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ABSTRACT

DESIGN DAY ANALYSIS - FORECASTING EXTREME DAILY NATURAL GAS

DEMAND

David Kaftan, B.S.

Marquette University, 2018

This work provides a framework for Design Day analysis. First, we estimate

the temperature conditions which are expected to be colder than all but one day in

N years. This temperature is known as the Design Day condition. Then, we

forecast an upper bound on natural gas demand when temperature is at the Design

Day condition.

Natural gas distribution companies (LDCs) need to meet demand during

extreme cold days. Just as bridge builders design for a nominal load, natural gas

distribution companies need to design for a nominal temperature. This nominal

temperature is the Design Day condition. The Design Day condition is the

temperature that is expected to be colder than every day except one in N years.

Once Design Day conditions are estimated, LDCs need to prepare for the Design

Day demand. We provide an upper bound on Design Day demand to ensure LDCs

will be able to meet demand.

Design Day conditions are determined in a variety of ways. First, we fit a

kernel density function to surrogate temperatures - this method is referred to as the

Surrogate Kernel Density Fit. Second, we apply Extreme Value Theory - a field

dedicated to finding the maxima or minima of a distribution. In particular, we apply

Block-Maxima and Peak-Over-Threshold (POT) techniques. The upper bound of

Design Day demand is determined using a modified version of quantile regression.

Similar Design Day conditions are estimated by both the Surrogate Kernel

Density Fit and Peaks-Over-Threshold methods. Both methods perform well. The

theory supporting the POT method and the empirical performance of the SKDF

method lends confidence in the Design Day conditions estimates. The upper bound

of demand on these conditions is well modeled by the modified quantile regression

technique.
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CHAPTER 1

Introduction to Design Day Analysis

This work provides a framework for Design Day analysis. First, we estimate

the temperature conditions which are expected to be colder than all but one day in

N years. This temperature is known as the Design Day condition. Then, we

forecast an upper bound on natural gas demand when temperature is at the Design

Day condition.

This chapter provides an introduction to the problem. First, we describe the

natural gas industry. We also describe the GasDay Lab, from which the work in this

thesis originates. Finally, we introduce broadly the problem addressed in this thesis:

planning for the Design Day.

1.1 The United States Natural Gas Industry

Natural gas typically refers to methane gas (CH4) - a fossil fuel by product of

biological decomposition. Much of the natural gas in the United States is produced

from shale plays, or sedimentary rock with natural gas trapped in its pores. Natural

gas has become the largest source of energy in the United States [12]. The large
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increase in U.S. natural gas production can be attributed to technological 

advancements in refining shale.

Figure 1.1: Energy production in United States [43]

Natural gas production has greatly increased in recent years. In 2010, it overtook

coal as the largest source of energy in the United States [43].

The U.S. Energy Information Administration categorizes the uses of natural

gas into five cases: electric power, industrial, residential, commercial,

transportation. Local Distribution Companies (LDCs) are responsible for delivering

natural gas to industrial, residential, and commercial end users. Depending on state

regulations, the end users may buy gas directly from the LDC or from marketers.

LDCs are still responsible for delivering gas bought by end users from marketers.

It takes time for LDCs to bring gas onto their system. LDCs purchase gas in
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units of dekatherms (Dth) - a unit of energy. They must forecast future gas demand

on their system to supply it on time. An error in forecasting leads to errors in

supply. If too much gas is planned, LDCs may face a penalty for leaving gas in the

pipeline. If too little gas is planned, LDCs may have to buy expensive gas on the

spot market, or - in the extreme case - run out. Therefore, good natural gas

forecasting plays a vital role in the economics and safety of the natural gas

infrastructure.

1.2 Marquette University GasDayTM

Marquette University GasDayTM is a research lab and small business that

develops tools to forecast natural gas for LDCs. Our flagship product forecasts daily

natural gas demand with an eight day horizon. 37 LDCs across the United States

have signed license agreements with Marquette University GasDayTM, providing

over one million days of historical natural gas demand data. Our business has

expanded to include analysis of extreme cold scenarios, known as Design Days.

1.3 Forecasting Natural Gas Demand

To plan for meeting natural gas demand during extreme cold events, we must

forecast natural gas demand. Demand is forecast for regions of customers known as

operating areas. Several methods are used for forecasting natural gas demand. Two
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of the most common modeling techniques are linear regression and artificial neural

networks. These two modeling techniques are common ways to map inputs - such as

daily temperature - to predicted demand [32, 44].

The inputs that are used in natural gas forecasting fall into three categories:

weather, calendar, and autoregressive.

1.3.1 Weather Effects on Gas Demand

Natural gas is used largely for heating space. If the temperature is cold, the

demand increases. Temperature is the largest factor driving demand for most of the

LDCs that GasDay supports. Due to the non-linear relationship between

temperature and demand, we transform temperature. The most common

transformation is the Heating Degree Day (HDD). This is calculated accordingly

HDD = max(Reference − Temperature, 0), (1.1)

providing a piece-wise linear relationship. The Reference is the temperature below

which the relationship between demand and HDD is approximately linear. Typical

values for Reference include 65 (HDD65) and 55 (HDD55). In Figure 1.2, HDD55

would fit the data much better than HDD65. Alternatively, we could use both

HDD55 and HDD65 as inputs.
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Figure 1.2: Natural gas demand vs temperature at midwestern utility

Natural gas demand increases during cold weather. HDD55 captures the approx-

imately linear relationship between demand and temperature when temperature is 
less than 55 oF .

While temperature on the day of forecasting is the primary driver of

demand, temperature on the previous day and wind also affect demand. In order to

incorporate wind into linear models, we adjust the HDD accordingly [44]:

HDDW =


Wind Speed+152

160
× HDD, Wind Speed ≤ 8

Wind Speed+72
80

× HDD, Wind Speed > 8.

(1.2)
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.

To address the affect of the prior day temperature, Kaefer introduces a

metric known as Prior Day Weather Sensitivity (PDWS) [24]. PDWS is the ratio of

coefficients −β2
β1

in the linear regression model flow = β0 + β1HDD + β2∆HDD,

where ∆HDD is the change in temperature from yesterday. Ishola calculates

PDWS at different temperatures. Ishola shows that PDWS is smaller in magnitude

as the temperature gets colder [41]. Figure 1.3 shows the raw PDWS at different

temperatures along with an exponential fit.

Figure 1.3: Prior Day Weather Sensitivity

Ishola fit this linear regression model to different subsets of data. The subsets of

data are created by sliding a window. He fit an exponential decay to the relationship

between temperature and PDWS. This provides evidence that there is a temperature

dependency to PDWS.
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Of course, there are drivers of demand outside of weather. These may impact

the demand during an extreme cold event, so we discuss them below.

1.3.2 Non-Weather Effects on Gas Demand

Natural gas demand is highly dependent on the calendar. In particular, the

day of week affects the gas demand. More gas is used during the week due

commercial and industrial use [44]. The gas demand on the previous day has also

been shown to be a good predictor of gas demand on the current day [44].

GasDay employs these forecasting techniques to assist LDCs in preparing for

the Design Day.

1.4 The Design Day

Just as bridge builders design their bridges to withstand a nominal load,

LDCs design their systems to withstand a nominal day of gas demand. The

Design Day is a hypothetical day invented by an LDC to characterize an extreme

case of daily natural gas demand. LDCs use the Design Day as a benchmark on

which to base their long term plans. The Design Day typically is characterized by

the temperature that could drive an extreme amount of natural gas demand, known

as the Design Day conditions.
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1.4.1 Estimating Design Day Conditions

Design Day conditions are the weather conditions (typically temperature)

that are expected to be more extreme than all but one day in the next N years. For

this reason, the Design Day conditions also are known as the One-in-N conditions.

LDCs face the challenge of estimating the Design Day conditions. Consider

estimating the One-in-40 condition. The definition of the One-in-40 condition can

vary from LDC to LDC. For some LDCs, the One-in-40 temperature is expected to

be exceeded 1
40

times this year. Some LDCs are concerned only with the coldest day

of the year; they want the temperature that is expected to be exceeded at least once

in a year with a 1
40

probability. These two definitions correspond to Block-Maxima

and Peaks Over Threshold approaches in extreme value theory, respectively.

Estimating temperatures in the extreme tail of the temperature distribution is the

main challenge of estimating Design Day conditions. Once the Design Day

conditions are estimated, we can estimate the Design Day demand.

1.4.2 Estimating Design Day Demand

Design Day demand is the demand expected to occur on a day with

Design Day conditions. We cannot be exactly sure what the flow will be on a day

with Design Day conditions. For this reason, it is important to quantify the

uncertainty in Design Day demand. For example, we might forecast 100 MDth of
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gas demand on a day with Design Day conditions. It would be more helpful to say

that we are 99% certain demand will be less than 110 MDth. The practitioner could

prepare for 110 MDth to mitigate the risk of being under-prepared for the Design

Day.

1.4.3 Quantifying Performance of Design Day Analysis

Its important to analyze the performance of our Design Day analysis in a

way that reflects its usefulness to GasDay’s customers. The predicted Design Day

conditions should be exceeded once every N years. The forecast of Design Day

demand should accurately reflect the uncertainty of demand given Design Day

conditions.

1.5 Problem Statement

The problem addressed in this thesis is threefold. First, we estimate Design

Day conditions. Second, we quantify the uncertainty in demand on the Design Day.

Finally, we quantify the usefulness of our analysis to our customers.
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1.6 Thesis Roadmap

Following this introduction, Chapter 2 provides the background of Design

Day analysis. Chapter 2 provides the resources and tools that are applied and

extended in Chapter 3. Chapter 3 proposes methods for determining Design Day

conditions, Design Day demand, and evaluating their performance. These methods

are experimented on in Chapter 4. Chapter 5 summarizes the thesis and outlines

future work.
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CHAPTER 2

Design Day Analysis State-of-the-Art

The purpose of this chapter is to discuss background required to understand

this thesis, state-of-the-art of Design Day analysis, and related research. The first

section discusses the state-of-the-art methods for determining Design Day

conditions. The second section discusses the state of the art methods for

determining Design Day demand. The third and final section discusses the state of

the art methods for evaluating the performance of Design Day conditions and

Design Day demand forecasts.

2.1 Determining the Design Day Conditions

Determining the Design Day conditions is the first step in Design

Day analysis. Design Day conditions can be determined in many ways. In this

section, we will cover the current practices in industry and Extreme Value Theory -

a field that looks at the statistics of unlikely events.
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2.1.1 Current Practice in Industry

Practitioners typically determine the Design Day conditions one of two ways.

Some LDC’s choose the coldest day in the last N years (N typically ranges from 10

to 50). Other LDC’s fit a distribution to temperatures and choose the temperature

with the cumulative density function equal to 1/N [10]. GasDay has come across

LDCs who use more advanced techniques. One anonymous LDC described using the

Gumbel Distribution - a method that will be described in 2.1.2. Many LDCs rely on

GasDay to provide Design Day conditions. GasDay has developed its own method

for determining the Design Day condition - Surrogate Data Kernel Density Fit.

Surrogate Data Kernel Density Fit

The Surrogate Data Kernel Density Fit (SKDF) is described fully in [25]. Its

process is broken down into two steps. First, temperature data is augmented with

the use of surrogate data. Second, a kernel density function is fit to the data.

The temperature data augmentation increases the amount of data in the cold

tail of the temperature distribution using surrogate data. Consider every

temperature that has ever been recorded at a particular weather station on January

1st. The SKDF estimates what those temperatures would have looked like on

January 2nd. First, January 1st temperatures shifted by the difference between the
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mean January 2nd temperature and the mean January 1st temperature. Next, the

January 1st temperatures are scaled by the ratio of lower standard deviations of

January 2nd to 1st. The transformed January 1st temperatures now have the same

mean and standard deviation as January 2nd. If the set of transformed

temperatures is merged with the set of temperatures on January 2nd, there are now

twice as much data on January 2nd. We call these new temperatures surrogate data

because they were transformed from a surrogate source. This can be repeated by

transforming the temperatures that occurred on December 31 or January 3rd.

GasDay does this for the closest 90 calendar days - resulting in 91 times the original

amount of data for January 2nd. This entire process is repeated for every day in

winter, resulting in 91 times the original number of winters in the dataset. The

result of the surrogate data method is visualized in Figure 2.1. D’Silva derived a

method for determining the coldest 91 days of the year [11]. Using D’Silva’s method

instead of the calendar winter season ensures that the coldest day of each year will

be included in the set of cold temperatures.

A kernel density function is fit to all surrogate temperatures in the winter.

The One-in-N temperature can be determined by finding the temperature at which

the cumulative density function equals 1
N∗NumberofDaysInWinter

.

The SKDF is shown to perform well in practice [25]. For a more theoretical

perspective, we turn to Extreme Value Theory.
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(A)

(B)

Figure 2.1: Surrogate and empirical temperature Quantiles

The daily average temperatures for each day of year are sorted and plotted according

to their rank. The coldest temperature for each day of year appears in dark blue,

while the hottest appears in dark red. (A) shows 45 years of raw temperature data,

while (B) shows the dataset after the surrogate data transformation. Clearly, the

surrogate data provides a more coherent picture of temperature distributions across

the year.
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2.1.2 Extreme Value Theory

Scientists have been looking into the extreme tails of distributions for

centuries. As early as 1709 Nicholas Bernoulli determined the greatest expected

duration of life for a group of men [30]. Since then, Extreme Value Theory has

birthed two classes of methods: Block-Maxima and Peaks over Threshold.

Block-Maxima

The Block-Maxima approach to extreme values focuses on modeling the

maximum (or minimum) value of a sampled distribution. For example, a normal

distribution is sampled 100 times, and the samples are ordered minimum to

maximum. This process is repeated to get several sets of 100 samples, each ordered

minimum to maximum. The maximum sample will vary each time 100 samples are

taken. The Block-Maxima approach attempts to model the distribution of

maximum samples.

In practice, the name “Block-Maxima” is much more intuitive. Consider a 50

years of temperature data. The 50 years are broken up into 1-year blocks. The

maximum of each block is taken, and the distribution of maxima is modeled. The

characteristics of this distribution are the foundations of extreme value theory.

The field of extreme values was first laid out in 1928 when R.A. Fisher and
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L.H.C. Tippet developed three distributions to which the block maxima taken from

different distributions converge [16]. These include the Gumbel, Fréchet [13], and

Weibull. Their cumulative distribution function is

F (x) =


exp(−(1 + ξ(x− µ)/σ)(−1/ξ)), if ξ 6= 0

(2.1)

exp(exp(−(x − µ)/σ)), if ξ = 0

where µ is the mean, σ is the scale, and ξ is the shape. When ξ > 0, it is a Type II 

distribution - also known as the Fréchet distribution. When ξ < 0, it is a Type III 

distribution - the mirror of a Weibull distribution. When ξ = 0, it is a Type I 

distribution - the mirror of a Gumbel distribution. Together, Equation (2.1) is 

known as the Generalized Extreme Value (GEV) distribution.

-1.5 -1 -0.5 0 0.5 1 1.5

x

0

0.5

1

1.5

2

F
(x

)

Figure 2.2: Generalized Extreme Value probability density functions

Applying the GEV distribution is straightforward for temperatures. As
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)

Figure 2.3: Generalized Extreme Value cumulative density functions

mentioned before, temperatures are split up into annual blocks. This is typical

practice for weather extremes [2]. The GEV distribution is fit to the set of yearly

maxima. The GEV distributions model the maximum of temperature distributions -

for Design Day conditions, we are interested in the minimum. This can be remedied

by simply multiplying our temperature data by -1.

The history of the Block-Maxima approach makes it a very appealing choice

for determining Design Day conditions. It was both developed for and applied to

determining the statistics of extreme weather events; estimating Design Day

conditions requires modeling the statistics of extreme cold temperatures. Gumbel

developed Block-Maxima approaches in his analysis of floods (1941, 1944, 1945,

1949) [30]. More recently, Hasan et al. used GEV distributions to characterize

annual maximum temperatures [17].
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Peaks Over Threshold (POT)

The implementation of the Peaks Over Threshold follows its name; set a

threshold that is expected to be exceeded infrequently and fit a distribution to the

data that exceeds the threshold. This is fundamentally modeling something very

different from the Block-Maxima method. While the Block-Maxima method models

only the coldest temperature of each year, the POT method is independent of time;

it models the coldest temperatures no matter when they occurred. The idea of

modeling the peaks over a threshold is described in detail by Davison and Smith [9].

The peaks over a threshold are often fit to a Generalized Pareto distribution, whose

cumulative density function is

F (x) =


1− (1 + ξ(x− µ)/σ)−1/ξ, if x 6= 0

1− exp(−(x− µ)/σ), if x = 0.

(2.2)

Much of the motivation for using the Generalized Pareto distribution comes

from analysis of the GEV distribution. Consider the following scenario for random

process X. If the times between exceedances over the threshold follow a Poisson

distribution, and the exceedances follow a Pareto distribution, then the

Block-Maxima of X follows a Generalized Extreme Value distribution [9].

In addition to its relationship to extreme value distributions, there are
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Figure 2.4: Probability density function for Generalized Pareto distribution

Figure 2.5: Cumulative density function for Generalized Pareto distribution

several useful properties of the Generalized Pareto distribution that hold given a

high enough threshold. However, if the threshold is too high, there will not be

enough data on which to fit the distribution. Therefore, one of the engineering

challenges for using the Generalized Pareto distribution - and POT methods in

general - is to determine what threshold to set. Typically, the threshold is set
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analytically. A tool for analyzing where the threshold belongs arises from a property

of the Generalized Pareto distribution; the average exceedence of the threshold

should be linear with the threshold. Choosing a linear region in a plot of mean

exceedence vs. threshold produces a valid threshold [2]. It may not be feasible to

determine visually a valid threshold; it prevents the POT method from being

automated. In this case, the threshold is set to some empirical quantile [39]. For

example, we might choose to fit the Generalized Pareto distribution to the coldest

two percent of days for each dataset.

Similar to the Block-Maxima method, the history of the POT method makes

it appealing for determining Design Day conditions. Much of the POT research is

motivated by characterizing extreme climate. Determining Design Day

conditions requires modeling the distribution of extreme cold temperatures.

Davison and Smith apply POT methods to model the distributions of extreme river

flows and wave heights [9]. Gong applied the Generalized Pareto distribution to

identify extreme temperature events [15].

We now have the background required to estimate Design Day conditions.

We next look at the background required to determine Design Day demand based

on these conditions.
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2.2 Determining the Design Day Demand

Finding the demand associated with the Design Day conditions is an

essential part of preparing for the Design Day. At the end of the day, LDCs will

need to be prepared to meet demand on a Design Day. To assist LDCs in meeting

demand, we explore two fields of literature: forecasting during extreme cold events

and probabilistic forecasting.

2.2.1 Gas Forecasting During Extreme Cold Events

Understanding the relationship between demand and extreme cold weather is

the primary challenge of forecasting the Design Day demand. Extreme cold days

are the most important days to have accurate gas forecasts. Because more gas is

used when it is extremely cold, more is at stake if a forecast performs poorly. For

this reason, much research has been dedicated to forecasting during cold conditions.

For example, Broehl used a linear regression model to estimated the natural gas

demand given extreme cold weather [3]. Brown et al. built regression models from

monthly data to forecast Design Day demand [4].

The primary challenge of forecasting energy during extreme cold events is

overcoming the inherent data sparsity. Extreme cold events happen rarely, so there

is always relatively less demand data on which to build a model. Kaefer addresses
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this problem directly by transforming surrogate data from multiple operating areas

to behave like a single operating area [24]. The resulting dataset has more data on

the extreme cold days.

2.2.2 Probabilistic Forecasting

There will always be some amount of error when forecasting demand,

especially during extreme cold days. LDCs are interested in the probability that the

actual demand is much higher than the forecast - particularly during the Design

Day; it is safer to be over-prepared for the Design Day than under-prepared.

Instead of providing a single estimate (known as a point forecast) for the Design

Day demand, we can provide a CDF of possible demand given the Design Day

conditions (known as a probabilistic forecast). The usefulness of a probabilistic

forecast is illustrated in Figure 2.6. Both plots (left and right) show simulated data

that is unrealistically easy to forecast. The plot on the left shows a point forecast

with respect to HDD. The point forecast is sufficient for determining the expected

demand for some HDD. However, if a practitioner is more interested in the demand

that has a 10% chance of being exceeded, they need to use the probabilistic forecast

(right).

Probabilistic forecasting has been a popular topic in energy research. Saber

created probabilistic forecast of hourly gas demand by fitting a distribution to the
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Figure 2.6: Point Forecast vs. Probabilistic Forecast

This figures above contain synthetic demand and HDD data. The left shows the least-

squares regression line superimposed on the data. The right shows different probability 
bands from the quantile regression. Each band contains approximately 10% of the 
points. The plot on the right shows there is a 10% chance the demand will exceed 54 
Dth given HDD= 40.

validation error of a forecast model [38]. Hong et al. [19] create probabilistic

forecasts of monthly peak electric loads. Hong also provides a tutorial review of

probabilistic forecasting in [20]. In particular, there is a large tutorial on

probabilistic short term load forecasting - a section that is important to Design Day

analysis as it focuses on forecasting single day demand. One of the main methods

discussed is quantile regression.
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Quantile Regression

Quantile regression was first introduced by Koenker and Bassett [27] as a

method to find a linear relationship between the probability distribution of a target

variable (i.e., flow) and some input variable (i.e., temperature). In other words, it is

a method for deriving a conditional cumulative density function. The quantile is

simply another word for the probability the variable of interest will be less than a

threshold. For random variables X and Y , consider the equation Y = Xθ. To find

the nth quantile, θ satisfies

P (Y < Xθ) =
n

100
. (2.3)

θ can be estimated via quantile regression. Quantile regression estimates θ by

minimizing the Pinball Loss Score -

Pinball Loss(x, y, θ, q) =
2

N

N−1∑
i=0


q|xiθ − y|, for (xiθ − y) < 0

(1− q)|xiθ − y|, for (xiθ − y) > 0,

(2.4)

where q is the quantile of interest divided by 100, N is the number of samples in the

set, x is the input matrix, and y is the target variable. Note that the Pinball Loss is

equivalent to the mean absolute error when q = 0.5.

There are several methods for minimizing the Pinball Loss Score, starting
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Figure 2.7: Pinball Loss Function for Two Different Quantiles

The Pinball Loss function for the 50th quantile (left) is equivalent to mean absolute 
error. On the right is the Pinball Loss for the 75th quantile. Notice that there is a larger 
penalty when xiθ < y. This is intuitive, because the quantile should fit above 75% of all 
y.

with gradient descent. Because the gradient is undefined when xiθ − y = 0, Zheng 

proposes smoothing the Pinball Loss function around xiθ − y = 0 such that the 

gradient is continuous. Zheng found that gradient descent on a smoothed Pinball 

Loss had higher accuracy than other gradient descent methods [48]. Hunter

developed a majorize-minimize method for determining θ [23]. The most popular 

method is formulating quantile regression as a linear programming problem [29]. 

Quantile regression can then be solved by the simplex method [29] or by an interior

point method [28] - two common linear programming techniques.

Quantile regression is unstable at extremely high quantiles. Modifications to 

quantile regression have been made to stabilize the extreme high quantiles. Wang et

al. suggests using composite quantile regression [46], which constrains several
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quantile regression models to have the same slope; the bias term distinguishes the

different quantiles. For example, consider modeling demand with respect to HDD. If

we want the model for the 99th quantile, we estimate the models for the 99, 89, and

79th quantiles. We constrain the HDD coefficients to be the same for each of the

models, but allow the bias terms to differ. The 99th quantile is represented by the

shared HDD coefficient and its unique bias term.

Composite quantile regression minimizes the weighted sum of the Pinball

Loss function across different quantiles. This method was first introduced by Hogg

in personal communication with Koenker [18]. The method is described in detail in

[26]. Wang originally uniformly weighted the loss of each quantile, but later found

that optimally weighting the Pinball Loss function for each quantile leads to an

improvement in efficiency [47].

We have now discussed sufficient background to forecast Design Day

conditions and demand. We now discuss the desired properties of these forecasts.

2.3 Forecasting Performance Metrics

Once Design Day conditions and demand have been forecast, their usefulness

needs to be quantified. In this section, we discuss what properties of the forecasts

matter to the practitioners: metrics used to quantify performance of Design Day
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condition forecasts, and metrics used to quantify performance of the probabilistic

forecasts.

2.3.1 What Matters to the Practitioner?

Practitioners want Design Day conditions to be exceeded - on average - once

every N years. Practitioners are also concerned when Design Day conditions change

each year they are calculated. Design Day conditions are often used to plan more

than one year in the future [1]. If Design Day conditions that are forecast in 2016

differ greatly from the conditions forecast in 2017, LDCs will have to greatly change

their long term plans. Therefore, it is important that Design Day

condition forecasts do not change much over time.

Practitioners want point forecasts of Design Day demand to be as accurate

as possible. They also want the probabilistic forecast to accurately reflect the

certainty of the forecast on the Design Day. For example, the 99th quantile should

have a 1% chance of being exceeded on the Design Day.

2.3.2 Design Day Condition Metrics

D’Silva proposes a method to evaluate the performance of Design Day

conditions [25]. The method consists of evaluating the number of times a Design

Day condition is exceeded, then comparing that with the number of expected
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exceedances of the condition. The actual number of exceedances is divided by the

expected number of exceedances and called the actual-vs-expected ratio. The closer

the actual-vs-expected ratio is to 1, the better the performance.

To address the need for Design Day conditions to not change drastically over

time, we use the volatility metric Seaman introduced for retail sales forecasting [40]:

volatility =
nY ears−1∑
iY ear=0

(ForecastiY ear − ForecastiY ear+1)
2. (2.5)

Ideally, the volatility of a forecast is low, meaning that it does not change much over

time. Taking the squared difference year-to-year makes sense in the context of a

changing climate. While a changing climate might cause a trend in the Design Day

condition forecast, we would expect the change to be slow over time. We would not

expect huge peaks or valleys year to year, which taking the squared difference

amplifies.

2.3.3 Probabilistic Forecasting Metrics

There are three concepts that determine the performance of a probabilistic

forecast. The first concept - reliability - refers to a quantile having the correct

number of data points above and below it given a large data set [36]. Reliability is

sometimes referred to as calibration. Sharpness refers to the width of the confidence
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bounds. For example, it is more useful to have a forecast that says there is a 90%

chance that the demand between 4.99Dth and 5.01Dth than between 4Dth and

6Dth. Tighter probability bounds yield more useful forecasts. Resolution refers to

the changing in probabilities based on the feature variables in a model. Consider the

simplest probabilistic demand forecast - fitting a distribution to all demand. The

forecasting method could have good reliability, but it tells us nothing about how the

distributions ought to change with temperature.

The difficulty in evaluating the performance of a probabilistic forecast is that

we do not know the ground truth of our forecast; the true probability distribution of

demand for a day is unknown. There are several methods for evaluating

performance of probabilistic forecasts. The most straightforward way to evaluate

performance is to use the Pinball Loss - the loss on which quantile regression is

optimized. The Pinball Loss function does not ensure reliability. Reliability is often

considered to be the most important measure of probabilistic forecasting; it is to

this effect that many papers suggest improving sharpness dependent on keeping the

model reliable [34]. This implies a need to quantify reliability.

For each probabilistic forecast, there is only one observation of demand. How

then, can we determine reliability, which is characterized by having the correct

number of observations between quantiles? In practice, this problem is solved using

the Probability Integral Transform (PIT). The PIT classifies a demand observation
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by the quantiles of the probabilistic forecast it falls between. For example, if the

observed demand is between the 70th and 80th forecast quantiles, it is placed into

the 0.7 ≤ F (x) < 0.8 bin. This transformation is made for every forecast, resulting

in a set of observed classes. We know the number of points that should be a part of

each class (i.e., 10% of the points should be between the 70th and 80th quantiles).

Most methods for quantifying reliability involve examining the PIT diagram shown

in Figure 2.8 [14]. Transforming to a uniform distribution allows us to aggregate

every observation of demand - each of which comes from a different distribution -

into a single distribution. If the aggregated data is near uniform distributed, then

our predicted distribution is close to the correct distribution, as shown in Figure

2.8. Saber suggests taking the mean absolute difference of a modified PIT diagram

and the nominal percent of points in each bin [38]; this metric is known as the

percentage quantile calibration score (PQCS).

We now have a background in the state-of-the-art methods for determining

Design Day conditions and Design Day demand. Next, we develop the background

into Design Day analysis.
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Figure 2.8: Probability Integral Transformation Diagram

(Above) The cumulative density function of X is displayed in purple. The background

colors represent the 10% of the distribution. The black dots along the x-axis represent

samples of X. (Below) The samples of X are input to the cumulative density function

F (x). The output of that function for all samples is made into the histogram. Given

enough samples, the histogram approaches a uniform distribution (with height of the

dotted black line) if F (x) is the true cumulative density function of X.



32

CHAPTER 3

Methods for Design Day Analysis

In this chapter, we discuss our methods for Design Day analysis. First, we

work through methods for determining the Design Day conditions. Next, we develop

methods for forecasting the Design Day demand and the uncertainty in that

forecast. Finally, we develop methods for evaluating the quality of our Design Day

conditions and Design Day demand forecast.

3.1 Forecasting Design Day Conditions

Estimating Design Day conditions is split into two steps. First, we adjust

temperature to make it a better predictor of natural gas demand. Then, we fit

distributions to the adjusted temperature. Finally, we evaluate the model for the

One-in-N condition.

3.1.1 Adjusting Temperature

As mentioned in Section 1.3.1, temperature is not the only influence of

natural gas demand. Wind and the temperature from the previous day also make an

impact. Rather than separately model the One-in-N condition for wind or previous
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day, we adjust temperature. By adjusting temperature, we can incorporate wind

and prior day temperature into our One-in-N condition without needing to model a

multivariate distribution. Using an adjusted temperature, we can get a better

predictor of natural gas demand than with temperature alone.

Wind is one of the primary predictors of natural gas demand. The equation

for wind adjusted temperature - derived from Equations (1.1) and (1.2) - is

Wind Adjusted Temp =


65− (65− Temp)Wind Speed+152

160
,Wind Speed ≤ 8

65− (65− Temp)Wind Speed+72
80

,Wind Speed > 8.

(3.1)

Similar to HDDW, a temperature combined with a wind speed less than 8

miles per hour results in a warmer temperature. A wind speed greater than 8 miles

per hour results in a colder temperature, as seen in Figure 3.1. We therefore expect

more gas to be demanded on days with high wind.

To adjust temperature by the prior day effect, we first calculate the Prior
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Figure 3.1: Wind adjustment for temperature = 30

Given a temperature of 30 degrees F, the wind adjusted temperature across a range 
on wind values is display above. A wind less than 8 mph adjusts the temperature 
warmer. A wind greater than 8 mph adjusts the temperature colder. A wind greater 
than 8 mph has a greater impact on the adjusted temperature, hence the steeper 
slope when wind > 8 mph.

Day Weather Sensitivity (PDWS) according to the method described in Section

1.3.1. For each day k, we calculate the prior day adjusted temperature

Prior Day Adjusted Tempk = (1 + PDWS)Tempk − (PDWS)Tempk−1. (3.2)

The effect of the prior day adjustment for PDWS = −0.3 is demonstrated by Kaefer

in Figure 3.2.
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Figure 3.2: Prior Day Adjusted Temperature [24]

Given a PDWS = −0.3, the forecast demand is adjusted as if the temperature is 30% 
of yesterday’s temperature and 70% of today’s temperature.

Now that we have adjusted temperatures to be better predictors of flow, we can 

determine the Design Day conditions. The first step to determining the Design Day 

conditions is to fit distributions to the cold tail of the adjusted temperatures.

3.1.2 Fitting Distributions to Adjusted Temperatures

We fit a Generalized Extreme Value distribution in the Block-Maxima 

approach using maximum likelihood estimation. We fit a Generalized Pareto
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distribution in the Peak Over Threshold approach. We also use the SKDF method

described in Section 2.1.1. The SDKF is philosophically a Peak Over Threshold

approach because this method fits a kernel density function - a local fit - to

temperatures. Descriptions of these distributions can be found in Chapter 2.

To use these distributions we need to set a few hyperparameters manually.

To use the Peak Over Threshold approach, we need to set a threshold from which to

subtract the peaks. We also need to choose the method of optimizing the

parameters of the distribution. For the Surrogate Kernel Density Fit approach, we

need to determine the season length and the number of surrogate days to use.

To determine the threshold for the Peaks Over Threshold method, we choose

the threshold which is exceeded on average five times per year. Having such a high

threshold helps to ensure that exceedences are independent - an ideal characteristic

for the Generalized Pareto Distribution [2]. We fit the Generalized Pareto

Distribution to these exceedences using method of moments as it has been shown to

perform well on data sets with around 100 data points [21]. The method of moments

determines the scale σ and shape ξ parameters of a Generalized Pareto distribution.

If x̄ is the sample mean and s2 is the sample variance, the scale parameter is

σ = x̄(x̄2/s2 + 1). (3.3)
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The shape parameter is

ξ =
1

2
(x̄2/s2 − 1). (3.4)

The Surrogate Kernel Density Fit is dependent on the hyperparameters

season length and number of surrogate days to use. D’Silva recommends that we use

91 days. D’Silva claims 91 days is broad enough to include enough days to fit a

model too, yet narrow enough to include only the coldest days of the year [11].

Choosing the number of surrogate days to use follows a similar thought

process. We want to use as many days as possible, however, a temperature on the

4th of July cannot reasonably be used as a surrogate day for the 1st of January. We

have found empirically that 91 days does a reasonable job of creating enough data

while using reasonably similar days as surrogates. Using these hyperparameters, the

SKDF is fit according to Section 2.1.1.

Next, the Design Day conditions are estimated from each of these three

distributions.

3.1.3 Estimating Conditions from Statistical Models

For each of the distributions used, we can determine the

One-in-N temperature by taking the inverse of the cumulative density function.
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Once a condition is estimated from each distribution, we can create an ensemble

condition using combinations of the individual estimates.

To estimate the One-in-N temperature for the Generalized Extreme Value

distribution, we evaluate the inverse cumulative density function at 1/N . To

estimate the One-in-N temperature from the SKDF, we take the inverse cumulative

density function of 1/(91×N), since we model 91 days per year. Similarly, for the

Generalized Pareto distribution, we take the inverse cumulative density function of

1/(5×N), since we are modeling 5 days per year.

We ensemble the different predictions by averaging the One-in-N estimates.

An average of multiple models adds robustness to the prediction. An averaged

prediction might not be as good as the best individual estimate, but it will always

be better than the worst individual estimate.

Now that we have developed four methods for estimating the Design Day

conditions, we forecast the demand corresponding to those conditions.

3.2 Forecasting Design Day Demand

Forecasting Design Day demand introduces two challenges. First, we need to

forecast flow where temperature data are particularly sparse; a temperature with a

return period of 40 years is not likely to have occurred in a demand dataset with
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only 10 years of data. Second, we need to determine the level of confidence we have

in our forecasts; what demand are we 99% sure will not be exceeded on the Design

Day?

3.2.1 Forecasting Demand During Rare Cold Days

To forecast during extreme cold days, GasDay uses as much data as possible.

Because characteristics of an operating area change over time, it is difficult to use

all historical data in building a model. GasDay compensates for the changing

system by adjusting historical demand to behave similarly to recent demand.

GasDay calls this process detrending [6].

First we train a linear regression model on the most recent year of data. We

then train a model on a previous year of data. Demand on the previous year is

adjusted by the difference in the two forecasting models. For example, we train a

model on data from 2017

Ŝk = β2017
0 + β2017

1 HDDk, (3.5)

.
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where Ŝk is the forecast demand on day k, and HDDk is the heating degree day on

day k. Similarly, we train a model on data from 2016

Ŝk = β2016
0 + β2016

1 HDDk. (3.6)

.

We then adjust the actual demand on each day 2016 (Sk) by

∆Sk = β2017
0 − β2016

0 + (β2017
1 − β2016

1 )HDDk (3.7)

.

resulting in detrended data for 2016. We repeat this for every preceding year in the

dataset.

While we can only forecast the Design Day demand from the Design Day

condition (an adjusted temperature), we can detrend data using all of the predictors

described in [44] and Section 1.3.1. Therefore, we detrend using linear regression

models with the following set of inputs

1. Bias

2. HDDW65
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3. HDDW55

4. ∆ MHDDW - A modified change in HDD from one day to the next

5. CDD65

We can fit a linear regression model to the detrended data. The linear

regression model evaluated at the Design Day condition is the expected Design Day

demand.

3.2.2 Determining the Level of Confidence in Forecasts

In order for the Design Day demand forecast to be useful, the uncertainty in

the forecast must be quantified. Typically, LDCs will ask us to provide 2.5 standard

deviations of residuals for our linear fit. For a normal distribution, 2.5 standard

deviations above the mean is greater than 99.38% of the density. For this reason we

find the linear quantile model that sits above 99.38% of all demand. In order to

stabilize our predictions, we perform composite quantile regression on quantiles

99.38, 93.88, and 84.38; the 93.88th, and 84.38th quantiles are used to stabilize the

regression - only the parameters for the 99.38th quantile are used.

We also are interested only in the uncertainty during the coldest days.

Therefore, we remove all data where the temperature is warmer than 50 degrees.

This is motivated by a much tighter bound on demand when there is no heat load.
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For this reason, we modify the quantile regression procedure described in Section

2.2.2 to weight more heavily the fit on the coldest days. We rank data points coldest

to warmest and train according to the weight shown in Figure 3.3.

Figure 3.3: Weighting for quantile regression

We weight the cost on quantile regression twice as much on the coldest day in the

data set. Then, the cost for all other days is linearly interpolated based on the order

of days ranked coldest to warmest.

Now that we have calculated the Design Day conditions and the Design Day

demand, we need to evaluate the performance of our forecasts.

3.3 Evaluating Performance of Forecasts

Evaluating the performance of our forecasts is split into two steps. First, we

evaluate the performance of our Design Day condition forecast. Second, we evaluate
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the performance of our Design Day demand probabilistic forecast. We ignore

performance of point forecasts for the Design Day because the focus of this thesis is

on probabilistic forecasting of the Design Day.

3.3.1 Evaluating the Design Day Condition Forecast

There are two primary metrics for evaluating the Design Day conditions:

volatility and reliability.

First, we will examine the volatility of the forecast (described in Section

2.3.2). We also consider the demonstration of volatility visualized by D’Silva [11] in

Figure 3.4.

In practice, LDCs use all previous data to build distributions. Each year, a

new year of data is included in building the distribution. Therefore, we will reverse

the time axis in Figure 3.4 to emulate the way LDCs will experience changes in

forecasts.

We then look at the reliability of our Design Day conditions forecast. We use

the actual-vs-expected ratio described in Section 2.3.2. The closer the metric is to

1.0, the more reliable is our forecast.
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Figure 3.4: Weighting for Quantile Regression

The One-in-N temperature thresholds are plotted over time. Going left-to-right, more 
data is used for calculating the Design Day conditions. In this chart, data is added by 
moving the first day of data back. However, in practice, data is added by moving the 
last day of data forward (as time goes on). We will adjust this plot to better represent 
what happens in practice.

3.3.2 Evaluating Performance of Design Day Demand Forecast

As mentioned in Section 2.3.3, there are two properties of a probabilistic

forecast: reliability and sharpness. A reliable forecast has the expected number of

observations between each quantile as the number of observations gets large.

Sharpness refers to preference towards less uncertainty in a forecast - assuming the
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forecast is reliable. Because sharpness is only important if the forecast is reliable, we

focus on measuring reliability in this work.

To measure reliability, we perform forecasts on the 99.38th quantile of

demand. We perform these forecasts on the 100 most temperature sensitive

operating areas for which GasDay has data. The 100 most sensitive operating areas

are chosen according to Tenneti [42]. We perform the PIT for the

0.9938 < F (x) < 1 bin; we count the number of times the actual flow is above the

99.38th quantile for each operating area. The bin should hold 0.62% of the points in

each operating area. We then sum across operating areas to get the total number of

demands exceeding the 99.38th quantiles and the total expected exceedances. We

then calculate the actual-vs-expected ratio.

We also could calculate Saber’s metric for reliability [38] - PQRS score,

PQRS =
1

n

n∑
i=0

|Expected percent in bini − Actual percent in bini|. (3.8)

n is the number of bins that we are calculating the score for (in this situation,

n = 1). For n = 1, the PQRS is nearly the same metric as the actual-vs-expected

ratio; PQRS/Expected percent in bin = |1− actual-vs-expected ratio|. The PQRS
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is telling us the same information as the actual-vs-expected ratio. Rather than

introducing a new metric to our results, we use actual-vs-expected ratio.

The actual-vs-expected ratio calculates the reliability of quantile forecasts for

all operating areas in aggregate. We also consider the scenario that each of the

operating area forecasts are biased, but in aggregate the biases cancel out. For

example, we expect the demand to be above the 99.38th quantile 10 times across 10

operating areas. If demand is above the 99.38th quantile 10 times in one operating

area and zero times in the other operating areas, the actual-vs-expected ratio would

be a perfect 1.0. However, these forecasts are clearly flawed. To capture this effect,

we calculate the root mean squared error (RMSE) between the actual and expected

number of exceedances.

We have described the methods that will be used for estimating the Design

Day conditions and Design Day demand. We have discussed methods for evaluating

their performance. Next, we perform experiments to determine the performance of

our Design Day conditions and Design Day demand estimates in practice.
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CHAPTER 4

Evaluation of Our Design Day Analysis

Design Day analysis is split into two steps. First, we predict and evaluate

performance of Design Day conditions. Then, we predict and evaluate the

performance of Design Day demand. In practice, we would determine the Design

Day conditions for an Operating Area and use those conditions to forecast Design

Day demand. Long, high quality weather data sets are difficult to procure. For this

reason, we perform our analysis of Design Day conditions on many weather stations

that are geographically dispersed. We then perform our analysis of Design Day

demand.

4.1 Evaluation of Design Day Conditions Forecast

Evaluation of the Design Day conditions is split into two parts. First, we

determine the reliability of Design Day condition forecasts made by each of the

statistical models described in Table 4.1. Then, we evaluate the volatility of the

forecasts to determine how useful they are for practitioners interested in long term

planning.
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Table 4.1: Summary of methods used in One-in-N experiment

Method Description

Coldest

In Last N

Years

Simply use the coldest observed temperature from the

last N years as the threshold.

GEV Make a set containing the coldest day of each year. Fit

a GEV distribution to the set.

KDF Make a set containing the 91 coldest calendar days of

each year. Fit a kernel density function to the set.

SKDF Make a set containing the 91 coldest calendar days of

each year. Supplement set with surrogate data method

found in Section 2.2.1. Fit a kernel density function to

the set.

Generalized

Pareto

Fit Generalized Pareto distribution to peaks over cold

threshold. Cold threshold is set such that it is exceeded

by an average of 2 days each year.

Ensemble Average of the Generalized Pareto, KDF, and SKDF

methods.

4.1.1 Data Source

Hourly temperature and wind data are collected from the National Oceanic

and Atmospheric Administration (NOAA) and AccuWeather. The hourly data are

averaged into daily data. 38 weather stations, each with 67 years of data were used

in this experiment. The stations chosen have high quality data and are

geographically diverse; for this reason we refer to these stations as the continental

dataset. The names of the stations are found in Table 4.2. The locations of these

stations are displayed in Figure 4.1.

We also use anonymous temperature and wind data from an LDC in the
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Table 4.2: Stations in continental dataset

Station Location Callsign Station Location Callsign

Camp Springs, MD KADW Dallas-Fort Worth, TX KDFW

Amarillo, TX KAMA Aspen, CO KASE

Boston, MA KBOS Seattle, WA KSEA

Brownsville, TX KBRO New York, NY KNYC

Corpus Christi, TX KCRP Minneapolis, MN KMSP

Dayton, OH KFFO Miami, FL KMIA

Fort Smith, AR KFSM Bakersfield, CA KBFL

New Orleans, LA KMSY Calgary, AB CYYC

Pittsburgh, PA KPIT Winnipeg, MB CYWG

Pueblo, CO KPUB Vancouver, BC CYVR

Raleigh/Durham, NC KRDU Regina, SK CYQR

Riverside, CA KRIV Ottawa, ON CYOW

San Antonio, TX KSAT Memphis, TN KMEM

Salt Lake City, UT KSLC Jackson, MS KJAN

Tulsa, OK KTUL Nashville, TN KBNA

Valparaiso, FL KVPS Kansas City, MO KMCI

Wrightstown, NJ KWRI Hays, KS KHYS

King Salmon, AK PAKN Evansville, IN KEVV

Honolulu, HI PHNL Louisville, KY KSDF

southeast United States. This LDC uses 45 stations to determine their Design Day

conditions. There is not as much geographic diversity as we see in Table 4.2.

However, it provides a case-study and shows how these methods perform for an

actual LDC. These stations are referred to as the case-study stations.
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Figure 4.1: Stations in the continental dataset

The map shows the geographic diversity of stations used in the United States and Canada. The four letter code is known as

the Callsign - a unique identifier of the station. Omitted from this map is PHNL, or Honolulu HI.
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4.1.2 Experiment

Ideally, we could fit distributions to thousands of years of stationary

temperature data. Unfortunately, we are limited to 67 years of data, and climate is

not stationary. We approach this challenge by testing our One-in-N forecast in two

ways.

First, we perform an in-sample test. For each station, we estimate the

One-In-N condition using all 67 years of data. We then count the number of

temperatures colder than the threshold in all 67 years of data. The

actual-vs-expected ratio (described in Section 2.3.2) is calculated. An in-sample test

is a recommended method in climate statistics when the amount of data required to

make the prediction is roughly the amount of data that exists [45].

We also perform an out-of-sample test. In this case, we determine the

One-in-N threshold from all but one year of data. We then count the number of

temperatures colder than the One-in-N threshold in the held-out year. We repeat

this by holding out each year. This results in 2546 tests (67 held out years × 38

weather stations). We aggregate all of these tests to calculate the

actual-vs-expected ratio.

These tests are run on both the stations from Table 4.2 and the anonymous

stations from the case-study. The case-study stations are only tested using raw
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temperature to keep the results section succinct. The stations from Table 4.2 are 

tested using raw, wind-adjusted, and prior-day adjusted temperatures - starting 

with raw temperatures.

Using Raw Temperature: Continental Dataset

The experiment is run on the raw temperatures from each of the weather stations. 

The in-sample actual-vs-expected ratios are provided in Table 4.3.

We want these ratios to be near 1.0. A ratio greater than 1.0 means that the 

estimator was biased too warm; more temperatures than expected are colder than 

the threshold. A ratio less than 1.0 means that the estimators are biased too cold.

The table contains ratios for the One-in-10, 20, 30, 40 conditions. The 

variance of a distribution sampled in the extreme tails is relatively high, so we put 

less emphasis on the actual-vs-expected ratio for larger N .

Table 4.3: Continental in-sample actual-vs-expected ratio raw temperature

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.418 1.75 0.799 0.931 1.141 0.908

20 5.75 1.622 0.776 0.854 0.954 0.838

30 1.35 1.501 0.687 0.885 0.954 0.896

40 1.148 1.381 0.667 0.916 0.962 0.776
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For the in-sample test, the SKDF and the Generalized Pareto methods

performed the best and exhibited little bias. The GEV method is biased too warm.

The GEV fits a distribution to the coldest day of each year. Because temperature is

auto-correlated, we might expect the coldest two temperatures in history to occur in

the same year. Therefore, the GEV is not fit to some of the coldest days, explaining

its bias towards being too warm. The Coldest In Last N Years is an unreliable

estimator. It performs reasonable well for large N , but this is more of a problem

with the test than a reflection of the method’s performance. For example, if we

chose N = the number of years in the dataset, the Coldest In Last N Years method

would perform perfectly on the in-sample test.

The in-sample fit for each of the distributions is shown in Figure 4.2. Four

stations of the 38 were selected at random for the figure. Also labeled is the

threshold for the One-in-30 condition. All four of the distribution-based methods

place the One-in-30 condition is a similar location, lending confidence that each of

these methods are reasonable estimators of the Design Day condition. The GEV fit

does not appear to accurately represent the in-sample data, which also contributes

to the poor actual-vs-expected ratio.

The out-of-sample test shows similar results. The SKDF and the KDF

perform the best. The Generalized Pareto method sets the threshold slightly too
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Table 4.4: Continental out-of-sample actual-vs-expected ratio raw temperature

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.471 1.812 0.994 1.057 1.25 1.061

20 5.904 1.8 0.959 1.006 1.195 0.991

30 1.651 1.84 0.967 1.026 1.262 1.05

40 1.211 1.714 0.975 1.069 1.289 1.132

warm; it is exceeded more often than expected. The GEV and the Coldest In Last

N Years perform similarly to the in-sample test.
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Table 4.5: Continental volatility of raw temperature threshold

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.6023 0.0507 0.053 0.0557 0.0623 0.052

20 2.1245 0.089 0.0753 0.0729 0.0979 0.071

30 0.4952 0.126 0.0964 0.0872 0.1277 0.0856

40 0.2246 0.0635 0.0452 0.0422 0.0899 0.0432

Table 4.5 contains the volatility of each method. A volatility near 0.0

represents a method that is useful to an LDC; the Design Day condition changes

slowly over time. All of the distribution-based methods perform well relative to the

Coldest In Last N Years method. The volatility is visualized in Figure 4.3. Most of

the methods vary slowly over time. The Coldest In Last N Years method is constant

most years, but occasionally makes a huge jump. When an extreme cold event

occurs, the Coldest In Last N Years threshold steeply drops. When an extreme cold

event falls out of the last N years window, the Coldest In Last N Years threshold

steeply rises. This flaw in the Coldest In Last N Years method has been a complaint

of many LDCs that work with GasDay.
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Figure 4.2: Continental raw temperature distribution fits

These charts show the fits of distributions to the coldest temperatures. The top row shows the fits of the Generalized Pareto,

SKDF, and KDF. The bottom row shows the fit of the GEV to the coldest day of each year. The figures for all stations in the

continental dataset can be found in Appendix A.
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Figure 4.3: Continental changes in One-in-30 condition over time
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Using Raw Temperature: Case-study Dataset

While we should have more confidence in the continental results, it is 

important for a method to perform well on the case-study dataset; these results are 

delivered to LDCs as justification for using one of these methods.

Table 4.6: Case-study in-sample actual-vs-expected ratio raw temperature

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 2.435 1.786 0.926 1.099 1.063 1.03

20 4.838 1.486 0.841 0.971 0.919 0.88

30 1.252 1.291 0.743 0.968 0.88 0.89

40 1.004 1.2 0.795 1.017 0.848 0.821

The in-sample results provide justification for using the SKDF, Generalized

Pareto, and Ensemble methods. All have actual-vs-expected ratios relatively near

1.0 (see Table 4.6). The out-of-sample test shows each method to be biased slightly

too warm; the thresholds are exceeded too often (see Table 4.7). However, since the

SKDF, Generalized Pareto, and Ensemble methods are all still relatively close to

1.0, these methods are still justifiable.

Calculating volatility is perhaps the most important test for the case-study

dataset; it directly assesses the usability of each method for an actual LDC. In
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Table 4.7: Case-study out-of-sample actual-vs-expected ratio raw temperature

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.101 1.926 1.059 1.225 1.205 1.122

20 6.062 1.733 1.042 1.235 1.248 1.129

30 1.624 1.614 1.026 1.225 1.195 1.155

40 1.195 1.58 1.076 1.275 1.288 1.195

Table 4.8 we find very similar results to the continental threshold volatility. All

methods have low volatility except for the Coldest In Last N Years method.

Table 4.8: Case-study volatility of raw temperature threshold

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 4.746 0.08 0.0946 0.089 0.1054 0.0891

20 3.6321 0.1585 0.2027 0.1336 0.1668 0.1466

30 1.1162 0.2447 0.2444 0.2127 0.2191 0.1959

40 0.3134 0.152 0.0644 0.0607 0.1207 0.0599

Using the case-study dataset is a useful demonstration of how each method

works for an actual LDC. However, we shift our focus back onto the continental

dataset, as it demonstrates performance across a larger geographic region.

Analyzing both datasets is too cumbersome as we analyze performance on wind and

prior day adjusted temperatures.
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Using Wind Adjusted Temperatures: Continental Dataset

The wind adjustment to temperatures is made to create a better predictor

for flow. We perform the same test for determining the Design Day condition of a

wind adjusted temperature as we did for the raw temperature. The in-sample

results again show the Generalized Pareto and SKDF methods perform the best.

The KDF is still biased too cold, and the GEV is still biased too warm.

Table 4.9: Continental in-sample actual-vs-expected ratio wind adjusted

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.349 1.638 0.835 0.987 1.106 0.999

20 5.839 1.507 0.852 1.032 1.065 0.942

30 1.376 1.339 0.835 1.032 1.056 0.958

40 1.13 1.261 0.803 1.015 1.097 0.934

The out-of-sample test yields very different results after adjusting for wind.

Here, the KDF performs best; the SKDF, Generalized Pareto, and Ensemble are

slightly biased warm. While all methods perform reasonably, the change in bias

shows that wind adjusting the temperatures seems to increase the width of the

distribution tails. This is best examplified when comparing KADW in Figure 4.4 to

KADW in Figure 4.2. Clearly, the tail is wider in the wind adjusted distribution,

and the distribution fits fail to capture the thicker tail.
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Table 4.10: Continental out-of-sample actual-vs-expected ratio wind adjusted

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.299 1.71 1.021 1.095 1.249 1.137

20 5.701 1.693 1.004 1.162 1.278 1.129

30 1.593 1.618 1.046 1.232 1.332 1.133

40 1.145 1.627 1.162 1.261 1.378 1.212

Table 4.11 - representing the volatility in the wind predictions - does not 

provide any new information. We see that all methods other than Coldest In Last N 

Years perform reasonably.

Table 4.11: Continental volatility of wind adjusted temperature threshold

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 5.2986 0.0751 0.0915 0.073 0.0888 0.0776

20 3.7863 0.1381 0.1208 0.1043 0.1454 0.1092

30 1.1386 0.1742 0.1359 0.1272 0.1799 0.1239

40 0.7718 0.0841 0.0355 0.0692 0.1059 0.0499
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Figure 4.4: Wind adjusted temperature distribution Fits
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Using Prior Day Adjusted Temperatures: Continental Dataset

We adjust temperatures based on the prior day temperature to improve the

correlation with demand. As described in Figure 1.3, demand data is required to

calculate the prior day effect. However, this experiment is conducted independent of

demand. Therefore, we calculate the prior day effect from one operating area and

apply it to all stations in our test.

Table 4.12: Continental in-sample actual-vs-expected ratio prior day adjusted

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 4.504 1.936 0.842 0.927 1.071 0.927

20 6.665 1.87 0.737 0.861 1.009 0.815

30 1.49 1.757 0.605 0.78 0.908 0.71

40 1.117 1.474 0.636 0.714 0.869 0.714

According to the in-sample test (found in Table 4.12), the Generalized

Pareto and SKDF methods perform the best. The KDF, SKDF, and Ensemble are

all biased too cold, especially for large N . This is reflected by the significantly

thinner tail (particularly for KADW) in Figure 4.5.

The KDF, SKDF, and Ensemble perform best for the out-of-sample test
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Table 4.13: Continental out-of-sample actual-vs-expected ratio prior day adjusted

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 4.465 1.993 0.979 1.034 1.215 1.065

20 6.682 2.02 1.006 1.006 1.289 1.108

30 1.675 2.04 0.991 1.108 1.486 1.156

40 1.164 1.997 1.006 1.069 1.447 1.038

(shown in Table 4.13). The Generalized Pareto and - to a greater extent - the GEV 

methods are biased too warm. The Coldest In Last N Years method again proves to 

be an unreliable method.

Table 4.14: Continental volatility of prior day adjusted temperature threshold

N Coldest

In Last N

Years

GEV KDF SKDF Generalized

Pareto

Ensemble

10 3.1095 0.0427 0.0522 0.0693 0.0654 0.0566

20 2.0736 0.0742 0.0642 0.0833 0.0984 0.0694

30 0.3549 0.1095 0.0747 0.0891 0.1253 0.0782

40 0.243 0.0741 0.0403 0.0383 0.0882 0.0414

Table 4.14 shows the volatility of the different methods applied to prior day

adjusted weather. Again, we see that all methods except the Coldest In Last N

Years perform reasonably well - implying these methods are usable in practice.
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Figure 4.5: Prior day adjusted temperature distribution fits
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4.1.3 Discussion

Considering the results in aggregate, the KDF, SKDF, Generalized Pareto,

and the Ensemble methods all prove to be reasonably reliable methods for

estimating the Design Day conditions. These four methods estimate very similar

temperatures for Design Day conditions, and their probability distribution functions

are very similar (see Figures 4.2, 4.4, 4.5). It is encouraging to see the methods that

performed well empirically (the SKDF and KDF) estimate similar Design Day

conditions as the method that has much theoretical backing (the Generalized

Pareto).

The GEV method does not perform particularly well on most of the tests -

however, most of the temperature estimates are within a couple of degrees of the

other methods. The GEV method fundamentally is estimating a different

temperature than what we are testing for. The Block-Maxima approach discards all

but one datapoint in every year. A set containing the coldest temperature in each of

the 30 years does not necessarily contain - and due to autocorrelation is unlikely to

contain - the coldest 30 temperatures in the last 30 years. Since the coldest days are

not necessarily being modeled, it is no surprise the the GEV is biased warm.

Using the Block-Maxima approach may be useful depending on the question

to be answered. If the question is “what is the coldest temperature in a year that
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we expect to be exceeded once every N years,” then the Block-Maxima approach is 

correct. However - in our test - we asked the question “what is the temperature we 

expect to be exceeded - on average - once every N years?” The difference is subtle, 

but explains the poor performance by the GEV in our experiment.

For a fair test, we recalculate the actual-vs-expected ratio using the number 

of years in which the GEV threshold is exceeded (rather than the total days that 

exceed the GEV threshold). The recalculated actual-vs-expected ratios using non-

adjusted temperature are found in Tables 4.15 and 4.16. Though still biased warm, 

the actual-vs-expected ratios are much closer to 1.0; the GEV method is reasonable 

so long as we want to know temperature that will be exceeded in one year out of 

N .

Table 4.15: Continental in-sample Block-Maxima actual-vs-expected ratio

N GEV

10 1.04

20 1.195

30 1.269

40 1.21
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Table 4.16: Continental out-of-sample Block-Maxima actual-vs-expected ratio

N GEV

10 1.053

20 1.226

30 1.45

40 1.494

The Coldest In Last N Years method performs the worst. Not only does it

perform poorly on the actual-vs-expected ratio metric, but the volatility of the

method makes it difficult for practitioners to use. For these reasons, using the

Coldest In Last N Years method to determine Design Day conditions is not

recommended.

4.2 Evaluation of Design Day Demand Forecast

We now shift our focus to forecasting demand given Design Day conditions.

The Design Day demand forecast is used by practitioners to make sure they are able

to meet demand during a Design Day. We need to capture the uncertainty in the

Design Day demand forecast. In particular, we need to determine the flow that will

not be exceeded 99.38% of the time on the Design Day. This is particularly difficult

to evaluate performance because there is not much demand data on days similar to

the Design Day. Further, there is not much demand data that exceeds the 99.38th

quantile. In this way, we are looking at the tails of two distributions; we are looking
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at the extreme cold temperatures; we are looking at the extreme high demand

conditional on an extreme cold temperature. Data is extremely sparse in these two

extremes. To compensate, we use 100 anonymized operating areas and run our test

in-sample.

4.2.1 Data Source

The 100 most temperature sensitive operating areas in the GasDay data

repository are used in this experiment. Temperature sensitivity is calculated

according to Tenneti in his thesis [42].

4.2.2 Experiment

The quantile regression model described in Section 3.2.2 is compared to a

baseline model. For the baseline, we use a linear regression model with inputs

HDDW65, HDDW55, CDD65, and a bias term. We calculate the standard deviation

of error on the 20% coldest days. Adding 2.5 standard deviations to the linear

regression model provides the 99.38th quantile, assuming errors are normally

distributed.

We calculate the actual-vs-expected ratio for each operating area; we limit

the testing set to the 10% coldest days, then we count the number of points above

the 99.38th quantile. We know that this includes days much warmer than the Design
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Day, but this much data is required for analysis. We aggregate the number of

expected exceedances and actual exceedances across operating areas and calculate

the actual-vs-expected ratio. We also calculate the RMSE for actual and expected

exceedances across operating areas, as described in Section 3.3.2.

According to Table 4.17, both methods exhibit little bias when aggregated

across the 100 operating areas; the actual-vs-expected ratio is near 1.0 for each

method. The composite quantile regression method has a much lower RMSE than

the baseline model, indicating a higher resolution; for each station, the number of

actual exceedances is closer to expected.

Table 4.17: Uncertainty results for quantile regression and baseline model

Method RMSE actual-vs-

expected ratio

Linear With Normal

Distribution

3.0338 1.0985

Quantile Fit 1.7249 1.022

Four example fits are shown in Figure 4.6. Though we are only interested in

the 99.38th quantile, we also include the 0.62th quantile. This is done to visualize

the change in uncertainly with respect to temperature. Figure 4.6.d demonstrates

uncertainty decreasing as temperature decreases; the difference between the high

and low quantiles decreases as temperature decreases. To contrast this, in Figures
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a) b)

c) d)

Figure 4.6: Quantiles for four of the most temperature-sensitive operating areas 

The figures above show the 99.38% and 0.62% quantiles for four anonymized oper-

ating areas. The figures are zoomed into the 10% coldest days. The golden lines 
represent the baseline model quantiles. The blue lines represent the composite quan-

tile regression quantiles. The blue area represents the region in which we expect 
98.76% of points to lie (99.38% - 0.62%).

4.6.a, 4.6.b, and 4.6.c, uncertainty increases as temperature decreases. The baseline

model is constrained to have constant uncertainty relative to temperature. Relaxing

this constraint allows the composite quantile regression method to better fit the

high and low quantiles of the data.
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4.2.3 Discussion

While both the quantile fit and the linear regression with normal distribution 

prove to be reliable - the actual-vs-expected ratios are near 1.0 - the composite 

quantile regression method proves to be superior in resolution. Both methods can 

be used with empirical justification. However, the composite quantile regression 

model is recommended.

There are two major shortcomings with this test, both stem from the lack of 

data. First, the 10% coldest days in the datasets are much warmer than the Design 

Day conditions. Our metrics do not truly represent performance on the Design Day. 

Second, there is no out-of-sample test. Design Day analysis is used for future 

planning. Ideally, we would have enough data to test several held out years.

There are other challenges that come with forecasting uncertainty in the next 

year’s Design Day. We need to determine how much uncertainty is caused by 

potential changes in the region being forecasted. New houses may be built, or old 

houses may be made more efficient. These demographic changes will certainly affect 

the relationship between temperature and flow. Saber dealt with this by basing his 

probabilistic forecast on out-of-sample errors [38]. 
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However, the use of nearest neighbors in Saber’s method limits the ability to 

extrapolate - a necessary feature for predicting uncertainty during extreme cold 

days. This option, among other ideas, are discussed next in the Future 

Considerations section.
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CHAPTER 5

Benefits of Design Day Analysis and Future Considerations

In this chapter we discuss our contributions, improvements that can be made

to our Design Day analysis, and extensions to this research outside of the scope of

Design Day analysis.

5.1 Contributions of Design Day Analysis

This thesis contributes to Design Day analysis in three ways. First, we

improve on current methods for estimating Design Day conditions and provide an

out-of-sample analysis. Second, we improve methods for determining Design Day

demand. Finally, we improve on methods evaluating performance of Design

Day analysis.

Estimating Design Day conditions has been the target of research

[10, 11, 25, 31]. This thesis is the first time the empirically good SKDF is compared

to - and ensembled with - the Generalized Pareto distribution. Several distributions

- both empirically and theoretically based - estimate similar Design Day conditions;

we have increased confidence that each of these methods is a reasonable estimator of

Design Day conditions.
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Estimating the Design Day demand has also been a target of research [3, 4].

This is the first research focused on forecasting uncertainty in our Design Day

demand prediction. We also apply a weighting to the training examples during

optimization - a novel adjustment to composite quantile regression. We show

improvement over the baseline model on an in-sample test.

We introduce the test for volatility in Design Day analysis. It addresses the

concern about Design Day conditions that GasDay hears most often from LDCs; a

huge change in the Design Day conditions from one year to the next makes it

difficult to plan for the future. By running this test on several methods, we show

which methods are useful to LDCs. In particular, the KDF, SKDF, Generalized

Pareto, and Ensemble methods all perform reasonably well and should be

considered as options for estimating Design Day conditions.

5.2 Future Improvements to Design Day Analysis

In this section, we discuss improvements that can be made to estimating

Design Day conditions, Design Day demand, and evaluating the performance of our

estimates.

In our work estimating the Design Day conditions, we assumed climate to be

constant. Huang et al. show that the extreme cold days are expected to occur less
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frequently due to climate change. They also show in increase in variance of extreme

cold days [22]. To address this, we can detrend the data to remove any trend of

rising temperatures. By doing this we can treat all temperature data as if it came

from the most recent year. This is particularly challenging because of the large

variability of temperatures each year - particularly when we look at a single weather

station. Because temperatures vary so much from one year to the next, it is difficult

to identify long term temperature trends due to climate change. Determining the

long term temperature trend is the main challenge in this future work.

Our probabilistic forecast of Design Day demand does not account for the

potential changes in an operating area from one year to the next. This can yield

forecasts with too narrow of confidence bounds. To address this, we can implement

a section of Saber’s method. Saber uses the error of a linear regression model as a

basis for his probabilistic forecast. The sets of error he uses are determined from a

year of held out demand data. Systematic changes to the operating area being

modeled contribute to the errors. Therefore, by modeling the errors, we are

modeling the uncertainty caused by potential changes in the operating area from

year to year.

Saber’s method was not used in this thesis because it creates a probabilistic

forecast similarly to K-nearest-neighbors; it can only interpolate, it can not

extrapolate. By combining the methods used by Saber and composite quantile
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regression, we can solve the problems of both methods; the combination would be

able to extrapolate with respect to temperature and be adjusted based on the

potential for changes to the operating area being modeled.

Finally, an out-of-sample test would be useful for the Design Day demand.

After incorporating the uncertainty that comes with a changing operating area, an

out-of-sample test would be useful. The primary challenge is dealing with the

sparsity of data. To compensate for this, we can use Kaefer’s methods for surrogate

data [24]. Surrogate data can be used to increase the size of the out-of-sample test

set. With a larger out-of-sample test set, there will be enough data in the tails of

the temperature and flow distributions to perform a coherent experiment.

5.3 Future Work

There are two primary suggestions for future work outside of Design

Day analysis.

1. Combine composite quantile regression and the surrogate temperature method

used in the SKDF method for long term probabilistic forecasts of natural gas

demand.

2. Combine Saber’s method, composite quantile regression, and probabilistic

weather forecasting.
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5.3.1 Monthly Probabilistic Forecasts

LDCs need to purchase gas months in advance to mitigate risk. Without

reliable weather forecasts, there is little they can do to determine how much gas will

be demanded months in advance. LDCs can look at the amount of demand used in

previous years, but many operating areas have only been collecting data for the past

few years. By modeling the probability distributions of temperatures across the

year, and the probabilistic relationship between flow and temperature, we can

estimate the probability distributions of demand on each day of the year.

Many of the LDCs that work with Marquette University GasDayTM are

more interested in the total amount of demand in a month - particularly when doing

the long term forecasting described here. We therefore average the surrogate

temperatures into monthly temperatures and build multiple quantile regression

models (one for each quantile 1-99) on average monthly demand and temperatures.

By using the distribution of monthly temperatures as the input to the quantile

regression model, we can estimate a distribution of demand.
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A) The subfigure above shows the temperatures on each day of the year. The tem-

peratures on each day of the year are sorted, then plotted in the same series as the 

temperatures of the same rank that occured on other days of the year.

B) The surrogate data process used in the SKDF is applied to the tempera-

tures in A. The subfigure above is analogous to A, but includes the surrogate 

data

C) Monthly demand (y-axis) is plotted against monthly tempera-

tures (x-axis)

D) Quantile regression models are fit to the data in C.  Each line represents a quantile 

fit. The red lines represent high quantiles, while the blue lines represent the low quan-

tiles.

E) The surrogate temperatures from B are aggregated into monthly temperatures. The 

monthly temperatures are input into the quantile regression models in D. The result-

ing probability distribution of demand for each month is plotted above.

Figure 5.1: Monthly Flow Forecast
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5.3.2 Daily Probabilistic Forecasts

Daily probabilistic gas demand forecasts is an area of research interest at

Marquette University GasDayTM. Marquette University GasDayTM provides daily

demand forecasts to utilities across the United States. To improve their

decision-making capability, LDCs will need to provide probabilistic daily demand

forecasts. Quantiles can be fit to the errors produced by Saber’s cross validation

method using composite quantile regression. The biggest hurdle to generating

probabilistic demand forecasts is to first obtain probabilistic weather forecasts.

Weather vendors have been unable to supply Marquette University

GasDayTM with reliable probabilistic weather forecasts. However, much research in

the meteorological community has been dedicated to probabilistic weather

forecasting [8], lending confidence that they may become readily available. In the

meantime, we propose a simple solution to modeling uncertainty of weather

forecasts. First, a Laplacian distribution is assumed about the errors of weather

forecasts. Then, the standard deviation and mean of the errors is tracked using a

the same methods implemented in Brown’s Dynamic Post Processor (described fully

in [5]). The probabilistic weather forecast is derived by adding the point forecast to

the Laplacian distribution.
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Appendix A

Raw Temperature Distribution Fit For All Stations

It would have been too cumbersome to visualize the distributions fit to each
of the 38 stations in the continental data set. However, for the sake of transparency,
we include them here.
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