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Generalized Transmuted Family of Distributions:
Properties and Applications

∗ Morad Alizadeh† Faton Merovci‡ and G.G. Hamedani§

Abstract

We introduce and study general mathematical properties of a new gen-
erator of continuous distributions with two extra parameters called the
Generalized Transmuted Family of Distributions. We investigate the
shapes and present some special models. The new density function
can be expressed as a linear combination of exponentiated densities
in terms of the same baseline distribution. We obtain explicit expres-
sions for the ordinary and incomplete moments and generating function,
Bonferroni and Lorenz curves, asymptotic distribution of the extreme
values, Shannon and Rényi entropies and order statistics, which hold
for any baseline model. Further, we introduce a bivariate extension of
the new family. We discuss the different methods of estimation of the
model parameters and illustrate the potential application of the model
via real data. A brief simulation for evaluating Maximum likelihood
estimator is done. Finally certain characterziations of our model are
presented.

Keywords: Transmuted distribution, Generated family, Maximum likelihood,
Moment, Order statistic, Quantile function, Rényi entropy, Characterizations.

2000 AMS Classification: AMS

1. Introduction

In many practical situations, classical distributions do not provide adequate fit
to real data. For example, if the data are asymmetric, the normal distribution
will not be a good choice. So, several generators based on one or more parameters
have been proposed to generate new distributions. Some well-known generators
are Marshal-Olkin generated family (MO-G) [33], the beta-G by Eugene et al.
[20] , Jones [31], Kumaraswamy-G (Kw-G for short) by Cordeiro and de Castro
[16], McDonald-G (Mc-G) by Alexander et al. [1], gamma-G (type 1) by Zografos
and Balakrishanan [57], gamma-G (type 2) by Ristić and Balakrishanan [47] ,
, gamma-G (type 3) by Torabi and Montazari [55], log-gamma-G by Amini et
al. [7], logistic-G by Torabi and Montazari [56], exponentiated generalized-G by
Cordeiro et al. [18], Transformed-Transformer (T-X) by Alzaatreh et al. [5], ex-
ponentiated (T-X) by Alzaghal et al. [6], Weibull-G by Bourguignon et al. [12],
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Exponentiated half logistic generated family by Cordeiro et al. [15], Kumaraswamy
Odd log-logistic by Alizadeh et al. [3], Lomax Generator by Cordeiro et al. [19], a
new Weibull-G by Tahir et al. [51], Logistic-X by Tahir et al. [52], Kumaraswamy
Marshal-Olkin family by Alizadeh et al. [4], Beta Marshal-OLkin family by Al-
izadeh et al. [2], type I half-logistic family by Cordeiro et al. [14] and Odd Gener-
alized Exponential family by Tahir et al. [53].

Let p(t) be the probability density function (pdf) of a random variable T ∈ [a, b]
for −∞ < a < b <∞ and let W [G(x)] be a function of the cumulative distribution
function (cdf) of a random variable X such that W [G(x)] satisfies the following
conditions:

(1.1)


(i) W [G(x)] ∈ [a, b],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and

(iii) W [G(x)]→ a as x→ −∞ andW [G(x)]→ b as x→∞.

Recently, Alzaatreh et al. [5] defined the T-X family of distributions by

(1.2) F (x) =

∫ W [G(x)]

a

p(t) dt,

where W [G(x)] satisfies conditions (1.1). The pdf corresponding to (1.2) is given
by

(1.3) f(x) =

{
d

dx
W [G(x)]

}
p {W [G(x)]} .

For W [G(x)] = [G(x)]
α

and p(t) = 1 + λ− 2λ t , 0 < t < 1 , we define the cdf
of the new Generalized Transmuted family (“GT-G” for short) of distributions by

F (x;λ, α, ξ) =

∫ [G(x;ξ)]α

0

(1 + λ− 2λ t) dt

= (1 + λ) [G(x; ξ)]
α − λ [G(x; ξ)]

2α

= 1− {1− λ [G(x; ξ)]
α} {1− [G(x; ξ)]

α} , α > 0 , |λ| ≤ 1,(1.4)

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0,
|λ| ≤ 1 are two additional shape parameters. GT-G is a wider class of continu-
ous distributions. It includes the Transmuted Family of Distributions and the
Proportional Reversed Hazard Rate models. Some special models are given in
Table 1.

This paper is organized as follows. In Section 2, we provide motivation for
considering GT-G class. Three special cases of this family are defined in Section
3. In Section 4, the shape of the density and hazard rate functions are described
analytically. Some useful expansions are derived in Section 5. In Section 6, we
propose explicit expressions for the moments, incomplete moments, generating
function and mean deviation. General expressions for the Rényi and Shannon en-
tropies are presented in Section 7. General results for order statistics are obtained
in section 8. In Section 9, we introduce a bivariate extension of GT-G. Estimation
procedures of the model parameters are performed in Section 10. Application to a
real data set illustrating the performance of GT-G is given in Section 11. We give
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Table 1. Some known special cases of the GT-G model.

α λ G(x) Reduced distribution

1 - G(x) Transmuted G family of distributions [42]

- 0 G(x) Proportioanl reversed hazard rate family [25]

1 0 G(x) G(x)

1 - exponential Transmuted exponential distribution [42]

1 - pareto Transmuted pareto distribution [41]

1 - Gumbel Transmuted Gumbel distribution [10]

1 - weibull Transmuted Weibull distribution [11]

1 - Lindley Transmuted Lindley distribution [36]

- - exponentiated exponentoial Transmuted exponentiated exponential distribution [34]

1 - Lindley-geometric Transmuted Lindley-geometric [39]

1 - weibull-geometric Transmuted Weibull-geometric [40]

1 - Rayleigh Transmuted Rayleigh distribution [38]

- - Generalized Rayleigh Transmuted Generalized Rayleigh distribution [35]

1 - extreme value Transmuted extreme value distribution [10]

1 - log-logistic Transmuted log-logistic distribution [9]

1 - inverse Rayleigh Transmuted inverse Rayleigh [50]

a simulation study in section 12. We present certain characterizations of GT-G
family in section 13. The concluding remarks are given in section 14.

2. The new family

The pdf corresponding to (1.4) is given by

(2.1) f(x;λ, α, ξ) = αg(x, ξ) [G(x, ξ)]
α−1 {1 + λ− 2λ [G(x, ξ)]

α} ,

where g(x; ξ) is the baseline pdf. Equation (2.1) will be most tractable when the
cdf G(x) and the pdf g(x) have simple analytic expressions. Hereafter, a random
variable X with density function (2.1) is denoted by X ∼ GT-G(α, λ, ξ). Further,
we may omit the dependence on the vector ξ of the parameters and simply write
G(x) = G(x; ξ).

The hazard rate function (hrf) of X becomes

h(x;λ, α, ξ) =
αg(x, ξ) [G(x, ξ)]

α−1 {1 + λ− 2λ [G(x, ξ)]
α}

1− (1 + λ) [G(x, ξ)]
α

+ λ [G(x, ξ)]
2α

=
αλ g(x, ξ) [G(x, ξ)]

α−1

1− λ [G(x, ξ)]
α +

α g(x, ξ) [G(x, ξ)]
α−1

1− [G(x, ξ)]
α .(2.2)

To motivate the introduction of this new family, let Z1, Z2 be i.i.d random
variables from [G(x; ξ)]

α
and Z1:2 = min(Z1, Z2) Z2:2 = max(Z1, Z2). Let

V =

{
Z1:2, with probability 1+λ

2 ;
Z2:2, with probability 1−λ

2 ,
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then FV (x;α, λ, ξ) = (1+λ) [G(x, ξ)]
α−λ [G(x, ξ)]

2α
,which is the proposed family.

The GT-G family of distributions is easily simulated by inverting (1.4) as follows:
if U has a uniform U(0, 1) distribution,then

(2.3) XU = G−1

{[
1 + λ−

√
(1 + λ)2 − 4Uλ

2λ

]
; ξ

}
for λ 6= 0

has the density function (2.1).

3. Special GT-G distributions

3.1. The GT-Normal(GT-N) Distribution. The GT-N pdf is obtained from
(2.1) by taking the normal N(µ, σ) as the parent distribution, where ξ = (µ, σ),
so that

(3.1)

fGT−N (x;λ, α, µ, σ) = αφ

(
x− µ
σ

)[
Φ(
x− µ
σ

)

]α−1{
1 + λ− 2λ

[
Φ(
x− µ
σ

)

]α}
,

where x ∈ R, µ ∈ R is location parameter, σ is a scale parameter and φ(·) and
Φ(·) are the pdf and cdf of the standard normal distribution, respectively. The
standard GT-N is the one with µ = 0 and σ = 1,which reduces to power normal
distribution [32] by taking λ = 0.

3.2. The GT-Exponential(GT-E) Distribution. The GT-E pdf is obtained
from (2.1) by taking the cdf F (x; γ) = 1 − exp(−γx) as the parent distribution,
where ξ = γ so that

(3.2)

fGT−E(x;λ, α, γ) = αγ exp(−γx)(1−exp(−γx))α−1 [1 + λ− 2λ(1− exp(−γx))α] .

For λ = 0 we obtain generalized exponential distribution [26] . Figures 1 and 2
illustrate some of the possible shapes of the pdf and cdf of GT-E distribution for
selected values of the parameters λ, α and γ, respectively.

3.3. The GT-Weibull(GT-W) Distribution. The pdf and cdf of Weibull

distribution are f(x; η, σ) = η
σ

(
x
σ

)η−1
exp

(
−
(
x
σ

)η)
, x > 0, η > 0, σ > 0 and

F (x; η, σ) = 1 − exp{−
(
x
σ

)η}, x > 0. In this case, the generalized transmuted
Weibull (GT-W) distribution has density

fGT−W (x;λ, α, η, σ) = α
η

σ

(x
σ

)η−1
exp

(
−
(x
σ

)η)(
1− exp{−

(x
σ

)η
}
)α−1

×
[
1 + λ− 2λ

(
1− exp{−

(x
σ

)η
}
)α]

.(3.3)

For λ = 0 we obtain exponentiated Weibull distribution [43] and [44].
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Figure 1. The pdf’s of various GTE distributions.
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Figure 2. The cdf’s of various GTE distributions.

4. Shapes

The shapes of the density and hazard rate functions can be described ana-
lytically. The critical points of the GT-G density function are the roots of the
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equation:

d log[f(x)]

dx
=
g′(x)

g(x)
+ (α− 1)

g(x)

G(x)
− 2αλg(x) [G(x)]

α−1

1 + λ− 2λ [G(x)]
α .(4.1)
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There may be more than one root to (4.1). If x = x0 is a root of (4.1), then it cor-
responds to a local maximum, a local minimum or a point of inflection depending

on whether S(x0) < 0, S(x0) > 0 or S(x0) = 0, where S(x) = d2 log[f(x)]
dx2 .

The critical points of r(x) are the roots of the equation:

d log(h(x))

dx
=
g′(x)

g(x)
+

(α− 1)g(x)

G(x)
− 2αλg(x) [G(x)]

α−1

1 + λ− 2λ [G(x)]
α

+
αg(x, ξ) [G(x)]

α−1
[1 + λ− 2λ [G(x)]

α
]

1− (1 + λ) [G(x)]
α

+ λ [G(x)]
2α .(4.2)

There may be more than one root to (4.2). If x = x0 is a root of (4.2) then it cor-
responds to a local maximum, a local minimum or a point of inflection depending

on whether ς(x0) < 0, ς(x0) > 0 or ς(x0) = 0, where ς(x) = d2 log[h(x)]
dx2 .

5. Useful expansions

First, using generalized binomial expansion, we have

[G(x)]
α

= {1− [1−G(x)]}α =

∞∑
i=0

(−1)i
(
α

i

)
[1−G(x)]

i

=

∞∑
i=0

i∑
k=0

(−1)i+k
(
α

i

)(
i

k

)
[G(x)]

k
.(5.1)

Changing the summation over k, i we have

[G(x)]
α

=

∞∑
k=0

∞∑
i=k

(−1)i+k
(
α

i

)(
i

k

)
[G(x)]

k
=

∞∑
k=0

sk(α) [G(x)]
k
,(5.2)

where

sk(α) =

∞∑
i=k

(−1)i+k
(
α

i

)(
i

k

)
.(5.3)

Using generalized binomial expansion, we can show that the cdf (1.4) of X has
the expansion

F (x) =

∞∑
k=0

ck [G(x)]
k

=

∞∑
k=0

ckHk(x),(5.4)

where

ck = (1 + λ) sk(α)− λ sk(2α),(5.5)

and Ha(x) = [G(x)]
a

and ha(x) = a g(x) [G(x)]
a−1

denote the exponentiated-G
(“exp-G” for short) cumulative distribution and density functions . Some struc-
tural properties of the exp-G distribution are studied by Mudholkar [43], Gupta
and Kundu [26] and Nadarajah and Kotz [46], among others.
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The density function of X can be expressed as an infinite linear combination of
exp-G density functions

(5.6) f(x;α, λ, ξ) =

∞∑
k=0

ck+1hk+1(x).

Thus, some mathematical properties of the new model can be derived from those
of the exp-G distribution. For example, the ordinary and incomplete moments
and moment generating function (mgf) of X can be obtained from those of the
exp-G distribution.

The formulae derived throughout the paper can be easily handled in most sym-
bolic computation software plataforms such as Maple, Mathematica and Matlab.
These plataforms have currently the ability to deal with analytic expressions of
formidable size and complexity. Established explicit expressions to calculate sta-
tistical measures can be more efficient than computing them directly by numerical
integration. The infinity limit in these sums can be substituted by a large positive
integer such as 20 or 30 for most practical purposes.

6. Some measures

6.1. Moments. Let Yk be a random variable having an exp-G distribution with
power parameter k + 1, i.e., with density hk+1(x). A first formula for the nth
moment of X ∼GT-G follows from (5.6) as

E(Xn) =

∞∑
k=0

ck+1E(Y nk ).(6.1)

Expressions for moments of several exp-G distributions are given by Nadarajah
and Kotz [45], which can be used to obtained E(Xn).

A second formula for E(Xn) which can be written from (6.1) in terms of the G
quantile function as

E(Xn) =

∞∑
k=0

(k + 1) ck+1 τ(n, k),(6.2)

where τ(n, k) =
∫∞
−∞ xn [G(x)]

k
g(x)dx =

∫ 1

0
[QG(u)]

n
uadu. Cordeiro and Ndara-

jah [17] obtained τ(n, k) for some well known distribution such as Normal, Beta,
Gamma and Weibull distributions, which can be used to find moments of GT-G.

For empirical purposes, the shape of many distributions can be usefully de-
scribed by what we call the incomplete moments. These types of moments play an
important role in measuring inequality, for example, income quantiles and Lorenz
and Bonferroni curves, which depend upon the incomplete moments of a distribu-
tion. The nth incomplete moment of X is calculated as

mn(y) = E(Xn|X < y) =

∞∑
k=0

(k + 1) ck+1

∫ G(y)

0

[QG(u)]
n
ukdu.(6.3)

The last integral can be computed for most G distributions.
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6.2. Moment generating function. Let MX(t) = E(et X) be mgf of X ∼GT-
G, then the first formula from (5.6) is

MX(t) =

∞∑
k=0

ck+1Mk(t),(6.4)

where Mk(t) is the mgf of Yk. Hence, MX(t) can be determined from the exp-G
mgf.

A second formula for MX(t) can be derived from (5.6) as

MX(t) =

∞∑
i=0

(k + 1) ck+1 ρ(t, k),(6.5)

where ρ(t, k) =
∫∞
−∞ et x [G(x)]

k
g(x)dx =

∫ 1

0
exp[t QG(u)] ukdu.

We can obtain the mgfs of several distributions directly from equation (6.5).

6.3. Mean deviation. The mean deviation about the mean (δ1 = E(|X − µ′1|))
and about the median (δ2 = E(|X −M |)) of X can be expressed as

δ1(X) = 2µ′1 F (µ′1)− 2m1 (µ′1) and δ2(X) = µ′1 − 2m1(M),(6.6)

respectively, where µ′1 = E(X), M = Median(X), the median, defined by M =
Q(0.5), F (µ′1) is easily calculated from the cdf (1.4) and m1(z) =

∫ z
−∞ xf(x)dx is

the first incomplete moment obtained from (6.3) with n = 1.
Now, we provide two alternative ways to compute δ1 and δ2. A general equation

for m1(z) can be derived from (5.6) as

m1(z) =

∞∑
k=0

ck+1 Jk(z),(6.7)

where Jk(z) =
∫ z
−∞ xhk+1(x)dx is the basic quantity to compute the mean devia-

tion for the exp-G distribution. Hence, the mean deviation in (6.6) depends only
on the mean deviations of the exp-G distribution. So, alternative representations
for δ1 and δ2 are

δ1(X) = 2µ′1F (µ′1)− 2

∞∑
k=0

ck+1 Jk(µ′1) and δ2(X) = µ′1 − 2

∞∑
k=0

ck+1 Jk(M).

A simple application of Jk(z) refers to the the GT-G distribution discussed in
Section 3.3. The exponentiated Weibull with parameter k + 1 has pdf (for x > 0)
given by

hk+1(x) =
(k + 1)η

ση
xη−1 exp

[
−(

x

σ
)η
]{

1− exp
[
−(

x

σ
)η
]}k

,

and then

Jk(z) =
(k + 1)η

ση

∫ z

0

xη exp
[
−(

x

σ
)η
]{

1− exp
[
−(

x

σ
)η
]}k

dx

=
(k + 1)η

ση

k∑
r=0

(−1)r
(
k

r

) ∫ z

0

xη exp
[
−(r + 1)(

x

σ
)η
]
.
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The last integral is just the incomplete gamma function and mean deviation for
the GT-G distribution can be determined from

m1(z) =

∞∑
k=0

k∑
r=0

(k + 1)bk+1 (−1)r
(
k

r

)
(r + 1)1+η−1 σ2η+1

γ(1 + η−1, (r + 1)(
z

σ
)η).

A second general formula for m1(z) can be derived by setting u = G(x) in (5.6)

m1(z) =

∞∑
k=0

(k + 1) ck+1 Tk(z),(6.8)

where Tk(z) =
∫ G(z)

0
QG(u)ukdu is a simple integral defined via the baseline quan-

tile function.

Remarks 1. These equations can be used to obtain Bonferroni and Lorenz
curves defined for a given probability π by

B(π) =
T (q)

πµ′1
and L(π) =

T (q)

µ′1
,

respectively, where µ′1 = E(X) and q = Q(π) is the quantile function of X at π.

7. Entropies

An entropy is a measure of variation or uncertainty of a random variable X.
Two popular entropy measures are the Rényi and Shannon entropies [48] , [49].
The Rényi entropy of a random variable with pdf f(x) is defined as

IR(γ) =
1

1− γ
log

(∫ ∞
0

fγ(x)dx

)
,

for γ > 0 and γ 6= 1. The Shannon entropy of a random variable X is defined by
E {− log [f(X)]}. It is the special case of the Rényi entropy when γ ↑ 1. Direct
calculation yields

E {− log [f(X)]} = − log(α)− E {log [g(X; ξ)]}+ (1− α) E {log [G(X; ξ)]}
− E {log [1 + λ− 2λG(X; ξ)α]} .

First we define and compute

A(a1, a2;λ, α) =

∫ 1

0

xa1(1− 2λ

1 + λ
xα)a2dx.(7.1)

Using generalized binomial expansion and then after some algebraic manipulations,
we obtain

A(a1, a2;λ, α) =

∞∑
i=0

(−1)i
(
a2
i

)
a1 + α i+ 1

(
2λ

1 + λ
)i.
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7.1. Proposition. Let X be a random variable with pdf (2.1). Then,

E {log [G(X)]} =
α

1 + λ

∂

∂t
A(α+ t− 1, 1;λ, α)

∣∣
t=0

,

E {log [1 + λ− 2λ [G(X)]
α

]} =
α

1 + λ

∂

∂t

1

(1 + λ)t
A(α− 1, t+ 1;λ, α)

∣∣
t=0

.

The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log(α)− E {log[g(X; ξ)]}

+ (1− α)
α

1 + λ

∂

∂t
A(α+ t− 1, 1;λ, α)

∣∣
t=0

− α

1 + λ

∂

∂t

1

(1 + λ)t
A(α− 1, t+ 1;λ, α)

∣∣
t=0

.

After some algebraic manipulations, we obtain an alternative expression for IR(γ)

(7.2) IR(γ) =
γ

1− γ
log(

α

1 + λ
) +

1

1− γ
log

{ ∞∑
i=0

w∗i EYi [g
γ−1[G−1(Y )]]

}
,

where Yi ∼ Beta(γ(α− 1) + αi+ 1, 1) and

w∗i =

(−1)i
(
γ

i

)
γ(α− 1) + αi+ 1

(
2λ

1 + λ
)i.

8. Order statistics

Order statistics have been employed in many areas of statistical theory and
practice. Suppose X1, . . . , Xn is a random sample from the GT-G distribution.
We can write the pdf of the ith order statistic, say Xi:n, as

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i = K

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1,

where K = n!/[(i− 1)! (n− i)!].
Following similar algebraic manipulations , we can write the density function

of Xi:n as

fi:n(x) =

∞∑
r,k=0

mr,k hr+k+1(x),(8.1)

where hr+k+1(x) is the exp-G density function with power parameter r + k + 1,

mr,k =
n! (r + 1) (i− 1)! cr+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k
(n− i− j)! j!

,

and ck is defined in equation (5.5). Here, the quantities fj+i−1,k are obtained

recursively, fj+i−1,0 = cj+i−10 and (for k ≥ 1)

fj+i−1,k = (k c0)
−1

k∑
m=1

[m(j + i)− k] cm fj+i−1,k−m.
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The last equation is the main result of this section. It reveals that the pdf
of the GT-G order statistics is a linear combination of exp-G density functions.
So, several mathematical quantities of the GT-G order statistics such as ordinary,
incomplete and factorial moments, mgf, mean deviation and several others can be
obtained from those of the exp-G distribution.

9. Bivariate extention

In this section we introduce a bivariate version of proposed model. A joint cdf
is given by

FX,Y (x, y) = (1 + λ) [G(x, y; ξ)]
α − λ [G(x, y; ξ)]

2α
,(9.1)

where G(x, y; ξ) is a bivariate continuous distribution with mariginal cdf’s G1(x; ξ)
and G2(y; ξ). We call this distribution by Bivariate Generalized Termuted G
(BGT-G) distribution. The marginal cdf’s are given by

FX(x) = (1 + λ) [G1(x; ξ)]
α − λ [G1(x; ξ)]

2α
and FY (y) = (1 + λ) [G2(y; ξ)]

α − λ [G2(y; ξ)]
2α
.

The joint pdf of (X,Y ) is easily obtained from fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y

fX,Y (x, y) = αA(x, y;α, λξ) [G(x, y; ξ)]
α−1 {1 + λ− 2λ [G(x, y; ξ)]

α} ,
where

A(x, y;λ, α, ξ) = g(x, y; ξ) +
∂G(x, y, ξ)

∂x

∂G(x, y, ξ)

∂y
× α− 1

G(x, y, ξ)

− ∂G(x, y, ξ)

∂x

∂G(x, y, ξ)

∂y
× 2αλG(x, y, ξ)α−1

1 + λ− 2λG(x, y, ξ)α
.

The marginal pdf’s are

fX(x) = αg1(x, ξ) [G1(x; ξ)]
α−1 {1 + λ− 2λ [G1(x; ξ)]

α} ,
and

fY (y) = αg2(y, ξ) [G2(y; ξ)]
α−1 {1 + λ− 2λ [G2(y; ξ)]

α} .
The conditional cdf’s are

FX|Y (x|y) =
(1 + λ) [G(x, y; ξ)]

α − λ [G(x, y; ξ)]
2α

(1 + λ) [G2(y; ξ)]
α − λ [G2(y; ξ)]

2α ,

and

FY |X(y|x) =
(1 + λ) [G(x, y; ξ)]

α − λ [G(x, y; ξ)]
2α

(1 + λ) [G1(x; ξ)]
α − λ [G1(x; ξ)]

2α .

The conditional density functions are

fX|Y (x|y) =
A(x, y;α, λξ) [G(x, y; ξ)]

α−1
[1 + λ− 2λ [G(x, y; ξ)]

α
]

g2(y, ξ) [G2(y; ξ)]
α−1

[1 + λ− 2λ [G2(y; ξ)]
α

]
,

and

fY |X(y|x) =
A(x, y;α, λξ) [G(x, y; ξ)]

α−1
[1 + λ− 2λ [G(x, y; ξ)]

α
]

g1(x, ξ) [G1(x; ξ)]
α−1

[1 + λ− 2λ [G1(x; ξ)]
α

]
.
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10. Estimation procedures

10.1. Maximum likelihood estimates. Here, we obtain the maximum likeli-
hood estimates (MLEs) of the parameters of the GT-G distribution from complete
samples only. Let x1, . . . , xn be observed values from the GT-G distribution with
parameters α, λ and ξ. Let Θ = (α, λ, ξ)> be the r × 1 parameter vector. The
total log-likelihood function for Θ is given by

`n = `n(Θ) = n log(α) +

n∑
i=1

log [g(xi; ξ)] + (α− 1)

n∑
i=1

log [G(xi; ξ)]

+

n∑
i=1

log [1 + λ− 2λ [G(xi; ξ)]
α

] .(10.1)

These non-linear equations can be routinely solved using Newton’s method or
fixed point iteration techniques. The subroutines to solve non-linear optimization
problem are available in R ( [54]) software namely optim, nlm and bbmle etc.
We used nlm package for optimizing (10.1) . The log-likelihood function can
be maximized either directly by using the SAS (PROC NLMIXED) or the Ox
program (sub-routine MaxBFGS) or by solving the nonlinear likelihood equations
obtained by differentiating (10.1). The components of the score function Un(Θ) =

(∂`n/∂α, ∂`n/∂λ, ∂`n/∂ξ)
>

are

∂`n
∂λ

=
n

α
+

n∑
i=1

log [G(xi; ξ)]− 2λ

n∑
i=1

[G(xi; ξ)]α log [G(xi; ξ)]

1 + λ− 2λ [G(xi; ξ)])α
,

∂`n
∂λ

=

n∑
i=1

1− 2 [G(xi; ξ)]α

1 + λ− 2λ [G(xi; ξ)]α
,

and

∂`n
∂ξ

=

n∑
i=1

g′ξ(xi, ξ)

g(xi, ξ)
+ (α− 1)

n∑
i=1

G′ξ(xi, ξ)

G(xi, ξ)
− 2αλ

n∑
i=1

G′ξ(xi, ξ) [G(xi; ξ)]α−1

1 + λ− 2λ [G(xi; ξ)]α
,

where h′ξ(·) means the derivative of the function h with respect to ξ.
We can compute the maximized unrestricted and restricted log-likelihood functions to

construct the likelihood ratio (LR) test statistic for testing on some transmuted Rayleigh
sub-models. For example, we can use the LR test statistic to check whether a trans-
muted Rayleigh distribution for a given data set is statistically superior to the Rayleigh
distribution. In any case, hypothesis tests of the type H0 : θ = θ0 versus H0 : θ 6= θ0 can
be performed using a LR test. In this case, the LR test statistic for testing H0 versus H1

is ω = 2(`(θ̂;x)− `(θ̂0;x)), where θ̂ and θ̂0 are the MLEs under H1 and H0, respectively.
The statistic ω is asymptotically (as n → ∞) distributed as χ2

k, where k is the length
of the parameter vector θ of interest. The LR test rejects H0 if ω > χ2

k;γ , where χ2
k;γ

denotes the upper 100γ% quantile of the χ2
k distribution.

10.2. Maximum product spacing estimates. The maximum product spacing (MPS)
method has been proposed by [13]. This method is based on an idea that the differences
(spacings) of the consecutive points should be identically distributed. The geometric



14

mean of the differences is given as

(10.2) GM = n+1

√√√√n+1∏
i=1

Di,

where the difference Di is defined as

(10.3) Di =

x(i)∫
x(i−1)

f (x, λ, α, ξ) dx; i = 1, 2, . . . , n+ 1.

Note that F (x(0), λ, α, ξ) = 0 and F (x(n+1), λ, α, ξ) = 1. The MPS estimators α̂PS , β̂PS

and ξ̂PS of λ, α and ξ are obtained by maximizing the geometric mean (GM) of the differ-
ences. Substituting pdf of GT-G in (10.3) and taking logarithm of the above expression,
we have

(10.4) LogGM =
1

n+ 1

n+1∑
i=1

log
[
F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
.

The MPS estimators λ̂PS , α̂PS and ξ̂PS of λ, α and ξ can be obtained as the simultaneous
solution of the following non-linear equations:

∂LogGM

∂λ
=

1

n+ 1

n+1∑
i=1

[
F
′
λ(x(i), λ, α, ξ)− F

′
λ(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0

∂LogGM

∂α
=

1

n+ 1

n+1∑
i=1

[
F
′
α(x(i), λ, α, ξ)− F

′
α(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0

∂LogGM

∂ξ
=

1

n+ 1

n+1∑
i=1

[
F
′
ξ(x(i), λ, α, ξ)− F

′
ξ(x(i−1), λ, α, ξ)

F (x(i), λ, α, ξ)− F (x(i−1), λ, α, ξ)

]
= 0,

where

F ′λ(xi; ξ) = G(xi; ξ)α [1−G(xi; ξ)α]

F ′α(xi; ξ) = G(xi; ξ)α [1 + λ− 2λG(xi; ξ)α] log [G(xi; ξ)]

F ′ξ(xi; ξ) = αG′ξ(xi; ξ)G(xi; ξ)α−1 [1 + λ− 2λG(xi; ξ)α] .(10.5)

10.3. Least square estimates. Let x(1), x(2), . . . , x(n) be the ordered sample of size n
from GT-G distribution. Then, the expectation of the empirical cumulative distribution
function is defined as

(10.6) E
[
F
(
X(i)

)]
=

i

n+ 1
; i = 1, 2, . . . , n.

The least square estimates (LSEs) λ̂LS , α̂LS and ξ̂LS of λ, α and ξ are obtained by
minimizing

Z (λ, α, ξ) =
n∑
i=1

(
F
(
x(i), λ, α, ξ

)
− i

n+ 1

)2

.

Therefore, λ̂LS , α̂LS and ξ̂LS of λ, α and ξ can be obtained as the solution of the following
system of equations:

∂Z (λ, α, ξ)

∂λ
=

n∑
i=1

F
′
λ(x(i), λ, α, ξ)

(
F
(
x(i), λ, α, ξ

)
− i

n+ 1

)
= 0



15

∂Z (λ, α, ξ)

∂α
=

n∑
i=1

F
′
α(x(i), λ, α, ξ)

(
F
(
x(i), λ, α, ξ

)
− i

n+ 1

)
= 0

∂Z (λ, α, ξ)

∂ξ
=

n∑
i=1

F
′
ξ(x(i), λ, α, ξ)

(
F
(
x(i), α, θ

)
− i

n+ 1

)
= 0.

11. Applications

Now we use a real data set to show that the GT-E can be a better model than the beta-
exponential( [45]), Kumaraswamy-exponential distributions and exponential distribtuion.

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that are
subject to constant pressure at the 90% stress level until all had failed, so we have
complete data with the exact times of failure. For the previous studies with the data sets
see Andrews & Herzberg [8]. These data are:
0.0251, 0.0886, 0.0891, 0.2501, 0.3113, 0.3451, 0.4763, 0.5650, 0.5671, 0.6566, 0.6748,
0.6751, 0.6753, 0.7696, 0.8375, 0.8391, 0.8425, 0.8645, 0.8851, 0.9113, 0.9120, 0.9836,
1.0483, 1.0596, 1.0773, 1.1733, 1.2570, 1.2766, 1.2985, 1.3211, 1.3503, 1.3551, 1.4595,
1.4880, 1.5728, 1.5733, 1.7083, 1.7263, 1.7460, 1.7630, 1.7746, 1.8275, 1.8375, 1.8503,
1.8808, 1.8878, 1.8881, 1.9316, 1.9558, 2.0048, 2.0408, 2.0903, 2.1093, 2.1330, 2.2100,
2.2460, 2.2878, 2.3203, 2.3470, 2.3513, 2.4951, 2.5260, 2.9911, 3.0256, 3.2678, 3.4045,
3.4846, 3.7433, 3.7455, 3.9143, 4.8073, 5.4005, 5.4435, 5.5295, 6.5541, 9.0960.

Table 2. Estimated parameters of the GT-E, BE and KwE distribu-
tions for data set.

Model ML Estimate Standard Error −`(·;x) LSE PS Estimator

GT-Exponential λ̂ = −0.733 0.274 121.3219 -0.636 -0.760
α̂ = 1.197 0.344 1.631 1.038

γ̂ = 0.769 0.101 0.907 0.704

Beta â = 1.679 0.374 122.227 2.235 1.520

Exponential b̂ = 1.508 6.760 1.558 1.082

λ̂ = 0.484 1.981 0.586 0.598

Kumaraswamy â = 1.556 0.401 122.0942 1.987 1.426

Exponential b̂ = 2.448 6.065 2.228 2.243

λ̂ = 0.328 0.691 0.453 0.316

Exponential λ̂ = 0.510 0.058 127.114 0.981 0.926

GT-Weibull λ̂ = −0.656 0.340 195.133 -0.635 -0.751
α̂ = 1.729 1.065 1.644 1.269
η̂ = 0.864 0.201 0.996 0.905
σ̂ = 1.397 0.700 1.095 1.193

The variance covariance matrix I(ϕ̂)−1 of the MLEs under the GT-E distribution is
computed as 0.075472979 0.07213909 0.005236484

0.072139088 0.11889578 0.021543094
0.005236484 0.02154309 0.010248121

 .

Thus, the variances of the MLE of λ, α and γ are var(λ̂) = 0.075472979, var(α̂) =
0.11889578 and var(γ̂) = 0.010248121.
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Therefore, 95% confidence intervals for λ, α and γ are [−1,−0.195], [0.521, 1.873] and
[0.571, 0.968] respectively.

The LR test statistic to test the hypotheses H0 : a = b = 1 versus H1 : a 6= 1 ∨ b 6= 1
for data set is ω = 11.584 > 5.991 = χ2

2;0.05, so we reject the null hypothesis.

Table 3. Criteria for comparison.

Model K-S −2` AIC CAIC BIC

GT-E 0.0956 242.643 248.643 249.143 255.636
Beta-E 0.0962 244.455 250.455 250.621 257.447
Kw-E 0.0988 244.188 250.188 250.521 257.180
Exponential 0.512 254.228 248.643 249.143 258.559
GT-Weibull 0.267 390.266 398.266 398.766 408.687

Further, we also applied the Statistical tools for model comparison such as Kolmogorov-
Smirnov (K-S) statistics, Akaike information criterion (AIC) and Bayesian information
criterion (BIC) to choose the best possible model for the data set among the competitive
models. The statistical tools used are described as follows:

• K-S distance Dn = sup
x
|F (x)−Fn(x)|, where, Fn(x) is the empirical distribution

function,

• AIC = −2 log `
(
x
∼
, α, λ, ξ

)
+ 2p,

• BIC = −2 log `
(
x
∼
, α, λ, ξ

)
+ p log (n) ,

where, p is the number of parameters which are to be estimated from the data.

The selection criterion is that the lowest AIC and BIC correspond to the best fit model.
Thus, the generalized transmuted exponential distribution provides the best fit for the
data set as it shows the lowest AIC and BIC than other considered models, see Table
3. The P-P plots, fitted distribution functions and density functions of the considered
models are plotted in Figures 5a, 5b, 5c, 5d, 5e, 6a, 6b for the data set.
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Figure 6

12. Simulation algorithm and study

12.1. Inverse CDF method. In this subsection we provide an algorithm to generate
a random sample of size n from the GT −E (GT −E(λ, α, θ)) distribution for the given
values of its parameters and sample size n . The simulation process consists of the
following steps:

Step 1. Set n, and Θ = (λ, α, γ).
Step 2. Set initial value x0 for the random starting.
Step 3. Set j = 1.
Step 4. Generate U ∼ Uniform (0, 1).
Step 5. Update x0 by using the Newton’s formula such as

x? = x0 −
(
GΘ(x)−U
fΘ(x)

)∣∣∣
x=x0

Step 6. If | x0−x? |≤ ε, (very small, ε > 0 tolerance limit). Then, x? will be the desired
sample from F (x).

Step 7. If | x0 − x? |> ε, then, set x0 = x? and go to step 5.
Step 8. Repeat steps 4-7, for j = 1, 2, . . . , n and obtained x1, x2, . . . , xn.

12.2. Simulated data. This subsection deals with the comparisons of the proposed
estimators in terms of their mean square error on the basis of simulated sample from pdf
of GT-E with varying sample sizes. For this purpose, we take λ = 0.5 , α = 2 , γ = 0.4
arbitrarily and n = 10, 20, . . . , 100. All the algorithms are coded in R. We calculate
MLEs, estimators of λ , α and γ based on each generated sample. This process is repeated
1000 of times, and average estimates and corresponding mean as reported in Table 4.

From Table 4, it can be clearly observed that as sample size increases the mean square
error decreases, it proves the consistency of the estimators.
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Table 4. Estimates and mean square errors (in 2nd row of each cell)
of the proposed estimators with varying sample size

λ γ α

10 0.5842 0.6901 2.0532
1.3252 1.2395 0.0873

20 0.5693 0.59866 2.0302
0.3873 0.8933 0.0422

30 0.5573 0.5086 2.0181
0.2412 0.4582 0.0269

40 0.5215 0.4952 2.0146
0.1678 0.3119 0.0202

50 0.5095 0.4734 2.0123
0.1345 0.2282 0.0169

60 0.5084 0.4554 2.0106
0.0996 0.2079 0.0137

70 0.5071 0.4443 2.0101
0.0856 0.1575 0.0118

80 0.5049 0.4258 2.0100
0.0694 0.1310 0.0100

90 0.5024 0.4204 2.0104
0.0618 0.0981 0.0090

100 0.5024 0.4153 2.0087
0.0504 0.0884 0.0083

13. Characterizations of GT-G distribution

In designing a stochastic model for a particular modeling problem, an investigator will
be vitally interested to know if their model fits the requirements of a specific underlying
probability distribution. To this end, the investigator will rely on the characteriza-
tions of the selected distribution. Generally speaking, the problem of characterizing
a distribution is an important problem in various fields and has recently attracted the
attention of many researchers. Consequently, various characterization results have been
reported in the literature. These characterizations have been established in many dif-
ferent directions. In this Section, we present characterizations of GT-G distribution.
These characterizations are based on a simple relationship between two truncated mo-
ments. We like to mention here the works of Glänzel [22], [23] and [21] , Glänzel and
Hamedani [24] and Hamedani [28], [29]. in this direction. Our characterization results
presented here will employ an interesting result due to Glänzel [22] (Theorem 1 below).
The advantage of our main characterization given here is that, cdf F need not have a
closed form and is given in terms of an integral whose integrand depends on the solution
of a first order differential equation, which can serve as a bridge between probability and
differential equation.

Theorem 1. Let (Ω,Σ,P) be a given probability space and let I = [a, b] be an
interval for some a < b (a = −∞ , b =∞ might as well be allowed) . Let X : Ω→ I
be a continuous random variable with the distribution function F and let q1 and q2
be two real functions defined on I such that

E [q1 (X) | X ≥ x] = E [q2 (X) | X ≥ x] η (x) , x ∈ I ,
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is defined with some real function η . Assume that q1, q2 ∈ C1 (I) , η ∈ C2 (I) and F
is twice continuously differentiable and strictly monotone function on the set I . Finally,
assume that the equation ηq2 = q1 has no real solution in the interior of I . Then F
is uniquely determined by the functions q1,q2 and η , particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q2 (u)− q1 (u)

∣∣∣∣ exp (−s (u)) du ,

where the function s is a solution of the differential equation s′ = η′ q2
η q2 − q1

and C

is a constant, chosen to make
∫
I
dF = 1 .

We like to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence, in particular, let us assume that
there is a sequence {Xn} of random variables with distribution functions {Fn} such
that the functions q1,n , q2,n and ηn (n ∈ N) satisfy the conditions of Theorem 1 and
let q1,n → q1 , q2,n → q2 for some continuously differentiable real functions q1 and
q2 . Let, finally, X be a random variable with distribution F . Under the condition
that q1,n (X) and q2,n (X) are uniformly integrable and the family {Fn} is relatively
compact, the sequence Xn converges to X in distribution if and only if ηn converges
to η , where

η (x) =
E [q1 (X) | X ≥ x]

E [q2 (X) | X ≥ x]
.

This stability theorem makes sure that the convergence of distribution functions is
reflected by corresponding convergence of the functions q1 , q1 and η , respectively. It
guarantees, for instance, the ’convergence’ of characterization of the Wald distribution
to that of the Lévy-Smirnov distribution if α→∞ , as was pointed out in Glänzel and
Hamedani [24].

A further consequence of the stability property of Theorem 1 is the application of this
theorem to special tasks in statistical practice such as the estimation of the parameters
of discrete distributions. For such purpose, the functions q1 , q2 and, specially, η
should be as simple as possible. Since the function triplet is not uniquely determined
it is often possible to choose η as a linear function. Therefore, it is worth analyzing
some special cases which helps to find new characterizations reflecting the relationship
between individual continuous univariate distributions and appropriate in other areas of
statistics.

Remarks 2. (a) In Theorem 1, the interval I need not be closed since the condition
is only on the interior of I. (b) Clearly, Theorem 1 can be stated in terms of two functions
q1 and η by taking q2 (x) ≡ 1, which will reduce the condition given in Theorem 1
to E [q1 (X) | X ≥ x] = η (x) . However, adding an extra function will give a lot more
flexibility, as far as its application is concerned.

Proposition 4. Let X : Ω→ R be a continuous random variable and let q2 (x) =

[1 + λ− 2λ (G (x; ξ))α]−1 and q1 (x) = q2 (x)G (x; ξ) for x ∈ R. The pdf of X is (5)
if and only if the function η defined in Theorem 1 has the form
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η (x) =
α

α+ 1
(G (x; ξ)) , x ∈ R.

Proof. Let X have pdf (5) , then

(1− F (x)) E [q2 (X) | X ≥ x] = (G (x; ξ))α , x ∈ R,

and

(1− F (x)) E [q1 (X) | X ≥ x] =
α

α+ 1
(G (x; ξ))α+1 , x ∈ R

and finally

η (x) q2 (x)− q1 (x) = − 1

α+ 1
q2 (x)G (x; ξ) < 0 , x ∈ R .

Conversely, if η is given as above, then

s′ (x) =
η′ (x) q2 (x)

η (x) q2 (x)− q1 (x)
= −αg (x; ξ)

G (x; ξ)
, x ∈ R ,

and hence

s (x) = − log((G (x; ξ))α) , x ∈ R.

Now, in view of Theorem 1, X has pdf (5) .

Corollary 1. Let X : Ω→ R be a continuous random variable and let q2 (x) be
as in Proposition 1. The pdf of X is (5) if and only if there exist functions q1 and
η defined in Theorem 1 satisfying the differential equation

η′ (x) q2 (x)

η (x) q2 (x)− q1 (x)
= −αg (x; ξ)

G (x; ξ)
, x ∈ R.

Remarks 3. (a) The general solution of the differential equation in Corollary 1 is

η (x) = (G (x; ξ))−α
[∫

αq1 (x) g (x; ξ) (G (x; ξ))α−1 (q2 (x))−1 dx+D

]
,

for x ∈ R , where D is a constant. One set of appropriate functions is given in
Proposition 1 with D = 0.

(b) Clearly there are other triplets of functions (q1,q2, η) satisfying the conditions of
Theorem 1. We presented one such triplet in Proposition 4.
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14. Concluding Remarks

We introduce and study a new class of distributions called the Generalized Transumted-
G (GT-G) family, which include as special cases, Transmuted-G and Proprtional Reversed
Hazard Rate family. For each baseline distribution G, we define the corresponding GT-
G distribution with two additional shape parameters using simple formulas to extend
widely-known models such as the normal, exponential and Weibull distributions in or-
der to provide more flexibility. Some characteristics of the new family, such as ordinary
moments, generating function and mean deviations, have tractable mathematical prop-
erties. We estimate the parameters using maximum likelihood. An application to real
data demonstrate the importance of the new family. Finally, certain characterizations of
GT-G distributions are presented.

References

[1] Alexander, C., Cordeiro, G. M., Ortega, E. M., & Sarabia, J. M. (2012). Generalized beta-

generated distributions. Computational Statistics & Data Analysis, 56(6), 1880-1897.

[2] Alizadeh, M., Cordeiro, G. M., de Brito, E., & Demétrio, C. G. B. (2015). The beta
Marshall-Olkin family of distributions. Journal of Statistical Distributions and Applica-

tions, 2(1), 1-18.

[3] Alizadeh, M., Emadi, M., Doostparast, M., Cordeiro, G. M., Ortega, E. M., & Pescim, R.
R. (2015). A new family of distributions: the Kumaraswamy odd log-logistic, properties

and applications. Hacettepe Journal of Mathematics and Statistics (to appear).

[4] Alizadeh, M., Tahir, M. H., Cordeiro, G. M., Mansoor, M., Zubair, M., & Hamedani, G. G.
(2015). The Kumaraswamy Marshal-Olkin family of distributions. Journal of the Egyptian

Mathematical Society.
[5] Alzaatreh, A., Lee, C., & Famoye, F. (2013). A new method for generating families of

continuous distributions. Metron, 71(1), 63-79.

[6] Alzaghal, A., Famoye, F., & Lee, C. (2013). Exponentiated T -X Family of Distributions
with Some Applications. International Journal of Statistics and Probability, 2(3), p31.

[7] Amini, M., MirMostafaee, S. M. T. K., Ahmadi, J. (2014). Log-gamma-generated families

of distributions. Statistics, 48(4), 913-932.
[8] Andrews, D. F., Herzberg, A. M. (2012). Data: a collection of problems from many fields

for the student and research worker. Springer Science Business Media.

[9] Aryal, G. R. (2013). Transmuted log-logistic distribution. Journal of Statistics Applications
& Probability, 2(1), 11-20.

[10] Aryal, G. R., & Tsokos, C. P. (2009). On the transmuted extreme value distribution with

application. Nonlinear Analysis: Theory, Methods & Applications, 71(12), e1401-e1407.
[11] Aryal, G. R., & Tsokos, C. P. (2011). Transmuted Weibull Distribution: A Generalization of

theWeibull Probability Distribution. European Journal of Pure and Applied Mathematics,
4(2), 89-102.

[12] Bourguignon, M., Silva, R. B., & Cordeiro, G. M. (2014). The WeibullÔÇôG family of
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