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ABSTRACT 

MECHANISMS OF FATIGUE WITH AGING: EVIDENCE FROM THE  

WHOLE-LIMB TO THE SINGLE CELL IN HUMANS 

 

 

Christopher W. Sundberg, B.S., M.S. 

 

Marquette University, 2018 

 

 

 Aging is accompanied by a loss of muscle mass and increased fatigability of limb 

muscles making it difficult for old adults to generate the force and power necessary to 

perform daily activities, such as ascending a flight of stairs. The mechanisms for the age-

related increase in fatigability in old and very old adults (≥80 yrs) and whether there are 

differences between men and women are unknown. The purpose of this dissertation was 

to determine the mechanisms for the age-related increase in fatigability in men and 

women by studying fatigue at the level of the whole-limb and within the muscle cells. 

 

 Study one compared the fatigability of the knee extensor muscles and determined 

the mechanisms of fatigue in young, old, and very old men and women elicited by high-

velocity exercise. Fatigability of the whole-limb increased across age groups, with no sex 

differences observed in any age cohort. The age-related increase in power loss was 

strongly associated with changes in involuntary muscle contractile properties, with 

minimal contribution from age differences in neural drive. These data suggest the 

increased fatigability with aging is determined primarily by mechanisms within the 

muscle for both sexes.  

 

 To test whether cross-bridge mechanisms could explain the age-related losses in 

whole-muscle power and increased fatigability, muscle cells from vastus lateralis 

biopsies were exposed to conditions mimicking quiescent muscle and fatiguing levels of 

hydrogen (H
+
) and phosphate (Pi). The fatigue-mimicking conditions revealed that H

+ 
and 

Pi act synergistically to cause marked reductions in human cross-bridge function. 

However, other than severe atrophy of fast fibers in old men and women, the effects of 

the fatigue conditions on cross-bridge function with either severe (study 2) or a range of 

elevated H
+
 and Pi (study 3) did not differ with age. These data suggest that age-related 

losses in whole-muscle power are due primarily to atrophy of fast fibers, but the age-

related increase in fatigability cannot be explained by an increased sensitivity of the 

cross-bridge to H
+
 and Pi. Combined, these studies suggest that interventions targeting the 

muscle are necessary to mitigate age-related declines in power and increased fatigability 

in men and women.
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CHAPTER 1 

 

 

REVIEW OF THE LITERATURE 

 

 

 In the United States, people over the age of 65 make up ~12% of the population 

but account for astounding 66% of the healthcare budget (Jacobsen et al., 2011). In the 

next 30 years, the number of old adults is expected to double and make up over 25% of 

the population – imposing an even greater economic demand on the healthcare system 

(Jacobsen et al., 2011). According to the Center for Disease Control (2013), a loss of 

mobility and physical function are the primary determinants for the health and well-being 

of the old adult population. Thus, discovering the causes for the loss in mobility and ways 

to mitigate it are at the forefront for improving health and reducing the economic burden 

on the aging population.  

Undoubtedly, a portion of the loss in mobility and physical function occurs due to 

the age-related loss in muscle mass (Doherty, 2003). However, the age-related loss in 

muscle strength and power, which are important for mobility, are much greater than 

would be predicted from the loss in muscle mass alone, suggesting that other factors must 

play an important role (Reid & Fielding, 2012; Russ et al., 2012; Hepple & Rice, 2016; 

Hunter et al., 2016). Fatigability of limb muscle, often termed fatigue or muscle fatigue, 

is one of the factors important for mobility and is characterized by an acute reduction in 

force and power that occurs in response to prior contractile activity (Debold et al., 2016; 

Hunter, 2017). Historically, studies on fatigue were conducted through the lens of 

enhancing athletic performance, but more recently there is recognition that for clinical 

and aging populations, fatigue can also limit the ability to perform daily activities and 
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tolerate exercise training (Kent-Braun et al., 2012; Hunter, 2017). Because exercise 

training is one of the most efficacious remedies to improve healthspan with aging (Seals 

et al., 2016), and to mitigate the age-related declines in skeletal muscle mass (Law et al., 

2016), and mitochondrial, metabolic (Conley et al., 2007; Drake & Yan, 2017), and 

cardiovascular function (Seals, 2014), identifying the mechanisms of fatigue is important 

to help design targeted interventions to improve mobility and quality of life in old adults. 

 

The fatigue paradox with aging 

 

 

 A majority of studies on the age-related changes in muscle fatigue have been on 

isometric contractions and have found that old adults (~60-79 years) are typically less 

fatigable than young adults when performing both maximal (Ditor & Hicks, 2000; Hunter 

et al., 2008; Callahan et al., 2009) and submaximal isometric contractions (Bilodeau et 

al., 2001; Kent-Braun et al., 2002; Hunter et al., 2004; Kent-Braun, 2009; Christie et al., 

2011; Yoon et al., 2012). Early theories purported that the fatigue resistance during 

isometric contractions was due, at least in part, to the age-related losses in muscle mass 

and strength (Kent-Braun et al., 2002; Hunter et al., 2004). Indeed, experiments on young 

adults have shown that intramuscular pressure increases in proportion to the absolute 

force produced by the muscle (Sadamoto et al., 1983; Sjogaard et al., 1986; Sjogaard et 

al., 2004), and can occlude blood flow once the intramuscular pressure exceeds the 

systolic blood pressure (Barnes, 1980; Sjogaard et al., 1988). Thus, the lower absolute 

forces produced in old compared to young adults may result in greater perfusion of the 

muscle with age. Increased muscle perfusion would allow for an augmented delivery of 

oxygen and substrates to the contracting muscle and a reduced accumulation of metabolic 
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by-products that have been implicated as important mediators of muscle fatigue (e.g., H
+
, 

Pi, H2PO4
-
). However, this theory was unable to explain the age-related fatigue resistance 

that continued to persist even when young and old participants were matched for strength 

(Hunter et al., 2005) or performed isometric contractions under ischemic conditions 

(Chung et al., 2007; Lanza et al., 2007). 

 One of the most prominent consequences of human aging is the loss of skeletal 

muscle mass that occurs due to both the death of motor units and the atrophy of the 

remaining muscle fibers (Campbell et al., 1973; Lexell et al., 1983; Lexell et al., 1988; 

Doherty et al., 1993). Although not always observed (Frontera et al., 2000a; D'Antona et 

al., 2003; Frontera et al., 2008), numerous studies have documented a selective atrophy 

and decreased proportional area of muscle fibers expressing the fast myosin heavy chain 

(MHC) II isoform in old compared to young adults (Jakobsson et al., 1990; Klitgaard et 

al., 1990; Lexell & Taylor, 1991; Coggan et al., 1992; Lexell & Downham, 1992; Hunter 

et al., 1999; Klein et al., 2003; Trappe et al., 2003). Because fast MHC II fibers have 

lower oxidative capacity and higher energetic demands than slow MHC I fibers 

(Schiaffino & Reggiani, 2011), the selective atrophy of fast fibers could theoretically 

decrease the reliance on glycolysis and increase the relative contribution of oxidative 

phosphorylation to synthesize ATP in old compared to young adults. The decreased 

reliance on anaerobic pathways for ATP synthesis would result in a decreased 

accumulation of metabolic by-products and may explain the age-related fatigue resistance 

during isometric contractions. 

In vivo studies using phosphorus magnetic resonance spectroscopy (
31

P-MRS) 

have supported this theory by revealing that during isometric contractions old adults have 
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an improved energetic cost of contraction and a greater reliance on oxidative metabolism 

to synthesize ATP compared to young adults (Kent-Braun et al., 2002; Lanza et al., 2005; 

Lanza et al., 2007; Tevald et al., 2010). The improvement in the energetic cost of 

contraction with age occurred during both volitional (Kent-Braun et al., 2002; Lanza et 

al., 2005; Lanza et al., 2007) and electrically-evoked contractions (Tevald et al., 2010) 

suggesting that the observed differences could not be explained by age-related changes in 

motor unit recruitment or firing frequencies. Most importantly, the old adults 

demonstrated a smaller decrease in pH and increase in intracellular [Pi] and [H2PO4
-
]
 
, 

which was strongly associated with the reductions in force (Kent-Braun et al., 2002; 

Lanza et al., 2007) and could accurately predict the fatigue resistance with aging 

(Callahan et al., 2016). Interpreted together, these findings provide compelling evidence 

that the primary mechanism for the age-related fatigue resistance during isometric 

contractions is due to a reduced reliance on glycolytic metabolism that results in a 

blunted accumulation of metabolic by-products in old compared to young adults. 

 Paradoxically, when old adults perform dynamic contractions, the age-related 

fatigue resistance is reversed in a velocity dependent manner, with minimal differences 

observed at slow-to-moderate velocities but an increased fatigability in the old compared 

with young adults at high-velocities (McNeil & Rice, 2007; Callahan et al., 2009; Dalton 

et al., 2010; Callahan & Kent-Braun, 2011; Dalton et al., 2012; Yoon et al., 2013; Yoon 

et al., 2015). The mechanisms for the greater age-related reductions in power during 

dynamic exercise are unresolved but may be due to changes occurring anywhere along 

the motor pathway (Fig. 1.1). These mechanisms could range from an inability of the 

nervous system to adequately drive the muscle (Gandevia, 2001) to impairments in 
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excitation-contraction coupling and/or cross-bridge function (Fitts, 1994; Allen et al., 

2008; Fitts, 2008; Debold et al., 2016).  

Recent advances in non-invasive stimulation procedures allow identification of 

where along the motor pathway the mechanisms of fatigue originate (McNeil et al., 2013; 

Todd et al., 2016). For example, neural drive from the motor cortex during maximal 

voluntary contractions can be quantified using the interpolated twitch technique with 

transcranial magnetic stimulation (TMS) (Todd et al., 2003, 2016). This approach uses a 

single magnetic pulse delivered over the motor cortex while the participant performs a 

maximal voluntary isometric contraction (MVC). Any increased force generated by the 

superimposed stimulus indicates that either not all of the motor units were recruited or the 

discharge frequencies were not high enough to maximize force summation (Gandevia, 

2001). An increase in the amplitude of the superimposed twitch during or immediately 

following the fatiguing exercise indicates a failure of the nervous system to voluntarily 

activate the muscle (Gandevia, 2001; Todd et al., 2003, 2016). It has been shown that 

voluntary neural drive from the motor cortex during and following a fatiguing isometric 

exercise is reduced and more variable with aging for some muscle groups (Hunter et al. 

2016). Whether reduced voluntary neural drive from the motor cortex contributes to the 

age-related increase in fatigability with high-velocity contractions is not known. 

Additionally, by integrating TMS with measures of surface electromyography (EMG) 

and electrically-evoked contractions of the motor nerve, we can further localize the origin 

of fatigue to changes in the excitability of the corticospinal tract (Hunter et al., 2008; 

Kennedy et al., 2016), neuromuscular propagation (Fuglevand et al., 1993), and/or the 

contractile properties within the muscle (Fitts, 1994; Kent-Braun et al., 2012). No studies 
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have integrated these stimulation techniques together to identify the mechanisms for the 

age-related increased fatigability during high-velocity contractions. 

 

  

  

Figure 1.1. Schematic of the potential sites of fatigue along the motor pathway. During 

volitional contractions, skeletal muscle is activated via signals that originate in the motor 

cortex of the cerebrum and are transmitted to the α-motoneurons within the ventral horn of the 

spinal cord. The output of the polydendritic α-motoneuron is determined by the ensemble 

synaptic input from tens of thousands of both sensory and descending neural pathways. The 

propagation of the action potential to the neuromuscular junction and into the t-tubule induces 

a series of cellular responses causing conformational changes in the regulatory proteins of the 

sarcomere that allow the interaction of myosin and actin to initiate the power stroke. The age-

related increased fatigability during dynamic contractions may be due to changes occurring at 

any location in this complex physiological pathway, which can be probed with non-invasive 

stimulation procedures. The figure was reprinted from Hunter (2017). 
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The number of very old adults (i.e., ≥80 yrs of age) is expected to increase over 3-

fold by the year 2050 and is currently the fastest growing age demographic globally 

(United Nations, 2017 ). Despite this rapid growth, studies on very old adults remain 

limited and reveal that compared to older adults just 10 yrs younger, very old adults show 

a blunted hypertrophic response to resistance exercise training (Slivka et al., 2008; Raue 

et al., 2009), increased instability of neuromuscular transmission (Hepple & Rice, 2016), 

and an increased prevalence of denervated fibers and fibers coexpressing multiple MHC 

isoforms (Purves-Smith et al., 2014; Spendiff et al., 2016). Ultimately these age-related 

changes in the very old adults manifest as an accelerated loss in muscle power and 

impaired mobility (Reid & Fielding, 2012), and for the ankle dorsiflexor muscles is 

exacerbated by the increase in fatigability (McNeil & Rice, 2007; Justice et al., 2014). 

For example, the power loss elicited by high-velocity contractions of the dorsiflexor 

muscles was greater in a group of very old men (84 yrs) compared to young men (26 yrs), 

but showed minimal differences between the old (64 yrs) and young men (McNeil & 

Rice, 2007). Whether this age-related progression in fatigability is observed in a larger 

muscle group, such as the knee extensor muscles, and/or differs between men and women 

is not known.  

 Women currently account for ~54% of the global population in individuals aged 

≥60 yrs and ~61% of the population in those aged ≥80 yrs (United Nations, 2017 ). 

Despite the large prevalence of women in the aging population, studies aimed at 

identifying the mechanisms for the age-related increase in fatigability during high-

velocity contractions have been conducted only on men and reported that the increased 

power loss is due primarily to mechanisms within the muscle (McNeil & Rice, 2007; 
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Dalton et al., 2010, 2012).  It is unknown whether the mechanisms for the increased 

fatigability observed in older women (Callahan & Kent-Braun, 2011; Senefeld et al., 

2017) are similar to those observed in older men. However, evidence from cross-sectional 

studies report that age-related muscle atrophy and the decline in neuromuscular function 

of the knee extensor muscles are typically more pronounced in old women (Trappe et al., 

2003; Kosek et al., 2006; Miller et al., 2013), suggesting that the mechanisms for the age-

related increase in fatigability may differ in women compared with men. Understanding 

the mechanisms of fatigue in the knee extensors of old and very old men and women is 

important because 1) the knee extensors are more susceptible to age-related losses in 

function compared with other limb muscles (Hunter et al., 2000; Lanza et al., 2003; 

Candow & Chilibeck, 2005), 2) the knee extensors of old adults experience fatigue-

induced power loss when performing daily activities (Petrella et al., 2005; Foulis et al., 

2017), and 3) knee extensor power output and fatigability are associated with functional 

performance with aging (Bassey et al., 1992; Senefeld et al., 2017). 

Thus, the purpose of the first study in this dissertation (chapter 2) was to quantify 

the fatigability of the knee extensor muscles and identify the mechanisms of fatigue in 

young (≤35 yr), old (60-79 yr) and very old (≥80 yr) men and women elicited by high-

velocity concentric contractions. The primary hypotheses were that 1) the reductions in 

mechanical power during the fatiguing exercise would progressively increase with age 

(i.e., fatigability in young < old < very old), but there would be no sex differences in any 

of the age cohorts, and 2) the increased fatigability in the old and very old men and 

women would be due primarily to mechanisms originating within the muscle. 
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Mechanisms of fatigue within the muscle 

 

 

The leading mechanisms purported to be responsible for the exercise-induced 

reductions in mechanical power within the muscle are an accumulation of metabolic by-

products (i.e., H
+
, Pi, H2PO4

-
) that act to both directly inhibit cross-bridge function and to 

impair excitation-contraction coupling (Fitts, 1994; Allen et al., 2008; Fitts, 2008; 

Debold et al., 2016). In contrast to the improved energetic cost of contraction observed 

with aging during isometric contractions (Kent-Braun et al., 2002; Lanza et al., 2005; 

Lanza et al., 2007; Tevald et al., 2010), the opposite is observed when older adults 

perform dynamic contractions (Layec et al., 2013; Layec et al., 2014, 2015). For 

example, there is evidence for an ~37% increase in the ATP cost of contraction during a 

dynamic plantar flexor exercise in old (~74 yrs) compared to young (~22 yrs) men and 

women (Layec et al., 2015). The greater ATP demand for a given amount of mechanical 

power output should theoretically lead to a greater accumulation of metabolic by-

products in old compared to young adults, which would explain the age-related increase 

in fatigability. However, despite the increased energetic cost of generating power with 

age, the decrease in pH and increase in intracellular [Pi] during the dynamic exercise did 

not differ or was blunted in the old compared to young adults (Layec et al., 2013; Layec 

et al., 2014, 2015). These findings suggest that an alternative mechanism within the 

muscle must be responsible for the increase in fatigability with age. Thus, the purpose of 

the second (chapter 3) and third studies (chapter 4) of this dissertation was to determine 

whether cross-bridge mechanisms could explain the age-related increase in fatigability 

during high-velocity exercise. 
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Contemporary cross-bridge theory suggests that the chemomechanical 

transduction of the actin-myosin interaction is partitioned into ~6 structural transitions 

that make up the full power stroke of the cross-bridge cycle (Geeves et al., 2005; 

Caremani et al., 2013, 2015; Debold et al., 2016). Displayed in figure 1.2 is a schematic 

modified from Geeves et al. (2005) that depicts the transition steps of the cycle in 

saturating Ca
2+

. Briefly, starting in the rigor complex, ATP binds to the catalytic site on 

myosin and dissociates myosin from actin (step 1). The hydrolysis of ATP reprimes and 

cocks the myosin head which attaches to actin in a weakly bound state with the 

hydrolysis by-products still attached in the catalytic site (step 2). In the conventional 

power stroke, the weakly bound cross-bridge transitions to the strongly bound state 

through unknown mechanisms (step 3). Inorganic phosphate (Pi) is released from the 

catalytic site initiating the power stroke where myosin pivots at the light chain domain 

(step 4). The power stroke continues with an isomerization step where ADP is still 

attached in the catalytic site (step 5), that is then followed by the release of ADP (step 6). 

Age-related impairments in any of the steps of the cross-bridge cycle may be responsible 

for the increased fatigability during dynamic exercise. 

In the following paragraphs, the mechanisms of fatigue at the level of the cross-

bridge will be reviewed. The focus will specifically be on the data showing the individual 

and combined effects of elevated concentrations of Pi and H
+
, because 1) the reductions 

in voluntary isometric force during a fatiguing contraction in young and old adults is 

strongly correlated with the accumulation of these ions (Lanza et al., 2007), and 2) these 

ions have the most evidence that they cause fatigue by impairing specific steps of the 

cross-bridge cycle (Fig. 1.2) (Fitts, 1994, 2008; Debold et al., 2016). It is important to  



11 

note however, that these ions also affect Ca
2+

 regulation and that other compounds 

accumulate during intense contractile activity (e.g., ADP, Mg
2+

, oxidative free radicals, 

extracellular K
+
), which are also implicated in fatigue (Fitts, 1994; Allen et al., 2008; 

Kent-Braun et al., 2012). The following review of the literature focuses primarily on 

evidence from the chemically skinned fiber preparation, because 1) this preparation can 

Figure 1.2. Schematic of the cross-bridge cycle and the steps affected by H
+
 and Pi. The 

conventional cross-bridge cycle is labeled with steps 1-6 starting with the rigor complex. 

Elevated H
+
 is thought to 1) decrease peak isometric force (Po) by inhibiting the forward rate 

constant of the low- to high-force transition (step 3) and 2) slow shortening velocity by 

inhibiting the ADP isomerization step (step 5) and/or the release of ADP (step 6). Elevated Pi 

is thought to decrease Po and contractile economy by forcing the cross-bridge through an 

unconventional power stroke where myosin detaches early in the low- to high-force transition 

(step 3) and rapidly releases Pi and ADP (step 4’). Steps affected by H
+
 and Pi are denoted by 

* and 
#
, respectively. The figure was modified from Geeves et al. (2005).  
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be used in studies on human skeletal muscle, and 2) the preparation permits precise 

control over the intracellular milieu to systematically study both the individual and 

collective effects of metabolic by-products while leaving the contractile proteins in the 

intact sarcomeric state. A majority of this section has been published in a manuscript I 

coauthored with Professor Robert Fitts and colleagues (Debold et al., 2016). 

 

Effects of intracellular acidosis, H
+ 

 

 

During intense contractile activity, high rates of ATP hydrolysis and increased 

glycolytic flux generate hydrogen ions (H
+
) that causes a reduction in intracellular pH 

(Robergs et al., 2004). In quiescent human skeletal muscle, intramuscular pH remains at 

~7.0 but declines precipitously to between 6.5 and 6.2 during intense volitional 

contractions (Hermansen & Osnes, 1972; Wilson et al., 1988; Cady et al., 1989; Burnley 

et al., 2010). These values however, were measured via 
31

P-MRS or from muscle biopsy 

samples and represents the spatial average of a heterogeneous mixture of muscle fiber 

types. Thus, because ATP hydrolysis rates are known to differ considerably between fiber 

types (Schluter & Fitts, 1994; Schiaffino & Reggiani, 2011), more severe acidic states 

within individual fibers, particularly fast MHC IIa or IIx fibers, is highly likely. In 

saturating concentrations of free Ca
2+

, pH of 6.2 was shown to reduce peak isometric 

force of rat and rabbit fibers by 4-18% at 30°C (Pate et al., 1995; Knuth et al., 2006) 

(Fig. 1.3A). This reduction is similar to the 10% decline observed in isolated living 

mouse fibers at 32°C (Westerblad et al., 1997), but considerably lower than the ~30% 

reduction observed in skinned rat fibers at 15°C (Knuth et al., 2006). The observation 

that acidosis depresses peak isometric force even under saturating Ca
2+

 conditions 
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indicates that the hydrogen ion is acting directly on the cycling cross-bridge. While the 

precise mechanism remains unresolved, it has been suggested that acidosis reduces peak 

isometric force by inhibiting the forward rate constant of the low- to high-force state of 

the cross-bridge cycle (step 3 in Fig. 1.2), which would reduce the force per cross-bridge 

(Metzger & Moss, 1987, 1990b). 

The mitigated effects of pH on peak isometric force at near in vivo temperatures 

compared to colder temperatures has caused considerable debate over the relative 

importance of acidosis in the fatigue process (Fitts, 2016; Westerblad, 2016). However, 

the depressive effects of acidosis on cross-bridge function during fatigue extend beyond 

the direct effects of H
+
 on peak isometric force in saturating Ca

2+
. For example, acidosis 

also decreases the sensitivity of the myofilaments to Ca
2+

 due, at least in part, to H
+
 

competitively inhibiting the binding of Ca
2+

 to troponin C (Palmer & Kentish, 1994; 

Parsons et al., 1997).The reduced myofibrillar Ca
2+

 sensitivity manifests as a rightward 

shift in the force-calcium relationship and considerably larger reductions in peak 

isometric force in rat fibers contracting in pH 6.2 and submaximal Ca
2+ 

conditions 

(Nelson & Fitts, 2014). Additionally, acidosis depresses the rate of tension development 

(ktr) in skinned fibers under submaximal Ca
2+

 conditions as reflected by a reduced ktr 

following a slack re-extension maneuver at 15°C (Metzger & Moss, 1990b). Given that 

the myoplasmic free Ca
2+

 is reduced during high-intensity fatiguing contractions (Fitts, 

1994; Allen et al., 2008; Allen et al., 2011), the H
+
-induced decrements in cross-bridge 

function under submaximal Ca
2+

 conditions are likely more representative of what occurs 

during fatigue in vivo.  
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From a human performance and aging perspective, the most important question to 

consider is how these metabolites influence the ability of the cross-bridge to shorten 

under submaximal loads and to generate power. In addition to the effect H
+
 has on peak 

isometric force, intracellular acidosis has been shown to reduce both the loaded and 

unloaded fiber shortening velocities (Knuth et al., 2006; Karatzaferi et al., 2008). For 

example, maximal rat fiber shortening velocities, determined by the slack test (Vo) and 

from extrapolation of the force-velocity curve (Vmax) , were reduced by ~30% and ~16%, 

respectively, in pH 6.2 saturating Ca
2+ 

conditions at 30°C (Knuth et al., 2006) (Fig. 

1.3A). The decrements in fiber shortening velocity are thought to be due to slowed 

myofibrillar ATPase activity (Cooke et al., 1988), secondary to the H
+
-mediated 

reduction in the rate that ADP dissociates from the myosin head (Debold et al., 2012). 

The effects of acidosis inhibiting both fiber force and velocity resulted in an 18-34% 

reduction in the peak power of rat fibers at 30º C (Knuth et al., 2006) (Fig. 1.3B). Thus, 

severe acidosis (pH 6.2) plays an important role in fatigue by acting at multiple steps of 

the cross-bridge cycle that lead to a reduced myofibrillar Ca
2+

 sensitivity and an 

impairment in fiber force, velocity and power. Whether the same impairments occur in 

human skeletal muscle and/or differ between fibers from young and old men and women 

is not known. 

 

Effects of inorganic phosphate, Pi 

 

 

 Intramuscular concentrations of ATP in quiescent skeletal muscle (~5-6 mmol/kg 

wet weight) would be depleted rapidly during maximal-intensity contractile activity 

without the activation of creatine kinase and glycolysis (Sahlin et al., 1998). However, 
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buffering the fall in intracellular ATP via the creatine kinase reaction results in a rapid 

decline in phosphocreatine with concomitant increases in inorganic phosphate, Pi, that 

can reach >30 mM in human skeletal muscle (Wilson et al., 1988; Cady et al., 1989). In 

saturating Ca
2+ 

conditions, 25-30 mM Pi was shown to reduce peak isometric force of rat 

and rabbit fibers by 5-19% at 30°C (Coupland et al., 2001; Debold et al., 2004) (Fig. 

1.3C). Similar to the temperature effects observed in the experiments on acidosis, the 

reductions in peak isometric force from 30 mM Pi at near in vivo temperatures were 

considerably lower than the ~52% reduction found at 15°C (Debold et al., 2004). Also 

similar to H
+
, elevated Pi caused a rightward shift in the force-calcium relationship, 

which exacerbated the reductions in peak isometric force at submaximal Ca
2+ 

(Debold et 

al., 2006). However, the observation that the rate of tension development in response to a 

slack re-extension maneuver of an activated fiber (ktr) is accelerated in the presence of Pi 

(Wahr et al., 1997; Tesi et al., 2002) but is either not changed or slowed in the presence 

of H
+
 (Metzger & Moss, 1990b) suggests that the mechanisms for the reduction in peak 

isometric force differs for Pi compared to H
+
. Although the mechanisms remain 

unresolved, it has been suggested that Pi inhibits peak isometric force by reducing the 

number of high force cross-bridges and/or the force per bridge. The reduction in the 

number of high force cross-bridges is thought to occur from Pi accelerating the reverse 

rate constant of the low- to high-force state transition (Palmer & Kentish, 1994). In 

addition, it has been suggested that Pi induces an unconventional powerstroke (step 4’ in 

Fig. 2.1) where myosin detaches from actin early in the high-force state of the cross-

bridge cycle prior to the release of ADP and Pi (Linari et al., 2010; Debold et al., 2013; 

Caremani et al., 2015). Although all possibilities may be at least partially responsible for 
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the loss in fiber force, the unconventional powerstrok is the only mechanism currently 

able to explain the Pi-induced decline in fast fiber contractile economy (i.e., fiber 

force/myofibrillar ATP turnover) (Linari et al., 2010). The decrements in contractile 

economy, as a result of decreased fiber force but a maintained myofibrillar ATP 

hydrolysis rate, would accelerate the accumulation of metabolic by-products and 

ultimately the development of fatigue. 

 In contrast to H
+
, elevated Pi does not inhibit maximal fiber shortening velocity 

(Vmax) at near in vivo temperatures (Debold et al., 2004; Karatzaferi et al., 2008) (Fig. 

1.3C). However, muscle shortening under a load is more important for athletic prowess 

and the ability of young and old adults to perform daily activities, and peak fiber power 

was depressed by 18-26% in 30 mM Pi at 30°C, a somewhat greater decline than 

observed for peak isometric force alone (Debold et al., 2004) (Fig. 1.3D). This 

observation is explained by the 30-38% increased curvature in the force-velocity 

relationship (quantified by the a/Po ratio), which results in less force generated for any 

given velocity (Debold et al. 2004). Thus, high concentrations of Pi (~25-30 mM) plays 

an important role in fatigue at the cross-bridge level by inhibiting peak fiber force and 

power and by decreasing both fiber contractile economy and myofibrillar Ca
2+

 sensitivity. 

 

Combined effects of Pi and H
+ 

 

 

Other than the first few seconds of contractile activity where the intracellular 

milieu becomes slightly more alkaline from the predominance of ATP generated via the 

creatine kinase reaction (Adams et al., 1990), intracellular H
+
 and Pi accumulate in 

concert during fatiguing contractions. Thus, in addition to studying the individual effects 
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of these ions, it’s also important to determine their effects in combination to more closely 

mimic the fatigue environment in vivo (Wilson et al., 1988; Burnley et al., 2010). Given 

that H
+
 and Pi appear to influence different sites in the cross-bridge cycle, it’s not 

surprising that the combined effects of these ions act additively to inhibit contractile 

function at the cross-bridge level. For example, in saturating Ca
2+

, elevated H
+
 (pH 6.2) 

and Pi (30 mM) depressed peak isometric force in rat slow and fast fibers by 36% and 

46%, respectively, at 30°C (Nelson et al., 2014) (Fig. 1.3E). A surprising finding, 

however, was that the combined condition decreased peak force more than would be 

predicted from summation of the individual ion effects, which highlights the importance 

of studying the fatigue-induced effects of multiple metabolites in combination. This 

observation might be explained, in part, by the increased concentration of dihydrogen 

phosphate (H2PO4
-
) that occurs in acidic (pH 6.2) compared to neutral conditions (pH 

7.0) (Nosek et al., 1987). The dihydrogen phosphate species has been shown to be more 

closely correlated to the decline in force during in vivo fatigue compared with either the 

monohydrogen phosphate species or pH changes alone (Wilson et al., 1988; Lanza et al., 

2007). However, whether dihydrogen phosphate is the dominant fatigue-inducing 

phosphate species or merely serves as a better marker of the totality of metabolic by-

products accumulating within the intracellular milieu remains unknown.  

In addition to the combined effects H
+
 and Pi have on peak force, these ions also 

act to synergistically reduce myofibrillar Ca
2+

 sensitivity and peak fiber power. It was 

recently found in rat fibers that the combined condition of pH 6.2 and 30 mM Pi induced 

a considerably greater rightward shift in the force-calcium relationship compared to 

either ion alone (Debold et al., 2006; Nelson & Fitts, 2014). This observation is not  
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Figure 1.3. The individual and combined effects of H
+
 and Pi on force, velocity and 

power in slow MHC I fibers. Force-velocity and force-power curves obtained from rat MHC 

I fibers in control pH 7.0 conditions compared to pH 6.2 (A, B), 30 mM Pi (C, D), and 

combined pH 6.2 + 30 mM Pi (E, F) conditions at 30°C. Shortening velocity (fiber lengths per 

second) and power (watts per liter) are plotted as a function of the force expressed relative to 

the fiber cross-sectional area (kN∙m
-2

) and as a percentage of the peak isometric force (%Po), 

respectively. Error bars around the mean curves have been omitted and displayed only from 

MHC I fibers for clarity. Findings from fast fibers are qualitatively similar to those presented 

here. Data were adapted and reprinted from Debold et al. (2004), Knuth et al. (2006), and 

Nelson et al. (2014), and the figure is published in our recent review (Debold et al. 2016). 
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surprising based on the evidence that the mechanisms for the decreased myofibrillar Ca
2+

 

sensitivity differs between Pi and H
+ 

(Palmer & Kentish, 1994). Importantly, the shift in  

the force-calcium relationship is more pronounced at 30°C compared to 15°C, suggesting 

that the decrements in force from these ions may be more important than previously 

indicated by studies at saturating Ca
2+

. Furthermore, pH 6.2 and 30 mM Pi conditions 

reduce peak power in rat and rabbit fibers by 55-63% at 30°C (Karatzaferi et al., 2008; 

Nelson et al., 2014) (Fig. 1.3F). The large reduction in peak fiber power in this condition 

is likely explained by the reductions in fiber shortening velocity from H
+
 and the 

inhibition in force from both H
+
 and Pi. These reductions in fiber shortening velocity and 

peak power are further exacerbated when the myosin regulatory light chain (RLC) was 

phosphorylated (Karatzaferi et al., 2008). The mechanisms for the additional depression 

with RLC phosphorylation is unknown but is important to identify because high-intensity 

contractile activity is known to increase RLC phosphorylation (Vandenboom & Houston, 

1996; Rassier & Macintosh, 2000). 

In summary, H
+
 and Pi contribute to fatigue, in large part, both by their direct 

inhibitory effects on fiber force, velocity, and power and by reducing the sensitivity of 

the myofilaments to Ca
2+ 

– the latter of which is exacerbated at near physiological 

compared with colder temperatures. Since the accumulation of H
+
 and Pi does not differ 

or is blunted in old compared to young adults during dynamic exercise (Layec et al., 

2013; Layec et al., 2014, 2015), it may be that the age-related increase in fatigability is 

due to an increased sensitivity of the cross-bridge to a given concentration of metabolite 

accumulation. Thus, the purpose of the studies in chapters 3 and 4 of this dissertation was 

to test the effects of elevated H
+
 and Pi on the contractile mechanics of fibers from young 
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and old men and women. The primary hypothesis was that the age-related increase in 

fatigability during dynamic exercise was due, in part, to an increased sensitivity of the 

cross-bridge to H
+
 and Pi. These studies are the first to test the effects of these ions on 

human skeletal muscle, which differ markedly in their contractile kinetics, fiber type 

distribution, and metabolic properties compared to rodent muscle (Schiaffino, 2010; 

Schiaffino & Reggiani, 2011). 

 

Summary of specific aims 

 

Aim 1: Quantify the fatigability of the knee extensor muscles and identify the 

mechanisms of fatigue in young (≤35 yr), old (60-79 yr) and very old (≥80 yr) men 

and women elicited by high-velocity concentric contractions. These findings are 

reported in chapter 2, which is a manuscript recently published in the Journal of Applied 

Physiology (Sundberg et al., 2018). 

 

Hypothesis 1: The reductions in mechanical power during the fatiguing exercise 

will progressively increase with age (i.e., fatigability in young < old < very old), 

but there will be no sex differences in fatigability in any of the age cohorts.  

 

Hypothesis 2: Mechanisms within both the nervous system and the muscle will 

contribute to the power loss during the high-velocity fatiguing exercise for all age 

groups, but the increased fatigability in the old and very old men and women will 

be due primarily to mechanisms originating within the muscle. 
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Aim 2: Determine whether cross-bridge mechanisms are contributing to the age-

related increase in fatigability.  

 

Aim 2.1: Quantify the effects of a severe fatigue-mimicking condition (pH 6.2 + 

30 mM Pi) on the cross-bridge mechanics of fibers from young and old men at 

15°C and 30°C. This chapter is also formatted as a manuscript currently in 

revision in the Journal of Physiology. 

  

Hypothesis: The severe fatigue-mimicking condition will elicit greater reductions 

in maximal shortening velocity and peak power in fibers from old compared with 

fibers from young men. 

 

Aim 2.2: Quantify the effects of exposing muscle fibers from young and old men 

and women to a continuum of elevated levels of H
+
 and Pi that occur in vivo. This 

chapter is a subset of the data from a study that is still ongoing. 

  

Hypothesis 1: Age-related differences in the H
+
- and Pi-induced decrements in 

fiber shortening velocity and peak power will be more pronounced at low- to 

moderate-concentrations of these ions compared with the severe fatigue-

mimicking condition.  

  

Hypothesis 2: The H
+
- and Pi-induced decrements in force, shortening velocity, 

and peak power will not differ in fibers from men compared with fibers from 

women.  
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CHAPTER 2 

 

 

MECHANISMS FOR THE AGE-RELATED INCREASE IN FATIGABILITY OF 

THE KNEE EXTENSORS IN OLD AND VERY OLD ADULTS 

 

 

INTRODUCTION 

 

 

 Human aging is accompanied by a progressive decline in neuromuscular function 

that can result in functional impairments and a decreased quality of life in older adults. 

However, the decrements in function that occur with aging can vary depending on the 

demands of the motor task (Hunter et al., 2016). For example, findings on the age-related 

changes in fatigability are not uniform across contraction types, such as isometric and 

dynamic contractions (Christie et al., 2011), or between old (~60-79 yrs) and very old 

adults (>80 yrs) (McNeil & Rice, 2007; Justice et al., 2014). Paradoxically, many studies 

have found that old adults (~60-79 yrs) are typically less fatigable than young adults 

when performing isometric contractions (Christie et al., 2011; Callahan et al., 2016; 

Hunter, 2017). However, this fatigue resistance appears to reverse with very advanced 

age (>75-80 yrs) (Justice et al., 2014) and when old adults perform dynamic contractions 

at moderate- to high-velocities (McNeil & Rice, 2007; Dalton et al., 2010; Callahan & 

Kent-Braun, 2011; Dalton et al., 2012; Senefeld et al., 2017). The mechanisms for the 

increased fatigability with aging are not well-understood, particularly among old women 

or very old adults, but are important to identify in order to develop evidence-based 

interventions to improve physical function, mobility, and quality of life in old adults. 

The aged-related increase in fatigability during high-velocity contractions could 

be due to any impairment in the neuromuscular system that occurs with aging, including, 
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cortical atrophy, reduced white matter, and altered brain neurochemistry (Segovia et al., 

2001; Marner et al., 2003; Salat et al., 2004; Clark & Taylor, 2011), motor unit 

remodeling and instability of neuromuscular transmission (Hepple & Rice, 2016; Hunter 

et al., 2016), or altered bioenergetics, Ca
2+

 handling and cross-bridge kinetics (Miller & 

Toth, 2013; Layec et al., 2014; Lamboley et al., 2015; Layec et al., 2015; Lamboley et 

al., 2016). Fortunately, recent advances in non-invasive stimulation procedures allow the 

identification of the mechanisms of fatigue (Todd et al., 2003, 2016). Thus, the purpose 

of this chapter was to quantify the fatigability of the knee extensors and identify the 

mechanisms of fatigue in young (≤35 yr), old (60-79 yr) and very old (≥80 yr) men and 

women elicited by high-velocity contractions. The first hypothesis was that the reductions 

in mechanical power during the fatiguing exercise would progressively increase with age 

(i.e., fatigability in young < old < very old) but that there would be no sex differences in 

any of the age cohorts. The second hypothesis was that mechanisms within both the 

nervous system and the muscle would contribute to the power loss during the fatiguing 

exercise for all age groups, but that the increased fatigability in the old and very old men 

and women would be due primarily to mechanisms originating within the muscle. 

 

METHODS 

 

 

Participants and Ethical Approval 

 One hundred and four individuals participated in this study: 30 young (19-28 yrs, 

15 men and 15 women), 62 old (61-79 yrs, 33 men and 29 women), and 12 very old 

adults (80-93 yrs, 6 men and 6 women). Participants provided written informed consent 

and underwent a general health screening that included a questionnaire where older 

participants were excluded if they scored <26 on the mini mental state (Folstein et al., 



24 

1975). Participants were healthy, community dwelling adults free of any known 

neurological, musculoskeletal and cardiovascular diseases. All experimental procedures 

were approved by the Marquette University Institutional Review Board and conformed to 

the principles in the Declaration of Helsinki. Anthropometrics and physical activity levels 

for the participants are reported in Table 2.1. 

 

 

 

Table 2.1. Anthropometrics and physical activity levels of the young, old, and very old men 

and women. Body fat percentage was measured via dual X-ray absorptiometry (Lunar iDXA, 

GE, Madison, WI). Physical activity was measured via triaxial accelerometery (GT3X, 

ActiGraph, Pensacola, FL). The sample sizes (n) for each cohort and certain variables are 

reported in parentheses. Symbols next to the variable name indicate a significant effect of * age, † 

sex, or an ‡ age x sex interaction at P < 0.05. Values are reported as means ± SD. 

 

 

 

Experimental Set Up and Protocol 

Participants reported to the laboratory on three occasions, twice for 

familiarization and once for the experimental session to measure fatigability and the 

associated mechanisms elicited by high-velocity concentric contractions of the knee 

extensor muscles.  

Experimental Set Up: The experimental setup to measure knee extension torque 

and velocity was similar to the setup described previously (Hassanlouei et al., 2017). 

Briefly, testing was performed on the dominant leg of each participant (preferred kicking 

leg) except when the participant reported a previous surgical procedure, knee or leg pain, 

Units Men (15) Women (15) Men (33) Women (29) Men (6) Women (6)

Age* yr 22.6 ± 2.4 22.6 ± 2.2 70.0 ± 4.6 71.0 ± 5.9 89.0 ± 3.6 83.0 ± 2.6

Height *† cm 176.8 ± 8.4 164.6 ± 5.5 176.9 ± 8.2 161.2 ± 4.3 176.0 ± 8.3 158.3 ± 6.2

Weight †‡ kg 75.6 ± 10.6 65.1 ± 9.6 84.7 ± 12.1 66.6 ± 12.1 72.3 ± 5.0 72.9 ± 13.3

BMI * kg·m
-2 24.1 ± 1.7 24.0 ± 3.2 27.1 ± 3.6 25.6 ± 4.7 25.5 ± 1.7 29.1 ± 4.6

Body Fat *† % 17.4 ± 3.1 29.6 ± 7.3 30.5 ± 5.5 38.8 ± 7.3 28.7 ± 6.6 41.4 ± 6.3

Physical Activity * steps·day
-1 8,623 ± 3,973 (12) 9,825 ± 2,840 (14) 8,510 ± 3,998 (30) 7,825 ± 3,784 (26) 4,590 ± 3,606 (5) 2,654 ± 1,185

Variable

Very OldYoung Old
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or osteoarthritis of the dominant leg (1 young woman, 2 old women, 3 very old women, 2 

old men, and 1 very old man). In all sessions, participants were seated upright in the high 

Fowler’s position with the starting knee position set at 90° flexion in a Biodex System 4 

Dynamometer (Biodex Medical, Shirley, NY). The position of the dynamometer was 

adjusted so that the axis of rotation of the dynamometer’s lever arm was aligned with the 

axis of rotation of the participant’s knee. The length of the dynamometer’s lever arm was 

adjusted for each participant and secured with a Velcro strap proximal to the malleoli. 

Extraneous movements and changes in the hip angle were minimized by securing the 

participants to the seat with the dynamometer’s four-point restraint system. To ensure the 

measured torques and velocities were generated primarily by the knee extensor muscles, 

participants were prohibited from grasping any part of the dynamometer with their hands. 

Familiarization Sessions: During the familiarization sessions each participant was 

habituated to electrical stimulation of the femoral nerve and TMS to the motor cortex. 

Additionally, participants practiced performing brief 2-3 s maximal and submaximal 

voluntary isometric contractions and maximal voluntary concentric contractions with the 

knee extensors. The familiarization session also included an assessment of body 

composition with dual X-ray absorptiometry (Lunar iDXA, GE, Madison, WI). 

Experimental Session: The experimental session began with electrical stimulation 

of the femoral nerve to identify the electrode placement that elicited the maximum peak-

to-peak compound muscle action potential (maximum M-wave: Mmax) of the vastus 

lateralis (VL), rectus femoris (RF) and vastus medialis (VM).  Following the electrical 

stimulations, participants performed a minimum of 3 brief (2-3 s) knee extension MVCs 

without stimulation interspersed with 2 knee flexor MVCs. Participants were provided 
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strong verbal encouragement and visual feedback on their performance with a 56 cm 

monitor mounted 1-1.5 m directly in front of their line of vision. Each MVC was 

interspersed with at least 60 s rest, and MVC attempts were continued until the two 

highest values were within 5% of each other. The highest torque output from the MVCs 

was used to calculate (1) the target forces for the submaximal isometric contractions 

needed for optimizing the TMS parameters (i.e., coil placement and stimulator intensity) 

and, (2) the visual feedback gain in the subsequent MVC trials used to assess voluntary 

activation.  

 Once the optimal TMS position and intensity was identified, participants 

performed five sets of brief isometric contractions (2-3 s per contraction) with the knee 

extensor muscles to obtain the baseline measures used in identifying the mechanisms of 

fatigue (Fig 2.1). Each set of contractions included a MVC followed by contractions at 

60% and 80% MVC (MVC-60-80%) with TMS delivered at each contraction to estimate 

the resting twitch amplitude for the calculation of voluntary activation (Todd et al., 2003; 

Hunter et al., 2006). Single-pulse femoral nerve stimulation was delivered during the 

MVC and at rest immediately following (<5 s) both the MVC and 80% MVC 

contractions. Sets of MVC-60-80% contractions were interspersed with at least 2.5 min 

rest to help ensure repeatable maximal efforts were performed while minimizing residual 

fatigue from each set. The highest torque output from all MVC attempts was used to 

calculate the 20% MVC load for the dynamic fatiguing exercise, whereas the median 

value from the baseline sets of MVC-60-80% contractions was used to identify the 

mechanisms of fatigue. This approach ensured that each participant’s best effort was used 

to calculate the load for the fatiguing exercise. 
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Dynamic Fatiguing Exercise: Following the baseline MVC measurements, 

participants were habituated to performing maximal velocity knee extensions against a 

20% MVC load applied by the dynamometer. With this setup, the dynamometer’s motor 

provides a quasi-constant force while allowing velocity to vary. This approach was 

employed because 1) it more closely mimics common daily activities that require moving 

an object with constant mass but at different velocities and 2) it allowed participants to 

generate high mechanical power outputs while still maintaining a full range of motion 

(ROM) (Dalton et al., 2012).  To minimize the effect of the additional braking force 

applied by the dynamometer at the end of the ROM, the maximum total displacement 

was set to 95° with the starting position set at 90° knee flexion. A compliant foam pad 

was placed at ~0° knee flexion, and participants were instructed to kick as fast as possible 

through the pad to achieve the maximal volitional shortening velocity for every 

contraction.  

For the dynamic fatiguing exercise, participants were verbally cued to kick once 

every 3 s for a total of 4 min (80 contractions). The low frequency of contractions was 

selected to maximize muscle perfusion during the exercise by inducing a low muscle duty 

cycle, i.e., the ratio of the duration of muscle force application to the entire duration 

between contractions (Broxterman et al., 2014; Sundberg & Bundle, 2015). The average 

duty cycles were, respectively, 13 ± 1%, 16 ± 1%, and 16 ± 3% for the young, old, and 

very old adults. The 3% higher duty cycle in the old and very old compared with young 

adults (P < 0.001; η𝑝
2  = 0.44) was due to the slower contractile velocities with age (P < 

0.001; η𝑝
2  = 0.43) and not due to differences in the duration between the start of each 

contraction (P = 0.116; η𝑝
2  = 0.04). Participants were provided strong verbal 
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encouragement to generate their maximal effort and to complete the full ROM for every 

contraction. Upon completion of each contraction, the participant was instructed to relax, 

and the limb was passively returned to the starting position by the dynamometer. To 

identify the mechanisms of fatigue induced by the dynamic exercise, two sets of MVC-

60-80% isometric contractions were performed in succession as rapidly as possible 

following the fatiguing exercise with additional sets performed at 2.5, 5 and 10 min 

following exercise cessation.  

Measurements and Data Analysis 

 

 

Torque and Mechanical Power Output 

Torque, position and angular velocity from the dynamometer’s transducers were 

digitized at 500 Hz with a Power 1401 A/D converter and stored online using Spike 2 

software [Cambridge Electronics Design (CED), Cambridge, UK]. The torque during 

each MVC was quantified as the average value over a 0.5 s interval centered on the peak 

torque of the contraction. The baseline MVC value for each participant was the median 

torque output recorded from the isometric MVCs during the five sets of MVC-60-80% 

that were performed prior to the dynamic fatiguing exercise. To compare the changes in 

MVC between the young, old, and very old men and women following the dynamic 

exercise, MVC values were expressed as a percentage of the individual-specific baseline 

MVC value. 

For the dynamic fatiguing exercise, contraction-by-contraction mechanical power 

outputs (W) were calculated as the product of the measured torque (N∙m) and angular 

velocity (rad∙s
-1

) and averaged over the entire shortening phase of the knee extension. 

Because power output increased over the first few contractions in some participants, the 
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recorded baseline power output for each participant was the highest average obtained 

from 5 sequential contractions within the first 10 contractions. To quantify the relative 

reductions in power for each participant, the average power output from the last 5 

contractions was expressed as a percentage of the individual-specific baseline power 

output value. 

Electromyography (EMG) 

 Surface Ag/AgCl EMG electrodes (Grass Products, Natus Neurology, Warwich, 

RI) were adhered to the skin in a bipolar arrangement overlying the muscle bellies of the 

vastus lateralis, vastus medialis, rectus femoris, and bicep femoris with an inter-electrode 

distance of 2.5 cm. The skin was shaved and cleaned with 70% ethanol prior to electrode 

placement, and the reference electrodes were placed on the patella. Analog EMG signals 

were amplified (100 X), filtered (13-1,000 Hz band pass, Coulbourn Instruments, 

Allentown, PA), and digitized at 2,000 Hz with a Power 1401 A/D converter and stored 

online using Spike 2 software (CED). 

Electrical Stimulation  

 The femoral nerve was stimulated with a constant-current, variable high-voltage 

stimulator (DS7AH, Digitimer, Welwyn Garden City, Hertforshire, UK) to obtain Mmax 

of the vastus lateralis, vastus medialis and rectus femoris. The cathode was placed over 

the nerve high in the femoral triangle, and the anode was placed over the greater 

trochanter.  Single 200-µs square-wave pulses were delivered with a stimulus intensity 

beginning at 50 mA and increased incrementally by 50-100 mA until both the 

unpotentiated resting twitch torque amplitude (Qtw) and Mmax for all three quadriceps 
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muscles no longer increased. The intensity was then increased by an additional 20% to 

ensure the stimuli were supramaximal (range 120-720 mA).  

 Contractile properties of the knee extensor muscles were quantified with the 

potentiated resting twitches from the single-pulse femoral nerve stimulations delivered 

after the MVC and 80% MVC contractions (Fig. 2.1). Stimuli were delivered after both 

the MVC and 80% MVC contractions to ensure that at least one of the stimuli was 

delivered while the participant was fully relaxed. The baseline values for each participant 

were the median obtained from the five sets of MVC-60-80% performed prior to the 

fatiguing exercise and were reported for the amplitude of the potentiated resting twitch 

torque (Qtw: N∙m), the half relaxation time (ms), and the peak rate of torque development 

(Nm∙s
-1

). The peak rate of torque development was quantified with the derivative of the 

torque channel as the highest rate of torque increase over a 10 ms interval. To provide an 

indication of neuromuscular propagation and the ability of the action potential to 

propagate across the sarcolemma, the peak-to-peak amplitude (Mmax) and area of the m-

wave were reported for all three quadriceps muscles (Fuglevand et al., 1993). 

Transcranial Magnetic Stimulation (TMS) & Voluntary Activation 

 The motor cortex was stimulated by delivering a 1-ms duration magnetic pulse 

with a concave double-cone coil (110 mm diameter: maximum output 1.4 T) connected to 

a monophasic magnetic stimulator (Magstim 200
2
, Magstim, Whitland, UK). The coil 

was initially positioned with the center of the coil ~1 cm lateral to the vertex of the motor 

cortex contralateral to the limb under investigation. The orientation of the coil induced a 

posterior-to-anterior current flow in the underlying cortical tissue. Identification of the 

optimal stimulator position was guided by moving along a 1 cm grid drawn on an  
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Figure 2.1. Experimental protocol. Schematic of the experimental setup and protocol to 

measure the fatigability and the mechanisms elicited by high-velocity concentric contractions 

of the knee extensor muscles (A). Participants performed a minimum of 3 knee extensor 

MVCs with no stimulations followed by five sets of isometric contractions that included a 

MVC followed by contractions at both 60 and 80% MVC (MVC-60-80%). TMS to the motor 

cortex and electrical stimulation to the femoral nerve during the MVC-60-80% contractions 

are represented by the gray and black arrows, respectively. Following the baseline isometric 

measurements, participants completed the dynamic fatiguing exercise which consisted of a 

maximal velocity knee extension performed once every 3 s against a load of ~20% MVC for a 

total of 4 min (80 total contractions). Two sets of MVC-60-80% isometric contractions were 

performed in succession as rapidly as possible immediately after the exercise (Post 1 and Post 

2), with additional sets completed at 2.5, 5 and 10 min into recovery. The x-axis for the 

experimental protocol is not to scale, and the timing of the stimuli and contractions are 

described in detail in the methods. Representative compound muscle action potentials (B) and 

potentiated resting twitches (C) from before (Pre) and immediately after (Post 1) the fatiguing 

exercise are displayed for both a young (22 yrs) and very old man (89 yrs). 
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electroencephalography (EEG) cap and was determined as the location that elicited the 

greatest motor evoked potential (MEP) in the vastus lateralis while the subject contracted 

at 20% MVC. This position was marked to ensure repeatable placement of the coil for the 

remainder of the experiment.  

Once the optimal stimulator position was determined, the stimulator intensity for 

the voluntary activation measurements was identified during brief (2-4 s) isometric 

contractions at 40% MVC. Single pulse TMS was delivered during each contraction with 

an intensity starting at 50% stimulator output and increased incrementally by 10% until 

the peak-to-peak MEP amplitude of the vastus lateralis failed to increase further or began 

to decrease. If the latter occurred, then the stimulator output was reduced in 5% 

decrements until the largest peak-to-peak MEP amplitude was achieved in the vastus 

lateralis. The intensity eliciting the largest MEP was compared to the intensity eliciting 

the largest twitch torque at the 40% MVC to verify that the stimulator intensities were 

approximately similar. This additional step ensured that the stimulus intensity did not 

elicit large activation of the antagonist muscles. This method was used instead of 

quantifying the biceps femoris MEP amplitude (%Mmax) because of the difficulty of 

maximally stimulating the sciatic nerve with surface electrical stimulation. It should also 

be noted that the knee flexor MVC was on average only 38 ± 8 % of the knee extensor 

MVC at the 90° knee flexed position. Thus, the effect of any inadvertent activation of the 

antagonist muscle group on measurements of voluntary activation would be diminished 

due to the positioning of the participant. 

Voluntary activation was quantified from each set of MVC-60-80% contractions 

based on the technique originally developed for the elbow flexors (Todd et al., 2003) and 
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later for the knee extensors (Sidhu et al., 2009). Briefly, single pulse TMS was delivered 

during the MVC, 60% and 80% MVC contractions, and the amplitude of the 

superimposed twitch torque measured for each contraction. A linear regression was 

performed between the superimposed twitch torque and the voluntary torque to obtain an 

estimated resting twitch by extrapolating the regression to the y-intercept (Fig. 2.2).The 

resting twitch evoked by TMS was estimated rather than measured directly, because the 

excitability of the corticospinal tract increases markedly from rest to maximal activation 

(Di Lazzaro et al., 1998). Any 3-point regression with an R
2
 < 0.8 (Hunter et al., 2006) 

was excluded from the voluntary activation calculations using eq. 1 but was still included 

in the calculations using eq. 2. This occurred in 9.7% of the baseline measurement MVC-

60-80% sets, 16.0% of the 2 sets performed immediately after the fatiguing exercise, and 

10.1% of the 3 sets performed in recovery. In addition, we were unable to obtain 

estimated resting twitches during either the baseline or following the fatiguing exercise 

from one old woman. As a result, to ensure all participants were included in the analysis 

and to provide comparison of the data to all other studies that have used TMS for 

voluntary activation, we quantified voluntary activation for each set of MVC-60-80% 

contractions in two ways:   

Voluntary Activation (%) =  (1 −
SIT

eRT
) ∗ 100    eq. 1 

Voluntary Activation (%) =  (
SIT

SIT + MVC
) ∗ 100    eq. 2 

where SIT is the amplitude of the superimposed twitch torque elicited by TMS during the 

MVC, and eRT is the calculated estimated resting twitch torque. The reported baseline 

voluntary activation for each participant was the median from the 5 MVC-60-80% sets 
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performed prior to the dynamic exercise. To compare the changes in voluntary activation 

between the young, old and very old men and women, voluntary activation immediately 

following the dynamic exercise were compared to the individual-specific baseline values. 

  

  Figure 2.2. Representative data of the method used to assess voluntary activation with 

TMS. Raw torque and EMG responses evoked by TMS to the motor cortex from a 71 yr old 

man during the MVC, 60% and 80% MVC contractions (A). The EMG response is depicted 

for the vastus lateralis (VL) from all three stimuli and for the biceps femoris (BF) from the 

MVC only. The superimposed twitches are offset and overlaid to depict the amplitude of the 

twitches from the MVC, 60% and 80% MVC contractions. Linear regressions were performed 

between the superimposed twitch torque and the voluntary torque to obtain an estimated 

resting twitch by extrapolating the regression to the y-intercept (B). For comparison of our 

data set to all other studies that have used TMS to assess voluntary activation, we calculated 

voluntary activation both with (eq. 1) and without the estimated resting twitch (eq. 2). 
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Absolute (Nm∙s
-1

) and normalized (s
-1

) peak rates of torque relaxation were also 

determined from the TMS delivered during the MVC contractions (Todd et al., 2007). 

When TMS is delivered to the motor cortex during a MVC, there is a brief transient 

withdrawal of the descending neural drive following the stimulus that causes the muscle 

to involuntarily relax. The peak rate of torque relaxation was quantified with the 

derivative of the torque channel as the greatest rate of torque decrease over a 10 ms 

interval and was compared before and immediately following the fatiguing dynamic 

exercise. 

Physical Activity (PA) Assessment 

Physical activity was quantified for each participant with a triaxial accelerometer 

(GT3X, ActiGraph, Pensacola, FL) worn around the waist for at least 4 days (2 weekdays 

and 2 weekend days) as reported previously (Hassanlouei et al., 2017). Participants were 

provided a PA log and standardized instructions to wear the ActiGraph monitor 

throughout the course of the day, excluding periods of bathing or sleeping, for a 

minimum of 4 days. Data were exported at 60 s epochs, analyzed with the Actilife 

version 6 software (ActiGraph, Pensacola, FL), and recorded as steps per day. Wear time 

validation was compared to the self-reported activity logs, and data were reported for 

each participant as long as the accelerometer was worn for a minimum of 3 days (Hart et 

al., 2011).  

Statistical Analyses 

 Individual univariate analyses of variance (ANOVA) were performed between the 

subject characteristics and baseline values and age (young, old or very old) and sex (men 

or women) as the grouping variables. Repeated-measure ANOVAs were performed on 
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the measures of fatigability (power and MVC torque) and the associated mechanistic 

measurements (voluntary activation, M-waves, MEPs, and contractile properties) with 

age (young, old and very old) and sex (men and women) as the between subject factors. 

The relative changes in mechanical power, MVC, and the mechanistic measurements 

from the beginning to the end of the fatiguing exercise were also compared with an 

individual univariate ANOVA with age and sex as the grouping variables. When a 

significant main effect for age or an interaction was found, pair-wise post hoc 

comparisons were performed using Tukey’s test. Simple linear regression analyses were 

performed between the reductions in mechanical power and the mechanistic 

measurements to identify the primary mechanisms of fatigue. 

 Normal distributions and homogeneity of variance of the data were performed 

prior to any statistical comparisons and were assessed using the Kolmogorov–Smirnov 

test and Levene’s statistic, respectively. If the assumptions of a normal distribution and/or 

homogeneity of variance were violated, then the non-parametric Kruskal-Wallis test was 

performed instead of the univariate ANOVA, with age and/or sex as the grouping 

variables (e.g., voluntary activation). If the assumptions were violated for the repeated-

measure ANOVAs, then the non-parametric Friedman’s test was performed (e.g., 

voluntary activation). All significance levels were set at P < 0.05 and all statistics were 

performed using SPSS (version 24, IBM, Chicago, IL). Because of the large differences 

in sample sizes between age groups, we report the effect size (η𝑝
2) along with the p-

values. Data are presented as the mean ± standard deviation (SD) in the text and tables 

and the mean ± standard error of the mean (SE) in the figures. 
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RESULTS  

 

 

Mechanical Power Output 

 The power output at the beginning of the dynamic exercise showed a main effect 

of age (P < 0.001; η𝑝
2  = 0.51) and was 97% and 217% higher in the young (245.3 ± 75.7 

W) compared to old (124.8 ± 51.7 W; P < 0.001) and very old adults (77.3 ± 17.2 W; P < 

0.001), respectively, and 61% higher in the old compared to the very old (P = 0.001) 

(Fig. 2.3). In addition, the initial power outputs were 64% higher in all men (189.4 ± 86.2 

W) compared with all women (115.8 ± 59.2 W; P < 0.001; η𝑝
2  = 0.22) irrespective of age.  

 Fatigability (Reductions in power): The relative reductions in power from the 

beginning to the end of the dynamic exercise showed a main effect of age (P < 0.001; η𝑝
2  

= 0.19) and was greater in the very old (44 ± 15%; P < 0.05) and old (31 ± 20%; P < 

0.05) compared to the young (17 ± 12%), and greater in the very old compared to the old 

(P < 0.05) (Fig. 3). However, there were no sex differences in the relative reductions in 

power (P = 0.801; η𝑝
2  = 0.00) for the young (men = 17 ± 12%, women = 17 ± 12%), old 

(men = 30 ± 20%, women = 32 ± 21%) or very old adults (men = 44 ± 16%, women = 44 

± 16%) (Fig. 2.3). 

Range of Motion 

 The total range of motion (ROM) at the beginning of the fatiguing exercise 

showed a main effect of age (P < 0.001; η𝑝
2  = 0.12) and was greater in both the young 

(91.3 ± 2.5°; P < 0.001) and the old (89.5 ± 5.3°; P = 0.007) compared to the very old 

adults (86.9 ± 3.4°) but did not differ between the young and old adults (P = 0.211).  
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Figure 2.3. Power output during the high-velocity fatiguing exercise. Mean absolute 

mechanical power outputs and contraction-by-contraction relative power outputs (%Initial) 

measured from the dynamic fatiguing exercise for the young, old, and very old men (A) and 

women (B). Because the relative reductions in power did not differ between men and women 

in any of the three age cohorts (P > 0.05), the men and women were combined for the young, 

old, and very old (C). Fatigability progressively increased with age, so that the least amount of 

relative power loss occurred in the young adults and the most occurred in the very old adults. 

*significantly different from young and 
#
significantly different from old (P < 0.05). Values are 

means ± SE. 
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There were also no sex differences in the ROM at the beginning of the dynamic exercise 

between the men (89.9 ± 4.2°) and women (89.6 ± 5.0°; P = 0.755; η𝑝
2  = 0.00).  

 However, the ROM at the end of the dynamic exercise was lower than at the start 

of the exercise by 1.8 ± 2.1° in the young (P < 0.001; η𝑝
2  = 0.60), 7.7 ± 8.6° in the old (P 

< 0.001; η𝑝
2  = 0.51), and 17.7 ± 8.6° in the very old adults (P = 0.001; η𝑝

2  = 1.00). The 

reductions in the ROM over the course of the fatiguing exercise showed a main effect of  

age (P < 0.001; η𝑝
2  = 0.25) and were greater in the old and very old compared to the 

young adults (P < 0.001) and in the old compared to the very old (P < 0.001) but did not 

differ between the men (7.1 ± 9.8°) and women (7.3 ± 8.3°; P = 0.675; η𝑝
2  = 0.00).  

MVC Torque Output 

 Baseline isometric MVC torque outputs obtained from the five sets of MVC-60-

80% contractions showed a main effect of age (P < 0.001; η𝑝
2  = 0.41) and were 67% and 

145% higher in the young (223.8 ± 74.8 N∙m) compared to the old (134.2 ± 48.1 N∙m; P 

< 0.001) and very old adults (91.2 ± 28.8 N∙m; P < 0.001), respectively, and 47% higher 

in the old compared to the very old (P = 0.003) (Fig. 2.4). Additionally, the MVC torque 

outputs were 61% higher in all men (189.9 ± 73.3 N∙m) compared with all women (117.6 

± 47.4 N∙m; P < 0.001; η𝑝
2  = 0.32) irrespective of age.  

 Fatigability (Reductions in MVC torque): All cohorts (young, old and very old 

men and women) had a significant reduction in their MVC torque following the dynamic 

fatiguing exercise (P < 0.001; η𝑝
2  = 0.86) (Fig. 2.4). However, the relative reductions in 

MVC immediately following the exercise (Post 1) were not different between the age 

groups (young = 22 ± 6%, old = 24 ± 10%, very old = 24 ± 12%; P = 0.665; η𝑝
2  = 0.01) or 

between men (24 ± 9%) and women (23 ± 10%; P = 0.680; η𝑝
2  = 0.00). There were also  
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Figure 2.4. MVC isometric torque output before and after the high-velocity fatiguing 

exercise. Absolute isometric torque outputs prior to the dynamic fatiguing exercise 

progressively decreased with age and were greater in men compared to women (A). The 

relative loss in isometric torque immediately following the fatiguing exercise (Post 1 & Post 

2) and into recovery (2.5, 5 & 10 min) did not differ between the sexes for the young men 

(YM) and women (YW), old men (OM) and women (OW), nor the very old men (VOM) and 

women (VOW) (B). Similarly, when the men and women were combined in the three age 

cohorts, the relative loss in isometric torque did not differ between the age groups at any time 

point (C). *significantly different from young and 
#
significantly different from old (P < 0.05). 

Values are means ± SE. 
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no differences in MVC torque (%Baseline) during the recovery measurements based on 

age (P = 0.192; η𝑝
2  = 0.03) or sex (P = 0.339; η𝑝

2  = 0.01) (Fig. 2.4). Because no age or sex 

differences were observed in recovery, we restricted our analyses of the mechanistic 

measurements to those performed immediately following the fatiguing exercise (Post1).  

Voluntary Activation 

 Baseline voluntary activation from the five sets of MVC-60-80% contractions and 

calculated with the estimated resting twitch (eq. 1) were not different between the age 

groups (young = 98 ± 2%, old = 97 ± 3%, very old = 95 ± 7%; P = 0.317; η𝑝
2  = 0.02) or 

between men (97 ± 3%) and women (97 ± 4%; P = 0.835; η𝑝
2  = 0.00). Of the initial 103 

participants with baseline voluntary activation measurements, 7 participants (1 young 

woman, 3 old women, 3 old men) were excluded from the post-fatiguing exercise 

comparisons due to an inability to obtain a reliable estimated resting twitch (i.e., 3-point 

regression R
2 

< 0.80). As a result, the calculations from eq. 2 were used to test whether 

voluntary activation changed immediately following the fatiguing dynamic exercise. 

 Similar to the data from eq. 1, baseline voluntary activation calculated with the 

superimposed twitch (eq. 2) did not differ between age groups (P = 0.052; η𝑝
2  = 0.06) or 

between men (0.7 ± 1.0%) and women (0.9 ± 1.6%; P = 0.761; η𝑝
2  = 0.00) (Table 2.2). 

The ability to voluntarily activate the muscle following the fatiguing exercise (Post 1) did 

not change compared to baseline in the young men (P = 0.564; η𝑝
2  = 0.02) or women (P = 

0.109; η𝑝
2  = 0.18), very old men (P = 0.414; η𝑝

2  = 0.13) or women (P = 0.655; η𝑝
2  = 0.04), 

or the old men (P = 1.000; η𝑝
2  = 0.00). However, the superimposed twitch (%) increased 

compared to baseline in the old women (P = 0.023; η𝑝
2  = 0.18) indicating a reduction in 

the ability to volitionally activate the muscle (Fig. 2.5). Regression analyses with all 
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participants included, revealed no association between the relative reductions in power 

and changes in voluntary activation (r = 0.191, P = 0.053).  

 

M-waves & MEPs 

 Baseline M-wave peak-to-peak amplitudes (Mmax) and areas for the VL, VM and 

RF are presented in Table 2.2. Because the changes in the VL, VM and RF M-wave areas 

and Mmax following the fatiguing exercise were similar, we only report the data for the 

VL. The VL M-wave area immediately following the fatiguing exercise (Post 1) 

increased compared to baseline for the young (pre = 84.2 ± 17.8 mV·ms, post = 86.1 ± 

17.9 mV·ms; P = 0.003; η𝑝
2  = 0.27),  old (pre = 58.5 ± 19.4 mV·ms, post = 62.9 ± 19.5 

Figure 2.5. Voluntary activation from the motor cortex before and immediately after the 

high-velocity fatiguing exercise. Voluntary activation (eq. 2) measured with TMS delivered 

to the motor cortex before (Pre) and immediately following the fatiguing exercise (Post 1) for 

men (A) and women (B). Group means for each age cohort are depicted by the black outlined 

symbols, while the individual data are depicted by the gray lines. Because voluntary activation 

did not differ between men and women (P > 0.05), the men and women were combined for 

the young, old, and very old (C). Baseline voluntary activation did not differ between the age 

groups (P > 0.05) and did not change compared to baseline immediately following the 

fatiguing exercise (Post 1). Values for each group are means ± SE. Error bars are omitted in 

panels A and B and are obscured by the symbols for the young and old in panel C. 
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mV·ms; P < 0.001; η𝑝
2  = 0.40), and very old (pre = 42.3 ± 17.5 mV·ms, post = 45.1 ± 

18.2 mV·ms; P = 0.021; η𝑝
2  = 0.40) (Fig. 2.6), but the relative changes did not differ 

between the age groups (P = 0.103; η𝑝
2  = 0.05) or between the sexes (P = 0.785; η𝑝

2  = 

0.00). The VL Mmax immediately following the fatiguing exercise increased compared to  

 

 

Table 2.2. Baseline neuromuscular performance measures from the young, old, and very old 

men and women. Variables from electrical stimulation to the femoral nerve were the median 

values from the stimuli delivered at rest following the MVC and 80% MVC contractions (see Fig. 

2.1). Mmax for the vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF) was the 

peak-to-peak maximal compound muscle action potential amplitude. Variables from TMS the 

motor cortex were the median values from the five sets of MVC-60-80% performed prior to the 

dynamic exercise. The peak-to-peak MEP amplitudes (MEPmax) from the TMS during the MVC 

were expressed relative to the Mmax (%Mmax) obtained from the electrical stimulation delivered 

during the MVC. The sample sizes (n) for each cohort and certain variables are reported in 

parentheses. Symbols next to the variable name indicate a significant effect of * age, † sex, or an 

‡ age x sex interaction at P < 0.05. Values are reported as means ± SD. 

 

 

 

baseline in the old (pre = 8.9 ± 3.8 mV, post = 9.5 ± 3.7 mV; P < 0.001; η𝑝
2  = 0.30) but 

did not change in the young (pre = 15.0 ± 3.9 mV, post = 15.0 ± 3.8 mV; P = 0.738; η𝑝
2  = 

Units Men (15) Women (15) Men (33) Women (29) Men (6) Women (6)

Twitch Torque - Q tw *† N·m 58.8 ± 17.0 37.2 ± 9.6 46.7 ± 12.1 29.6 ± 6.4 35.6 ± 6.8 22.8 ± 4.6

Rate of Torque Dev. *† Nm·s
-1 1,270 ± 373 800 ± 216 945 ± 260 584 ± 132 675 ± 73 440 ± 107

Norm. Rate of Torque Dev.* s
-1 21.6 ± 2.1 21.7 ± 3.4 20.2 ± 1.9 19.8 ± 1.6 19.3 ± 2.6 19.2 ± 1.9

1/2 Relaxation Time *†‡ ms 69 ± 14 77 ± 14 70 ± 12 100 ± 31 (27) 78 ± 22 76 ± 20

VL Mmax Amplitude *† mV 18.1 ± 2.1 11.9 ± 2.5 10.5 ± 3.6 7.1 ± 3.1 7.8 ± 2.3 3.8 ± 1.8

VL M-wave Area *† mV·ms 98.1 ± 10.9 70.3 ± 11.3 67.8 ± 17.6 47.8 ± 15.6 53.5 ± 12.3 31.1 ± 14.8

VM Mmax Amplitude*† mV 18.9 ± 4.3 15.8 ± 3.2 14.2 ± 3.5 9.6 ± 3.1 10.0 ± 2.8 7.3 ± 1.2

VM M-wave Area*† mV·ms 119.1 ± 33.6 100.7 ± 22.7 92.1 ± 20.6 64.6 ± 22.8 76.1 ± 20.2 59.3 ± 7.2

RF Mmax Amplitude*† mV 9.9 ± 2.3 7.0 ± 1.6 6.4 ± 1.9 4.1 ± 1.7 4.5 ± 2.3 2.1 ± 1.4

RF M-wave Area*† mV·ms 54.6 ± 10.1 38.1 ± 8.2 37.5 ± 9.8 24.1 ± 8.0 28.5 ± 13.9 13.6 ± 9.3

Voluntary Activation (eq. 1 ) % 97.9 ± 1.9 97.4 ± 2.4 96.3 ± 3.7 97.2 ± 2.9 97.7 ± 0.5 90.8 ± 8.7 (5)

Voluntary Activation (eq. 2 ) % 0.3 ± 0.4 0.4 ± 0.4 0.9 ± 1.2 0.6 ± 0.7 0.5 ± 0.2 3.3 ± 3.6

Estimated Resting Twitch*† N·m 37.6 ± 13.9 25.9 ± 10.6 32.3 ± 12.8 18.9 ± 7.0 20.5 ± 4.0 17.7 ± 9.8 (5)

Peak Relaxation Rate*† N∙m·s
-1 –2,840 ± 784 –1,534 ± 388 –1,330 ± 471 –628 ± 181 –1,029 ± 309 –546 ± 179

Norm. Peak Relaxation Rate*† s
-1 –10.5 ± 1.3 –9.0 ± 1.4 –8.1 ± 1.7 –6.5 ± 1.6 –9.1 ± 1.5 –7.7 ± 2.5

VL MEPmax * %Mmax 37.0 ± 9.6 38.0 ± 9.8 27.7 ± 8.3 26.8 ± 8.9 29.0 ± 8.0 39.9 ± 18.7

VM MEPmax * %Mmax 44.8 ± 13.6 39.1 ± 11.8 32.0 ± 11.7 30.3 ± 11.1 35.1 ± 12.6 43.6 ± 18.5

RF MEPmax * %Mmax 51.7 ± 10.7 51.9 ± 7.7 40.9 ± 10.7 37.2 ± 10.5 39.9 ± 10.4 51.2 ± 16.8

VL Silent Period ms 222 ± 47 237 ± 56 266 ± 55 (31) 237 ± 59 (28) 219 ± 31 248 ± 74 (3)

Electrical Stimulation

Transcranial Magnetic Stimulation

Young (≤35 yrs) Old (60-79 yrs) Very Old (≥80 yrs)

Variable
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Figure 2.6. Compound muscle action potentials before and immediately after the high-

velocity fatiguing exercise. The compound muscle action potential areas (M-wave Area) of 

the vastus lateralis (VL) measured before (Pre) and immediately following the fatiguing 

exercise (Post 1) for men (A) and women (B). Group means for each age cohort are depicted 

by the black outlined symbols, while the individual data are depicted by the gray lines. 

Because the changes in the m-wave area elicited by the fatiguing exercise did not differ 

between the men and women in any of the three age cohorts (P > 0.05), the men and women 

were combined for the young, old, and very old (C). The baseline m-wave areas were greater 

in the young (84.2 ± 17.8 mV∙ms) compared to the old (58.5 ± 19.4 mV∙ms; P < 0.001) and 

greater in the old compared to the very old (42.3 ± 17.5 mV∙ms; P = 0.003), but the relative 

increase in the m-wave area following the fatiguing exercise (*, P < 0.05) did not differ 

between the young, old and very old (P > 0.05). Values for each group are means ± SE. Error 

bars are omitted in panels A and B and are obscured by the symbols in panel C. 

0.00) or very old adults (pre = 5.8 ± 2.9 mV, post = 5.9 ± 2.7 mV; P = 0.490; η𝑝
2  = 0.04). 

Accordingly, the relative change in the VL Mmax showed a main effect of age (P = 0.024; 

η𝑝
2  = 0.07) and was greater in the old (8.3 ± 14.5 %) compared to the young (0.4 ± 4.5 %; 

P = 0.016) but did not differ between the young and very old (4.0 ± 15.2 %; P = 0.691),  

the old and very old (P = 0.515), nor between the men (4.1 ± 2.1 %) and women (4.2 ± 

2.2 %; P = 0.965; η𝑝
2  = 0.00). Regression analyses revealed no association between the  

relative reductions in power and the changes in the VL M-wave area (r = 0.168, P = 

0.089) or Mmax (r = 0.122, P = 0.216). 
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 Baseline MEP data for the vastus lateralis (VL), vastus medialis (VM) and rectus 

femoris (RF) are in Table 2.2. The peak-to-peak MEP amplitudes (%Mmax) following the 

fatiguing exercise (Post 1) did not change compared to baseline for the VL (pre = 31 ± 

11%, post = 34 ± 12%; P = 0.054; η𝑝
2  = 0.04), VM (pre = 35 ± 13%, post = 36 ± 14%; P 

= 0.915; η𝑝
2  = 0.00) or RF (pre = 44 ± 12%, post = 45 ± 14%; P = 0.668; η𝑝

2  = 0.00). 

Involuntary Contractile Properties 

 Baseline contractile properties from the electrical stimulation are presented in 

Table 2.2. The relative decrease in the amplitude of the potentiated twitch (Qtw) following 

the fatiguing exercise (Post 1) showed a main effect of age (P = 0.001; η𝑝
2  = 0.14) and 

was less in the young (-16 ± 17 %) compared to old (-30 ± 19 %; P = 0.002) and very old 

(-35 ± 12 %; P = 0.005) but did not differ between the old and very old (P = 0.562 ) or 

between men (-28 ± 17 %) and women (-24 ± 20 %; P = 0.139; η𝑝
2  = 0.02) (Fig. 2.7). 

Similarly, the relative decrease in the rate of torque development showed a main effect of 

age (P < 0.001; η𝑝
2  = 0.15) and was less in the young (-16 ± 18 %) compared to old (-33 ± 

22 %; P = 0.001) and very old (-39 ± 16 %; P = 0.003) but did not differ between the old 

and very old (P = 0.550) or between men (-31 ± 20 %) and women (-27 ± 23 %; P = 

0.185; η𝑝
2  = 0.02). Of the 104 participants, 9 participants (6 old women, 2 old men, 1 very 

old woman) were unable to fully relax for the electrical stimulation after the fatiguing 

exercise. For the remaining 95 participants (30 young, 54 old, 11 very old), the relative 

increase in the half relaxation time showed a main effect of age (P = 0.001; η𝑝
2  = 0.14) 

and was less in the young (29 ± 28 %) compared to old (67 ± 54 %; P = 0.002) and very 

old (72 ± 59 %; P = 0.034) but did not differ between the old and very old (P = 0.945) or 

between men (53 ± 41 %) and women (59 ± 60 %; P = 0.998; η𝑝
2  = 0.00). 
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 Baseline absolute (Nm∙s
-1

) and normalized (s
-1

) rates of torque relaxation from 

TMS to the motor cortex are also presented in Table 2.2. The relative decrease in the 

absolute peak rate of torque relaxation immediately following the fatiguing exercise (Post 

1) showed a main effect of age (P < 0.001; η𝑝
2  = 0.19) and was less in the young (-26 ± 

11 %) compared to the old (-40 ± 20 %; P = 0.002) and very old (-53 ± 14 %; P < 0.001) 

but did not differ between the old and very old (P = 0.051) nor between men (-36 ± 17 %) 

and women (-29 ± 21 %; P = 0.754; η𝑝
2  = 0.00). To account for the changes in the MVC 

torque outputs following the fatiguing exercise, the peak rates of torque relaxation were 

normalized to each individual’s MVC. Similar to the results from the absolute peak rate 

of torque relaxation, the relative decrease in the normalized peak rate of torque relaxation 

following the fatiguing exercise showed a main effect of age (P < 0.001; η𝑝
2  = 0.25) and 

was less in the young (-6 ± 9 %) compared to the old (-24 ± 20 %; P < 0.001) and very 

old (-35 ± 15 %; P < 0.001) but did not differ between the old and very old (P = 0.122) 

nor between men (-19 ± 19 %) and women (-22 ± 20 %; P = 0.760; η𝑝
2  = 0.00). 

 Simple linear regression analyses revealed that the relative changes for all the 

contractile property measurements were significantly associated with the relative changes 

in mechanical power output during the fatiguing exercise: Qtw (r = 0.75; P < 0.001), rate 

of torque development of the Qtw (r = 0.74; P < 0.001), half relaxation time (r = -0.47; P 

< 0.001), absolute peak rate of torque relaxation (r = 0.64; P < 0.001), and normalized 

peak rate of torque relaxation (r = 0.54; P < 0.001). However, the most closely associated 

variable with the reduction in mechanical power during the fatiguing exercise was the 

reduction in the potentiated twitch torque amplitude (Qtw) (Fig. 2.7).  
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Figure 2.7. Electrically-evoked potentiated twitch amplitudes before and immediately 

after the high-velocity fatigue exercise. The potentiated twitch torque amplitude (Qtw) 

measured before (Pre) and immediately after the fatiguing exercise (Post 1) for the young, old, 

and very old men and women (A). Group means for each age cohort are depicted by the black 

outlined symbols, while the individual data are depicted by the gray lines. In general, the 

relative reductions in the Qtw elicited by the fatiguing exercise showed a qualitatively similar 

trend with aging to the relative reductions in mechanical power (B). Regression analyses 

revealed that the percent reductions in mechanical power were best predicted by the percent 

reductions in the Qtw (C). *significantly different from young and 
#
significantly different from 

old (P < 0.05). Values are means ± SE.  
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DISCUSSION 

 

 

This chapter determines the fatigability of knee extensor muscles and identifies 

the primary mechanisms of fatigue in young, old, and very old men and women elicited 

by high-velocity concentric contractions. We show that aging of the neuromuscular 

system results in a progressive increase in the fatigability of the knee extensors during 

high-velocity contractions that is more pronounced in the very old adults (≥80 yrs) and 

occurs similarly in both men and women (Fig. 2.3). We provide novel evidence that the 

neural drive from the motor cortex remains near optimal for the young, old, and very old 

adults but may play a minor role for the increased power loss of the knee extensors in old 

women (Fig. 2.5). Importantly, the age-related increase in power loss was strongly 

associated with the changes in the electrically-evoked contractile properties (Fig. 2.7), 

suggesting that the age-related increase in fatigability during high-velocity contractions 

was determined primarily by cellular mechanisms that disrupt excitation contraction 

coupling and/or cross-bridge function. 

The progressive age-related increase in fatigability of the lower limb is determined 

primarily by mechanisms within the muscle  

 In support of our hypotheses, we found that the power loss of the knee extensors 

performing a high-velocity fatiguing exercise progressively increased with age from a 

17% loss in the young (23 yrs) to a 31% loss in the old (71 yrs) and a 44% loss in the 

very old adults (86 yrs). Importantly, we also show that the age-related increase in 

fatigability was similar for both men and women (Fig. 2.3). A portion of the progressive 

increase in fatigability with aging may be the result of the decreased physical activity 

levels and increased sedentary behavior that is commonly observed in old compared to 
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young adults (Martin et al., 2014). Indeed, the physical activity of the very old adults in 

our study was significantly lower than both the young and old (Table 2.1). However, 

because the old adults still experienced ~2-fold greater losses in relative mechanical 

power compared to the young (Fig. 2.3), despite having similar physical activity, it is 

unlikely that the age differences in fatigability observed here were due to differences in 

physical activity alone. Furthermore, our results likely underestimate the extent of the 

increased fatigability with aging, because in addition to the greater reductions in power, 

there were also greater decrements in the range of motion during the dynamic exercise for 

both the very old (~18°) and the old (~8°) compared to the young (~2°). The reduced 

range of motion would ultimately lead to a progressive decrease in the amount of 

mechanical work (J) performed per contraction throughout the exercise. Thus, 

incorporating our findings with others (Petrella et al., 2005; McNeil & Rice, 2007; 

Dalton et al., 2010; Callahan & Kent-Braun, 2011; Dalton et al., 2012; Senefeld et al., 

2017) reveals that age-related changes within the neuromuscular system result in an 

increased fatigability during high-velocity contractions that continually progresses into 

the latest stages of life and occurs similarly for both men and women (Fig. 2.3). 

  In testing the mechanisms for the increased fatigability with age, we found that 

the ability of the motor cortex to volitionally activate the muscle was reduced following 

the dynamic exercise in only the old women (Fig. 2.5). The exercise-induced reduction in 

the ability to volitionally activate the muscle, when assessed by delivering TMS to the 

motor cortex, suggests that suboptimal neural drive from the cortical motor neurons may 

be contributing to the increased fatigability with age in women. However, this 

mechanism likely plays only a minor role, because 1) the changes in voluntary activation 
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were not associated with the relative reductions in power, and 2) the change in voluntary 

activation following the exercise was highly variable between individuals (Fig. 2.5). 

There were also no changes in the MEP amplitudes (%Mmax) when measured during the 

MVC immediately following the fatiguing exercise, suggesting that the excitability of the 

corticospinal tract projecting to the quadriceps muscles was unaltered in all three age 

cohorts. Additionally, our findings are supported by studies on the dorsiflexors (McNeil 

& Rice, 2007), plantarflexors (Dalton et al., 2010), and knee extensors (Dalton et al., 

2012) that found no differences in the ability to voluntarily activate the muscle following 

high-velocity fatiguing exercises between groups of young and old men. However, it is 

important to note that methodological limitations make it difficult to evaluate the 

mechanisms of fatigue during a dynamic contraction. Thus, we must infer that the 

changes observed in the maximal isometric contractions following the dynamic exercise 

are an accurate reflection of the voluntary activation during the exercise. Clearly, the 

fatigue-induced reductions in the isometric MVC rarely coincide directly with the 

changes in mechanical power (Dalton et al., 2010; Senefeld et al., 2017). Accordingly, 

the reduction in MVC torque in our study was similar across all three age groups (Fig. 

2.4) despite large differences between the groups in the loss of power (Fig. 2.3). Future 

studies that develop a reliable measurement to test the ability of the nervous system to 

voluntarily activate the muscle during a dynamic contraction will clarify whether the 

nervous system is contributing to the increased fatigability with age.  

 There is growing evidence that the aging process is accompanied by motor unit 

remodeling and instability of the neuromuscular junction that is exacerbated after the age 

of ~75-80 yrs (Hepple & Rice, 2016). Thus, it is plausible that the progressive age-related 
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increase in fatigability during high-velocity exercise is due to impairments in 

neuromuscular transmission and the excitability of the sarcolemma. To test this 

possibility, we quantified the changes in the compound muscle action potential (m-wave) 

area and amplitude of the quadriceps muscles elicited by the high-velocity exercise. Our 

data however, showed an increase in the m-wave area of the vastus lateralis immediately 

following the exercise for all three age cohorts that occurred similarly for both the men 

and women (Fig. 2.6). The mechanisms for the potentiation of the m-wave following a 

fatiguing exercise are unclear (Rodriguez-Falces & Place, 2017), but we observed no 

association between the changes in the m-wave and the reductions in power, suggesting 

that the mechanism for the increased fatigability with age does not involve the 

neuromuscular junction or the ability of the action potential to propagate across the 

sarcolemma. These findings are in agreement with the increased m-wave area of the 

vastus medialis observed in young (~25 yrs) and old men (~74 yrs) following a high-

velocity knee extension exercise (Dalton et al., 2012), but in contrast to the decreased m-

wave amplitude observed in the soleus of older men (~78 yrs) following a high-velocity 

plantarflexor exercise (Dalton et al., 2010). The explanation for the disparities between 

the studies is unclear but may involve the differential effect of aging on these two muscle 

groups (Candow & Chilibeck, 2005). 

 In contrast to the limited involvement of the nervous system (Fig. 2.5) or 

neuromuscular propagation (Fig. 2.6) in explaining the increased fatigability with aging, 

we found strong support that the progressive age-related increase in power loss during 

high-velocity exercise was closely associated with mechanisms that disrupt contractile 

function within the muscle (Fig. 2.7). Specifically, the greater age-related reductions in 
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mechanical power were closely associated with changes in the involuntary twitch 

properties elicited by electrical stimulation to the femoral nerve, as well as the peak rates 

of relaxation elicited by TMS to the motor cortex. The reduction in the electrically-

evoked twitch amplitude for example, explained 57% of the variance for the reduction in 

power during the fatiguing exercise (Fig 2.7). Although the specific cellular and 

molecular mechanisms cannot be identified by the changes in the involuntary contractile 

properties, these properties do provide valuable insight to the cellular processes that 

likely contribute to fatigue (Fitts, 1994; Kent-Braun et al., 2012). For example, the 

greater slowing of the relaxation rates in the old compared to young adults following the 

exercise indicate that the mechanism likely involves factors that slows cross-bridge 

detachment and/or the uptake of Ca
2+

 back into the sarcoplasmic reticulum (Fitts, 1994). 

Additionally, the greater reductions in the amplitude (Fig. 2.7) and the rates of torque 

development of the potentiated twitch in the old and very old adults compared to the 

young suggest that the mechanism also likely involves factors that either 1) decrease the 

amplitude of the Ca
2+

 transient, 2) reduces the number of cross-bridges formed and/or the 

amount of force generated per cross-bridge, and/or 3) slows the transition step from the 

low- to high-force state of the cross-bridge cycle (Fitts, 1994; Allen et al., 2008; Debold 

et al., 2016). 

 The leading cellular mechanisms purported to be responsible for the exercise-

induced reductions in mechanical power within the muscle are an accumulation of 

metabolic by-products (i.e., H
+
, Pi, H2PO4

-
) that act to both directly inhibit cross-bridge 

function (Fitts, 2008; Debold et al., 2016) and to impair excitation-contraction coupling 

(Fitts, 1994; Allen et al., 2008). Thus, it is plausible that age-related changes within the 
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muscle result in an increased production of metabolic by-products and/or an increased 

sensitivity of the muscle to a given concentration of metabolite accumulation during 

high-velocity exercise. However, the decrease in pH and increase in intracellular [Pi] 

during a dynamic plantarflexor exercise did not differ or was blunted in old compared to 

young adults (Layec et al., 2013; Layec et al., 2014, 2015), suggesting that the age-

related increase in fatigability is not likely due to an increased production of metabolic 

by-products. In chapters 3 and 4, I test the hypothesis that the increased fatigability with 

age is explained, at least in part, by an increased sensitivity of the cross-bridge to 

elevated levels of H
+
 and Pi in fibers from old compared to young adults.  

Concluding remarks 

  Our data provide evidence that aging of the neuromuscular system results in an 

increased fatigability during high-velocity contractions of the knee extensors that 

continually progresses into the latest stages of life (≥80 yrs) and occurs similarly for both 

men and women. By coupling non-invasive stimulation procedures to both the motor 

cortex and the peripheral nervous system with measures of surface EMG and torque 

output, we were able to localize the primary mechanism for the increased fatigability with 

aging to factors within the muscle. We conclude that the age-related increased power loss 

during high-velocity fatiguing exercise of the lower limb is determined primarily by 

cellular mechanisms that disrupt excitation contraction coupling and/or cross-bridge 

function and that the mechanisms are similar for both men and women. 
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CHAPTER 3 

 

 

EFFECTS OF ELEVATED H
+
 AND Pi ON THE CONTRACTILE MECHANICS 

OF SKELETAL MUSCLE FIBERS FROM YOUNG AND OLD MEN: 

IMPLICATIONS FOR HUMAN MUSCLE FATIGUE 

 

 

INTRODUCTION 

 

 

 Human aging is accompanied by a progressive decline in neuromuscular function 

acting to reduce mobility, increase the risk of falling, and limit the performance of daily 

activities in older adults. Pivotal for the age-related decline in function is the loss in 

muscle mass that can approach 30% in individuals ≥ 60 years of age (Doherty, 2003). 

However, the age-related losses in maximal strength and the ability to generate power 

occur earlier in life and at a more rapid rate than the losses in total muscle mass, 

suggesting that other factors such as changes in the nervous system and ‘muscle quality’ 

also contribute to the losses in function with age (Reid & Fielding, 2012; Russ et al., 

2012; Hepple & Rice, 2016; Hunter et al., 2016). Additionally, the age-related decline in 

the ability to generate power is exacerbated by the increase in fatigability that occurs 

when older adults perform moderate- to high-velocity contractions (McNeil & Rice, 

2007; Dalton et al., 2010; Callahan & Kent-Braun, 2011; Dalton et al., 2012). Despite the 

growing recognition that muscle power output is an important predictor of functional 

impairments in older adults (Reid & Fielding, 2012), the primary mechanisms for the 

accelerated loss in power and the increase in fatigability with aging remain unresolved. In 

chapter 2, it was observed that the age-related increase in power loss during a dynamic 

knee extension exercise was strongly associated with the reductions in both the amplitude 

and rate of torque development of the electrically-evoked twitch. The latter is thought to 
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be limited by the forward rate constant of the low- to high-force state of the cross-bridge 

cycle suggesting that the mechanism responsible for the age-related increase in 

fatigability is likely due to cellular mechanisms that disrupt cross-bridge function (Fitts, 

1994, 2008).  

 In isolated permeabilized muscle fibers, the kinetics of the low- to high-force state 

of the cross-bridge cycle can be measured by employing a rapid slack re-extension 

maneuver of a maximally Ca
2+

-activated fiber (Metzger & Moss, 1990a, b). The rapid re-

extension of the fiber dissociates myosin from actin, and the rate of force redevelopment 

(ktr) following the re-extension represents the sum of the forward and reverse rate 

constants of the low- to high-force state of the cross-bridge cycle (Brenner & Eisenberg, 

1986; Metzger et al., 1989). Two metabolic by-products implicated in fatigue, inorganic 

phosphate (Pi) and hydrogen (H
+
), have been shown to directly affect the cross-bridge 

cycle at this transition step but by different mechanisms (Debold et al., 2016). 

Specifically, Pi is thought to induce an unconventional powerstroke where myosin 

dissociates from actin early in the low- to high-force transition (Linari et al., 2010; 

Caremani et al., 2013; Debold et al., 2016), resulting in the acceleration of the rate of 

force development (Dantzig et al., 1992) and  ktr (Wahr et al., 1997; Tesi et al., 2002). In 

contrast, H
+ 

is thought to inhibit the forward rate constant of the low- to high-force state 

(Metzger & Moss, 1990b), which may explain the lack of difference in ktr in rat fibers 

exposed to a control (pH 7.0 + 0 mM Pi) compared to a combined Pi (30 mM) and H
+
 (pH 

6.2) condition (Nelson et al., 2014). However, because the resting concentration of Pi in 

quiescent human skeletal muscle is ~3-5 mM (Kemp et al., 2007), these previous studies 

may have underestimated the effect of H
+
 on ktr. In addition, no studies have tested the 
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effects of Pi and H
+
 on human skeletal muscle and only a single study has measured ktr of 

‘slow type’ fibers from old compared to young adults (Power et al., 2016). Thus, the first 

aim of this chapter was to compare the ktr of fibers expressing slow myosin heavy chain I 

(MHC I) and fast MHC II from young (<30 yrs) and old adults (>70 yrs) in conditions 

mimicking quiescent human muscle (pH 7.0 + 4 mM Pi) and severe fatigue (pH 6.2 + 30 

mM Pi). We hypothesized that the ktr of both fiber types would be lower in the fibers from 

old compared to young adults, and that the fatigue-mimicking condition would slow ktr 

but would do so to a greater extent in the fibers from old adults. 

 In addition to the experiments on the low- to high-force transition of the cross-

bridge cycle, experiments on peak isometric force (Po), shortening velocity (Vo and Vmax), 

and peak fiber power are necessary to assess whether cross-bridge mechanisms are 

responsible for the age-related loss in power and increase in fatigability. When studied in 

isolation at cold temperatures (<20°C), both Pi and H
+
 cause large reductions in  Po and 

peak fiber power, while H
+
 alone also slows shortening velocity (Metzger & Moss, 1987; 

Chase & Kushmerick, 1988; Cooke et al., 1988; Godt & Nosek, 1989; Debold et al., 

2004; Knuth et al., 2006). Subsequent studies performed at near physiological 

temperatures (30°C) have generally found a reduced effect of Pi and H
+
 on Po and peak 

power, but that the effect of H
+
 on shortening velocity was unaltered by temperature 

(Debold et al., 2004; Knuth et al., 2006; Karatzaferi et al., 2008). The mitigated effect of 

these ions at near in vivo temperatures has caused considerable debate over their role in 

the fatigue process (Fitts, 2016; Westerblad, 2016). However, when the effects of 

elevated H
+
 (pH 6.2) and Pi (30 mM) were studied in combination at 30°C, which is more 

relevant to the fatigue process in vivo, they had a synergistic effect that caused marked 
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reductions in Po (~35-50%), peak power (~55-65%), and Vmax (~20%) of rat and rabbit 

fibers (Karatzaferi et al., 2008; Nelson et al., 2014). 

Therefore, the second aim of this chapter was to test the effects of the fatigue-

mimicking condition (pH 6.2 + 30 mM Pi) on isometric force (Po), shortening velocity 

(Vo and Vmax), and peak power in fibers from young and old adults at 15°C and 30°C. We 

hypothesized that the age-related increase in fatigability during dynamic exercise is due, 

in part, to an increased sensitivity of the cross-bridge of old adult fibers to H
+
 and Pi. 

Importantly, because we integrated measures of whole-muscle function with single cell 

contractile mechanics, the third aim of this chapter was to explore the mechanisms for the 

age-related loss in ‘muscle quality’ (i.e., decreased strength or power after normalizing 

for differences in muscle mass, volume or cross-sectional area). 

 

METHODS  

 

 

Participants and Ethical Approval 

 Six young men (20-29 yrs) and six old men (73-89 yrs) volunteered and provided 

their written informed consent to participate in this study. Participants underwent a 

general health screening and were excluded from the study if they were taking 

medications that affect the central nervous system, muscle mass or neuromuscular 

function (e.g., hormone-replacement therapies, anti-depressants, glucocorticoids). All 

participants were apparently healthy, community dwelling adults free of any known 

neurological, musculoskeletal or cardiovascular diseases. All experimental procedures 

were approved by the Marquette University Institutional Review Board and conformed to 

the principles in the Declaration of Helsinki. 
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Whole-muscle Knee Extensor Function & Fatigability 

Participants reported to the laboratory on four occasions, twice for familiarization, 

once for an experimental session to measure whole-muscle function of the knee 

extensors, and once for a muscle biopsy of the vastus lateralis. The familiarization 

sessions were used to habituate the participants to electrical stimulation of the femoral 

nerve and transcranial magnetic stimulation (TMS) to the motor cortex. Participants also 

practiced performing maximal voluntary isometric and concentric contractions with the 

knee extensors during the familiarization sessions. The experimental session assessed 

whether the old adults demonstrated conventional age-related changes of the knee 

extensor muscles compared to the young adults, including, (1) lower thigh lean muscle 

mass, (2) lower absolute and mass specific isometric strength and mechanical power 

outputs, and (3) an increased fatigability (reductions in mechanical power) when 

performing a high-velocity dynamic exercise (Dalton et al., 2012; Reid & Fielding, 

2012). The results for the fatigability measurements are a subset from the data reported in 

chapter 2, and only the methods that were not included in chapter 2 are described below. 

Thigh lean mass: Body composition and thigh lean mass was assessed with dual 

X-ray absorptiometry (Lunar iDXA, GE, Madison, WI, USA). Thigh lean mass was 

quantified for the region of interest from the manufacturer’s software (enCORE 

14.10.022, GE), with the distal demarcation set at the tibiofemoral joint and the proximal 

demarcation set as a diagonal bifurcation through the femoral neck. DXA measures of 

thigh lean mass with these landmarks are strongly correlated with measures from 

magnetic resonance imaging (MRI) but underestimate the age-related loss in thigh 

muscle mass (Maden-Wilkinson et al., 2013). 
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Muscle Biopsy 

 A muscle biopsy from the vastus lateralis of the leg tested in the whole-muscle 

experiments was obtained from each participant (Bergstrom, 1962). Participants were 

instructed to refrain from strenuous exercise of the lower limb for 48 hrs prior to the 

biopsy and arrived at the laboratory fasted and without consumption of caffeine. The 

biopsy location was cleaned with 70% ethanol, sterilized with 10% providone-iodine, and 

anaesthetized with 1% lidocaine HCl. A small ~1 cm incision was made overlying the 

distal 1/3 of the muscle belly, and the biopsy needle inserted under local suction to obtain 

the tissue sample. Two longitudinal bundles from the biopsy sample were immediately 

submerged in cold glycerol skinning solution (see below) and stored at -20°C. The 

remaining biopsy sample was immediately frozen in liquid nitrogen and stored at -80°C. 

All single fiber contractile experiments were completed within 4 weeks of the biopsy. 

Single Fiber Morphology and Contractile Mechanics 

 Solutions: The composition of the relaxing (pCa 9.0, where pCa = -log[Ca
2+

]) and 

activating (pCa 4.5) solutions were derived from an iterative computer program using the 

stability constants adjusted for temperature, pH and ionic strength (Fabiato & Fabiato, 

1979; Fabiato, 1988). All solutions contained (in mM) 20 imidazole, 7 ethylene glycol-

bis(β-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), 4 MgATP, and 14.5 creatine 

phosphate. Inorganic phosphate (Pi) was added as K2HPO4 to yield a concentration of 4 

or 30 mM. Although no Pi was added to the 0 mM Pi solution, there is evidence that the 

actual concentration of Pi is between 0.4 and 0.7 mM due to the hydrolysis and 

resynthesis of ATP and to impurities in stock reagents (Pate & Cooke, 1989). Mg
2+

 was 

added as MgCl2 with a specified free concentration of 1 mM, and Ca
2+

 was added as 
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CaCl2. The ionic strength was adjusted to 180 mM with KCl, and the pH was adjusted to 

7.0 or 6.2 with KOH and HCl. The skinning solution was composed of 50% relaxing 

solution and 50% glycerol (vol:vol). 

 Experimental setup: Single fiber experiments were performed on a microsystem 

as described previously (Nelson et al., 2014). On the day of experimentation, a fiber 

segment (~2-3 mm) was isolated from the biopsy, and the ends secured with 4.0 

monofilament posts tied with 10.0 nylon sutures to a force transducer (400A, Aurora 

Scientific, Aurora, Ontario, CA) and high-speed servomotor (controller 312C, Aurora 

Scientific) in a plastic chamber containing cold relaxing solution (Moss, 1979). Once the 

fiber was attached, the position of the force transducer and servomotor were adjusted so 

the fiber could be suspended in 100-120 μL of relaxing solution cooled to 12°C by a 

temperature-controlled Peltier unit. The fiber remained in the 12°C relaxing solution, 

except when transferred either into air for imaging or to a second Peltier unit for 

activation at 15°C or 30°C. To view the fiber at 800X magnification, the microsystem 

was transferred to the stage of an inverted microscope. The sarcomere length was 

adjusted to 2.5 μm using a calibrated eyepiece micrometer, and the fiber length measured 

as the distance between the two points of attachment via a mechanical micrometer 

(Starrett, Athol, MA, USA). Fiber width was determined from a digital image 

(CoolSNAP ES, Roper Scientific Photometrics, Tucson, AZ, USA) taken while the fiber 

was briefly suspended in air (<5 s). The fiber width was measured at 3 locations along the 

segment length, and the average fiber diameter and cross-sectional area (CSA) were 

calculated assuming that the fiber forms a cylinder while in air. 
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 Experimental design: All single fiber contractile experiments began with a 

sequence of 4-5 contractions (activating solution – pH 7.0 + 0 mM Pi) to determine the 

maximal Ca
2+

-activated isometric force (Po) and unloaded shortening velocity (Vo) at 

15°C. Each fiber was then selected for one of two sets of experiments: 1) unloaded 

shortening velocity (Vo) and rates of force redevelopment (ktr) or 2) force-velocity tests. 

For the first set of experiments, ktr was measured in a low (15°C) and high (30°C) 

temperature in two control conditions (pH 7.0 + 0 mM Pi and pH 7.0 + 4 mM Pi) and an 

experimental condition mimicking fatigue (pH 6.2 + 30 mM Pi). Fiber Vo was also 

measured in all three activating conditions at 15°C, but with one control condition (pH 

7.0 + 4 mM Pi) and the experimental fatigue condition (pH 6.2 + 30 mM Pi) at 30°C. For 

the fibers selected for the second set of experiments, force-velocity measurements were 

performed in 15°C and 30°C but with only one control condition (pH 7.0 + 4 mM Pi) and 

the experimental fatigue condition (pH 6.2 + 30 mM Pi). The pH 7.0 + 0 mM Pi control 

condition was used for comparison with other single fiber experiments in animals 

(Metzger & Moss, 1990b; Knuth et al., 2006; Nelson et al., 2014) and humans (D'Antona 

et al., 2003; Trappe et al., 2003; Frontera et al., 2008; Lamboley et al., 2015), whereas, 

the pH 7.0 + 4 mM Pi control condition was used to more closely mimic the [Pi] in the 

quiescent human quadriceps muscle (Kemp et al., 2007). Because of the tendency for 

higher temperatures (>25°C) to damage isolated fibers, all experiments were conducted 

first at 15°C followed by 30°C. However, within each temperature the control and 

experimental fatigue conditions were randomized to alleviate the potential of an order 

effect. Fibers with visible tears or that had a decrease in the maximal Ca
2+

-activated 

isometric tension to <90% of the initial Po within a condition were excluded from further 



62 

analysis. Unlike in animal experiments (Debold et al., 2004; Karatzaferi et al., 2008), the 

fast MHC II fibers from the humans in this study, particularly from the old adults, 

deteriorated too rapidly to obtain full data sets in 30°C. As a result, data are reported for 

the fast MHC II fibers at 15°C and the slow MHC I fibers at 15°C and 30°C.  

 Unloaded shortening velocity (Vo) and rate of force redevelopment (ktr) 

experiments: Unloaded shortening velocity (Vo) was determined using the slack test 

(Edman, 1979). Fibers were maximally activated in saturating Ca
2+

 (pCa 4.5), allowed to 

generate peak isometric force (Po), and then rapidly shortened with the servomotor to a 

predetermined distance so that force was momentarily reduced to zero. The fiber 

remained activated until the redevelopment of force, after which, the fiber was returned 

to relaxing solution and reextended to its original position. Fibers were activated 4-5 

times in each condition and slacked at varying distances (100-450 μm in 15°C and 200-

450 μm in 30°C) that never exceeded a distance >20% fiber length. The Vo for each 

condition was the slope of the least squares regression line between the slack distance and 

the time required to begin the redevelopment of force. The reported Po was the average 

from all the contractions within each condition. 

 To test the effects of age and metabolites (H
+
 and Pi) on the low- to high-force 

transition of the cross-bridge cycle, the rate constant of force redevelopment (ktr) was 

measured following a rapid slack re-extension maneuver of a maximally Ca
2+

-activated 

fiber (Metzger & Moss, 1990a, b). This maneuver is similar to the slack test with the 

addition of the rapid re-extension of the activated fiber, which dissociates myosin from 

actin. The slack distance for each fiber was 400-450 μm with the duration prior to re-

extension set to 10 ms in 30°C, 20 ms for fibers with a Vo > 2.0 fl∙s
-1

 in 15°C, and 40-60 
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ms for fibers with a Vo < 2.0 fl∙s
-1 

in 15°C. Force redevelopment following the re-

extension was fit with a first-order exponential function, where ktr is the exponential time 

constant (s
-1

) of the rate of force redevelopment (Metzger & Moss, 1990b). 

Force-velocity experiments: In the second set of experiments, force-velocity and 

force-power curves were obtained as described previously (Debold et al., 2004; Nelson et 

al., 2014). Fibers were maximally activated in saturating Ca
2+

, allowed to generate peak 

isometric force, and then subjected to three predetermined submaximal isotonic loads 

(300-FC1 Force Controller, Positron Development, Inglewood, CA, USA). To ensure the 

fiber did not shorten >20% fiber length, the duration of each isotonic load was 20-30 ms 

for experiments at 30°C and 20-50 ms at 15°C. Fibers were activated 4-6 times under 

each condition to obtain 12-18 different isotonic loads, and each force-velocity plot was 

fit with a residual minimizing, iterative procedure using the hyperbolic Hill equation:   

(P + 𝑎) ∗ (𝑉 + 𝑏) = (Po + 𝑎) ∗ 𝑏    eq. 3 

where P is force, V is velocity, Po is peak isometric force, and a and b are constants with 

units of force and velocity, respectively (Hill, 1938). Absolute (µN·fl·s-1
) and size 

specific power (W·l-1
) were calculated as the product of shortening velocity (fl·s-1

) and 

absolute (µN) and size specific force (kN·m-2
), respectively, and the peak fiber power 

determined using the parameters from the force-velocity curve (Widrick et al., 1996).  

Myosin heavy chain (MHC) composition: MHC composition of the isolated fibers 

were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-

PAGE) and silver staining as described previously (Giulian et al., 1983). Briefly, 

following the contractile experiments, each fiber was solubilized in 80 μL of SDS sample 
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buffer [6.7 mg∙mL
-1

 ethylenediaminetetraacetic acid (EDTA), 1% SDS, 0.06 M 

tris(hydroxymethyl)aminomethane (pH 6.8), 0.001% bromophenol blue, 15% glycerol, 

5% β-mercaptoethanol] and loaded on a gel made up of a 3% acrylamide/bis (19:1) 

stacking layer and 5% separating layer. Gels were run 20-24 hours at 4°C (SE600, 

Hoefer, Holliston, MA), stained, imaged and visually inspected to classify the MHC 

isoform composition (I, I/IIa, I/IIa/IIx, IIa, IIa/IIx and IIx) of each fiber. 

  The MHC distribution of the vastus lateralis for each participant was 

determined by homogenizing a portion of the biopsy sample (>10 mg) in 30X 

(vol:weight) RIPA buffer  with a protease and phosphatase inhibitor cocktail (Thermo 

Fisher Scientific, Waltham, MA, USA). The homogenized samples were run in 

quadruplicate for each participant with SDS-PAGE, and the relative abundance of each 

MHC isoform (I, IIa, and IIx) was quantified using densitometry and averaged over the 

four runs. Because of the low abundance of MHC IIx in most participants, we combined 

the IIa and IIx for each participant and report the values as MHC II. The amount of the 

thigh lean mass composed of slow MHC I and fast MHC II muscle for each participant 

(TLMMHC) was estimated based on the measured terms in the following equation:  

TLMMHC  =  MHC (%) ∗  TLMTotal    eq. 4 

where MHC (%) is the relative abundance of the MHC isoform (I or II) from the muscle 

homogenate and TLMTotal is the total thigh lean mass from the DXA scan (Fig. 3.1). 

Statistical Analyses 

 Anthropometrics, whole-muscle knee extensor function, and MHC distribution 

were compared between age groups (young and old) using an unpaired t-test. For the 
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whole-limb experiments, repeated-measure analysis of variance (ANOVA) was 

performed on the measure of fatigability (reductions in power) and the mechanistic 

measurements (voluntary activation, m-wave & electrically-evoked contractile 

properties) for both young and old adults. The relative reductions in mechanical power 

from the beginning to the end of the fatiguing exercise were compared between age 

groups with an unpaired t-test. Simple linear regression analyses were performed between 

the reductions in mechanical power and the mechanistic measurements to identify the 

mechanisms of fatigue in the intact neuromuscular system. Statistical analyses for the 

whole-muscle knee extensor function, fatigability and the MHC distribution were 

performed using SPSS (version 24.0, IBM Corp., Armonk, NY, USA).  

 To test for differences in single fiber morphology and contractile mechanics 

between young and old adults, a nested ANOVA was used with age group (young and 

old) and fiber type (I, IIa, and IIa/IIx) as the fixed factors. No pure MHC IIx, hybrid I/IIa, 

or hybrid I/IIa/IIx fibers were observed in this study. When a significant main effect of 

fiber type was observed, pair-wise post hoc comparisons were performed using Tukey’s 

method. A repeated-measures nested ANOVA was employed to test the effect of 

temperature (15°C and 30°C) and activating condition (pH 7.0 + 0 mM Pi, pH 7.0 + 4 

mM Pi, and pH 6.2 + 30 mM Pi) on the contractile mechanics of the different fiber types 

isolated from young and old adults. Because of the small number of hybrid MHC IIa/IIx 

fibers tested, we grouped the pure MHC IIa with the hybrid MHC IIa/IIx fibers and refer 

to the grouped data as MHC II. We elected to group the fast MHC fiber types rather than 

exclude all hybrid MHC IIa/IIx fibers, because none of the outcomes differed when the 

MHC II fibers were grouped versus when hybrid MHC IIa/IIx were excluded. Statistical 
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analyses for the single fiber morphology and contractile mechanics were performed using 

Minitab (version 18.0, Minitab Inc., State College, PA, USA). All significance levels 

were set at P < 0.05. Data are presented as the mean ± standard deviation (SD) in the text 

and tables and the mean ± standard error of the mean (SE) in the figures. 

RESULTS 
 

 

Whole-Muscle Knee Extensor Function, Fatigability, and MHC Distribution 

 

Anthropometrics, physical activity levels, and whole-muscle knee extensor 

function measurements are presented in Table 3.1. The physical activity levels assessed 

by triaxial accelerometry did not differ between the young and old adults. As expected, 

thigh lean mass and absolute isometric torque and mechanical power outputs of the knee 

extensors were lower in old compared to young adults. Even after correcting for the 

differences in thigh lean mass, the isometric torque and power outputs remained lower in 

old adults by 38% and 53%, respectively. Calculations from the MHC distribution 

analysis revealed that the lower total thigh lean mass in old adults was primarily 

determined by a lower amount of fast MHC II muscle (Fig. 3.1) (young = 4.2 ± 1.4 kg, 

old = 2.2 ± 0.6 kg; P = 0.011), which was strongly correlated with the absolute power 

output (r = 0.861, P < 0.001) and isometric strength (r = 0.785, P = 0.002) of the knee 

extensors. In contrast, there was no difference in the slow MHC I thigh lean mass in the 

old (3.4 ± 0.9 kg) compared to young adults (3.0 ± 0.9 kg; P = 0.504), nor was there a 

correlation between MHC I lean mass and knee extensor power output (r = -0.198, P = 

0.537) or isometric strength (r = 0.024, P = 0.940). The fatigability of the knee extensor 

muscles was ~2.5 fold greater in the old compared to young adults, with an average 

relative reduction in power of 32 ± 12% in old compared to 12 ± 13% in young adults.  
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Figure 3.1. Whole-muscle power output and myosin heavy chain (MHC) distribution in 

the young and old men. There was a trend (P = 0.053) towards a higher relative abundance 

of MHC I and lower abundance of MHC II in the vastus lateralis muscle of old compared to 

young adults (A). Total thigh lean mass was 22% lower in old compared to young adults, with 

a selective loss in the fast MHC II lean mass with aging and no age differences in the slow 

MHC I lean mass (B). Mean absolute mechanical power outputs from the high-velocity 

exercise were 63% lower in old compared to young adults and remained 53% lower in old 

adults after correcting for differences in the total thigh lean mass (C). Linear regression 

analyses revealed that the differences in the absolute power outputs with aging were strongly 

associated with the differences in the fast MHC II lean mass (C). Muscle homogenates in the 

gel image (5% SDS-PAGE) in panel A are from two young adults (outside lanes) and an old 

adult (middle lane). Gels (5% SDS-PAGE) were also used to classify single fibers based on 

the MHC isoforms (I, IIa, IIx) following the contractile experiments. Single fibers in the gel 

image in panel A were classified from left-to-right as type I, IIa, and hybrid IIa/IIx, 

respectively. *significantly different from the young (P < 0.05). Values are means ± SE. 
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Table 3.1. Anthropometrics, knee extensor function, and physical activity levels for the 

young and old men. Body fat percentage and lean mass were measured via dual X-ray 

absorptiometry, and physical activity was measured via triaxial accelerometry. Maximal 

voluntary contraction (MVC) torque was the highest torque output recorded from the MVC 

attempts in the experimental session. Voluntary activation was assessed with TMS to the motor 

cortex and was the median from the five sets of MVC-60-80% contractions performed prior to the 

dynamic exercise. Mechanical power was the highest average obtained from 5 sequential 

contractions of the first 10 contractions performed during the dynamic fatiguing exercise. Mass 

specific torque and power were calculated with the thigh lean mass. Variables from electrical 

stimulation to the femoral nerve were the median values from the stimuli delivered at rest 

following the MVC and 80% MVC contractions. Mmax for the vastus lateralis (VL) was the peak-

to-peak maximal compound muscle action potential amplitude. The sample size (n) for each 

cohort is reported in parentheses. Bold font highlights a significant age difference at P < 0.05. 

Values are means ± SD. 

Age yr 23.3 ± 3.1 81.5 ± 7.2 <0.001

Height cm 178.9 ± 8.9 170.0 ± 7.4 0.089

Weight kg 74.8 ± 11.3 75.8 ± 10.2 0.877

BMI kg∙m
-2 23.3 ± 1.9 26.2 ± 2.9 0.064

Whole-Body Fat % 17.6 ± 4.6 30.1 ± 7.7 0.009

Whole-Body Lean Mass kg 59.5 ± 9.9 50.5 ± 4.0 0.066

Thigh Lean Mass kg 7.2 ± 1.5 5.6 ± 1.5 0.039

Physical Activity steps∙day
-1 9,175 ± 4,947 7,977 ± 3,232 0.630

MVC Torque N∙m 283 ± 59 137 ± 54 <0.001

Mass Specific Torque N∙m∙kg
-1 17.9 ± 2.4 11.1 ± 2.2 <0.001

Voluntary Activation (eq. 1 ) % 97.9 ± 2.0 96.6 ± 2.3 0.321

Voluntary Activation (eq. 2 ) % 0.4 ± 0.4 0.6 ± 0.4 0.356

Mechanical Power W 308 ± 63 114 ± 31 <0.001

Mass Specific Power W∙kg
-1 42.9 ± 6.5 20.2 ± 4.7 <0.001

Angular Velocity rad∙s
-1 4.5 ± 0.2 3.5 ± 0.3 <0.001

Fatigability - Power % ∆ –12 ± 13 –32 ± 12 0.019

Twitch Torque (Qtw) N∙m 59.4 ± 11.5 38.2 ± 6.2 0.003

Rate of Torque Dev. (dT/dt) N∙m∙s
-1 1,267 ± 324 722 ± 129 0.007

1/2 Relaxation Time ms 71 ± 16 76 ± 23 0.675

VL Mmax Amplitude mV 18.0 ± 1.7 7.5 ± 2.7 <0.001

VL M-wave Area mV∙ms 101.0 ± 9.5 51.5 ± 17.9 <0.001

P -value

Isometric

Dynamic

Young Men (6) Old Men (6)

Femoral Nerve Stimulation
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Voluntary activation: Baseline voluntary activation calculated using the estimated 

resting twitch (eq. 1) and the superimposed twitch (eq. 2) did not differ between young 

and old adults (Table 3.1). Furthermore, the ability to volitionally activate the knee 

extensor muscles immediately following the fatiguing exercise did not change compared 

to baseline for young (eq 1: P = 0.709; eq 2: P = 0.644) or old adults (eq 1: P = 0.293; eq 

2: P = 0.548).  

Neuromuscular propagation (m-wave): Baseline m-wave peak-to-peak amplitudes 

(Mmax) and areas for the vastus lateralis (VL) are presented in Table 3.1. Despite larger 

baseline VL Mmax and m-wave areas in young compared with old men, neither variable 

changed following the fatiguing exercise for either age group (P > 0.05).  

Electrically-evoked contractile properties: Baseline contractile properties elicited 

by electrical stimulation to the femoral nerve are also presented in Table 3.1. The 

amplitude of the potentiated resting twitch torque (Qtw) decreased following the fatiguing 

exercise by 23 ± 15% in young (P = 0.008) and 30 ± 9% in old adults (P < 0.001). 

Similarly, the rates of torque development (dT/dt) decreased by 21 ± 18% in young (P = 

0.023) and 37 ± 13% in old adults (P = 0.002), whereas, the half relaxation time 

increased following the fatiguing exercise by 22 ± 18% in young (P = 0.036) and 94 ± 

59% in old adults (P = 0.004). Regression analyses revealed that the relative changes in 

all contractile properties were strongly associated with the relative reductions in power 

output during the fatiguing exercise: Qtw (r = 0.82; P = 0.001), dT/dt (r = 0.89; P < 

0.001), and half relaxation time (r = -0.68; P = 0.014). However, the most closely 

associated variable was the reduction in the rate of torque development (dT/dt), which 
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Figure 3.2. Fatigability (reductions in power) of the knee extensors during a high-

velocity fatiguing exercise in young and old men. The fatigability of the knee extensor 

muscles was ~2.5 fold greater in the old compared to young adults, with an average relative 

reduction in power of 32% in the old compared to 12% in the young (A). Regression analyses 

revealed that the percent reductions in mechanical power were best predicted by the percent 

reductions in the rates of torque development (dT/dt) from the electrically-evoked twitches 

(B). *significantly different from the young (P < 0.05). Values are means ± SE. 

explained 79% of the variance in the loss in power during the fatiguing exercise (Fig. 

3.2). 
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Single Fiber Morphology and Contractile Mechanics 

 Presented in Table 3.2 are the fiber diameter, cross-sectional area (CSA), peak 

isometric force (Po), and unloaded shortening velocity (Vo) at 15°C (pH 7.0 + 0 mM Pi) 

for all 254 fibers studied (Young = 122 & Old = 132). The CSA of MHC I fibers did not 

differ between young and old adults (P = 0.415). Similarly, absolute Po (P = 0.455) and 

size specific Po (P = 0.717) did not differ for MHC I fibers with age. However, the CSA 

of both MHC IIa and IIa/IIx fibers were 59% and 54% smaller in fibers from old 

compared to young adults (P < 0.001). Accordingly, the absolute Po was 52% and 50% 

lower for MHC IIa and IIa/IIX fibers from old compared to young adults (P < 0.001). 

The differences in absolute Po were explained entirely by the differences in fiber CSA as 

indicated by the greater size specific Po in old compared to young adults for the MHC IIa 

(P = 0.002) and no age differences for the MHC IIa/IIx fibers (P = 0.146). Independent of 

age, the size specific Po of MHC I fibers (183 ± 27 kN∙m
-2

) was 17% lower than MHC IIa 

fibers (220 ± 39 kN∙m
-2

) and 24% lower than MHC IIa/IIx fibers (243 ± 41 kN∙m
-2

) (P < 

0.001), with no differences between IIa and IIa/IIx fibers (P = 0.676). 

 The unloaded shortening velocity (Vo) did not differ between fibers from young 

and old adults for MHC I (P = 0.215), IIa (P = 0.537) or IIa/IIx fibers (P = 0.440). 

Independent of age, Vo was 67% slower in MHC I (1.31 ± 0.34 fl∙s
-1

) compared with IIa 

fibers (3.96 ± 0.98 fl∙s
-1

; P < 0.001), and 32% slower in MHC IIa compared with IIa/IIx 

fibers (5.85 ± 1.72 fl∙s
-1

; P < 0.001).  
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Table 3.2. Peak fiber force (Po) and unloaded shortening velocity (Vo) in pH 7.0 + 0 mM Pi 

activating solution at 15°C. Fiber diameter and CSA were calculated from a digital image taken 

while the fiber was briefly suspended in air (<5 s). Peak isometric force (Po) and unloaded 

shortening velocity (Vo) were measured from the slack test. The number of fibers (n) for each 

cohort is reported in parentheses. The percent difference between young and old for each myosin 

heavy chain (MHC) isoform were reported when P < 0.05. Values are means ± SD. 

 

 

Effects of Pi and H
+
 on Single Fiber Contractile Mechanics 

 Peak isometric force (Po): The absolute Po of fibers from young and old adults for 

all testing conditions are shown in Figure 3.3. For fast MHC II fibers from young adults, 

Po at 15°C was reduced by 23 ± 3% and 54 ± 3% in the 4 mM Pi (1.19 ± 0.23 mN) and 

the fatigue condition (0.71 ± 0.14 mN) compared to 0 mM Pi (1.54 ± 0.28 mN) (P < 

0.001). Similarly, the Po of MHC II fibers from old adults was reduced by 25 ± 5% and 

57 ± 4% in the 4 mM Pi (0.54 ± 0.22 mN) and the fatigue condition (0.31 ± 0.14 mN) 

compared to 0 mM Pi (0.72 ± 0.29 mN) (P < 0.001). Although the Pi- and H
+
-induced 

reductions in Po did not differ with age, the absolute Po of old adult MHC II fibers in all 

conditions was 53-56% lower than the Po of young MHC II fibers (P < 0.001). The lower 

Po in MHC II fibers with age was due to a smaller CSA in fibers from old compared to 

young adults. 

 Independent of age, the relative reductions in Po elicited by the 4 mM Pi and 

fatigue conditions in slow MHC I fibers at 15°C were greater than the reductions  

Young (56) Old (59) Diff. Young (60) Old (53) Diff. Young (6) Old (20) Diff.

Diameter μm 85.4 ± 14.4 77.7 ± 17.2 ↔ 99.7 ± 10.9 62.8 ± 13.8 ↓ 37% 81.0 ± 8.6 54.7 ± 8.2 ↓ 32%

CSA μm
2 5,890 ± 1,890 4,965 ± 2,139 ↔ 7,895 ± 1,597 3,249 ± 1,464 ↓ 59% 5,200 ± 1,150 2,402 ± 700 ↓ 54%

Absolute Po mN 1.05 ± 0.32 0.90 ± 0.37 ↔ 1.57 ± 0.27 0.76 ± 0.30 ↓ 52% 1.17 ± 0.20 0.58 ± 0.16 ↓ 50%

Size Specific Po kN∙m
-2 180.5 ± 25.7 185.9 ± 28.3 ↔ 202.4 ± 26.2 240.9 ± 40.4 ↑ 19% 227.4 ± 24.0 247.3 ± 44.6 ↔

Vo fl∙s
-1 1.38 ± 0.41 1.24 ± 0.24 ↔ 4.03 ± 1.05 3.89 ± 0.91 ↔ 5.31 ± 0.84 6.01 ± 1.89 ↔

MHC IIa MHC IIa/IIxMHC I
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Figure 3.3. Peak isometric force (Po) of single fibers from young and old men. The peak 

isometric force (Po) was lower in the 4 mM Pi control condition compared to the 0 mM Pi 

control condition, and was lower in the fatigue condition (pH 6.2 + 30 mM Pi) compared to 

both control conditions for the MHC II at 15°C (A) and MHC I at 15°C (B) and 30°C (C). 

However, the relative decrease in peak isometric force elicited by Pi and H
+
 were similar in 

fibers isolated from young and old men for both fiber types and all conditions. Values are 

means ± SE, with the number of fibers (n) displayed within the bars. 
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observed in MHC II fibers (Fig. 3.3). For the young adult MHC I fibers, Po was reduced 

by 45 ± 4% and 66 ± 4% in the 4 mM Pi (0.57 ± 0.19 mN) and the fatigue condition (0.36 

± 0.11 mN) compared to 0 mM Pi (1.05 ± 0.32 mN) (P < 0.001). Similar to the findings 

from fast MHC II fibers, there was no age difference for the Pi- and H
+
-induced 

decrements in Po for slow MHC I fibers from young and old adults. Specifically, 

compared to 0 mM Pi (0.90 ± 0.36 mN), the Po of MHC I fibers from old adults was 

reduced by 45 ± 6% and 66 ± 4% in the 4 mM Pi (0.51 ± 0.24 mN) and fatigue condition, 

respectively (0.32 ± 0.16 mN) (P < 0.001).  

 Increasing temperature from 15°C to 30°C resulted in an increase in MHC I fiber 

Po of 15 ± 8%, 72 ± 20%, and 119 ± 35% in the 0 mM Pi, 4 mM Pi, and fatigue condition, 

respectively. The greater increases in Po in the 4 mM Pi and fatigue condition resulted in 

a reduced Pi- and H
+
-induced effect on Po at 30°C compared to 15°C. However, the 

findings at 30°C remained qualitatively similar to the findings from 15°C, with no age 

differences observed in the Pi- and H
+
-induced decrements in Po at 30°C (Fig. 3.3). 

Independent of age, Po was reduced by 19 ± 4% and 37 ± 3% in the 4 mM Pi (0.89 ± 0.32 

mN) and the fatigue condition (0.70 ± 0.26 mN) compared to 0 mM Pi (1.10 ± 0.37 mN) 

(P < 0.001) 

Rate of force redevelopment (ktr): The ktr of the fibers from young and old adults 

for all conditions are shown in Figure 3.4. For MHC II fibers at 15°C, there was no age 

difference in ktr in the 0 mM Pi (Young = 9.5 ± 1.4 s
-1

, Old = 10.4 ± 2.7 s
-1

; P = 0.597), 4 

mM Pi (Young = 11.4 ± 1.7 s
-1

, Old = 11.6 ± 3.0 s
-1

; P = 0.950) or the fatigue condition 

(Young = 7.8 ± 1.2 s
-1

, Old = 8.0 ± 2.0 s
-1

; P = 0.838). Independent of age, ktr was 15 ± 

8% higher in 4 mM Pi compared to 0 mM Pi (P < 0.001) and was reduced by 20 ± 9% 
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and 31 ± 7% in the fatigue condition compared to the 0 and 4 mM Pi conditions, 

respectively (P < 0.001). 

The ktr of MHC I fibers was ~3-fold slower than the ktr of MHC II fibers for all 3 

conditions at 15°C. Similar to the findings from MHC II fibers at 15°C, there was no age 

difference in ktr of MHC I fibers in the 0 mM Pi (Young = 3.2 ± 0.5 s
-1

, Old = 3.5 ± 0.4 s
-

1
; P = 0.279), 4 mM Pi (Young = 3.6 ± 0.6 s

-1
, Old = 4.0 ± 0.5 s

-1
; P = 0.161) or the 

fatigue condition (Young = 2.9 ± 0.4 s
-1

, Old = 3.1 ± 0.4 s
-1

; P = 0.108). Also similar to 

the findings from MHC II fibers, the ktr for MHC I fibers increased by 14 ± 10% in 4 mM 

Pi compared to 0 mM Pi (P < 0.001) and was reduced by 8 ± 11% and 20 ± 6% in the 

fatigue condition compared to the 0 and 4 mM Pi conditions, respectively (P < 0.001). 

The reductions in ktr elicited by the fatigue condition were greater in MHC II compared to 

MHC I fibers (P < 0.001). 

The ktr of MHC I fibers increased 14- to 18-fold with the increase in temperature 

from 15°C to 30°C for all 3 conditions. There was no age difference in ktr of MHC I 

fibers at 30°C in the 0 mM Pi (Young = 53.6 ± 7.5 s
-1

, Old = 51.4 ± 7.8 s
-1

; P = 0.782) or 

4 mM Pi conditions (Young = 68.7 ± 7.7 s
-1

, Old = 64.4 ± 8.6 s
-1

; P = 0.261), but the 

absolute ktr in the fatigue condition was lower in fibers from old (39.1 ± 5.8 s
-1

) compared 

to young adults (43.6 ± 5.3 s
-1

 P = 0.049). The relative reduction in ktr elicited by the 

fatigue condition however, did not differ with age (P = 0.140). Independent of age, ktr 

was 28 ± 14% higher in 4 mM Pi compared to 0 mM Pi (P < 0.001) and was reduced by 

20 ± 13% and 38 ± 6% in the fatigue condition compared to the 0 and 4 mM Pi 

conditions, respectively (P < 0.001). Unlike the reduced effects of Pi and H
+
 on Po in 
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Figure 3.4. Rate of force redevelopment (ktr) of single fibers from young and old men. 

The rate of force redevelopment (ktr) was accelerated in the 4 mM Pi control condition 

compared to the 0 mM Pi control condition for the MHC I at 15°C (A) and 30°C (C) and 

MHC II at 15°C (B). In contrast, the fatigue condition (pH 6.2 + 30 mM Pi) decreased ktr 

compared to both control conditions for both fiber types, and did so similarly in fibers isolated 

from young and old adults. The ktr of MHC I fibers increased 18-fold with an increase in 

temperature from 15°C to 30°C in the 4 mM Pi control condition (C), and the effect of the 

fatigue condition was exacerbated by the increase in temperature. Shown in panel D is 

representative force redevelopment (ktr) traces normalized to the peak isometric force (%Po) 

for a MHC I fiber isolated from an 84 year old in both a control (pH 7.0 + 4 mM Pi) and 

fatigue condition (pH 6.2 + 30 mM Pi) at 30°C. Traces are superimposed to compare the 

differences between the two conditions. Values are means ± SE, with the number of fibers (n) 

displayed within the bars. 

30°C compared to 15°C, the Pi- and H
+
-induced effects on the absolute and relative 

changes in ktr were exacerbated with the increase in temperature (Fig. 3.4).  
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Unloaded shortening velocity (Vo): The Vo of the fibers from young and old adults 

for all conditions are shown in Figure 3.5. For MHC II fibers at 15°C, there was no age 

difference in Vo in the 0 mM Pi (young = 3.79 ± 1.07 fl∙s
-1

, old = 3.83 ± 1.09 fl∙s
-1

; P = 

0.972), 4 mM Pi (young = 3.78 ± 1.09 fl∙s
-1

, old = 3.84 ± 1.08 fl∙s
-1

; P = 0.908) or the 

fatigue condition (young = 2.04 ± 0.41 fl∙s
-1

, old = 2.06 ± 0.46 fl∙s
-1

; P = 0.937). 

Independent of age, the fatigue condition elicited a 45 ± 9% reduction in Vo compared to 

both the 0 and 4 mM Pi conditions (P < 0.001). For MHC I fibers at 15°C, there was also 

no age difference in Vo in the 0 mM Pi (young = 1.18 ± 0.36 fl∙s
-1

, old = 1.10 ± 0.23 fl∙s
-1

; 

P = 0.972), 4 mM Pi (young = 1.19 ± 0.34 fl∙s
-1

, old = 1.11 ± 0.23 fl∙s
-1

; P = 0.908) or the 

fatigue condition (young = 0.82 ± 0.18 fl∙s
-1

, old = 0.81 ± 0.15 fl∙s
-1

; P = 0.937). Also 

similar to the findings from MHC II fibers, the Vo of MHC I fibers was reduced by 26 ± 

12% and 28 ± 11% in the fatigue condition compared to the 0 and 4 mM Pi conditions, 

respectively (P < 0.001). However, the absolute and relative reductions in Vo in fast MHC 

II fibers were greater than occurred in slow MHC I fibers (P < 0.001). 

The Vo of the MHC I fibers increased ~11-fold with the increase in temperature 

from 15°C to 30°C for both the 4 mM Pi and fatigue condition. The Vo of MHC I fibers at 

30°C was significantly lower in fibers from old (11.74 ± 1.13 fl∙s
-1

) compared to young 

adults in the 4 mM Pi condition (12.27 ± 1.32 fl∙s
-1

; P = 0.021), but did not differ with 

age in the fatigue condition (young = 9.38 ± 1.35 fl∙s
-1

, old = 8.78 ± 1.28 fl∙s
-1

; P = 

0.144). In addition, the relative reductions in Vo elicited by the fatigue condition did not 

differ with age (P = 0.567). Unlike the reduced effect observed in the fatigue condition 

on Po in 30°C compared to 15°C, the relative reductions in Vo were unaffected by the 

increase in temperature. 
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Force-velocity curves and peak power: Force-velocity and force-power curves for 

MHC II fibers from young and old adults at 15°C are shown in Figure 3.6, with key 

Figure 3.5.  Unloaded shortening velocity (Vo) of single fibers from young and old men. 

The unloaded shortening velocity (Vo) did not differ between the two control conditions (pH 

7.0 + 0 mM Pi and pH 7.0 + 4 mM Pi) for the MHC I (A) or MHC II fibers at 15°C (B). In 

contrast, the fatigue condition (pH 6.2 + 30 mM Pi) decreased Vo compared to both control 

conditions for both fiber types, and did so similarly in fibers isolated from young and old 

adults. The Vo of MHC I fibers increased 11-fold with an increase in temperature from 15°C 

to 30°C in the control condition (C), but the effect of the fatigue condition was unaltered by 

temperature. Shown in panel D are representative slack traces with a slack distance of 450 μm 

for a MHC I fiber isolated from an 84 year old in both the control (pH 7.0 + 4 mM Pi) and 

fatigue condition (pH 6.2 + 30 mM Pi) at 30°C. Traces are superimposed to compare the 

differences between the two conditions. Values are means ± SE, with the number of fibers (n) 

displayed within the bars. 
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parameters reported in Table 3.3. In the 4 mM Pi condition, the maximal shortening 

velocity calculated from the Hill equation (Vmax; P = 0.684) and the curvature of the 

force-velocity relationship (a/Po; P = 0.233) did not differ in MHC II fibers with age. In 

contrast, the absolute Po (Young = 1.23 ± 0.20 mN, Old = 0.56 ± 0.19 mN; P < 0.001) 

and peak power (P = 0.001) were 50-55% lower in fibers from old compared to young 

adults. The age differences in absolute Po and peak power however, were explained 

entirely by the differences in fiber CSA as indicated by the, respective, 18% and 35% 

greater size specific Po (young = 158 ± 20 kN∙m
-2

, old = 186 ± 36 kN∙m
-2

; P = 0.012) and 

peak power (P = 0.043) observed in old compared to young adults. The fatigue condition 

decreased all parameters of the force-velocity relationship compared to the 4 mM Pi 

condition for MHC II fibers from young and old men (P < 0.001), including, Po (-41 ± 

5%), Vmax (-16 ± 9%), peak power (-57 ± 5%), and a/Po (-14 ± 16%), with no age 

differences in the relative reductions for any of the measurements (Table 3.3). 

 

 

 

Table 3.3. Force-velocity parameters and peak power (PPw) of fast MHC II fibers at 15°C. 

Absolute (µN·fl·s
-1

) and size specific (W·l
-1

) peak fiber power (PPw) were calculated with the 

fitted-parameters from the force-velocity curves. The maximal shortening velocity (Vmax) was 

calculated using the hyperbolic Hill equation, and the a/Po ratio is a unitless parameter describing 

the curvature of the force-velocity relationship. The number of fibers (n) for each cohort is 

reported in parentheses. The percent difference between the control (pH 7.0 + 4 mM Pi) and 

fatigue condition (pH 6.2 + 30 mM Pi) were reported when P < 0.05. *significantly different from 

the young (P < 0.05). Values are means ± SD. 

 

  

Temp. Young (40) Old (40) Young (40) Old (40) Young (40) Old (40) Young (40) Old (40)

15°C 127.3 ± 27.6 63.9 ± 21.2* 16.5 ± 3.8 22.2 ± 7.9* 3.24 ± 0.81 3.27 ± 0.78 0.05 ± 0.01 0.06 ± 0.02

15°C 56.1 ± 14.1 27.7 ± 10.2* 7.3 ± 1.9 9.5 ± 3.6 2.76 ± 0.69 2.66 ± 0.55 0.04 ± 0.01 0.05 ± 0.02

% Change – 56 ± 4 – 57 ± 4 – 56 ± 5 – 57 ± 5 – 15 ± 8 – 18 ± 10 – 17 ± 12 – 12 ± 18

a/Po

Solution

pH 7.0 + 4 mM Pi

pH 6.2 + 30 mM Pi

PPw (W∙l
-1

) Vmax (fl∙s
-1

)PPw (μN∙fl∙s
-1

)
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Figure 3.6.  Force-velocity and force-power curves of fast MHC II fibers from young and 

old men at 15°C. Absolute peak fiber power (PPw) and peak isometric force (Po) of the fast 

MHC II fibers from young adults (A) were ~2-fold greater than in fibers from old adults (B). 

The fatigue condition (pH 6.2 + 30 mM Pi) caused significant decreases in the maximum 

shortening velocity (Vmax), peak isometric force (Po), and peak power (PPw) compared to the 

control condition (pH 7.0 + 4 mM Pi) in fibers from young and old men; however, the relative 

reductions did not differ with age. The variances around the mean curves were omitted for 

clarity and are presented in Table 3.3. 

Figures 3.7 and 3.8 show the mean force-velocity and force-power curves for 

MHC I fibers from young and old adults at 15°C and 30°C, respectively, with key 

parameters reported in Table 3.4. In the 4 mM Pi condition at 15°C, there were no age 

differences in any of the force-velocity parameters (Fig. 3.7 and Table 3.4). The fatigue 

condition significantly decreased Po (-37 ± 6%), Vmax (-14 ± 8%), and peak power (-48 ± 

6%) (P < 0.001), but did not alter a/Po (P = 0.283), and no age differences were observed 
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in the relative reductions for any of the measurements (Fig. 3.7). Independent of age, the 

relative reductions in Po and peak power elicited by the fatigue condition were greater in 

MHC II compared to MHC I fibers (P < 0.001), but the reductions in Vmax did not differ 

between fiber types (P = 0.356). 

 

 

 

 

 

 

Figure 3.7.  Force-velocity and force-power curves of slow MHC I fibers from young and 

old men at 15°C. The fatigue condition (pH 6.2 + 30 mM Pi) caused significant decreases in 

the maximum shortening velocity (Vmax), peak isometric force (Po), and peak power (PPw) 

compared to the control condition (pH 7.0 + 4 mM Pi) in MHC I fibers from young (A) and 

old adults (B); however, the relative reductions did not differ with age. The variances around 

the mean curves were omitted for clarity and are presented in Table 3.4. 
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Increasing temperature from 15°C to 30°C increased all parameters of the force-

velocity relationship in the 4 mM Pi condition (P < 0.001), including, Po (62 ± 14%), 

Vmax (455 ± 80%), peak power (3,285 ± 568%), and a/Po (563 ± 135%). Similar to the 

results from MHC I fibers at 15°C, there were no age differences for any force-velocity 

parameters in 4 mM Pi at 30°C (Fig. 3.8 and Table 3.4). However, the fatigue condition 

significantly decreased all parameters of the force-velocity relationship compared to the 4 

Figure 3.8.  Force-velocity and force-power curves of slow MHC I fibers from young and 

old men at 30°C. The fatigue condition (pH 6.2 + 30 mM Pi) caused significant decreases in 

the maximum shortening velocity (Vmax), peak isometric force (Po), and peak power (PPw) 

compared to the control condition (pH 7.0 + 4 mM Pi) in MHC I fibers from young (A) and 

old adults (B); however, the relative reductions did not differ with age. The variances around 

the mean curves were omitted for clarity and are presented in Table 3.4. 
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mM Pi condition (P < 0.001), including,  Po (-21 ± 3%), Vmax (-11 ± 10%), peak power (-

43 ± 7%), and a/Po (-29 ± 12%), with no age differences in the relative reductions for any 

of the measurements (Table 3.4). Independent of age, the relative reductions in Po (P < 

0.001), peak power (P = 0.001), and Vmax (P = 0.041) elicited by the fatigue condition 

were less in 30°C compared 15°C.   

 

 

 

Table 3.4. Force-velocity parameters and peak power (PPw) of slow MHC I fibers at 15°C 

and 30°C. Absolute (µN·fl·s
-1

) and size specific (W·l
-1

) peak fiber power (PPw) were calculated 

with the fitted-parameters from the force-velocity curves. The maximal shortening velocity (Vmax) 

was calculated using the hyperbolic Hill equation, and the a/Po ratio is a unitless parameter 

describing the curvature of the force-velocity relationship. A lower a/Po ratio indicates greater 

curvature of the force-velocity relationship. The number of fibers (n) for each cohort is reported 

in parentheses. The percent difference between the control (pH 7.0 + 4 mM Pi) and fatigue 

condition (pH 6.2 + 30 mM Pi) were reported when P < 0.05. Values are means ± SD. 

 

 

DISCUSSION 

  

 The purpose of this study was to determine the mechanisms for the accelerated 

loss in muscle power and increased fatigability with aging by integrating measures of 

whole-muscle function and single fiber contractile mechanics. We observed marked 

atrophy of fast MHC II fibers in the old compared to young men that corresponded 

closely with our estimates of the total thigh lean mass composed of MHC II compared to 

Temp. Young (30) Old (32) Young (30) Old (32) Young (30) Old (32) Young (30) Old (32)

15°C 20.7 ± 8.3 16.8 ± 6.6 3.7 ± 0.6 3.7 ± 0.8 1.44 ± 0.16 1.44 ± 0.22 0.03 ± 0.00 0.03 ± 0.01

15°C 11.0 ± 4.2 8.6 ± 3.6 2.0 ± 0.3 1.9 ± 0.3 1.25 ± 0.16 1.21 ± 0.16 0.03 ± 0.01 0.03 ± 0.01

% Change – 46 ± 5 – 49 ± 7 – 46 ± 5 – 49 ± 7 – 13 ± 7 – 16 ± 8 ↔ ↔

30°C 713.3 ± 278.0 555.6 ± 268.2 127.8 ± 21.1 120.3 ± 27.0 8.23 ± 0.64 7.61 ± 1.00 0.23 ± 0.03 0.22 ± 0.05

30°C 419.9 ± 177.7 315.8 ± 174.0 73.9 ± 14.2 66.9 ± 19.3 7.34 ± 0.85 6.82 ± 1.32 0.16 ± 0.03 0.15 ± 0.03

% Change – 42 ± 7 – 45 ± 7 – 42 ± 7 – 45 ± 7 – 11 ± 8 – 11 ± 11 – 27 ± 14 – 31 ± 9

pH 7.0 + 4 mM Pi

pH 6.2 + 30 mM Pi

pH 7.0 + 4 mM Pi

pH 6.2 + 30 mM Pi

PPw (μN∙fl∙s
-1

) PPw (W∙l
-1

) Vmax (fl∙s
-1

) a/Po

Solution
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MHC I muscle. The lower MHC II lean mass was strongly associated with the age 

differences in isometric strength and power output suggesting that the accelerated age-

related loss in whole-muscle function is due, in large, part to the selective atrophy and/or 

loss of fast MHC II fibers. Despite a lower amount of the fatigable MHC II muscle with 

age, we observed a 2.5-fold increase in fatigability during the high-velocity knee 

extension exercise in the old compared to young men. We confirmed previous findings 

from non-human studies (Cooke et al., 1988; Karatzaferi et al., 2008; Nelson et al., 2014) 

that elevated levels of H
+
 (pH 6.2) and Pi (30 mM) act synergistically to depress cross-

bridge function by inhibiting isometric force, shortening velocity, peak power and the 

low-to high-force transition of the cross-bridge cycle. However, the depressive effects of 

these ions under saturating Ca
2+

 conditions were similar in fibers from old compared to 

young men, suggesting that the age-related increase in fatigability cannot be attributed to 

an increased sensitivity of the cross-bridge to H
+ 

and Pi. 

Increased fatigability and decreased strength and power with aging are determined 

primarily by changes within the muscle 

 The older men in this study demonstrated hallmark signs of aging of the knee 

extensor muscles, that included, a 22% lower thigh lean mass, 54% lower maximal 

isometric strength, 63% lower mechanical power output (Fig. 3.1), and a 2.5-fold 

increase in fatigability during a high-velocity exercise compared to the younger men (Fig. 

3.2). The accelerated age-related loss in strength and power relative to the loss in muscle 

mass is often observed in aging studies and commonly referred to as a decrease in 

‘muscle quality’ (Doherty, 2003; Reid & Fielding, 2012; Russ et al., 2012). Despite its 

widespread recognition, the primary mechanisms responsible for the age-related loss in 
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‘muscle quality’ remain elusive. Our data, which integrated measures of whole-muscle 

function and single cell contractile properties, shed light on this unanswered question and 

revealed that the accelerated loss in muscle strength and power with age was primarily 

determined by the selective atrophy of fast MHC II fibers. 

 Multiple mechanisms have been proposed to explain the decrease in ‘muscle 

quality’ with aging, including, decreased voluntary neural drive (Russ et al., 2012; 

Venturelli et al., 2015), infiltration of adipose and connective tissue into the muscle 

(Lexell, 1995; Kent-Braun et al., 2000), motor unit remodeling and instability of the 

neuromuscular junction (Hepple & Rice, 2016; Hunter et al., 2016), and/or impaired 

cross-bridge mechanics and Ca
2+

 handling (Frontera et al., 2000b; Miller & Toth, 2013; 

Lamboley et al., 2015; Lamboley et al., 2016; Power et al., 2016). In our study, the 

ability of the older men to activate the knee extensors during a maximal voluntary 

isometric contraction was not different compared to the young men. These findings are in 

agreement with a majority of other studies on both dynamic and isometric contractions 

that have found no age differences in voluntary activation when older participants are 

provided practice and familiarization to the procedures (Klass et al., 2007; Hunter et al., 

2016; Rozand et al., 2017). Similarly, we found no age differences in any contractile 

properties of the isolated fibers, other than a lower absolute peak isometric force and 

power output in MHC II fibers from old compared to young adults (Fig. 3.3 and Fig. 3.6). 

However, when the differences in absolute isometric force and peak power were 

normalized to the differences in fiber size, the old adult MHC II fibers generated higher 

size specific force and power compared to the young adult fibers (Tables 3.2 & 3.3). The 

preservation or even increase in size specific fiber force and power with aging is in 
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agreement with a large number of studies (Trappe et al., 2003; Korhonen et al., 2006; 

Frontera et al., 2008; Slivka et al., 2008; Miller et al., 2013; Venturelli et al., 2015; 

Grosicki et al., 2016) but in contrast to others (Larsson et al., 1997; Frontera et al., 

2000b; Lamboley et al., 2015; Power et al., 2016). The explanation for the disparities 

between studies is unknown, but clearly, when corrected for changes due to MHC II fiber 

atrophy, single fiber contractile function was not impaired in our old participants who had 

similar physical activity levels to the young participants.       

 An alternative hypothesis to describe the accelerated age-related loss in strength 

and power is not due to a decrease in ‘muscle quality’ per se, but rather, is attributed to 

the selective atrophy of muscle expressing the fast MHC II isoform. Because MHC II 

fibers generate higher size specific force and power compared to MHC I fibers (Tables 

3.2-3.4) (Trappe et al., 2003; Miller et al., 2015; Grosicki et al., 2016), a selective loss 

and atrophy in MHC II fibers would be consistent with a more rapid loss in both 

isometric strength and power production with age. Accordingly, we observed a trend (P = 

0.053) towards a 17% lower relative abundance of MHC II in the vastus lateralis of the 

old compared to young men. However, what is more important for the absolute isometric 

force and mechanical power production of whole-muscle is not the relative distribution of 

the MHC isoforms, but rather, the respective anatomical cross-sectional area and total 

muscle mass that is composed of fast MHC II muscle. Our estimate of the total thigh lean 

mass composed of MHC II compared to MHC I revealed a 47% lower MHC II lean mass 

in the old compared to young men with no differences in MHC I lean mass (Fig. 3.1). 

Most importantly, the lower MHC II lean mass in old adults described 74% of the 

variance in knee extensor power and 62% of the variance in isometric strength with age. 
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Notably, the estimated 47% lower MHC II lean mass was in close agreement with the 

~55% smaller cross-sectional area observed in the isolated MHC IIa and IIa/IIx fibers 

from old compared to young adults. These findings suggest that the primary mechanism 

for the accelerated loss in muscle strength and power with age is a selective atrophy of 

fast MHC II fibers. Whether the same mechanism is responsible for the age-related 

decrements in muscle strength and power in mobility impaired older adults or in old 

women is unknown. 

 Paradoxically, despite a lower amount of muscle mass composed of fast fatigable 

MHC II fibers in the old compared to young men, we observed a 2.5-fold increase in 

fatigability during the high-velocity exercise with age (Fig. 3.2). Because the voluntary 

activation and VL m-wave immediately following the fatiguing exercise did not change 

compared to baseline for either the old or young men, the increased age-related 

fatigability could not be attributed to either impaired neural drive or altered 

neuromuscular propagation. In contrast, 79% of the variance in the reductions in power 

during the fatiguing exercise was explained by the reduction in the rate of torque 

development of the involuntary, electrically-evoked twitch (Fig. 3.2). This finding 

suggests that the age-related increase in fatigability is primarily determined by cellular 

mechanisms that disrupt contractile function within the muscle and is in agreement with 

numerous other aging studies (McNeil & Rice, 2007; Dalton et al., 2010, 2012).   

Pi and H
+
 inhibit cross-bridge function and are important mediators in human muscle 

fatigue  

  To test whether cross-bridge mechanisms could explain the age-related increase 

in fatigability, we exposed muscle fibers from the vastus lateralis of young and old men 
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to conditions mimicking quiescent human muscle (pH 7.0 + 4 mM Pi) and severe fatigue 

(pH 6.2 + 30 mM Pi) at 15°C and 30°C. We selected the severe fatigue condition, 

because 1) human skeletal muscle can reach this level of metabolite accumulation during 

high-intensity volitional contractions (Wilson et al., 1988; Cady et al., 1989), 2) we could 

more directly compare our data from human fibers to studies on rat and rabbit fibers 

(Karatzaferi et al., 2008; Nelson et al., 2014), and 3) we anticipated that the age-

differences in the sensitivity of the contractile proteins to these ions, if present, would be 

most obvious under a severe fatigue condition. At 15°C, we found that the fatigue-

mimicking condition caused marked reductions in isometric force (Po), shortening 

velocity (Vo and Vmax), ktr, and peak power of fibers from young and old men, and that 

the effect was greater in MHC II compared to MHC I fibers for Vo, ktr and peak power, 

but not for Po or Vmax. As expected, increasing the temperature to 30°C increased all of 

the contractile parameters for the MHC I fibers. However, while the increase in 

temperature reduced the effect of the fatigue-mimicking condition on Po by ~50% (Fig. 

3.3), it had little-to-no effect on Vo, Vmax and peak power and exacerbated the effect on ktr 

(Fig. 3.4). Contrary to our hypothesis, we found no evidence in any of the contractile 

parameters that fibers from old adults were more sensitive to the depressive effects of H
+
 

and Pi compared to fibers from young adults. 

 Our observation of a 37% lower Po in the fatigue-mimicking condition compared 

to the ~0 mM Pi control condition in MHC I fibers at 30°C was similar to the 36% 

decrease observed in slow fibers from rats studied under the same conditions (Nelson et 

al., 2014). These findings suggest that, at least for MHC I fibers, the combined effects of 

H
+
 and Pi on isometric force are similar across mammalian species. However, when we 
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compared the Po of the fatigue-mimicking condition to the 4 mM Pi control condition, 

which is more representative of quiescent human skeletal muscle (Kemp et al., 2007), the 

decrement in Po was  reduced to ~21% (Fig. 3.3). This finding suggests that other factors 

such as the Pi- and H
+
-induced decreases in Ca

2+
 sensitivity (Palmer & Kentish, 1994; 

Parsons et al., 1997; Debold et al., 2006; Nelson & Fitts, 2014) and/or decreases in 

myoplasmic free Ca
2+

 (Allen et al., 2011) likely play an important role in the fatigue-

induced reductions in isometric force in vivo. In addition, the relatively large decrease in 

Po when the [Pi] was increased from ~0 to 4 mM is consistent with other studies that have 

shown a hyperbolic relationship between the concentration of Pi and isometric force 

(Fryer et al., 1995; Wang & Kawai, 1997; Coupland et al., 2001; Tesi et al., 2002; 

Pathare et al., 2005). Importantly, because slow MHC I fibers are more sensitive to Pi at 

low concentrations compared to fast MHC II fibers (Fig. 3.3) (Fryer et al., 1995; Wang & 

Kawai, 1997), the fiber type differences in the size specific Po (kN∙m
-2

) were much 

greater at the more physiological [Pi] of 4 compared to ~0 mM.  

 As expected increasing the [Pi] from ~0 to 4 mM increased ktr of both MHC I and 

MHC II fibers from young and old adults (Fig. 3.4). This observation is consistent with 

the hypothesis that Pi decreases Po by dissociating myosin from actin early in the low- to 

high-force transition step of the cross-bridge cycle, resulting in a decreased number of 

high-force cross-bridges and an increased ktr (Debold et al., 2016). However, when H
+
 

(pH 6.2) was added with Pi (30 mM) in the condition mimicking fatigue, ktr was reduced 

in both fiber types at 15°C, and the effect was exacerbated in MHC I fibers when 

temperature was increased to 30°C (Fig. 3.4). This novel finding supports the hypothesis 

that H
+
 inhibits the forward rate constant of the low- to high-force transition of the cross-
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bridge cycle, and that previous studies underestimated this effect by using the ~0 mM Pi 

control condition (Metzger & Moss, 1990b; Nelson et al., 2014). The explanation for the 

increased effect at higher temperatures is unclear, but may be due in part to a greater 

inhibition of the forward rate constant by H
+
 at 30°C. 

 Interestingly, we observed no age differences in ktr for the MHC I or II fibers 

from old compared to young adults (Fig. 3.4). This is contrary to our hypothesis that was 

based on the lower ktr reported in ‘slow type’ fibers in a group of old compared to young 

men (Power et al., 2016). To our knowledge, this is the only other study to test the effect 

of age on the low- to high-force transition of the cross-bridge by measuring ktr. The 

explanation for the discrepancies between our study and the Power et al. (2016) study is 

unclear but may be the result of several factors that include: 1) Power et al. (2016) binned 

the ‘slow type’ fibers based on Vo, whereas we identified the MHC composition of the 

fibers with SDS-PAGE; 2) the temperature of the experiments differed between the 

studies, with ours performed at 15°C and 30°C, and theirs performed at 10°C; and 3) we 

set the resting sarcomere spacing to 2.5 μm with direct measurements from an eyepiece 

micrometer, and Power et al. (2016) set the sarcomere spacing to ~2.8 μm using a fast 

Fourier transform analysis. It is also notable that the ‘slow type’ fibers from the old men 

studied by Power et al. (2016) had lower Vo and size specific Po compared to the young 

men, whereas, we observed no age differences in any of the contractile parameters. 

 Although increasing the [Pi] from ~0 to 4 mM had marked effects on Po and ktr, it 

had no effect on the unloaded shortening velocity (Vo) of MHC I or II fibers from young 

and old adults (Fig. 3.5). This finding is consistent with the results from rat fibers that Pi 

has no effect on shortening velocity (Debold et al., 2004; Karatzaferi et al., 2008). 
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However, when H
+
 (pH 6.2) was added with Pi (30 mM) in the condition mimicking 

fatigue, the shortening velocity (Vo and Vmax) was inhibited in both fiber types at 15°C, 

and remained inhibited in MHC I fibers when temperature was increased to 30°C (Fig. 

3.5-3.8). The inhibition in shortening velocity on human fibers was generally in close 

agreement to studies on rat fibers using either the combined pH 6.2 + 30 mM Pi condition 

(Nelson et al., 2014) or a pH 6.2 only condition (Knuth et al., 2006), which suggests that 

H
+
 is the primary ion that depresses velocity (Metzger & Moss, 1987; Karatzaferi et al., 

2008). Although the mechanism by which H
+
 slows shortening velocity is not fully 

elucidated, the primary hypothesis is that acidosis slows the ADP-bound isomerization 

step and/or the release of ADP from myosin (Debold et al., 2016). Importantly, 

increasing the temperature to 30°C had little-to-no effect on the fatigue-mimicking 

condition’s reduction in shortening velocity for the MHC I fibers (Fig. 3.5 and Table 3.4). 

 Since the ability of muscle to generate power is essential for older adults to 

maintain daily function (Reid & Fielding, 2012), the effect of H
+
 and Pi on peak fiber 

power is more important than their effect on peak isometric force or the maximum 

shortening velocity alone. We observed that the fatigue-mimicking condition induced a 

57% decrease in peak fiber power in fast MHC II fibers (Fig. 3.6) and a 48% decrease in 

power for slow MHC I fibers (Fig. 3.7). Although the fatigue-induced decrements in fiber 

power did not differ with age, the absolute power generated in the old MHC II fibers may 

have reached a critically low value in the fatigue condition where maintaining balance 

and the necessary power for movement may be compromised. Independent of age, the 

fiber type dependence for the loss in power was due to the increased curvature (i.e., 

decreased a/Po) of the force-velocity relationship in the fatigue-mimicking condition for 
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the fast fibers that was not observed in slow fibers at 15°C (Tables 3.3 and 3.4). Notably, 

the fiber-type differences we observed in the H
+
- and Pi-induced decrements in power 

were not observed under a similar fatigue-mimicking condition in rat fibers (Nelson et 

al., 2014). The discrepancies between studies may be due to differences in the contractile 

kinetics between mammalian species, or perhaps that we used the more physiological [Pi] 

of 4 mM compared to the ~0 mM Pi condition used by Nelson et al. (2014).  

 Increasing the temperature from 15°C to 30°C resulted in over a 30-fold increase 

in peak fiber power and over a 7-fold increase in the curvature constant, a/Po, of the 

force-velocity relationship for MHC I fibers. The increase in the curvature constant to 

0.22 in 30°C (Table 3.4) is the same as the force-velocity curvature constant reported for 

the human adductor pollicis muscle in vivo  (De Ruiter et al., 2000; Jones et al., 2006; 

Jones, 2010) – a muscle that is composed of ~80% slow MHC I fibers (Round et al., 

1984). Additionally, the fatigue-mimicking condition caused a 43% decrease in peak 

fiber power, which was greater than could be attributed to the combined 21% and 11% 

decreases in Po and Vmax, respectively (Fig. 3.8). The larger decrements in peak fiber 

power could be explained by the 29% decrease in a/Po (i.e., an increase in the curvature 

of the force-velocity relationship). These findings are strikingly similar to the changes 

observed in the force-velocity relationship of the fatigued human adductor pollicis 

muscle in vivo (De Ruiter et al., 2000; Jones et al., 2006; Jones, 2010), and provide direct 

evidence that H
+
 and Pi are important mediators of human muscle fatigue by directly 

inhibiting cross-bridge function.  
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Concluding remarks 

 Both neural drive and single fiber contractile function were well-preserved in the 

old compared to young men providing little evidence for an age-related decrease in 

‘muscle quality’. Instead, we found that the accelerated age-related loss in whole-muscle 

strength and power was strongly associated with the selective atrophy of fast MHC II 

fibers. Thus, we propose that scientists and clinicians should be cautious when 

interpreting lower size specific strength and power as evidence for a decrease in ‘muscle 

quality’. We also provide the first evidence to confirm the findings from non-human 

studies that elevated levels of H
+
 and Pi act synergistically to depress cross-bridge 

function, and conclude that these ions are important mediators of human muscle fatigue.   
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CHAPTER 4 

 

  

CUMULATIVE EFFECTS OF H
+
 AND Pi ON THE FORCE-VELOCITY 

RELATIONSHIP OF YOUNG AND OLD ADULT SKELETAL MUSCLE FIBERS  

 

 

INTRODUCTION 

 

 

 In chapter 2, the age-related increase in power loss during a high-velocity knee 

extension exercise was strongly associated with changes in the involuntary, electrically-

evoked contractile properties for both men and women. These findings provided strong 

evidence that the age-related increase in fatigability was determined primarily by cellular 

mechanisms that disrupt excitation contraction coupling and/or cross-bridge function. 

The leading cellular mechanisms purported to be responsible for the fatigue-induced 

reductions in power are an accumulation of metabolic by-products (i.e., H
+
, Pi, H2PO4

-
) 

that act to both directly inhibit cross-bridge function (Fitts, 2008; Debold et al., 2016) 

and to impair excitation-contraction coupling (Fitts, 1994; Allen et al., 2008). However, 

because the decrease in pH and increase in intracellular [Pi] during a dynamic 

plantarflexor exercise did not differ or was blunted in old compared to young adults 

(Layec et al., 2013; Layec et al., 2014, 2015), the age-related increase in fatigability is 

not likely due to an increased production of metabolic by-products.  

 In chapter 3, we tested an alternative hypothesis that the increased fatigability 

with age could be explained by an increased sensitivity of the cross-bridge to elevated 

levels of H
+
 and Pi. A severe fatigue-mimicking condition (pH 6.2 + 30 mM Pi) was used 

in these studies, because it was anticipated that the age-differences in the sensitivity of 

the contractile proteins to these ions, if present, would be most obvious under this 



95 

condition. However, the effects of elevated H
+
 and Pi on cross-bridge function may have 

been saturated in the severe fatigue-mimicking condition, potentially masking any age-

related differences in the sensitivity of the cross-bridge to these ions. For example, 

numerous studies have observed a hyperbolic relationship between the concentration of Pi 

and peak isometric force, where any increase in [Pi] above ~25-30 mM had little-to-no 

effect on peak force (Fryer et al., 1995; Wang & Kawai, 1997; Coupland et al., 2001; 

Tesi et al., 2002; Pathare et al., 2005). Whether a similar hyperbolic relationship is 

observed in peak power and force when H
+
 and Pi are simultaneously elevated in 

conditions that more closely mimic the fatigue environment in vivo is not known. 

 Therefore, the purpose of chapter 4 was to expose muscle fibers from young and 

old men and women to a continuum of elevated levels of H
+
 and Pi that regularly occur in 

vivo. The first hypothesis was that the decrements in fiber force and power would have a 

hyperbolic relationship with the increase in the concentrations of H
+
 and Pi. The second 

hypothesis was that the decrements in power would be more pronounced in fibers from 

old compared to young men and women at low levels of H
+
 and Pi, and that these age 

differences would no longer be present in the severe fatigue-mimicking condition (pH 6.2 

+ 30 mM Pi). 

 

METHODS  

 

 

Participants and Ethical Approval 

 Three young men (25, 26, and 32 yrs), three young women (21, 22, and 23 yrs), 

four old men (70, 73, 74, and 90 yrs), and 2 old women (75 and 79 yrs) volunteered and 

provided their written informed consent to participate in this study. Participants 
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underwent a general health screening and were excluded from the study if they were 

taking medications that can affect the central nervous system, muscle mass or 

neuromuscular function (e.g., hormone-replacement therapies, anti-depressants, 

glucocorticoids). All participants were apparently healthy, community dwelling adults 

free of neurological, musculoskeletal and cardiovascular diseases. All experimental 

procedures were approved by the Marquette University Institutional Review Board and 

conformed to the principles in the Declaration of Helsinki. 

Experimental Design  

The methods used for the single fiber contractile experiments were similar to the 

force-velocity experiments described in chapter 3. Briefly, single fiber contractile 

experiments began with a sequence of 4-5 contractions (activating solution – pH 7.0 + 0 

mM Pi) to determine the maximal Ca
2+

-activated isometric tension (Po) and unloaded 

shortening velocity (Vo) at 15°C. Each fiber then underwent a series of force-velocity 

experiments at 15°C in a condition that mimics quiescent human skeletal muscle (pH 7.0 

+ 4 mM Pi), and in conditions that mimic mild (pH 6.8 + 12 mM Pi), moderate (pH 6.6 + 

20 mM Pi), and severe fatigue (pH 6.2 + 30 mM Pi). The order of the control and 

experimental fatigue conditions were randomized to alleviate the potential of an order 

effect. Fibers with visible tears or that had a decrease in the maximal Ca
2+

-activated 

isometric tension to <90% of the initial Po within a condition were excluded from further 

analysis. Following the contractile experiments, each fiber was solubilized in SDS 

sample buffer, and the MHC composition determined with SDS-PAGE as described in 

chapter 3. The data presented in this chapter are a preliminary report of a study that is still 



97 

ongoing. As a result, many of the findings are underpowered, particularly regarding the 

comparisons between the sexes within each age group. 

Statistical Analyses 

 To test for differences in single fiber morphology and contractile mechanics 

between young and old men and women, a nested ANOVA was used with age (young & 

old), sex (men & women), and fiber type (I & IIa) as the fixed factors. Of the 192 fibers 

studied, no pure MHC IIx, hybrid I/IIa, or hybrid I/IIa/IIx fibers were tested and only 7 

hybrid IIa/IIx fibers were studied. As a result, the statistical analyses was restricted to 

include only the pure MHC I and IIa fibers. A repeated-measures nested ANOVA was 

employed to test the effect of the activating conditions on the force-velocity parameters 

of the MHC I and IIa fibers from young and old men and women. Statistical analyses for 

the single fiber morphology and contractile mechanics were performed using Minitab 

(version 18.0, Minitab Inc., State College, PA, USA). All significance levels were set at 

P < 0.05. Data are presented as the mean ± standard deviation (SD) in the text and tables 

and the mean ± standard error of the mean (SE) in the figures. 

 

RESULTS  

 

 

Single Fiber Morphology and Contractile Mechanics 

Presented in Table 4.1 are the fiber diameter, cross sectional area (CSA), peak 

isometric force (Po), and unloaded shortening velocity (Vo) from the 83 MHC I fibers 

studied in the pH 7.0 + 0 mM Pi condition. No age or sex differences were observed in 

any of the morphological or contractile parameters measured for the slow MHC I fibers 

in the pH 7.0 + 0 mM Pi condition.  
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Table 4.1. Peak isometric force (Po) and unloaded shortening velocity (Vo) of slow MHC I 

fibers in pH 7.0 + 0 mM Pi activating solution at 15°C. Fiber diameter and CSA were 

calculated from a digital image taken while the fiber was briefly suspended in air (<5 s). Peak 

isometric force (Po) and unloaded shortening velocity (Vo) were measured from the slack test. The 

number of fibers (n) for each cohort is reported in parentheses. The percent difference between 

young and old men and women were reported when P < 0.05. Values are means ± SD. 

 

 

 

 Presented in Table 4.2 are the fiber diameter, CSA, absolute and size specific Po, 

and Vo from the 102 MHC IIa fibers studied in the pH 7.0 + 0 mM Pi condition. The CSA 

of MHC IIa fibers was 44% smaller in fibers from old (3,356 ± 1,538 μm
2
) compared to 

young adults (6,004 ± 2,787 μm
2
) and 36% smaller in fibers from women (3,499 ± 1,250 

μm
2
) compared to men (5,499 ± 3,047 μm

2
). Accordingly, the absolute Po was 40% lower 

in fibers from old (0.75  ± 0.29 mN) compared to young adults (1.25 ± 0.57 mN) and 

34% lower in fibers from women (0.77 ± 0.25 mN) compared to men (1.16 ± 0.60 mN). 

The differences in absolute Po were explained entirely by the differences in fiber CSA as 

indicated by the 10% greater size specific Po in old (232 ± 40 kN∙m
-2

) compared to young 

adults (211 ± 26 kN∙m
-2

) and no sex differences in the size specific Po in men (221 ± 38 

kN∙m
-2

) compared to women (225 ± 34 kN∙m
-2

). Independent of age and sex, the size 

specific Po was 20% lower in MHC I (179 ± 35 kN∙m
-2

) compared with IIa fibers (223 ± 

36 kN∙m
-2

) (P < 0.001). 

 The unloaded shortening velocity (Vo) of MHC IIa fibers did not differ between 

fibers from young (3.80 ± 0.81 fl∙s
-1

) and old adults (3.60 ± 0.90 fl∙s
-1

). Independent of 

Young (18) Old (27) Diff. Young (20) Old (18) Diff. Age Sex Age x Sex

Diameter μm 93.5 ± 16.7 82.2 ± 20.7 ↔ 83.0 ± 7.2 77.4 ± 10.1 ↔ 0.208 0.320 0.657

CSA μm
2 7,070 ± 2,493 5,633 ± 3,003 ↔ 5,453 ± 935 4,776 ± 1,217 ↔ 0.273 0.273 0.675

Absolute Po mN 1.07 ± 0.28 0.96 ± 0.40 ↔ 0.93 ± 0.15 0.97 ± 0.26 ↔ 0.744 0.650 0.490

Size Specific Po kN∙m
-2 156.3 ± 20.9 181.5 ± 33.9 ↔ 172.6 ± 28.2 206.2 ± 38.1 ↔ 0.057 0.189 0.779

Vo fl∙s
-1 1.40 ± 0.37 1.43 ± 0.28 ↔ 1.39 ± 0.33 1.19 ± 0.16 ↔ 0.404 0.322 0.228

P -valueWomenMen
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age however, the Vo of MHC IIa fibers was 15% lower in fibers from women (3.38 ± 

0.82 fl∙s
-1

) compared to men (3.99 ± 0.81 fl∙s
-1

). 

 

 

 

 

Table 4.2. Peak isometric force (Po) and unloaded shortening velocity (Vo) of fast MHC IIa 

fibers in pH 7.0 + 0 mM Pi activating solution at 15°C. The number of fibers (n) for each 

cohort is reported in parentheses. The percent difference between young and old men and women 

were reported when P < 0.05. Boldfaced P-values highlight statistical significance at P < 0.05. 

Values are means ± SD. 

 

 

 

Cumulative Effects of Pi and H
+
 on the Force-Velocity Relationship and Peak Power 

 Figure 4.1 depicts force-velocity and force-power curves from a representative 

fast MHC IIa fiber exposed to a condition mimicking quiescent human skeletal muscle 

(pH 7.0 + 4 mM Pi) and conditions that mimic mild (pH 6.8 + 12 mM Pi), moderate (pH 

6.6 + 20 mM Pi), and severe fatigue (pH 6.2 + 30 mM Pi). The cumulative effects of 

progressively elevating the levels of H
+
 and Pi caused the force-velocity relationship to 

shift down and to the left (Fig. 4.1A). The Pi- and H
+
-induced decrements in fiber force 

and velocity caused peak fiber power to progressively decrease with increasing 

concentrations of H
+
 and Pi (Fig. 4.1B). 

Young (19) Old (32) Diff. Young (25) Old (26) Diff. Age Sex Age x Sex

Diameter μm 103.3 ± 25.4 66.9 ± 15.8 ↓ 35% 71.6 ± 9.1 59.7 ± 13.0 ↓ 17% 0.007 0.015 0.142

CSA μm
2 8,520 ± 2,311 3,705 ± 1,718 ↓ 57% 4,093 ± 1,044 2,927 ± 1,176 ↓ 29% 0.009 0.013 0.091

Absolute Po mN 1.77 ± 0.45 0.80 ± 0.30 ↓ 55% 0.86 ± 0.21 0.68 ± 0.25 ↓ 21% 0.024 0.028 0.118

Size Specific Po kN∙m
-2 209.4 ± 26.3 228.1 ± 42.2 ↑ 9% 212.1 ± 26.9 236.4 ± 36.4 ↑ 11% 0.045 0.462 0.887

Vo fl∙s
-1 3.94 ± 0.89 4.02 ± 0.79 ↔ 3.67 ± 0.75 3.09 ± 0.78 ↔ 0.207 0.018 0.178

Men Women P -value
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Figure 4.1. Representative force-velocity and force-power curves from a fast MHC IIa 

fiber at 15°C. An individual fiber was activated 4-6 times in each condition to obtain the fiber 

shortening velocities from a minimum of 12 different isotonic loads for all 4 activating 

conditions. Force-velocity plots were fit with the hyperbolic Hill equation (1938) for each 

condition (A). The force-power curves (B) were constructed by calculating the power values 

for each force level from the force-velocity curves. Data are from a 32 yr old male. 
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Peak isometric force (Po): The Po of MHC I fibers from young and old men and 

women progressively decreased with increasing concentrations of Pi and H
+
 (Fig. 4.2) (P 

< 0.001). However, the Pi- and H
+
-induced decrements in Po did not differ between the 

cohorts in any of the conditions (P > 0.05). Independent of age and sex, the Po of MHC I 

fibers was reduced by 17 ± 6%, 25 ± 8%, and 41 ± 8% in the mild-, moderate-, and 

severe-fatigue conditions compared to the 4 mM Pi condition, respectively (P < 0.001).  

 

  

Figure 4.2. Peak isometric force (Po) of MHC I fibers from young and old men and 

women. Po progressively decreased with increasing concentrations of Pi and H
+ 

in the MHC I 

fibers from young and old men (A) and women (B). However, the cumulative effects of H
+
 

and Pi, which was represented as the concentration of dihydrogen phosphate (H2PO4
-
), did not 

differ between any of the cohorts when analyzed separately (C) or when men and women 

were combined (D). Values are means ± SE, with the number of fibers (n) displayed within 

the bars. Error bars in panels C and D are obscured by the symbols. 
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Similar to the findings from MHC I fibers, the Po of MHC IIa fibers progressively 

decreased with increasing concentrations of Pi and H
+
 (Fig. 4.3) (P < 0.001). The Pi- and 

H
+
-induced decrements in MHC IIa fiber Po did not differ between the cohorts in any of 

the conditions (P > 0.05). Independent of age and sex, the Po of MHC IIa fibers was 

reduced by 13 ± 4%, 24 ± 5%, and 40 ± 4% in the mild-, moderate-, and severe-fatigue 

conditions compared to the 4 mM Pi condition, respectively (P < 0.001). 

  

Figure 4.3. Peak isometric force (Po) of MHC IIa fibers from young and old men and 

women. Po progressively decreased with increasing concentrations of Pi and H
+ 

in the MHC 

IIa fibers from young and old men (A) and women (B). However, the cumulative effects of H
+
 

and Pi, represented by the [H2PO4
-], did not differ between any of the cohorts when analyzed 

separately (C) or when men and women were combined (D). Values are means ± SE, with the 

number of fibers (n) displayed within the bars. Error bars in panels C and D are obscured by 

the symbols. 
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Force-velocity curves and peak power: There were no age or sex differences in 

the force-velocity parameters of MHC I fibers for any of the activating conditions (Table 

4.3). Independent of age and sex, Po, Vmax, and peak power progressively decreased with 

increasing concentrations of Pi and H
+
. The Pi- and H

+
-induced changes in Po, Vmax, and 

a/Po did not differ between the age groups or between men and women (Table 4.3). 

However, the Pi- and H
+
-induced decrements in peak power (Fig. 4.4) were greater in 

women compared to men in the moderate- (women = -29 ± 8%, men = -20 ± 8%; P = 

0.020) and severe-fatigue conditions (women = -54 ± 7%, men = -49 ± 5%; P = 0.020). 

 

 

Table 4.3. Force-velocity parameters and peak power of slow MHC I fibers from young and 

old men and women. Absolute (µN·fl·s-1
) and size specific (W·l-1

) peak power were calculated 

with the fitted-parameters from the force-velocity curves. The maximal shortening velocity (Vmax) 

was calculated using the Hill equation (1938), and the a/Po ratio is a unitless parameter describing 

the curvature of the force-velocity relationship. The number of fibers (n) for each cohort is 

reported in parentheses. Values are means ± SD. 

Young (17) Old (25) Young (20) Old (18) Young (37) Old (43)

Peak Power (μN∙fl∙s
-1

)

pH 7.0 + 4 mM Pi 23.8 ± 8.0 22.5 ± 8.1 22.2 ± 6.5 21.3 ± 6.0 22.9 ± 7.2 22.0 ± 7.3

pH 6.8 + 12 mM Pi 21.8 ± 7.6 20.5 ± 7.7 20.0 ± 6.1 18.9 ± 5.6 20.8 ± 6.8 19.8 ± 6.8

pH 6.6 + 20 mM Pi 19.0 ± 6.6 17.8 ± 6.8 15.7 ± 4.8 15.1 ± 4.6 17.2 ± 5.8 16.7 ± 6.1

pH 6.2 + 30 mM Pi 12.1 ± 4.0 11.5 ± 4.6 10.3 ± 3.4 9.7 ± 3.2 11.2 ± 3.7 10.7 ± 4.1

Peak Power (W∙l
-1

)

pH 7.0 + 4 mM Pi 3.4 ± 0.8 4.6 ± 1.3 4.1 ± 1.1 4.5 ± 1.0 3.8 ± 1.0 4.5 ± 1.2

pH 6.8 + 12 mM Pi 3.1 ± 0.7 4.1 ± 1.1 3.7 ± 1.1 4.0 ± 0.9 3.4 ± 1.0 4.1 ± 1.0

pH 6.6 + 20 mM Pi 2.7 ± 0.5 3.6 ± 0.9 2.9 ± 0.9 3.2 ± 0.7 2.8 ± 0.7 3.4 ± 0.8

pH 6.2 + 30 mM Pi 1.7 ± 0.4 2.3 ± 0.6 1.9 ± 0.6 2.0 ± 0.6 1.8 ± 0.5 2.2 ± 0.6

Vmax (fl∙s
-1

)

pH 7.0 + 4 mM Pi 1.50 ± 0.19 1.56 ± 0.18 1.57 ± 0.19 1.45 ± 0.42 1.54 ± 0.19 1.52 ± 0.31

pH 6.8 + 12 mM Pi 1.43 ± 0.18 1.47 ± 0.17 1.48 ± 0.17 1.34 ± 0.25 1.45 ± 0.17 1.42 ± 0.22

pH 6.6 + 20 mM Pi 1.33 ± 0.18 1.40 ± 0.14 1.36 ± 0.18 1.22 ± 0.23 1.35 ± 0.18 1.32 ± 0.20

pH 6.2 + 30 mM Pi 1.20 ± 0.15 1.24 ± 0.15 1.25 ± 0.18 1.11 ± 0.19 1.23 ± 0.17 1.19 ± 0.18

a/Po

pH 7.0 + 4 mM Pi 0.038 ± 0.008 0.038 ± 0.005 0.037 ± 0.007 0.038 ± 0.008 0.037 ± 0.006 0.038 ± 0.007

pH 6.8 + 12 mM Pi 0.048 ± 0.007 0.043 ± 0.005 0.045 ± 0.011 0.046 ± 0.012 0.047 ± 0.010 0.044 ± 0.009

pH 6.6 + 20 mM Pi 0.050 ± 0.011 0.042 ± 0.005 0.044 ± 0.010 0.046 ± 0.013 0.047 ± 0.011 0.043 ± 0.009

pH 6.2 + 30 mM Pi 0.049 ± 0.016 0.037 ± 0.007 0.038 ± 0.009 0.039 ± 0.012 0.043 ± 0.014 0.038 ± 0.009

Men Women Combined
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Peak power of MHC IIa fibers from young and old men and women are shown in 

Figure 4.5, with the key force-velocity parameters reported in Table 4.4. Peak absolute 

power outputs were 41-44% lower in old compared to young adults (P < 0.05) and 37-

43% lower in women compared to men in all 4 activating conditions (P < 0.05). The 

differences in absolute power were explained entirely by the differences in fiber CSA as 

Figure 4.4. Peak power of slow MHC I fibers from young and old men and women. Peak 

power progressively decreased with increasing concentrations of Pi and H
+ 

in MHC I fibers 

from young and old men (A) and women (B). The H
+
- and Pi-induced decrements in power 

were greater in women compared to men in the moderate- and severe-fatigue conditions (C) 

but did not differ between fibers from young and old adults (D). Values are means ± SE, with 

the number of fibers (n) displayed within the bars. Error bars in panels C and D are obscured 

by the symbols. # significantly different from men (P < 0.05). 
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indicated by the lack of age or sex differences in the size specific peak power in any of 

the conditions (Table 4.4). Independent of age and sex, Po, Vmax, and peak power of MHC 

IIa fibers progressively decreased with increasing concentrations of Pi and H
+
. Similar to 

the findings on MHC I fibers, the Pi- and H
+
-induced changes in Po, Vmax, and a/Po did 

not differ between the age groups or between men and women (Table 4.4). However, the 

Pi- and H
+
-induced decrements in peak power (Fig. 4.5) were greater in women compared 

to men in the severe-fatigue condition (women = -54 ± 7%, men = -49 ± 5%; P = 0.020). 

 

 

 
Table 4.4. Force-velocity parameters and peak power of fast MHC IIa fibers from young 

and old men and women. Absolute (µN·fl·s-1
) and size specific (W·l-1

) peak power were 

calculated with the fitted-parameters from the force-velocity curves. The maximal shortening 

velocity (Vmax) was calculated using the Hill equation (1938), and the a/Po ratio is a unitless 

parameter describing the curvature of the force-velocity relationship. The number of fibers (n) for 

each cohort is reported in parentheses. Symbols next to the activating condition indicate a main 

effect of *age and 
#
sex at P < 0.05. Values are means ± SD. 

Young (17) Old (26) Young (23) Old (23) Young (40) Old (49)

Peak Power (μN∙fl∙s
-1

)

pH 7.0 + 4 mM Pi *
# 173.6 ± 52.7 83.2 ± 25.2 89.1 ± 26.1 60.9 ± 24.2 125.0 ± 57.6 72.7 ± 26.9

pH 6.8 + 12 mM Pi *
# 154.9 ± 49.1 72.9 ± 22.7 78.5 ± 24.9 51.8 ± 21.7 111.0 ± 53.0 63.0 ± 24.4

pH 6.6 + 20 mM Pi *
# 128.1 ± 39.1 59.8 ± 17.8 63.8 ± 20.8 41.2 ± 17.8 91.1 ± 43.7 51.1 ± 20.0

pH 6.2 + 30 mM Pi *
# 80.2 ± 23.7 39.6 ± 12.5 38.2 ± 12.4 25.3 ± 12.1 56.1 ± 27.6 32.9 ± 14.2

Peak Power (W∙l
-1

)

pH 7.0 + 4 mM Pi 20.5 ± 3.9 24.5 ± 6.2 21.4 ± 3.1 21.0 ± 5.8 21.1 ± 3.5 22.9 ± 6.2

pH 6.8 + 12 mM Pi 18.4 ± 3.8 21.5 ± 5.6 18.8 ± 2.9 17.8 ± 5.2 18.6 ± 3.3 19.8 ± 5.6

pH 6.6 + 20 mM Pi 15.3 ± 3.2 17.9 ± 5.1 15.3 ± 2.7 14.2 ± 4.3 15.3 ± 2.9 16.1 ± 5.1

pH 6.2 + 30 mM Pi 9.6 ± 2.0 11.7 ± 2.9 9.2 ± 1.8 8.73 ± 3.3 9.4 ± 1.9 10.3 ± 3.4

Vmax (fl∙s
-1

)

pH 7.0 + 4 mM Pi 3.83 ± 0.47 3.88 ± 0.65 3.73 ± 0.47 3.05 ± 0.61 3.77 ± 0.47 3.49 ± 0.75

pH 6.8 + 12 mM Pi 3.60 ± 0.47 3.52 ± 0.42 3.47 ± 0.39 2.85 ± 0.62 3.53 ± 0.43 3.20 ± 0.62

pH 6.6 + 20 mM Pi 3.41 ± 0.43 3.32 ± 0.34 3.34 ± 0.35 2.72 ± 0.68 3.37 ± 0.38 3.03 ± 0.60

pH 6.2 + 30 mM Pi 3.04 ± 0.39 2.82 ± 0.43 2.91 ± 0.28 2.35 ± 0.69 2.97 ± 0.33 2.60 ± 0.61

a/Po

pH 7.0 + 4 mM Pi 0.049 ± 0.007 0.056 ± 0.016 0.056 ± 0.008 0.058 ± 0.010 0.053 ± 0.008 0.057 ± 0.013

pH 6.8 + 12 mM Pi 0.054 ± 0.007 0.063 ± 0.017 0.062 ± 0.011 0.063 ± 0.011 0.059 ± 0.010 0.063 ± 0.014

pH 6.6 + 20 mM Pi 0.053 ± 0.008 0.061 ± 0.017 0.060 ± 0.011 0.061 ± 0.013 0.057 ± 0.010 0.061 ± 0.015

pH 6.2 + 30 mM Pi 0.047 ± 0.007 0.060 ± 0.017 0.051 ± 0.010 0.049 ± 0.011 0.049 ± 0.009 0.055 ± 0.015

Men Women Combined
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Fiber Type Differences for the Cumulative Effects of Pi and H
+
 Independent of Age & Sex 

Peak isometric force (Po): The fiber type differences in Po doubled when [Pi] was 

increased from ~0 to 4 mM (Fig. 4.6A), whereby the size specific Po was 39% lower in 

MHC I (108 ± 25 kN∙m
-2

) compared to MHC IIa fibers in the pH 7.0 + 4 mM Pi condition 

(177 ± 31 kN∙m
-2

) (P < 0.001). The increase in the fiber type difference in size specific Po  

Figure 4.5. Peak power of fast MHC IIa fibers from young and old men and women. 

Peak power progressively decreased with increasing concentrations of Pi and H
+ 

in MHC IIa 

fibers from young and old men (A) and women (B). The H
+
- and Pi-induced decrements in 

power were greater in women compared to men in the severe-fatigue conditions (C) but did 

not differ between fibers from young and old adults (D). Values are means ± SE, with the 

number of fibers (n) displayed within the bars. Error bars in panels C and D are obscured by 

the symbols. # significantly different from men (P < 0.05). 
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Figure 4.6. Cumulative effects of H
+
 and Pi on force, velocity, and power in fast MHC IIa 

and slow MHC I fibers. Peak isometric force (Po), maximal shortening velocity (Vmax) and 

peak power progressively decreased with increasing concentrations of Pi and H
+ 

in both MHC 

IIa and MHC I fibers from young and old men and women. Decreasing the [Pi] from 4 to ~0 

mM increased Po more in slow compared to fast fibers (A).  The reductions in Vmax were 

greater in MHC IIa compared to MHC I fibers in the severe fatigue condition (B), whereas, 

the reductions in peak power were greater in MHC IIa fibers in all 3 fatigue-mimicking 

conditions (C). Values are means ± SE. Error bars are obscured by the symbols. * significant 

difference between slow and fast fibers (P < 0.05). 
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with the small increase in [Pi] was due to a greater sensitivity of MHC I fibers to Pi  (P < 

0.001). However, the H
+
- and Pi-induced decrements in Po in the mild, moderate, and 

severe-fatigue mimicking conditions did not differ between the fiber types when 

expressed as a percentage of Po in the 4 mM Pi condition (Fig. 4.6A).  

Maximal shortening velocity (Vmax): Vmax in all 4 activating conditions was ~2.4-

fold greater in fast MHC IIa compared to slow MHC I fibers (Fig. 4.6B). The Vmax 

progressively decreased in both fiber types with the increase in the concentrations of H
+
 

and Pi. However, the reduction in Vmax was greater in MHC IIa compared to MHC I 

fibers in the severe-fatigue condition (P < 0.05), with no fiber type differences for the 

reductions in Vmax in the mild- and moderate-fatigue conditions (P > 0.05).  

Peak power: The size specific peak power in all 4 activating conditions was ~5-

fold greater in fast MHC IIa compared to slow MHC I fibers (Fig. 4.6C). The higher peak 

power in MHC IIa fibers was primarily explained by the ~1.7-fold greater size specific Po 

and ~2.4-fold greater Vmax in MHC IIa compared to MHC I fibers, but was also partially 

due to the lower curvature (i.e., higher a/Po ratio) of the force-velocity relationship in 

MHC IIa compared to MHC I fibers (Tables 4.3 and 4.4). Consistent with the effects of Pi 

and H
+
 on Po and Vmax, peak power progressively decreased in both fiber types with the 

increase in the concentrations of H
+
 and Pi. However, the Pi- and H

+
-induced decrements 

in power were 3-5% greater in MHC IIa compared to MHC I fibers for all 3 fatigue-

mimicking conditions (Fig. 4.6C).  

 

DISCUSSION  
 
 

The purpose of this study was to determine the cumulative effects of H
+
 and Pi on 

the force-velocity relationship of skeletal muscle fibers from young and old adults across 
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a range of metabolite concentrations that regularly occur in vivo. In agreement with the 

first hypothesis, there was a hyperbolic relationship between the decrements in peak 

isometric force and the increase in the concentrations of H
+
 and Pi for both slow MHC I 

and fast MHC IIa fibers (Figs. 4.2 and 4.3). However, when the analysis was restricted to 

only include the concentrations of these ions observed in vivo (Kemp et al., 2007), the 

relationship between the decrements in isometric force and the increased concentration of 

these ions was linear. Similarly, the shortening velocity and peak power decreased 

linearly with the increase in the concentrations H
+
 and Pi (Fig. 4.6). Contrary to the 

second hypothesis, the depressive effects of these ions were similar in fibers from young 

and old adults across all conditions. These data support the conclusion from chapter 3 

that the age-related increase in fatigability cannot be attributed to an increased sensitivity 

of the cross-bridge to H
+
 and Pi. 

Cumulative effects of H
+
 and Pi on cross-bridge function: important mediators of human 

muscle fatigue 

Studies on the effects of H
+
 and Pi

 
on cross-bridge function have focused on either 

the individual effects of these ions or tested their effects under extreme concentrations 

(Metzger & Moss, 1987; Chase & Kushmerick, 1988; Pate & Cooke, 1989; Metzger & 

Moss, 1990b; Fryer et al., 1995; Pate et al., 1995; Potma et al., 1995; Debold et al., 2004; 

Debold et al., 2006; Knuth et al., 2006; Nelson et al., 2014; Nelson & Fitts, 2014). In 

addition, no studies have tested the effects of H
+
 and Pi on human skeletal muscle, which 

differ markedly in their contractile kinetics, fiber type distribution, and metabolic 

properties compared to muscles from smaller mammalian or amphibious species 

(Shirokova et al., 1996; Edman, 2005; Schiaffino, 2010; Schiaffino & Reggiani, 2011). In 
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this chapter, it was observed that isometric force, shortening velocity, and peak power of 

human skeletal muscle fibers all decreased linearly with the increase in the concentrations 

of H
+
 and Pi, and that the detrimental effects of these ions on cross-bridge function 

showed no signs of saturating at the higher concentrations. These novel findings have 

important implications for human skeletal muscle performance, because the accumulation 

of H
+
 and Pi within the myoplasm occur at the onset of high-intensity contractile activity 

and continue to accumulate until the individual can no longer perform the task (Hogan et 

al., 1999; Jones et al., 2008; Chidnok et al., 2013; Broxterman et al., 2017). The 

detrimental effects of these ions may be particularly important to the physical 

performance of older adults, because they already have an impaired strength and power 

generating capacity compared to younger adults (Doherty, 2003; Reid & Fielding, 2012; 

Hunter et al., 2016). 

Similar to the findings on the effects of Pi on isometric force (Fryer et al., 1995; 

Wang & Kawai, 1997; Coupland et al., 2001; Tesi et al., 2002; Pathare et al., 2005), the 

relationship between the decrements in isometric force and the increase in the 

concentrations of both H
+
 and Pi was hyperbolic. However, the hyperbolic relationship 

was only observed when the data from the pH 7.0 + 0 mM Pi condition were included – a 

condition that does not occur in human skeletal muscle in vivo (Kemp et al., 2007). In 

contrast, when the data from the ~0 mM Pi condition were excluded, there was a linear 

relationship between the decrements in isometric force and the increase in the 

concentrations of H
+
 and Pi. This finding is in close agreement with the linear 

relationship observed between the concentrations of dihydrogen phosphate (H2PO4
-
) and 

the reductions in force in both young and old adults during a fatiguing isometric exercise 
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(Kent-Braun et al., 2002; Lanza et al., 2007). Collectively, these results provide strong 

evidence that H
+
 and Pi are important mediators of human muscle fatigue by directly 

impairing the ability of the cross-bridge to generate force. Whether dihydrogen phosphate 

is the primary phosphate species to inhibit isometric force is unknown (Nosek et al., 

1987); however, it does provide an accurate marker to quantify the changes occurring in 

both H
+
 and Pi because H2PO4

-
 becomes the predominant species with the decrease in pH 

(H2PO4
- 
 pKa = 6.75 at 38˚C) (Lawson & Veech, 1979). 

Surprisingly, the decrements in the maximal shortening velocity also showed a 

linear relationship with the increase in the concentrations of H
+
 and Pi for both fast MHC 

IIa and slow MHC I fibers. There are a large number of animal studies demonstrating that 

Pi has little-to-no effect on shortening velocity, and that H
+
 is the primary ion that inhibits 

velocity (Metzger & Moss, 1987; Chase & Kushmerick, 1988; Cooke et al., 1988; 

Widrick, 2002; Debold et al., 2004; Karatzaferi et al., 2008; Nelson et al., 2014; Debold 

et al., 2016). However, controversy still exists as to the relative importance of decreased 

pH in inhibiting velocity (Pate et al., 1995; Westerblad et al., 1997; Knuth et al., 2006; 

Karatzaferi et al., 2008; Fitts, 2016; Westerblad, 2016), which has led to the hypothesis 

that H
+
 does not inhibit shortening velocity until pH drops below 6.7 (Fitts, 2008). In 

contrast, we observed that the maximal shortening velocity measured by extrapolation of 

the force-velocity relationship (Vmax) was already significantly decreased in the pH 6.8 + 

12 mM Pi condition, albeit only by ~6%, and continued to decrease with the increase in 

the concentrations of H
+
 and Pi. The explanation for the discrepancies between these 

findings compared with findings from animal studies is unclear, but perhaps is due to 



112 

differences in the contractile kinetics between mammalian species or that the pH 6.8 

condition was studied in combination with 12 mM Pi.  

It is notable that the fatigue-induced reductions in the maximal shortening 

velocity of the human adductor pollicis muscle in vivo (Jones et al., 2006) has a time 

course that is generally similar to the changes in intracellular pH during fatiguing 

exercise (Fiedler et al., 2016; Broxterman et al., 2017). Specifically, during high-

intensity exercise, intracellular pH initially becomes slightly more alkaline due to the 

predominance of ATP synthesized by the creatine kinase reaction (Adams et al., 1990) 

followed by the precipitous decline in pH from the high rates of ATP hydrolysis and 

increased glycolytic flux (Robergs et al., 2004). The delay in H
+
 accumulation mirrors 

the delay in the fatigue-induced reduction in shortening velocity observed in the human 

adductor pollicis muscle in vivo (Jones et al., 2006). These results interpreted together 

with the findings presented in this study suggest that H
+
 is an important factor for the 

fatigue-induced reduction in shortening velocity of human skeletal muscle. 

Although valuable mechanistic insight is gleaned from examining the effects of 

H
+
 and Pi on peak isometric force and maximal shortening velocity, these parameters 

represent only two extremes of the force-velocity relationship. Thus, it is important from 

both a human performance and an aging perspective to examine how these ions influence 

the ability of skeletal muscle to shorten under submaximal loads and generate power. The 

combination of the Pi- and H
+
-induced reductions in force and H

+
 inhibition of shortening 

velocity resulted in marked decrements in peak power in both MHC I and IIa fibers in all 

three fatigue-mimicking conditions. Similar to the findings on isometric force and 

shortening velocity, there was a linear relationship between the decrements in peak power 
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and the increase in the concentrations of H
+
 and Pi. The H

+
- and Pi-induced reductions in 

peak power however, were 3-5% greater in MHC IIa compared with MHC I fibers (Fig. 

4.6). The explanations for the fiber type dependence in the decrements in power are 

unclear but may be due, in part, to differences in the H
+
- and Pi-induced changes in the 

curvature of the force-velocity relationship (a/Po) in the fatigue-mimicking conditions. 

Sex differences in single fiber contractile function 

 A surprising finding from these preliminary data was that, independent of age, the 

Vo of fast MHC IIa fibers from women was 15% lower than fibers from men (Table 4.2). 

Additionally, the H
+
- and Pi-induced decrements in peak power were greater in both 

MHC I and IIa fibers from women compared to men (Figs. 4.4 and 4.5). These data are 

difficult to interpret in the context of the prevailing literature. For example, while there is 

evidence from one study that Vo in MHC I fibers from old women is reduced (Krivickas 

et al., 2001), there is no evidence for a lower Vo in MHC IIa fibers from young or old 

women compared to men (Krivickas et al., 2001; Trappe et al., 2003). In addition, the 

fatigability and the associated mechanisms for both isolated limb exercise (Chapter 2) 

and whole-body dynamic exercise (Sundberg et al., 2017) have been shown to be similar 

between men and women. In the few studies that have observed a sex difference in 

fatigability during dynamic exercise, most have found that women are less fatigable than 

men (Laurent et al., 2010; Billaut & Bishop, 2012; Yoon et al., 2015). In contrast, the 

single fiber data in this chapter reveal that both slow MHC I and fast MHC IIa fibers 

from women experience greater H
+
- and Pi-induced decrements in power compared to 

fibers from men. The explanation for the sex differences in Vo and the sensitivity of the 

cross-bridge to elevated levels of H
+
 and Pi is unclear. More data need to be collected 
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before a conclusion can be drawn regarding sex differences in single fiber contractile 

function, because currently data from only 2 old women and 3 young women have been 

collected. 
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CHAPTER 5 

 

  

GENERAL DISCUSSION AND FUTURE DIRECTIONS 
 

 The purpose of this dissertation was to identify the mechanisms for the age-

related increase in fatigability during dynamic contractions in both men and women. A 

highly-integrative approach was employed to study fatigue within both the intact 

neuromuscular system and in the isolated muscle cell with the aim of developing a 

comprehensive understanding of the fatigue process with aging. While the studies in this 

dissertation provide important advancements in the field, the mechanism responsible for 

the increased fatigability with aging remains elusive. This chapter provides a summary of 

the key findings from the dissertation and proposes future studies that may fill some of 

the voids in knowledge of the aging neuromuscular system and fatigue.  

 In chapter 2, non-invasive stimulation procedures were used to localize where 

along the motor pathway the primary mechanism of fatigue was originating in groups of 

young (≤35 yrs), old (60-79 yrs), and very old (≥80 yrs) men and women. This study was 

the first to 1) couple stimulations to both the motor cortex and the peripheral nervous 

system to identify the mechanisms of fatigue elicited by high-velocity dynamic exercise 

in old adults and 2) test whether the mechanisms for the age-related increase in 

fatigability differed between men and women. We found that aging of the neuromuscular 

system resulted in a progressive increase in fatigability of the knee extensors during high-

velocity exercise that was more pronounced in very old adults (≥80 yrs) but occurred 

similarly in men and women in all age groups (Fig. 2.3). Importantly, the age-related 

increase in power loss could not be attributed to reduced neural drive from the motor 

cortex (Fig. 2.5) or impairments in neuromuscular propagation (Fig. 2.6), but was 
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strongly associated with changes in the electrically-evoked contractile properties in both 

men and women (Fig. 2.7). These data strongly suggest that the age-related increase in 

power loss during high-velocity fatiguing exercise is unaffected by biological sex and 

implicates mechanisms that disrupt excitation-contraction coupling and/or cross-bridge 

function as the primary mechanisms for the age-related increase in fatigability. Whether 

the same mechanisms are responsible for the age-related increase in fatigability in 

muscles of the upper limb (Senefeld et al., 2017) or in mobility impaired older adults is 

unknown and worth further investigation. 

 It is important to note that although the fatiguing exercise is referred to as a ‘high-

velocity’ exercise, the angular velocity of the knee joint at the end of the exercise was 

reduced to 157 ± 36 °/s and 121 ± 32 °/s in the old and very old adults, respectively, 

compared with 224 ± 26 °/s in the young adults. In addition, for the oldest participant 

studied in this dissertation (a 93 yr old man) the knee angular velocity decreased by 67% 

over the course of the fatiguing exercise, from 172 °/s at the beginning to 56 °/s by the 

end of the exercise. These knee extension velocities – performed against a relatively light 

load (i.e., ~20% MVC) – fall at-or-below the peak knee angular velocities used when 

older participants (~74 yrs) perform routine daily tasks such as rising from a chair (138 ± 

25 °/s) or ascending a flight of stairs (141 ± 25 °/s) (Hortobagyi et al., 2003). Thus, 

identifying the mechanisms for the age-related slowing of the neuromuscular system and 

the increased fatigability during dynamic exercise is important, not only from a basic 

science perspective, but to develop evidence-based countermeasures to improve physical 

function, mobility, and the quality of life in old adults. 
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 The most reputed mechanism of fatigue is the accumulation of metabolic by-

products (H
+
, Pi, H2PO4

-
) that act to impair muscle force and power production either 

indirectly via sensory afferent feedback to the central nervous system (Bigland-Ritchie et 

al., 1986; Gandevia, 2001; Amann et al., 2011) or directly by disrupting excitation-

contraction coupling and cross-bridge function (Fitts, 1994; Allen et al., 2008; Fitts, 

2008; Allen et al., 2011; Debold et al., 2016). In chapter 2, it was found that, for the most 

part, the ability of the motor cortex to voluntarily drive the muscle and the excitability of 

the corticospinal tract (VL MEP amplitude) did not differ between young and old adults 

following the fatiguing dynamic exercise, and that the primary mechanism for the 

increased fatigability with aging was in the muscle. This led to the hypothesis that age-

related changes within the muscle may cause either 1) an increased production of 

metabolic by-products or 2) an increased sensitivity of the muscle to a given 

concentration of metabolite accumulation during high-velocity exercise. Given the 

evidence that the decrease in pH and increase in intracellular [Pi] during a dynamic 

plantarflexor exercise did not differ or was blunted in old compared to young adults 

(Layec et al., 2013; Layec et al., 2014, 2015), the latter hypothesis seemed like the more 

plausible mechanism for the increased fatigability with aging. 

 In chapter 3, skeletal muscle fibers isolated from the vastus lateralis of young and 

old men were exposed to conditions mimicking quiescent human muscle (pH 7.0 + 4 mM 

Pi) and severe fatigue (pH 6.2 + 30 mM Pi) to test the hypothesis that the increased 

fatigability with aging was due an increased sensitivity of cross-bridge to H
+
 and Pi. This 

study was the first to examine the effects of elevated levels of H
+
 and Pi on the cross-

bridge mechanics of human skeletal muscle. We confirmed the findings from non-human 
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studies (Cooke et al., 1988; Karatzaferi et al., 2008; Nelson et al., 2014) that elevated 

levels of H
+
 (pH 6.2) and Pi (30 mM) act synergistically to depress cross-bridge function 

by inhibiting isometric force (Fig. 3.3), shortening velocity (Fig. 3.5), peak power (Figs. 

3.6-3.8) and the low-to high-force transition of the cross-bridge cycle (Fig. 3.4). These 

findings are important for human neuromuscular performance, because they provide 

evidence that H
+
 and Pi are essential mediators of muscle fatigue in humans by directly 

inhibiting cross-bridge function. However, the depressive effects of these ions under 

saturating Ca
2+

 conditions were similar in fibers from old compared to young men, which 

suggests that the age-related increase in fatigability could not be attributed to an 

increased sensitivity of the cross-bridge to H
+ 

and Pi.  

 The studies in chapter 3 used a severe fatigue-mimicking condition, because it 

was anticipated that the age-differences in the sensitivity of the contractile proteins to 

elevated levels of H
+ 

and Pi, if present, would be most obvious under this condition. 

However, the effects of these ions on cross-bridge function may have been saturated in 

the severe fatigue-mimicking condition, potentially masking any age-related differences 

in the sensitivity of the cross-bridge to these ions. As a result, the purpose of chapter 4 

was to test this hypothesis by exposing muscle fibers from young and old men and 

women to a range of elevated levels of H
+
 and Pi that regularly occur in vivo (Wilson et 

al., 1988; Cady et al., 1989; Kemp et al., 2007; Burnley et al., 2010; Broxterman et al., 

2017). This study was the first to test the effects of varying levels of H
+
 and Pi on cross-

bridge function in human skeletal muscle, and revealed that there was a linear 

relationship between the increased concentrations of H
+
 and Pi and the decrements in 

fiber force (Figs. 4.2 & 4.3), velocity (Fig. 4.6), and power (Figs. 4.4 & 4.5). However, 
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similar to the findings in chapter 3 and contrary to the hypotheses, the H
+
- and Pi-induced 

decrements in fiber power and velocity were similar in fibers from old compared to 

young adults. These data confirm the results from chapter 3 that the age-related increase 

in fatigability during dynamic exerciser cannot be attributed to an increased sensitivity of 

the cross-bridge to these ions. This conclusion prompts the question: What is the cellular 

mechanism within the muscle that is responsible for the age-related increase in 

fatigability during moderate- to high-velocity exercise? 

 One possibility is that the fatigue-mimicking conditions used in chapters 3 and 4 

did not adequately mimic the intracellular milieu of the whole-muscle in vivo. For 

example, during high-intensity contractile activity proteins, such as myosin binding 

protein-C and myosin regulatory light chain (RLC), are phosphorylated and modulate the 

binding kinetics of myosin to actin (Vandenboom & Houston, 1996; Rassier & 

Macintosh, 2000; Szczesna et al., 2002; Ackermann & Kontrogianni-Konstantopoulos, 

2011; Vandenboom, 2016). Importantly, it was found in rat fibers that the H
+
- and Pi-

induced decrements in fiber shortening velocity and peak power were exacerbated when 

RLC was phosphorylated (Karatzaferi et al., 2008). Whether aging or biological sex 

affects the phosphorylation state of the regulatory proteins has received limited attention 

(Miller et al., 2013; Brocca et al., 2017), and no studies have examined how the 

phosphorylation of these proteins alters contractile function in human skeletal muscle. 

Future studies should test the effects of the phosphorylation state of regulatory proteins 

on contractile function in fibers from young and old men and women in conditions that 

mimic quiescent muscle and in the presence of elevated H
+
 and Pi. 
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 In addition to altering the phosphorylation state of regulatory proteins, high-

intensity fatiguing exercise is also thought to reduce the amount of Ca
2+ 

released from the 

sarcoplasmic reticulum (SR) (Fitts, 1994; Allen et al., 2008; Allen et al., 2011). Because 

H
+
 and Pi decrease myofibrillar Ca

2+
 sensitivity, the reduced Ca

2+ 
release into the 

myoplasm exacerbates the effects of these ions on cross-bridge function (Palmer & 

Kentish, 1994; Debold et al., 2006; Allen et al., 2011; Allen & Trajanovska, 2012; 

Nelson & Fitts, 2014; Debold, 2016; Debold et al., 2016). Thus, studies that test the 

effects of H
+
 and Pi on force, velocity, and peak power at submaximal Ca

2+
 compared to 

the saturating levels used in chapters 3 and 4 are likely more representative of the fatigue 

environment in vivo. In addition, recent studies have found that compared with young 

men, fibers from old men have lower endogenous and maximal releasable SR Ca
2+

 

(Lamboley et al., 2015) and increased Ca
2+ 

leakage from the SR (Lamboley et al., 2016). 

Although controversial, there are some studies that have also reported an age-related 

decrease in Ca
2+ 

sensitivity in either MHC II fibers (Lamboley et al., 2015) or both MHC 

I and II fibers (Straight et al., 2018), with other studies showing no age differences in 

Ca
2+ 

sensitivity (Hvid et al., 2011; Hvid et al., 2013). Thus, it is plausible that the age-

related increase in fatigability during dynamic exercise is due to greater impairments in 

Ca
2+

 handling and/or the sensitivity of the myofilaments to Ca
2+

 in old compared to 

young adults and is worth further investigation. 

 Along with the studies on Ca
2+

 handling and phosphorylation of the regulatory 

proteins, future studies could quantify the changes in the intracellular milieu in young and 

old men and women during high-velocity fatiguing exercise. To my knowledge, the only 

studies that have measured the intracellular milieu during dynamic exercise in young and 
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old adults have been on the plantarflexor muscles and report that the decrease in pH and 

increase in intracellular [Pi] did not differ or was blunted in the old adults (Layec et al., 

2013; Layec et al., 2014, 2015). However, it is unclear how an age-related increase of 

~37% in the amount of ATP necessary to generate a given amount of mechanical power 

output (Layec et al., 2015) could lead to a blunted accumulation of metabolic by-

products. One possible explanation is that these investigators did not directly measure the 

force or velocity during the dynamic exercise, but rather, they predicted the power 

outputs based on the load applied and an assumed displacement (Layec et al., 2013; 

Layec et al., 2014, 2015). An additional explanation for the blunted accumulation of 

metabolic by-products with aging might be that the dynamic exercise was performed at 

slow velocities. It is known that the fatigability of old adults is either similar (Callahan et 

al., 2009; Dalton et al., 2012; Yoon et al., 2013; Yoon et al., 2015) or less than that of 

young adults (Lanza et al., 2004) when the contractions are performed at slow velocities, 

but is greater when the dynamic exercise is performed at high-velocities (Chapter 2) 

(McNeil & Rice, 2007; Dalton et al., 2010; Callahan & Kent-Braun, 2011; Dalton et al., 

2012; Senefeld et al., 2017). Thus, it is plausible that the increased energetic demand 

during high-velocity concentric contractions (Ryschon et al., 1997; He et al., 2000; 

Barclay et al., 2010) coupled with the age-related decrease in muscle oxidative capacity 

and mitochondrial content (Conley et al., 2000; Larsen et al., 2012; Kent & Fitzgerald, 

2016; Murgia et al., 2017) is responsible for the increased fatigability with aging. This 

would manifest as a greater accumulation of metabolic by-products in old compared to 

young adults during the high-velocity exercise due to an increased reliance on anaerobic 

metabolic pathways to synthesize ATP. We are currently testing this hypothesis by 
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measuring the accumulation of metabolic by-products (H
+
, Pi, H2PO4

-
) with 

31
P-MRS in 

the quadriceps of young and old men and women performing a high-velocity knee 

extension exercise inside the magnet. 

 In summary, this dissertation showed that the fatigability of the knee extensor 

muscles during a high-velocity exercise progressively increased with age and was 

determined primarily by mechanisms originating within the muscle for both men and 

women (Chapter 2). It was also shown for the first time that elevated H
+
 and Pi are 

essential mediators of human muscle fatigue by directly inhibiting cross-bridge function. 

However, the effects of the fatigue-mimicking conditions on cross-bridge function with 

either a severe (Chapter 3) or a range of elevated levels of H
+
 and Pi (Chapter 4) did not 

differ with age. Future studies that continue investigating the mechanisms for the 

accelerated loss in power and increased fatigability with aging are necessary to develop 

evidence-based treatments to improve physical function, mobility, and quality of life in 

our aging society. 
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