝≃𝑞, then p is a geodesic if and only if q is one too.
	If each pair of points of X can be joined by a geodesic, we call X a geodesic space. Clearly every geodesic space is intrinsic, but the converse is not true: equipped with the euclidean metric, the punctured plane ℝ2∖〈0,0〉 is a (locally compact) intrinsic metric space, but no two points 𝑎,𝑏 and −𝑎,−𝑏 can be joined by a geodesic. It is well known16 that a locally compact intrinsic metric space is a geodesic space if its metric is complete.
	Let X be an intrinsic metric space, with 𝑝:𝛼,𝛽→𝑋 a geodesic from a to b and 𝛼≤𝛾≤𝛿≤𝛽. If 𝑐=𝑝𝛾 and 𝑑=𝑝𝛿, then 𝑝|𝛾,𝛿, the restriction of p to 𝛾,𝛿, is a geodesic from c to d.
	Assume the contrary. Then there is a path 𝑞:𝛾,𝛿→𝑋 from c to d such that Λ𝑞<Λ𝑝|𝛾,𝛿. But then we have the concatenation 𝑟=𝑝|𝛼,𝛾𝑞𝑝|𝛿,𝛽, a path from a to b; and, by Lemma 3.2, Λ𝑟=Λ𝑝𝛼,𝛾+Λ𝑞+Λ𝑝𝛿,𝛽<Λ𝑝𝛼,𝛾+Λ𝑝|𝛾,𝛿+Λ𝑝𝛿,𝛽=Λ𝑝. This contradicts the assumption that p is a geodesic.
	We now bring Menger betweenness into the discussion.
	If X is an intrinsic metric space and p is a geodesic from a to b, then ⌊p⌋⊆[a,b].
	Suppose 𝑝:𝛼,𝛽→𝑋 is a geodesic from a to b, and pick 𝛾 ∈ 𝛼,𝛽, with 𝑐=𝑝𝛾. Then, by Lemma 3.2, Lemma 3.3, 𝜚𝑎,𝑏=Λ𝑝=Λ𝑝|𝛼,𝛾+Λ𝑝|𝛾,𝛽=𝜚𝑎,𝑐+𝜚𝑐,𝑏. Hence  𝑐 ∈ 𝑎,𝑏. 
	Let X be an intrinsic metric space, with 𝑎,𝑏,𝑐 ∈ 𝑋 such that 𝑐 ∈ 𝑎,𝑏. If 𝑝:𝛼,𝛾→𝑋 is a geodesic from a to c and 𝑞:𝛾,𝛽→𝑋 is a geodesic from c to b, then pq is a geodesic from a to b.
	By Lemma 3.2, 𝛬𝑝𝑞=𝛬𝑝+𝛬𝑞=𝜚𝑎,𝑐+𝜚𝑐,𝑏 since p and q are geodesics. The right-hand side is 𝜚𝑎,𝑏 since 𝑐∈𝑎,𝑏; thus pq is a geodesic from a to b.
	Let X be a geodesic space. Then for any 𝑎,𝑏∈𝑋,[𝑎,𝑏]=⋃{⌊𝑝⌋:𝑝 is a geodesic from a to b}. In particular, M-intervals are connected closed bounded sets, and ⋅,⋅ maps ℱ2𝑋 to 𝒦𝑋.
	By Proposition 3.4, the left-hand side contains the right. Now suppose 𝑐∈𝑎,𝑏. Then there are geodesics 𝑞:𝛼,𝛾→𝑋, from a to c, and 𝑟:𝛾,𝛽→𝑋, from c to b. By Lemma 3.5, 𝑝=𝑞𝑟 is a geodesic from a to b. Thus 𝑐∈𝑝 and we infer that the right-hand side contains the left.
	Each support is a Peano continuum in X. Since 𝑎,𝑏 is a union of a family of connected sets containing the point a, it too must be connected. It is closed and bounded, by Proposition 2.1. 
	We next set about showing that the supports of geodesics are arcs. Recall that a point a of a connected topological space X is a cut point if 𝑋∖𝑎 is disconnected; a noncut point otherwise. It is well known17 that every nondegenerate continuum has at least two noncut points; arcs are homeomorphic copies of 0,1⊆ℝ, and are characterized as being those metrizable continua possessing precisely two. If X is a continuum and 𝐴⊆𝑋, we say X is irreducible about A if no proper subcontinuum of X contains A. Every continuum is irreducible about its set of noncut points. The following will prove useful in achieving the main aim of this section.
	Let X be an intrinsic metric space. If 𝑝:𝛼,𝛽→𝑋 is a geodesic from a to b, then p is a monotone map; hence 𝑝 is either degenerate or an arc with noncut points a and b.
	If p is nonmonotone, then there are 𝛾,𝛿, with 𝛼≤𝛾<𝛿≤𝛽, such that 𝑝𝛾=𝑝𝛿, but 𝑝|𝛾,𝛿 is nonconstant. By Lemma 3.3, we know 𝑝|𝛾,𝛿 is a geodesic from a point to itself. It is immediate from the definition that this cannot happen, that any geodesic from a point to itself must be constant.
	Thus p must be a monotone map. Assuming 𝑎≠𝑏 in 𝑝 and 𝑐∈𝑝∖𝑎,𝑏, it is easy to show that the monotonicity of p implies that c is a cut point of 𝑝. Since every nondegenerate continuum possesses at least two noncut points, we know that 𝑝 is an arc with noncut points a and b.
	The intrinsic metric space X is unique-geodesic at the pair 𝑎,𝑏 if: (1) there is a geodesic p from a to b; and (2) for any geodesic q from a to b (or vice versa), we have 𝑞=𝑝. The space is unique-geodesic if it is unique-geodesic at each pair.
	(i) Every unique-geodesic space is weakly disjunctive.
	(ii) Every M-proper weakly disjunctive geodesic space is unique-geodesic.
	Let X be any geodesic space, with 𝑎,𝑏,𝑐∈𝑋 such that 𝑐∈𝑎,𝑏. Proposition 3.6 provides us with a geodesic 𝑝:𝛼,𝛽→𝑋 from a to b, where 𝑐∈𝑝. Suppose 𝛼≤𝛾≤𝛽 is such that 𝑐=𝑝𝛾. By Lemma 3.3, 𝑞=𝑝|𝛼,𝛾 (resp., 𝑟=𝑝|𝛾,𝛽) is a geodesic from a to c (resp., from c to b), and by Proposition 3.4, we have 𝑞⊆𝑎,𝑐 (resp., 𝑟⊆𝑐,𝑏).
	Given any 𝑑∈𝑎,𝑏, uniqueness of geodesic provides us with some 𝛼≤𝛿≤𝛽 such that 𝑑=𝑝𝛿. If 𝛿≤𝛾, we have 𝑑∈𝑎,𝑐, by the argument in the last paragraph; if 𝛾≤𝛿, we have 𝑑∈𝑐,𝑏. Hence X is weakly disjunctive.
	Now suppose X is an M-proper weakly disjunctive geodesic space. Then by Lemma 2.14, each binary relation ≤𝑎,𝑏 is a total order on 𝑎,𝑏, with least element a and greatest element b.
	Thus 𝑎,𝑏 has both an order topology induced by ≤𝑎,𝑏 and a subspace topology induced by ϱ. We first claim that every order-closed subset of 𝑎,𝑏 is subspace-closed: given 𝑥,𝑦 ∈𝑎,𝑏 with 𝑥≤𝑎,𝑏𝑦, let 𝑥,𝑦𝑎,𝑏:=𝑧∈𝑎,𝑏:𝑥≤𝑎,𝑏𝑧≤𝑎,𝑏𝑦. Then a closed-set subbase for the order-closed sets consists of order-intervals of the form 𝑎,𝑦𝑎,𝑏 and 𝑥,𝑏𝑎,𝑏, 𝑥,𝑦∈𝑎,𝑏. Then it is straightforward from the definition of ≤𝑎,𝑏 that 𝑎,𝑦𝑎,𝑏=𝑎,𝑦 and 𝑥,𝑏𝑎,𝑏=𝑥,𝑏 always, so by Proposition 2.1 each of these order-intervals is subspace-closed. This proves our claim.
	Because the metric is M-proper, we know that the subspace topology on [a,b] is compact. Hence, so is the order topology. Since the smaller topology is also Hausdorff, the two topologies must coincide. Since M-intervals are also connected, by Proposition 3.6, this makes 𝑎,𝑏 a totally ordered continuum with end points a and b. Therefore 𝑎,𝑏 is an arc with noncut points a and b, showing that X is unique-geodesic.
	Can the hypothesis of being M-proper be removed from Theorem 3.8 (ii)?
	The space in Example 2.11 is a proper (indeed compact) geodesic space that fails to be unique-geodesic at some (i.e., the antipodal) pairs. We next show that this condition is necessary to have failure of lsc at a pair.
	For a proper geodesic space, being unique-geodesic at a pair of points implies that ⋅,⋅ is lsc (and hence continuous) at that pair.
	By Theorem 2.5, all we need to concentrate on is lower semicontinuity.
	Let X be a proper geodesic space. Then, by Proposition 3.6, every M-interval in X is a subcontinuum.
	Fix 𝑎,𝑏∈ℱ2𝑋 so that there is just one geodesic from a to b. Assuming failure of lsc at 𝑎,𝑏, we have an open 𝑈⊆𝑋 such that: (1) 𝑎,𝑏∩ 𝑈≠∅; and (2) for each 𝑛∈ℕ, there are 𝑎𝑛,𝑏𝑛, where 𝜚𝑎,𝑎𝑛,𝜚𝑏,𝑏𝑛≤1𝑛 and 𝑎𝑛,𝑏𝑛∩𝑈=∅.
	Suppose 𝑐∈𝑛=1∞𝑎𝑛,𝑏𝑛. Then, arguing as in the proof of Theorem 2.5, we infer that 𝜚𝑐,𝑎≤3+𝜚𝑏,𝑎; hence that 𝑛=1∞𝑎𝑛,𝑏𝑛is bounded in X. Let 𝑌=𝑛=1∞𝑎𝑛,𝑏𝑛. Then Y, being both closed and bounded in X, is compact. Consequently 2𝑌 is a compact metrizable subspace of 2𝑋, and the sequence 𝑎𝑛,𝑏𝑛 has a subsequence that converges to something in 2𝑌. Without loss of generality, we may assume the sequence itself converges, say, to 𝐴∈2𝑌.
	To show 𝑎∈𝐴, suppose otherwise. Invoking regularity, we have open 𝑉⊆𝑋 with 𝑎∈𝑉⊆𝑉⊆𝑋∖𝐴. But then 𝐴∈〚𝑋∖𝑉〛, and hence for all but finitely many 𝑛∈ℕ, we have 𝑎𝑛,𝑏𝑛∈〚𝑋∖𝑉〛. This says that 𝑎𝑛,𝑏𝑛∩𝑉=∅ for all but finitely many n, and hence that 𝑎𝑛↛𝑎. Similarly we show 𝑏∈𝐴.
	If A were not connected, we could invoke normality to find disjoint open sets V,W such that 𝐴∈〚𝑉,𝑊〛. But then 𝑎𝑛,𝑏𝑛∈〚𝑉,𝑊〛for some 𝑛∈ℕ, contradicting connectedness in M-intervals. Now we know A is a subcontinuum of X containing 𝑎,𝑏.
	Next we show 𝐴⊆𝑎,𝑏. Indeed, fix 𝑐∈𝐴; and for 𝑛∈ℕ, let 𝑈𝑛=𝐵𝑐;1𝑛. Using the facts that 𝑎𝑛,𝑏𝑛→𝐴 and that 〚𝑈1,𝑋〛 is a Vietoris-open neighborhood of A, let 𝑛1∈ℕ be least such that 𝑎𝑛,𝑏𝑛∩𝑈1≠∅ for all 𝑛≥𝑛1. Pick 𝑐𝑛1∈𝑎𝑛1,𝑏𝑛1∩𝑈1. For our inductive hypothesis, assume we have 𝑛1<…<𝑛𝑘, points 𝑐𝑛𝑖∈𝑎𝑛𝑖,𝑏𝑛𝑖∩𝑈𝑛𝑖, 1≤𝑖≤𝑘, and that 𝑎𝑛,𝑏𝑛∩𝑈𝑛𝑘≠∅ for all 𝑛≥𝑛𝑘. Then pick 𝑛𝑘+1>𝑛𝑘 to be least such that 𝑎𝑛,𝑏𝑛∩𝑈𝑛𝑘+1≠∅ for all 𝑛≥𝑛𝑘+1. Fix 𝑐𝑛𝑘+1∈𝑎𝑛𝑘+1,𝑏𝑛𝑘+1∩𝑈𝑛𝑘+1. This gives us a sequence ⟨cni⟩ converging to c. Since 𝜚𝑎𝑛𝑘,𝑐𝑛𝑘+𝜚𝑐𝑛𝑘,𝑏𝑛𝑘=𝜚𝑎𝑛𝑘,𝑏𝑛𝑘, and bnk→b, we know ϱ(a,c)+ϱ(c,b)=ϱ(a,b). Hence 𝑐∈𝑎,𝑏, and we infer 𝐴⊆𝑎,𝑏.
	Finally, by Proposition 3.7, and since there is just one geodesic from a to b, we know that 𝑎,𝑏 is an arc with noncut points a,b. A is a subcontinuum of 𝑎,𝑏 containing the noncut points of 𝑎,𝑏; hence 𝐴=𝑎,𝑏, thanks to irreducibility. Thus 𝐴∩𝑈≠∅, and we may conclude—as above—that 𝑎𝑛,𝑏𝑛∩𝑈≠∅ for some n, which is a contradiction.
	We can now put Theorem 2.5, Theorem 3.10 together to fulfill the stated aim of this section, to remove the word almost from Corollary 2.9.
	For a proper unique-geodesic space, ⋅,⋅ is continuous at every pair.
	Because M-betweenness is always antisymmetric, we may combine Lemma 2.15, Proposition 3.6, Theorem 3.8, and Corollary 3.11 to obtain the following.
	For a proper unique-geodesic space X,⋅,⋅ is a continuous injection from ℱ2𝑋 to 𝒦𝑋. It is a topological embedding if X is compact.
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	In this section we consider Menger betweenness in geodesic spaces arising from linear algebra. Here we take a normed (vector) space to be a pair 𝑋,∥⋅∥, where X is a vector space over the field ℝ of real numbers and ∥⋅∥ is a norm. (As usual, we abuse notation slightly, writing X for 𝑋,∥⋅∥ when there is no possible ambiguity.) We define the (closed) unit ball and unit sphere of X by 𝐵𝑋:=𝑥∈𝑋:𝑥≤1 and 𝑆𝑋:=𝑥∈𝑋:𝑥=1, respectively. A norm on a vector space naturally gives rise to a metric ϱ, defined by 𝜚𝑥,𝑦:=∥𝑥−𝑦∥, which we refer to as the norm metric. We obtain geodesics in normed spaces in the simplest possible way: for any 𝑎,𝑏∈𝑋, define the standard straight path 𝐿𝑎,𝑏:0,1→𝑋 by 𝐿𝑎,𝑏𝑠:=1−𝑠𝑎+𝑠𝑏. The support 𝑎,𝑏𝖫:=𝐿𝑎,𝑏 is, of course, the closed line segment with end points a,b.
	A normed space X is called strictly convex if for any 𝑎,𝑏∈𝑆𝑋  distinct, 𝑎,𝑏𝖫∩𝑆𝑋=𝑎,𝑏. Among the strictly convex normed spaces are those whose norms arise from an inner product (e.g., Hilbert spaces, those inner product spaces whose norm metrics are complete). There are many characterizations of strict convexity; the one of most relevance here is the following.
	In any normed space, 𝐿𝑎,𝑏  is a geodesic from a to b. Moreover, a normed space is strictly convex if and only if it is unique-geodesic.
	Consequently, by Proposition 3.6, 𝑎,𝑏⊇𝑎,𝑏𝖫 whenever a and b are in a normed space X, and equality always holds if and only if X is strictly convex. Thus, in this context, we may use the terms strictly convex and unique-geodesic interchangeably. Below, in Theorem 4.10, we provide a complete geometric description of the intervals 𝑎,𝑏, in all cases.
	The following result provides analogues—but not consequences—of Theorem 3.10 and Corollary 3.11. As is well known, norm metrics are proper exactly when the vector space dimension is finite, and that is not assumed here. Note that the usc component of the result below easily follows from later results (i.e., Theorem 4.10, Theorem 4.21)—the additional proof given below is included as it is simple and direct.
	Let X be a normed space and let 𝑎,𝑏∈𝑋. If 𝑎,𝑏=𝑎,𝑏𝖫, then ⋅,⋅ is lsc at 𝑎,𝑏. Moreover, if X is unique-geodesic, then ⋅,⋅ is usc (and consequently continuous) at every pair.
	Let 𝑎,𝑏 ∈ 𝑋 and 𝑟>0. Note that if ∥𝑎′−𝑎∥,∥𝑏′−𝑏∥≤𝑟, then
	∥1−𝑠𝑎′+𝑠𝑏′−1−𝑠𝑎+𝑠𝑏∥=∥1−𝑠𝑎′−𝑎+𝑠𝑏′−𝑏∥≤𝑟,
	whenever 0≤ 𝑠 ≤1. Thus each point in 𝑎′,𝑏′𝖫 is r-close to some point in 𝑎,𝑏𝖫.
	It follows that if 𝑎,𝑏=𝑎,𝑏𝖫, then ⋅,⋅ is lsc at 𝑎,𝑏. Indeed, if U is open and 𝑎,𝑏∩𝑈=𝑎,𝑏𝖫∩𝑈≠∅, then using the observation above, 𝑎′,𝑏′∩𝑈⊇𝑎′,𝑏′𝖫∩𝑈≠∅ for a sufficiently small 𝑟>0.
	Now assume that X is unique-geodesic. For upper semicontinuity, we simply remark that, given an open set U such that 𝑎,𝑏⊆𝑈, the compactness of 𝑎,𝑏=𝑎,𝑏𝖫 ensures that, for a sufficiently small 𝑟>0, we know that 𝑦∈𝑈 whenever y is r-close to a point in 𝑎,𝑏. Hence 𝑎′,𝑏′=𝑎′,𝑏′𝖫⊆𝑈 for such an r.
	We next consider how being unique-geodesic can be cast in terms of convexity. A subset K of a normed space X is M-convex (resp., linearly convex) if whenever 𝑎,𝑏∈𝐾, we also have 𝑎,𝑏⊆𝐾 (resp., 𝑎,𝑏𝖫⊆𝐾. Linear convexity is the usual notion of convexity from linear algebra, and relies solely on the vector space structure of X. On the other hand, the clearly stronger notion of M-convexity is a special case of something that makes sense for any basic ternary structure. (Indeed, the ternary structure associated with a metric space is κ-basic precisely when its M-intervals are M-convex.)
	The following is to be expected of M-betweenness in normed spaces.
	The M-intervals of a normed space are linearly convex.
	Given points 𝑎,𝑏,𝑐,𝑑 ∈ 𝑋, with 𝑐,𝑑 ∈ 𝑎,𝑏, and 𝑒=1−𝑠𝑐+𝑠𝑑∈𝑐,𝑑𝖫, it suffices to show that ∥𝑒−𝑎∥+∥𝑏−𝑒∥≤∥𝑏−𝑎∥.
	We are already given that ∥𝑐−𝑎∥+∥𝑏−𝑐∥=∥𝑏−𝑎∥=∥𝑑−𝑎∥+∥𝑏−𝑑∥. Hence
	𝑒−𝑎+𝑏−𝑒=1−𝑠𝑐+𝑠𝑑−𝑎+𝑏−1−𝑠𝑐+𝑠𝑑=1−𝑠𝑐−𝑎+𝑠𝑑−𝑎+1−𝑠𝑏−𝑐+𝑠𝑏−𝑑≤1−𝑠𝑐−𝑎+𝑏−𝑐+𝑠𝑑−𝑎+𝑏−𝑑=𝑏−𝑎,
	as desired.
	As Example 2.12 shows, one cannot immediately generalize Proposition 4.3 to geodesic spaces, with 𝑐,𝑑𝖫 being replaced with even a unique-geodesic from c to d.
	In the sequel we will refer to linearly convex sets simply as convex. While the unit ball (or any open or closed ball) in a normed space is convex, it is not necessarily M-convex, as Example 4.5 below shows.
	Let 𝑋=ℝ𝑝𝑛:=〈ℝ𝑛,⋅𝑝〉, where the p-norm 𝑝>1 of 𝑥→=〈𝑥→1,…,𝑥→𝑛〉is given by 𝑥→𝑝:=(𝑖=1𝑛𝑥→𝑖|𝑝1𝑝. (So the usual euclidean norm is just ⋅2.) The ∞-norm is given by 𝑥→∞:=max𝑥→1,…,𝑥→𝑛, which in turn equals lim𝑝→∞𝑥→𝑝. (See, e.g., [7, I.1], [9, III.1].)
	For 𝑋=ℝ12, the unit ball 𝐵𝑋 is the square with corners ±1,0 and 0,±1, and the M-intervals are rectangles with sides parallel to the coordinate axes. In particular, when 𝑎→∈𝐵𝑋 is in the first quadrant, 0→,𝑎→ is the rectangle with lower-left corner 0→  and upper-right corner 𝑎→ . All M-intervals of the form 0→,𝑎→, where 𝑎→∈𝐵𝑋, lie in 𝐵𝑋; however if 𝑎→=〈0,1〉 and 𝑏→=〈1,0〉, then 𝑎→,𝑏→=0,1×0,1⊈𝐵𝑋. Hence 𝐵𝑋 is not M-convex. The case with 𝑝=∞ is similar because the normed spaces ℝ12 and ℝ∞2 are isometrically isomorphic, via the linear transformation 𝑥,𝑦↦𝑥−𝑦,𝑥+𝑦.
	Finally, when 1<𝑝<∞, the unit sphere contains no nondegenerate closed line segments; consequently ℝ𝑝2 is strictly convex; and, by Proposition 4.1, unique-geodesic.
	The following simple example shows that normed vector spaces need not be κ-basic, and complements Example 2.12.
	ℝ∞3 s not κ-basic. To see this, let 𝑎→=〈0,0,0〉, 𝑏→=〈1,0,0〉, 𝑐→=〈12,12,0〉, 𝑑→=〈12,−12,0〉, and 𝑒→=〈0,0,12〉. Then: (1) 𝑎→−𝑏→=1,
	𝑎→−𝑐→+𝑐→−𝑏→=𝑎→−𝑑→+𝑑→−𝑏→=12+12=1, so 
	𝑐→,𝑑→⊆𝑎→,𝑏→; (2) 𝑐→−𝑑→=1, 𝑐→−𝑒→+𝑒→−𝑑→=12+12=1, so 𝑒∈𝑐,𝑑; but (3) 
	𝑎→−𝑒→+𝑒→−𝑏→=12+1=32>𝑎→−𝑏→, so 𝑒∉𝑎→,𝑏→.
	Is every two-dimensional normed vector space κ-basic?
	The rest of this section is devoted to a further exploration of conditions that allow (or disallow) semicontinuity of the M-betweenness function at a given pair, offering a complete characterization in the usc case. In order to do this—as well as to address the problem of upper semicontinuity—we will need some vocabulary from convexity theory.
	Let X be a vector space, let 𝐾⊆𝑋 be convex, and let 𝑎∈𝐾. We define the facet of a in K to be the set
	This definition is equivalent to the one given in Bourbaki [6, TVS II.87]. The set 𝐹𝑎 is always convex, however, as is noted in Bourbaki, if X is in addition a topological vector space (for example, a normed vector space), then 𝐹𝑎
	is not always closed. While Example 4.18 below is provided principally for another purpose, it happens to be another example of this phenomenon.
	It is clear that 𝑎∈𝐹𝑎, and if 𝑏∈𝐹𝑎 and
	𝑐≔𝑠−1𝑎+1−𝑠−1𝑏∈𝐾,,
	where 𝑠∈0,1, then 𝑎=1−𝑠𝑏+𝑠𝑐 and, by considering 1−s, we have 𝑐∈𝐹𝑎 as well. Recall that 𝑎∈𝐾 is an extreme point of K if no closed line segment containing a in its interior lies entirely in K. Let 𝑒𝑥𝑡𝐾 denote the (possibly empty) set of extreme points of K. Evidently, 𝑎∈𝑒𝑥𝑡𝐾 if and only if 𝐹𝑎=𝑎.
	Suppose that X is a normed vector space, 𝐾⊆𝑋 is closed, bounded and convex, 𝑎∈𝐾 and 𝑏∈𝐹𝑎. We define
	𝜎𝑎𝑏=inf𝑠>0:𝑠−1𝑎+1−𝑠−1𝑏∈𝐾..
	Clearly 𝜎𝑎𝑎=0 and 𝜎𝑎𝑏<1 in general. The boundedness of K and the inequality
	demonstrates that if 𝑏≠𝑎, then 𝜎𝑎𝑏>0. Moreover, as K is closed, the infimum in the definition of 𝜎𝑎𝑏 is attained whenever 𝑏≠𝑎. Furthermore, regardless of the value of 𝜎𝑎𝑏, by the convexity of K, we see that 𝑠−1𝑎+1−𝑠−1𝑏∈𝐾 whenever 𝑠∈𝜎𝑎𝑏,1∩0,1. If a and K are clear from the context, we will write 𝜎𝑏 instead of 𝜎𝑎𝑏.
	The following lemma gives a useful criterion for when a convergent sequence of points in 𝐹𝑎 converges in 𝐹𝑎.
	Fix a bounded, closed convex set K and 𝑎∈𝐾. Let 𝑏𝑛 be a sequence from 𝐹𝑎 converging to 𝑏∈𝑋, and assume that 𝜎𝑏𝑛→𝑠∈0,1. Then 𝑏∈𝐹𝑎 and 𝜎𝑏≤𝑠.
	Suppose that 𝑏𝑛≠𝑎. Then 𝜎𝑏𝑛>0 and by the infimum attainment discussed above, we have
	and thus
	(1) 
	𝑎+𝜎𝑏𝑛−1𝑏𝑛∈𝜎𝑏𝑛𝐾. 
	Observe that (1) also holds whenever 𝑏𝑛=𝑎: if 𝑏𝑛=𝑎 then 𝜎𝑏𝑛=0 and 𝜎𝑏𝑛𝐾=0. By taking limits in (1), and using the fact that K is closed, 𝑏∈𝐾 and
	𝑎+𝑠−1𝑏∈𝑠𝐾.
	If 𝑠=0 then we glean from this that 𝑎−𝑏 ∈ 0𝐾=0, and so 𝑏=𝑎∈𝐹𝑎, and 𝜎𝑏=0≤𝑠. If 𝑠>0 then 𝑠∈0,1, and it follows from (2) that
	which implies that 𝑏∈𝐹𝑎 and, by definition, 𝜎𝑏≤𝑠.
	Now assume X has a norm. In the sequel, we will be most concerned with the case 𝐾=𝐵𝑋, the (closed) unit ball of X. In this scenario, X is strictly convex if and only if 𝐹𝑎=𝑎 for all 𝑎∈𝑆𝑋, or equivalently, ext𝐵𝑋=𝑆𝑋. (In Example 4.5, with 1< 𝑝 <∞, we have ext𝐵𝑋=𝑆𝑋. When 𝑝=1 (resp., 𝑝=∞), ext𝐵𝑋=〈±1,0〉,〈0,±1〉 (resp., 〈±2,±2〉).) If a and b are distinct points of X, the mapping 𝑥↦𝑥−𝑎𝑏−𝑎 is an affine transformation on X that takes the M-interval 𝑎,𝑏 to the M-interval 0,𝑏−𝑎𝑏−𝑎, whose nonzero bracket point lies on 𝑆𝑋. These two intervals are topologically and (with the obvious exception of the scaling factor) geometrically identical. Moreover, 𝑐𝑜𝑡,⋅ usc or lsc at 𝑎,𝑏 if and only if the same is true at 0,𝑏−𝑎𝑏−𝑎; hence we may confine our attention to the geometric analysis of M-intervals of the form 0,𝑎, where ∥𝑎∥=1.
	We wish to relate the geometry of the M-betweenness interval 0,𝑎 to that of the facet 𝐹𝑎 of 𝑎∈𝑆𝑋. Observe that 𝐹𝑎⊆𝑆𝑋: if 𝑠−1𝑎+1−𝑠−1𝑏∈𝐵𝑋, then
	which implies ∥𝑏∥≥1.
	From Proposition 3.6, we know that an M-interval is the union of (the supports of) all geodesics joining the points of a bracket pair for the interval. In the next result we show that an M-interval is also a union of closed line segments, all fanning out from one bracket point. In order to determine the other end point of such a line segment, we use the s-functions introduced above.
	In the following, 𝐾=𝐵𝑋. The following is a strengthening of Proposition 4.1.
	Let X be a normed vector space, with a 𝑎∈𝑆𝑋. Then
	0,𝑎=𝜆𝑏:𝑏∈𝐹𝑎𝑎𝑛𝑑𝜆∈0,1−𝜎𝑏. 
	In particular, 0,𝑎=0,𝑎𝖫 if and only if 𝑎∈ext𝐵𝑋
	Let 𝑥∈0,𝑎, so that ∥𝑥∥+∥𝑎−𝑥∥=∥𝑎∥=1. If 𝑥=0 then set 𝑏=𝑎 and 𝜆=0. Otherwise, let 𝑏=𝑥∥𝑥∥ and 𝜆=∥𝑥∥∈0,1. In either case, 𝑥=𝜆𝑏. If 𝑏=𝑎 then 𝑏∈𝐹𝑎 and 𝜆≤1=1−𝜎𝑏. Suppose that 𝑏≠𝑎. In this case, set 𝑠=1−𝜆=1−∥𝑥∥. Since 𝑏≠𝑎, we have 𝑥≠0 and 𝑥≠𝑎, which implies 𝑠∈0,1. Then observe that
	given that ∥𝑥∥+∥𝑎−𝑥∥=1. Consequently, 𝑏∈𝐹𝑎 and, moreover, 𝜎𝑏≤𝑠=1−𝜆, giving 𝜆≤1−𝜎𝑏.
	Conversely, let 𝑥=𝜆𝑏, where 𝑏∈𝐹𝑎 and 𝜆∈0,1−𝜎𝑏. If 𝑏=𝑎 then 𝜎𝑏=0 and ∥𝑥∥+∥𝑎−𝑥∥=𝜆+1−𝜆=1=∥𝑎∥. If 𝑏≠𝑎 then 𝜎𝑏>0 and, from the discussion about 𝜎𝑏 above, as 1−𝜆∈𝜎𝑏,1, we have 1−𝜆−1𝑎+1−1−𝜆−1𝑏∈𝐵𝑋, which implies
	1−∥𝑥∥=1−𝜆≥∥𝑎−𝜆𝑏∥=∥𝑎−𝑥∥,
	and thus ∥𝑎−𝑥∥+∥𝑥∥≤1=∥𝑎∥. It follows that 𝑥∈0,𝑎 by the triangle inequality.
	Note that Proposition 4.1 is an immediate consequence of Theorem 4.10, which, when combined with Theorem 4.2, gives us the following.
	Let X be a normed vector space, with 𝑎,𝑏∈𝑋. If either 𝑎=𝑏 or 𝑏−𝑎𝑏−𝑎∈ext𝐵𝑋, then ⋅,⋅ is lsc at 𝑎,𝑏.
	We are now in a position to show that the unique-geodesic assumption implicit in Corollary 4.11 cannot be eliminated. Given a normed space X and a closed, symmetric, convex, bounded subset 𝐾⊆𝑋 that contains 0 as an interior point, the Minkowski functional defined by
	is a norm on X equivalent to the original norm and having closed unit ball K [10, Definition 2.9, Lemma 2.11].
	We construct a norm ∥⋅∥ on R3, with respect to which ⋅,⋅ is not lsc at all pairs.
	First define the function 𝑓:−1,12→0,1 by the assignment 〈𝑥,𝑦〉↦1−𝑥21−𝑦2. Then f satisfies the following conditions:
	(1) 𝑓0,0=1;
	(2) 𝑓𝑥,𝑦=0 whenever 𝑥=1 or 𝑦=1;
	(3) f is strictly concave on −1,12 (i.e., 𝑓𝑥,𝑥<0, 𝑓𝑦,𝑦<0, and 𝑓𝑥,𝑥𝑓𝑦,𝑦−𝑓𝑥,𝑦2>0; and
	(4) f is symmetric (i.e., 𝑓−𝑥,−𝑦=𝑓𝑥,𝑦 on −1,12).
	Let
	𝐵≔𝑥,𝑦,𝑧∈ −1,13:𝑧≤ 𝑓𝑥,𝑦.
	The set B is symmetric, compact and convex, and the origin is an interior point; so let ∥⋅∥ be its Minkowski functional. Then 〈ℝ3,‖⋅‖〉is a normed space, with 𝐵〈ℝ3,‖⋅‖〉=𝐵. Since 𝐵⊆−1,13, we have ‖⋅‖≥⋅∞. More to the point: since the intersection of B with the plane ℝ2×0 is −1,12×0, it follows that ∥⋅∥ agrees with ⋅∞ on that plane (i.e., 〈𝑥,𝑦,0〉=max𝑥,𝑦).
	Let 𝑆 be the unit sphere 𝑆〈ℝ3,‖⋅‖〉. By the strict concavity of f, we have that
	ext𝐵=𝑆∖〈𝑥,𝑦,𝑧〉:𝑥=1 and 𝑦<1 or 𝑥<1 and 𝑦=1..
	We claim that for 𝑎→∈𝑆, ⋅,⋅ is lsc at 0→,𝑎→ if and only if 𝑎→∈ext𝐵. Indeed, one direction is immediate from Corollary 4.11; as for the other direction, we lose no generality in taking a simplifying case, namely 𝑎→=〈1,0,0〉. Here it is easy to check that 𝐹𝑎→=1×−1,1×0 and 0→,𝑎→ is the square with corners 0,0,0, 1,0,0, and 〈12,±12,0〉. Let U be the open set 〈𝑥,𝑦,𝑧〉:𝑦>14. Then 0→,𝑎→∩𝑈≠∅. However, given 𝑟∈0,14, there exists 𝑎→′∈ext𝐵 such that 𝑎→′−𝑎→≤𝑟. Thus, by Corollary 4.11, 0→,𝑎→′ is a closed line segment that clearly misses U, and we conclude that ⋅,⋅ is not lsc at 0→,𝑎→.
	We now show that dimension three is lowest possible for Example 4.12.
	The M-betweenness function on any two-dimensional normed space is continuous at all pairs.
	Because finite-dimensional normed spaces have proper norm metrics, Theorem 2.5 allows us to focus on lower semicontinuity.
	Let X be a two-dimensional normed space, with 𝑎∈𝑆𝑋. Having in mind the argument in the proof of Theorem 4.2, it is sufficient to demonstrate that, given 𝑟>0, there exists 𝛿>0 such that every point of 𝑢,𝑣 is r-close to some point of 0,𝑎, whenever ∥𝑢∥,∥𝑣−𝑎∥≤𝛿. The case 𝑎∈ext𝐵𝑋 has been covered by Corollary 4.11 and Theorem 4.2, so hereafter we assume that 𝑎∉ext𝑆𝑋.
	Let 𝑟>0. We will find δ in two steps. First, we show that, given 𝑟>0, there exists 𝛿′>0 such that every point of 0,𝑥 is 12𝑟-close to some point of 0,𝑎 whenever 𝑥∈𝑆𝑋 and 𝑥−𝑎≤𝛿′. Since X is two-dimensional, it follows that the facet 𝐹𝑎 in 𝐵𝑋 is a non-degenerate straight line segment 𝑝,𝑞𝖫, and 𝑎=𝑢+𝛼𝑞−𝑝, for some 𝛼∈0,1. Using this, given 𝑏=𝑝+𝛽𝑞−𝑝∈𝐹𝑎𝛽∈0,1, it is easy to compute that
	In particular, for 𝑥∈𝑆𝑋
	as ∥𝑥−𝑎∥→0 (note that 𝐹𝑥=𝐹𝑎 for all x sufficiently close to a). Thus there exists 𝛿′∈0,min1,12𝑟 such that 𝐹𝑥=𝐹𝑎 and 𝜎𝑥𝑏≤𝜎𝑎𝑏+12𝑟 whenever 𝑥∈𝑆𝑋 and ∥𝑥−𝑎∥≤𝛿′. Take such an x, and let 𝑤∈0,𝑥. By Theorem 4.10, we know that 𝑤=𝜆𝑏 for some 𝑏∈𝐹𝑥=𝐹𝑎 and 𝜆∈0,1−𝜎𝑥𝑏. If 𝜆≤𝜎𝑎𝑏, then 𝑤∈0,𝑎, and if not, then 𝜆−𝜎𝑎𝑏≤12𝑟, giving 𝑤−𝜎𝑎𝑏𝑏≤12𝑟. Whatever the case, w is 12𝑟-close to a point in 0,𝑎. This completes the first step.
	In the second step, we show that there exists 𝛿>0 such that if ∥𝑢∥,∥𝑣−𝑎∥≤𝛿 and 𝑥:=𝑣−𝑢𝑣−𝑢∈𝑆𝑋, then ∥𝑥−𝑎∥≤𝛿′ and every point of 𝑢,𝑣 is 12𝑟-close to a point of 0,𝑥. We complete the proof by stitching the two steps together. Set 𝛿=16𝛿′≤16. Let ∥𝑢∥,∥𝑣−𝑎∥≤𝛿 and set 𝑥=𝑣−𝑢𝑣−𝑢∈𝑆𝑋. Given 𝑤∈𝑢,𝑣, it is easy to check that 𝑧:=𝑤−𝑢∥𝑣−𝑢∥∈0,𝑥. By elementary considerations we have
	|∥𝑣−𝑢∥−1|=|∥𝑣−𝑢∥−∥𝑎∥|≤∥(𝑣−𝑎)−𝑢∥≤2𝛿,
	and as 𝑤∈𝑢,𝑣,
	𝑤≤𝑤−𝑢+𝑢≤𝑣−𝑢+𝑢≤1+3𝛿≤32. 
	Therefore,
	𝑤−𝑧=1𝑣−𝑢𝑣−𝑢−1𝑤−𝑢≤4𝛿1−2𝛿≤6𝛿=𝛿′≤12𝑟,
	and
	𝑥−𝑎=1𝑣−𝑢𝑣−𝑎+𝑣−𝑢−1𝑎−𝑢≤4𝛿1−2𝛿≤𝛿′. 
	The final series of results of this section deals with the question of when the M-betweenness function is (or is not) upper semicontinuous. We first consider pairs whose M-intervals are not compact. We will need the following elementary result.
	Let X be a normed space, with 𝐾⊆𝑋 a closed bounded subset that is not compact. Then there exists an open set U containing K, such that
	inf𝑤−𝑣:𝑤∈𝐾𝑎𝑛𝑑𝑣∈𝑋∖𝑈=0. 
	Since K is not compact, there is a sequence 〈𝑎1,𝑎2,…〉of points of K, with no convergent subsequence. Fix 𝑎∈𝑆𝑋 arbitrary, and for 𝑛∈ℕ, let
	Since K is bounded, the sequence 〈𝜇𝑛〉 is bounded in ℝ, and hence has a convergent subsequence. Without loss of generality, we may assume 〈𝜇𝑛〉 itself is convergent.
	Now, for 𝑛∈ℕ, set 𝑏𝑛=𝑎𝑛+𝜇𝑛+1𝑛𝑎, by definition a point of 𝑋∖𝐾. The sequence 〈𝜇𝑛〉 converges, while 𝑎𝑛 has no convergent subsequence; hence 𝑏𝑛 has no convergent subsequence either. Consequently the set 𝑈=𝑋∖𝑏1,𝑏2,… is open and contains K.
	Finally, since K is closed, we have 𝑎𝑛+𝜇𝑛𝑎∈𝐾, 𝑛∈ℕ, and thus
	inf𝑤−𝑣:𝑤∈𝐾 and 𝑣∈𝑋∖𝑈≤𝑎𝑛+𝜇𝑛𝑎−𝑏𝑛=1𝑛→0..
	An almost immediate consequence of Lemma 4.14 is the following.
	Let X be a normed space, with 𝑎, 𝑏∈𝑋. If 𝑎,𝑏 is not compact, then ⋅,⋅ is not usc at 𝑎,𝑏.
	Since 𝑎,𝑏 is closed and bounded, but not compact, we use Lemma 4.14 to produce an open set U, with 𝑎,𝑏⊆𝑈, so that
	Given any 𝛿>0, find 𝑤∈𝑎,𝑏 and 𝑣∈𝑋∖𝑈 so that ∥𝑤−𝑣∥<𝛿. Then
	𝑣=𝑤+𝑣−𝑤∈𝑣−𝑤+𝑎,𝑏=𝑎+𝑣−𝑤,𝑏+𝑣−𝑤,
	thus 𝑎+𝑣−𝑤,𝑏+𝑣−𝑤⊈𝑈.
	The statements of Lemma 4.14 and Proposition 4.15 make sense in the general metric context, but are generally false. An easy counterexample comes from taking X to be the irrational line ℝ∖ℚ, with the usual metric (topologically complete). The M-intervals coincide with the closed bounded intervals inherited from ℝ, and so it is easy to check that ⋅,⋅ is continuous at every pair. However, no nondegenerate M-interval is compact. (See Remark 4.20 below for a geodesic space example.)
	We will see in Example 4.22 below that the compactness of 𝑎,𝑏 is not sufficient for the upper semicontinuity of ⋅,⋅ at 𝑎,𝑏. In order to fully characterize upper semicontinuity of ⋅,⋅, it will be helpful to present the following simple test for compactness of M-intervals. Recall Lemma 4.9 and the discussion before Theorem 4.10.
	The following statements are equivalent.
	(1) The M-interval 0,𝑎 is compact.
	(2) Given a sequence 〈𝑏𝑛〉 from 𝐹𝑎, either 𝜎𝑏𝑛→1, or 〈𝑏𝑛〉admits a subsequence that converges in 𝐹𝑎.
	(3) Given a sequence 〈𝑏𝑛〉 from 𝐹𝑎, either 𝜎𝑏𝑛→1, or 〈𝑏𝑛〉admits a subsequence that converges in X.
	First, we show that (1) ⇒ (2). Let 0,𝑎 be compact. Let 〈𝑏𝑛〉be a sequence from 𝐹𝑎 such that 𝜎𝑏𝑛↛1. According to Theorem 4.10, 𝜆𝑛𝑏𝑛∈0,𝑎, where 𝜆𝑛:=1−𝜎𝑏𝑛. Using the compactness of 0,𝑎 and the fact that 𝜎𝑏𝑛↛1, we can assume, by taking a subsequence if necessary, that there exist 𝑠<1, 𝑏∈𝐹𝑎 and 𝜆∈0,1−𝜎𝑏, such that 𝜎𝑏𝑛≤𝑠for all n and 𝜆𝑛𝑏𝑛→𝜆𝑏. By continuity of the norm, we have 𝜆𝑛→𝜆≥1−𝑠>0. Hence 𝑏𝑛→𝑏.
	The implication (2) ⇒ (3) is trivial. We finish with (3) ⇒ (1). Assume the conditions of (3), and let 〈𝑥𝑛〉 be a sequence from 0,𝑎. By Theorem 4.10, 𝑥𝑛=𝜆𝑛𝑏𝑛 for some 𝑏𝑛∈𝐹𝑎 and 𝜆𝑛∈0,1−𝜎𝑏𝑛. By taking a subsequence if necessary, we can assume that 𝜎𝑏𝑛→𝑠∈0,1 and 𝜆𝑛→𝜆≤1−𝑠. If 𝜆=0 then 𝑥𝑛→0∈0,𝑎. If 𝜆>0 then 𝑠<1. By (3), and by taking another subsequence if necessary, there exists 𝑏∈𝑋 such that 𝑏𝑛→𝑏. According to Lemma 4.9, 𝑏∈𝐹𝑎 and 𝜎𝑏≤𝑠. Thus 𝑥𝑛→𝜆𝑏and 𝜆∈0,1−𝜎𝑏, giving 𝜆𝑏∈0,𝑎.
	It is clear from Proposition 4.17 that if 𝐹𝑎 is compact, then so is 0,𝑎. However, as the example below demonstrates, the converse of this statement is false. In other words, it is not possible to drop the condition 𝜎𝑏𝑛→1 in Proposition 4.17. Recall that c0 is the vector space of all real sequences converging to zero. Unless otherwise specified, c0 is equipped with the usual sup norm; i.e., given 𝑥→=〈𝑥→1,𝑥→2,…〉, 𝑥→∞:=sup𝑥→𝑛:𝑛∈ℕ. Let 𝑒→𝑛 denote the nth standard unit vector of 𝑐0, that is, 𝑒→𝑛𝑘=𝛿𝑛,𝑘, and let 𝑒𝑛⁎ denote the corresponding nth evaluation functional, i.e., 𝑒𝑛⁎𝑥→=𝑥→𝑛 whenever 𝑥→∈𝑐0.
	Let 𝐵𝑐0 denote the closed unit ball of 𝑐0 (with respect to ⋅∞). Define the closed convex set
	let K be the closed convex hull of 12𝐵𝑐0∪𝑀∪−𝑀, and let ∥⋅∥ be the Minkowski functional of K. Then ∥⋅∥ is a norm on 𝑐0, equivalent to ∥⋅∥, having closed unit ball K, such that 𝑒→1=1, 𝐹𝑒1 = M is not compact, and 0→,𝑒→1 is compact.
	As 12𝐵𝑐0⊆𝐾⊆𝐵𝑐0, ∥⋅∥ is indeed an equivalent norm on 𝑐0with closed ball K. Observe that 𝑒1⁎𝑥→=1whenever 𝑥→∈𝑀 and 𝑒1⁎𝑥→≤12 whenever 𝑥→∈12𝐵𝑐0∪−𝑀, so 𝑒1⁎𝑥→≤1 whenever 𝑥→∈𝐾. It follows that if 𝑥→∈𝐾and 𝑒1⁎𝑥→=1, then 𝑥→=1, because 𝑡−1𝑥→∉𝐾 whenever 𝑡∈0,1. In particular, 𝑒→1=1.
	Next, we show that 𝐹𝑒1 =M. Notice that 𝐹𝑒→1⊆𝐻, where
	𝐻≔𝑥→∈𝑐0:𝑒1⁎𝑥→=1.
	Indeed, given 𝑏→∈𝐹𝑒→1, we have, for some 𝑠∈0,1,
	1=𝑠−1+1−𝑠−1≤𝑠−1+1−𝑠−1𝑒1⁎𝑏→=𝑠−1𝑒1⁎𝑒1+1−𝑠−1𝑒1⁎𝑏→≤1,,
	because 1−𝑠−1<0 and 𝑏→,𝑠−1𝑒→1+1−𝑠−1𝑏→∈𝐾. The only way that the line above can hold is if 𝑒1⁎𝑏→=1, hence the result.
	Therefore 𝐹𝑒→1⊆𝐾∩𝐻. The next thing we notice is that 𝐾 ∩ 𝐻 ⊆ 𝑀. Indeed, let 𝑥→∈𝐾∩𝐻. As 𝑥→∈𝐾, there exist 𝑥→𝑖∈𝑀, 𝑦→𝑖∈12𝐵𝑐0i 𝑧→𝑖∈−𝑀, and 𝜆𝑖,𝑗≥0, 1 ≤ 𝑗 ≤3, such that
	Applying 𝑒1⁎ to the sequence and limit above yields 𝜆𝑖,1+𝜆𝑖,2𝑦→𝑖1+𝜆𝑖,3𝑧→𝑖1→1. On the other hand,
	𝜆𝑖,1+𝜆𝑖,2𝑦→𝑖1+𝜆𝑖,3𝑧→𝑖1≤𝜆𝑖,1+12𝜆𝑖,2+𝜆𝑖,3=𝜆𝑖,1+121−𝜆𝑖,1=121+𝜆𝑖,1≤1,,
	which implies that 𝜆𝑖,1→1 and, consequently, 𝜆𝑖,2,𝜆𝑖,3→0 and 𝑥→𝑖→𝑥→. Since M is closed, we conclude that 𝑥→∈𝑀. Finally, again as M is closed, we have 𝐹𝑒1 ⊆ 𝑀.
	To see the reverse inclusion, we observe that if 𝑦→∈𝑀 has finite support, that is, there exists 𝑁∈ℕ such that 𝑦→𝑛=0 whenever 𝑛>𝑁, then 𝑦→∈𝐹𝑒→1. Indeed, given such 𝑦→ and N, set 𝑠=1+2−𝑁−1∈0,1. The reader can verify that
	whenever 2≤𝑛≤𝑁. Given the finite support of 𝑦→, it follows easily that s−1e⃗1+(1−s−1)y⃗ ∈ M ⊆ K, giving 𝑦→∈𝐹𝑒→1. Since the set of finitely supported elements of M is dense in M, we obtain 𝐹𝑒1 = M.
	By considering the vectors 𝑒→1+𝑒→𝑛∈𝑀, 𝑛≥2, it is easy to see that M is not compact. However, 0→,𝑒→1 is compact. This will follow from Proposition 4.17, once we show that if 〈𝑏→𝑖〉 is a sequence in 𝐹𝑒→1⊆𝑀 and 𝜎𝑏→𝑖↛1, then 〈𝑏→𝑖〉 admits a convergent subsequence. Given such a sequence, by taking a subsequence if necessary, we can assume that there exists 𝑠∈12,1 such that 𝜎𝑏→𝑖≤𝑠 for all i. We claim that 𝑏→𝑖𝑛≤2−𝑛𝑠1−𝑠 for all i and all 𝑛≥2. Given 𝑛≥2, since 𝑏→𝑖∈𝑀, we have −2−𝑛≤𝑏→𝑖𝑛≤1. If −2−𝑛≤𝑏→𝑖𝑛≤0 then there is nothing to check, as 𝑠≥12. Instead, assume that 0≤𝑏→𝑖𝑛≤1. From Remark 4.8, we know that 𝜎𝑏→𝑖−1𝑒→1+1−𝜎𝑏→𝑖−1𝑏→𝑖∈𝐾, which implies that in fact
	According to the definition of M, it follows that
	−2−𝑛≤1−𝜎𝑏→𝑖−1𝑏→𝑖𝑛≤1−𝑠−1𝑏→𝑖𝑛,
	and since 𝑏→𝑖𝑛≥0 and 1−𝑠−1<0, we deduce that
	𝑏→𝑖𝑛≤2−𝑛𝑠1−𝑠.
	This completes the proof of the claim.
	By taking a diagonal subsequence, we can find 𝑏→∈𝑐0 such that, for all n, 𝑏→𝑖𝑛→𝑏→𝑛as 𝑖→∞. This, coupled with the condition 𝑏→𝑖𝑛≤2−𝑛𝑠1−𝑠, ensures that 𝑏→𝑖→𝑏→  in norm also.
	We also remark that 𝐹𝑒→1 above is not closed. Define 𝑏→∈𝑀=𝐹𝑒1 by 𝑏→1=1 and 𝑏→𝑛=2−𝑛2 for 𝑛≥2. If there exists 𝑠∈0,1 such that 𝑐→:=𝑠−1𝑒→1+1−𝑠−1𝑏→∈𝐾, then according to Remark 4.8, 𝑐→∈𝐹𝑒→1⊆𝑀. Hence for all 𝑛≥2 we have
	meaning that 𝑠≥1+2−𝑛2−1, which is impossible. Thus 𝑏→∈𝐹𝑒→1∖𝐹𝑒→1.
	We can put together Proposition 2.10 and Proposition 4.15, Proposition 4.17 to obtain an example where upper semicontinuity holds only at singletons.
	Consider c0 with the usual supremum norm. Then no nondegenerate M-interval is compact. Consequently, ⋅,⋅ is usc precisely at the singletons.
	To see this, first note that, by Proposition 2.10, ⋅,⋅ is usc at each singleton. Hence it suffices to assume 𝑎→∈𝑆𝑐0 and show 0→,𝑎→ is not compact.
	Given that 𝑎→∈𝑐0, there exists 𝑘∈ℕ such that 𝑎→𝑛<12 whenever 𝑛≥𝑘. Given 𝑛≥𝑘, define 𝑏→𝑛,𝑐→𝑛∈𝑆𝑐0 by
	It is easy to check that 𝑠𝑛−1𝑎→+1−𝑠𝑛−1𝑏→𝑛=𝑐→𝑛∈𝑆𝑐0, where 𝑠𝑛:=121−𝑎→𝑛∈0,1. Thus 𝑏→𝑛∈𝐹𝑎→. Evidently, 𝑏→𝑚−𝑏→𝑛∞≥𝑏→𝑚𝑚−𝑏→𝑛𝑚>12 whenever 𝑚,𝑛≥𝑘 are distinct. Moreover, 𝜎𝑏→𝑛≤𝑠𝑛→12. That 0→,𝑎→ is not compact follows from Proposition 4.17. Consequently, by Proposition 4.15, ⋅,⋅ is not usc at 0→,𝑎→.
	Example 4.19 can be used to obtain an even more convincing example of how much the truth of Lemma 4.14 and Proposition 4.15 depends on the normed metric context. Given 𝑐0, let 𝑋=𝑎→,𝑏→ be any nondegenerate M-interval. Then X is not compact. On the other hand, relative to the inherited supremum norm, X is still the M-interval bracketed by 𝑎→,𝑏→. Thus ⋅,⋅ is trivially usc at 𝑎→,𝑏→ (see Proposition 1.4). Note that X is a convex subset of 𝑐0, by Proposition 4.3, and is hence a geodesic space, by Proposition 4.1.
	Next we fine tune Proposition 4.15 to obtain a characterization of upper semicontinuity of ⋅,⋅
	at a pair.
	Let X be a normed space and let 𝑎∈𝑆𝑋. The M-betweenness function is usc at 0,𝑎 if and only if, given 𝑎𝑛∈𝑆𝑋 converging in norm to a, and points 𝑏𝑛∈𝐹𝑎𝑛, either 𝜎𝑎𝑛𝑏𝑛→1 or a subsequence of 〈𝑏𝑛〉converges in X.
	We proceed by proof by contraposition. Suppose that ⋅,⋅ is not usc at 0,𝑎. If 0,𝑎 is not compact, then the conclusion follows immediately from Proposition 4.17, by setting 𝑎𝑛=𝑎 for all 𝑛∈ℕ. Hereafter, we assume that 0,𝑎 is compact. By the failure of upper semicontinuity, there exists an open set U such that 0,𝑎⊆𝑈, and points 𝑢𝑛→0, 𝑣𝑛→𝑎 and 𝑤𝑛∈𝑢𝑛,𝑣𝑛, 𝑛∈ℕ, such that 𝑤𝑛∈𝑢𝑛,𝑣𝑛∖𝑈. By the compactness of 0,𝑎, there exists 𝑟>0 such that 𝜚𝑤𝑛,0,𝑎:=inf𝑤𝑛−𝑥:𝑥∈0,𝑎>𝑟 for all 𝑛∈ℕ. Define
	As 𝑥𝑛−𝑤𝑛→0, it follows that 𝜚𝑥𝑛,0,𝑎>12𝑟 for large enough n. By Theorem 4.10, 𝑥𝑛=𝜆𝑛𝑏𝑛 for some 𝑏𝑛∈𝐹𝑎𝑛 and 𝜆𝑛∈0,1−𝜎𝑎𝑛𝑏𝑛.
	Without loss of generality, assume that 𝜆𝑛→𝜆 for some 𝜆. We claim that 〈𝑏𝑛〉 has no convergent subsequence. For a contradiction, suppose that it does: let 𝑏𝑛𝑘→𝑏 for some 𝑏∈𝑋. Then 𝑥𝑛𝑘→𝜆𝑏, and
	𝜆𝑏+𝑎−𝜆𝑏=lim𝑘→∞𝑥𝑛𝑘+𝑎𝑛𝑘−𝑥𝑛𝑘=1,,
	whence 𝜆𝑏∈0,𝑎. However, this contradicts the fact that
	𝑥𝑛𝑘−𝜆𝑏≥𝜚𝑥𝑛𝑘,0,𝑎>12𝑟,,
	for large enough k. It follows that 〈𝑏𝑛〉 has no convergent subsequence, as required. Finally,
	12𝑟<𝜚𝑥𝑛,0,𝑎≤𝑥𝑛=𝜆𝑛≤1−𝜎𝑎𝑛𝑏𝑛,
	for large enough n implies that 𝜎𝑎𝑛𝑏𝑛↛1.
	Conversely, assume the existence of 𝑎𝑛 converging to a and 𝑏𝑛∈𝐹𝑎𝑛, 𝑛∈ℕ, such that 𝜎𝑎𝑛𝑏𝑛↛1 and no subsequence of 〈𝑏𝑛〉 converges. By taking a subsequence if necessary, we can assume that there exists 𝑠<1 such that 𝜎𝑎𝑛𝑏𝑛→𝑠. Now set 𝑥𝑛=𝜆𝑛𝑏𝑛, where 𝜆𝑛:=1−𝜎𝑎𝑛𝑏𝑛. We have 𝜆𝑛→𝜆:=1−𝑠>0.
	According to Theorem 4.10, 𝑥𝑛∈0,𝑏𝑛 for all 𝑛∈ℕ. As 𝜆>0 and 〈𝑏𝑛〉 has no convergent subsequence, it follows that the sequence 〈𝑥𝑛〉 has no convergent subsequence either. There are now two possibilities: either 𝜚𝑥𝑛,0,𝑎→0 or not. If 𝜚𝑥𝑛,0,𝑎→0, then there exist points 𝑦𝑛∈0,𝑎 such that 𝑦𝑛−𝑥𝑛→0. It follows that 〈𝑦𝑛〉 has no convergent subsequence, and thus 0,𝑎 is not compact. We conclude from Proposition 4.15 that ⋅,⋅ is not usc at 0,𝑎. Instead, if 𝜚𝑥𝑛,0,𝑎↛0 then, by taking yet another subsequence if necessary, there exists 𝛿>0 such that 𝜚𝑥𝑛,0,𝑎≥𝛿 for all 𝑛∈ℕ. If we set
	𝑈≔𝑣∈𝑋:𝜚𝑣,0,𝑎<𝛿,
	then U is open and 0,𝑎⊆ 𝑈, but 𝑎𝑛→𝑎 and 𝑥𝑛∈0,𝑎𝑛∖𝑈 for all n, so ⋅,⋅ is not usc at 0,𝑎.
	As mentioned above, the usc part of Theorem 4.2 follows easily from Theorem 4.10, Theorem 4.21.
	We end this section with an example illustrating the difference between Proposition 4.15 and Theorem 4.21. The reader is referred to Example 4.18 and the preceding remarks for notation and terminology.
	There exists a norm ∥⋅∥ on 𝑐0, equivalent to ⋅∞, having unit ball K and 𝑎∈ext𝐾, such that ⋅,⋅ is not upper semicontinuous at 0,𝑎.
	Let 𝐵𝑐0 denote the unit ball of ⋅∞, and let K be the closed convex hull of the symmetric set
	𝑆≔13𝐵𝑐0∪𝑠𝑒→1+𝑛−1𝑒→2𝑛+𝑡𝑒→2𝑛+1:𝑛∈ℕ and 𝑠,𝑡∈−1,1.
	Then13𝐵𝑐0⊆𝐾⊆𝐵𝑐0, and the Minkowski functional of K defines an equivalent norm ∥⋅∥ on 𝑐0, having closed unit ball K (again see [10, Definition 2.9, Lemma 2.11]). Given n ∈ N, set
	𝑎→𝑛=𝑒→1+𝑛−1𝑒→2𝑛=12𝑒→1+𝑛−1𝑒→2𝑛+𝑒→2𝑛+1+𝑒→1+𝑛−1𝑒→2𝑛−𝑒→2𝑛+1∈𝐾.
	Observe that 𝑒1⁎𝑥→≤1 for all 𝑥→∈𝑆, thus 𝑒1⁎𝑥→≤1 for all 𝑥 ∈ 𝐾. It follows that if 𝑥→∈𝐾 and 𝑒1⁎𝑥→=1, then 𝑥→=1, because 𝑟−1𝑥→∉𝐵𝑐0 whenever 𝑟 ∈ 0,1. In particular, 𝑎→𝑛=1 for all n. Since 𝑎→𝑛−𝑒→1→0, we have 𝑒→1=1 as well. Evidently,
	𝑎→𝑛±𝑒→2𝑛+1∈𝑆⊆𝐾..
	Set 𝑏→𝑛=𝑎→𝑛+𝑒→2𝑛+1. Since
	2𝑎→𝑛−𝑏→𝑛=𝑎→𝑛−𝑒→2𝑛+1∈𝐾,,
	it follows that 𝑏→𝑛∈𝐹𝑎→𝑛 and 𝜎𝑎→𝑛𝑏→𝑛≤12  for all n. Moreover, given distinct m,n ∈ N, we have
	meaning that 〈𝑏→𝑛〉 has no convergent subsequence. Therefore, ⋅,⋅ is not upper semicontinuous at 0,𝑒→1 with respect to ∥⋅∥, by Theorem 4.21.
	On the other hand, we claim that 𝑒→1∈ext𝐾, meaning that 0→,𝑒→1 is the compact straight line segment 0→,𝑒→1𝖫. To prove the claim, we show that there exists 𝑓∈𝑐0⁎ such that 𝑓𝑒→1=𝑓=1, yet 𝑓𝑦→<1 whenever 𝑦→∈𝐾∖𝑒→1. In other words, we will show that 𝑒→1 is an exposed point of K[10, Definition 7.10]. This certainly implies that 𝑒→1 is an extreme point: if 𝑒→1 is the midpoint of a non-trivial straight line segment in K, then 𝑓𝑦→=1 for all points 𝑦→ on said line segment [10, Exercise 7.72].
	Define 𝑓=𝑒1⁎−𝑖=1∞2−𝑖𝑒2𝑖⁎. It is clear that 𝑓𝑒→1=1, 𝑓𝑥→≤23  whenever 𝑥→∈13𝐵𝑐0, and
	𝑓𝑠𝑒→1+𝑛−1𝑒→2𝑛+𝑡𝑒→2𝑛+1=𝑠−𝑛−12−𝑛<1,
	whenever n ∈ N and 𝑠,𝑡∈−1,1. Hence, 𝑓𝑥→≤1 for all 𝑥→∈𝑆, and thus the same holds for all 𝑥→∈𝐾. We conclude that 𝑓=1.
	It remains to show that 𝑓𝑦→<1 whenever 𝑦→∈𝐾∖𝑒→1. Let 𝑦→∈𝐾 and assume that 𝑓𝑦→=1. Since K is the closure of the convex hull of S, for each 𝑘∈ℕ, we are able to find vectors 𝑢→𝑘∈13𝐵𝑐0, strictly increasing integers 𝑛𝑘, numbers 𝜆𝑘,0,…,𝜆𝑘,𝑛𝑘≥0 and signs 𝑠𝑘,1,𝑡𝑘,1,…,𝑠𝑘,𝑛𝑘,𝑡𝑘,𝑛𝑘∈−1,1, such that
	converge in norm to 𝑦→. We will show that 𝑦→𝑘→𝑒→1 in the weak topology of 𝑐0. By uniqueness of limits, it will follow that 𝑦→=𝑒→1. Since the sequence 〈𝑦→𝑘〉 is norm-bounded, it is sufficient to show that, given 𝑖∈ℕ, we have 𝑒𝑖⁎(𝑦→𝑘−𝑒→1)→0 as 𝑘→∞[10, Exercise 3.33].
	Since 𝑓(𝑦→)=1, we have 𝑓(𝑦→𝑘)→1 as 𝑘→∞. We estimate
	𝑓(𝑦→𝑘)=𝜆𝑘,0𝑓(𝑢→𝑘)+𝑗=1𝑛𝑘𝜆𝑘,𝑗(𝑠𝑘,𝑗−𝑗−12−𝑗)≤23𝜆𝑘,0+𝑗=1𝑛𝑘𝜆𝑘,𝑗(1−𝑗−12−𝑗)=1−13𝜆𝑘,0−𝑗=1𝑛𝑘𝑗−12−𝑗𝜆𝑘,𝑗≤1.
	As 𝑓(𝑦→𝑘)→1, and the summands under consideration are all non-negative, we conclude that
	(4)
	𝜆𝑘,0→0and𝑗=1𝑛𝑘𝑗−12−𝑗𝜆𝑘,𝑗→0,
	as 𝑘→∞. If we combine (4) and (3), we obtain
	(5)
	𝑒1⁎𝑦→𝑘=𝜆𝑘,0𝑒1⁎𝑢→𝑘+𝑗=1𝑛𝑘𝜆𝑘,𝑗𝑠𝑘,𝑗=𝜆𝑘,0𝑒1⁎𝑢→𝑘+𝑓𝑦→𝑘−𝜆𝑘,0𝑓𝑢→𝑘−𝑗=1𝑛𝑘𝑗−12−𝑗𝜆𝑘,𝑗→1,
	as 𝑘→∞.
	Moreover, given 𝑖∈ℕ, if we choose k large enough to ensure that 𝑖≤𝑛𝑘 (which we can do as the 𝑛𝑘 are strictly increasing), then (4) also yields
	as 𝑘→∞. Therefore, for large enough k, we have
	(6)
	𝑒2𝑖+1∙ (y⃗k)=λk,0𝑒2𝑖∙ (u⃗k)+i−1λk,isk,i→0,
	And
	(7)
	𝑒2𝑖⁎𝑦→𝑘=𝜆𝑘,0𝑒2𝑖⁎𝑢→𝑘+𝑖−1𝜆𝑘,𝑖𝑠𝑘,𝑖→0,
	as 𝑘→∞. Combining (5), (6) and (7) yields the desired weak convergence.
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	For our second case study, we shift attention to the subcontinuum interpretation of betweenness in a (not necessarily metrizable) continuum X (see2,3,4). We refer to this interpretation as K-betweenness; the K-interval [𝑎,𝑏]𝖪 is the intersection ⋂𝒦𝑎,𝑏, where 𝒦𝑎,𝑏=𝒦𝑎,𝑏(𝑋) is the collection of all subcontinua of X that contain {𝑎,𝑏}. Clearly the resulting ternary relation is both closed and basic; indeed it is κ-basic and disjunctive (i.e., [𝑎,𝑏]⊆[𝑎,𝑐]∪[𝑐,𝑏] for any third point c, not just one K-between a and b).
	Recalling that M-betweenness is automatically antisymmetric but not necessarily weakly disjunctive, we see that quite the opposite is true for K-betweenness, as the antisymmetry axiom can easily fail (see4). We will be mainly interested in two extremes: one where certain connectedness conditions hold at the local level; the other where no such conditions occur anywhere.
	A topological space X is connected im kleinen (abbr. cik) at point 𝑎∈𝑋 if for each open neighborhood U of a, there exists an open neighborhood V of a such that each two points of V are contained in a connected subset of U. For continua, this condition is well known to be equivalent to saying that for each open neighborhood U of a, there is an open set V and a subcontinuum K such that 𝑎∈𝑉⊆𝐾⊆𝑈. Being locally connected for a continuum is equivalent to being cik at each of its points (see, e.g.,20).
	A continuum is unicoherent if it is not the union of two subcontinua with disconnected intersection. In this paper, the addition of the modifier hereditarily to a property of continua confers the property to all nondegenerate subcontinua. So, for example, a continuum is hereditarily unicoherent if and only if the intersection of any two of its subcontinua is connected (possibly empty). This property is equivalent [3, Proposition 2.1] to the condition that each K-interval is connected.
	Suppose our continuum X is a geodesic space.
	(i) Then usual open balls are (path) connected; hence X is a Peano continuum.
	(ii) By Proposition 3.6, we have [𝑎,𝑏]𝖪⊆⌊𝑝⌋⊆[𝑎,𝑏]𝖬 always holding, where p is any geodesic from a to b.
	(iii) If p and q are geodesics from a to b with distinct supports, then, by Proposition 3.7, plus the fact that an arc is irreducible about its pair of noncut points, we know that ⌊𝑝⌋∩⌊𝑞⌋ is disconnected. This makes [𝑎,𝑏]𝖪 disconnected too; hence we may conclude that in a hereditarily unicoherent geodesic continuum, [𝑎,𝑏]𝖪=[𝑎,𝑏]𝖬 always holds, and the continuum is unique-geodesic.
	(iv) Since M-intervals in geodesic spaces are connected (Proposition 3.6), the identity between corresponding K- and M-intervals implies hereditary unicoherence.
	(v) The closed unit square [0,1]2 in the euclidean plane is unique-geodesic without being hereditarily unicoherent: all M-intervals are line segments, while the K -betweenness relation is minimal. In the remainder of this section K-betweenness is the default interpretation of our interval notation.
	If X is a continuum that is cik at each of the two points 𝑎,𝑏∈𝑋, and if [𝑎,𝑏] is connected, then ⋅,⋅ is usc at {𝑎,𝑏}. So if X is locally connected then ⋅,⋅ is usc at each singleton; and if X is also hereditarily unicoherent, then⋅,⋅is usc at all pairs.
	Let 𝑎,𝑏∈𝑋 be points at which X is cik, and such that [𝑎,𝑏] is connected. Let U be open in X such that [𝑎,𝑏]⊆𝑈. Since {𝑎,𝑏}⊆𝑈 and X is cik at each point, we have open sets V,W and subcontinua K,M, with 𝑎∈𝑉⊆𝐾⊆𝑈 and 𝑏∈𝑊⊆𝑀⊆𝑈. Now, {𝑎,𝑏}∈〚𝑉,𝑊〛2; and if {𝑎′,𝑏′}∈〚𝑉,𝑊〛2 then 𝐾∪[𝑎,𝑏]∪𝑀∈𝒦𝑎′,𝑏′ and is contained in U. Hence [𝑎′,𝑏′]⊆𝑈.
	The second assertion follows easily since local connectedness is equivalent to being cik at each point, and hereditary unicoherence is equivalent to the condition that each K-interval is a subcontinuum.
	Let X be a continuum that is cik at 𝑎∈𝑋. Then ⋅,⋅ is usc at{a}. If X is hereditarily unicoherent and ⋅,⋅ is usc at {𝑎}, then X is cik at a.
	The first assertion follows immediately from Theorem 5.2. Now assume X is hereditarily unicoherent and that ⋅,⋅ is usc at {𝑎}. Pick open 𝑈⊆𝑋 such that 𝑎∈𝑈. Then [𝑎,𝑎]={𝑎}⊆𝑈, so there exists an open neighborhood V of a (i.e., {𝑎}∈〚𝑉,𝑉〛2) such that for any {𝑎′,𝑏′}∈〚𝑉,𝑉〛2, [𝑎′,𝑏′]⊆𝑈. So for any two points of V, their K-interval is a connected set contained in U, showing cik at a.
	For hereditarily unicoherent continua, being locally connected is equivalent to having ⋅,⋅ be usc at singletons.
	The hereditary unicoherence hypothesis in Corollary 5.4 cannot be eliminated: Let 𝑋⊆ℝ2 be the planar continuum 𝐻0∪𝐻1∪𝑉0∪𝑛=1∞𝑉𝑛, where 𝐻𝑚=[0,1]×{𝑚}, 𝑚=0,1, 𝑉0={0}×[0,1], and, for 𝑛∈ℕ, 𝑉𝑛={1𝑛}×[0,1]. Then X is K-minimal; hence ⋅,⋅ is trivially continuous. On the other hand, X is not locally connected.
	The connectedness im kleinen assumption in Theorem 5.2 is not necessary; as, by Proposition 1.4, ⋅,⋅is usc at any pair about which the continuum is irreducible.
	A continuum is decomposable if it is the union of two proper subcontinua, indecomposable otherwise. The composant of a point a in continuum X is the union 𝜅(𝑎) of all proper subcontinua of X that contain a. Composants are always dense and connected; the composants of an indecomposable continuum are pairwise disjoint. Nondegenerate metrizable indecomposable continua have uncountably many composants,17 but it is possible for a nonmetrizable indecomposable continuum to have exactly one composant.5
	Let X be an indecomposable continuum that has at least two composants. Then ⋅,⋅ is usc at {𝑎,𝑏} if and only if 𝜅(𝑎)≠𝜅(𝑏). In particular, ⋅,⋅ is never usc at a singleton.
	Suppose 𝜅(𝑎)≠𝜅(𝑏). Then X is irreducible about {𝑎,𝑏}, and we may use Proposition 1.4 to conclude that ⋅,⋅ is usc at {𝑎,𝑏}.
	If 𝜅(𝑎)=𝜅(𝑏)=𝜅, then [𝑎,𝑏] is a proper closed subset of X. Hence there is a proper open set U with [𝑎,𝑏]⊆𝑈. Suppose we are given a neighborhood 〚𝑉,𝑊〛2 of {𝑎,𝑏}, say 𝑎∈𝑉. Then, because there are composants disjoint from κ and each composant is dense in X, there is some 𝑎′∈𝑉 that lies in a composant disjoint from κ. Thus [𝑎′,𝑏]=𝑋⊈𝑈, showing ⋅,⋅ not to be usc at {𝑎,𝑏}.
	(i)  Let X be the sin12-continuum, namely the union in ℝ2 of 𝐴={0}×[−1,1] and 𝑆={〈𝑡,sin1𝑡〉:0<𝑡≤1}. For each 0<𝑡≤1, let 𝑆𝑡=𝑆∩((−∞,𝑡]×ℝ). If 𝑎∈𝐴 and 𝑏=〈𝑡,sin1𝑡〉, then the K-interval [𝑎,𝑏] is 𝐴∪𝑆𝑡; all other intervals are arcs. This continuum is hereditarily unicoherent, as well as hereditarily decomposable, but is not cik at any point of A. It is an easy exercise to show that ⋅,⋅ is usc at {𝑎,𝑏} if and only if either: (1) a and b are the end points of A; (2) 𝑎∈𝐴 and 𝑏∈𝑆; or (3) a and b are both in S. In particular, ⋅,⋅ is usc at {a} if and only if 𝑎∈𝑆.
	(ii) By Theorem 5.3, hereditarily unicoherent continuum X is cik at no point of X if and only if ⋅,⋅ is usc at no singleton. It is easy for ⋅,⋅ to fail at singletons without the (hereditarily unicoherent) continuum being indecomposable: Let 𝑋=𝑌∪𝑍, where Y and Z are (hereditarily unicoherent) indecomposable continua—e.g., pseudo-arcs, bucket handles—and 𝑌∩𝑍 is a singleton. Then X is decomposable (and hereditarily unicoherent), and an argument similar to the proof of Theorem 5.6 shows ⋅,⋅ to be usc at no singleton.
	From Theorem 5.2 and Proposition 1.4, we obtain the following.
	For any locally connected continuum, ⋅,⋅ is continuous at each singleton.
	The following shows that lower semicontinuity is not affected by any of the issues that confound usc in hereditarily unicoherent continua.
	For any hereditarily unicoherent continuum, ⋅,⋅ is lsc at all pairs.
	Suppose X is a hereditarily unicoherent continuum. Then each K-interval is a subcontinuum.
	If ⋅,⋅ fails to be lsc at {𝑎,𝑏}, let 𝑈⊆𝑋 be an open set such that [𝑎,𝑏]∩𝑈≠∅, but [𝑎′,𝑏′]∩𝑈=∅ for {𝑎′,𝑏′} “arbitrarily near” {𝑎,𝑏}. To make this more precise, let 𝛥=⟨𝛥,≤⟩ be a directed set, with {〚𝑉𝛿,𝑊𝛿〛2:𝛿∈Δ} an open neighborhood base at {𝑎,𝑏}, indexed so that 〚〚𝑉𝛿,𝑊𝛿〛2⊇〚𝑉𝜖,𝑊𝜖〛2 whenever 𝛿≤𝜖 in Δ.
	Because U witnesses the failure of lsc at {𝑎,𝑏}, we have a net 〈{𝑎𝛿,𝑏𝛿}〉𝛿∈Δ, where {𝑎𝛿,𝑏𝛿}∈〚𝑉𝛿,𝑊𝛿〛2, 𝛿∈𝛥, and [𝑎𝛿,𝑏𝛿]∩𝑈=∅ for all δ. Clearly we have the net convergence {𝑎𝛿,𝑏𝛿}→{𝑎,𝑏}. The hyperspace 2𝑋 is compact, and hence the net 〈[𝑎𝛿,𝑏𝛿]〉 has a subnet that converges to some 𝐴∈2𝑋. Since subnets of convergent nets converge to the same point, we lose no generality in assuming that [𝑎𝛿,𝑏𝛿]→𝐴.
	Arguing as in the proof of Theorem 3.10, and noting that each [𝑎𝛿,𝑏𝛿] is connected, we infer that 𝐴∈𝒦𝑎,𝑏; hence that [𝑎,𝑏]⊆𝐴. But now we have 𝐴∩𝑈≠∅, implying—by the definition of net convergence—that [𝑎𝛿,𝑏𝛿]∩𝑈≠∅ for some 𝛿∈𝛥, a contradiction.
	The argument for the proof of Theorem 5.9 does not allow us to conclude lsc at a pair {𝑎,𝑏} where only [𝑎,𝑏] is assumed to be connected; we need the intervals in the net to be connected too. Contrast this situation with the one in Theorem 3.10.
	Putting Theorem 5.9, Theorem 5.2 together, we have:
	For any locally connected hereditarily unicoherent continuum, ⋅,⋅ is continuous at all pairs.
	To obtain a companion to Corollary 3.12 for K-betweenness, we cite an immediate corollary of [4, Theorem 3.2].
	For a locally connected continuum,K-betweenness is antisymmetric.
	Now we combine Lemma 2.15, Lemma 5.12, along with Corollary 5.11.
	For a locally connected hereditarily unicoherent continuum X, ⋅,⋅is a topological embedding of ℱ2(𝑋) into 𝒦(𝑋).
	And combining Theorem 5.9, Theorem 5.6 gives us:
	Let X be an indecomposable continuum that is hereditarily unicoherent and has at least two composants. Then ⋅,⋅ is continuous at {𝑎,𝑏} if and only if a and b lie in different composants of X.
	When we add the Fort–Kuratowski Lemma 1.2 to Theorem 5.9, we obtain the following.
	For a hereditarily unicoherent metrizable continuum, ⋅,⋅ is usc—and hence continuous—at almost every pair.
	Note that Lemma 1.2 comes in two versions. One is used to prove Corollary 2.9, the other proves Corollary 5.15.
	Finally, adding Lemma 1.2 to Theorem 5.6, Theorem 5.9 gives the following result, which makes no mention of betweenness functions.
	For any nondegenerate hereditarily unicoherent indecomposable metrizable continuum X, the set {{𝑎,𝑏}:𝜅(𝑎)≠𝜅(𝑏)} is dense residual in ℱ2(𝑋).
	Under the hypotheses of Corollary 5.17, [𝑎,𝑏]=𝑋 precisely when 𝜅(𝑎)≠𝜅(𝑏). Thus the bracket set of the interval X is dense residual in ℱ2(𝑋). Contrast this with the locally connected case in which—by Lemma 2.15, Lemma 5.12—all bracket sets are singletons.
	Can hereditary unicoherence be removed from the hypothesis of Corollary 5.17?
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